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Abstract: Different natural deduction proof systems for intuitionistic and
classical logic—and related logical systems—differ in fundamental proper-
ties while sharing significant family resemblances. These differences be-
come quite stark when it comes to the structural rules of contraction and
weakening. In this paper, I show how Gentzen and Jaśkowski’s natural de-
duction systems differ in fine structure. I also motivate directed proof nets as
another natural deduction system which shares some of the design features
of Genzen and Jaśkowski’s systems, but which differs again in its treatment
of the structural rules, and has a range of virtues absent from traditional
natural deduction systems.

1 representing proof: jaśkowski, gentzen and beyond

Logic is about many different things. One of the things logic is about is the notion
of proof. A traditional natural deduction proof displays inferential connections in
a deduction from some set (maybe an empty set) of premises to some conclusion.
A clear and precise conception of proof gives you the means to see how those in-
ferential connections arise from some small collection of fundamental inferential
steps, in a manner not too dissimilar from how the variety of molecules are made
up from the atoms on the periodic table.

*Thanks to Allen Hazen, whose many conversations over the years on so many issues—not least,
the subtle features of different presentations of natural deduction—have influenced me more than
I can acknowledge in a footnote. Thank you, Allen, for patiently listening during innumerable oc-
casions when I rambled on in front of whiteboards, for asking pertinent questions, and for guiding
me through 100 years and more of the history of logic. My own research is much better for hav-
ing worked with you. Thanks, too, to an anonymous referee for Studia Logica, whose comments
helped improve the the content of the paper, as well as its clarity. ¶ This is a pre-publication ver-
sion of a paper, published in a special issue of Studia Logica, on Gentzen’s and Jaśkowski’s Heritage,
80 Years of Natural Deduction and Sequent Calculus, December, 2014: http://dx.doi.org/10.
1007/s11225-014-9598-4.
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The 1930s was a time of flowering for our understanding of proof, especially
in the work of logicians like Jaśkowski [12] and Gentzen [8], who independently in
the year 1934 wrote on natural deduction proof systems.1 Each natural deduction
system has at its heart a small number of rules for connectives. The rules come in a
particular form, dictated by the shapes of proofs. In the case of Gentzen’s natural
deduction system, a proof is a tree, and the two rules for the conditional—⟨→E⟩
and ⟨→I⟩—show how one can construct and extend proof trees in a controlled
fashion:

A → B A
⟨→E⟩

B

[A](i)

···
B

⟨→Ii⟩
A → B

The ⟨→E⟩ rule is not only a small proof in its own right. We also conventionally
read this rule (and all rules of this general form) as saying that if we have one proof,
π1, ending in A → B, and another, π2, ending in A, then the tree consisting of π1

in the left branch, π2 in the right branch, and B at the root (the conclusion) is itself
a proof. This proof has, as premises, the premises of π1 together with the premises
of π2.

The ⟨→I⟩ rule is slightly more complex. It tells us that if we already have a proof
with B as a conclusion (indicated by the vertical ellipsis leading to B) then we can
extend this proof to the conclusion A → B while discharging as many premises
of the form A in that proof as we wish. (‘As many as we wish’ can include zero.
This will become important in what follows.) We indicate this in a proof by en-
closing the discharged assumptions in square brackets, and (optionally) tagging
them with a numeral (here it is i) which pairs the discharged formulas with this
particular instance of the rule. That pairing is important when instances of the
one formula are discharged at different points in the proof. Here is a proof, dis-
playing some of the distinctive features of Gentzen’s system. The proof leads from
the premise p → r to the conclusion (p → (r → s)) → (p → (q → s)). All other
leaves in the proof are assumptions discharged at different stages of the proof.

[p → (r → s)](3) [p](2)

⟨→E⟩
r → s

p → r [p](2)

⟨→E⟩
r
⟨→E⟩

s
⟨→I1⟩

q → s
⟨→I2⟩

p → (q → s)
⟨→I3⟩

(p → (r → s)) → (p → (q → s))

You may notice that the discharge at step ⟨→I1⟩ is what we might describe as
vacuous. We have discharged an empty set of formula instances. There is no as-

1Jeff Pelletier gives us an excellent historical account of the early development of natural deduc-
tion [21].
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sumption q tagged with a 1 in the leaves of the proof. (In fact, q is not used as an
assumption in the proof.) On the other hand, the assumption p discharged at step
⟨→I2⟩ is discharged twice, once in the left subproof and once in the right.

