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Abstract: In this paper, I motivate a cut free sequent calculus for classical logic with first or-
der quantification, allowing for singular terms free of existential import. Along the way,
I motivate a criterion for rules designed to answer Prior’s question about what distin-
guishes rules for logical concepts, like ‘conjunction’ from apparently similar rules for pu-
tative concepts like ‘tonk’, and I show that the rules for the quantifiers—and the existence
predicate—satisfy that condition.

1 sequents and defining rules

Let’s take it for granted for the moment that learning a language involves—at least
in part—learning how assertions and denials expressed in that language bear on
one another. The basic connection, of course, is that to assert A and to deny A

clash. When we learn conjunction, we learn that there is a clash involved in assert-
ing A, asserting B and denying A ∧ B. Similarly, when we learn disjunction, we
learn that there is a clash involved in asserting A ∨ B, denying A and denying B.

One way to systematically take account of the kinds of clashes involved in these
acts of assertion and denial is through the language of the sequent calculus. Given
collections Γ and ∆ of sentences from our language L, a sequent Γ � ∆ makes the
claim that there is a clash involved in asserting each element of Γ and denying each
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element of ∆. The structural rules of the sequent calculus can be understood in the
following way [9]. Identity—

A � A

—there is a clash involved in asserting A and denying A. Weakening—

Γ � ∆

Γ,A � ∆

Γ � ∆

Γ � A,∆

—if there is a clash involved in a position, it remains after adding an extra asser-
tion or a denial. Contraction—

Γ,A,A � ∆

Γ,A � ∆

Γ � A,A,∆

Γ � A,∆

—the number of times a claim is asserted or denied is irrelevant to the presence
or absence of a clash. If there is a clash when A is asserted [or denied] n + 1 times
it would have been present if it had been asserted [or denied] n times. Cut—

Γ � A,∆ Γ,A � ∆

Γ � ∆

—if there is a clash involved in asserting A (in concert with asserting Γ and deny-
ing ∆) and a clash involved in denying A (in that same context) then there is a clash
in the underlying context.

I will not defend these rules here (I have done so elsewhere [9]), except by show-
ing how they may be used to shed light on the behaviour of rules as definitions of
logical concepts, and in particular the scope for rules concerning quantification
and existence.

So, let’s suppose we have a language L governed by some relation �L satis-
fying the constrains of Identity, Weakening, Contraction and Cut. How might we
extend the language with a new concept? One way to characterise this task is
to characterise the new language L ′ (extending L) with a new relation �L ′ ex-
tending �L. Suppose, for example, we have a language consisting of some atomic
vocabulary, together with the one place operator ¬ satisfying the usual classical
principles. Suppose we wish to extend the language with a binary connective for
conjunction. One way to do this is to impose a Left and a Right rule for conjunction
from the sequent calculus, something like this pair of rules—

Γ,A, B � ∆
[∧L]

Γ,A ∧ B � ∆

Γ � A,∆ Γ � B,∆
[∧R]

Γ � A ∧ B,∆

—and this would certainly have the desired effect. However, it seems hard to mo-
tivate such an addition, or to explain how these rules succeed in introducing a
concept while a superficially similar pair of rules for a connective like ‘tonk’ [8]—

Γ, B � ∆
[tonkL]

Γ,A tonk B � ∆

Γ � A,∆
[tonkR]

Γ � A tonk B,∆
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—do not seem to do quite the same kind of job. Imposing an arbitrary pair of
Left and Right rules is too strong for the successful addition of a new concept, not
because it leads to Bad Things (like tonk) but because it makes claims on �L ′ that
the relation may not be able to meet. Under the assmumptions concerning norms
governing assertion and denial we have set out, the rule [tonkL] makes a claim
concerning assertions of tonk-statements, while the rule [tonkR] makes a claim
concerning denials of tonk-statements. An assertion of A tonk B involves a clash
when an assertion of B involves a clash. Similarly, a denial of A tonk B involves a
clash when an denial of A involves a clash. The only way that could work, in the
presence of Cut, Identity and Weakening is when all positions clash. If the original
relation �L was non-trivial, then the new language L ′ with its relation �L ′ is a
revisionary extension of L, not only adding claims about clashes involving the new
vocabulary, but revising our view of what clashes there might be in L. It is not so
much an extension to L as a revision of it.

How did this take place? The rules of Cut and Identity already connect norms
governing assertions and norms governing denials. The rules [tonkL] and [tonkR]
say too much, in making independent and ill-fitting impositions on assertion and
on denial. They are ill-suited to be understood as instructions to extend the re-
lation �L on the language L to a relation �L ′ on language L ′ satisfying Cut and
Identity.

On the other hand, in another sense a pair of Left and Right rules may say
too little, since they need not specify precisely when assertions (or denials) of tonk
statements involve a clash. As rules that may not be invertible, they just require
that under conditions there is a clash—they leave open the possibility that there
may be clashes under other conditions too. Consider this pair of rules for the pu-
tative connective tink:

Γ,A � ∆ Γ, B � ∆
[tinkL]

Γ,A tink B � ∆

Γ � A,∆ Γ � B,∆
[tinkR]

Γ � A tink B,∆

These rules tell us that an assertion of A tink B clashes where an assertion of A and
an assertion of B would have clashed, and a denial of A tink B clashes where the
denial of A and the denial of B would have clashed. These conditions are satisfied
if A tink B is identified with A ∧ B, or with A ∨ B, or with any of the multitude of
other propositions entailed by A∧B and entailing A∨B. These rules do too little
to characterise a connective.

The Left and Right rules of a sequent calculus can, under certain circumstances,
be neither too heavy (like the rules for tonk) nor too light (like the rules for tink)
to pick out a single concept. Nuel Belnap characterised the situation by distin-
guishing those rules that are not too heavy (they provide a conservative extension to
the source language L) nor too light (they are uniquely defining over that language
L) [3]. In the rest of this section I will offer an explanation of how such rules can
arise out of a more fundamental criterion, the defining rule. Here is an exam-
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ple, a defining rule for conjunction:

Γ,A, B � ∆
========== [∧Df ]
Γ,A ∧ B � ∆

This differs from a pair of Left and Right rules in two ways. In this case, it char-
acterises the behaviour of conjunction formulas on one side (in this case, the left
side) of the sequent alone, and second, it is an invertible rule, to be read from top-to-
bottom and also from bottom-to-top. (This is the function of the double horizontal
line.) Understood in terms of assertion and denial, it states that an assertion of
a conjunction A ∧ B involves a clash (with the assertions Γ and denials ∆) if and
only if the assertions of A and B (with Γ and ∆) also involves a clash.

The [∧Df] rule completely characterises clashes involving assertions of con-
junctions (alongside the rest of the vocabulary) in terms of clashes involving their
components. By itself, it says nothing concerning denials of conjunctions. How-
ever, the denials are not left out—the characterisation of denials of conjunctions
is achieved by way of the rules of Identity and Cut in the extended language. If
we have some language L with clashes characterised in that vocabulary by the re-
lation �L, satisfying Identity and Cut (and perhaps some other rules allowing for
composition of arbitrary formulas) then we can consider adding [∧Df] to char-
acterise conjunction, in a new language L + ∧ with a new consequence relation�L+∧, constrained to still satisfy Identity and Cut. In the extended language we
have, by Identity

[Id]
A ∧ B � A ∧ B

(since the assertion of A ∧ B clashes with its denial), and we can then apply [∧Df]
to this identity sequent to infer something concerning denials of conjunctions:

[Id]
A ∧ B � A ∧ B

[∧Df ]
A,B � A ∧ B

We learn that a denial of a conjunction clashes with the assertion of the conjuncts.
This goes some way to characterising denials of conjuncts, but we would like to
know more—in particular, we would like to know whether the denial of a con-
junction clashes in other contexts. Here, we can use the Cut rule.

Γ � A,∆

Γ � B,∆

[Id]
A ∧ B � A ∧ B

[∧Df ]
A,B � A ∧ B

[Cut]
Γ,A � A ∧ B,∆

[Cut]
Γ � A ∧ B,∆

Which gives us a [∧R] rule of the expected form:

Γ � A,∆ Γ � B,∆
[∧R]

Γ � A ∧ B,∆
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This tells us that denying a conjunction A∧B invovles a clash when denying either
conjunct involves a clash.

Defining rules can be given for disjunction, the material conditional and nega-
tion in the same way:

Γ � A,B,∆
========== [∨Df ]
Γ � A ∨ B,∆

Γ,A � B,∆
=========== [⊃Df ]
Γ � A ⊃ B,∆

Γ � A,∆
======== [¬Df ]
Γ,¬A � ∆

In each case, the top-to-bottom reading of the defining rule provides one of the
traditional sequent calculus Left/Right rules, and the other can be recovered using
Identity (on a primitive sequent involving the introduced concept alone), a Defining
Rule to unwrap the connective on the side on which it is defined, and Cuts to make
the context general. Here is the case for disjunction:

[Id]
A ∨ B � A ∨ B

[∨Df ]
A ∨ B � A,B Γ,A � ∆

[Cut]
Γ,A ∨ B � B,∆ Γ, B � ∆

[Cut]
Γ,A ∨ B � ∆

This gives us the usual rule:

Γ,A � ∆ Γ, B � ∆
[∨L]

Γ,A ∨ B � ∆

Here is the case for the conditional:

Γ � A,∆

[Id]
A ⊃ B � A ⊃ B

[∨Df ]
A ⊃ B,A � B Γ, B � ∆

[Cut]
Γ,A ⊃ B,A � ∆

[Cut]
Γ,A ⊃ B � ∆

This gives us the usual rule

Γ � A,∆ Γ, B � ∆
[⊃L]

Γ,A ⊃ B � ∆

And finally, for negation:

[Id]
¬A � ¬A

[¬Df ]� A,¬A Γ,A � ∆
[Cut]

Γ � ¬A,∆

gives us
Γ, A � ∆

[¬R]
Γ � ¬A,∆
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No such justification can be given for tonk or tink. If we take tonkL to be a defining
rule:

Γ, B � ∆
============ [tonkDf?]
Γ,A tonk B � ∆

then we have defined A tonk B to be equivalent to B, and [tonkR] is not satisfied by
the connective. If we take tonkR to be the defining rule:

Γ � A,∆
============ [tonkDf?]
Γ � A tonk B,∆

then we have defined A tonk B to be equivalent to A, and [tonkL] is not satisfied by
the connective. There is no way to introduce something satisfying both tonk rules
by a defining rule of this kind.1

So, defining rules give us an independently motivated answer to Prior’s orig-
inal question concerning when inference rules successfully introduce a new con-
cept. Defining rules introduce a concept to a language, characterising the norms
governing assertions (or denials) featuring that concept. In the next section, we
will consider how we can extend the work of defining rules to consider quantifiers.

