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PREFACE
Your mind should break free of 
ustom, furiously seizing the bitand re
klessly 
hoosing its own path,where you would fear to as
end by yourself.| SENECA, De Tranquillitate Animi (
. 50)

This booklet 
ontains draft material that I'm 
ir
ulating to experts in the�eld, in hopes that they 
an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet for
ourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet rea
hed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those 
arefully-
he
ked volumes,alas, were subsequently found to 
ontain thousands of mistakes.Given this 
aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be dis
ouraged from reading the material 
arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is so vast, I 
annot hope to have surrounded it enough to 
orral it
ompletely. Therefore I beg you to let me know about any de�
ien
ies that youdis
over.To put the material in 
ontext, this pre-fas
i
le 
ontains Se
tion 7.1.2 of along, long 
hapter on 
ombinatorial algorithms. Chapter 7 will eventually �llat least three volumes (namely Volumes 4A, 4B, and 4C), assuming that I'mable to remain healthy. It will begin with a short review of graph theory, withemphasis on some highlights of signi�
ant graphs in the Stanford GraphBase,from whi
h I will be drawing many examples. Then 
omes Se
tion 7.1: BooleanTe
hniques and Tri
ks, beginning with basi
 material in Se
tion 7.1.1 (see pre-fas
i
le 0b). Se
tion 7.1.2, whi
h you're about to read here, is 
on
erned withthe study of eÆ
ient Boolean fun
tion evaluation. Se
tion 7.1.3 will deal withtri
ks and te
hniques of bitwise 
al
ulation; and Se
tion 7.1.4 will dis
uss therepresentation of Boolean fun
tions.The next se
tion, 7.2, is about generating all possibilities, and it beginswith Se
tion 7.2.1: Generating Basi
 Combinatorial Patterns. Fas
i
les for thisse
tion have already appeared on the Web and/or in print. Se
tion 7.2.2 willdeal with ba
ktra
king in general. And so it will go on, if all goes well; an outlineof the entire Chapter 7 as 
urrently envisaged appears on the tao
p webpagethat is 
ited on page ii. iii
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iv PREFACEThe topi
 of Boolean fun
tions and bit manipulation 
an of 
ourse be in-terpreted so broadly that it en
ompasses the entire subje
t of 
omputer pro-gramming. My original title for Se
tion 7.1|\Bit Fiddling"|was mu
h moremodest; I de
ided, however, that those words were a bit too low-brow. The realgoal of this fas
i
le is to fo
us on 
on
epts that appear at the lowest levels, onwhi
h we 
an ere
t signi�
ant superstru
tures. And even these apparently lowlynotions turn out to be surprisingly ri
h, with expli
it ties to Se
tions 2.3.4.4,4.3.1, 4.6.4, and 5.3.4 of the �rst three volumes. I strongly believe in buildingup a �rm foundation, so I have dis
ussed Boolean topi
s mu
h more thoroughlythan I will be able to do with material that is newer or less basi
. After typingthe manus
ript I was astonished to dis
over that I had 
ome up with 87 exer
ises,even though|believe it or not| I had to eliminate quite a lot of the interestingmaterial that appears in my �les.My notes on 
ombinatorial algorithms have been a

umulating for morethan forty years, so I fear that in several respe
ts my knowledge is woefullybehind the times. Please look, for example, at the exer
ises that I've 
lassed asresear
h problems (rated with diÆ
ulty level 46 or higher), namely exer
ises 21and 24; I've also impli
itly mentioned or posed additional unsolved questions inthe answers to exer
ises 17, 40, 55, 61, 63, 70, and 80. Are those problems stillopen? Please let me know if you know of a solution to any of these intriguingquestions. And of 
ourse if no solution is known today but you do make progresson any of them in the future, I hope you'll let me know.I urgently need your help also with respe
t to some exer
ises that I madeup as I was preparing this material. I 
ertainly don't like to re
eive 
redit forthings that have already been published by others, and most of these results arequite natural \fruits" that were just waiting to be \plu
ked." Therefore pleasetell me if you know who deserves to be 
redited, with respe
t to the ideas foundin exer
ises 11, 14, 16, 27, 29, 30, 34, and 40, and/or the answer to exer
ise 38.Furthermore I've 
ited unpublished results of Frank Liang, Mike Paterson, andRi
h S
hroeppel; do you know of any related publi
ations?The text presents an approa
h to synthesis based on so-
alled \footprints"of fun
tions, whi
h I haven't seen in the literature. Is this method new, or did Ioverlook some relevant papers?I shall happily pay a �nder's fee of $2.56 for ea
h error in this draft when it is�rst reported to me, whether that error be typographi
al, te
hni
al, or histori
al.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, ifyou �nd a better solution to an exer
ise, I'll a
tually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referen
es to yet-unwritten material sometimes appear as `00'; thisimpossible value is a pla
eholder for the a
tual numbers to be supplied later.Happy reading!Stanford, California D. E. K.14 Mar
h 2006
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PREFACE vHelpful hints. Readers of Se
tion 7.1.2 should ideally have already read (orat least skimmed) Se
tion 7.1.1. In parti
ular, they should not be sho
ked orpuzzled by notations su
h asi) �(x1x2 : : : xn) or �((x1x2 : : : xn)2) for the sum x1 + x2 + � � �+ xn;ii) Sk1k2:::kt(x) for the symmetri
 fun
tion that is true when �x = k1 or k2 or: : : or kt;iii) hx1x2 : : : x2k�1i for the threshold fun
tion S�k that equals the median valueof fx1; x2; : : : ; x2k�1g (whi
h is also the majority value).A
tually I used the notation Sk1;k2;:::;kt for symmetri
 fun
tions in Se
tion 7.1.1;but for Se
tion 7.1.2 I've de
ided to drop the 
ommas between k's, at least insimple 
ases, be
ause they just 
lutter things up in the present 
ontext.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~I thank the Stanford University InfoLab and Sun Mi
rosystems Laboratoriesfor generously donating many hours of 
omputer time on large, fast ma
hines,thereby allowing me to investigate the Boolean fun
tions of �ve variables.
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0 COMBINATORIAL ALGORITHMS (F0C)

By and large the minimization of swit
hing 
omponentsoutweighs all other engineering 
onsiderationsin designing e
onomi
al logi
 
ir
uits.| H. A. CURTIS, A New Approa
h to the Design of Swit
hing Cir
uits (1962)He must be a great 
al
ulator indeed who su

eeds.Simplify, simplify.| HENRY D. THOREAU, Walden; or, Life in the Woods (1854)7.1.2. Boolean EvaluationOur next goal is to study the eÆ
ient evaluation of Boolean fun
tions, mu
h aswe studied the evaluation of polynomials in Se
tion 4.6.4. One natural way toinvestigate this topi
 is to 
onsider 
hains of basi
 operations, analogous to thepolynomial 
hains dis
ussed in that se
tion.A Boolean 
hain, for fun
tions of n variables (x1; : : : ; xn), is a sequen
e(xn+1; : : : ; xn+r) with the property that ea
h step 
ombines two of the pre
edingsteps: xi = xj(i) Æi xk(i); for n+ 1 � i � n+ r; (1)where 1 � j(i) < i and 1 � k(i) < i, and where Æi is one of the sixteen binaryoperators of Table 7.1.1{1. For example, when n = 3 the two 
hainsx4 = x1 ^ x2x5 = �x1 ^ x3x6 = x4 _ x5 and x4 = x2 � x3x5 = x1 ^ x4x6 = x3 � x5 (2)both evaluate the \mux" or \if-then-else" fun
tion x6 = (x1? x2:x3), whi
h takesthe value x2 or x3 depending on whether x1 is 1 (true) or 0 (false).
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7.1.2 BOOLEAN EVALUATION 1(Noti
e that the left-hand example in (2) uses the simpli�ed notation `x5 =�x1 ^ x3' to spe
ify the NOT-BUT operation, instead of the form `x5 = x1 � x3'that appears in Table 7.1.1{1. The main point is that, regardless of notation,every step of a Boolean 
hain is a Boolean 
ombination of two prior results.)Boolean 
hains 
orrespond naturally to ele
troni
 
ir
uits, with ea
h stepin the 
hain 
orresponding to a \gate" that has two inputs and one output.Ele
tri
al engineers traditionally represent the Boolean 
hains of (2) by 
ir
uitdiagrams su
h as123 and 123 : (3)They need to design e
onomi
al 
ir
uits that are subje
t to various te
hnologi
al
onstraints; for example, some gates might be more expensive than others, someoutputs might need to be ampli�ed if reused, the layout might need to be planaror nearly so, some paths might need to be short. But our 
hief 
on
ern in thisbook is software, not hardware, so we don't have to worry about su
h things.For our purposes, all gates have equal 
ost, and all outputs 
an be reused asoften as desired. (Jargonwise, our Boolean 
hains boil down to 
ir
uits in whi
hall gates have fan-in 2 and unlimited fan-out.)Furthermore we shall depi
t Boolean 
hains as binary trees su
h as_^ _1 2 1 3 and +^+3 1 2 3 (4)
instead of using 
ir
uit diagrams like (3). Su
h binary trees will have overlappingsubtrees when intermediate steps of the 
hain are used more than on
e. Everyinternal node is labeled with a binary operator; external nodes are labeled withan integer k, representing the variable xk. The label ` _ ' in the left tree of (4)stands for the NOT-BUT operator, sin
e �x^y = [x<y ℄; similarly, the BUT-NOToperator, x ^ �y, 
an be represented by the node label ` _ '.Several di�erent Boolean 
hains might have the same tree diagram. Forexample, the left-hand tree of (4) also represents the 
hainx4 = �x1 ^ x3; x5 = x1 ^ x2; x6 = x5 _ x4:Any topologi
al sorting of the tree nodes yields an equivalent 
hain.Given a Boolean fun
tion f of n variables, we often want to �nd a Boolean
hain su
h that xn+r = f(x1; : : : ; xn), where r is as small as possible. The
ombinational 
omplexity C(f) of a fun
tion f is the length of the shortest 
hainthat 
omputes it. To save ex
ess verbiage, we will simply 
all C(f) the \
ostof f ." The mux fun
tion in our examples above has 
ost 3, be
ause one 
an showby exhaustive trials that it 
an't be produ
ed by any Boolean 
hain of length 2.The DNF and CNF representations of f , whi
h we studied in Se
tion 7.1.1,rarely tell us mu
h about C(f), sin
e substantially more eÆ
ient s
hemes of
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2 COMBINATORIAL ALGORITHMS (F0C) 7.1.2
al
ulation are usually possible. For example, in the dis
ussion following 7.1.1{(30) we found that the more-or-less random fun
tion of four variables whosetruth table is 1100 1001 0000 1111 has no DNF expression shorter than(�x1 ^ �x2 ^ �x3) _ (�x1 ^ �x3 ^ �x4) _ (x2 ^ x3 ^ x4) _ (x1 ^ x2): (5)This formula 
orresponds to a Boolean 
hain of 10 steps. But that fun
tion 
analso be expressed more 
leverly as�((x2 ^ �x4)� �x3) ^ �x1�� x2; (6)so its 
omplexity is at most 4.How 
an nonobvious formulas like (6) be dis
overed? We will see that a
omputer 
an �nd the best 
hains for fun
tions of four variables without doing anenormous amount of work. Still, the results 
an be quite startling, even for peoplewho have had 
onsiderable experien
e with Boolean algebra. Typi
al examplesof this phenomenon 
an be seen in Fig. 5, whi
h illustrates the four-variablefun
tions that are perhaps of greatest general interest, namely the fun
tionsthat are symmetri
 under all permutations of their variables.Consider, for example, the fun
tion S2(x1; x2; x3; x4), for whi
h we havex1 0000 0000 1111 1111x2 0000 1111 0000 1111x3 0011 0011 0011 0011x4 0101 0101 0101 0101x5 = x1 � x3 0011 0011 1100 1100x6 = x1 � x2 0000 1111 1111 0000x7 = x3 � x4 0110 0110 0110 0110x8 = x5 _ x6 0011 1111 1111 1100x9 = x6 � x7 0110 1001 1001 0110x10 = x8 ^ �x9 0001 0110 0110 1000
(7)

a

ording to Fig. 5. Truth tables are shown here so that we 
an easily verifyea
h step of the 
al
ulation. Step x8 yields a fun
tion that is true wheneverx1 6= x2 or x1 6= x3; and x9 = x1�x2�x3�x4 is the parity fun
tion (x1+x2+x3+x4) mod 2. Therefore the �nal result, x10, is true pre
isely when exa
tly twoof fx1; x2; x3; x4g are 1; these are the 
ases that satisfy x8 and have even parity.Several of the other 
omputational s
hemes of Fig. 5 
an also be justi�edintuitively. But some of the 
hains, like the one for S14, are quite amazing.Noti
e that the intermediate result x6 is used twi
e in (7). In fa
t, no six-step 
hain for the fun
tion S2(x1; x2; x3; x4) is possible without making doubleuse of some intermediate subexpression; the shortest algebrai
 formulas for S2,in
luding ni
e symmetri
al ones like�(x1 ^ x2) _ (x3 ^ x4)�� �(x1 _ x2) ^ (x3 _ x4)�; (8)all have 
ost 7. But Fig. 5 shows that the other symmetri
 fun
tions of four vari-ables 
an all be evaluated optimally via \pure" binary trees, without overlappingsubtrees ex
ept at external nodes (whi
h represent the variables).
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7.1.2 BOOLEAN EVALUATION 3
^^ ^1 2 3 4S4 = +^ ^^ _ _ ^1 2 3 4 1 2 3 4

S3 = ^_ ^^ ^ _ _1 2 3 4 1 2 3 4
S34 =

__ ++ + +1 3 1 2 3 4
S2 = __ +_ + +31 2 1 2 3 4

S24 = +_ _+ ++ 1 23 3 41 2
S23 = __ ^^ ^ _ _1 2 3 4 1 2 3 4

S234 =
+_ __ ^ ^ _1 2 3 4 1 2 3 4

S1 = +^ __ _ + +1 2 3 4 1 2 3 4
S14 = ++ +1 2 3 4S13 = _^ +^ + +31 2 1 2 3 4

S134 =
+_ ^+ ++ 1 23 3 41 2

S12 = +_ _^ ^ + +1 2 3 4 1 2 3 4
S124 = __ ++ +1 2 3 4 1 3S123 = __ _1 2 3 4S1234 =

Fig. 5. Optimum Boolean 
hains for thesymmetri
 fun
tions of four variables.In general, if f(x1; : : : ; xn) is any Boolean fun
tion, we say that its lengthL(f) is the number of binary operators in the shortest formula for f . ObviouslyL(f) � C(f); and we 
an easily verify that L(f) = C(f) whenever n � 3, by
onsidering the fourteen basi
 types of 3-variable fun
tions in 7.1.1{(95). But wehave just seen that L(S2) = 7 ex
eeds C(S2) = 6 when n = 4, and in fa
t L(f)is almost always substantially larger than C(f) when n is large (see exer
ise 49).The depth D(f) of a Boolean fun
tion f is another important measure of itsinherent 
omplexity: We say that the depth of a Boolean 
hain is the length of thelongest downward path in its tree diagram, and D(f) is the minimum a
hievabledepth when all Boolean 
hains for f are 
onsidered. All of the 
hains illustratedin Fig. 5 have not only the minimum 
ost but also the minimum depth|ex
eptin the 
ases S23 and S12, where we 
annot simultaneously a
hieve 
ost 6 anddepth 3. The formulaS23(x1; x2; x3; x4) = �(x1 ^ x2)� (x3 ^ x4)�� �(x1 _ x2) ^ (x3 � x4)� (9)shows that D(S23) = 3, and a similar formula works for S12.Optimum 
hains for n = 4. Exhaustive 
omputations for 4-variable fun
tionsare feasible be
ause su
h fun
tions have only 216 = 65;536 possible truth tables.In fa
t we need only 
onsider half of those truth tables, be
ause the 
omplement �fof any fun
tion f has the same 
ost, length, and depth as f itself.
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4 COMBINATORIAL ALGORITHMS (F0C) 7.1.2Let's say that f(x1; : : : ; xn) is normal if f(0; : : : ; 0) = 0, and in general thatf(x1; : : : ; xn) � f(0; : : : ; 0) (10)is the \normalization" of f . Any Boolean 
hain 
an be normalized by normalizingea
h of its steps and by making appropriate 
hanges to the operators; for if(x̂1; : : : ; x̂i�1) are the normalizations of (x1; : : : ; xi�1) and if xi = xj(i) Æi xk(i) asin (1), then x̂i is 
learly a binary fun
tion of x̂j(i) and x̂k(i). (Exer
ise 7 presentsan example.) Therefore we 
an restri
t 
onsideration to normal Boolean 
hains,without loss of generality.Noti
e that a Boolean 
hain is normal if and only if ea
h of its binaryoperators Æi is normal. And there are only eight normal binary operators|three of whi
h, namely ?, , and , are trivial. So we 
an assume that allBoolean 
hains of interest are formed from the �ve operators ^, �, �, _, and �,whi
h are denoted respe
tively by ^ , _ , _ , _ , and + in Fig. 5. Furthermorewe 
an assume that j(i) < k(i) in ea
h step.There are 215 = 32;768 normal fun
tions of four variables, and we 
an 
om-pute their lengths without diÆ
ulty by systemati
ally enumerating all fun
tionsof length 0, 1, 2, et
. Indeed, L(f) = r implies that f = g Æ h for some g and h,where L(g) + L(h) = r � 1 and Æ is one of the �ve nontrivial normal operators;so we 
an pro
eed as follows:Algorithm L (Find normal lengths). This algorithm determines L(f) for allnormal truth tables 0 � f < 22n�1, by building lists of all nonzero normalfun
tions of length r for r � 0.L1. [Initialize.℄ Let L(0)  0 and L(f)  1 for 1 � f < 22n�1. Then, for1 � k � n, set L(xk) 0 and put xk into list 0, wherexk = (22n � 1)=(22n�k + 1) (11)is the truth table for xk. (See exer
ise 8.) Finally, set 
  22n�1 � n � 1;
 is the number of pla
es where L(f) =1.L2. [Loop on r.℄ Do step L3 for r = 1, 2, : : : ; eventually the algorithm willterminate when 
 be
omes 0.L3. [Loop on j and k.℄ Do step L4 for j = 0, 1, : : : , and k = r � 1 � j, whilej � k.L4. [Loop on g and h.℄ Do step L5 for all g in list j and all h in list k. (If j = k,it suÆ
es to restri
t h to fun
tions that follow g in list k.)L5. [Loop on f .℄ Do step L6 for f = g & h, f = �g & h, f = g & �h, f = g j h, andf = g � h. (Here g & h denotes the bitwise AND of the integers g and h; weare representing truth tables by integers in binary notation.)L6. [Is f new?℄ If L(f) = 1, set L(f)  r, 
  
 � 1, and put f in list r.Terminate the algorithm if 
 = 0.Exer
ise 10 shows that a similar pro
edure will 
ompute all depths D(f).With a little more work, we 
an in fa
t modify Algorithm L so that it �ndsbetter upper bounds on C(f), by 
omputing a heuristi
 bit ve
tor �(f) 
alled
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7.1.2 BOOLEAN EVALUATION 5Table 1THE NUMBER OF FOUR-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITYC(f) Classes Fun
tions L(f) Classes Fun
tions D(f) Classes Fun
tions0 2 10 0 2 10 0 2 101 2 60 1 2 60 1 2 602 5 456 2 5 456 2 17 14583 20 2474 3 20 2474 3 179 564564 34 10624 4 34 10624 4 22 75525 75 24184 5 75 24184 5 0 06 72 25008 6 68 24640 6 0 07 12 2720 7 16 3088 7 0 0the \footprint" of f . A normal Boolean 
hain 
an begin in only 5�n2� di�erentways, sin
e the �rst step xn+1 must be either x1 ^ x2 or �x1 ^ x2 or x1 ^ �x2 orx1 _x2 or x1�x2 or x1 ^x3 or � � � or xn�1�xn. Suppose �(f) is a bit ve
tor oflength 5�n2� and U(f) is an upper bound on C(f), with the following property:Every 1 bit in �(f) 
orresponds to the �rst step of some Boolean 
hain that
omputes f in U(f) steps.Su
h pairs (U(f); �(f)) 
an be 
omputed by extending the basi
 strategy ofAlgorithm L. Initially we set U(f) 1 and we set �(f) to an appropriate ve
tor0 : : : 010 : : : 0, for all fun
tions f of 
ost 1. Then, for r = 2, 3, : : : , we pro
eed tolook for fun
tions f = g Æ h where U(g) + U(h) = r � 1, as before, but with two
hanges: (1) If the footprints of g and h have at least one element in 
ommon,namely if �(g) & �(h) 6= 0, then we know that C(f) � r � 1, so we 
an de
reaseU(f) if it was � r. (2) If the 
ost of g Æ h is equal to (but not less than) our
urrent upper bound U(f), we 
an set �(f)  �(f) j (�(g) j �(h)) if U(f) = r,�(f) �(f) j (�(g) & �(h)) if U(f) = r � 1. Exer
ise 11 works out the details.It turns out that this footprint heuristi
 is powerful enough to �nd 
hains ofoptimum 
ost U(f) = C(f) for all fun
tions f , when n = 4. Moreover, we'll seelater that footprints also help us solve more 
ompli
ated evaluation problems.A