Here is another proof, which shows some of the ways we can take an indirect
route to prove a conclusion.

p → (p → (p → q)) [p](1)

⟨→E⟩
p → (p → q) [p](1)

⟨→E⟩
p → q [p](1)

⟨→E⟩
q

⟨→I1⟩
p → q

[p](2)

⟨→I2⟩
p → p p

⟨→E⟩
p

⟨→E⟩
q

This proof leads us from the premises p → (p → (p → q)) (the leftmost leaf
of the tree) and p (the rightmost) to the conclusion q. However, it does this in a
circuitous way: the conclusion q is reached after the second ⟨→E⟩ step in the left
branch of the tree, but after this, a conditional is introduced only to be eliminated
again. This introduction followed by an elimination is redundant, and the proof
tree can be simplified, by taking the two places that p is discharged (tagged with
1, since these are the instances of p discharged in the ⟨→I1⟩ step), and justifying
these using the proof of the minor premise p in the right branch of the tree.

p → (p → (p → q))

[p](1)

⟨→I1⟩
p → p p

⟨→E⟩
p

⟨→E⟩
p → (p → q)

[p](2)

⟨→I2⟩
p → p p

⟨→E⟩
p

⟨→E⟩
p → q

[p](3)

⟨→I3⟩
p → p p

⟨→E⟩
p

⟨→E⟩
q

You can see that this proof is ‘simpler’ in that it doesn’t contain that redundancy.
However, the original proof contains 13 formulas, while this ‘simpler’ proof is
larger, containing 16 formulas. The subproof justifying p is reproduced three
times in place of the three instances of the assumption p discharged at step ⟨→I1⟩
in the original proof. (Note that the assumption numbering in the subproof is
changed as we subtitute that subproof into the three different locations. I won’t
go into the detail of how this can be done systematically. The details of what num-
bers are used where is not important for the identity or difference of two distinct
presentations of a proof.)

However, even though we have simplified a redundancy in the original proof,
this new proof contains three more redundancies, where a conditional is intro-
duced and then eliminated. The same redundant derivation of p from p (using
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the major premise p → p) occurs in each of the subproofs. We can eliminate each
these detours. The result is a much simpler proof, which contains only 7 formulas.

p → (p → (p → q)) p
⟨→E⟩

p → (p → q) p
⟨→E⟩

p → q p
⟨→E⟩

q

Although this proof is made out of only 7 formulas, it has three separate instances
of the undischarged assumption p, while the original proof used only one instance
of that assumption.

A natural deduction proof without such detours is said to be normal, and proce-
dures for transforming a non-normal proof to a normal one is called, as you might
expect, normalisation. A system has a normalisation theorem if it can be shown that
each non-normal proof can be transformed in some way into a normal proof [23].

* * *

Gentzen’s technique for natural deduction is not the only way to represent this
kind of reasoning, with introduction and elimination rules for connectives. In-
dependently of Gentzen, Stanisław Jaśkowski constructed a distinct system for
presenting proofs in a natural deduction style. In Jaśkowski’s system, a proof
is a structured list of formulas, rather than a tree. Each formula in the list is ei-
ther a supposition, or it follows from earlier formulas in the list by means of the
rule of modus ponens (conditional elimination), or it is proved by conditionalisation.
To prove something by conditionalisation you first make a supposition of the an-
tecedent: at this point you start a box. The contents of a box constitute a proof, so
if you want to use a formula from outside the box, you may repeat a formula inside
that box so it is available for use. A conditionalisation step allows you to exit the
box, discharging the supposition you made upon entry. Boxes can be nested, as
follows:

1. p → (q → p) Supposition
2. p Supposition
3. p → (p → q) 1, Repeat
4. p → q 2, 3, Modus Ponens
5. q 2, 4, Modus Ponens
6. p → q 2–5, Conditionalisation
7. (p → (p → q)) → (p → q) 1–6, Conditionalisation

This nesting of boxes, and repeating or reiteration of formulas to enter boxes, is
the distinctive feature of Jaśkowski’s system.2

2These are features shared by Fitch-style natural deduction [7]. Natural deduction in the style
of Suppes [32] or Lemmon [15] is linear, but does not require repeating or reiteration of formulas
because assumptions are encoded by numbering rather than by the structural feature of the nesting
of boxes.
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Notice that in this proof we concluded the formula (p → (p → q)) → (p → q)

without using a duplicate discharge. We did not need to make the assumption p

twice. The formula p is used twice as a minor premise in a Modus Ponens step (on
line 4, and on line 5 respectively), and it is then discharged once at line 6. In a
normal Gentzen proof of the same formula, the assumption p would have been be
made twice.

Jaśkowski proofs also straightforwardly incorporate the effects of a vacuous
discharge in a Gentzen proof. We can prove p → (q → p) using the rules as they
stand, without making any special plea for a vacuous discharge:

1. p Supposition
2. q Supposition
3. p 1, Repeat
4. q → p 2–3, Conditionalisation
5. p → (q → p) 1–4, Conditionalisation

The formula q is supposed, and it is not used as a premise to derive anything else
in the proof that follows. Instead, it is discharged immediately after the inno-
cent bystaner p is brought into its scope. The formula p on line 3 occurs after the
formula q on line 3, in the subproof, but it is hard to see how it might have been
inferred from that q. Conditionalisation, in Jaśkowski’s system, colludes with re-
iteration to allow the effect of vacuous discharge.

With that introduction to Jaśkowski-style natural deduction, we can see how
to use this system to present the same kind of reasoning as in the Gentzen proof
from p → r to (p → (r → s)) → (p → (q → s)) given on page 2.

