![Flyfishing for Triploid Rainbow Trout Flyfishing for Triploid Rainbow Trout](http://web.archive.org./web/20110903194127im_/http://i.ytimg.com/vi/ZCeC7dH6pQY/0.jpg)
- Order:
- Duration: 7:35
- Published: 20 Jun 2008
- Uploaded: 19 Aug 2011
- Author: humblefisherman
Polyploid is a term used to describe cells and organisms containing more than two paired (homologous) sets of chromosomes. Most eukaryotic species are diploid, meaning they have two sets of chromosomes — one set inherited from each parent. However polyploidy is found in some organisms and is especially common in plants. In addition, polyploidy also occurs in some tissues of animals who are otherwise diploid, such as human muscle tissues. This is known as endopolyploidy. (Monoploid organisms also occur; a monoploid has only one set of chromosomes.)
Polyploidy refers to a numerical change in a whole set of chromosomes. Organisms in which a particular chromosome, or chromosome segment, is under- or overrepresented are said to be aneuploid (from the Greek words meaning "not," "good," and "fold"). Therefore the distinction between aneuploidy and polyploidy is that aneuploidy refers to a numerical change in part of the chromosome set, whereas polyploidy refers to a numerical change in the whole set of chromosomes.
Polyploidy may occur due to abnormal cell division, either during mitosis, or commonly during metaphase I in meiosis.
Polyploidy occurs in some animals, such as goldfish, salmon, and salamanders, but is especially common among ferns and flowering plants (see Hibiscus rosa-sinensis), including both wild and cultivated species. Wheat, for example, after millennia of hybridization and modification by humans, has strains that are diploid (two sets of chromosomes), tetraploid (four sets of chromosomes) with the common name of durum or macaroni wheat, and hexaploid (six sets of chromosomes) with the common name of bread wheat. Many agriculturally important plants of the genus Brassica are also tetraploids. Polyploidization is a mechanism of sympatric speciation because polyploids are usually unable to interbreed with their diploid ancestors.
Polyploidy can be induced in plants and cell cultures by some chemicals: the best known is colchicine, which can result in chromosome doubling, though its use may have other less obvious consequences as well. Oryzalin also will double the existing chromosome content.
One of the few known exceptions to this 'rule' is an octodontid rodent of Argentina's harsh desert regions, known as the Plains Viscacha-Rat (Tympanoctomys barrerae). This rodent is not a rat, but kin to guinea pigs and chinchillas. Its "new" diploid [2n] number is 102 and so its cells are roughly twice normal size. Its closest living relation is Octomys mimax, the Andean Viscacha-Rat of the same family, whose 2n = 56. It is surmised that an Octomys-like ancestor produced tetraploid (i.e., 4n = 112) offspring that were, by virtue of their doubled chromosomes, reproductively isolated from their parents; but that these likely survived the ordinarily catastrophic effects of polyploidy in mammals by shedding (via translocation or some similar mechanism) the "extra" set of sex chromosomes gained at this doubling. (The closely related Golden Vizcacha Rat, 2n = 96, is thought to have arisen via roughly the same process).
Polyploidy occurs in humans in the form of triploidy, with 69 chromosomes (sometimes called 69,XXX), and tetraploidy with 92 chromosomes (sometimes called 92,XXXX). Triploidy, usually due to polyspermy, occurs in about 2–3% of all human pregnancies and ~15% of miscarriages. The vast majority of triploid conceptions end as miscarriage and those that do survive to term typically die shortly after birth. In some cases survival past birth may occur longer if there is mixoploidy with both a diploid and a triploid cell population present.
Triploidy may be the result of either digyny (the extra haploid set is from the mother) or diandry (the extra haploid set is from the father). Diandry is mostly caused by reduplication of the paternal haploid set from a single sperm, but may also be the consequence of dispermic (two sperm) fertilization of the egg. Digyny is most commonly caused by either failure of one meiotic division during oogenesis leading to a diploid oocyte or failure to extrude one polar body from the oocyte. Diandry appears to predominate among early miscarriages while digyny predominates among triploidy that survives into the fetal period. However, among early miscarriages, digyny is also more common in those cases <8.5 weeks gestational age or those in which an embryo is present. There are also two distinct phenotypes in triploid placentas and fetuses that are dependent on the origin of the extra haploid set. In digyny there is typically an asymmetric poorly grown fetus, with marked adrenal hypoplasia and a very small placenta. In diandry, a partial hydatidiform mole develops. Huge explosions in angiosperm species diversity appear to have coincided with the timing of ancient genome duplications shared by many species. It has been established that 15% of angiosperm and 31% of fern speciation events are accompanied by ploidy increase. Polyploid plants can arise spontaneously in nature by several mechanisms, including meiotic or mitotic failures, and fusion of unreduced (2n) gametes. Both autopolyploids (e.g. potato) and allopolyploids (e.g. canola, wheat, cotton) can be found among both wild and domesticated plant species. Most polyploids display heterosis relative to their parental species, and may display novel variation or morphologies that may contribute to the processes of speciation and eco-niche exploitation. Many of these rapid changes may contribute to reproductive isolation and speciation.
Lomatia tasmanica is an extremely rare Tasmanian shrub which is triploid and sterile, and reproduction is entirely vegetative with all plants having the same genetic structure.
There are few naturally occurring polyploid conifers. One example is the giant tree Sequoia sempervirens or Coast Redwood which is a hexaploid (6x) with 66 chromosomes (2n = 6x = 66), although the origin is unclear.
The induction of polyploidy is a common technique to overcome the sterility of a hybrid species during plant breeding. For example, Triticale is the hybrid of wheat (Triticum turgidum) and rye (Secale cereale). It combines sought-after characteristics of the parents, but the initial hybrids are sterile. After polyploidization, the hybrid becomes fertile and can thus be further propagated to become triticale.
In some situations polyploid crops are preferred because they are sterile. For example many seedless fruit varieties are seedless as a result of polyploidy. Such crops are propagated using asexual techniques such as grafting.
Polyploidy in crop plants is most commonly induced by treating seeds with the chemical colchicine.
Although the replication and transcription of DNA is highly standardized in eukaryotes, the same cannot be said for their karotypes, which are highly variable between species in chromosome number and in detailed organization despite being constructed out of the same macromolecules. In some cases there is even significant variation within species. This variation provides the basis for a range of studies in what might be called evolutionary cytology.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.