ording to Table 7.1.1{5, the 216 = 65;536 fun
tions of four variablesbelong to only 222 distin
t 
lasses when we ignore minor di�eren
es due topermutation of variables and/or 
omplementation of values. Algorithm L andits variants lead to the overall statisti
s shown in Table 1.*Evaluation with minimum memory. Suppose the Boolean values x1, : : : , xnappear in n registers, and we want to evaluate a fun
tion by performing asequen
e of operations having the formxj(i)  xj(i) Æi xk(i); for 1 � i � r; (12)where 1 � j(i) � n and 1 � k(i) � n and Æi is a binary operator. At the end ofthe 
omputation, the desired fun
tion value should appear in one of the registers.When n = 3, for example, the four-step sequen
e(x1 = 00001111 x2 = 00110011 x3 = 01010101)x1  x1 � x2 (x1 = 00111100 x2 = 00110011 x3 = 01010101)x3  x3 ^ x1 (x1 = 00111100 x2 = 00110011 x3 = 00010100)x2  x2 ^ �x1 (x1 = 00111100 x2 = 00000011 x3 = 00010100)x3  x3 _ x2 (x1 = 00111100 x2 = 00000011 x3 = 00010111) (13)
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6 COMBINATORIAL ALGORITHMS (F0C) 7.1.2
omputes the median hx1x2x3i and puts it into the original position of x3. (Alleight possibilities for the register 
ontents are shown here as truth tables, beforeand after ea
h operation.)In fa
t we 
an 
he
k the 
al
ulation by working with only one truth table at atime, instead of keeping tra
k of all three, if we analyze the situation ba
kwards.Let fl(x1; : : : ; xn) denote the fun
tion 
omputed by steps l, l + 1, : : : , r of thesequen
e, omitting the �rst l�1 steps; thus, in our example, f2(x1; x2; x3) wouldbe the result in x3 after the three steps x3  x3^x1, x2  x2^ �x1, x3  x3_x2.Then the fun
tion 
omputed in register x3 by all four steps isf1(x1; x2; x3) = f2(x1 � x2; x2; x3): (14)Similarly f2(x1; x2; x3) = f3(x1; x2; x3 ^ x1), f3(x1; x2; x3) = f4(x1; x2 ^ �x1; x3),f4(x1; x2; x3) = f5(x1; x2; x3 _ x2), and f5(x1; x2; x3) = x3. We 
an therefore goba
k from f5 to f4 to � � � to f1 by operating on truth tables in an appropriate way.For example, suppose f(x1; x2; x3) is a fun
tion whose truth table ist = a0a1a2a3a4a5a6a7 ;then the truth table for g(x1; x2; x3) = f(x1 � x2; x2; x3) isu = a0a1a6a7a4a5a2a3 ;obtained by repla
ing ax by ax0 , wherex = (x1x2x3)2 implies x0 = ((x1�x2)x2x3)2:Similarly the truth table for, say, h(x1; x2; x3) = f(x1; x2; x3 ^ x1) isv = a0a0a2a2a4a5a6a7 :And we 
an use bitwise operations to 
ompute u and v from t:u = t� �(t� (t� 4)� (t� 4)) & (00110011)2�; (15)v = t� �(t� (t� 1)) & (01010000)2�: (16)Let Cm(f) be the length of a shortest minimum-memory 
omputation for f .The ba
kward-
omputation prin
iple tells us that, if we know the truth tablesof all fun
tions f with Cm(f) < r, we 
an readily �nd all the truth tables offun
tions with Cm(f) = r. Namely, we 
an restri
t 
onsideration to normalfun
tions as before. Then, for all normal g su
h that Cm(g) = r � 1, we 
an
onstru
t the 5n(n� 1) truth tables forg(x1; : : : ; xj�1; xj Æ xk; xj+1; : : : ; xn) (17)and mark them with 
ost r if they haven't previously been marked. Exer
ise 14shows that those truth tables 
an all be 
omputed by performing simple bitwiseoperations on the truth table for g.When n = 4, all but 13 of the 222 basi
 fun
tion types turn out to haveCm(f) = C(f), so they 
an be evaluated in minimummemory without in
reasingthe 
ost. In parti
ular, all of the symmetri
 fun
tions have this property|although that fa
t is not at all obvious from Fig. 5. Five 
lasses of fun
tions
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7.1.2 BOOLEAN EVALUATION 7have C(f) = 5 but Cm(f) = 6; eight 
lasses have C(f) = 6 but Cm(f) = 7. Themost interesting example of the latter type is probably the fun
tion (x1 _ x2)�(x3 _ x4)� (x1 ^ x2 ^ x3 ^ x4), whi
h has 
ost 6 be
ause of the formulax1 � (x3 _ x4)� �x2 ^ (�x1 _ (x3 ^ x4))�; (18)but it has no minimum-memory 
hain of length less than 7. (See exer
ise 15.)*Determining the minimum 
ost. The exa
t value of C(f) 
an be found byobserving that all optimum Boolean 
hains (xn+1; : : : ; xn+r) for f satisfy at leastone of three 
onditions:i) xn+r = xj Æ xk, where xj and xk use no 
ommon intermediate results;ii) xn+1 = xj Æ xk, where either xj or xk is not used in steps xn+2, : : : , xn+r;iii) Neither of the above.In 
ase (i) we have f = g Æ h, where C(g) + C(h) = r � 1, and we 
an 
all thisa \top-down" 
onstru
tion. In 
ase (ii) we have f(x1; : : : ; xn) = g(x1; : : : ; xj�1;xj Æxk; xj+1; : : : ; xn), where C(g) = r�1; we 
all this 
onstru
tion \bottom-up."The best 
hains that re
ursively use only top-down 
onstru
tions 
orrespondto minimum formula length, L(f). The best 
hains that re
ursively use onlybottom-up 
onstru
tions 
orrespond to minimum-memory 
al
ulations, of lengthCm(f). We 
an do better yet, by mixing top-down 
onstru
tions with bottom-up
onstru
tions; but we still won't know that we've found C(f), be
ause a spe
ial
hain belonging to 
ase (iii) might be shorter.Fortunately su
h spe
ial 
hains are rare, be
ause they must satisfy ratherstrong 
onditions, and they 
an be exhaustively listed when n and r aren't toolarge. For example, exer
ise 19 proves that no spe
ial 
hains exist when r < n+2;and when n = 4, r = 6, there are only 25 essentially di�erent spe
ial 
hains that
annot obviously be shortened:
1 12 234 1 12 23 4 1 12 23 4 1 12 234 1 12 234 1 12 234 1 12 23 4 11 22 34

1 12 23 4 11 2 234 11 22 3 4 11 22 3 4 11 22 3 4
11 22 34

11 22 34
11 22 34 11 2 23 4

11 2 23 4 11 2
2 34 11 2

2 34 11 2
2 34 11 2234 11 2

2 34 11 2
2 34 11 2

2 34By systemati
ally trying 5r possibilities in every spe
ial 
hain, one for ea
h wayto assign a normal operator to the internal nodes of the tree, we will �nd at least

7



8 COMBINATORIAL ALGORITHMS (F0C) 7.1.2one fun
tion f in every equivalen
e 
lass for whi
h the minimum 
ost C(f) isa
hievable only in 
ase (iii).In fa
t, when n = 4 and r = 6, these 25 � 56 = 390;625 trials yield onlyone 
lass of fun
tions that 
an't be 
omputed in 6 steps by any top-down-plus-bottom-up 
hain. The missing 
lass, typi�ed by the partially symmetri
 fun
tion(hx1x2x3i _ x4) � (x1^x2^x3), 
an be rea
hed in six steps by appropriatelyspe
ializing any of the �rst �ve 
hains illustrated above; for example, one way isx5 = x1 ^ x2; x6 = x1 _ x2; x7 = x3 � x5;x8 = x4 ^ �x5; x9 = x6 ^ x7; x10 = x8 _ x9; (19)
orresponding to the �rst spe
ial 
hain. Sin
e all other fun
tions have L(f) � 7,these trial 
al
ulations have established the true minimum 
ost in all 
ases.Histori
al notes: The �rst 
on
erted attempts to evaluate all Boolean fun
-tions f(w; x; y; z) optimally were reported in Annals of the Computation Labo-ratory of Harvard University 27 (1951), where Howard Aiken's sta� presentedheuristi
 methods and extensive tables of the best swit
hing 
ir
uits they wereable to 
onstru
t. Their 
ost measure V (f) was di�erent from the 
ost C(f)that we've been 
onsidering, be
ause it was based on \
ontrol grids" of va
uumtubes: They had three kinds of gates, NOR, OR, and NAND, ea
h of whi
h 
ouldtake k inputs with 
ost k. Every input to su
h a gate 
ould be either a variable,or the 
omplement of a variable, or the result of a previous gate. Furthermorethe fun
tion being evaluated was represented at the top level as an AND of anynumber of gates, with no additional 
ost.With those 
ost 
riteria, a fun
tion might not have the same 
ost as its 
om-plement, be
ause AND gates were possible only at the top level. One 
ould evalu-ate x^y as NOR(�x; �y), with 
ost 2; but the 
ost of �x_(�y^�z)=NAND(x;OR(y; z))was 4 while its 
omplement x ^ (y _ z) = AND�NOR(�x);OR(y; z)� 
ost only 3.Therefore the Harvard resear
hers needed to 
onsider 402 essentially di�er-ent 
lasses of 4-variable fun
tions instead of 222 (see the answer to exer
ise7.1.1{125). Of 
ourse in those days they were working by hand. They foundV (f) < 20 in all 
ases, ex
ept for the 64 fun
tions equivalent to S01(w; x; y; z)_�S2(w; x; y) ^ z�, whi
h they evaluated with 20 
ontrol grids as follows:g1 = NOR( �w; �x); g2 = NAND(�y; z); g3 = NOR(w; x);f = AND�NAND(g1; g2);NAND(g3;NOR(�y; �z));NOR(NOR(g3; �y; z);NOR(g1; g2; g3))�: (20)The �rst 
omputer program to �nd provably optimum 
ir
uits was writtenby Leo Hellerman [IEEE Transa
tions EC-12 (1963), 198{223℄, who determinedthe fewest NOR gates needed to evaluate any given fun
tion f(x; y; z). He re-quired every input of every gate to be either an un
omplemented variable orthe output of a previous gate; fan-in and fan-out were limited to at most 3.When two 
ir
uits had the same gate 
ount, he preferred the one with smallestsum-of-inputs. For example, he 
omputed �x = NOR(x) with 
ost 1; x _ y _ z =NOR(NOR(x; y; z)) with 
ost 2; hxyzi = NOR(NOR(x; y);NOR(x; z);NOR(y; z))

8



7.1.2 BOOLEAN EVALUATION 9Table 2THE NUMBER OF FIVE-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITYC(f) Classes Fun
tions L(f) Classes Fun
tions D(f) Classes Fun
tions0 2 12 0 2 12 0 2 121 2 100 1 2 100 1 2 1002 5 1140 2 5 1140 2 17 53503 20 11570 3 20 11570 3 1789 67022424 93 109826 4 93 109826 4 614316 42882595925 389 995240 5 366 936440 5 0 06 1988 8430800 6 1730 7236880 6 0 07 11382 63401728 7 8782 47739088 7 0 08 60713 383877392 8 40297 250674320 8 0 09 221541 1519125536 9 141422 955812256 9 0 010 293455 2123645248 10 273277 1945383936 10 0 011 26535 195366784 11 145707 1055912608 11 0 012 1 1920 12 4423 31149120 12 0 0with 
ost 4; S1(x; y; z) = NOR�NOR(x; y; z); hxyzi� with 
ost 6; et
. Sin
e helimited the fan-out to 3, he found that every fun
tion of three variables 
ould beevaluated with 
ost 7 or less, ex
ept for the parity fun
tion x�y�z = (x�y)�z,where x�y has 
ost 4 be
ause it is NOR(NOR(x;NOR(x; y));NOR(y;NOR(x; y))).Ele
tri
al engineers 
ontinued to explore other 
ost 
riteria; but four-variablefun
tions seemed out of rea
h until 1977, when Frank M. Liang established thevalues of C(f) shown in Table 1. Liang's unpublished derivation was based ona study of all 
hains that 
annot be redu
ed by the bottom-up 
onstru
tion.The 
ase n = 5. There are 616,126 
lasses of essentially di�erent fun
tionsf(x1; x2; x3; x4; x5), a

ording to Table 7.1.1{5. Computers are now fast enoughthat this number is no longer frightening; so the author de
ided while writingthis se
tion to investigate C(f) for all Boolean fun
tions of �ve variables. Thanksto a bit of good lu
k, 
omplete results 
ould indeed be obtained, leading to thestatisti
s shown in Table 2.For this 
al
ulation Algorithm L and its variants were modi�ed to dealwith 
lass representatives, instead of with the entire set of 231 normal truthtables. The method of exer
ise 7.2.1.2{20 made it easy to generate all fun
tionsof a 
lass, given any one of them, resulting in a thousand-fold speedup. Thebottom-up method was enhan
ed slightly, allowing it to dedu
e for example thatf(x1 ^ x2; x1 _ x2; x3; x4; x5) has 
ost � r if C(f) = r � 2. After all 
lassesof 
ost 10 had been found, the top-down and bottom-up methods were able to�nd 
hains of length � 11 for all but seven 
lasses of fun
tions. Then the time-
onsuming part of the 
omputation began, in whi
h approximately 53 millionspe
ial 
hains with n = 5 and r = 11 were generated; every su
h 
hain led to511 = 48;828;125 fun
tions, some of whi
h would hopefully fall into the sevenremaining mystery 
lasses. But only six of those 
lasses were found to have 11-step solutions. The lone survivor, whose truth table is 169ae443 in hexade
imalnotation, is the unique 
lass for whi
h C(f) = 12, and it also has L(f) = 12.The resulting 
onstru
tions of symmetri
 fun
tions are shown in Fig. 6.Some of them are astonishingly beautiful; some of them are beautifully simple;
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10 COMBINATORIAL ALGORITHMS (F0C) 7.1.2+^ ^_ ^^ _ ^^ _1 12 2 53 4 3 4
S4 = + ^+ +^ ^^ _ _ ^

1 1 12 3 4 5 2 3 4 5
S45 =

+ + ^ +_ _+ ++ 1 23 3 41 24 5
S3 =

^_ +^ ^ +_ _ ++ 51 2 43 4 5 31 2
S35 = ^_ +_ ^ _+ ++ ^3 4 1 25 1 2 3 4

S34 = +^_ _+ + +++2 4 5 31 2

S345 =

+ __ ++ +_ _ +^ 4 541 2 3 31 2
S25 = ++ _+ + __ _ 51 2 3 4 1 2 3 4

S24 = + __ +_ + ++ +
1

2 3 4 51 2 3 4
S245 = +_+ ++ _ _ _+ +

2 32 421 5 4 5

S235 =

+_ _+ + ++ +2 3 4 51 2 3 4
S23 = + ^_ _+ ^ ^ +_ _

1
1 4 5 2 3 12 3 4 5

S234 = ^+ ++ __ _ + +1 12 3 4 5 2 3 4 5
S15 =

+ ^_ _+ + ++ +1 5 2 31 2 3 4
S14 = +_ +^ _ __ _ ++ + 112 3 4 5 2 3 4 5

S134 = +^ ++ + _ _+ +1 1 2 3 4 52 3 4 5
S125 =

Fig. 6. Boolean 
hains of minimum 
ostfor symmetri
 fun
tions of �ve variables.and others are simply astonishing. (Look, for example, at the 8-step 
omputationof S23(x1; x2; x3; x4; x5), or the elegant formula for S234, or the nonmonotoni

hains for S45 and S345.) In
identally, Table 2 shows that all 5-variable fun
tionshave depth � 4, but no attempt to minimize depth has been made in Fig. 6.It turns out that all of these symmetri
 fun
tions 
an be evaluated inminimum memory without in
reasing the 
ost. But no simple proof of thatfa
t is known.
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7.1.2 BOOLEAN EVALUATION 11Multiple outputs. We often want to evaluate several di�erent Boolean fun
-tions f1(x1; : : : ; xn), : : : , fm(x1; : : : ; xn) at the same input values x1, : : : , xn;in other words, we often want to evaluate a multibit fun
tion y = f(x), wherey = f1 : : : fm is a binary ve
tor of length m and x = x1 : : : xn is a binaryve
tor of length n. With lu
k, mu
h of the work involved in the 
omputation ofone 
omponent value fj(x1; : : : ; xn) 
an be shared with the operations that areneeded to evaluate the other 
omponent values fk(x1; : : : ; xn).Let C(f) = C(f1 : : : fm) be the length of a shortest Boolean 
hain that 
om-putes all of the nontrivial fun
tions fj . More pre
isely, the 
hain (xn+1; : : : ; xn+r)should have the property that, for 1 � j � m, either fj(x1; : : : ; xn) = xl(j) orfj(x1; : : : ; xn) = �xl(j), for some l(j) with 0 � l(j) � n+r, where x0 = 0. ClearlyC(f) � C(f1) + � � �+ C(fm), but we might be able to do mu
h better.For example, suppose we want to 
ompute the fun
tions z1 and z0 de�ned by(z1z0)2 = x1 + x2 + x3; (21)the two-bit binary sum of three Boolean variables. We havez1 = hx1x2x3i and z0 = x1 � x2 � x3; (22)so the individual 
osts are C(z1) = 4 and C(z0) = 2. But it's easy to see thatthe 
ombined 
ost C(z1z0) is at most 5, be
ause x1 � x2 is a suitable �rst stepin the evaluation of ea
h bit zj :x6 = x3 ^ x4;x7 = x1 ^ x2;z1 = x8 = x6 _ x7: x4 = x1 � x2;z0 = x5 = x3 � x4; (23)Furthermore, exhaustive 
al
ulations show that C(z1z0) > 4; hen
e C(z1z0) = 5.Ele
tri
al engineers traditionally 
all a 
ir
uit for (21) a full adder, be
ausen su
h building blo
ks 
an be hooked together to add two n-bit numbers. Thespe
ial 
ase of (22) in whi
h x3 = 0 is also important, although it boils downsimply to z1 = x1 ^ x2 and z0 = x1 � x2 (24)and has 
omplexity 2; engineers 
all it a \half adder" in spite of the fa
t thatthe 
ost of a full adder ex
eeds the 
ost of two half adders.The general problem of radix-2 addition(xn�1 : : : x1x0)2(yn�1 : : : y1 y0)2(zn zn�1 : : : z1 z0)2 (25)is to 
ompute n + 1 Boolean outputs zn : : : z1z0 from the 2n Boolean inputsxn�1 : : : x1x0yn�1 : : : y1y0; and it is readily solved by the formulas
j+1 = hxjyj 
j i; zj = xj � yj � 
j ; for 0 � j < n; (26)where the 
j are \
arry bits" and we have 
0 = 0, zn = 
n. Therefore we 
anuse a half adder to 
ompute 
1 and z0, followed by n� 1 full adders to 
omputethe other 
's and z's, a

umulating a total 
ost of 5n � 3. And in fa
t N. P.Red'kin [Problemy Kibernetiki 38 (1981), 181{216℄ has proved that 5n�3 steps
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12 COMBINATORIAL ALGORITHMS (F0C) 7.1.2are a
tually ne
essary, by 
onstru
ting an elaborate 35-page proof by indu
tion,whi
h 
on
ludes with Case 2.2.2.3.1.2.3.2.4.3(!). But the depth of this 
ir
uit,2n�1, is far too large for pra
ti
al parallel 
omputation, so a great deal of e�orthas gone into the task of devising 
ir
uits for addition that have depth O(logn)as well as reasonable 
ost. (See exer
ises 41{44.)Now let's extend (21) and try to 
ompute a general \sideways sum"(zblg n
 : : : z1z0)2 = x1 + x2 + � � �+ xn: (27)If n = 2k+1, we 
an use k full adders to redu
e the sum to (x1+ � � �+xn) mod 2plus k bits of weight 2, be
ause ea
h full adder de
reases the number of weight-1bits by 2. For example, if n = 9 and k = 4 the 
omputation isx10=x1�x2�x3;y1=hx1x2x3i; x11=x4�x5�x6;y2=hx4x5x6i; x12=x7�x8�x9;y3=hx7x8x9i; x13=x10�x11�x12;y4=hx10x11x12i;and we have x1 + � � � + x9 = x13 + 2(y1 + y2 + y3 + y4). If n = 2k is even, asimilar redu
tion applies but with a half adder at the end. The bits of weight 2
an then be summed in the same way; so we obtain the re
urren
es(n) = 5bn=2
 � 3[n even℄ + s(bn=2
); s(0) = 0; (28)for the total number of gates needed to 
ompute zblg n
 : : : z1z0. (A 
losed formulafor s(n) appears in exer
ise 30.) We have s(n) < 5n, and the �rst valuesn = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20s(n) = 0 2 5 9 12 17 20 26 29 34 37 44 47 52 55 63 66 71 74 81show that the method is quite eÆ
ient even for small n. For example, whenn = 5 it produ
es ^ +_ _^ ^ ^ ^ ++++1 2 3 4 5 5431 2

S45 = z2 = = z1 = S23= z0 = S135; (29)
whi
h 
omputes three di�erent symmetri
 fun
tions z2 = S45(x1; : : : ; x5), z1 =S23(x1; : : : ; x5), z0 = S135(x1; : : : ; x5) in just 12 steps. The 10-step 
omputationof S45 is optimum, a

ording to Fig. 6, and of 
ourse the 4-step 
omputation ofS135 is also optimum. Furthermore, although C(S23) = 8, the fun
tion S23 is
omputed here in a 
lever 10-step way that shares all but one gate with S45.Noti
e that we 
an now 
ompute any symmetri
 fun
tion eÆ
iently, be
auseevery symmetri
 fun
tion of fx1; : : : ; xng is a Boolean fun
tion of zblg n
 : : : z1z0.We know, for example, that any Boolean fun
tion of four variables has 
omplexity� 7; therefore any symmetri
 fun
tion Sk1:::kt(x1; : : : ; x15) 
osts at most s(15)+7 = 62. Surprise: The symmetri
 fun
tions of n variables were among the hardestof all to evaluate, when n was small, but they're among the easiest when n � 10.
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7.1.2 BOOLEAN EVALUATION 13We 
an also 
ompute sets of symmetri
 fun
tions eÆ
iently. If we want, say,to evaluate all n + 1 symmetri
 fun
tions Sk(x1; : : : ; xn) for 0 � k � n with asingle Boolean 
hain, we simply need to evaluate the �rst n+1minterms of z0, z1,: : : , zblg n
. For example, when n = 5 the minterms that give us all fun
tions Skare respe
tively S0 = �z0 ^ �z1 ^ �z2, S1 = �z0 ^ �z1 ^ z2, : : : , S5 = z0 ^ �z1 ^ z2.How hard is it to 
ompute all 2n minterms of n variables? Ele
tri
alengineers 
all this fun
tion an n-to-2n binary de
oder, be
ause it 
onverts n bitsx1 : : : xn into a sequen
e of 2n bits d0d1 : : : d2n�1, exa
tly one of whi
h is 1. Theprin
iple of \divide and 
onquer" suggests that we �rst evaluate all mintermson the �rst dn=2e variables, as well as all minterms on the last bn=2
; then 2nAND gates will �nish the job. The 
ost of this method is t(n), wheret(0) = t(1) = 0; t(n) = 2n + t(dn=2e) + t(bn=2
) for n � 2. (30)So t(n) = 2n+O(2n=2); there's roughly one gate per minterm. (See exer
ise 32.)Fun
tions with multiple outputs often help us build larger fun
tions withsingle outputs. For example, we've seen that the sideways adder (27) allowsus to 
ompute symmetri
 fun
tions; and an n-to-2n de
oder also has manyappli
ations, in spite of the fa
t that 2n 
an be huge when n is large. A 
ase inpoint is the 2m-way multiplexer Mm(x1; : : : ; xm; y0; y1; : : : ; y2m�1), also knownas the m-bit storage a

ess fun
tion, whi
h has n = m + 2m inputs and takesthe value yk when (x1 : : : xm)2 = k. By de�nition we haveMm(x1; : : : ; xm; y0; y1; : : : ; y2m�1) = 2m�1_k=0 (dk ^ yk); (31)where dk is the kth output of an m-to-2m binary de
oder; thus, by (30), we 
anevaluate Mm with 2m + (2m�1) + t(m) = 3n + O(pn ) gates. But exer
ise 39shows that we 
an a
tually redu
e the 
ost to only 2n + O(pn ). (See alsoexer
ise 79.)Asymptoti
 fa
ts. We've seen lots of 
ases where Boolean fun
tions 
anbe evaluated with great eÆ
ien
y, espe
ially when the number of variables issmall. So it's natural to expe
t that, when more variables are present, evenmore opportunities for ingenious evaluations will arise. But the truth is exa
tlythe opposite, at least from a statisti
al standpoint:Theorem S. The 
ost of almost every Boolean fun
tion f(x1; : : : ; xn) ex
eeds2n=n. More pre
isely, if 
(n; r) Boolean fun
tions have 
omplexity � r, we have(r � 1)! 
(n; r) � 22r+1(n+ r � 1)2r: (32)Proof. If a fun
tion 
an be 
omputed in r � 1 steps, it is also 
omputable byan r-step 
hain. (This statement is obvious when r = 1, otherwise we 
an letxn+r = xn+r�1 ^ xn+r�1.) We will show that there aren't very many r-step
hains, hen
e we 
an't 
ompute very many di�erent fun
tions with 
ost � r.Let � be a permutation of f1; : : : ; n+ rg that takes 1 7! 1, : : : , n 7! n, andn+r 7! n+r; there are (r�1)! su
h permutations. Suppose (xn+1; : : : ; xn+r) is a
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14 COMBINATORIAL ALGORITHMS (F0C) 7.1.2Boolean 
hain in whi
h ea
h of the intermediate steps xn+1, : : : , xn+r�1 is usedin at least one subsequent step. Then the permuted 
hains de�ned by the rulexi = xj0(i) Æ0i xk0(i) = xj(i�)�� Æi� xk(i�)�� ; for n < i � n+ r; (33)are distin
t for di�erent �. (If � takes a 7! b, we write b = a� and a = b��.)For example, if � takes 5 7! 6 7! 7 7! 8 7! 9 7! 5, the 
hain (7) be
omesOriginalx5 = x1 � x3;x6 = x1 � x2;x7 = x3 � x4;x8 = x5 _ x6;x9 = x6 � x7;x10 = x8 ^ �x9;
Permutedx5 = x1 � x2;x6 = x3 � x4;x7 = x9 _ x5;x8 = x5 � x6;x9 = x1 � x3;x10 = x7 ^ �x8:

(34)
Noti
e that we might have j0(i) � k0(i) or j0(i) > i or k0(i) > i, 
ontrary to ourusual rules. But the permuted 
hain 
omputes the same fun
tion xn+r as before,and it doesn't have any 
y
les by whi
h an entry is de�ned indire
tly in termsof itself, be
ause the permuted xi is the original xi�.We 
an restri
t 
onsideration to normal Boolean 
hains, as remarked earlier.So the 
(n; r)=2 normal Boolean fun
tions of 
ost � r lead to (r � 1)! 
(n; r)=2di�erent permuted 
hains, where the operator Æi in ea
h step is either ^, _, �,or �. And there are at most 4r(n+r�1)2r su
h 
hains, be
ause there are four
hoi
es for Æi and n+r�1 
hoi
es for ea
h of j(i) and k(i), for n < i � n + r.Equation (32) follows; and we obtain the opening statement of the theorem bysetting r = b2n=n
. (See exer
ise 46.)On the other hand, there's also good news for in�nity-minded people: We
an a
tually evaluate every Boolean fun
tion of n variables with only slightlymore than 2n=n steps of 
omputation, even if we avoid � and �, using a te
hniquedevised by C. E. Shannon and improved by O. B. Lupanov [Bell System Te
h.J. 28 (1949), 59{98, Theorem 6; Isvestiia Vuzov, Radio�zika 1 (1958), 120{140℄.In fa
t, the Shannon{Lupanov approa
h leads to useful results even whenn is small, so let's get a
quainted with it by studying a small example. Considerf(x1; x2; x3; x4; x5; x6) = �(x1x2x3x4x5x6)2 is prime�; (35)a fun
tion that identi�es all 6-bit prime numbers. Its truth table has 26 = 64bits, and we 
an work with it 
onveniently by using a 4 � 16 array to look atthose bits instead of 
on�ning ourselves to one dimension:x3 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1x4 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1x5 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1x6 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1x1x2 = 00 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0x1x2 = 01 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 o Group 1x1x2 = 10 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1x1x2 = 11 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 o Group 2

(36)
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7.1.2 BOOLEAN EVALUATION 15The rows have been divided into two groups of two rows ea
h; and ea
h groupof rows has 16 
olumns, whi
h are of four basi
 types, namely 00 , 01 , 10 , or 11 . Thuswe see that the fun
tion 
an be expressed asf(x1; : : : ; x6) = �[x1x2 2f00g℄ ^ [x3x4x5x6 2f0010; 0101; 1011g℄�_ �[x1x2 2f01g℄ ^ [x3x4x5x6 2f0001; 1111g℄�_ �[x1x2 2f00; 01g℄ ^ [x3x4x5x6 2f0011; 0111; 1101g℄�_ �[x1x2 2f10g℄ ^ [x3x4x5x6 2f1001; 1111g℄�_ �[x1x2 2f11g℄ ^ [x3x4x5x6 2f1101g℄�_ �[x1x2 2f10; 11g℄ ^ [x3x4x5x6 2f0101; 1011g℄�: (37)(The �rst line 
orresponds to group 1, type 10 , then 
omes group 1, type 01 , et
.;the last line 
orresponds to group 2 and type 11 .) A fun
tion like �(x3x4x5x6)2 2f2; 5; 11g� is the OR of three minterms of fx3; x4; x5; x6g.In general we 
an view the truth table as a 2k � 2n�k array, with l groupsof rows having either b2k=l
 or d2k=le rows in ea
h group. A group of size mwill have 
olumns of 2m basi
 types. We form a 
onjun
tion (git(x1; : : : ; xk) ^hit(xk+1; : : : ; xn)) for ea
h group i and ea
h nonzero type t, where git is the ORof all minterms of fx1; : : : ; xkg for the rows of the group where t has a 1, whilehit is the OR of all minterms of fxk+1; : : : ; xng for the 
olumns having type t ingroup i. The OR of all these 
onjun
tions (git ^ hit) gives f(x1; : : : ; xn).On
e we've 
hosen the parameters k and l, with 1 � k � n�2 and 1 � l � 2k,the 
omputation starts by 
omputing all the minterms of fx1; : : : ; xkg and allthe minterms of fxk+1; : : : ; xng, in t(k) + t(n � k) steps (see (30)). Then, for1 � i � l, we let group i 
onsist of rows for the values of (x1; : : : ; xk) su
h that(i � 1)2k=l � (x1 : : : xk)2 < i2k=l; it 
ontains mi = di2k=le � d(i � 1)2k=le rows.We form all fun
tions git for t 2 Si, the family of 2mi � 1 nonempty subsets ofthose rows; 2mi �mi � 1 ORs of previously 
omputed minterms will a

omplishthat task. We also form all fun
tions hit representing 
olumns of nonzero type t;for this purpose we'll need at most 2n�k�3 OR operations in ea
h group i, sin
ewe 
an OR ea
h minterm into the h fun
tion of the appropriate type t. Finallywe 
ompute f = Wli=1Wt2Si(git ^ hit). The total 
ost is at mostt(k) + t(n�k) + (l�1) + lXi=1�(2mi�mi�1) + (2n�k�3) + (2mi�2)�; (38)thus we want to 
hoose k and l so that this upper bound is minimized. Exer
ise 52dis
usses the best 
hoi
e when n is small. And when n is large, a good 
hoi
eyields a provably near-optimum 
hain, at least for most fun
tions:Theorem L. Let C(n) denote the 
ost of the most expensive Boolean fun
tionsof n variables. Then as n!1 we haveC(n) � 2nn �1 + lgnn +O� 1n��; (39)C(n) � 2nn �1 + 3 lgnn +O� 1n��: (40)
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16 COMBINATORIAL ALGORITHMS (F0C) 7.1.2Proof. Exer
ise 48 shows that the lower bound (39) is a 
onsequen
e of The-orem S. For the upper bound, we set k = b2 lgn
 and l = d2k=(n � 3 lgn)e inLupanov's method; see exer
ise 53.Synthesizing a good 
hain. Formula (37) isn't the best way to implement a 6-bit prime dete
tor, but it does suggest a de
ent strategy. For example, we needn'tlet variables x1 and x2 govern the rows: Exer
ise 51 shows that a better 
hainresults if the rows are based on x5x6 while the 
olumns 
ome from x1x2x3x4,and in general there are many ways to partition a truth table by playing k ofthe variables against the other n� k.Furthermore, we 
an improve on (37) by using our 
omplete knowledge ofall 4-variable fun
tions; there's no need to evaluate a fun
tion like [x3x4x5x6 2f0010; 0101; 1011g℄ by �rst 
omputing the minterms of fx3; x4; x5; x6g, if we knowthe best way to evaluate every su
h fun
tion from s
rat
h. On the other hand, wedo need to evaluate several 4-variable fun
tions simultaneously, so the mintermapproa
h might not be su
h a bad idea after all. Can we really improve on it?Let's try to �nd a good way to synthesize a Boolean 
hain that 
omputes agiven set of 4-variable fun
tions. The six fun
tions of x3x4x5x6 in (37) are rathertame (see exer
ise 54), so we'll learn more by 
onsidering a more interestingexample 
hosen from everyday life. a b

de

f gA seven-segment display is a now-ubiquitous way to representa 4-bit number (x1x2x3x4)2 in terms of seven 
leverly positionedsegments that are either visible or invisible. The segments aretraditionally named (a; b; 
; d; e; f; g) as shown; we get a `0' byturning on segments (a; b; 
; d; e; f), but a `1' uses only segments(b; 
). (In
identally, the idea for su
h displays was invented by F. W.Wood, U.S. Patent 974943 (1910), although Wood's original designused eight segments be
ause he thought that a `4' requires a diagonal stroke.)Seven-segment displays usually support only the de
imal digits `0', `1', : : : , `9';but of 
ourse a 
omputer s
ientist's digital wat
h should display also hexade
imaldigits. So we shall design seven-segment logi
 that displays the sixteen digits(41)when given the respe
tive inputs x1x2x3x4 = 0000, 0001, 0010, : : : , 1111.In other words, we want to evaluate seven Boolean fun
tions whose truthtables are respe
tively a = 1011 0111 1110 0011,b = 1111 1001 1110 0100,
 = 1101 1111 1111 0100,d = 1011 0110 1101 1110,e = 1010 0010 1011 1111,f = 1000 1111 1111 0011,g = 0011 1110 1111 1111.
(42)
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7.1.2 BOOLEAN EVALUATION 17If we simply wanted to evaluate ea
h fun
tion separately, several methods thatwe've already dis
ussed would tell us how to do it with minimum 
osts C(a) = 5,C(b) = C(
) = C(d) = 6, C(e) = C(f) = 5, and C(g) = 4; the total 
ost for allseven fun
tions would then be 37. But we want to �nd a single Boolean 
hainthat 
ontains them all, and the shortest su
h 
hain is presumably mu
h moreeÆ
ient. How 
an we dis
over it?Well, the task of �nding a truly optimum 
hain for fa; b; 
; d; e; f; gg isprobably infeasible from a 
omputational standpoint. But a surprisingly goodsolution 
an be found with the help of the \footprint" idea explained earlier.Namely, we know how to 
ompute not only a fun
tion's minimum 
ost, but alsothe set of all �rst steps 
onsistent with that minimum 
ost in a normal 
hain.Fun
tion e, for example, has 
ost 5, but only if we evaluate it by starting withone of the instru
tionsx5 = x1 � x4 or x5 = x2 ^ �x3 or x5 = x2 _ x3:Fortunately, one of the desirable �rst steps belongs to four of the sevenfootprints: Fun
tions 
, d, f , and g 
an all be evaluated optimally by startingwith x5 = x2�x3. So that is a natural 
hoi
e; it essentially saves us three steps,be
ause we know that at most 33 of the original 37 steps will be needed to �nish.Now we 
an re
ompute the 
osts and footprints of all 216 fun
tions, pro
eed-ing as before but also initializing the 
ost of the new fun
tion x5 to zero. The
osts of fun
tions 
, d, f , and g de
rease by 1 as a result, and the footprints
hange too. For example, fun
tion a still has 
ost 5, but its footprint hasin
reased from fx1 � x3; x2 ^ x3g to fx1 � x3; x1 ^ x4; �x1 ^ x4; x2 ^ x3; �x2 ^ x4;x2 � x4; x4 ^ x5; x4 � x5g when the fun
tion x5 = x2 � x3 is available for free.In fa
t, x6 = �x1 ^ x4 is 
ommon to four of the new footprints, so again wehave a natural way to pro
eed. And when everything is re
al
ulated with zero
ost given to both x5 and x6, the subsequent step x7 = x4 � x5 turns out to bedesirable in three of the newest footprints. Continuing in this \greedy" fashion,we aren't always so lu
ky, but a remarkable 
hain of only 22 steps does emerge:x5 = x2 � x3;x6 = �x1 ^ x4;x7 = x4 � x5;x8 = x1 � x2;x9 = x3 ^ �x6;x10 = x8 ^ �x9;x11 = x1 � x9;�d = x12 = x7 ^ �x11;

x13 = x7 � x10;x14 = x5 ^ x13;�b = x15 = x9 � x14;x16 = x5 � x6;x17 = x3 ^ �x15;�a = x18 = �x17 ^ x16;x19 = x9 _ x14;�
 = x20 = �x8 ^ x19;

x21 = x7 ^ x10;�e = x22 = x6 _ x21;x23 = x5 _ x6;�f = x24 = �x8 ^ x15;x25 = x1 _ x5;g = x26 = x9 _ x25: (43)
(This is a normal 
hain, so it 
ontains the normalizations f�a;�b; �
; �d; �e; �f; gginstead of fa; b; 
; d; e; f; gg. Simple 
hanges will produ
e the unnormalizedfun
tions without 
hanging the 
ost.)Partial fun
tions. In pra
ti
e the output value of a Boolean fun
tion is oftenspe
i�ed only at 
ertain inputs x1 : : : xn, and the outputs in other 
ases don'treally matter. We might know, for example, that some of the input 
ombinations
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18 COMBINATORIAL ALGORITHMS (F0C) 7.1.2will never arise. In su
h 
ases, we pla
e an asterisk into the 
orrespondingpositions of the truth table, instead of spe
ifying 0 or 1 everywhere.The seven-segment display provides a 
ase in point, be
ause most of itsappli
ations involve only the ten binary-
oded de
imal inputs for whi
h we have(x1x2x3x4)2 � 9. We don't 
are what segments are visible in the other six 
ases.So the truth tables of (42) a
tually be
omea = 1011 0111 11�� ����,b = 1111 1001 11�� ����,
 = 1101 1111 11�� ����,d = 1011 0110 11�� ����,e = 1010 0010 10�� ����,f = 1000 111� 11�� ����,g = 0011 1110 11�� ����.
(44)

(Fun
tion f here has an asterisk also in position x1x2x3x4 = 0111, be
ause a `7'
an be displayed as either or . Both of these styles appeared about equallyoften in the display units available to the author when this se
tion was written.Trun
ated variants of the and the were sometimes seen in olden days, butthey have thankfully disappeared.)Asterisks in truth tables are generally known as don't-
ares|a quaint termthat 
ould only have been invented by an ele
tri
al engineer. Table 3 shows thatthe freedom to 
hoose arbitrary outputs is advantageous. For example, there are�163 �213 = 4;587;520 truth tables with 3 don't-
ares; 69% of them 
ost 4 or less,even though only 21% of the asterisk-free truth tables permit su
h e
onomy. Onthe other hand, don't-
ares don't save us as mu
h as we might hope; exer
ise 63proves that a random fun
tion with, say, 30% don't-
ares in its truth table tendsto save only about 30% of the 
ost of a fully spe
i�ed fun
tion.What is the shortest Boolean 
hain that evaluates the seven partially spe
-i�ed fun
tions in (44)? Our greedy-footprint method adapts itself readily tothe presen
e of don't-
ares, be
ause we 
an OR together the footprints of all 2dfun
tions that mat
h a pattern with d asterisks. The initial 
osts to evaluate ea
hfun
tion separately are now redu
ed to C(a) = 3, C(b) = C(
) = 2, C(d) = 5,C(e) = 2, C(f) = 3, C(g) = 4, totalling just 21 instead of 37. Fun
tion g hasn'tgotten 
heaper, but it does have a larger footprint. Pro
eeding as before, buttaking advantage of the don't-
ares, we now 
an �nd a suitable 
hain of lengthonly 13|a 
hain with fewer than two operations per output(!):x5 = x1 � x2;x6 = x3 ^ �x4;x7 = x1 � x3;x8 = x2 ^ �x6;x9 = x3 _ x4;
�e = x10 = x4 _ x8;g = x11 = x7 � x8;x12 = x4 � x11;�d = x13 = x10 ^ x12;�a = x14 = �x3 ^ x13;

�b = x15 = x2 ^ �x13;�
 = x16 = �x2 ^ x6;�f = x17 = �x5 ^ x9: (45)
Ti
-ta
-toe. Let's turn now to a slightly larger problem, based on a popular
hildren's game. Two players take turns �lling the 
ells of a 3 � 3 grid. Oneplayer writes X's and the other writes O's, 
ontinuing until there either are three

18



7.1.2 BOOLEAN EVALUATION 19Table 3THE NUMBER OF 4-VARIABLE FUNCTIONS WITH d DON'T-CARES AND COST 

 = 0 
 = 1 
 = 2 
 = 3 
 = 4 
 = 5 
 = 6 
 = 7d = 0 10 60 456 2474 10624 24184 25008 2720d = 1 160 960 7296 35040 131904 227296 119072 2560d = 2 1200 7200 52736 221840 700512 816448 166144d = 3 5600 33600 228992 831232 2045952 1381952 60192d = 4 18200 108816 666528 2034408 3505344 1118128 3296d = 5 43680 257472 1367776 3351488 3491648 433568 32d = 6 80080 455616 2015072 3648608 1914800 86016d = 7 114400 606944 2115648 2474688 533568 12032d = 8 128660 604756 1528808 960080 71520 896d = 9 114080 440960 707488 197632 4160d = 10 78960 224144 189248 20160d = 11 41440 72064 25472 800d = 12 15480 12360 1280d = 13 3680 800d = 14 480d = 15 32d = 16 1X's or three O's in a straight line (in whi
h 
ase that player wins) or all nine
ells are �lled without a winner (in whi
h 
ase it's a \
at's game" or tie). Forexample, the game might pro
eed thus:X XO X XO OX XO OX XXO OX XXO O OX XXOXO ; (46)X has won. Our goal is to design a ma
hine that plays ti
-ta
-toe optimally|making a winning move from ea
h position in whi
h a for
ed vi
tory is possible,and never making a losing move from a position in whi
h defeat is avoidable.More pre
isely, we will set things up so that there are 18 Boolean variablesx1, : : : , x9, o1, : : : , o9, whi
h govern lamps to illuminate 
ells of the 
urrentposition. The 
ells are numbered 1 2 34 5 67 8 9 as on a telephone dial. Cell j displaysan X if xj = 1, an O if oj = 1, or remains blank if xj = oj = 0.* We neverhave xj = oj = 1, be
ause that would display `XO'. We shall assume that thevariables x1 : : : x9o1 : : : o9 have been set to indi
ate a legal position in whi
hnobody has won; the 
omputer plays the X's, and it is the 
omputer's turn tomove. For this purpose we want to de�ne nine fun
tions y1, : : : , y9, where yjmeans \
hange xj from 0 to 1." If the 
urrent position is a 
at's game, we shouldmake y1 = � � � = y9 = 0; otherwise exa
tly one yj should be equal to 1, and of
ourse the output value yj = 1 should o

ur only if xj = oj = 0.With 18 variables, ea
h of our nine fun
tions yj will have a truth table ofsize 218 = 262;144. It turns out that only 4520 legal inputs x1 : : : x9o1 : : : o9 are* This setup is based on an exhibit from the early 1950s at the Museum of S
ien
e andIndustry in Chi
ago, where the author was �rst introdu
ed to the magi
 of swit
hing 
ir
uits.The ma
hine in Chi
ago, designed by resear
hers at Bell Telephone Laboratories, allowed meto go �rst; yet I soon dis
overed that there was no way to defeat it. Therefore I de
ided to moveas stupidly as possible, hoping that the designers had not anti
ipated su
h bizarre behavior.In fa
t I allowed the ma
hine to rea
h a position where it had two winning moves; and it seizedboth of them! Moving twi
e is of 
ourse a 
agrant violation of the rules, so I had won a moralvi
tory even though the ma
hine announ
ed that I had lost.
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20 COMBINATORIAL ALGORITHMS (F0C) 7.1.2I 
ommen
ed an examination of a game 
alled \tit-tat-to" . . .to as
ertain what number of 
ombinations were requiredfor all the possible variety of moves and situations.I found this to be 
omparatively insigni�
ant.. . . A diÆ
ulty, however, arose of a novel kind.When the automaton had to move, it might o

ur that there weretwo di�erent moves, ea
h equally 
ondu
ive to his winning the game.. . . Unless, also, some provision were made,the ma
hine would attempt two 
ontradi
tory motions.| CHARLES BABBAGE, Passages from the Life of a Philosopher (1864)possible, so those truth tables are 98.3% �lled with don't-
ares. Still, 4520 isun
omfortably large if we hope to design and understand a Boolean 
hain thatmakes sense intuitively. Se
tion 7.1.4 will dis
uss alternative ways to representBoolean fun
tions, by whi
h it is often possible to deal with hundreds of variableseven though the asso
iated truth tables are impossibly large.Most fun
tions of 18 variables require more than 218=18 gates, but let's hopewe 
an do better. Indeed, a plausible strategy for making suitable moves inti
-ta
-toe suggests itself immediately, in terms of several 
onditions that aren'thard to re
ognize:wj ; an X in 
ell j will win, 
ompleting a line of X's;bj ; an O in 
ell j would lose, 
ompleting a line of O's;fj ; an X in 
ell j will give X two ways to win;dj ; an O in 
ell j would give O two ways to win.For example, X's move to the 
enter in (46) was needed to blo
k O, so it was oftype b5; fortunately it was also of type f5, for
ing a win on the next move.Let L = ff1;2;3g;f4;5;6g;f7;8;9g;f1;4;7g;f2;5;8g;f3;6;9g;f1;5;9g;f3;5;7ggbe the set of winning lines. Then we havemj = �xj ^ �oj ; [moving in 
ell j is legal℄ (47)wj = mj ^ Wfi;j;kg2L(xi ^ xk); [moving in 
ell j wins℄ (48)bj = mj ^ Wfi;j;kg2L(oi ^ ok); [moving in 
ell j blo
ks℄ (49)fj = mj ^ S2�f�ik j fi; j; kg 2 Lg�; [moving in 
ell j forks℄ (50)dj = mj ^ S2�f�ik j fi; j; kg 2 Lg�; [moving in 
ell j defends℄ (51)here �ik and �ik denote a single X or O together with a blank, namely�ik = (xi^mk) _ (mi^xk); �ik = (oi^mk) _ (mi^ok): (52)For example, b1 = m1^�(o2^o3)_(o4^o7)_(o5^o9)�; f2 = m2^S2(�13; �58) =m2 ^ �13 ^ �58; d5 = m5 ^ S2(�19; �28; �37; �46).With these de�nitions we might try rank-ordering our moves thus:fw1; : : : ; w9g> fb1; : : : ; b9g> ff1; : : : ; f9g> fd1; : : : ; d9g> fm1; : : : ;m9g: (53)\Win if you 
an; otherwise blo
k if you 
an; otherwise fork if you 
an; otherwisedefend if you 
an; otherwise make a legal move." Furthermore, when 
hoosing
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7.1.2 BOOLEAN EVALUATION 21between legal moves it seems sensible to use the orderingm5 > m1 > m3 > m9 > m7 > m2 > m6 > m8 > m4; (54)be
ause 5, the middle 
ell, o