1. p → r Supposition
2. p → (r → s) Supposition
3. p 1, Repeat
4. p → (r → s) 2, Repeat
5. r → s 3,4, Modus Ponens
6. p → r Supposition
7. r 3,6 Modus Ponens
8. s 5,7, Modus Ponens
9. q Supposition

10. s 8, Repeat
11. q → s 9–10, Conditionalisation
12. p → (q → s) 3–11, Conditionalisation
13. (p → (r → s)) → (p → (q → s)) 2–12, Conditionalisation

This is not an exact match of the Gentzen proof of page 2, but it comes close.
The Jaśkowski proof has matching Modus Ponens steps for every ⟨→E⟩ step in the
Gentzen proof, and Conditionalisation steps for every ⟨→I⟩. However, the two short
subproofs, one of r → s in the left branch, and the other, of r in the right branch,
are totally independent of one another in the Gentzen proof. The undischarged as-
sumption of p → r in the right subproof is not inside the scope of the discharged
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assumption of p → (r → s) in the left subproof, and neither is p → (r → s)

within the scope of the assumption of p → r. They are logically independent of
one another. This cannot be said of the Jaśkowski proof. Since it is linear, a choice
must be made as to the order in which the formulas occur. The assumption p → r

governs the entire proof, and here, the proof of r → s from p → (r → s) and p

(lines 3–5) occurs inside the scope region of the assumption of p → r.
There is a certain degree of “fine control” over inferential connections between

formulas in a Gentzen proof. Some of these finer distinctions are obscured in the
linearisation of a Jaśkowski proof. This is the price paid for having a linear proof
structure. The fact that one formula occurs after another does not mean that must
be inferentially connected to the formulas that came before it. In proofs, as in life,
your elders need not be your ancestors.

Despite the differences, there are significant similarities between Gentzen’s
and Jaśkowski’s treatment of natural deduction. Connectives have introduction
and elimination rules, and in Jaśkowski–style proofs just as in Gentzen–style proofs,
we can have non-normal proofs in which an introduction is immediately followed
by an elimination, and we could define normalisation in a similar way. However,
normalisation proceeds in a different way in the presence of linear proofs. Con-
sider the obvious Jaśkowski–style analogue to the non-normal Gentzen proof we
considered on page 3.

1. p → (p → (p → q)) Supposition
2. p Supposition
3. p → (p → (p → q)) 1, Repeat
4. p → (p → q) 2,3, Modus Ponens
5. p → q 2,4, Modus Ponens
6. q 2,5, Modus Ponens
7. p → q 2–6, Conditionalisation
8. p Supposition
9. p Supposition

10. p → p 9–9, Conditionalisation
11. p 8,10, Modus Ponens
12. p → q 7, Repeat
13. q 11,12, Modus Ponens

This Jaśkowski proof is a proof of the conclusion q within the scope of two
suppositions: p → (p → (p → q)) (line 1) and p (line 8). A Modus Ponens logically
follows a Conditionalisation step in the inner subproof (lines 10 and 11) and in the
main proof (the conditional introduced at 7 is next used at 13, via its repetition
at line 12, in a modus ponens), so there are two different spots to normalise this
proof. To normalise, we eliminate both redundant pairs and we end up with the
following simpler proof:
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1. p → (p → (p → q)) Supposition
2. p Supposition
3. p → (p → (p → q)) 1, Repeat
4. p → (p → q) 2,3, Modus Ponens
5. p → q 2,4, Modus Ponens
6. q 2,5, Modus Ponens

This is a proof of q from the same assumptions, p → (p → (p → q)) (line 1)
and p (this time on line 2). Notice that this proof differs significantly from the nor-
mal Gentzen proof on page 4, since the assumption p occurs here only once, rather
than occuring 3 times. This is because discharing is very different in Jaśkowski
proofs. These have no direct analogue of duplicate discharge in Gentzen proofs.
Only one instance of a formula is discharged at any one time. However, a dis-
charged formula may be used repeatedly, as the assumption on line 2 is in this
proof: it is the minor premise for the Modus Ponens steps on lines 4, 5 and 6, corre-
sponding to the three ⟨→E⟩ steps constituting the Gentzen proof.

That is one difference between Gentzen proofs and Jaśkowski proofs, centred
on duplicate discharge and the structural rule of contraction. There is another
significant difference in the structure of proofs, on how vacuous discharge and
the structural rule of weakening is treated. Here is a very strange small Jaśkowski
proof.

1. A Supposition
2. B Supposition
3. A 1, Repeat

This proof has no direct analogue in a Gentzen system. We can, of course,
construct a proof from A and B to A in any number of ways. If we had the standard
Gentzen rules for conjunction, we could reason as follows.

