Metal-halide lamps, a member of the high-intensity discharge (HID) family of lamps, produce high light output for their size, making them a compact, powerful, and efficient light source. By adding rare earth metal salts to the mercury vapor lamp, improved luminous efficacy and light color is obtained. Originally created in the late 1960s for industrial use, metal-halide lamps are now available in numerous sizes and configurations for commercial and residential applications.
Like most HID lamps, metal halide lamps operate under high pressure and temperature, and require special fixtures to operate safely.
Since the lamp is small compared to a fluorescent or incandescent lamp of the same light level, relatively small reflective luminaires can be used to direct the light for different applications (flood lighting outdoors, or lighting for warehouses or industrial buildings).
Because of their wide spectrum, they are used for indoor growing applications, in athletic facilities and are quite popular with reef aquarists, who need a high intensity light source for their corals.
Another widespread use for such lamps is in professional lighting fixtures, where they are commonly known as MSD lamps and are generally used in 150, 250, 400, 575 and 1,200 watt ratings, especially intelligent lighting.
Most LCD, DLP, high wattage light applications and film projectors use metal-halide lamps as their light source.
Common operating conditions inside the arc tube are 5-50 atm or more (70–700 psi or 500-5000 kPa) and 1000-3000 °C. Like all other gas-discharge lamps, metal-halide lamps require auxiliary equipment to provide proper starting and operating voltages and regulate the current flow in the lamp. About 24% of the energy used by metal-halide lamps produces light (65–115 lm/W), making them substantially more efficient than incandescent bulbs.
Besides the mercury vapor, the lamp contains iodides or sometimes bromides of different metals. Scandium and sodium are used in some types, thallium, indium and sodium in European Tri-Salt models, and more recent types use dysprosium for high colour temperature, tin for lower colour temperature. Holmium and thulium are used in some very high power movie lighting models. Gallium or lead is used in special high UV-A models for printing purposes. The mixture of the metals used defines the color of the lamp. Some types for festive or theatrical effect use almost pure iodides of thallium, for green lamps, and indium, for blue lamps. An alkali metal, (sodium or potassium), is almost always added to reduce the arc impedance, allowing the arc tube to be made sufficiently long and simple electrical ballasts to be used. A noble gas, usually argon, is cold filled into the arc tube at a pressure of about 2 kPa to facilitate starting of the discharge.
The ends of the arc tube are often externally coated with white infrared reflective zirconium silicate or zirconium oxide to reflect heat back onto the electrodes to keep them hot and thermionically emitting. Some bulbs have a phosphor coating on the inner side of the outer bulb to improve the spectrum and diffuse the light.
In the mid-1980s a new type of metal-halide lamp was developed, which, instead of a quartz (fused silica) arc tube as used in mercury vapor lamps and previous metal-halide lamp designs, use a sintered alumina arc tube similar to what has been used in the high pressure sodium lamp. This development reduces the effects of ion creep that plagues fused silica arc tubes. During their life, because of high UV radiation and gas ionization, sodium and other elements tends to migrate into the quartz tube, resulting in depletion of light emitting material and so, cycling. The sintered alumina arc tube does not allow the ions to creep through, maintaining a more constant colour over the life of the lamp. These are usually referred as ceramic metal-halide lamps or CMH lamps.
Electronic ballasts include ignitor and ballast into a single package. These ballasts use high-frequency to drive the lamps. Because they have less loss than a line-frequency "iron" ballast, they are more energy efficient. High-frequency operation does not increase lamp efficacy as for fluorescent lamps.
The color temperature of a metal-halide lamp can also be affected by the electrical characteristics of the electrical system powering the bulb and manufacturing variances in the bulb itself. If a metal-halide bulb is underpowered, because of the lower operating temperature, its light output will be bluish because of the evaporation of mercury alone. This phenomenon can be seen during warmup, when the arc tube has not yet reached full operating temperature and the halides have not fully vaporized. The inverse is true for an overpowered bulb, but this condition can be hazardous, leading possibly to arc-tube explosion because of overheating and overpressure.
If power is interrupted, even briefly, the lamp's arc will extinguish, and the high pressure that exists in the hot arc tube will prevent restriking the arc; with a normal ignitor a cool-down period of 5–10 minutes will be required before the lamp can be re-started, but with special ignitors with specially designed lamps, the arc can be immediately re-established. On fixtures without instant restrike capability, a momentary loss of power can can mean no light for several minutes. For safety reasons, many metal-halide fixtures have a backup tungsten-halogen incandescent lamp that operates during cool-down and restrike. Once the metal halide restrikes and warms up, the incandescent safety light is switched off. A warm lamp also tends to take more time to reach its full brightness than a lamp that is started completely cold.
Most hanging ceiling lamps tend to be passively cooled, with a combined ballast and lamp fixture; immediately restoring power to a hot lamp before it has re-struck can make it take even longer to relight, because of power consumption and heating of the passively cooled lamp ballast that is attempting to relight the lamp.
Modern electronic ballast designs detect cycling and give up attempting to start the lamp after a few cycles. If power is removed and reapplied, the ballast will make a new series of startup attempts.
Although such failure is associated with end of life, an arc tube can fail at any time even when new, because of unseen manufacturing faults such as microscopic cracks. However, this is quite rare. Manufacturers typically "season" new lamps to check for manufacturing defects before the lamps leave the manufacturer's premises.
Since a metal-halide lamp contains gases at a significant high pressure, failure of the arc tube is inevitably a violent event. Fragments of arc tube are launched, at high velocity, in all directions, striking the outer bulb of the lamp with enough force to cause it to break. If the fixture has no secondary containment (e.g. a lens, bowl or shield) then the extremely hot pieces of debris will fall down onto people and property below the light, likely resulting in serious injury, damage, and possibly causing a major building fire if flammable material is present.
The risk of a "nonpassive failure" of an arc tube is very small. According to information gathered by the National Electrical Manufacturers Association (www.nema.org), there are approximately 40 million metal-halide systems in North America alone, and only a very few instances of nonpassive failures have occurred. Although it is not possible to predict, or eliminate the risk, of a metal-halide lamp exploding, there are several precautions that can be taken to reduce the risk:
Also, there are measures that can be taken to reduce the damage caused should a lamp fail violently:
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.