urs in four winning lines, while a 
orner move to1, 3, 9, or 7 o

urs in three, and a side 
ell 2, 6, 8, or 4 o

urs in only two. Wemight as well adopt this ordering of subs
ripts within all �ve groups of movesfwjg, fbjg, ffjg, fdjg, and fmjg in (53).To ensure that at most one move is 
hosen, we de�ne w0j , b0j , f 0j , d0j , m0j tomean \a prior 
hoi
e is better." Thus, w05 = 0, w01 = w5, w03 = w1 _ w01, : : : ,w04 = w8 _ w08, b05 = w4 _ w04, b01 = b5 _ b05, : : : , m04 = m8 _m08. Then we 
an
omplete the de�nition of a ti
-ta
-toe automaton by lettingyj = (wj^ ��w0j)_ (bj^�b0j)_ (fj^ �f 0j)_ (dj^ �d0j)_ (mj^ ��m0j); for 1 � j � 9. (55)So we've 
onstru
ted 9 gates for the m's, 48 for the w's, 48 for the b's, 144 forthe �'s and �'s, 35 for the f 's (with the help of Fig. 5), 35 for the d's, 43 for theprimed variables, and 80 for the y's. Furthermore we 
an use our knowledge ofpartial 4-variable fun
tions to redu
e the six operations in (52) to only four,�ik = (xi�xk) _ (oi�ok); �ik = (xi�xk) _ (oi�ok): (56)This tri
k saves 48 gates; so our design has 
ost 396 gates altogether.The strategy for ti
-ta
-toe in (47){(56) works �ne in most 
ases, but it alsohas some glaring glit
hes. For example, it loses ignominiously in the gameO OX OXO O XXO O XXO O O XXOXO O XOXOXO ; (57)the se
ond X move is d3, defending against a fork by O, yet it a
tually for
es Oto fork in the opposite 
orner! Another failure arises, for example, after positionXO, when move m5 leads to the 
at's game XXO, XXOO, XXXOO, XOXXOO, XOX XXOO, XOOX XXOO, X XOOX XXOO, insteadof to the vi
tory for X that appeared in (46). Exer
ise 65 pat
hes things up andobtains a fully 
orre
t Boolean ti
-ta
-toe player that needs just 445 gates.*Fun
tional de
omposition. If the fun
tion f(x1; : : : ; xn) 
an be written inthe form g(x1; : : : ; xk; h(xk+1; : : : ; xn)), it's usually a good idea to evaluate y =h(xk+1; : : : ; xn) �rst and then to 
ompute g(x1; : : : ; xk; y). Robert L. Ashenhurstinaugurated the study of su
h de
ompositions in 1952 [see Annals ComputationLab. Harvard University 29 (1957), 74{116℄, and observed that there's an easyway to re
ognize when f has this spe
ial property: If we write the truth tablefor f in a 2k � 2n�k array as in (36), with rows for ea
h setting of x1 : : : xk and
olumns for ea
h setting of xk+1 : : : xn, then the desired subfun
tions g and hexist if and only if the 
olumns of this array have at most two di�erent values.For example, the truth table for the fun
tion hx1x2hx3x4x5ii is0 0 0 0 0 0 0 00 0 0 1 0 1 1 10 0 0 1 0 1 1 11 1 1 1 1 1 1 1
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22 COMBINATORIAL ALGORITHMS (F0C) 7.1.2when expressed in this two-dimensional form. One type of 
olumn 
orrespondsto the 
ase h(xk+1; : : : ; xn) = 0; the other 
orresponds to h(xk+1; : : : ; xn) = 1.In general the variables X = fx1; : : : ; xng might be partitioned into any twodisjoint subsets Y = fy1; : : : ; ykg and Z = fz1; : : : ; zn�kg, and we might havef(x) = g(y; h(z)). We 
ould test for a (Y; Z) de
omposition by looking at the
olumns of the 2k � 2n�k truth table whose rows 
orrespond to values of y. Butthere are 2n su
h ways to partition X; and all of them are potential winners,ex
ept for trivial 
ases when jY j = 0 or jZj � 1. How 
an we avoid examiningsu
h a humungous number of possibilities?A pra
ti
al way to pro
eed was dis
overed by V. Y.-S. Shen, A. C. M
Kellar,and P. Weiner [IEEE Transa
tions C-20 (1971), 304{309℄, whose method usuallyneeds only O(n2) steps to identify any potentially useful partition (Y; Z) thatmay exist. The basi
 idea is simple: Suppose xi 2 Z, xj 2 Z, and xm 2 Y .De�ne eight binary ve
tors Æl for l = (l1l2l3)2, where Æl has (l1; l2; l3) respe
tivelyin 
omponents (i; j;m), and zeros elsewhere. Consider any randomly 
hosenve
tor x = x1 : : : xn, and evaluate fl = f(x+Æl) for 0 � l � 7. Then the four pairs�f0f1� �f2f3� �f4f5� �f6f7� (58)will appear in a 2�4 submatrix of the 2k�2n�k truth table. So a de
ompositionis impossible if these pairs are distin
t, or if they 
ontain three di�erent values.Let's 
all the pairs \good" if they're all equal, or if they have only twodi�erent values. Otherwise they're \bad." If f has essentially random behavior,we'll soon �nd bad pairs if we do this experiment with several di�erent randomly
hosen ve
tors x, be
ause only 88 of the 256 possibilities for f0f1 : : : f7 
orrespondto a good set of pairs; the probability of �nding good pairs ten times in a row isonly ( 88256 )10 � :00002. And when we do dis
over bad pairs, we 
an 
on
lude thatxi 2 Z and xj 2 Z =) xm 2 Z; (59)be
ause the alternative xm 2 Y is impossible.Suppose, for example, that n = 9 and that f is the fun
tion whose truthtable 11001001000011 : : : 00101 
onsists of the 512 most signi�
ant bits of �, inbinary notation. (This is the \more-or-less random fun
tion" that we studiedfor n = 4 in (5) and (6) above.) Bad pairs for the � fun
tion are qui
klyfound in ea
h of the 
ases (i; j;m) for whi
h m 6= i < j 6= m. Indeed, inthe author's experiments, 170 of those 252 
ases were de
ided immediately; theaverage number of random x ve
tors per 
ase was only 1.52; and only one 
aseneeded as many as eight x's before bad pairs appeared. Thus (59) holds for allrelevant (i; j;m), and the fun
tion is 
learly inde
omposable. In fa
t, exer
ise73 points out that we needn't make 252 tests to establish the inde
omposabilityof this � fun
tion; only �n2� = 36 of them would have been suÆ
ient.Turning to a less random fun
tion, let f(x1; : : : ; x9) = (detX) mod 2, whereX = 0�x1 x2 x3x4 x5 x6x7 x8 x9
1A : (60)
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7.1.2 BOOLEAN EVALUATION 23This fun
tion does not satisfy 
ondition (59) when i = 1, j = 2, and m = 3,be
ause there are no bad pairs in that 
ase. But it does satisfy (59) for 4 � m � 9when fi; jg = f1; 2g. We 
an denote this behavior by the 
onvenient abbreviation`12)456789'; the full set of impli
ations, for all pairs fi; jg, is12)45678913)45678914)23568915)3678916)2578917)235689
18)3456919)2456823)45678924)3678925)13467926)14789

27)3456928)13467929)1456734)2578935)1478936)124578
37)2456838)1456739)12457845)12378946)12378947)235689

48)1236949)1235856)12378957)1236958)13467959)12347
67)1235868)1234769)12457878)12345679)12345689)123456(see exer
ise 69). Bad pairs are a little more diÆ
ult to �nd when we probethis fun
tion at random: The average number of x's needed in the author'sexperiments rose to about 3.6, when bad pairs did exist. And of 
ourse therewas a need to limit the testing, by 
hoosing a toleran
e threshold t and thengiving up when t 
onse
utive trials failed to �nd any bad pairs. Choosing t = 10would have found all but 8 of the 198 impli
ations listed above.Impli
ations like (59) are Horn 
lauses, and we know from Se
tion 7.1.1 thatit's easy to make further dedu
tions from Horn 
lauses. Indeed, the method ofexer
ise 74 will dedu
e that the only possible partition with jZj > 1 is the trivialone (Y = ;, Z = fx1; : : : ; x9g), after looking at fewer than 50 
ases (i; j;m).Similar results o

ur when f(x1; : : : ; x9) = [perX > 0℄, where per denotesthe permanent fun
tion. (In this 
ase f tells us if there is a mat
hing in thebipartite subgraph of K3;3 whose edges are spe
i�ed by the variables x1 : : : x9.)Now there are just 180 impli
ations,12)45678913)45678914)23568915)367816)257917)235689

18)345919)246823)45678924)367825)13467926)1489
27)345928)13467929)156734)257935)148936)124578

37)246838)156739)12457845)12378946)12378947)235689
48)126949)135856)12378957)126958)13467959)2347

67)135868)234769)12457878)12345679)12345689)123456;only 122 of whi
h would have been dis
overed with t = 10 as the 
uto� threshold.(The best 
hoi
e of t is not 
lear; perhaps it should vary dynami
ally.) Still, those122 Horn 
lauses were more than enough to establish inde
omposability.What about a de
omposable fun
tion? With f = hx2x3x6x9hx1x4x5x7x8iiwe get i^j)m for allm =2 fi; jg, ex
ept when fi; jg � f1; 4; 5; 7; 8g; in the latter
ase, m must also belong to f1; 4; 5; 7; 8g. Although only 185 of these 212 impli-
ations were dis
overed with toleran
e t = 10, the partition Y = fx2; x3; x6; x9g,Z = fx1; x4; x5; x7; x8g emerged qui
kly as a strong possibility.Whenever a potential de
omposition is supported by the eviden
e, we needto verify that the 
orresponding 2k � 2n�k truth table does indeed have onlyone or two distin
t 
olumns. But we're happy to spend 2n units of time on thatveri�
ation, be
ause we've greatly simpli�ed the evaluation of f .

23



24 COMBINATORIAL ALGORITHMS (F0C) 7.1.2The 
omparison fun
tion f = �(x1x2x3x4)2 � (x5x6x7x8)2 + x9� is anotherinteresting 
ase. Its 184 potentially dedu
ible impli
ations are12)345678913)245678914)235678915)234678916)234578917)2345689
18)234567919)234567823)4678924)3678925)134678926)34789

27)3468928)3467929)3467834)78935)124678936)24789
37)48938)47939)47845)123678946)2378947)389

48)949)856)123478957)123468958)123467959)1234678
67)2348968)2347969)2347878)34979)34889)4;and 145 of them were found when t = 10. Three de
ompositions reveal them-selves in this 
ase, having Z = fx4; x8; x9g, Z = fx3; x4; x7; x8; x9g, and Z =fx2; x3; x4; x6; x7; x8; x9g, respe
tively. Ashenhurst proved that we 
an redu
e fimmediately as soon as we �nd a nontrivial de
omposition; the other de
ompo-sitions will show up later, when we try to redu
e the simpler fun
tions g and h.*De
omposition of partial fun
tions. When the fun
tion f is only partiallyspe
i�ed, a de
omposition with partition (Y; Z) hinges on being able to assignvalues to the don't-
ares so that at most two di�erent 
olumns appear in the
orresponding 2k � 2n�k truth table.Two ve
tors u1 : : : um and v1 : : : vm 
onsisting of 0s, 1s, and �s are said tobe in
ompatible if either uj = 0 and vj = 1 or uj = 1 and vj = 0, for some j|equivalently, if the sub
ubes of the m-
ube spe
i�ed by u and v have no pointsin 
ommon. Consider the graph whose verti
es are the 
olumns of a truth tablewith don't-
ares, where u���v if and only if u and v are in
ompatible. We 
anassign values to the �s to a
hieve at most two distin
t 
olumns if and only if thisgraph is bipartite. For if u1, : : : , ul are mutually 
ompatible, their generalized
onsensus u1t� � �tul, de�ned in exer
ise 7.1.1{32, is 
ompatible with all of them.[See S. L. Hight, IEEE Trans. C-22 (1973), 103{110; E. Boros, V. Gurvi
h, P. L.Hammer, T. Ibaraki, and A. Kogan, Dis
rete Applied Math. 62 (1995), 51{75.℄Sin
e a graph is bipartite if and only if it 
ontains no odd 
y
les, we 
an easilytest this 
ondition with a depth-�rst sear
h (see Se
tion 7.4.1).Consequently the method of Shen, M
Kellar, and Weiner works also whendon't-
ares are present: The four pairs in (58) are 
onsidered bad if and onlyif three of them are mutually in
ompatible. We 
an operate almost as before,although bad pairs will naturally be harder to �nd when there are lots of �s (seeexer
ise 72). However, Ashenhurst's theorem no longer applies. When severalde
ompositions exist, they all should be explored further, be
ause they might usedi�erent settings of the don't-
ares, and some might be better than the others.Although most fun
tions f(x) have no simple de
omposition g(y; h(z)), weneedn't give up hope too qui
kly, be
ause other forms like g(y; h1(z); h2(z)) mightwell lead to an eÆ
ient 
hain. If, for example, f is symmetri
 in three of its vari-ables fz1; z2; z3g, we 
an always write f(x) = g�y; S12(z1; z2; z3); S13(z1; z2; z3)�,sin
e S12(z1; z2; z3) and S13(z1; z2; z3) 
hara
terize the value of z1 + z2 + z3.(Noti
e that just four steps will suÆ
e to 
ompute both S12 and S13.)In general, as observed by H. A. Curtis [JACM 8 (1961), 484{496℄, f(x) 
anbe expressed in the form g(y; h1(z); : : : ; hr(z)) if and only if the 2k � 2n�k truth
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7.1.2 BOOLEAN EVALUATION 25table 
orresponding to Y and Z has at most 2r di�erent 
olumns. And whendon't-
ares are present, the same result holds if and only if the in
ompatibilitygraph for Y and Z 
an be 
olored with at most 2r 
olors.For example, the fun
tion f(x) = (detX) mod 2 
onsidered above turnsout to have eight distin
t 
olumns when Z = fx4; x5; x6; x7; x8; x9g; that's asurprisingly small number, 
onsidering that the truth table has 8 rows and64 
olumns. From this fa
t we might be led to dis
over how to expand adeterminant by 
ofa
tors of the �rst row,f(x) = x1^h1(x4; : : : ; x9) � x2^h2(x4; : : : ; x9) � x3^h3(x4; : : : ; x9);if we didn't already know su
h a rule.When there are d � 2r di�erent 
olumns, we 
an think of f(x) as a fun
tionof y and h(z), where h takes ea
h binary ve
tor z1 : : : zn�k into one of thevalues f0; 1; : : : ; d � 1g. Thus (h1; : : : ; hr) is essentially an en
oding of thedi�erent 
olumn types, and we hope to �nd very simple fun
tions h1, : : : , hr thatprovide su
h an en
oding. Moreover, if d is stri
tly less than 2r, the fun
tiong(y; h1; : : : ; hr) will have many don't-
ares that may well de
rease its 
ost.The distin
t 
olumns might also suggest a fun
tion g for whi
h the h's havedon't-
ares. For example, we 
an use g(y1; y2; h1; h2) = (y1�(h1^y2))^h2 whenall 
olumns are either (0; 0; 0; 0)T or (0; 0; 1; 1)T or (0; 1; 1; 0)T ; then the valueof h1(z) is arbitrary when z 
orresponds to an all-zero 
olumn. H. A. Curtishas explained how to exploit this idea when jY j = 1 and jZj = n� 1 [see IEEETransa
tions C-25 (1976), 1033{1044℄.For a 
omprehensive dis
ussion of de
omposition te
hniques, see Ri
hard M.Karp, J. So
iety for Industrial and Applied Math. 11 (1963), 291{335.Larger values of n. We've been 
onsidering only rather tiny examples ofBoolean fun
tions. Theorem S tells us that large, random examples are inher-ently diÆ
ult; but pra
ti
al examples might well be highly nonrandom. So itmakes sense to sear
h for simpli�
ations using heuristi
 methods.When n grows, the best ways 
urrently known for dealing with Booleanfun
tions generally start with a Boolean 
hain|not with a huge truth table|and they try to improve that 
hain via \lo
al 
hanges." The 
hain 
an bespe
i�ed by a set of equations. Then, if an intermediate result is used in 
om-paratively few subsequent steps, we 
an try to eliminate it, temporarily makingthose subsequent steps into fun
tions of three variables, and reformulating thosefun
tions in order to make a better 
hain when possible.For example, suppose the gate xi = xj Æ xk is used only on
e, in the gatexl = xi xm, so that xl = (xj Æ xk) xm. Other gates might already exist, bywhi
h we have 
omputed other fun
tions of xj , xk, and xm; and the de�nitionsof xj , xk, and xm may imply that some of the joint values of (xj ; xk; xm) areimpossible. Thus we might be able to 
ompute xl from other gates by doingjust one further operation. For example, if xi = xj ^ xk and xl = xi _ xm, andif the values xj _ xm and xk _ xm appear elsewhere in the 
hain, we 
an setxl = (xj_xm) ^ (xk_xm); this eliminates xi and redu
es the 
ost by 1. Or if,
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26 COMBINATORIAL ALGORITHMS (F0C) 7.1.2say, xj ^ (xk�xm) appears elsewhere and we know that xjxkxm 6= 101, we 
anset xl = xm � (xj ^ (xk�xm)).If xi is used only in xl and xl is used only in xp, then gate xp depends on fourvariables, and we might be able to redu
e the 
ost by using our total knowledge offour-variable fun
tions, obtaining xp in a better way while eliminating xi and xl.Similarly, if xi appears only in xl and xp, we 
an eliminate xi if we �nd a betterway to evaluate two di�erent fun
tions of four variables, possibly with don't-
ares and with other fun
tions of those four variables available for free. Again,we know how to solve su
h problems, using the footprint method dis
ussed above.When no lo
al 
hanges are able to de
rease the 
ost, we 
an also try lo
al
hanges that preserve or even in
rease the 
ost, in order to dis
over di�erentkinds of 
hains that might simplify in other ways. We shall dis
uss su
h lo
alsear
h methods extensively in Se
tion 7.10.Ex
ellent surveys of te
hniques for Boolean optimization, whi
h ele
tri
alengineers 
all the problem of \multilevel logi
 synthesis," have been publishedby R. K. Brayton, G. D. Ha
htel, and A. L. Sangiovanni-Vin
entelli, Pro
eedingsof the IEEE 78 (1990), 264{300, and in the book Synthesis and Optimization ofDigital Cir
uits by G. De Mi
heli (M
Graw{Hill, 1994).Lower bounds. Theorem S tells us that nearly every Boolean fun
tion ofn � 12 variables is hard to evaluate, requiring a 
hain whose length ex
eeds 2n=n.Yet modern 
omputers, whi
h are built from logi
 
ir
uits involving ele
tri
signals that represent thousands of Boolean variables, happily evaluate zillionsof Boolean fun
tions every mi
rose
ond. Evidently there are plenty of importantfun
tions that 
an be evaluated qui
kly, in spite of Theorem S. Indeed, the proofof that theorem was indire
t; we simply 
ounted the 
ases of low 
ost, so welearned absolutely nothing about any parti
ular examples that might arise inpra
ti
e. When we want to 
ompute a given fun
tion and we 
an only think of alaborious way to do the job, how 
an we be sure that there's no tri
ky short
ut?The answer to that question is almost s
andalous: After de
ades of 
on
en-trated resear
h, 
omputer s
ientists have been unable to �nd any expli
it familyof fun
tions f(x1; : : : ; xn) whose 
ost is inherently nonlinear, as n in
reases.The true behavior is 2n=n, but no lower bound as strong as n log log logn hasyet been proved! Of 
ourse we 
ould rig up arti�
ial examples, su
h as \thelexi
ographi
ally smallest truth table of length 2n that isn't a
hievable by anyBoolean 
hain of length b2n=n
 � 1"; but su
h fun
tions are surely not expli
it.The truth table of an expli
it fun
tion f(x1; : : : ; xn) should be 
omputable inat most, say, 2
n units of time for some 
onstant 
; that is, the time needed tospe
ify all of the fun
tion values should be polynomial in the length of the truthtable. Under those ground rules, no family of single-output fun
tions is 
urrentlyknown to have a 
ombinational 
omplexity that ex
eeds 3n + O(1) as n ! 1.[See N. Blum, Theoreti
al Computer S
ien
e 28 (1984), 337{345.℄The pi
ture is not totally bleak, be
ause several interesting linear lowerbounds have been proved for fun
tions of pra
ti
al importan
e. A basi
 way toobtain su
h results was introdu
ed by N. P. Red'kin in 1970: Suppose we have
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7.1.2 BOOLEAN EVALUATION 27an optimum 
hain of 
ost r for f(x1; : : : ; xn). By setting xn  0 or xn  1, weobtain redu
ed 
hains for the fun
tions g(x1; : : : ; xn�1) = f(x1; : : : ; xn�1; 0) andh(x1; : : : ; xn�1) = f(x1; : : : ; xn�1; 1), having 
ost r�u if xn was used as an inputto u di�erent gates. Moreover, if xn is used in a \
analizing" gate xi = xn Æ xk,where the operator Æ is neither � nor �, some setting of xn will for
e xi tobe 
onstant, thereby further redu
ing the 
hain for g or h. Lower bounds on gand/or h therefore lead to a lower bound on f . (See exer
ises 77{81.)But where are the proofs of nonlinear lower bounds? Almost every problemwith a yes-no answer 
an be formulated as a Boolean fun
tion, so there's noshortage of expli
it fun
tions that we don't know how to evaluate in lineartime, or even in polynomial time. For example, any dire
ted graph G withverti
es fv1; : : : ; vmg 
an be represented by its adja
en
y matrix X, where xij =[vi! vj ℄; thenf(x12; : : : ; x1m; : : : ; xm1; : : : ; xm(m�1)) = [G has a Hamiltonian path℄ (61)is a Boolean fun
tion of n = m(m � 1) variables. We would dearly love to beable to evaluate this fun
tion in, say, n4 steps. We do know how to 
ompute thetruth table for f in O(m! 2n) = 2n+O(pn log n) steps, sin
e only m! Hamiltonianpaths exist; thus f is indeed \expli
it." But nobody knows how to evaluate f inpolynomial time, or how to prove that there isn't a 4n-step 
hain.For all we know, short Boolean 
hains for f might exist, for ea
h n. After all,Figs. 4 and 5 reveal the existen
e of �endishly 
lever 
hains even in the 
ases of4 and 5 variables. EÆ
ient 
hains for all of the larger problems that we ever willneed to solve might well be \out there"|yet totally beyond our grasp, be
ausewe don't have time to �nd them. Even if an omnis
ient being revealed the simple
hains to us, we might �nd them in
omprehensible, be
ause the shortest proofof their 
orre
tness might be longer than the number of 
ells in our brains.Theorem S rules out su
h a s
enario for most Boolean fun
tions. But fewerthan 2100 Boolean fun
tions will ever be of pra
ti
al importan
e in the entirehistory of the world, and Theorem S tells us zil
h about them.In 1974, Larry Sto
kmeyer and Albert Meyer were, however, able to 
on-stru
t a Boolean fun
tion f whose 
omplexity is provably huge. Their f isn't\expli
it," in the pre
ise sense des
ribed above, but it isn't arti�
ial either; itarises naturally in mathemati
al logi
. Consider symboli
 statements su
h as048+10156=1063 ; (62)8m9n(m<n+1) ; (63)8n9m(m+1<n) ; (64)8a8b(b�a+2)9ab(a<ab^ab<
)) ; (65)8A8B(A�B,:9n(n2A^n62B_n2B^n62A)) ; (66)8A(9n(n2A))9m(m2A^8n(n2A)m�n))) ; (67)8A(9n(n2A))9m(m2A^8n(n2A)m�n))) ; (68)9P8a((a2P,a+362P),a<1000) ; (69)8A8B(8C8
(C�A^
�1_C�B^
=0)(8n(n2C,n+162C),
=1))):A�B) : (70)
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28 COMBINATORIAL ALGORITHMS (F0C) 7.1.2Sto
kmeyer and Meyer de�ned a language L by using the 63-
hara
ter alphabet89:()�262+^_),<�=6=�>ab
defghijklmnopqABCDEFGHIJKLMNOPQ0123456789and giving 
onventional meanings to these symbols. Strings of lower
ase letterswithin the senten
es of L, like `ab' in (65), represent numeri
 variables, restri
tedto nonnegative integers; strings of upper
ase letters represent set variables,restri
ted to �nite sets of su
h numbers. For example, (66) means, \For all�nite sets A and B, we have A = B if and only if there doesn't exist a number nthat is in A but not in B, or in B but not in A." Some of these statements aretrue; others are false. (See exer
ise 82.)All of the strings (62){(70) belong to L, but the language is a
tually quiterestri
ted: The only arithmeti
 operation allowed on a number is to add a
onstant; we 
an write `a+13' but not `a+b'. The only relation allowed betweena number and a set is elementhood (2 or 62). The only relation allowed betweensets is equality (�). Furthermore all variables must be quanti�ed by 9 or 8.*Every senten
e of L that has length k � n 
an be represented by a binaryve
tor of length 6n, with zeros in the last 6(n� k) bits. Let f(x) be a Booleanfun
tion of 6n variables su
h that f(x) = 1 whenever x represents a true senten
eof L, and f(x) = 0 whenever x represents a senten
e that is false; the value of f(x)is unspe
i�ed when x doesn't represent a meaningful senten
e. The truth tablefor su
h a fun
tion f 
an be 
onstru
ted in a �nite number of steps, a