A B
⟨∧I⟩

A ∧ B
⟨∧E⟩

A

The result is a proof with A and B as premises and A as the conclusion. But we
need not use conjunction to turn this trick—the rules for the conditional will do
just as well:

A
⟨→I1⟩

B → A B
⟨→E⟩

A

Here we use the vacuous discharge in the ⟨→I⟩ step to bring B into the proof. B

isn’t really used in the proof of A, but at the very least, this proof allows us to bring B

alongside A. These proofs both take the circuitous step through a fresh connective
to achieve this result. That’s by necessity, in the Gentzen system. Both of these
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proofs are not normal, and if we use the usual means to normalise Gentzen proofs,
the result is the much simpler proof

A

with premise and conclusion A, but it does not explicitly record the distinct for-
mula B as a second premise. This is another significant difference between the
two different proof systems. In Gentzen’s system for intuitionistic propositional
logic, there is no normal proof with the two premises p and q (atomic formulas)
and with the conclusion p.3 It is easy to see why: all normal proofs have the subfor-
mula property. A proof has the subformula property if and only if all formulas in
that proof are subformulas in the premises and conclusions of the proof. So, if p

and q are atomic formulas, and a proof from p and q to p has the subformula prop-
erty, it follows that p and q are identical. After all, any proof from atoms to atoms
with the subformula property cannot contain any formulas with connectives or
quantifiers or other complexity (no complex formula is a subformula of an atom),
and given that every inference rule in a Gentzen system either introduces or elim-
inates a complex formula, the proof must contain no inference steps. So, normal
proofs from p and q to p (if there are any) must be identity proofs, in which the
premise is identical to the conclusion. If it is a proof of p, then it must contain p

as the only premise. It does not involve q as a distinct extra side premise.
It follows that Jaśkowski’s system and Gentzen’s systems are not merely nota-

tional variants of one another, at least if we wish to respect the fine structure of
proofs. Jaśkowski’s system has a normal proof from p and q to p while Gentzen’s
doesn’t. Jaśkowski also provides us with a short normal proof from p → (p →
(p → q)) and p to q in which the assumption p is made only once, and not three
times. (However, it is applied three times, not just once.) There are no such normal
Gentzen proofs.

Are these distinctions worth recording? Your answer to this will depend on
what you’re taking the aim of proof theory to be. If proofs are merely a device for
telling you whether or not an argument is valid, then there is no distinction worth
recording between Jaśkowski and Gentzen systems. The exact same arguments
are valid according to both systems. If we are interested not only in provability
but in the properties of particular proofs, then these differences may matter. As
I’ve characterised proof theory—as giving an account of the inferential connec-
tions between formulas in proofs—then these differences are squarely inside the
purview of proof theory.

However, proof theory as studied in the 1930s and into the middle of the 20th
Century didn’t take the different representations of proofs and their properties as
a focus of investigation. Instead, results such as normalisation, cut elimination,

3I use atomic formulas rather than the schematic formula letters A and B to state this result
because of course for particular formulas A and B there will be a Gentzen proof which leads from A

and B to A. (From p and p → p to p, as but ones example.) There is no proof in the case where A

and B are distinct atoms.
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and other metatheoretical properties of systems became the focus. The greatest
work in this tradition was due to Gerhard Gentzen. His most significant results
used not natural deduction, but another way of representing simple inferential
connections: the sequent calculus, which will be our focus in the next section.

2 reasoning about proofs: sequent calculus

In giving an account of the process of normalisation of natural deduction proofs,
Gentzen [8] discovered that it makes sense to manipulate sequents. If we have a
proof from premises X to conclusion A, then the logical content can be recorded as
a sequent X ⊢ A. Gentzen’s rules ⟨→I⟩ and ⟨→E⟩ can be understood as describing
sequents. For ⟨→I⟩ if we have a proof from X,A to B, then if we extend this with
an ⟨→I⟩ step the result is a proof from X to A → B. We can represent this as a
sequent rule:

X,A ⊢ B
⟨→R⟩

X ⊢ A → B

We can do the same for ⟨→E⟩. As we have conventionally read ⟨→E⟩, It tells us
that if we have a proof from X to A → B and another proof from Y to A then we
can use these to construct a proof from X, Y to B. We would have the following
inference rule:

X ⊢ A → B Y ⊢ A

X, Y ⊢ B

Gentzen’s sequent calculus in its modern form does not involve rules like this,4 in
which a formula A → B is eliminated from the premise of the rule to the conclu-
sion. He showed that elimination rules like ⟨→E⟩ correspond to rules in which the
formula A → B is introduced on the left of the sequent. Conceive of ⟨→E⟩ in the
following way:

A → B

··· π

A
⟨→E’⟩

B··· π ′

C

This tells us that if we have π, a proof, say, from X to A, and a proof π ′ from Y, B

to C then we can combine these, in order to construct a proof from X,A → B, Y

to the conclusion C, by combining the proofs together and adding the premise
A → B. This motivates Gentzen’s sequent rule ⟨→L⟩.