2 generality and classical quantifiers

Conjunction, disjunction, negation and the material conditional are propositional
connectives that rely on no assumptions about the internal structure of sentences.
Quantifiers are different. For quantifiers, we need our sentences to have some
internal structure—in particular, for first order quantifiers, we need to identify a
class of singular terms, so we can articulate the connections between claims like
these:

Fa (∀x)Fx (∃x)Fx Rab (∃x)Rax (∀y)(∃x)Rxy

So, let’s suppose that our language has a designated class of singular terms (we’ll
use m,n, . . . , s, t, . . . for singular terms of various kinds2), and a class of variables
(we’ll use x, y, z, . . . for variables) for the quantifiers (∀x), (∀y), . . . and (∃x), (∃y), . . .

In general, if a language allows for sentences to include variables unbound by any
quantifier, then the variables will be among the class of singular terms. We will
not make that assumption here, and for clarity, we will take it that all variables
occuring in sentences must be bound by quantifiers, though nothing important
hangs on this.

1I have not here provided a proof that there is no defining rule for tonk (whatever that would
mean), just that the rules given by Prior cannot do the job of a defining rule for a concept satisfying
both Left and Right rules. As a matter of fact, there is no defining rule that will introduce a connec-
tive satisfying both tonk rules, over a non-trivial consequence relation satisfying Identity and Cut,
if the extension is to keep Identity and Cut. Defining rules result in conservative extensions, and a
consequence relation satisfying Identity, Cut and the tonk rules is trivial.

2A mnemonic: ‘n’ for ‘name’ and ‘t’ for ‘term’. The distinction between names and terms is not
important now, but will become important soon.
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For each sentence A in our language, we may single out some instances of a
singular term occuring in A by enclosing that term parentheses. A(n) is a sen-
tence with some number of instances of n singled out.3 Given A(n), the formula
(∀x)A(x) is found by replacing those designated instances of n by the variable x

and binding the formula with the quantifier (∀x). So, for example, if A(n) is the
formula

(Lmn ⊃ Lnm) ∧ Lnm ′

with the designated instances of n indicated by underlining, then the correspond-
ing formula (∃x)A(n) is

(∃x)((Lmx ⊃ Lxm) ∧ Lnm ′)

This means that we can replace some number instances of a singular term in a
formula by variables, and bind them with a quantifier in order to construct a new
formula.4 This leads to the natural question; What is the connection between A(n)

and (∀x)A(x)? Or between A(n) and (∃x)A(x)? The classical behaviour of the
quantifiers suggests the following pair of defining rules:

Γ � A(n), ∆
============= [∀Df ]
Γ � (∀x)A(x), ∆

Γ,A(n) � ∆
============= [∃Df ]
Γ, (∃x)A(x) � ∆

(where n is not present in the bottom sequent of both rules). These rules are sat-
isfied by the quantifiers in classical first order predicate logic. (∀x)A(x) is false in
a model if and only if we can assign a value for n, for which A(n) is false in that
model (provided that n is free to interpret however we wish). On the other hand
(∃x)A(x) is true in a model if and only if we can assign a value for n such that A(n)

is true in that model.
These rules can be motivated in terms of assertion and denial, too. Denying

(∀x)A(x) (in the context of asserting Γ and denying ∆) involves a clash if and only if
denying A(n) would involve a clash, where n is a name free of any commitments.
Asserting (∃x)A(x) (in the context of asserting Γ and denying ∆) involves a clash
if and only if asserting A(n) would involve a clash, where n is a new name.

For these rules to work in the intended way, the name n has to be appropriate.
Not every singular term in every language can do the job. Here is an example.
Consider RA the finite set of axioms of Robinson’s Arithmetic.5 In the context of
classical predicate logic, we can derive RA � 0 ̸= 3088. There is a clash involved
in asserting the axioms of RA and in denying that 0 is unequal to 3088. However,
the term 3088 does not appear in the axioms of RA. Nonetheless, it would be a
mistake to generalise using [∀Df] to deduce PA � (∀x)(0 ̸= x). Although 3088

3Yes, that number can be zero.
4We allow for languages in which variables themselves count as singular terms, and languages

in which they never occur in formulas unbound, and are not themselves proper singular terms.
5In fact, we don’t need all of the axioms in RA. The single axiom (∀x)(0 ̸= x ′) stating that 0 is

not the successor of any number will do.
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does not appear in the axioms of RA, it is not logically independent of them. In
the syntax of RA, 3088 is a function term,6 which means that it is not free to be
interpreted arbitrarily, given the commitments made in the other assertions and
denials we have made—in this case, in RA.

In general, in a given language L with a consequence relation �, we will say
that a term α in a category A is deductively general iff for each sequent Γ � ∆

that can be derived, so can Γ [α := β] � ∆[α := β] where α is globally replaced in
that sequent by another term β in the category A.7 In first order classical pred-
icate logic, function terms are not deductively general singular terms, but prim-
itive names are. If we consider the conseqence relation of Peano Arithmetic, de-
fined by setting Γ �PA ∆ iff PA, Γ � ∆ over the language of predicate logic with
0, successor, addition, multiplication and identity, where PA is an axiomatisa-
tion of PA, then the constant term 0 is not deductively general, since we have
(∃x)(0 ̸= x ′) �PA (it’s inconsistent with the axioms of PA for 0 be the successor
of some number), but we do not have (∃x)(0 ′ ̸= x ′) �PA.

Our proposed defining rules [∀Df] and [∃Df] make sense only when we impose
the restriction that the terms n appearing in the defining rule are deductively gen-
eral. However, there is a tension between this condition and the form of the defin-
ing rules themselves. Consider a toy example, in which we have a language with
a primitive predicate F, a stock of names n, m,…, and a single one-place function
symbol g, and it is interpreted in the usual classical fashion. In this language, n

and m are names, while g(n), g(m), g(g(n)), etc., are terms but not names. How
can we derive (∀x)Fx � Fg(n) when we extend the language using [∀Df]? We can
certainly derive (∀x)Fx � Fn for each name n, as follows:

[Id]
(∀x)Fx � (∀x)Fx

[∀Df ]
(∀x)Fx � Fn

However, there is no way to apply the rule [∀Df] to generate the conclusion Fg(n),
since g(n) is not a name—it is not deductively general. If we were to require that
in the extended language, the names remained deductively general, we would re-
quire that the consequence relation satisfy the condition of Specification:

Γ � ∆
[Specn

t ]
Γ [n := t] � ∆[n := t]

which permits a gobal replacement of the deductively general term n by the term t

of the same category, which may be less general.8 In other words, the specification
6Literally, it is the term ‘0’ with the successor function applied to it 3088 times.
7In the rest of this paper, the only syntactic category we will consider is the category of singular

terms. However, in other contexts, we will consider other syntactic categories, such as the category
of predicates, and the category of sentences.

8The first paper in which a rule of this form is explicitly considered in a Gentzen system is Arnon
Avron’s 1993 paper “Gentzen-type systems, resolution and tableaux” [2].
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rule ensures that the terms n indeed are deductively general. If we could appeal
to the specification rule in a derivation, we could conclude (∀x)Fx � Fg(n) in the
following way:

[Id]
(∀x)Fx � (∀x)Fx

[∀Df ]
(∀x)Fx � Fn

[Specn
g(n)]

(∀x)Fx � Fg(n)

Specification differs from the other sequent rules we have seen. It is not a local rule
in a derivation introducing a single formula, but a global rule modifying the en-
tire sequent.9 In the classical sequent calculus it is an admissible rule, rather than
a primitive rule, because any step in the derivation in which ends in a sequent
involving a general term could be converted into a step in which that term is re-
placed by a more specific one. The rules [∀Df] and [∃Df] do not have this feature,
when read from bottom to top.

