![dancing hair cell dancing hair cell](http://web.archive.org./web/20110223181210im_/http://i.ytimg.com/vi/Xo9bwQuYrRo/0.jpg)
- Order:
- Duration: 0:29
- Published: 2007-02-10
- Uploaded: 2011-02-06
- Author: fishfer
Hair cells are the sensory receptors of both the auditory system and the vestibular system in all vertebrates. In mammals, the auditory hair cells are located within the organ of Corti on a thin basilar membrane in the cochlea of the inner ear. They derive their name from the tufts of stereocilia that protrude from the apical surface of the cell, a structure known as the hair bundle, into the scala media, a fluid-filled tube within the cochlea. Mammalian cochlear hair cells come in two anatomically and functionally distinct types: the outer and inner hair cells. Damage to these hair cells results in decreased hearing sensitivity, i.e. sensorineural hearing loss.
Results in recent years further indicate that mammals apparently have conserved an evolutionarily earlier type of hair-cell motility. This so-called hair-bundle motility amplifies sound in all non-mammalian land vertebrates. It is affected by the closing mechanism of the mechanical sensory ion channels at the tips of the hair bundles. Thus, the same hair-bundle mechanism that detects sound vibrations also actively “vibrates back” and thereby mechanically amplifies weak incoming sound.
Hair cells chronically leak Ca+2. This leakage causes a tonic release of neurotransmitter to the synapses. It is thought that this tonic release is what allows the hair cells to respond so quickly in response to mechanical stimuli. The quickness of the hair cell response may also be due to that fact that it can increase the amount of neurotransmitter release in response to a change as little as 100 μV in membrane potential.
The molecular biology of hair cells has seen considerable progress in recent years, with the identification of the motor protein (prestin) that underlies somatic electromotility in the outer hair cells. Santos-Sacchi et al. have shown that prestin's function is dependent on chloride channel signalling and that it is compromised by the common marine pesticide tributyltin (TBT). Because this class of pollutant bioconcentrates up the food chain, the effect is pronounced in top marine predators such as Orcas and toothed whales.
==Neural connection==
Neurons of the auditory or vestibulocochlear nerve (the VIIIth cranial nerve) innervate cochlear and vestibular hair cells. The neurotransmitter released by hair cells to stimulate the dendrites of afferent neurons is thought to be glutamate. At the presynaptic juncture, there is a distinct presynaptic dense body or ribbon. This dense body is surrounded by synaptic vesicles and is thought to aid in the fast release of neurotransmitter.
Nerve fiber innervation is much denser for inner hair cells than for outer hair cells. A single inner hair cell is innervated by numerous nerve fibers, whereas a single nerve fiber innervates many outer hair cells. Inner hair cell nerve fibers are also very heavily myelinated, which is in contrast to the unmyelinated outer hair cell nerve fibers.'''
Efferent projections from the brain to the cochlea also play a role in the perception of sound. Efferent synapses occur on outer hair cells and on afferent (towards the brain) dendrites under inner hair cells. The presynaptic terminal bouton is filled with vesicles containing acetylcholine and a neuropeptide called Calcitonin gene-related peptide (CGRP). The effects of these compounds varies, in some hair cells the acetylcholine hyperpolarized the cell, which reduces the sensitivity of the cochlea locally.
Researchers have identified a mammalian gene that normally acts as a molecular switch to block the regrowth of cochlear hair cells in adults. The Rb1 gene encodes the retinoblastoma protein that performs several physiological functions. Not only do hair cells in a culture dish regenerate when the Rb1 gene is deleted, but mice bred to be missing the gene grow more hair cells than control mice that have the gene. The cell cycle inhibitor p27kip1 has also been shown to allow regrowth of cochlear hair cells in mice following genetic deletion or knock down with siRNA targeting p27.
Category:Auditory system Category:Receptor cells Category:Human cells
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.