X ⊢ A Y,B ⊢ C
⟨→L⟩

X,A → B, Y ⊢ C

4Although Gentzen eliminated elimination rules like these in favour of antecedent introduction
rules, but in his paper from 1936 [9] he used rules such as these. As a result, the system from this
paper was the ancestor of Lemmon’s and Suppes’ style natural deduction, except that Gentzen did
not use numbers and formulas but sequents, and preferred trees as representation of proofs over
lists.
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Notice that if we use ⟨→E⟩ in this form, (in which the major premise A → B is al-
ways an assumption) and ⟨→I⟩ in the usual way, the resulting Gentzen–style nat-
ural deduction proofs are normal. Proofs constructed out of ⟨→E ′⟩ and ⟨→I⟩ have
the subformula property and are normal by design.5 This is reflected in Gentzen
sequent derivations constructed out of →L and →R. These also satisfy the subfor-
mula property. To construct the analogue of non-normal proofs—sequent deriva-
tions which do not satisfy the subformula property, Gentzen introduced the ⟨Cut⟩
rule.

X ⊢ A Y,A ⊢ B
⟨Cut⟩

X, Y ⊢ B

This rule is the sequent calculus analogue of composing proofs. If we have a proof
from X to A and a proof from Y and A to B, if we replace the assmumption of A

used in that second proof by the proof from X to A the result is a proof from Y and
X together to B.6

We have said nothing about how vacuous and duplicate dischage is to be un-
derstood in a sequent system like this. One aspect of Gentzen’s great genius was
his decision to not incorporate the effects of discharge into the →R rule. If we did,
we would have something like this:

X − A ⊢ B
⟨→R’⟩

X ⊢ A → B

where X − A is the same premise collection as X except for having zero or more
instances of A deleted. This would be a good fit for the natural deduction rules of
the Gentzen system. However, this would incorporate the effects of vacuous and
duplicate discharge into the rules for a particular connective, here the conditional.
But as we have seen, the behaviour of the conditional has consequences in the vo-
cabulary without the conditional. We have a non-normal proof from the premises
p and q to the conclusion p, but any normal proof will lose one premise and be-
come a proof of a single premise. While Jaśkowski systems allow for such a proof,
it would be a gain in our understanding to be able to give an account of this sort of
proof without the need to bring in one or other connective when it seems to play
no essential role in the derivation. Gentzen’s genius was to treat these matters as
totally independent of the rules for the connectives. He introduced the structural
rules, in this case, weakening ⟨K⟩ and contraction ⟨W⟩.

X ⊢ A
⟨K⟩

X,B ⊢ A

X,B, B ⊢ A
⟨W⟩

X,B ⊢ A

Now we can be precise and read our →R rule as discharging one and only one
instance of the antecedent formula in the left hand side of the sequent, and then

5Such a natural deduction calculus (with elimination rules always using assumptions) which
easily leads to normalization has been provided by Jan von Plato [19, 22].

6Note that we have implicitly assumed that the order of premises does not matter in natural
deduction proofs. This corresponds to thinking of the premises in a sequent as a multiset or a set but
not a list in which the order of items matters.
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we can use the structural rules of weakening and contraction to reduce multiple
premises to one, ready for discharge, or use weakening to generate a premise for
discharge when none was there previously.

The motivation, using natural deduction proofs to inspire sequent derivations,
can be used to define a mapping from derivations to proofs. We can think of a
sequent derivation as a way of constructing a natural deduction proof. If we con-
sider this very simple example of a Gentzen proof,

q → r

p → q p
⟨→E⟩

q
⟨→E⟩

r

we can think of it as being built up in a number of different ways. These different
modes of construction correspond to different sequent derivations. The following
two derivations both can be seen as constructing the one and the same proof:

p ⊢ p q ⊢ q
⟨→L⟩

p → q, p ⊢ q r ⊢ r
⟨→L⟩

q → r, p → q, p ⊢ r

p ⊢ p

q ⊢ q r ⊢ r
⟨→L⟩

q → r, q ⊢ r
⟨→L⟩

q → r, p → q, p ⊢ r

The left derivation focuses on the subproof from p → q and p to q and then ex-
tends this to r using q → r as an extra premise. The right derivation focuses on
the subproof from q and q → r to r and then extends this by justifying the premise
q with two premises p → q and p. Both are acceptable ‘readings’ of the original
proof. In fact, there is yet another way of presenting the proof:

p ⊢ p q ⊢ q
⟨→L⟩

p → q, p ⊢ q

q ⊢ q r ⊢ r
⟨→L⟩

q → r, q ⊢ r
⟨Cut⟩

q → r, p → q, p ⊢ r

where the intermediate step q is the focus of the ⟨Cut⟩ step, chaining together the
two subproofs. So, the mapping from sequent calculus derivations to Gentzen-
style natural deduction proofs is many-to-one.