Now consider what happens when we attempt to convert [∀Df] into Left and
Right rules using the technique of the previous section. The [∀R] rule is the intro-
duction half of [∀Df]. For [∀L] we can reason as follows:

[Id]
(∀x)A(x) � (∀x)A(x)

[∀Df ]
(∀x)A(x) � A(n) Γ,A(n) � ∆

[Cut]
Γ, (∀x)A(x) � ∆

Notice that the resulting derived rule

Γ,A(n) � ∆
[∀L: for names]

Γ, (∀x)A(x) � ∆

no longer requires the side condition to the effect that n is absent from Γ or ∆. The
Γ and ∆ in this derivation are arbitrary, and do not pass through the inference step
[∀Df], where the side condition is in force. However, this algorithm does not give
us the more general rule of the form

Γ,A(t) � ∆
[∀L]

Γ, (∀x)A(x) � ∆

where t is an arbitrary singular term (not necessarily a deductively general one).
To justify this form of the [∀L] rule we must apply the algorithm not to an appli-
cation of [∀Df] to an identity sequent (∀x)A(x) � (∀x)A(x), but to the result of

9So, it is not easily understood as corresponding to a natural deduction rule in which a proof is
modified either at a premise or a conclusion position, but is rather understood as a global trans-
formation of a proof. We transform a proof involving the deductively general term n into a proof
involving the more specific term t.
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specifying the result:

[Id]
(∀x)A(x) � (∀x)A(x)

[∀Df ]
(∀x)A(x) � A(n)

[Specn
t ]

(∀x)A(x) � A(t) Γ,A(t) � ∆
[Cut]

Γ, (∀x)A(x) � ∆

which then gives us the fully general left rule [∀L]. The same holds for the rules
for the existential quantifier. Using [∃Df] and Specification, we can motivate the
standard existential quantifier Right rule:

Γ � A(t), ∆
[∃R]

Γ � (∃x)A(x), ∆

So, when we keep in mind the difference between deductively general terms and
terms with more restricted behaviour (such as function terms), we can see that
the standard Left and Right rules for the quantifiers can be understood in terms
of their defining rules. In particular, the defining rule for a quantifier depends
on the presence of deductively general terms, and the behaviour of these general
terms—and their interaction with Identity, Cut and Specification generates the spe-
cial asymmetric behaviour of these rules. One rule (the right rule for the universal
quantifier; the left rule for the existential quantifier) invokes side conditions. The
other rule does not.

3 quantifiers and non-denoting terms

However, there are reasons why we might want to reject these classical quantifi-
cation rules. In particular, we may want to assert (∀x)Fx while denying Ft for
some terms t in the language. For example, you might take it that according to
the theory of real numbers we have (∀x)(x < 0 ∨ x = 0 ∨ x > 0)—everything can
be compared with 0—without concluding that (1

0
< 0∨ 1

0
= 0∨ 1

0
> 0)—we don’t

want to claim that 1
0

is comparable with 0—rather, this seems like something
to be denied. One way to avoid concluding (1

0
< 0 ∨ 1

0
= 0 ∨ 1

0
> 0) is to ban-

ish items like “ 1
0

” from the language. Perhaps we might banish the term on the
grounds that, according to the theory of real numbers, division is not a total func-
tion. There is no such number as 1

0
so (1

0
< 0 ∨ 1

0
= 0 ∨ 1

0
> 0) is not an instance

of (∀x)(x < 0 ∨ x = 0 ∨ x > 0).
However, this is not, as a matter of fact, how everyday mathematical discourse

regiments the language. The freedom of allowing singular terms such as x
y

and
limx→∞ f(x) which may occasionally fail to take values is a flexibility that is very
useful for mathematical practice. It would be needlessly complicated to banish all
such terms from our vocabulary. Rather, it seems that we may allow undefined
terms in the vocabulary, provided that we are careful about the behaviour of those
terms.
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There are many ways to admit non-denoting terms to the vocabulary with-
out doing too much violence to the norms of classical logic. One such attempt
that is very congenial to the proof-theoretical framework we’re exploring is due
to Solomon Feferman, in his paper “Definedness” [5]. In that paper, Feferman
provides a straightforward Hilbert-style proof system and Tarskian semantics for
a logic which minimally modifies classical first order predicate logic by allowing
for undefined singular terms. In the rest of this paper, I will show how consider-
ations concerning generality and defining rules can independently motivate that
logic.

If we are to admit undefined terms to the vocabulary, we need to be careful
with regard to our rules for the quantifiers. No longer is the rule [∀Df] appropriate
if the name n is allowed to be undefined—or rather, if n is deductively general,
and an undefined term can be found in the same category as n. For otherwise, we
could derive

(∀x)(x < 0 ∨ x = 0 ∨ x > 0) � n < 0 ∨ n = 0 ∨ n > 0

and then, specify to the undefined term 1
0

. So, something has to give, if we are
to accept (∀x)(x < 0 ∨ x = 0 ∨ x > 0) and reject (1

0
< 0 ∨ 1

0
= 0 ∨ 1

0
> 0). One

option would be to deny that 1
0

is in the same syntactic category as the deductively
general term n. The name n is general, but it is not so general as to encompass the
behaviour of non-denoting singular terms. This seems against the spirit of the
enterprise, where we allow terms to be undefined, and where it is a matter of the
theory (or the different views of the participants in a dialogue) as to whether terms
are defined or not. That seems to be a matter of semantics, and not of syntactic
category alone. We would very much like to allow the use of logical techniques in
a discussion where we have participants who disagree not only about what is the
case, but also disagree about what there is—in a shared vocabulary with an agreed
upon syntactic regimentation.10

So, if we allow for assertion and denial of sentences, a natural generalisation
is to allow for sequents to register pro and con attitudes toward terms, too. The
guiding idea is that to rule a term in is allow it as an appropriate term to substitute
into a quantifier, or to take it to denote. To rule a term out is to keep it in the
vocabulary (mathematicians do not reject 1

0
as syntactically ill-formed) but to not

take it as a suitable substitution for generalisations. To make room for this, our
sequents will not feature sentences alone on the left and the right, but also terms.
A sequent is now a pair Γ � ∆ where each of Γ and ∆ can contain terms as well as
sentences.

How are we to reflect this change in the rules for quantifiers? The natural
change to the defining rules for the universal and existential quantifier is to re-

10This is not to say that fruitful and rational discussion requires agreement on the syntax of the
shared language, just that some such discussion is possible with agreement on grammar without
thereby requiring agreement on whether or not a singular term denotes.
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quire in the premises the condition that the term n is defined.

Γ, n � A(n), ∆
============= [∀Df ]
Γ � (∀x)A(x), ∆

Γ, n,A(n) � ∆
============= [∃Df ]
Γ, (∃x)A(x) � ∆

The upshot of denying (∀x)A(x) is to be prepared to deny A(n) for a some new
name which you rule in. To assert (∃x)A(x) is to be prepared to grant A(n) for a
new name n, which you rule in.

When we apply the algorithm to use Identity, Cut and Specification to generate
the remaining Left/Right rule for each quantifier, the following derivation

[Id]
(∀x)A(x) � (∀x)A(x)

[∀Df ]
(∀x)A(x), n � A(n)

[Specn
t ]

(∀x)A(x), t � A(t) Γ,A(t) � ∆
[Cut]

Γ, (∀x)A(x), t � ∆ Γ � t, ∆
[t-Cut]

Γ, (∀x)A(x) � ∆

generates the [∀L] rule:

Γ,A(t) � ∆ Γ � t, ∆
[∀L]

Γ, (∀x)A(x) � ∆

Similarly, the derivation for the existential quantifier

Γ, t � ∆

Γ � A(t), ∆

[Id]
(∃x)A(x) � (∃x)A(x)

[∃Df ]
A(n), n � (∃x)A(x)

[Specn
t ]

A(t), t � (∃x)A(x)
[Cut]

Γ, t � (∃x)A(x), ∆
[t-Cut]

Γ � (∃x)A(x), ∆

generates this [∃R] rule:

Γ � t, ∆ Γ � A(t), ∆
[∃R]

Γ � (∃x)A(x), ∆

The second Cut step in the justification for the [∀L] rule was a t-Cut, a Cut on a
term. This form of the Cut rule

Γ � t, ∆ Γ, t � ∆
[t-Cut]

Γ � ∆

is just as motivated as a Cut on sentences. (If there is a clash involved ruling t in
and in ruling t out in a context, there is a clash in the underlying context.)
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To complete the motivation of our logic with non-denoting terms we need
to consider the interaction between denotation, predication and function terms,
and to consider the behaviour of an ‘existence predicate’ which makes explicit in
assertion and denial the term judgements involved in ruling in and ruling out
terms. The latter is straightforward. Here is a defining rule for the existence pred-
icate:

Γ, t � ∆
======= [↓Df ]
Γ, t↓ � ∆

‘↓’ is syntactically a predicate, and it makes explicit the judgement that the term t

denotes as a sentence. To rule 1
0

as undefined is to deny 1
0
↓—to assert its negation

¬1
0
↓. Generating the Right rule for ↓ is straightforward:

Γ � t, ∆

[Id]
t↓ � t↓

[↓Df ]
t � t↓

[t-Cut]
Γ � t↓, ∆

The right rule replaces a term judgement t in the right hand side of a sequent with
the corresponding sentence t↓, as expected.

For function terms, a natural constraint is that an n-place function f is de-
fined on inputs t1, . . . , tn only when those inputs are defined.11 This motivates
the following interaction rule for term judgements and function application:

ti, Γ � ∆
[fL]

f(t1, . . . , tn), Γ � ∆

Feferman’s free logic does makes the same choice for predication. Given a primitive
n-ary predicate F, it can be truly applied to the terms t1, . . . , tn only when those
terms are defined.

ti, Γ � ∆
[FL]

Ft1 · · · tn, Γ � ∆

This seems very natural in the mathematical case ( 1
0

is not even, and neither is
1
0

prime), so we will adopt the rule here. Note that adopting such a rule involves
drawing a distinction between primitive and complex predicates. While 1

0
is not

even, the complex predicate ‘not even’ is truly applied to the term 1
0

. This rule,
while satisfied by simple predicates F is not necessarily satisfied by other complex
predicates—and of course, it cannot be satisfied by the negation of the defined-
ness predicate ↓. That only truly applies to non-denoting terms by design.12

11So, on this view, 1

0
− 1

0
is undefined, even if the function λx.(x−x) is the constant zero function

that is everywhere defined. To use the distinction from computer science, we adopt a call-by-value
semantics rather than a call-by-name semantics for function evaluation [16]. Inputs to functions
are evaluated before the evaluation of the function.