ordingto theorems of B�u
hi and Elgot [Zeits
hrift f�ur math. Logik und Grundlagen derMath. 6 (1960), 66{92; Transa
tions of the Amer. Math. So
. 98 (1961), 21{51℄.But \�nite" does not mean \feasible": Sto
kmeyer and Meyer proved thatC(f) > 2r�5 whenever n � 460 + :302r + 5:08 ln r and r > 36: (71)In parti
ular, we have C(f) > 2416 > 10125 when n = 618. A Boolean 
hain withthat many gates 
ould never be built, sin
e 10125 is a generous upper bound onthe number of protons in the universe. So this is a fairly small, �nite problemthat will never be solved.Details of Sto
kmeyer and Meyer's proof appear in JACM 49 (2002), 753{784. The basi
 idea is that the language L, though limited, is ri
h enough todes
ribe truth tables and the 
omplexity of Boolean 
hains, using fairly shortsenten
es; hen
e f has to deal with inputs that essentially refer to themselves.*For further reading. Thousands of signi�
ant papers have been written aboutnetworks of Boolean gates, be
ause su
h networks underlie so many aspe
ts oftheory and pra
ti
e. We have fo
used in this se
tion 
hie
y on topi
s that arerelevant to 
omputer programming for sequential ma
hines. But other topi
shave also been extensively investigated, of primary relevan
e to parallel 
ompu-tation, su
h as the study of small-depth 
ir
uits in whi
h gates 
an have anynumber of inputs (\unlimited fan-in"). Ingo Wegener's book The Complexity of* Te
hni
ally speaking, the senten
es of L belong to \weak se
ond-order monadi
 logi
 withone su

essor." Weak se
ond-order logi
 allows quanti�
ation over �nite sets; monadi
 logi
with k su

essors is the theory of unlabeled k-ary trees.
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7.1.2 BOOLEAN EVALUATION 29Boolean Fun
tions (Teubner and Wiley, 1987) provides a good introdu
tion tothe entire subje
t.We have mostly 
onsidered Boolean 
hains in whi
h all binary operatorshave equal importan
e. For our purposes, gates su
h as � or � are neither morenor less desirable than gates su
h as ^ or _. But it's natural to wonder if we
an get by with only the monotone operators ^ and _ when we are 
omputing amonotone fun
tion. Alexander Razborov has developed striking proof te
hniquesto show that, in fa
t, monotone operators by themselves have inherently limited
apabilities. He proved, for example, that all AND-OR 
hains to determinewhether the permanent of an n � n matrix of 0s and 1s is zero or nonzeromust have 
ost n
(log n). [See Doklady Akademii Nauk SSSR 281 (1985), 798{801; Matemati
heskie Zametki 37 (1985), 887{900.℄ By 
ontrast, we will see inSe
tion 7.5.1 that this problem, equivalent to \bipartite mat
hing," is solvablein only O(n2:5) steps. Furthermore, the eÆ
ient methods in that se
tion 
anbe implemented as Boolean 
hains of only slightly larger 
ost, when we allownegation or other Boolean operations in addition to ^ and _. (Vaughan Pratthas 
alled this \the power of negative thinking.") An introdu
tion to Razborov'smethods appears in exer
ises 85 and 86.EXERCISES1. [24 ℄ The \random" fun
tion in formula (6) 
orresponds to a Boolean 
hain of
ost 4 and depth 4. Find a formula of depth 3 that has the same 
ost.2. [21 ℄ Show how to 
ompute (a) w � hxyzi and (b) w ^ hxyzi with formulas thathave depth 3 and 
ost 5.3. [M23 ℄ (B. I. Finikov, 1957.) If the Boolean fun
tion f(x1; : : : ; xn) is true atexa
tly k points, prove that L(f) < 2n+(k�2)2k�1. Hint: Think of k = 3 and n = 106.4. [M26 ℄ (P. M. Spira, 1971.) Prove that the minimum depth and formula length ofa Boolean fun
tion satisfy lgL(f) < D(f) � � lgL(f)+ 1, where � = 2= lg( 32 ) � 3:419.Hint: Every binary tree with r � 3 internal nodes 
ontains a subtree with s internalnodes, where 13r � s < 23r.x 5. [21 ℄ The Fibona

i threshold fun
tion Fn(x1; : : : ; xn) = hxF11 xF22 : : : xFn�1n�1 xFn�2n iwas analyzed in exer
ise 7.1.1{101, when n � 3. Is there an eÆ
ient way to evaluate it?6. [20 ℄ True or false: A Boolean fun
tion f(x1; : : : ; xn) is normal if and only if itsatis�es the general distributive law f(x1; : : : ; xn) ^ y = f(x1 ^ y; : : : ; xn ^ y).7. [20 ℄ Convert the Boolean 
hain `x5 = x1 _ x4, x6 = �x2 _ x5, x7 = �x1 ^ �x3,x8 = x6 � x7' to an equivalent 
hain (x̂5; x̂6; x̂7; x̂8) in whi
h every step is normal.x 8. [20 ℄ Explain why (11) is the truth table of variable xk.9. [20 ℄ Algorithm L determines the lengths of shortest formulas for all fun
tions f ,but it gives no further information. Extend the algorithm so that it also provides a
tualminimum-length formulas like (6).x 10. [20 ℄ Modify Algorithm L so that it 
omputes D(f) instead of L(f).x 11. [22 ℄ Modify Algorithm L so that, instead of lengths L(f), it 
omputes upperbounds U(f) and footprints �(f) as des
ribed in the text.12. [15 ℄ What Boolean 
hain is equivalent to the minimum-memory s
heme (13)?
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30 COMBINATORIAL ALGORITHMS (F0C) 7.1.213. [16 ℄ What are the truth tables of f1, f2, f3, f4, and f5 in example (13)?14. [22 ℄ What's a 
onvenient way to 
ompute the 5n(n�1) truth tables of (17), giventhe truth table of g? (Use bitwise operations as in (15) and (16).)15. [28 ℄ Find short-as-possible ways to evaluate the following fun
tions using mini-mum memory: (a) S2(x1; x2; x3; x4); (b) S1(x1; x2; x3; x4); (
) the fun
tion in (18).16. [HM33 ℄ Prove that fewer than 2118 of the 2128 Boolean fun
tions f(x1; : : : ; x7)are 
omputable in minimum memory.x 17. [25 ℄ (M. S. Paterson, 1977.) Although Boolean fun
tions f(x1; : : : ; xn) 
annotalways be evaluated in n registers, prove that n + 1 registers are always suÆ
ient. Inother words, show that there is always a sequen
e of operations like (13) to 
omputef(x1; : : : ; xn) if we allow 0 � j(i); k(i) � n.x 18. [35 ℄ Investigate optimumminimum-memory 
omputations for f(x1; x2; x3; x4; x5):How many 
lasses of �ve-variable fun
tions have Cm(f) = r, for r = 0, 1, 2, : : : ?19. [M22 ℄ If a Boolean 
hain uses n variables and has length r < n+ 2, prove that itmust be either a \top-down" or a \bottom-up" 
onstru
tion.x 20. [40 ℄ (R. S
hroeppel, 2004.) A Boolean 
hain is 
analizing if it does not use theoperators � or �. Find the optimum 
ost, length, and depth of all 4-variable fun
tionsunder this 
onstraint. Does the footprint heuristi
 still give optimum results?21. [46 ℄ For how many four-variable fun
tions did the Harvard resear
hers dis
overan optimum va
uum-tube 
ir
uit in 1951?22. [21 ℄ Explain the 
hain for S3 in Fig. 6, by noting that it in
orporates the 
hainfor S23 in Fig. 5. Find a similar 
hain for S2(x1; x2; x3; x4; x5).x 23. [23 ℄ Figure 6 illustrates only 16 of the 64 symmetri
 fun
tions on �ve elements.Explain how to write down optimum 
hains for the others.24. [47 ℄ Does every symmetri
 fun
tion f have Cm(f) = C(f)?x 25. [17 ℄ Suppose we want a Boolean 
hain that in
ludes all fun
tions of n variables:Let fk(x1; : : : ; xn) be the fun
tion whose truth table is the binary representation of k,for 0 � k < m = 22n. What is C(f0f1 : : : fm�1)?26. [25 ℄ True or false: If f(x0; : : : ; xn) = (x0^g(x1; : : : ; xn))�h(x1; : : : ; hn), where gand h are nontrivial Boolean fun
tions whose joint 
ost is C(gh), then C(f)=2+C(gh).x 27. [23 ℄ Can a full adder (22) be implemented in �ve steps using only minimummemory (that is, 
ompletely inside three one-bit registers)?28. [26 ℄ Prove that C(u0v0) = C(u00v00) = 5 for the two-output fun
tions de�ned by(u0v0)2 = (x+ y � (uv)2)mod 4; (u00v00)2 = (�x� y � (uv)2)mod 4:Use these fun
tions to evaluate [(x1 + � � �+ xn) mod 4=0℄ in fewer than 2:5n steps.29. [M28 ℄ Prove that the text's 
ir
uit for sideways addition (27) has depth O(logn).30. [M25 ℄ Solve the binary re
urren
e (28) for the 
ost s(n) of sideways addition.31. [21 ℄ If f(x1; : : : ; xn) is symmetri
, prove that C(f) � 5n+O(n=logn).32. [HM16 ℄ Why does the solution to (30) satisfy t(n) = 2n +O(2n=2)?33. [HM22 ℄ True or false: If 1 � N � 2n, the �rst N minterms of fx1; : : : ; xng 
anall be evaluated in N +O(pN ) steps, as n!1 and N !1.
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7.1.2 BOOLEAN EVALUATION 31x 34. [22 ℄ A priority en
oder has n = 2m � 1 inputs x1 : : : xn and m outputs y1 : : : ym,where (y1 : : : ym)2 = k if and only if k = maxfj j j = 0 or xj = 1g. Design a priorityen
oder that has 
ost O(n) and depth O(m).35. [23 ℄ If n > 1, show that the 
onjun
tions x1 ^ � � � ^ xk�1 ^ xk+1 ^ � � � ^ xn for1 � k � n 
an all be 
omputed from (x1; : : : ; xn) with total 
ost � 3n� 6.x 36. [M28 ℄ (R. W. Ladner and M. J. Fis
her, 1980.) Let yk be the \pre�x" x1^� � �^xkfor 1 � k � n. Clearly C(y1 : : : yn) = n � 1 and D(y1 : : : yn) = dlgne; but we 
an'tsimultaneously minimize both 
ost and depth. Find a 
hain of optimum depth dlg nethat has 
ost < 4n.37. [M28 ℄ (Mar
 Snir, 1986.) Given n � m � 1, 
onsider the following algorithm:S1. [Upward loop.℄ For t  1, 2, : : : , dlgme, set xmin(m;2tk)  x2t(k�1=2) ^xmin(m;2tk) for k � 1 and 2t(k � 1=2) < m.S2. [Downward loop.℄ For t  dlgme � 1, dlgme � 2, : : : , 1, set x2t(k+1=2)  x2tk ^ x2t(k+1=2) for k � 1 and 2t(k + 1=2) < m.S3. [Extension.℄ For k  m+ 1, m+ 2, : : : , n, set xk  xk�1 ^ xk.a) Prove that this algorithm solves the pre�x problem of exer
ise 36: It transforms(x1; x2; : : : ; xn) into (x1; x1 ^ x2; : : : ; x1 ^ x2 ^ � � � ^ xn).b) Let 
(m;n) and d(m;n) be the 
ost and depth of the 
orresponding Boolean 
hain.Prove that, if n is suÆ
iently large, 
(m;n) + d(m;n) = 2n� 2.
) Given n, what is d(n) = min1�m�n d(m;n)? Show that d(n) < 2 lgn.d) Prove that there's a Boolean 
hain of 
ost 2n � 2 � d and depth d for the pre�xproblem whenever d(n) � d < n. (This 
ost is optimum, by exer
ise 81.)38. [25 ℄ In Se
tion 5.3.4 we studied sorting networks, by whi
h Ŝ(n) 
omparatormodules are able to sort n numbers (x1; x2; : : : ; xn) into as
ending order. If the inputsxj are 0s and 1s, ea
h 
omparator module is equivalent to two gates (x ^ y; x _ y);so a sorting network 
orresponds to a 
ertain kind of Boolean 
hain, whi
h evaluatesn parti
ular fun
tions of (x1; x2; : : : ; xn).a) What are the n fun
tions f1f2 : : : fn that a sorting network 
omputes?b) Show that those fun
tions ff1; f2; : : : ; fng 
an be 
omputed in O(n) steps with a
hain of depth O(logn). (Hen
e sorting networks aren't asymptoti
ally optimal,Booleanwise.)x 39. [M21 ℄ (M. S. Paterson and P. Klein, 1980.) Implement the 2m-way multiplexerMm(x1; : : : ; xm; y0; y1; : : : ; y2m�1) of (31) with an eÆ
ient 
hain that simultaneouslyestablishes the upper bounds C(Mm) � 2n+O(pn ) and D(Mm) � m+O(logm).40. [25 ℄ If n � k � 1, let fnk(x1; : : : ; xn) be the \k in a row" fun
tion,(x1 ^ � � � ^ xk) _ (x2 ^ � � � ^ xk+1) _ � � � _ (xn+1�k ^ � � � ^ xn):Show that the 
ost C(fnk) of this fun
tion is less than 4n� 3k.41. [M23 ℄ (Conditional-sum adders.) One way to a

omplish binary addition (25)with depth O(logn) is based on the multiplexer tri
k of exer
ise 4: If (xx0)2+(yy0)2 =(zz0)2, where jx0j = jy0j = jz0j, we have either (x)2+(y)2 = (z)2 and (x0)2+(y0)2 = (z0)2,or (x)2+(y)2+1 = (z)2 and (x0)2+(y0)2 = (1z0)2. To save time, we 
an 
ompute both(x)2+(y)2 and (x)2+(y)2+1 simultaneously as we 
ompute (x0)2+(y0)2. Afterwards,when we know whether or not the less signi�
ant part (x0)2 + (y0)2 produ
es a 
arry,we 
an use multiplexers to sele
t the 
orre
t bits for the most signi�
ant part.
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32 COMBINATORIAL ALGORITHMS (F0C) 7.1.2If this method is used re
ursively to build 2n-bit adders from n-bit adders, howmany gates are needed when n = 2m? What is the 
orresponding depth?42. [25 ℄ In the binary addition (25), let uk = xk ^ yk and vk = xk� yk for 0 � k < n.a) Show that zk = vk � 
k, where the 
arry bits 
k satisfy
k = uk�1 _ (vk�1 ^ (uk�2 _ (vk�2 ^ (� � � (u1 ^ v0) � � �)))):b) Let Ukk = 0, V kk = 1, and Uk+1j = uk _ (vk ^ Ukj ), V k+1j = vk ^ V kj , for k � j.Prove that 
k = Uk0 , and that Uki = Ukj _ (V kj ^ U ji ), V ki = V kj ^ V ji for i � j � k.
) Let h(m) = 2m(m�1)=2. Show that when n = h(m), the 
arries 
1, : : : , 
n 
an allbe evaluated with depth (m+1)m=2 � lgn+p2 lgn and with total 
ost O(2mn).x 43. [28 ℄ A �nite state transdu
er is an abstra
t ma
hine with a �nite input alpha-bet A, a �nite output alphabet B, and a �nite set of internal states Q. One of thosestates, q0, is 
alled the \initial state." Given a string � = a1 : : : an, where ea
h aj 2 A,the ma
hine 
omputes a string � = b1 : : : bn, where ea
h bj 2 B, as follows:T1. [Initialize.℄ Set j  1 and q  q0.T2. [Done?℄ Terminate the algorithm if j > n.T3. [Output bj .℄ Set bj  
(q; aj).T4. [Advan
e j.℄ Set q  d(q; aj), j  j + 1, and return to step T2.The ma
hine has built-in instru
tions that spe
ify 
(q; a) 2 B and d(q; a) 2 Q for everystate q 2 Q and every 
hara
ter a 2 A. The purpose of this exer
ise is to show that, ifthe alphabets A and B of any �nite state transdu
er are en
oded in binary, the string� 
an be 
omputed from � by a Boolean 
hain of size O(n) and depth O(logn).a) Consider the problem of 
hanging a binary ve
tor a1 : : : an to b1 : : : bn by settingbj  aj � [aj = aj�1= � � �= aj�k =1 and aj�k�1=0, where k is odd℄;assuming that a0 = 0. For example, � = 1100100100011111101101010 7! � =1000100100010101001001010. Prove that this transformation 
an be 
arried outby a �nite state transdu
er with jAj = jBj = jQj = 2.b) Suppose a �nite state transdu
er is in state qj after reading a1 : : : aj�1. Explainhow to 
ompute the sequen
e q1 : : : qn with a Boolean 
hain of 
ost O(n) and depthO(logn), using the 
onstru
tion of Ladner and Fis
her in exer
ise 36. (From thissequen
e q1 : : : qn it is easy to 
ompute b1 : : : bn, sin
e bj = 
(qj ; aj).)
) Apply the method of (b) to the problem in (a).x 44. [26 ℄ (R. W. Ladner and M. J. Fis
her, 1980.) Show that the problem of binaryaddition (25) 
an be viewed as a �nite state transdu
tion. Des
ribe the Boolean 
hainthat results from the 
onstru
tion of exer
ise 43 when n = 2m, and 
ompare it to the
onditional-sum adder of exer
ise 41.45. [HM20 ℄ Why doesn't the proof of Theorem S simply argue that the number ofways to 
hoose j(i) and k(i) so that 1 � j(i); k(i) < i is n2(n+1)2 : : : (n+r�1)2?x 46. [HM21 ℄ Let �(n) = 
(n; b2n=n
)=22n be the fra
tion of n-variable Boolean fun
-tions f(x1; : : : ; xn) for whi
h C(f) � 2n=n. Prove that �(n)! 0 rapidly as n!1.47. [M23 ℄ Extend Theorem S to fun
tions with n inputs and m outputs.48. [HM23 ℄ Find the smallest integer r = r(n) su
h that (r�1)! 22n� 22r+1(n+r�1)2r,(a) exa
tly when 1 � n � 16; (b) asymptoti
ally when n!1.
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7.1.2 BOOLEAN EVALUATION 3349. [HM25 ℄ Prove that, as n ! 1, almost all Boolean fun
tions f(x1; : : : ; xn) haveminimum formula length L(f) > 2n= lgn� 2n+2=(lgn)2.50. [24 ℄ What are the prime impli
ants and prime 
lauses of the prime-number fun
-tion (35)? Express that fun
tion in (a) DNF (b) CNF of minimum length.51. [20 ℄ What representation of the prime-number dete
tor repla
es (37), if rows ofthe truth table are based on x5x6 instead of x1x2?52. [23 ℄ What 
hoi
es of k and l minimize the upper bound (38) when 5 � n � 16?53. [HM22 ℄ Estimate (38) when k = b2 lgn
 and l = d2k=(n� 3 lgn)e and n!1.54. [29 ℄ Find a short Boolean 
hain to evaluate all six of the fun
tions fj(x) =[x1x2x3x4 2Aj ℄, where A1 = f0010; 0101; 1011g, A2 = f0001; 1111g, A3 = f0011; 0111;1101g, A4 = f1001; 1111g, A5 = f1101g, A6 = f0101; 1011g. (These six fun
tionsappear in the prime-number dete
tor (37).) Compare your 
hain to the minterm-�rstevaluation s
heme of Lupanov's general method.55. [34 ℄ Show that the 
ost of the 6-bit prime-dete
ting fun
tion is at most 14.x 56. [16 ℄ Explain why all fun
tions with 14 or more don't-
ares in Table 3 have 
ost 0.57. [19 ℄ What seven-segment \digits" are displayed when (x1x2x3x4)2 > 9 in (45)?x 58. [30 ℄ A 4�4-bit S-box is a permutation of the 4-bit ve
tors f0000; 0001; : : : ; 1111g;su
h permutations are used as 
omponents of well-known 
ryptographi
 systems su
has the Russian standard GOST 28147 (1989). Every 4�4-bit S-box 
orresponds toa sequen
e of four fun
tions f1(x1; x2; x3; x4), : : : , f4(x1; x2; x3; x4), whi
h transformx1x2x3x4 7! f1f2f3f4.Find all 4�4-bit S-boxes for whi
h C(f1) = C(f2) = C(f3) = C(f4) = 7.59. [29 ℄ One of the S-boxes satisfying the 
onditions of exer
ise 58 takes (0; : : : ; f) 7!(0; 6; 5; b; 3; 9; f; e; 
; 4; 7; 8; d; 2; a; 1); in other words, the truth tables of (f1; f2; f3; f4)are respe
tively (179a; 63e8; 5b26; 3e29). Find a Boolean 
hain that evaluates thesefour \maximally diÆ
ult" fun
tions in fewer than 20 steps.60. [23 ℄ (Frank Ruskey.) Suppose z = (x+y) mod 3, where x = (x1x2)2, y = (y1y2)2,z = (z1z2)2, and ea
h two-bit value is required to be either 00, 01, or 10. Compute z1and z2 from x1, x2, y1, and y2 in six Boolean steps.61. [34 ℄ Continuing exer
ise 60, �nd a good way to 
ompute z = (x+y) mod 5, usingthe three-bit values 000, 001, 010, 011, 100.62. [HM23 ℄ Consider a random Boolean partial fun
tion of n variables that has 2n
\
ares" and 2nd \don't-
ares," where 
+ d = 1. Prove that the 
ost of almost all su
hpartial fun
tions ex
eeds 2n
=n.63. [HM35 ℄ (L. A. Sholomov, 1969.) Continuing exer
ise 62, prove that all su
hfun
tions have 
ost � 2n
=n(1 + O(n�1 logn)). Hint: There is a set of 2m(1 + k)ve
tors x1 : : : xk that interse
ts every (k �m)-dimensional sub
ube of the k-
ube.64. [25 ℄ (Magi
 Fifteen.) Two players alternately sele
t digits from 1 to 9, using nodigit twi
e; the winner, if any, is the �rst to get three digits that sum to 15. What's agood strategy for playing this game?x 65. [35 ℄ Modify the ti
-ta
-toe strategy of (47){(56) so that it always plays 
orre
tly.66. [20 ℄ Criti
ize the moves 
hosen in exer
ise 65. Are they always optimum?
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34 COMBINATORIAL ALGORITHMS (F0C) 7.1.2x 67. [40 ℄ Instead of simply �nding one 
orre
t move for ea
h position in ti
-ta
-toe, wemight prefer to �nd them all. In other words, given x1 : : : x9o1 : : : o9, we 
ould try to
ompute nine outputs g1 : : : g9, where gj = 1 if and only if a move into 
ell j is amongX's best. For example, ex
lamation marks indi
ate all of the right moves for X in thefollowing typi
al positions:! ! !! ! !! ! ! ; O ! ; ! O !!! ; ! !O! ! ; X O! !! ; X O!! ! ; X ! !! O !! ! ! ; X !! O! ; X !! O; O ! !! X !! ! ! ; ! O !! X !! ! ; O X! !! ! ; ! XO ! ; ! X !! O !! ! ; ! XO ; ! X !! ! !! O ! :A ma
hine that 
hooses randomly among these possibilities is more fun to play againstthan a ma
hine that has only one �xed strategy.One attra
tive way to solve the all-good-moves problem is to use the fa
t thatti
-ta
-toe has eight symmetries. Imagine a 
hip that has 18 inputs x1 : : : x9o1 : : : x9and three outputs (
; s;m), for \
enter," \side," and \middle," with the propertythat the desired fun
tions gj 
an be 
omputed by hooking together eight of the 
hipsappropriately:g1 = 
(x1x2x3x4x5x6x7x8x9o1o2o3o4o5o6o7o8o9)_ 
(x1x4x7x2x5x8x3x6x9o1o4o7o2o5o8o3o6o9);g2 = s(x1x2x3x4x5x6x7x8x9o1o2o3o4o5o6o7o8o9)_ s(x3x2x1x6x5x4x9x8x7o3o2o1o6o5o4o9o8o7);g3 = 
(x3x2x1x6x5x4x9x8x7o3o2o1o6o5o4o9o8o7)_ 
(x3x6x9x2x5x8x1x4x7o3o6o9o2o5o8o1o4o7);g4 = s(x1x4x7x2x5x8x3x6x9o1o4o7o2o5o8o3o6o9)_ s(x7x4x1x8x5x2x9x6x3o7o4o1o8o5o2o9o6o3); : : :g9 = 
(x9x8x7x6x5x4x3x2x1o9o8o7o6o5o4o3o2o1)_ 
(x9x6x3x8x5x2x7x4x1o9o6o3o8o5o2o7o4o1);and g5 is the OR of the m outputs from all eight 
hips.Design su
h a 
hip, using fewer than 2000 gates.68. [M25 ℄ Consider the n-bit � fun
tion �n(x1 : : : xn), whose value is the (x1 : : : xn)2thbit to the right of the most signi�
ant bit in the binary representation of �. Does themethod of exer
ise 4.3.1{39, whi
h des
ribes an eÆ
ient way to 
ompute arbitrary bitsof �, prove that C(�n) < 2n=n for suÆ
iently large n?69. [M24 ℄ Let the multilinear representation of f be�000 � �001xm � �010xj � �011xjxm � �100xi � �101xixm � �110xixj � �111xixjxm;where ea
h 
oeÆ
ient �l is a fun
tion of the variables fx1; : : : ; xng n fxi; xj ; xmg.a) Prove that the pairs (58) are \good" if and only if the 
oeÆ
ients satisfy�010�101 = �011�100; �101�110 = �100�111; and �110�011 = �111�010:b) For whi
h values (i; j;m) are the pairs bad, when f = (detX) mod 2? (See (60).)x 70. [M27 ℄ Let X be the 3 � 3 Boolean matrix (60). Find eÆ
ient 
hains for theBoolean fun
tions (a) (detX) mod 2; (b) [perX > 0℄; (
) [detX > 0℄.x 71. [M26 ℄ Suppose f(x) is equal to 0 with probability p at ea
h point x = x1 : : : xn,independent of its value at other points.a) What is the probability that the pairs (58) are good?b) What is the probability that bad pairs (58) exist?
) What is the probability that bad pairs (58) are found in at most t random trials?d) What is the expe
ted time to test 
ase (i; j;m), as a fun
tion of p, t, and n?
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7.1.2 BOOLEAN EVALUATION 3572. [M24 ℄ Extend the previous exer
ise to the 
ase of partial fun
tions, where f(x) =0 with probability p, f(x) = 1 with probability q, and f(x) = � with probability r.x 73. [20 ℄ If bad pairs (58) exist for all (i; j;m) with m 6= i 6= j 6= m, show that theinde
omposability of f 
an be dedu
ed after testing only �n2� well-
hosen triples (i; j;m).74. [25 ℄ Extend the idea in the previous exer
ise, suggesting a strategy for 
hoosingsu