Once Gentzen introduced his sequent system, he noticed that a very small
modification allowed for the smooth representation of classical propositional logic
as well as intuitionistic propositional logic. Once we allow for multiple formulas
on the right hand side of the sequent, and allow for the corresponding structural
rules of weakening and contraction on the right hand side as well as the left, clas-
sical logic straightforwardly follows. The rules now look like this:

X ⊢ A,W Y,B ⊢ Z
⟨→L⟩

X,A → B, Y ⊢ W,Z

X,A ⊢ B, Y
⟨→R⟩

X ⊢ A → B, Y

X ⊢ Y
⟨K⟩

X,B ⊢ Y

X ⊢ Y
⟨K⟩

X ⊢ B, Y

X, B, B ⊢ Y
⟨W⟩

X,B ⊢ Y

X ⊢ B,B, Y
⟨W⟩

X ⊢ B, Y
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The resulting system allows for straightforward (if not exactly intuitive) deriva-
tions of distinctively classical sequents, such as that for Peirce’s Law.

p ⊢ p

p ⊢ p
⟨K⟩

p ⊢ q, p
⟨→R⟩

⊢ p → q, p
⟨→L⟩

(p → q) → p ⊢ p, p
⟨W⟩

(p → q) → p ⊢ p

In this derivation, the relaxation of our structures for sequents to allow for mul-
tiple conclusion formulas is necessary to allow for contraction on the right hand
side at the last step of the derivation. This makes the interpretation of the sequent
calculus less straightforward. If a derivation of a seqent X ⊢ A describes the con-
stuction of a proof from X to A, then what could a sequent derivation of X ⊢ Y

describe? The many members of X are the many premises of the proof. The mem-
bers of Y are the many conclusions in a proof? Perhaps sense can be made of this
notion, but it would take us too far a field to consider what that story might look
like [26].

Another consequence of Gentzen’s introduction of his sequent calculus is the
systematic analysis of how one can transform a derivation involving the ⟨Cut⟩ rule
into one without it. Gentzen’s own papers describe one such strategy, but there
are many others in the literature, too. There is a very general technique of Cut
elimination due to Curry [4] and generalised by Belnap [3] and others [25], which
gives an account of some very general conditions on a proof system sufficient for
it to allow for a systematic elimination of the ⟨Cut⟩ rule. This has consequences,
then, for natural deduction proofs too, for a natural deduction proof constructed
by a derivation without ⟨Cut⟩ is a normal proof.

3 structural rules and what they’re good for

Once we have made structural rules explicit, it is clear that these rules are both
useful, and questionable. There is clearly something odd with regard to the struc-
tural rule of weakening. This use of weakening is characteristic of the issue.

p ⊢ p
⟨K⟩

p, q ⊢ p
⟨→R⟩

p ⊢ q → p

The irrelevant premise q is ‘weakened in’ to the antecedent of the sequent, and
then immediately discharged. If we want the conditional ‘→’ to record a genuine
connection between the antecedent and the consequent, then this move will be
rejected. This way lies the Anderson–Belnap tradition of relevance (or relevant)
logics [1, 2, 6, 16], as well as other resource sensitive readings [20] used in computer
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science. The idea has a long history, going back to the early decades of the 20th
Century [5].

Similarly, the structural rule of contraction has come in for some sustained
examination, both in terms of self-referential paradox such as Curry’s paradox [24,
18] but also, vagueness [30, 31]. The structural rule of contraction is most explicitly
at issue in the sequent calculus when it comes to using an item as the antecedent
conditional twice while only discharging it once, such as in this derivation:

p → p q → q
⟨→L⟩

p → q, p ⊢ q p ⊢ p
⟨→L⟩

p → (p → q), p, p ⊢ q
⟨W⟩

p → (p → q), p ⊢ q
⟨→R⟩

p → (p → q) ⊢ p → q

The natural deduction readings of this derivation are less explicit about the form
of contraction takes. In a Gentzen system, the deed is done inside the ⟨→I⟩ step,
where two instances of p are discharged at once:

p → (p → q) [p](1)

⟨→E⟩
p → q [p](1)

⟨→E⟩
q

⟨→I1⟩
p → q

In a Jaśkowski system the trick is turned in a different way:

1. p → (p → q) Supposition
2. p Supposition
3. p → (p → q) 1, Repeat
4. p → q 2, 3, Modus Ponens
5. q 2, 4, Modus Ponens
6. p → q 2–5, Conditionalisation

As you can see, at line 5, the conclusion q is justified by two uses of the supposition
p in the inner subproof.

If we are concerned to develop a natural deduction system for a logic without
the rule of contraction, then it is not too difficult to make a Gentzen–style system:
you ban duplicate discharge. If you wish to make a Jaśkowski–style system, it is
more difficult. You cannot ban repetition, since this is necessary for inferences
which use no contraction at all. You must ban the repeated use of formulas as
premises in modus ponens. This is not straightforward at all.

The mismatch between sequent calculus and natural deduction systems leads
us to consider whether there is something like a natural deduction system in which
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there is a better match with the sequent calculus. Is there a natural deduction sys-
tem in which classical theorems like Peirce’s Law can be proved with a structure
paralleling that given in the sequent calculus? Is there a natural deduction system
in which structural rules like contraction can be included or omitted at will (hence
being more flexible that Jaśkowski systems which essentially incorporate weaken-
ing and contraction), and in which weakening and contraction can be available in
full generality (so, being more explicit than Gentzen systems, where there is no
weakening proof in from p and q to p without involving the connectives). These
constraints are satisfied by directed proof nets, or circuit systems.