12In a sequel to this paper, I will discuss this issue further, when examining generality and predi-
cates. It is enough to leave that intersection in the highway of options for later, and to follow along
with Feferman in this choice for free logic and predication.

Greg Restall, restall@unimelb.edu.au october 26, 2015 Version 0.963

http://consequently.org/writing/generality-and-existence-1/
mailto:restall@unimelb.edu.au


http://consequently.org/writing/generality-and-existence-1/ 14

With this motivation behind us, let’s see where we have arrived, and examine
this proof system in some detail.

4 derivations and systems

To be relatively precise, let’s assume we work with a language consisting of a sup-
ply of names (m,n,n1, n2, . . .), and function symbols (f, g, etc.), and predicates
(F,G, L, R, . . .). We include a special one-place predicate ‘↓’, to be written postfix. A
term in the language is either a name or a function symbol applied to an appro-
priate number of terms.

We also have an infinite supply of variables (x, y, z, x1, x2, . . .) to feature in
our quantifiers. Formulas are combined with the usual connectives ∧, ∨, ⊃ and
¬. Sentences do not contain any free variables. To apply a quantifier (∃x) to a
sentence A(n) with some number of instances of the name n designated, replace
the name n by variable x and prefix the result with the quantifier.

We use the capital Greek letters Γ and ∆ variously for sets and multisets of
sentences and terms. Two multisets are identical if they have the same members
the same number of times, and two sets are identical if they merely have the same
members. We write these multisets and sets in list notation without any paren-
theses since the only members are sentences or terms, and we use a comma to
indicate adding a member to a set or multiset. (So, if t is a term and Γ is a multi-
set, then t, Γ is another multiset that contains everything to the same degree that
Γ does, except for t, which it contains one more time than Γ does.)

In our sequent calculus, sequents are pairs of multisets, Γ � ∆ consisting of
sentences and terms. We call Γ the left hand side (lhs) of the sequent and ∆

its right hand side (rhs). The sequent calculus defines a class of derivations of
sequents—trees of sequents constructed using the following rules. The leaves of
derivations are Identity sequents of the following shapes:

Γ,A � A,∆ [s-Id] Γ, t � t, ∆ [t-Id]

These identity sequents incorporate the weakening rule. The presence of irrele-
vant extra formulas in the sequent is allowed.

The Identity rules are structural rules. A structural rule pays no heed to the inter-
nal structure of sentences or terms. Another structural rule is the rule of Contrac-
tion, which comes in four flavours: two left rules, and two right rules, two sentence
rules and two term rules.

Γ,A,A � ∆
[s-WL]

Γ,A � ∆

Γ � A,A,∆
[s-WR]

Γ � A,∆

Γ, t, t � ∆
[t-WL]

Γ, t � ∆

Γ � t, t, ∆
[t-WR]

Γ �, ∆

The contraction rules ensure that repeats of formulas or terms have no effect on
the consequence relation.13 Our next pair of structural rules are the Cut rules,

13You may wonder why we work with multisets of formulas, which allow for repeats, while sets
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again, one for a cut on a sentence and the other for a cut on a term.

Γ � A,∆ Γ,A � ∆
[s-Cut]

Γ � ∆

Γ � t, ∆ Γ, t � ∆
[t-Cut]

Γ � ∆

Finally, we have the non-local rule of specification, which allows for the global re-
placement of a deductively general term n (a name) by a term t in the entire se-
quent.

Γ � ∆
[Specn

t ]
Γ [n := t] � Γ [n := t]

That rounds out the structural rules of the calculus. To those we add the rules for
function application and predication. These are not structural rules—they dic-
tate the interaction between definedness of terms and function terms and predi-
cations, and so, they depend on the particular form of the sentences displayed in
the rules.

ti, Γ � ∆
[fL]

f(t1, . . . , tn), Γ � ∆

ti, Γ � ∆
[FL]

Ft1 · · · tn, Γ � ∆

Yet, these are not defining rules for any particular vocabulary. They are certainly
not defining rules for the function terms or predicates, because they are the same
shape rule for each predicate and function symbol of a given arity.

We have one defining rule for each logical concept in the vocabulary. Here
are the defining rules for the propositional connectives:

Γ,A, B � ∆
========== [∧Df ]
Γ,A ∧ B � ∆

Γ � A,B,∆
========== [∨Df ]
Γ � A ∨ B,∆

Γ,A � B,∆
=========== [⊃Df ]
Γ � A ⊃ B,∆

Γ � A,∆
======== [¬Df ]
Γ,¬A � ∆

And here are the defining rules for the quantifiers and the definedness predicate:

Γ, n � A(n), ∆
============= [∀Df ]
Γ � (∀x)A(x), ∆

Γ, n,A(n) � ∆
============= [∃Df ]
Γ, (∃x)A(x) � ∆

Γ, t � ∆
======= [↓Df ]
Γ, t↓ � ∆

As usual, the quantifier rules have the usual side condition: the name n (a de-
ductively general term) is not present in the conclusion of the rule. Let’s call the
system DL[Df, Cut, Spec] the proof system for definedness logic with Defining Rules,
the Cut rules and the Specification Rule.

A derivation of a sequent Γ � ∆ in DL[Df, Cut, Spec] is a tree of sequents, starting
with Identity sequents at the leaves, each step of which is an instance of one of the

of formulas do not. The difference is important for when we consider derivations as representing
the structure of a proof. If a sequent A,B � A∧B makes use of two premises, one used to justify the
first conjunct of the conclusion, and the other to justify the second, then the proof would have still
had that shape had A and B been the same formula. A proof step from A and A to A ∧ A is, in some
sense, a different proof from a proof step from A to A ∧ A, even though they are equally valid.
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rules, and which ends at the root in Γ � ∆. Here is an example derivation in the
proof system, of (∀x)A(x), t↓ � A(t).

(∀x)A(x) � (∀x)A(x)
[∀Df ]

(∀x)A(x), n � A(n)
[Specn

t ]
(∀x)A(x), t � A(t)

[↓Df ]
(∀x)A(x), t↓ � A(t)

Here is a longer derivation, of the sequent (∀x)(Fx ⊃ Gx) � (∃x)Fx ⊃ (∃x)Gx.

(∀x)(Fx ⊃ Gx) � (∀x)(Fx ⊃ Gx)
[∀Df ]

(∀x)(Fx ⊃ Gx), n � Fn ⊃ Gn

Fn ⊃ Gn � Fn ⊃ Gn
[⊃Df ]

Fn ⊃ Gn, Fn � Gn

(∃x)Gx � (∃x)Gx
[∃Df ]

n,Gn � (∃x)Gx
[s-Cut]

Fn ⊃ Gn,n, Fn � (∃x)Gx
[s-Cut]

(∀x)(Fx ⊃ Gx), n, Fn � (∃x)Gx
[∃Df ]

(∀x)(Fx ⊃ Gx), (∃x)Fx � (∃x)Gx
[⊃Df ]

(∀x)(Fx ⊃ Gx) � (∃x)Fx ⊃ (∃x)Gx

(In fact, this derivation is not formally correct as it is written. In order for the
derivation to fit on the page, I have left out some irrelevant side formulas from in-
stances of the Cut rule. Take the first s-Cut step, concluding in Fn ⊃ Gn,n, Fn �
(∃x)Gx. The Cut step is a cut on the formula Gn, so the two premises should be
the sequents Fn ⊃ Gn,n, Fn � Gn, (∃x)Gx and Fn ⊃ Gn,n, Fn,Gn � (∃x)Gx.
Instead, the left premise uses only the underlined formulas in Fn ⊃ Gn,n, Fn �
Gn, (∃x)Gx, leaving out the final formula (which is not used in the derivation of
that sequent) and the second premise makes use only of Fn ⊃ Gn,n, Fn,Gn �
(∃x)Gx, leaving the rest aside. The full derivation, according to the formal defini-
tions of the rules, would be much wider, and we have left out unused formulas for
the sake of space.)

As we have seen in the first two sections of this paper, Specification can be elim-
inated as a rule if we are willing to generalise the Defining Rules, and the Defining
Rules can be traded in for the traditional pairs of Left/Right rules of a sequent cal-
culus. We will end this section precisely stating and proving these two facts. First,
the elimination of Specification. The Generalised Defining Rules for the quantifiers
are given as follows:

Γ, n � A(n), ∆
[∀Df⇓]

Γ � (∀x)A(x), ∆

Γ � (∀x)A(x), ∆
[∀Df⇑]

Γ, t � A(t), ∆

Γ, n,A(n) � ∆
[∃Df⇓]

Γ, (∃x)A(x) � ∆

Γ, (∃x)A(x) � ∆
[∃Df⇑]

Γ, t,A(t) � ∆

The ⇓ parts of these rules are one half of each of the original defining rules for the
quantifiers, and they retain the side condition to the effect that the name n does
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not appear in the concluding sequent. The ⇑ parts of the rules are generalisations
of the other halfs, allowing an implicit specification from the deductively general
name n to the more specific term t. Let’s call the system DL[GDf, Cut] the proof
system for definedness logic with the Generalised Defining Rules, and the Cut rules
but without the Specification Rule.

fact 1: A derivation of a sequent Γ � ∆ in DL[Df, Cut, Spec] can be systematically trans-
formed into a derivation of that sequent in DL[GDf, Cut], and vice versa.