essive triples (i; j;m) when using the method of Shen, M
Kellar, and Weiner.75. [20 ℄ What happens when the text's de
omposition pro
edure is applied to the\all-equal" fun
tion S0n(x1; : : : ; xn)?x 76. [M25 ℄ (D. Uhlig, 1974.) The purpose of this exer
ise is to prove the amazing fa
tthat, for 
ertain fun
tions f , the best 
hain to evaluate the Boolean fun
tionF (u1; : : : ; un; v1; : : : ; vn) = f(u1; : : : ; un) _ f(v1; : : : ; vn)
osts less than 2C(f); hen
e fun
tional de
omposition is not always a good idea.We let n = m + 2m and write f(i1; : : : ; im; x0; : : : ; x2m�1) = fi(x), where i isregarded as the number (i1 : : : im)2. Then (u1; : : : ; un) = (i1; : : : ; im; x0; : : : ; x2m�1),(v1; : : : ; vn) = (j1; : : : ; jm; y0; : : : ; y2m�1), and F (u; v) = fi(x) _ fj(y).a) Prove that a 
hain of 
ost O(n=logn)2 suÆ
es to evaluate the 2m + 1 fun
tionszl = x� (([l� i℄� [i� j ℄) ^ (x� y)); 0 � l � 2m;from given ve
tors i, j, x, and y; ea
h zl is a ve
tor of length 2m.b) Let gi(x) = fi(x)� fi�1(x) for 0 � i � 2m, where f�1(x) = f2m(x) = 0. Estimatethe 
ost of 
omputing the 2m + 1 values 
l = gl(zl), given the ve
tors zl, for0 � l � 2m.
) Let 
0l = 
l ^ ([i� j ℄� [l� i℄) and 
00l = 
l ^ ([i� j ℄� [j > l℄). Prove thatfi(x) = 
00 � 
01 � � � � � 
02m ; fj(y) = 
000 � 
001 � � � � � 
002m :d) Con
lude that C(F ) � 2n=n+O(2n(logn)=n2). (When n is suÆ
iently large, this
ost is de�nitely less than 2n+1=n, but fun
tions f exist with C(f) > 2n=n.)e) For 
larity, write out the 
hain for F when m = 1 and f(i; x0; x1) = (i ^ x0) _ x1.x 77. [35 ℄ (N. P. Red'kin, 1970.) Suppose a Boolean 
hain uses only the operationsAND, OR, or NOT; thus, every step is either xi = xj(i) ^ xk(i) or xi = xj(i) _ xk(i)or xi = �xj(i). Prove that if su
h a 
hain 
omputes either the \odd parity" fun
tionfn(x1; : : : ; xn) = x1 � � � � � xn or the \even parity" fun
tion �fn(x1; : : : ; xn) = 1� x1 �� � � � xn, where n � 2, the length of the 
hain is at least 4(n� 1).78. [26 ℄ (W. J. Paul, 1977.) Let f(x1; : : : ; xm; y0; : : : ; y2m�1) be any Boolean fun
tionthat equals yk whenever (x1 : : : xm)2 = k 2 S, for some given set S � f0; 1; : : : ; 2m�1g;we don't 
are about the value of f at other points. Show that C(f) � 2kSk�2 wheneverS is nonempty. (In parti
ular, when S = f0; 1; : : : ; 2m � 1g, the multiplexer 
hain ofexer
ise 39 is asymptoti
ally optimum.)79. [32 ℄ (C. P. S
hnorr, 1976.) Say that variables u and v are \mates" in a Boolean
hain if there is exa
tly one simple path between them in the 
orresponding binary treediagram. Two variables 
an be mates only if they are ea
h used only on
e in the 
hain;but this ne
essary 
ondition is not suÆ
ient. For example, variables 2 and 4 are matesin the 
hain for S123 in Fig. 5, but they are not mates in the 
hain for S2.a) Prove that a Boolean 
hain on n variables with no mates has 
ost � 2n� 2.b) Prove that C(f) = 2n� 3 when f is the all-equal fun
tion S0n(x1; : : : ; xn).
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36 COMBINATORIAL ALGORITHMS (F0C) 7.1.2x 80. [M27 ℄ (L. J. Sto
kmeyer, 1977.) Another notation for symmetri
 fun
tions issometimes 
onvenient: If � = a0a1 : : : an is any binary string, let S�(x) = a�x. Forexample, hx1x2x3i = S0011 and x1 � x2 � x3 = S0101 in this notation. Noti
e thatS�(0; x2; : : : ; xn) = S�0(x2; : : : ; xn) and S�(1; x2; : : : ; xn) = S0�(x2; : : : ; xn), where �0and 0� stand respe
tively for � with its last or �rst element deleted. Also,S�(f(x3; : : : ; xn); �f(x3; : : : ; xn); x3; : : : ; xn) = S0�0(x3; : : : ; xn)when f is any Boolean fun
tion of n� 2 variables.a) A parity fun
tion has a0 6= a1 6= a2 6= � � � 6= an. Assume that n � 2. Prove that ifS� is not a parity fun
tion and S0�0 isn't 
onstant, thenC(S�) � max(C(S�0)+2; C(S0�)+2; min(C(S�0)+3; C(S0�)+3; C(S0�0)+5)):b) What lower bounds on C(Sk) and C(S�k) follow from this result, when 0 � k � n?81. [23 ℄ (M. Snir, 1986.) Show that any 
hain of 
ost 
 and depth d for the pre�xproblem of exer
ise 36 has 
+ d � 2n� 2.x 82. [M23 ℄ Explain the logi
al senten
es (62){(70). Whi
h of them are true?83. [21 ℄ If there's a Boolean 
hain for f(x1; : : : ; xn) that 
ontains p 
analizing oper-ations, show that C(f) < (p+ 1)(n+ p=2).84. [M20 ℄ A monotone Boolean 
hain is a Boolean 
hain in whi
h every operator Æiis monotone. The length of a shortest monotone 
hain for f is denoted by C+(f). Ifthere's a monotone Boolean 
hain for f(x1; : : : ; xn) that 
ontains p o

urren
es of ^and q o

urren
es of _, show that C+(f) < min((p+ 1)(n+ p=2); (q + 1)(n+ q=2)).x 85. [M22 ℄ Let Mn be the set of all monotone fun
tions of n variables. If L is a familyof fun
tions 
ontained in Mn, letx t y =^fz 2 L j z � x _ yg and x u y =^fz 2 L j z � x ^ yg:We 
all L \legitimate" if it in
ludes the 
onstant fun
tions 0 and 1 as well as theproje
tion fun
tions xj for 1 � j � n, and if x t y 2 L, x u y 2 L whenever x; y 2 L.a) When n = 3 we 
an write M3 = f00, 01, 03, 05, 11, 07, 13, 15, 0f, 33, 55, 17, 1f,37, 57, 3f, 5f, 77, ffg, representing ea
h fun
tion by its hexade
imal truth table.There are 215 families L su
h that f00; 0f; 33; 55; ffg � L � M3; how many ofthem are legitimate?b) If A is a subset of f1; : : : ; ng, let dAe = Wa2A xa; also let d1e = 1. Suppose Ais a family of subsets of f1; : : : ; ng that 
ontains all sets of size � 1 and is 
losedunder interse
tion; in other words, A\B 2 A whenever A 2 A and B 2 A. Provethat the family L = fdAe j A 2 A [ f1gg is legitimate.
) Let (xn+1; : : : ; xn+r) be a monotone Boolean 
hain (1). Suppose (x̂n+1; : : : ; x̂n+r)is obtained from the same Boolean 
hain, but with every operator ^ 
hanged to uand with every operator _ 
hanged to t, with respe
t to some legitimate family L.Prove that, for n+ 1 � l � n+ r, we must havex̂l � xl _ l_i=n+1fx̂i � (x̂j(i) _ x̂k(i)) j Æi = _g;
xl � x̂l _ l_i=n+1fx̂i � (x̂j(i) ^ x̂k(i)) j Æi = ^g:
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7.1.2 BOOLEAN EVALUATION 3786. [HM37 ℄ A graph G on verti
es f1; : : : ; ng 
an be de�ned by N = �n2� Booleanvariables xuv for 1 � u < v � n, where xuv = [u���v in G℄. Let f be the fun
tionf(x) = [G 
ontains a triangle℄; for example, when n = 4, f(x12; x13; x14; x23; x24; x34) =(x12 ^ x13 ^ x23)_ (x12 ^ x14 ^ x24)_ (x13 ^ x14 ^ x34)_ (x23 ^ x24 ^ x34). The purposeof this exer
ise is to prove that the monotone 
omplexity C+(f) is 
(n=logn)3.a) If uj ��� vj for 1 � j � r in a graph G, 
all S = ffu1; v1g; : : : ; fur; vrgg an r-family, and let �(S) = S1�i<j�r(fui; vig\fuj ; vjg) be the elements of its pairwiseinterse
tions. Say that G is r-
losed if we have u���v whenever �(S) � fu; vg forsome r-family S. It is strongly r-
losed if, in addition, we have j�(S)j � 2 for allr-families S. Prove that a strongly r-
losed graph is also strongly (r + 1)-
losed.b) Prove that the 
omplete bigraph Km;n is strongly r-
losed when r > max(m;n).
) Prove that a strongly r-
losed graph has at most (r � 1)2 edges.d) Let L be the family of fun
tions f1g [ fdGe j G is a strongly r-
losed graph onf1; : : : ; ngg. (See exer
ise 85(b); we regard G as a set of edges. For example, whenthe edges are 1���3, 1���4, 2���3, 2���4, we have dGe = x13 _ x14 _ x23 _ x24.)Is L legitimate?e) Let xN+1, : : : , xN+p+q = f be a monotone Boolean 
hain with p ^-steps and q_-steps, and 
onsider the modi�ed 
hain x̂N+1, : : : , x̂N+p+q = f̂ based on thefamily L in (d). If f̂ 6= 1, show that 2(r� 1)3p+ (r� 1)2(n� 2) � �n3�. Hint: Usethe se
ond formula in exer
ise 85(
).f) Furthermore, if f̂ = 1 we must have r2q � 2r�1.g) Therefore p = 
(n=logn)3. Hint: Let r � 6 lgn and apply exer
ise 84.87. [M20 ℄ Show that when nonmonotoni
 operations are permitted, the triangle fun
-tion of exer
ise 86 has 
ost C(f) = O(nlg 7(logn)2) = O(n2:81). Hint: A graph has atriangle if and only if the 
ube of its adja
en
y matrix has a nonzero diagonal.
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38 ANSWERS TO EXERCISES 7.1.2SECTION 7.1.21. ((x1 _ x4) ^ x2) � (x1 _ x3).2. (a) (w � (x ^ y))� ((x� y) ^ z); (b) (w ^ (x _ y)) ^ ((x ^ y) _ z).3. [Doklady Akademii Nauk SSSR 115 (1957), 247{248.℄ Constru
t a k � n matrixwhose rows are the ve
tors x where f(x) = 1. By permuting and/or 
omplementingvariables, we may assume that the top row is 1 : : : 1 and that the 
olumns are sorted.Suppose there are l distin
t 
olumns. Then f = g ^ h, where g is the AND of theexpressions (xj�1 � xj) over all 1 < j � n su
h that 
olumn j � 1 equals 
olumn j,and h is the OR of k minterms of length l, using one variable from ea
h group of equal
olumns. For example, if n = 8 and if f is 1 at the k = 3 points 11111111, 00001111,00110111, then l = 4 and f(x) equals (x1 � x2) ^ (x3 � x4) ^ (x6 � x7) ^ (x7 � x8) ^((x1^x3^x5^x6)_ (�x1^ �x3^x5^x6)_ (�x1^x3^ �x5^x6)). The length of this formulain general is 2n+ (k � 2)l � 1, and we have l � 2k�1.Noti
e that, if k is large, we get shorter formulas by writing f(x) as a disjun
tionf1(x) _ � � � _ fr(x), where ea
h fj has most dk=re 1s. ThusL(f) � minr�1 (r � 1 + (2n+ dk=r � 2e2dk=r�1e)r):4. The �rst inequality is obvious, be
ause a binary tree of depth d has at most1 + 2 + � � �+ 2d�1 = 2d � 1 internal nodes.The hint follows be
ause we 
an �nd a minimal subtree of size � br=3
. Its size s isat most 1+2(br=3
�1). Therefore we 
an write f = (g? f1: f0), where g is a subformulaof size s; f0 and f1 are the formulas of size r� s� 1 obtained when that subformula isrepla
ed by 0 and 1, respe
tively.Let d(r) = maxfD(f) j L(f) = r g. Sin
e the mux fun
tion has depth 2, and sin
emax(s; r � s � 1) < d 2r3 e, we have d(r) � 2 + d(d 2r3 e � 1) for r � 3, and the resultfollows by indu
tion on r. [Hawaii International Conf. System S
i. 4 (1971), 525{527.℄5. Let g0 = 0, g1 = x1, and gj = xj ^ (xj�1 _ gj�2) for j � 2. Then Fn = gn _ gn�1,with 
ost 2n� 2 and depth n. [These fun
tions gj also play a prominent role in binaryaddition; see exer
ises 42 and 44 for ways to 
ompute them with depth O(logn).℄6. True: Consider the 
ases y = 0 and y = 1.7. x̂5 = x1_x4, x̂6 = x̂2^x̂5, x̂7 = x1_x3, x̂8 = x̂6�x̂7. (The original 
hain 
omputesthe \random" fun
tion (6); see exer
ise 1. The new 
hain 
omputes the normalizationof that fun
tion, namely its 
omplement.)8. The desired truth table 
onsists of blo
ks of 2n�k 0s alternating with blo
ks of2n�k 1s, as in (7). Therefore, if we multiply by 22n�k + 1 we get xk + (xk � 2n�k),whi
h is all 1s.9. When �nding L(f) = 1 in step L6, we 
an store g and h in a re
ord asso
iatedwith f . Then a re
ursive pro
edure will be able to 
onstru
t a minimum-length formulafor f from the respe
tive formulas for g and h.10. In step L3, use k = r�1 instead of k = r�1� j. Also 
hange L to D everywhere.11. The only subtle point is that j should de
rease in step U3; then we'll never have�(g)&�(h) 6= 0 when j = 0, so all 
ases of 
ost r�1 will be dis
overed before we beginto look at list r � 1.U1. [Initialize.℄ Set U(0)  �(0)  0 and U(f)  1 for 1 � f < 22n�1. Thenset U(xk)  �(xk)  0 and put xk into list 0, as in step L1. Also set
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7.1.2 ANSWERS TO EXERCISES 39U(xj Æ xk)  1, set �(xj Æ xk) to an appropriate bit ve
tor of weight 1, andput xj Æ xk into list 1, for 1 � j < k � n and all �ve normal operators Æ.Finally set 
 22n�1 � 5�n2�� n� 1.U2. [Loop on r.℄ Do step U3 for r = 2, 3, : : : , while 
 > 0.U3. [Loop on j and k.℄ Do step U4 for j = b(r � 1)=2
, b(r � 1)=2
 � 1, : : : , andk = r � 1� j, while j � 0.U4. [Loop on g and h.℄ Do step U5 for all g in list j and all h in list k; if j = k,restri
t h to fun
tions that follow g in list k.U5. [Loop on f .℄ If �(g)&�(h) 6= 0, set u r�1 and v  �(g)&�(h); otherwiseset u  r and v  �(g) j �(h). Then do step U6 for f = g & h, f = �g & h,f = g & �h, f = g j h, and f = g � h.U6. [Update U(f) and �(f).℄ If U(f) = 1, set 
  
 � 1, �(f)  v, and put finto list u. Otherwise if U(f) > u, set �(f)  v and move f from list U(f)to list u. Otherwise if U(f) = u, set �(f) �(f) j v.12. x4 = x1 � x2, x5 = x3 ^ x2, x6 = x2 ^ �x4, x7 = x5 _ x6.13. f5 = 01010101 (x3); f4 = 01110111 (x2 _ x3); f3 = 01110101 ((�x1 ^ x2) _ x3);f2 = 00110101 (x1?x3:x2); f1 = 00010111 (hx1x2x3i).14. For 1 � j � n, �rst 
ompute t  (g � (g � 2n�j)) & xj , t  t � (t � 2n�j),where xj is the truth table (11); then for 1 � k � n and k 6= j, the desired truth table
orresponding to xj  xj Æ xk is g � (t& ((xj Æ xk)� xj)).(The 5n(n � 1) masks (xj Æ xk) � xj are independent of g and 
an be 
omputedin advan
e. The same idea applies if we allow more general 
omputations of the formxj(i)  xk(i) Æi xl(i), with 5n2(n� 1) masks (xk Æ xl)� xj .)15. Remarkably asymmetri
al ways to 
ompute symmetri
al fun
tions:(a) x1  x1 � x2;x3  x3 � x4;x1  x1 � x3;x2  x2 � x4;x3  x3 _ x2;x3  x3 ^ �x1:
(b) x1  x1 � x2;x2  x2 ^ �x1;x3  x3 � x4;x4  x4 ^ x1;x2  �x2 ^ x3;x2  x2 � x1;x2  x2 ^ �x4:

(
) x1  x1 � x2;x2  x2 � x3;x2  x2 _ x1;x1  x1 � x4;x1  x1 ^ x3;x2  x2 ^ �x1;x2  x2 � x4:16. A 
omputation that uses only � and 
omplementation produ
es nothing butaÆne fun
tions (see exer
ise 7.1.1{132). Suppose f(x) = f(x1; : : : ; xn) is a non-aÆnefun
tion 
omputable in minimum memory. Then f(x) has the form g(Ax + 
) whereg(y1; y2; : : : ; yn) = g(y1 ^ y2; y2; : : : ; yn), for some nonsingular n � n matrix A of 0sand 1s, where x and 
 are 
olumn ve
tors and the ve
tor operations are performedmodulo 2; in this formula the matrix A and ve
tor 
 a

ount for all operations xi  xi�xj and/or permutations and 
omplementations of 
oordinates that o

ur after themost re
ent non-aÆne operation that was performed. We will exploit the fa
t thatg(0; 0; y3; : : : ; yn) = g(1; 0; y3; : : : ; yn).Let � and � be the �rst two rows of A; also let a and b be the �rst two elementsof 
. Then if Ax + 
 � y (modulo 2) we have y1 = y2 = 0 if and only if � � x � a and� � x � b. Exa
tly 2n�2 ve
tors x satisfy this 
ondition, and for all su
h ve
tors wehave f(x) = f(x� w), where Aw � (1; 0; : : : ; 0)T .Given �, �, a, b, and w, with � 6= (0; : : : ; 0), � 6= (0; : : : ; 0), � 6= �, and � � w � 1(modulo 2), there are 22n�2n�2 fun
tions f with the property that f(x) = f(x � w)