4 directed proof nets

Jean-Yves Girard introduced proof nets as a proof syntax designed ideally for mul-
tiplicative linear logic, but they are adaptable to a range of other substructural log-
ics [10, 11]. Proof nets as introduced by Girard are undirected: they correspond to
single-sided sequent systems, in which all formulas are conclusions (or, dually,
premises). They do not have premises and conclusions. However, it is straight-
forward to introduce directed proofnets [28, 27], corresponding to full sequents,
and the result is a system much closer to traditional natural deduction systems.
Directed proofnets are not only motivated by Girard’s proofnets, but it also has
antecedents in the work of Rudolf Carnap (in his “Tables of Development”) and
William and Martha Kneale [13, 14], which were then developed in Shoesmith and
Smiley’s Multiple Conclusion Logic [29]. It is easiest to see the behaviour of proofnets
when you consider sequent derivations involving conjunction, disjunction and
negation. Proofs are no longer represented with lists or trees of formulas, but
as nets, in which nodes are labelled by rules, where arcs are labelled by formulas.
The following directed proof net has two inputs p ∨ q and ¬p (the premises) and
two conclusions q ∧ ¬r and r. As with other natural deduction systems, the rules
either introduce or eliminate connectives, and the usual sequent derivation can
be understood as constructing the proof net.

∨E

¬E

¬I

∧I

p ∨ q

¬pp

q

q ∧ ¬r

¬r
r

p ⊢ p

q ⊢ q

r ⊢ r
⟨¬R⟩

⊢ ¬r, r
⟨∧R⟩

q ⊢ q ∧ ¬r, r
⟨∨L⟩

p ∨ q ⊢ p, q ∧ ¬r, r
⟨¬L⟩

p ∨ q, ¬p ⊢ q ∧ ¬r, r

As with other natural deduction systems, the mapping from sequent derivations
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to proof nets is many-to-one. This different derivation also constructs the same
proof net.

p ⊢ p
⟨¬L⟩

p, ¬p ⊢ q ⊢ q
⟨∨L⟩

p ∨ q, ¬p ⊢ q

r ⊢ r
⟨¬R⟩

⊢ ¬r, r
⟨∧R⟩

p ∨ q, ¬p ⊢ q ∧ ¬r, r

This derivation contains exactly the same rule applications as the first derivation,
but it composes them in different order. This order is irrelevant to the directed
proof net.

Here is how the sequent calculus derivations describe proof net construction.
If we have a proof from X to Y,A this is a circut with inputs X and outputs Y and
A. This is the box labelled π1. A proof from X ′, B to Y ′ is a proof with inputs X ′

and B and outputs Y ′. We compose these with an ⟨→E⟩ node, which has inputs A

and A → B (this input marked with a dot—it is the active port on the node) and
output B. This composes the proof by filling its in its input A with the output A

of π1 and plugging in its output B into the input B required by π2. The resulting
proof has inputs X,A → B,X ′ and ouptputs Y, Y ′, as desired.

→E

π1

π2

A

B

A → B

Y

Y ′

X

X ′

X ⊢ Y,A X ′, B ⊢ Y ′

⟨→L⟩
X,X ′, A → B ⊢ Y, Y ′

That was no different to the Gentzen natural deduction elimination rule for the
conditional, except for the slight modification allowing for multiple conclusions
in a proof. (Here π1 can have alternate conclusions Y, and this does not occur
in the Gentzen-style natural deduction system. The circuit notation allows for a
smoother representation for multiple conclusions.)

The sort of explanation works for the ⟨→I⟩ node, but it works rather differ-
ently, in that the node is composed with a single preexisting proof: π from X,A to
B, Y. Now the ⟨→I⟩node is plugged in to that proof, with the input port B supplied
by the B exiting the proof π1 (just as with the traditional ⟨→I⟩Gentzen rule, a proof
ending in B is extended by A → B), but instead of selecting a number of premises
to be discharged (which is a kind of ‘action at a distance’), the connection betwen
the single ‘discharged’ premise and the rule instance is made absolutely explicit
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by connecting the output A port on the ⟨→I⟩node to the input A port on the proof
π. The remaining output port of the ⟨→I⟩ node is marked with a dot, to indicate
that it is the active port of this rule.

π→I

A → B Y

XA

B

X,A ⊢ B, Y
⟨→R⟩

X ⊢ A → B, Y

Note that with both the ⟨→I⟩ and ⟨→E⟩ constructions, the active port on the con-
nective node is on the periphery of the proof. Its wire is not linked to another
part of the proof, but to the outside world. This means that the proof that is con-
structed is normal. A redudant ⟨→I⟩/⟨→E⟩pair is found when an ouptut A → B

wire is connected to an input A → B wire. Then that wire will have dots at both
ends, and the result is an active wire, which can then be simplified in the usual
manner of normalisation.