Proof: For the left-to-right direction, we argue as follows: The rule of specification
is admissible in DL[GDf, Cut] in the following sense. Any derivation in DL[GDf,
Cut] of a sequent Γ � ∆ can be transformed into a DL[GDf, Cut] derivation of the
sequent Γ [n := t] � ∆[n := t]. Consider each of the rules in DL[GDf, Cut]. They are
all closed under specification, in the sense that if a rule ends in some sequent Γ � ∆

from some premise sequents, another instance of that rule leads to the conclusion
Γ [n := t] � ∆[n := t] in which each of the instances of n in that sequent are
replaced by t. There are no rules in which a name occurs in a conclusion sequent
where it could not have been everywhere replaced by an arbitrary term. (This is
why we replaced the direction of the defining rules for the quantifier in which the
name occurred in the concluding sequent. They are the only rules in the system to
not have this propertty.) So, given any derivation in DL[Df, Cut, Spec], replace each
appeal to the Specification rule by a transformation of the derivation of the premise
of that rule into a DL[GDf, Cut] derivation of the conclusion. The end result of this
process is a derivation of the concluding sequent in DL[GDf, Cut].

Conversely, any DL[GDf, Cut] derivation can be transformed into a DL[Df, Cut,
Spec] derivation by replacing each instance of a [∀Df⇑] or [∃Df⇑] step by a [∀Df] or
[∃Df] step composed with the appropriate instance of [Specn

t ] to convert the name
in the conclusion of the Df step into the term required for the conclusion of the
corresponding GDf step. The result is a derivation of our end sequent Γ � ∆.

The process for replacing Defining Rules by Left and Right rules is also straightfor-
ward. As we have seen, the defining rules for the connectives, quantifiers and
existence predicate can be replaced by the following Left/Right rules. The system
DL[LR, Cut] consists of the structural rules of Identity, Contraction and Cut (so we
leave out Specification), the predicate and function term rules, and these Left and
Right rules for the connectives, quantifiers and definedness predicate.

Γ,A, B � ∆
[∧L]

Γ,A ∧ B � ∆

Γ � A,∆ Γ � B,∆
[∧R]

Γ � A ∧ B,∆

Γ,A � ∆ Γ, B � ∆
[∨L]

Γ, A ∨ B � ∆

Γ � A,B,∆
[∨R]

Γ � A ∨ B,∆

Γ � A,∆ Γ, B � ∆
[⊃L]

Γ,A ⊃ B � ∆

Γ,A � B,∆
[⊃R]

Γ � A ⊃ B,∆
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Γ � A,∆
[¬L]

Γ,¬A,� ∆

Γ,A � ∆
[¬R]

Γ � ¬A,∆

Γ,A(t) � ∆ Γ � t, ∆
[∀L]

Γ, (∀x)A(x) � ∆

Γ, n � A(n), ∆
[∀R]

Γ � (∀x)A(x), ∆

Γ, n,A(n) � ∆
[∃L]

Γ, (∃x)A(x) � ∆

Γ � t, ∆ Γ � A(t), ∆
[∃R]

Γ � (∃x)A(x), ∆

Γ, t � ∆
[↓L]

Γ, t↓ � ∆

Γ � t, ∆
[↓R]

Γ � t↓, ∆

fact 2: A derivation of a sequent Γ � ∆ in DL[LR, Cut] can be systematically transformed
into a derivation of that sequent in DL[GDf, Cut], and vice versa.

Proof: The examples of the previous section show how each Left/Right rule can be
constructed out of the defining rules together with Identity and Cut, so we may take
any derivation in DL[LR, Cut] and replace each appeal to a Left or Right rule with
the corresponding appeal to the Defining rule for the concept involved, composed
with appropriate Cut and Identity steps.

We have not yet shown the converse. We wish to show how appeals to defining
rules can be reconstructed in DL[LR, Cut]. For each step of a defining rule in which
the defined concept is introduced in the conclusion of the rule (the downward half
of the rule), that part of the rule is either a Left or Right rule in DL[LR, Cut]. Our
work is to reconstruct the upward half. Here are some examples, for ⊃, ∀ and ↓.
The others are natural generalisations of this technique.

A � A B � B
[⊃L]

A,A ⊃ B � B Γ � A ⊃ B,∆
[s-Cut]

Γ,A � B,∆

A(t), t � A(t) t � t,A(t)
[∀L]

(∀x)A(x), t � A(t) Γ � (∀x)A(x), ∆
[s-Cut]

Γ, t � A(t), ∆

t � t
[↓R]

t � t↓ Γ, t↓ � ∆
[s-Cut]

Γ, t � ∆
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So, in this section we have defined three different proof systems for DL: DL[Df,
Cut, Spec], with Defining Rules and Specification, DL[GDf, Cut], with Generalised Defin-
ing Rules, where specification is no longer a primitive rule but is folded into the
remaining rules, and DL[LR, Cut], which replaces the defining rules with tradi-
tional Left and Right rules of a Gentzen-style sequent calculus. These proof sys-
tems are motivated by normative pragmatic considerations—derivable sequents
record norms governing assertion and denial in a language which allows for sin-
gular terms with reference failure.

Each of these three proof systems makes use of Cut rules, both the traditional
s-Cut for cuts on sentences, and the novel t-Cut for cuts on terms. In the next two
sections we will move to show that DL[LR,Cut] is equivalent to DL[LR], that any
sequent derivable with the Cut rules is also derivable without them. To demon-
strate this, we will more closely analyse those sequents which are not derivable in
these proof systems, and explore the connection between underivable sequents
and models [10].

5 positions and refinement

If a sequent Γ � ∆ cannot be derived, then, as far as the norms of our logic are con-
cerned, there is no clash involved in asserting everything in Γ and denying some-
thing in ∆. If we think of the logic as informing and inscribing a field of play in
which various assertions and denials are made and various terms are ruled in or
ruled out, the underivable sequents Γ � ∆ are different positions in that field of
play.

To be precise, let us take a position (relative to a proof system) to be a pair [Γ : ∆]

of sets Γ and ∆ where every Γ ′ � ∆ ′ is underivable in that proof system, for any
finite multisets Γ ′ and ∆ ′ where each element of Γ ′ is in Γ and every element of ∆ ′

is in ∆.

In this definition the components of a position differ from the lhs and rhs of
a sequent in two ways. First, we do not care to keep track of the repetitions of
sentences or terms in Γ and ∆, so we take them to be sets and not multisets. Fur-
thermore, we allow Γ and ∆ to be infinite, while the lhs and rhs in a sequent in
our proof systems are always finite. If [Γ : ∆] is a position, then there is no clash
involved in selecting any assertions from Γ and any denials from ∆, however many
we take.

Let us say that the position [Γ2 : ∆2] is a refinement of the position [Γ1 : ∆1] if
and only if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2.

We will say that a position [Γ : ∆] is finite if and only if the sets Γ and ∆ are finite.

Our focus will be on positions in the system DL[LR], and our aim will be, in this
section and the next, to show that those sequents which can not be derived with-
out the use of the Cut rules could not have been derived with those rules, either.
We will show this by way of a model construction, showing how DL[LR] positions
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may be “filled out” or “idealised” into models which serve as a witness (a model
witnessing a position will evaluate each formula in its lhs as true, each term in its
lhs as defined, each formula in its rhs as false, and each term in its rhs as unde-
fined). These models will turn out to be models of the system DL[LR,Cut] too—it
will be straightforward to show that these models only witnesses to positions in
DL[LR,Cut], so it will follow that DL[LR] positions are in fact DL[LR,Cut] positions,
so any sequent derivable with Cuts is derivable without them. That is our target in
this section and the next.14

To start, let us focus on how positions may be progressively refined to make them
more informative. First, let’s consider a DL[LR] position in which A ∧ B occurs
in the lhs: [Γ,A ∧ B : ∆]. Suppose [Γ,A ∧ B,A,B : ∆] weren’t a position. Then
it would follow that for some Γ ′ ⊆ Γ and ∆ ′ ⊆ ∆ that there is a derivation of
Γ ′, A ∧ B,A, B � ∆ ′. It would follow that there is a derivation of Γ ′, A ∧ B � ∆ ′

too, and that (contrary to hypothesis) [Γ,A ∧ B : ∆] is not a DL[LR] position. Here
is why:

Γ ′, A ∧ B,A,B � ∆ ′

[∧L]
Γ ′, A ∧ B,A ∧ B � ∆ ′

[s-WL]
Γ ′, A ∧ B � ∆ ′

So, if [Γ,A ∧ B : ∆] is a position, so is [Γ,A ∧ B,A,B : ∆]. This is called a left-
conjunction refinement of [Γ,A ∧ B : ∆].

Now consider a position in which A ∧ B occurs in the rhs: [Γ : A ∧ B,∆]. We can
show that at least one of [Γ : A,A ∧ B,∆] and [Γ : B,A ∧ B,∆] are also positions,
because if they fail to be positions, [Γ : A ∧ B,∆] must fail to be a position too:

Γ ′ � A,A ∧ B,∆ ′ Γ ′ � B,A ∧ B,∆ ′

[∧R]
Γ ′ � A ∧ B,A ∧ B,∆ ′

[s-WR]
Γ ′ � A ∧ B,∆ ′

So, if [Γ : A∧B,∆] is a position, then at least one of [Γ : A,A∧B,∆] and [Γ : B,A∧

B,∆] is a position too. Those that are positions are called right-conjunction
refinements of [Γ : A ∧ B,∆].

In the same way we can define refinements for disjunctions, conditionals and nega-
tions occuring in the lhs or rhs of positions. The complete table of refinements
for propositional connectives is given in Figure 1.

