- published: 17 Mar 2010
- views: 171618
In geometry, Heron's (or Hero's) formula, named after Heron of Alexandria, states that the area T of a triangle whose sides have lengths a, b, and c is
where s is the semiperimeter of the triangle:
Heron's formula can also be written as:
Heron's formula is distinguished from other formulas for the area of a triangle, such as half the base times the height or half the modulus of a cross product of two sides, by requiring no arbitrary choice of side as base or vertex as origin.
The formula is credited to Heron (or Hero) of Alexandria, and a proof can be found in his book, Metrica, written c. A.D. 60. It has been suggested that Archimedes knew the formula over two centuries earlier, and since Metrica is a collection of the mathematical knowledge available in the ancient world, it is possible that the formula predates the reference given in that work.
A formula equivalent to Heron's namely:
, where Failed to parse (Missing texvc executable; please see math/README to configure.): a \ge b \ge c
was discovered by the Chinese independently of the Greeks. It was published in Shushu Jiuzhang (“Mathematical Treatise in Nine Sections”), written by Qin Jiushao and published in A.D. 1247.