This is part of the definition of a directed proof net. The other part of the defi-
nition, if we are to model classical logic, is the treatment of structural rules. This is
necessary, because the ‘discharge’ achieved in ⟨→I⟩ steps affects only one formula
at a time. To discharge more than one formula, we need to contract those many
instances into one. This can be done in a straightforward way, by pairing wires
up.

If we have a proof with two premises A or two conclusions A, a contraction
ties these together and presents them as one instance, to be justified by another
premise, or to be used as a conclusion in reasoning, or to be cut with another for-
mula, or to be used in any other of a number of ways in a proof. This makes totally
explicit the way that contraction appears in a proof and it detaches it from reliance
upon a connective rule (as in Gentzen’s natural deduction system) or embeds it
into the linear nature of proof (as in Jaśkowski’s).

π

Y

X

A

A

π ′

Y ′

X ′

A

A

X,A,A ⊢ Y
⟨W⟩

X,A ⊢ Y

X ′ ⊢ A,A, Y ′

⟨W⟩
X ′ ⊢ A, Y ′

Weakening is treated similarly. In a proof at any stage we can simply add another
conclusion or another premise. Now, disconnected from any particular place in
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the proof itself.

π

Y

X

A

π ′

Y ′

X ′

A

X ⊢ Y
⟨K⟩

X,A ⊢ Y

X ′ ⊢ Y ′

⟨K⟩
X ′ ⊢ A, Y ′

This, together with the ⟨Cut⟩ rule suffices to define the implicational fragment of
classical logic.

π

π

X

X ′

Y ′

Y

A

X ⊢ A, Y X ′, A ⊢ Y ′

⟨Cut⟩
X,X ′ ⊢ Y, Y ′

The resulting system is able to reproduce proofs corresponding nicely to sequent
calculus proofs. Here is a natural deduction proof net corresponding to our deriva-
tion from p → r to (p → (r → s)) → (p → (q → s)). Notice that the proof net
has a very similar structure to our Gentzen proof on page 2, but the duplicate dis-
charge of p is marked by the contraction of the two p wires into one by the contrac-
tion node, which is then supplied by the ⟨→I⟩ node for p → (q → s). The vacuous
discharge of q in the Gentzen proof is mirrored here by the point at which q is
weakened from the proof off the ⟨→I⟩ node for q → s. The rest is identical to the
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Gentzen proof, except for the radically different presentation as a circuit.

→E →E

→E

→I

→I

→I

p → r
p

p

r → s r

s

q

q → s

p

p → (q → s)

p → (r → s)

(p → (r → s)) → (p → (q → s))

We can utilise the distinctive features of circuit notation by allowing for the down-
ward branching of multiple conclusions in proofs. This allows for a simple, nor-
mal, directed proof net for Peirce’s Law, satisfying the subformula property, cor-
responding to the usual sequent derivation:

→I

→E

q

p → q
(p → q) → p

p

p

p

p ⊢ p

p ⊢ p
⟨K⟩

p ⊢ q, p
⟨→R⟩

⊢ p → q, p
⟨→L⟩

(p → q) → p ⊢ p, p
⟨W⟩

(p → q) → p ⊢ p

The result is a proof system for classical logic which has the same features as other
natural deduction systems, but which adheres more closely to Gentzen’s sequent
calculus. As a result, it explicitly marks the presence or absence of structural rules,
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in the use of specific structural node types. This makes it more straightforward to
include them or avoid them as applications demand, and it makes the features of
structural rules independent of the operation of any particular connective type:
the rules are modular in a way that Gentzen’s or Jaśkowski’s natural deduction
systems are not. Cut-free derivations in the sequent calculus correspond neatly
and precisely to normal directed proof nets.

Does this mean that directed proof nets are better than other natural deduction
systems? Of course that is an impossible question to give a definitive answer. Bet-
ter for what? It depends on what the aim of the exercise is. Jaśkowski and Gentzen
style natural deduction systems have their own individual virtues. They are cer-
tainly more straightforward and more easy to learn than the circuit-notation used
in directed proof nets. Single conclusion proofs are more accessible than mutiple
conclusion proofs, too. But if the aim is to give an account of the kinds of infer-
ential connections which are found in natural reasoning, then if classical sequent
calculus derivations encode at least some of that reasoning, then it seems that proof
circuit structures have their place. No other systems combine the virtues of sep-
arability of introduction and elimination rules for each connective (shared with
Gentzen and Jaśkowski systems, but not with Hilbert systems), the modularity
of take-it-or-leave-it options for structural rules, independent of any particular
connective rules (shared with sequent calculi and their cousins, but not had by
Gentzen or Jaśkowski), and the efficiency and parallelism of a natural deduction
format (an advantage over merely working inside sequent calculi). For these rea-
sons, directed proof nets deserve a place among the family of natural deduction
proof systems.
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