Propositional refinement relations fill out our positions to carry more informa-
tion concerning the components of sentences in positions. The same will hold for
the definedness predicate and the quantifiers.

If [Γ, t↓ : ∆] is a position, then [Γ, t↓, t : ∆] is a left-definedness refinement of
that position. If [Γ : t↓, ∆] is a position, then [Γ : t, t↓, ∆] is a right-definedness

14The technique here is due to Schütte [13], and a straightforward presentation is found in
Takeuti’s Proof Theory [15, page 42].
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position refinements

[Γ,A ∧ B : ∆] [Γ,A ∧ B,A,B : ∆]

[Γ : A ∧ B,∆] At least one of [Γ : A,A ∧ B,∆] and [Γ : B,A ∧ B,∆]

[Γ,A ∨ B : ∆] At least one of [Γ,A,A ∨ B : ∆] and [Γ, B,A ∨ B : ∆]

[Γ : A ∨ B,∆] [Γ : A,B,A ∨ B,∆]

[Γ,A ⊃ B : ∆] At least one of [Γ,A ⊃ B : A,∆] and [Γ, B,A ⊃ B : ∆]

[Γ : A ⊃ B,∆] [Γ,A : B,A ∨ B,∆]

[Γ, ¬A : ∆] [Γ,¬A : A,∆]

[Γ : ¬A,∆] [Γ,A : ¬A,∆]

Figure 1: Refinements for propositional connectives
.

refinement of that position. The left-definedness and right-definedness refine-
ments of positions are themselves positions for the following reasons: A deriva-
tion that shows a refinement fails to be a position would show that the position of
which it is a refinement were also not a position, contrary to hypothesis:

Γ ′, t↓, t � ∆ ′

[↓L]
Γ ′, t↓, t↓ � ∆ ′

[s-WL]
Γ ′, t↓ � ∆ ′

Γ ′ � t, t↓, ∆ ′

[↓R]
Γ ′ � t↓, t↓, ∆ ′

[s-WR]
Γ ′ � t↓, ∆ ′

Similarly, we can define refinements for formulas featuring the quantifiers. Con-
sider a position in which (∀x)A occurs in the lhs: [Γ, (∀x)A(x) : ∆]. Then one
of [Γ, (∀x)A(x), A(t) : ∆] and [Γ, (∀x)A(x) : t, ∆] is a position, too, where t is any
of the terms in the language. If these both failed to be a position, so would our
starting position:

Γ ′, (∀x)A(x), A(t) � ∆ ′ Γ ′, (∀x)A(x) � t, ∆ ′

[∀L]
Γ ′, (∀x)A(x), (∀x)A(x) � ∆ ′

[s-WL]
Γ ′, (∀x)A(x) � ∆ ′

For the rhs, consider the position [Γ : (∀x)A,∆]. Then [Γ, n : A(n), (∀x)A(x), ∆]

is a position too, where n is a name not present in [Γ : (∀x)A(x), ∆].

Γ ′, n � A(n), (∀x)A(x), ∆ ′

[∀R]
Γ ′ � (∀x)A(x), (∀x)A(x), ∆ ′

[s-WR]
Γ ′ � (∀x)A(x), ∆ ′

Dual reasoning applies to the existential quantifier rules. The table in Figure 2
presents refinements for quantifiers and the definedness predicate.
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position refinements

[Γ, (∀x)A(x) : ∆] At least one of [Γ, (∀x)A(x), A(t) : ∆], [Γ, (∀x)A(x) : t, ∆]

for each term t in [Γ, (∀x)A(x) : ∆].
[Γ : (∀x)A(x), ∆] [Γ, n : A(n), (∀x)A(x), ∆], where n is new.
[Γ, (∃x)A(x) : ∆] [Γ, (∃x)A(x), A(n), n : ∆], where n is new.
[Γ : (∃x)A(x), ∆] At least one of [Γ : A(t), (∃x)A(x), ∆], [Γ : t, (∃x)A(x), ∆]

for each term t in [Γ : (∃x)A(x), ∆].
[Γ, t↓ : ∆] [Γ, t↓, t : A,∆]

[Γ : t↓, ∆] [Γ,A : t, t↓, ∆]

Figure 2: Refinements for quantifiers and the definedness predicate
.

We aim to find positions which are closed under these particular refinement re-
lations, for these will be our guide to constructing a model. Consider refinement
for conjunctions. If a conjunction is present in the lhs of such a position, so are
its conjuncts. If a conjunction is in the rhs of such a position, so is one of its con-
juncts (at least). Being on the lhs does a good job as a proxy for truth and being
on the rhs does the same for falsity, at least as far as conjunction goes. For the
definedness predicate, if the position places t↓ on the lhs, if it is closed under the
definedness refinement conditions, t is also on the lhs. If t↓ is in the rhs, then
so is t. So, if a term is on the lhs, according to that position, it is defined. If it is
in the rhs, then according to that position it is undefined. For the quantifiers, if
(∀x)A(x) is in the lhs of a position, and it is closed under quantifier refinement
for each term in its own vocabulary, then for every such term t, either t is in the
rhs (so, according to that position, t is undefined) or A(t) is in the lhs (so, A(t)

is taken to be true). Similarly, if (∀x)A(x) is in the rhs of a position, then we have
added a name n to the vocabulary of the position such that n occurs in the lhs and
A(n) in the rhs. In other words, if the position takes (∀x)A(x) to be false, then we
have equipped the vocabulary with some name n where according to the position
n denotes, and A(n) is false.

In other words, positions closed under the refinement conditions do a good
job of respecting natural truth conditions, at least for conjunction, definedness
and the universal quantifier. But that is not quite enough for us to define models
in which the entire logic is respected. For that, we need to consider the interac-
tion between definedness, predication and function application. We would like
to find positions which fully respect the conditions on predication and function
application. If Ft1 · · · tn is true, then each ti is defined. If f(t1, . . . , tn) is defined,
then each ti is defined. So, we will refine positions for predication and function
application in the following way. If a position takes a predication to be true, we
will add the terms of that predication to the lhs. If a position features a function
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position refinements

[Γ, Ft1 · · · tn : ∆] [Γ, Ft1 · · · tn, t1, . . . , tn : ∆]

[Γ, f(t1, . . . , tn) : ∆] [Γ, f(t1, . . . , tn), t1, . . . , tn : ∆]

Figure 3: Refinements for predication and function application
.

application in the lhs, we add the terms of that function application to the lhs
too. The result in either case is a position, as the following derivations show, first
for predication:

Γ ′, Ft1 · · · tn, t1, . . . , tn � ∆ ′

[FL]
Γ ′, Ft1 · · · tn, Ft1 · · · tn, t2, . . . , tn � ∆ ′

[s-WL]
Γ ′, Ft1 · · · tn, t2, . . . , tn � ∆ ′

···
Γ ′, Ft1 · · · tn, Ft1 · · · tn, tn � ∆ ′

[s-WL]
Γ ′, Ft1 · · · tn, tn � ∆ ′

[FL]
Γ ′, Ft1 · · · tn, Ft1 · · · tn � ∆ ′

[s-WL]
Γ ′, Ft1 · · · tn � ∆ ′

and then for function application:

Γ ′, f(t1, . . . , tn), t1, . . . , tn � ∆ ′

[fL]
Γ ′, f(t1, . . . , tn), f(t1, . . . , tn), t2, . . . , tn � ∆ ′

[t-WL]
Γ ′, f(t1, . . . , tn), t2, . . . , tn � ∆ ′

···
Γ ′, f(t1, . . . , tn), f(t1, . . . , tn), tn � ∆ ′

[t-WL]
Γ ′, f(t1, . . . , tn), tn � ∆ ′

[fL]
Γ ′, f(t1, . . . , tn), f(t1, . . . , tn) � ∆ ′

[t-WL]
Γ ′, f(t1, . . . , tn) � ∆ ′

This completes the definition of the refinement relations for the connectives, the
quantifiers, the definedness predicate, and for primitive predication and function
application. Now we will use this to construct a position closed under each of these
relations in the appropriate fashion.15

A set D of positions is said to be directed if it is (1) closed downward under re-
finement, in the sense that if [Γ : ∆] is refined by some [Γ ′ : ∆ ′] in D, then [Γ : ∆]

15Readers familiar with tableaux proofs will recognise the construction [1, 14].
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is in D too; and (2) D contains upper bounds, in the sense that if [Γ1 : ∆1] and
[Γ2 : ∆2] are in D then there is some position refining both that is also in D.

(Note that the smallest joint refinement of [Γ1 : ∆1] and [Γ2 : ∆2], if there is any
such refinement, is [Γ1 ∪ Γ2 : ∆1 ∪ ∆2].)

fact 3: A set D of finite positions is directed if and only if there is some position [Γ : ∆]

(finite or infinite) such that D is the set of finite positions refined by [Γ : ∆].

This position [Γ : ∆] is said to be the limit of the directed set D.

Proof: Given a position P, if D is the set of finite positions refined by P, this set is
clearly closed downward under refinement, and it contains upper bounds, so it is
directed. Conversely, if D is some directed class, define the limit position [Γ : ∆]

of D in the obvious way: Γ is the set of all formulas or terms occuring in the lhs of
some position in D, and ∆ is the set of all formulas or terms occuring in the rhs
of some position in D. Let P = [L1, . . . , Ln : R1, . . . , Rm] be some finite position
refined by [Γ : ∆]. We want to show that P is in D. Each Li is a formula or term
occuring in Γ and each Rjis a formula or term occuring in ∆. This means that each
Li occurs in the lhs of some position in D and each Rj occurs in the rhs of some
position in D. Since D is directed, it is closed downward under refinement, so the
atomic positions [Li : ] and [ : Rj] are in D, so their finite upper bound, namely P,
is in D too.

fact 4: For any sequence of positions [Γ1 : ∆1], [Γ2 : ∆2], . . . where each [Γi+1 : ∆i+1]

is a refinement of [Γi : ∆i], the set D of all finite positions refined by some [Γi : ∆i] in the
sequence is the directed set with limit [

∪∞
i Γi :

∪∞
i ∆i].