39



40 ANSWERS TO EXERCISES 7.1.2whenever � � xmod 2 = a and � � xmod 2 = b. Therefore the total number of fun
tions
omputable in minimum memory is at most 2n+1 (for aÆne fun
tions) plus(2n � 1)(2n � 2)22(2n�1)(22n�2n�2) < 22n�2n�2+3n+1:17. Let f(x1; : : : ; xn) = g(x1; : : : ; xn�1) � (h(x1; : : : ; xn�1) ^ xn) as in 7.1.1{(16).Representing h in CNF, form the 
lauses one by one in x0 and AND them into xn,obtaining h^xn. Representing g as a sum (mod 2) of 
onjun
tions, form the su

essive
onjun
tions in x0 and XOR them into xn when ready.(It appears to be impossible to evaluate all fun
tions inside of n+1 registers if wedisallow the non-
analizing operators � and �. But n + 2 registers 
learly do suÆ
e,even if we restri
t ourselves to the single operator ^.)18. As mentioned in answer 14, we should extend the text's de�nition of minimum-memory 
omputation to allow also steps like xj(i)  xk(i) Æi xl(i), with k(i) 6= j(i) andl(i) 6= j(i), be
ause that will give better results for 
ertain fun
tions that depend ononly four of the �ve variables. Then we �nd Cm(f) = (0; 1; : : : ; 13; 14) for respe
tively(2, 2, 5, 20, 93, 389, 1960, 10459, 47604, 135990, 198092, 123590, 21540, 472, 0) 
lassesof fun
tions : : : leaving 75,908 
lasses (and 575,963,136 fun
tions) for whi
h Cm(f) =1be
ause they 
annot be evaluated at all in minimum memory. The most interestingfun
tion of that kind is probably (x1 ^x2)_ (x2 ^x3)_ (x3 ^x4)_ (x4 ^x5)_ (x5 ^x1),whi
h has C(f) = 7 but Cm(f) = 1. Another interesting 
ase is (((x1 _ x2) � x3) _((x2 _ �x4)^x5))^ ((x1�x2)_x3 _x4), for whi
h C(f) = 8 and Cm(f) = 13. One wayto evaluate that fun
tion in eight steps is x6 = x1 _ x2, x7 = x1 _ x4, x8 = x2 � x7,x9 = x3 � x6, x10 = x4 � x9, x11 = x5 _ x9, x12 = x8 ^ x10, x13 = x11 ^ �x12.19. If not, the left and right subtrees of the root must overlap, sin
e 
ase (i) fails.Ea
h variable must o

ur at least on
e as a leaf, by hypothesis. At least two variablesmust o

ur at least twi
e as leaves, sin
e 
ase (ii) fails. But we 
an't have n+ 2 leaveswith r � n+ 1 internal nodes, unless the subtrees fail to overlap.20. Now Algorithm L (with `f = g� h' omitted in step L5) shows that some formulasmust have length 15; and even the footprint method of exer
ise 11 does no betterthan 14. To get truly minimum 
hains, the 25 spe
ial 
hains for r = 6 in the text mustbe supplemented by �ve others that 
an no longer be ruled out, namely
1 12 234 1 12 23 4 1 12 23 4 1 12 234 1 12 234 ;

and when r = (7; 8; 9) we must also 
onsider respe
tively (653; 12387; 225660) additionalpotential 
hains that are not spe
ial 
ases of the top-down and bottom-up 
onstru
tions.Here are the resulting statisti
s, for 
omparison with Table 1:C
(f) Class-es Fun
-tions U
(f) Class-es Fun
-tions L
(f) Class-es Fun
-tions D
(f) Class-es Fun
-tions0 2 10 0 2 10 0 2 10 0 2 101 1 48 1 1 48 1 1 48 1 1 482 2 256 2 2 256 2 2 256 2 7 6843 7 940 3 7 940 3 7 940 3 59 170644 9 2336 4 9 2336 4 7 2048 4 151 476345 24 6464 5 21 6112 5 20 5248 5 2 966 30 10616 6 28 9664 6 23 8672 6 0 0
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7.1.2 ANSWERS TO EXERCISES 417 61 18984 7 45 15128 7 37 11768 7 0 08 45 17680 8 40 14296 8 27 10592 8 0 09 37 7882 9 23 8568 9 33 11536 9 0 010 4 320 10 28 5920 10 16 5472 10 0 011 0 0 11 6 1504 11 30 6304 11 0 012 0 0 12 5 576 12 3 960 12 0 013 0 0 13 3 144 13 8 1472 13 0 014 0 0 14 2 34 14 2 96 14 0 015 0 0 15 0 0 15 4 114 15 0 0The two fun
tion 
lasses of depth 5 are represented by S24(x1; x2; x3; x4) and x1 �S2(x2; x3; x4); and those two fun
tions, together with S2(x1; x2; x3; x4) and the parityfun
tion S13(x1; x2; x3; x4) = x1 � x2 � x3 � x4, have length 15. Also U
(S24) =U
(S13) = 14. The four 
lasses of 
ost 10 are represented by S14(x1; x2; x3; x4),S24(x1; x2; x3; x4), (x4? x1 � x2 � x3: hx1x2x3i), and [(x1x2x3x4)2 2f0; 1; 4; 7; 10; 13g℄.(The third of these, in
identally, is the 
omplement of (20), \Harvard's hardest 
ase.")21. (The authors stated that their table entries \should be regarded only as the moste
onomi
al operators known to the present writers.")22. �(x1x2x3x4x5) = 3 if and only if �(x1x2x3x4) 2 f2; 3g and �(x1x2x3x4x5) is odd.Similarly, S2(x1; x2; x3; x4; x5) = S3(�x1; �x2; �x3; �x4; �x5) in
orporates S12(x1; x2; x3; x4):
+ + _ +_ ^+ ++ 1 23 3 41 24 5

S2 =

23. We need only 
onsider the 32 normal 
ases, as in Fig. 5, sin
e the 
omplement ofa symmetri
 fun
tion is symmetri
. Then we 
an use re
e
tion, like S12(x) = S34(�x),possibly together with 
omplementation, like S2345(x) = �S01(x) = �S45(�x), to dedu
emost of the remaining 
ases. Of 
ourse S1, S135, and S12345 trivially have 
ost 4. Thatleaves only S1234(x1; x2; x3; x4; x5) = (x1�x2)_ (x2�x3)_ (x3�x4)_ (x4�x5), whi
his dis
ussed for general n in exer
ise 79.24. As noted in the text, this 
onje
ture holds for n � 5.25. It is 22n�1�n�1, the number of nontrivial normal fun
tions. (In any normal 
hainof length r that doesn't in
lude all of these fun
tions, xj Æ xk will be a new fun
tionfor some j and k in the range 1 � j; k � n+ r and some normal binary operator Æ; sowe 
an 
ompute a new fun
tion with every new step, until we've got them all.)26. False. For example, if g = S13(x1; x2; x3) and h = S23(x1; x2; x3), then C(gh) = 5is the 
ost of a full adder; but f = S23(x0; x1; x2; x3) has 
ost 6 by Fig. 4.27. Yes: The operations `x2  x2 � x1, x1  x1 � x3, x1  x1 ^ �x2, x1  x1 � x3,x2  x2 � x3' transform (x1; x2; x3) into (z1; z0; x3).28. Let v0 = v00 = v� (x� y); u0 = ((v� y)�(x� y))�u, u00 = ((v� y)_ (x� y))�u.Thus we 
an set u0 = 0, v0 = x1, uj = ((vj�1�x2j+1)_(x2j�x2j+1))�uj�1 if j is odd,uj = ((vj�1�x2j+1)�(x2j �x2j+1))�uj�1 if j is even, and vj = vj�1� (x2j �x2j+1),obtaining (ujvj)2 = (x1 + � � � + x2j+1) mod 4 for 1 � j � bn=2
. Set xn+1 = 0 if n iseven. The fun
tion [(x1 + � � �+ xn) mod 4=0℄ = �ubn=2
 ^ �vbn=2
 is thereby 
omputedin b5n=2
 � 2 steps.
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42 ANSWERS TO EXERCISES 7.1.2This 
onstru
tion is due to L. J. Sto
kmeyer, who proved that it is nearly optimal.In fa
t, the result of exer
ise 80 together with Figs. 4 and 5 shows that it is at mostone step longer than a best possible 
hain, for all n � 5.In
identally, the analogous formula u000 = ((v � y) ^ (x� y))� u yields (u000v0)2 =((uv)2+x�y) mod 4. The simpler-looking fun
tion ((uv)2+x+y) mod 4 
osts 6, not 5.29. To get an upper bound, assume that ea
h full adder or half adder in
reases thedepth by 3. If there are ajd bits of weight 2j and depth 3d, we s
hedule at most dajd=3esubsequent bits of weights f2j ; 2j+1g and depth 3(d+ 1). It follows by indu
tion thatajd � �dj�3�dn+ 4. Hen
e ajd � 5 when d � log3=2 n, and the overall depth is at most3 log3=2 n+3. (Curiously, the a
tual depth turns out to be exa
tly 100 when n = 107.)30. As usual, let �n denote the sideways addition of the bits in the binary represen-tation of n itself. Then s(n) = 5n� 2�n� 3blgn
 � 3.31. After sideways addition in s(n) < 5n steps, an arbitrary fun
tion of (zblgn
; : : : ; z0)
an be evaluated in � 2n=lgn steps at most, by Theorem L. [See O. B. Lupanov,Doklady Akademii Nauk SSSR 140 (1961), 322{325.℄32. Bootstrap: First prove by indu
tion on n that t(n) � 2n+1.33. False, on a te
hni
ality: If, say, N = pn, at least n steps are needed. A 
orre
tasymptoti
 formula N + O(pN ) + O(n) 
an, however, be proved by �rst noting thatthe text's method gives N +O(pN ) when N � 2n�1; otherwise, if blgN
 = n� k� 1,we 
an use O(n) operations to AND the quantity �x1 ^ � � � ^ �xk to the other variablesxk+1, : : : , xn, then pro
eed with n redu
ed by k.(One 
onsequen
e is that we 
an 
ompute the symmetri
 fun
tions fS1; S2; : : : ; Sngwith 
ost s(n) + n+O(pn ) = 6n+O(pn ) and depth O(logn).)34. Say that an extended priority en
oder has n + 1 = 2m inputs x0x1 : : : xn andm+ 1 outputs y0y1 : : : ym, where y0 = x0 _ x1 _ � � � _ xn. If Q0m and Q00m are extendeden
oders for x00 : : : x0n and x000 : : : x00n, then Qm+1 works for x00 : : : x0nx000 : : : x00n if we de�ney0 = y00 _ y000 , y1 = y00, y2 = y1? y001 : y01, : : : , ym+1 = y1? y00m: y0m. If P 0m is an ordinarypriority en
oder for x01 : : : x0n, we get Pm+1 for x01 : : : x0nx000 : : : x00n in a similar way.Starting with m = 2 and y2 = x3 _ (x1 ^ �x2), y1 = x2 _ x3, y0 = x0 _ x1 _ y1,this 
onstru
tion yields Pm and Qm of 
osts pm and qm, where p2 = 3, q2 = 5, andpm+1 = 3m+ pm + qm, qm+1 = 3m+ 1 + 2qm for m � 2. Consequently pm = qm �mand qm = 15 � 2m�2 � 3m� 4 � 3:75n.35. If n = 2m, 
ompute x1^x2, : : : , xn�1^xn, then re
ursively form x1^� � �^x2k�2^x2k+1^� � �^xn for 1 � k � m, and �nish in n more steps. If n = 2m�1, use this 
hainfor n + 1 elements; three steps 
an be eliminated by setting xn+1  1. [I. Wegener,The Complexity of Boolean Fun
tions (1987), exer
ise 3.25. The same idea 
an be usedwith asso
iative and 
ommutative operator in pla
e of ^.℄36. Re
ursively 
onstru
t Pn(x1; : : : ; xn) and Qn(x1; : : : ; xn) as follows, where Pn hasoptimum depth and Qn has depth � dlg ne+1: The 
ase n = 1 is trivial; otherwise Pnis obtained from Q0r(x1; : : : ; xr) and P 00s (xr+1; : : : ; xn), where r = dn=2e and s = bn=2
,by setting yj = y0j for 1 � j � r, yj = y0r ^ y00j�r for r < j � n. And Qn is obtainedfrom either P 0r(x1 ^ x2; : : : ; xn�1 ^ xn) or P 0r(x1 ^ x2; : : : ; xn�2 ^ xn�1; xn) by settingy2j = y0j , y2j+1 = y0j ^ x2j+1 for 1 � j < s, and y2s = y0s, yn = y0r.To prove validity we must show also that output yn of Qn has depth dlg ne; noti
ethat Q2m+1 would fail if we began it with P 0m(x1^x2; : : : ; x2m�1^x2m) instead of withP 0m+1(x1 ^ x2; : : : ; x2m�1 ^ x2m; x2m+1), ex
ept when m is a power of 2.
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7.1.2 ANSWERS TO EXERCISES 43These 
al
ulations 
an be performed in minimum memory, setting xk(i)  xj(i) ^xk(i) at step i for some indi
es j(i) < k(i). Thus we 
an illustrate the 
onstru
tionwith diagrams analogous to the diagrams for sorting networks. For example,
P8 = (delay 3)(delay 3)(delay 3)(delay 3)(delay 2)(delay 2)(delay 1)(delay 0) ; Q8 = (delay 3)(delay 4)(delay 3)(delay 3)(delay 2)(delay 2)(delay 1)(delay 0) :

The 
osts pn and qn satisfy pn = bn=2
+ qdn=2e+ pbn=2
, qn = 2bn=2
� 1+ pdn=2ewhen n > 1; for example, (p1; : : : ; p7) = (q1; : : : ; q7) = (0; 1; 2; 4; 5; 7; 9). Setting �pn =4n � pn and �qn = 3n � qn leads to simpler formulas, whi
h prove that pn < 4n andqn < 3n: �qn = �pdn=2e + [n even℄; �p4n = �p2n + �pn + 1, �p4n+1 = �p2n + �pn+1 + 1, �p4n+2 =�p2n+1+ �pn+1, �p4n+3 = �p4n+2+2. In parti
ular, 1+ �p2m = Fm+5 is a Fibona

i number.[See JACM 27 (1980), 831{834. Slightly better 
hains are obtained if we use theotherwise-forbidden P 0bn=2
 
onstru
tion for Qn when n = 2m +1, if we repla
e P5 andP6 by Q5 and Q6, and if we then repla
e (P9; P10; P11; P17) by (Q9; Q10; Q11; Q17).℄Noti
e that this 
onstru
tion works in general if we repla
e `^' by any asso
iativeoperator. In parti
ular, the sequen
e of pre�xes x1� � � � �xk for 1 � k � n de�nes the
onversion from Gray binary 
ode to radix-2 integers, Eq. 7.2.1.1{(10).37. The 
ase m = 15, n = 16 is illustrated at the right.(a) Let xi::j denote the original value of xi ^ � � � ^ xj . Whenever thealgorithm sets xk  xj ^ xk, one 
an show that the previous value of xkwas xj+1::k. After step S1, xk is xf(k)+1::k where f(k) = k & (k � 1) for1 � k < m and f(m) = 0. After step S2, xk is x1::k for 1 � k � m.(b) The 
ost of S1 is m � 1, the 
ost of S2 is m � 1 � dlgme, andthe 
ost of S3 is n � m. The �nal delay of xk is blg k
 + � k � 1 for1 � k < m, and it is dlgme + k �m for m � k � n. So the maximumdelay for fx1; : : : ; xm�1g turns out to be g(m) = m � 1 for m < 4,g(m) = blgm
+blg m3 
 for m � 4. We have 
(m;n) = m+n�2�dlgme,d(m;n) = max(g(m); dlgme+ n�m). Hen
e 
(m;n) + d(m;n) = 2n� 2whenever n � m+ g(m)� dlgme.(
) A table of values reveals that d(n) = dlg ne for n < 8, and d(n) = blg(n �blg n
 + 3)
 + blg 23 (n � blg n
 + 3)
 � 1 for n � 8. Stating this another way, wehave d(n) > d(n � 1) > 0 if and only if n = 2k + k � 3 or 2k + 2k�1 + k � 3 forsome k > 1. The minimum o

urs for m = n when n < 8; otherwise it o

urs form = n� b 23 (n� blgn
+ 3)
+ 2� [n = 2k + k � 3 for some k℄.(d) Set m  m(n; d), where m(n; d(n)) is de�ned in the previous senten
e andm(n; d) = m(n� 1; d� 1) when d > d(n). [See J. Algorithms 7 (1986), 185{201.℄38. (a) From top to bottom, fk(x1; : : : ; xn) is an elementary symmetri
 fun
tion also
alled the threshold fun
tion S�k(x1; : : : ; xn). (See exer
ise 5.3.4{28, Eq. 7.1.1{(90).)(b) After 
al
ulating fS1; : : : ; Sng in � 6n steps as in answer 33, we 
an apply themethod of exer
ise 37 to �nish in 2n further steps.But it is more interesting to design a Boolean 
hain spe
i�
ally for the 
omputationof the 2m + 1 threshold fun
tions gk(x1; : : : ; xm) = [(x1 : : : xm)2� k ℄ for 0 � k � 2m.Sin
e [(x0x00)2 � (y0y00)2℄ = [(x0)2� (y0)2+1℄ _ ([(x0)2� (y0)2 ℄ ^ [(x00)2� (y00)2 ℄), adivide-and-
onquer 
onstru
tion analogous to a binary de
oder solves this problemwith a 
ost at most 2t(m).
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44 ANSWERS TO EXERCISES 7.1.2Furthermore, if 2m�1 � n < 2m, the 
ost u(n) of 
omputing fg1; : : : ; gng by thismethod turns out to be 2n+O(pn ), and it is quite reasonable when n is small:n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20u(n) = 0 1 2 4 7 7 8 12 15 17 19 19 20 21 22 27 32 34 36 36Starting with sideways addition, we 
an sort n Boolean values in s(n) + u(n) � 7nsteps. A sorting network, whi
h 
osts 2Ŝ(n), is better when n = 4 but loses whenn � 8. [See 5.3.4{(11); D. E. Muller and F. P. Preparata, JACM 22 (1975), 195{201.℄39. [IEEE Transa
tions C-29 (1980), 737{738.℄ The identityMr+s(x1; : : : ; xr; xr+1; : : : ; xr+s; y0; : : : ; y2r+s�1) =Mr(x1; : : : ; xr; y00; : : : ; y02r�1);where y0j = W2s�1k=0 (dk ^ y2sj+k) and dk is the kth output of an s-to-2s de
oder appliedto (xr+1; : : : ; xr+s), shows that C(Mr+s) � C(Mr)+2r+s+2r(2s�1)+t(s), where t(s)is the 
ost (30) of the de
oder. The depth is D(Mr+s) = max(Dx(Mr+s);Dy(Mr+s)),where Dx and Dy denote the maximum depth of the x and y variables; we haveDx(Mr+s) � max(Dx(Mr); 1+ s+ dlg se+Dy(Mr)) and Dy(Mr+s) � 1+ s+Dy(Mr).Taking r = dm=2e and s = bm=2
 yields C(Mm) � 2m+1 + O(2m=2), Dy(Mm) �m+ 1 + dlgme, and Dx(Mm) � Dy(Mm) + dlgme.40. We 
an, for example, let fnk(x) = Wn+1�kj=1 (lj(x) ^ rj+k�1(x)), wherelj(x) = �xj ; if j mod k = 0,xj ^ lj+1(x); if j mod k 6= 0, for 1 � j � n� (nmod k);rj(x) = � 1; if j mod k = 0,xj ^ rj�1(x); if j mod k 6= 0, for k � j � n:The 
ost is 4n� 3k � 3bnk 
� bn�1k 
+ 2� (nmod k).A re
ursive solution is preferable when n is small or k is small: Observe that
fnk(x) = 8>><>>:

xn�k+1 ^ � � � ^ xk ^f(2n�2n)(n�k)(x1; : : : ; xn�k; xk+1; : : : ; xn); for k < n < 2k;fb(n+k)=2
k(x1; : : : ; xb(n+k)=2
) _fb(n+k�1)=2
k(xb(n�k)=2
+1; : : : ; xn); for n � 2k.The 
ost of this solution 
an be shown to equal n� 1 +Pn�kj=1 blg j
 when k � n < 2k,and it lies asymptoti
ally between (m+�k�1)n+O(km) and (m+2�2=�k)n+O(km)as n!1, where m = blg k
 and 1 < �k = (k + 1)=2m � 2.A marriage of these methods is better yet; the optimum 
ost is unknown.41. Let 
(m) be the 
ost of 
omputing both (x)2 + (y)2 and (x)2 + (y)2 + 1 by the
onditional-sum method when x and y have n = 2m bits, and let 
0(m) be the 
ost ofthe simpler problem of 
omputing just (x)2+(y)2. Then 
(m+1) = 2
(m)+6 �2m+2,
0(m + 1) = 
(m) + 
0(m) + 3 � 2m + 1. (Bit zn of the sum 
osts 1; but bits zk forn < k � 2n+ 1 
ost 3, be
ause they have the form 
? ak: bk where 
 is a 
arry bit.) Ifwe start with n = 1 and 
(0) = 3, 
0(0) = 2, the solution is 
(m) = (3m + 5)2m � 2,
0(m) = (3m + 2)2m � m. But improved 
onstru
tions for the 
ase n = 2 allow usto start with 
(1) = 11 and 
0(1) = 7; then the solution is 
(m) = (3m + 72 )2m � 2,
0(m) = (3m+ 12 )2m�m+1. In either 
ase the depth is 2m+1. [See J. Sklansky, IRETransa
tions EC-9 (1960), 226{231.℄
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7.1.2 ANSWERS TO EXERCISES 4542. (a) Sin
e hxkyk
ki = uk _ (vk ^ 
k), we 
an use (26) and indu
tion.(b) Noti
e that Uk+1k = uk and V k+1k = vk; use indu
tion on j � i. [See A. Wein-berger and J. L. Smith, IRE Transa
tions EC-5 (1956), 65{73; R. P. Brent and H. T.Kung, IEEE Transa
tions C-31 (1982), 260{264.℄(
) First, for l = 1, 2, : : : , m�1, and for 1 � k � n, 
ompute V ki for all multiples iof h(l) in the range kl � i � kl+1, where kl = h(l)b(k � 1)=h(l)
 denotes the largestmultiple of h(l) that is less than k. For example, when l = 2 and k = 99, we 
omputeV 9996 , V 9988 = V 9996 ^ V 9688 , V 9980 = V 9988 ^ V 8880 , : : : , V 9964 = V 9972 ^ V 7264 ; this is a pre�x
omputation using the values V 9996 , V 9688 , V 8880 , : : : , V 7264 that were 
omputed when l = 2.Using the method of exer
ise 36, step l adds at most l levels to the depth, and itrequires a total of (p1 + p2 + � � �+ p2l)n=2l = O(2ln) gates.Then, again for l = 1, 2, : : : , m� 1, and for 1 � k � n, 
ompute Uki for i = kl+1,using the \unrolled" formulaUkkl+1 = Ukkl _ _kl>j�kl+1h(l)nj (V kj+h(l) ^ U j+h(l)j ):
For example, the unrolled formula when l = 3 and k = 99 isU9964 = U9996 _ (V 9996 ^ U9688 ) _ (V 9988 ^ U8880 ) _ (V 9980 ^ U8072 ) _ (V 9972 ^ U7264 ):Every su
h Uki is a union of at most 2l terms, so it 
an be 
omputed with depth � lin addition to the depth of ea
h term. The total 
ost of this phase for 1 � k � n is(0 + 2 + 4 + � � �+ (2l�2))n=2l = O(2ln).The overall 
ost to 
ompute all ne
essary U 's and V 's is thereforePm�1l=1 O(2ln) =O(2mn). (Furthermore the quantities V k0 aren't a
tually needed, so we save the
ost of Pm�1l=1 h(l)p2l gates.) For example, when m = (2; 3; 4; 5) we obtain Boolean
hains for the addition of (2; 8; 64; 1024)-bit numbers, respe
tively, with overall depths(3; 7; 11; 16) and 
osts (7; 64; 1254; 48470).[This 
onstru
tion is due to V. M. Khrap
henko, Problemy Kibernetiki 19 (1967),107{122, who also showed how to 
ombine it with other methods so that the overall
ost will be O(n) while still a
hieving depth lgn+O(plogn ). However, his 
ombinedmethod is purely of theoreti
al interest, be
ause it requires n > 264 before the depthbe
omes less than 2 lg n. Another way to a
hieve small depth using the re
urren
esin (b) 
an be based on the Fibona