Proof: If Γ ′ ⊆
∪∞

i Γi and ∆ ′ ⊆
∪∞

i ∆i are finite, there must be some n where
Γ ′ ⊆ Γn and ∆ ′ ⊆ ∆n. Since [Γn : ∆n] is a position, it follows that [Γ ′ : ∆ ′] is a
position too, and since Γ ′ and ∆ ′ were arbitrary finite subsets of

∪∞
i Γi and

∪∞
i ∆i

respectively, it follows that [
∪∞

i Γi :
∪∞

i ∆i] is indeed a position. So, the set of all
finite positions refined by [

∪∞
i Γi :

∪∞
i ∆i] is a directed set, and these are exactly

the positions refined by some position in the sequence.

In such a construction, we call the directed set D the wake of the sequence [Γi : ∆i]

of finite positions.
We will end this section with the characterisation of a construction of a special

sequence of positions, with the target, in the limit, a fully refined position.

A sequence of finite positions [Γ1 : ∆2], [Γ2 : ∆2], . . . is said to be fully refining
if for each member [Γi : ∆i] in the sequence, and each formula or term occuring
in Γi or ∆i, an appropriate refinement of the position for that formula or term (a
refinement occuring in Figure 1, 2 or 3) is refined by some other member [Γj : ∆j]

of the sequence.
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fact 5: The following algorithm constructs a fully refining sequence of positions starting
from a finite position [Γ : ∆]:

1. Enumerate each sentence or term in the starting position [Γ : ∆]. The number for
each sentence or term will be the order in which it is processed for refinement.
Keep track of the next available number.

2. Form the finite set T of terms that occur somewhere in [Γ : ∆], either directly as
members of Γ or ∆, or as components of formulas or terms occuring in formulas
in Γ and ∆.

3. Reserve an infinite stock N of {n1, n2, . . .} from the language L which do not ap-
pear in T .

4. Now we start the loop. Take the first available formula in our enumeration.

(a) If it is a negation ¬A in the lhs, form the next position by adding A to the
rhs, assign A the next available number, mark ¬A as unavailable and re-
peat.

(b) If it is a negation ¬A in the rhs, form the next position by adding A to the
lhs, assign A the next available number, mark ¬A as unavailable and re-
peat.

(c) If it is a conjunction A ∧ B in the lhs, form the next position by adding A

and B to the lhs, assign A and B the next available numbers, mark A∧B as
unavailable and repeat.

(d) If it is a conjunction A ∧ B in the rhs, then either a position is formed by
adding A or by adding B to the rhs. Choose whichever works, and add that
formula to the rhs, assign it the next available number, mark A ∧ B as un-
available and repeat.

(e) If it is a disjunction A ∨ B in the lhs, then either a position is formed by
adding A or by adding B to the lhs. Choose whichever works, and add that
formula to the lhs, assign it the next available number, mark A ∨ B as un-
available and repeat.

(f) If it is a disjunction A ∨ B in the rhs, form the next position by adding A

and B to the rhs, assign A and B the next available numbers, mark A ∨ B

as unavailable and repeat.

(g) If it is a conditional A ⊃ B in the lhs, then either a position is formed by
adding A to the rhs or by adding B to the lhs. Choose whichever works,
and add that formula, assign it the next available number, mark A ⊃ B as
unavailable and repeat.

(h) If it is a conditional A ⊃ B in the rhs, form the next position by adding A to
the lhsand B to the rhs, assign A and B the next available numbers, mark
A ⊃ B as unavailable and repeat.
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(i) If is a definedness statement t↓ on either side, form the next position by
adding the term t to the same side, assign this term the next available num-
ber, mark t↓ as unavailable, and repeat.

(j) If it is a universal quantifier (∀x)A(x) in the lhs, then do this for each term
t in T—either adding A(t) to the lhs, or t to the rhs results in a position,
so add whichever works, tagging the added formula or term with the next
available number. Mark (∀x)A(x) as unavailable, but add it to the reserve list,
to be processed whenever new terms are added to T .

(k) If it is a universal quantifier (∀x)A(x) in the rhs, then remove the first name
from the list N of fresh names, add it to the set T of used terms, and form
a new position by adding n to the lhs of the position and adding A(n) to
the rhs, tagged with the next available number, and mark (∃x)A(x) as com-
plete. Then revisit each formula on the reserve list as follows:

i. For each universal quantifier (∀x)B(x) in the lhs, add B(n) to the lhs,
assigning it the next available number.

ii. For each existential quantifier (∃x)C(x) in the rhs, add C(n) to the
rhs, assigning it the next available number.

(l) If it is an existential quantifier (∃x)A(x) in the lhs, then remove the first
name from the list N of fresh names, add it to the set T of used terms, and
form a new position by adding n and A(n) to the lhs, tagging A(n) with the
next available number, and marking (∃x)A(x) as unavialable. Then revisit
each formula on the reserve list as follows:

i. For each universal quantifier (∀x)B(x) in the lhs, add B(n) to the lhs,
assigning it the next available number.

ii. For each existential quantifier (∃x)C(x) in the rhs, add C(n) to the
rhs, assigning it the next available number.

(m) If it is an existential quantifier (∃x)A(x) in the rhs, then do this for each
term t in T—either adding A(t) to the rhs, or t to the rhs results in a posi-
tion, so add whichever works, tagging the added formula or term with the
next available number. Mark (∃x)A(x) as unavailable, but add it to the re-
serve list, to be processed whenever new terms are added to T .

(n) If it is a primitive predication Ft1 · · · tn in the lhs, add t1, . . . , tn to the lhs,
tagging each term with the next available numbers, and marking Ft1 · · · tn

as unavailable.

(o) If it is a function term f(t1, . . . , tn) in the lhs, add t1, . . . , tn to the lhs, tag-
ging each term with the next available numbers, and marking f(t1, . . . , tn)

as unavailable.
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(p) If it is a primitive predication or a function term in the rhs, mark it as un-
available immediately, and repeat.

5. End only when there is no formula available in the enumeration.

Proof: At each stage of the process, the result is another position, refining the pre-
vious positions. At each stage of the process, only finitely many formulas or terms
are added, to construct the new position, so each formula or term added to a po-
sition along the way is assigned a finite number, except for fresh names added
to the stock of defined terms—they get no numbers because they do not need to
be processed. The process then considers each formula or term in the order of
the number assigned, and ensures that we add the relevant formulas or terms in
order to construct a position closed under the appropriate refinement condition.
The result is a fully refining sequence of positions. The limit of such a sequence is
a fully refined position which refines the starting position.

6 fully refined positions and models

A fully refined position [Γ : ∆] is very special indeed. We will use such positions to
motivate the definition of models for our logic.

A model for the logic DL is a structure M consisting of

1. A domain D.

2. An n-ary predicate F is interpreted as a subset FM of Dn (as usual).

3. An n-ary function symbol f is interpreted as a partial function fM : Dn ⇀ D.

Given an assignment α of values to variables, we recursively define the interpre-
tation partial function [[·]]M,α assigning values to terms as follows:16

• [[x]]M,α = α(x)

• [[f(t1, . . . , tn)]]M,α = fM([[t1]]M,α, . . . , [[tn]]M,α) if each [[ti]]M,α is defined,
and fM is defined on the inputs [[t1]]M,α, . . . , [[tn]]M,α.

Then given the interpretation of terms, we define the interpretation of sentences
or open formulas (sentences with some quantifiers removed, exposing variables)
relative to an assignment of values to variables, as follows:

• M ⊨α t↓ iff [[t]]M,α is defined.

16In the special case where D is empty, which we allow, there are no assignments of values to vari-
ables, all predications are false, all function symbols and terms are undefined, and the interpreta-
tion function is trivial, with all existentially quantified formulas false and all universally quantified
formulas true.
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• M ⊨α Ft1 · · · tn iff for each i, the value [[ti]]M,α is defined, and the n-tuple
⟨[[tn]]M,α, . . . , [[tn]]M,α⟩ ∈ FM

• M ⊨α A ∧ B iff M ⊨α A and M ⊨α B.

• M ⊨α A ∨ B iff M ⊨α A or M ⊨α B.

• M ⊨α A ⊃ B iff M ̸⊨α A or M ⊨α B.

• M ⊨α ¬A iff M ̸⊨α A.

• M ⊨α (∀x)A(x) iff M ⊨α[x:=d] A(x) for every d in D.

• M ⊨α (∃x)A(x) iff M ⊨α[x:=d] A(x) for some d in D.

We say that a model M is a model of the position [Γ : ∆] if and only if every
sentence in Γ is true in M, every term in Γ is defined in M, every sentence in ∆ is
false in M and every term in ∆ is undefined in M.

fact 6: For any fully refined position [Γ : ∆], a model where — (1) the domain D consists
of the terms occuring as members of Γ , such that (2) every n-ary predicate F is interpreted as
the set of n-tuples ⟨t1, . . . , tn⟩ where Ft1 · · · tn is in Γ , and (3) where the n-ary function
symbol f is interpreted by setting f(t1, . . . , tn) to be defined if and only if the term occurs in
Γ , and then in that case takes itself as its value — is indeed a model of the position [Γ : ∆].

Proof: We prove this first for terms and then sentences in the position. For terms,
the result is nearly immediate. Any term in Γ is defined and has itself as its value.
The closure of [Γ : ∆] under function application ensures that f(t1, . . . , tn) is de-
fined (in the lhs) only when its components t1, . . . , tn are defined (in the lhs).

For sentences, if Ft1 · · · tn is in Γ , then since the position is predicate refined,
each ti is defined in the model and has itself as its value. The interpretation of
Ft1 · · · tn in the model assigns it to be true. If it is in ∆, then it is in Γ (lest [Γ : ∆]

fail to be a position), so it is not true in the model.
If t↓ is in Γ , then by refining under definedness, t is in Γ , so t is defined in the

model and hence t↓ is true in the model. Similarly, if t↓ is in ∆, then t is in ∆, so
t cannot be defined in the model (it is defined only when t is in Γ , but [Γ : ∆] is a
position, so we cannot have t in Γ ), so t↓ is false in the model.

For A ∧ B in Γ , by refinedness under conjunction, A and B are in Γ , and by
hypothesis, they are true in the model. So, A ∧ B is true in the model. If A ∧ B

is in ∆, by refinedness under conjunction, either A or B is in ∆, so by hypothe-
sis,one is false in the model. So, A ∧ B is false in the model. The cases for the
other propositional connectives are similar.

For (∀x)A(x) in Γ , for every term t occuring in the position, either t is in ∆, and
hence is not defined in the model, or A(t) is in Γ and hence, is true in the model.
It follows that for every object t in the domain, A(t) is true in the model. It follows
that A(x) is true in the model whenever x is assigned the value t, and hence, that
(∀x)A(x) is true in the model, too. If (∀x)A(x) is in ∆, then for some name n we
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have n in Γ (and hence, n is defined in the model) and A(n) in ∆. By hypothesis,
A(n) is false in the model, and hence, A(x) is false in the model when x is assigned
the value n, so (∀x)A(x) is false in the model.

The case for the existential quantifier is similar, and that ends the proof. This
model constructed from the fully refined position is a model of that position.

7 completeness and cuts

The fact we have just proved gives us a completeness for the sequent calculus
with respect to the models. We have shown that for any underivable sequent, there
is a model (a model constructed out of a fully refined extension of that sequent) in
which that sequent fails in the sense that it takes the lhs of the sequent to be true
(defined) and the rhs to be false (undefined).

However, we have proved much more than the completeness of the sequent
calculus. We have also shown that any derivation in DL[LR, Cut] can be derived in
DL[LR] without making use of either sentence or term Cuts. Here is why. We have
already shown

fact 7: Any finite position in DL[LR] is refined by some fully refined position.

Fact 5 shows us how to extend any finite DL[LR] position by a fully refining se-
quence, whose limit is a fully refined position.

fact 8: Any finite DL[LR] position has some model.

Fact 6 shows us that a model defined from a fully refined DL[LR] position is a
model of that position. Since by Fact 7, any finite DL[LR] position is refined by
a fully refined position, and since a model of a position is also a model of any po-
sition that refines to that position, any finite DL[LR] position has some model.

On the other hand, it is straightforward to prove a soundness theorem. We can
show that derivable sequents Γ � ∆ hold in all models in the sense that in any model
M if each element of Γ is true (for sentences) or defined (for terms) then some
element of ∆ is true (for sentences) or defined (for terms). In fact, this holds for
sequents derivable not only in DL[LR], but also DL[LR, Cut].

fact 9: If Γ � ∆ is derivable in DL[LR, Cut] then it holds in all models M.

Proof: A straightforward induction on the structure of the derivation. Identity
axioms hold trivially: if A is true, it is true. If t is defined, it is defined. The struc-
tural rules—including Cuts—are straightforward. If Γ � t, ∆ and Γ, t � ∆ both
hold in M then by Γ � t, ∆ if each element of Γ is true then either an element of ∆

is true (in which case Γ � ∆ holds in M) or t is defined in M. In that case, since
Γ, t � ∆ holds in M, in any case an element of ∆ is true, and so, Γ � ∆ holds in M

regardless. The case for sentence Cut has the same structure.

Greg Restall, restall@unimelb.edu.au october 26, 2015 Version 0.963

http://consequently.org/writing/generality-and-existence-1/
mailto:restall@unimelb.edu.au


http://consequently.org/writing/generality-and-existence-1/ 30

The connective, predication, function application, definedness and quantifier
rules are satisfied trivially by way of the truth conditions for formulas, and the
result is straightforward to prove.

It follows then, that we have the admissibility of Cut.

fact 10: If Γ � ∆ is derivable in DL[LR, Cut], then it is derivable in DL[LR] too.

Proof: If Γ � ∆ were not derivable in DL[LR] then [Γ : ∆] would be a DL[LR] posi-
tion. Then Fact 8 tells us that this position has some model, a model in which each
element of Γ is true (defined) and each element of ∆ is false (undefined). This
means that Γ � ∆ cannot be derived in DL[LR, Cut] either.

8 consequences and questions

I will end with some brief observations and questions for further exploration.

First and foremost, this paper has explored defining rules as a new way to answer
Prior’s question concerning the difference between rules for logical constants fa-
miliar to us, like conjunction, and defective rules like Prior’s rules for tonk. We
have seen that this treatment of defining rules naturally extends to quantifiers,
once we have not only the syntax of the predicate/term distinction, but also the
notion of a deductively general term. This notion seems to be deeply embedded in
proof-theoretical treatments of the quantifiers, and it seems well suited to the nor-
mative pragmatic intepretation of the sequent calculus in terms of norms govern-
ing assertion and denial.

If we allow for disagreement not only on what we take to be true or false, but also on
what there is, then it seems very natural to extend the normative pragmatic treat-
ment of assertion and denial to pro and con attitudes to terms, as well. The result
is a relatively straightforward sequent calculus for a logic in which terms are free
of existential import. This sequent calculus has pleasing theoretical properties,
and natural Left and Right rules for the quantifiers can be understood as arising
out of simple defining rules in a straightforward way. The fact that the results are
so straightforward—using techniques known from elsewhere [10, 11], with small
changes to incorporate the behaviour of deductively general terms and the rule of
Specification—lends some support to the thought that defining rules play a useful
part in the design of a proof-theoretical framework.

We have seen that the rules for the quantifiers

Γ, n � A(n), ∆
============= [∀Df ]
Γ � (∀x)A(x), ∆

Γ, n,A(n) � ∆
============= [∃Df ]
Γ, (∃x)A(x) � ∆

may be understood as defining those quantifiers. Given a language with deduc-
tively general terms n, we can add the quantifiers to that language by setting the
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denial of a universally quantified sentence (∀x)A(x) in a context [Γ : ∆] to be co-
herent if and only if it is coherent to both deny A(n) and take n to defined for some
deductively general term n new to the context. Similarly, taking the assertion of
an existentially quantified sentence (∃x)A(x) in a context [Γ : ∆] to be coherent if
and only if it is coherent to assert A(n) and grant n to be defined for some deduc-
tively general term n new to that context. This suffices to add those quantifiers to
the vocabulary in such a way as to validate all of the constraints of the definedness
logic DL, without requiring that all singular terms be treated as referring.

The same can be said for the “definedness” or “existence” predicate ↓. This, too, is
given by a straightforward defining rule:

Γ, t � ∆
======= [↓Df ]
Γ, t↓ � ∆

where the assertion of t↓ is coherent if and only if taking t to be defined is co-
herent. Any practice in which we rule terms in as defined or out as undefined,
provided that the structural rules of Identity, Weakening, Contraction and Cut (both
sentence and term Cut) are satisfied, will allow for the extension of the practice
to ‘make explicit’ the ruling in and out of terms in assertions and denials, by way
of the predicate ‘↓.’ In this sense, at least, those engaging in such a practice are
treating the existence predicate as a logical concept, as rigorously and precisely
defined as the concepts of conjunction, negation or the quantifiers.

Questions remain. In following papers I will address questions concerning modal-
ity and identity. Both are very important if the issue of the semantics of quantifiers
and the behaviour of non-denoting terms is to be thoroughly understood. We have
focussed here on one motivation for non-denoting terms: from mathematics. The
behaviour of contingently non-denoting terms seems to be very different, but these
techniques seem like they may be appropriate there, too. But are they? The proof
of this will be in the detail, and there is more detail than could reasonably fit in
this paper, so I will follow that thread in the sequel to this paper.

Before that sequel, however, I will end with a question which raises concerns for
the significance of the choice of the free logic for quantifiers, and of the kind of
criterion for meaningfulness that may be provided by defining rules in a logical
system. Suppose we take our definedness logic DL seriously. Consider the follow-
ing defining rules for concepts that certainly look like quantifiers:

Γ � A(n), ∆
============= [ΠDf ]
Γ � (Πx)A(x), ∆

Γ,A(n) � ∆
============= [ΣDf ]
Γ, (Σx)A(x) � ∆

These have the same shape as quantifier rules, except the definedness conditions
have been left out. These are defining rules, so the question arises. Do they de-
fine concepts? Do they define meaningful concepts? If someone takes a linguis-
tic practice in which we already have quantifiers like ∀ and ∃ constrained by the
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rules for our free logic, and extends that linguistic practice to add the Meinon-
gian quantifiers Π and Σ with these new defining rules—what have they done? If
they succeed in defining coherent and interesting concepts with the broad form of
quantification, in which (Σx)¬x↓ follows immediately from ¬1

0
↓, then what does

this Σ mean? There are many questions to be explored. Perhaps exploring those
questions will provide the beginnings of a new kind of defence of Meinong’s quan-
tifiers [4, 6, 7, 12].
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