i numbers: The Fibona

i method 
omputes the
arries with depth log� n+O(1) � 1:44 lgn and 
ost O(n logn). For example, it yields
hains for binary addition with the following 
hara
teristi
s:n = 4 8 16 32 64 128 256 512 1024depth 6 7 9 10 12 13 15 16 18
ost 24 71 186 467 1125 2648 6102 13775 30861See D. E. Knuth, The Stanford GraphBase (1994), 276{279.Charles Babbage found an ingenious me
hani
al solution to the analogous problemfor addition in radix 10, 
laiming that his design would be able to add numbers of arbi-trary pre
ision in 
onstant time. For this to work he would have needed idealized, rigid
omponents with vanishing 
learan
es; the idea isn't appli
able to modern 
omputers.See H. P. Babbage, Babbage's Cal
ulating Engines (1889), 334{335.℄43. (a) Let A = B = Q = f0; 1g and q0 = 0. De�ne 
(q; a) = d(q; a) = �q ^ a.(b) The key idea is to 
onstru
t the fun
tions d1(q) : : : dn�1(q), where d1(q) =d(q; a1) and dj+1(q) = d(dj(q); aj). In other words, d1 = d(a1) and dj+1 = dj Æ d(aj),
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46 ANSWERS TO EXERCISES 7.1.2where d(a) is the fun
tion that takes q 7! d(q; a) and where Æ denotes 
omposition offun
tions. Ea
h fun
tion dj 
an be en
oded in binary notation, and Æ is an asso
iativeoperation on these binary representations. Hen
e the fun
tions d1d2 : : : dn�1 are thepre�xes d(a1), d(a1)Æd(a2), : : : , d(a1)Æ� � �Æd(an�1); and q1q2 : : : qn = q0d1(q0) : : : dn�1(q0).(
) Represent a fun
tion f(q) by its truth table f0f1. Then the 
ompositionf0f1 Æ g0g1 is h0h1, where the fun
tions h0 = f0? g1: g0 and h1 = f1? g1: g0 are muxesthat 
an ea
h be 
omputed with 
ost 3 and depth 2. (The 
ombined 
ost C(h0h1) isonly 5, but we are trying to keep the depth small.) The truth table for d(a) is a0. Usingexer
ise 36, we 
an therefore 
ompute the truth tables d10d11d20d21 : : : d(n�1)0d(n�1)1with 
ost � 6pn�1 < 24n and depth � 2dlg(n � 1)e; then bj = �qj ^ aj = �d(j�1)0 ^ aj .(These 
ost estimates are quite 
onservative; substantial simpli�
ations arise be
auseof the 0s in the initial truth tables of d(aj) and be
ause many of the intermediate valuesdj1 are never used. For example, when n = 5 the a
tual 
ost is only 10, not 6p4+4 = 28;the a
tual depth is 4, not 1 + 2dlg 4e = 5.)44. The inputs may be regarded as the string x0y0 x1y1 : : : xn�1yn�1 whose elementsbelong to the four-letter alphabet A = f00; 01; 10; 11g; there are two states Q = f0; 1g,representing a possible 
arry bit, with q0 = 0; the output alphabet is B = f0; 1g; andwe have 
(q; xy) = q � x � y, d(q; xy) = hqxyi. In this 
ase, therefore, the �nite statetransdu
er is essentially des
ribed by a full adder.Only three of the four possible fun
tions of q o

ur when we 
ompose the mappingsd(xy). We 
an en
ode them as u_ (q^v). The initial fun
tions d(xy) have u = x^y, v =x�y; and the 
omposition (uv)Æ(u0v0) is u00v00, where u00 = u0_(v0^u) and v00 = v^v0.When n = 4, for example, the 
hain has the following form, using the notation ofexer
ise 42: Uk+1k = xk ^ yk, V k+1k = xk � yk, for 0 � k < 4; U20 = U21 _ (V 21 ^ U10),U42 = U43 _ (V 43 ^ U32 ), V 42 = V 32 ^ V 43 ; U30 = U32 _ (V 32 ^ U20), U40 = U42 _ (V 42 ^ U20);z0 = V 10 , z1 = U10 � V 21 , z2 = U20 � V 32 , z3 = U30 � V 43 , z4 = U40 . The total 
ost is 20,and the maximum depth is 5.In general the 
ost will be 2n+3pn in the notation of exer
ise 36, be
ause we need2n gates for the initial u's and v's, then 3pn gates for the pre�x 
omputation; the n�1additional gates needed to form zj for 0 < j < n are 
ompensated by the fa
t that weneed not 
ompute V j0 for 1 < j � n. Therefore the total 
ost is 14 � 2m � 3Fm+5 + 3,
learly superior to the 
onditional-sum method (whi
h has the same depth 2m+ 1):n = 2 4 8 16 32 64 128 256 512 1024
ost of 
onditional-sum 
hain 7 25 74 197 492 1179 2746 6265 14072 31223
ost of Ladner{Fis
her 
hain 7 20 52 125 286 632 1363 2888 6040 12509[George Boole introdu
ed his Algebra in order to show that logi
 
an be understoodin terms of arithmeti
. Eventually logi
 be
ame so well understood, the situationwas reversed: People like Shannon and Zuse began in the 1930s to design 
ir
uits forarithmeti
 in terms of logi
, and sin
e then many approa
hes to the problem of paralleladdition have been dis
overed. The �rst Boolean 
hains of 
ostO(n) and depth O(logn)were devised by Yu. P. Ofman, Doklady Akademii Nauk SSSR 145 (1962), 48{51. His
hains were similar to the 
onstru
tion above, but the depth was approximately 4m.℄45. That argument would indeed be simpler, but it wouldn't be strong enough to provethe desired result. (Many 
hains with steps of fan-out 0 in
ate the simpler estimate.)The text's permutation-enhan
ed proof te
hnique was introdu
ed by J. E. Savage inhis book The Complexity of Computing (New York: Wiley, 1976), Theorem 3.4.1.
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7.1.2 ANSWERS TO EXERCISES 4746. When r = 2n=n+O(1) we have ln(22r+1(n+r�1)2r=(r�1)!) = r ln r+(1+ ln 4)r+O(n) = (2n=n)(n ln 2 � lnn + 1 + ln 4) + O(n). So �(n) � (n=(4e))�2n=n+O(n=logn),whi
h approa
hes zero quite rapidly indeed when n > 4e.(In fa
t, (32) gives �(11) < 7:6� 107, �(12) < 4:2� 10�6, �(13) < 1:2� 10�38.)47. Restri
t permutations to the (r � m)! 
ases where i� = i for 1 � i � n and(n+r+1�k)� is the kth output. Then we get (r �m)! 
(m;n; r) � 22r+1(n+r�1)2r inpla
e of (32). Hen
e, as in exer
ise 46, almost all su
h fun
tions have 
ost ex
eeding2nm=(n+ lgm) when m = O(2n=n2).48. (a) Not surprisingly, this lower bound on C(n) is rather 
rude when n is small:n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16r(n) = 1 1 2 3 5 9 16 29 54 99 184 343 639 1196 2246 4229(b) The bootstrap method (see Con
rete Mathemati
s x9.4) yieldsr(n) = 2nn �1 + lgn� 2� 1=ln 2n +O� lognn2 ��:49. The number of normal Boolean fun
tions that 
an be represented by a formula oflength � r is at most 5rnr+1gr, where gr is the number of oriented binary trees withr internal nodes. Set r = 2n= lgn � 2n+2=(lgn)2 in this formula and divide by 22n�1to get an upper bound on the fra
tion of fun
tions with L(f) � r. The result rapidlyapproa
hes zero, by exer
ise 2.3.4.4{7, be
ause it is O((5�=16)2n= lgn) where � � 2:483.[J. Riordan and C. E. Shannon obtained a similar lower bound for series-parallelswit
hing networks in J. Math. and Physi
s 21 (1942), 83{93; su
h networks are equiva-lent to formulas in whi
h only 
analizing operators are used. R. E. Kri
hevsky obtainedmore general results in Problemy Kibernetiki 2 (1959), 123{138, and O. B. Lupanovgave an asymptoti
ally mat
hing upper bound in Prob. Kibernetiki 3 (1960), 61{80.℄50. (a) Using sub
ube notation as in exer
ise 7.1.1{30, the prime impli
ants are00001�, (0001�1), 0100�1, 0111�1, 1010�1, 101�11, 00�011, 00�101, (01�111), 11�101,(0�1101), (1�0101), 1�1011, 0�0�11, �00101, (�01011), (�11101), where the parenthe-sized sub
ubes are omitted in a shortest DNF. (b) Similarly, the prime 
lauses and ashortest CNF are given by 00111�, 01010�, 10110�, 0110��, 00�00�, 11�00�, 11�11�,(0�100�), (1�00��), 1�0�1�, (1����0), �0000�, (�1100�), �1���0, ��1��0, ���1�0, and(����00). (Thus the CNF is (x1_x2_�x3_�x4_�x5)^ (x1_�x2_x3_�x4_x5)^ � � � ^ (�x4_x6).)51. f = ([x5x6 2f01g℄^ [(x1x2x3x4)2 2f1; 3; 4; 7; 9; 10; 13; 15g℄)_ ([x5x6 2f10; 11g℄^[x1x2x3x4=0000℄) _ ([x5x6 2f11g℄ ^ [(x1x2x3x4)2 2f1; 2; 4; 5; 7; 10; 11; 14g℄).52. The small-n results are quite di�erent from those that work asymptoti
ally:n k l (38)5 2 2 336 3 4 597 3 3 100
n k l (38)8 3 2 1699 3 2 27310 4 4 459

n k l (38)11 4 4 79112 4 3 132013 5 6 2337
n k l (38)14 5 5 403015 5 5 712616 5 4 12419(Optimizations like the fa
t that [x1x2 2f00; 01g℄ = �x1 usually redu
e the 
ost further.)53. First note that 2k=l � n � 3 lg n, hen
e mi � n � 3 lgn + 1 and 2mi = O(2n=n3).Also l = O(n) and t(n � k) = O(2n=n2). So (38) redu
es to l � 2n�k + O(2n=n2) =2n=(n� 3 lgn) +O(2n=n2).
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48 ANSWERS TO EXERCISES 7.1.254. The greedy-footprint heuristi
 gives a 
hain of length 15:x5 = x1 � x2;x6 = x2 � x3;x7 = x1 ^ �x3;x8 = x4 ^ �x6;x9 = x4 ^ �x5;
x10 = x4 � x5;x11 = x7 _ x10;x12 = x6 � x11;x13 = �x10 ^ x12;f1 = x14 = x6 ^ �x11;

f2 = x15 = �x5 ^ x8;f3 = x16 = x4 ^ �x12;f4 = x17 = x1 ^ x8;f5 = x18 = x7 ^ x9;f6 = x19 = �x3 ^ x13:The minterm-�rst method 
orresponds to a 
hain of length 22, after we remove stepsthat are never used:x5 = �x1 ^ �x2;x6 = �x1 ^ x2;x7 = x1 ^ �x2;x8 = x1 ^ x2;x9 = �x3 ^ x4;x10 = x3 ^ �x4;x11 = x3 ^ x4;x12 = x5 ^ x9;

x13 = x5 ^ x10;x14 = x5 ^ x11;x15 = x6 ^ x9;x16 = x6 ^ x11;x17 = x7 ^ x9;x18 = x7 ^ x11;f5 = x19 = x8 ^ x9;
x20 = x8 ^ x11;f6 = x21 = x15 _ x18;f1 = x22 = x13 _ x21;f2 = x23 = x12 _ x20;x24 = x14 _ x16;f3 = x25 = x24 _ x19;f4 = x26 = x17 _ x20:

(The distributive law 
ould repla
e the 
omputation of x14, x16, and x24 by two steps.)In
identally, the three fun
tions in the answer to exer
ise 51 
an be 
omputed inonly ten steps:x5 = x2 _ x4;x6 = �x1 ^ x5;x7 = x2 ^ x4;x8 = x3 ^ �x7;
f3 = x9 = x6 � x8;x10 = x1 � x8;�f2 = x11 = x9 _ x10; x12 = x2 � x3;x13 = �x10 ^ x12;f1 = x14 = x4 � x13:

55. The optimum two-level DNF and CNF representations in answer 50 
ost 53 and 43,respe
tively. Formula (37) 
osts 30, when optimized as in exer
ise 54. The alternativein exer
ise 51 
osts only 17. But the 
atalog of optimum �ve-variable 
hains suggestsx7 = �x1 ^ x2;x8 = x3 � x7;x9 = x2 ^ x8;x10 = x1 � x9;
x11 = x5 ^ x10;x12 = x5 _ x10;x13 = x4 ^ �x11;x14 = x7 ^ x12;

x15 = x13 � x14;x16 = x5 ^ �x10;x17 = �x3 ^ x16; x18 = �x4 ^ x17;x19 = x6 ^ x15;x20 = x18 _ x19;
for this six-variable fun
tion. Is there a better way?56. If we 
are about at most two values, the fun
tion 
an be either 
onstant or xj or �xj .57. The truth tables for x5 through x17, in hexade
imal notation, are respe
tively 0ff0,2222, 33

, 0d0d, 7777, 5d5d, 3e
1, 6b94, 4914, 4804, 060b, 2020, 7007. So we get1010 = ; 1011 = ; 1012 = ; 1013 = ; 1014 = ; 1015 = :58. The truth tables of all 
ost-7 fun
tions with exa
tly eight 1s in their truth tablesare equivalent to either 0779, 169b, or 179a. Combining these in all possible waysyields 9656 solutions that are distin
t under permutation and/or 
omplementation offx1; x2; x3; x4g as well as under permutation and/or 
omplementation of ff1; f2; f3; f4g.
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7.1.2 ANSWERS TO EXERCISES 4959. The greedy-footprint heuristi
 produ
es the following 17-step 
hain:x5 = x1 _ x4;x6 = x1 � x3;x7 = x2 � x4;x8 = �x4 ^ x6;x9 = x3 � x7;x10 = x2 _ x3;
x11 = x8 _ x9;x12 = x1 � x11;x13 = x5 ^ �x9;x14 = x5 ^ x12;x15 = x2 ^ x6;x16 = x2 ^ �x6;

x17 = �x2 ^ x3;f1 = x18 = x13 � x15;f2 = x19 = x11 ^ �x16;f3 = x20 = x12 � x17;f4 = x21 = x10 ^ �x14:The initial fun
tions all have large footprints, so we 
an't a
hieve C(f1f2f3f4) = 28;but a slightly more diÆ
ult S-box probably does exist.60. One way is u1 = x1 � y1, u2 = x2 � y2, v1 = y2 � u1, v2 = y1 � u2, z1 = v1 ^ �u2,z2 = v2 ^ �u1.61. Viewing these partial fun
tions of six variables as 4 � 16 truth tables, with rowsgoverned by x1y1, our knowledge of 4-bit fun
tions suggests good ways to 
ompute therows and leads to the following 25-step solution: t1 = x2^y2, t2 = x3^y3, t3 = x2_y2,t4 = x3_y3, t5 = t1�t2, t6 = t1_t2, t7 = t4^�t5, t8 = t3�t6, t9 = x2�y2, t10 = t4�t9,t11 = t5 ^ �t10, t12 = t3 � t4, t13 = x1 _ y1, t14 = t8 � t12, t15 = t13 ^ �t14, t16 = t4 � t7,t17 = t13 ^ �t16, t18 = t3 _ t4, t19 = x1 � y1, t20 = t19 ^ �t18, t21 = t8 � t15, t22 = t7 � t17,z1 = t11 _ t20, z2 = t21 ^ �t20, z3 = t22 ^ �t20. (Is there a better way?)62. There are � 2n2nd�22n
 su
h fun
tions, at most � 2n2nd�t(n; r) of whi
h have 
ost � r.So we 
an argue as in exer
ise 46 to 
on
lude from (32) that the fra
tion with 
ost� r = b2n
=n
 is at most 22r+1�2n
(n+ r � 1)2r=(r � 1)! = 2�r lgn+O(r).63. [Problemy Kibernetiki 21 (1969), 215{226.℄ Put the truth table in a 2k�2n�k arrayas in Lupanov's method, and suppose there are 
j 
ares in 
olumn j, for 0 � j < 2n�k.Break that 
olumn into b
j=m
 sub
olumns that ea
h have m 
ares, plus a possiblyempty sub
olumn at the bottom that 
ontains fewer than m of them. The hint tells usthat at most 2m+k 
olumn ve
tors suÆ
e to mat
h the 0s and 1s of every sub
olumnthat has a spe
i�ed top row i0 and bottom row i1. With O(m2m+3k) operationswe 
an therefore 
onstru
t O(2m+3k) fun
tions gt(x1; : : : ; xk) from the minterms offx1; : : : ; xkg, so that every sub
olumn mat
hes some type t. And for every type t we 
an
onstru
t fun
tions ht(xk+1; : : : ; xn) from the minterms of fxk+1; : : : ; xng, spe
ifyingthe 
olumns that mat
h t; the 
ost is at most Pj(b
j=m
 + 1) � 2n
=m + 2n�k.Finally, f = Wt(gt ^ht) requires O(2m+3k) additional steps. Choosing k = b2 lg n
 andm = dn� 9 lg ne makes the total 
ost at most (2n
=n)(1 + 9n�1 lg n+O(n�1)).Of 
ourse we need to prove the hint, whi
h is due to E. I. Ne
hiporuk [DokladyAkad. Nauk SSSR 163 (1965), 40{42℄. In fa
t, 2m(1+dk ln 2e) ve
tors suÆ
e (see S. K.Stein, J. Combinatorial Theory A16 (1974), 391{397): If we 
hoose q = 2mdk ln 2eve
tors at random, not ne
essarily distin
t, the expe
ted number of untou
hed sub
ubesis � km�2m(1� 2�m)q < � km�2me�q2�m < 2m. (An expli
it 
onstru
tion would be ni
er.)For extensive generalizations|tolerating a per
entage of errors and spe
ifying thedensity of 1s|see N. Pippenger, Mathemati
al Systems Theory 10 (1977), 129{167.64. It's exa
tly the game of ti
-ta
-toe, if we number the 
ells 6 1 87 5 32 9 4 as in an an
ient Chi-nese magi
 square. [Berlekamp, Conway, and Guy use this numbering s
heme to presenta 
omplete analysis of ti
-ta
-toe in their book Winning Ways 3 (2003), 732{736.℄65. One solution is to repla
e the \defending" moves dj by \atta
king" moves aj and\
ounteratta
king" moves 
j , and to in
lude them only for 
orner 
ells j 2 f1; 3; 9; 7g.

49



50 ANSWERS TO EXERCISES 7.1.2Let j � k = (jk) mod 10; then j � 1 j � 2 j � 3j � 4 j � 5 j � 6j � 7 j � 8 j � 9gives us another way to look at the ti
-ta
-toe diagram, when j is a 
orner, be
ausej ? 10. The pre
ise de�nition of aj and 
j is thenaj = mj ^ ((xj�3 ^ �(j�8)(j�9) ^ (oj�4�oj�6)) _ (xj�7 ^ �(j�6)(j�9) ^ (oj�2�oj�8))_ (mj�9 ^ ((mj�8 ^ xj�2 ^ (oj�3�oj�6)) _ (mj�6 ^ xj�4 ^ (oj�7�oj�8)))));
j = dj ^ (xj�6 ^ oj�7) ^ (xj�8 ^ oj�3) ^ �dj�9;here dj = mj ^ �(j�2)(j�3) ^ �(j�4)(j�7) takes the pla
e of (51). We also de�neu = (x1 � x3)� (x7 � x9);v = (o1 � o3)� (o7 � o9);t = m2 ^m6 ^m8 ^m4 ^ (u _ �v); zj = 8><>:mj ^ �t; if j = 5,mj ^ �dj�9; if j 2 f1; 3; 9; 7g,mj ; if j 2 f2; 6; 8; 4g,in order to 
over a few more ex
eptional 
ases. Finally the sequen
e of rank-orderedmoves d5d1d3d9d7d2d6d8d4m5m1m3m9m7m2m6m8m4 in (53) is repla
ed by the se-quen
e a1a3a9a7
1
3
9
7z5z1z3z9z7z2z6z8z4; and we repla
e (dj^ �d0j)_(mj^ ��m0j) in (55)by (aj^�a0j) _ (
j^�
0j) _ (zj^ �z0j) when j is a 
orner 
ell, otherwise simply by (zj^ �z0j).(Noti
e that this ma
hine is required to move 
orre
tly from all legal positions,even when those positions 
ouldn't arise after the ma
hine had made X's earlier moves.We essentially allow humans to play the game until they ask the ma
hine for advi
e.Otherwise great simpli�
ations would be possible. For example, if X always goes �rst,it 
ould grab the 
enter 
ell and eliminate a huge number of future possibilities; fewerthan 8� 6� 4� 2 = 384 games 
ould arise. Even if O goes �rst, there are fewer than9 � 7 � 5 � 3 = 945 possible s
enarios against a �xed strategy. In fa
t, the a
tualnumber of di�erent games with the strategy de�ned here turns out to be 76 + 457, ofwhi
h 72 + 328 are won by the ma
hine and the rest belong to the 
at.)66. The Boolean 
hain in the previous answer ful�lls its mission of making 
orre
tmoves from all 4520 legal positions, where 
orre
tness was essentially de�ned to meanthat the worst-
ase �nal out
ome is maximized. But a truly great ti
-ta
-toe playerwould do things di�erently. For example, from position OX the ma
hine takes the
enter, OXX , and O probably draws by playing in a 
orner. But moving to OX X would giveO only two 
han
es to avoid defeat. [See Martin Gardner, Hexa
exagons and OtherMathemati
al Diversions, Chapter 4.℄Furthermore the best move from a position like XO XO is to X XO XO instead of winningimmediately; then if the reply is X X OO XO , move to X X OO X XO . That way you still win, but withouthumiliating your opponent so badly.Finally, even the 
on
ept of a single \best move" is 
awed, be
ause a good playerwill 
hoose di�erent moves in di�erent games (as Babbage observed).It might be thought that programing a digital 
omputer to play ti
kta
ktoe,or designing spe
ial 
ir
uits for a ti
kta
ktoe ma
hine,would be simple. This is true unless your aim is to 
onstru
t a master robotthat will win the maximum number of games against inexperien
ed players.| MARTIN GARDNER, The S
ienti�
 Ameri
an Book ofMathemati
al Puzzles & Diversions (1959)
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7.1.2 ANSWERS TO EXERCISES 5167. The author's best e�ort, with 1734 gates, was 
onstru
ted by adapting the methodof Sholomov in answer 63: First divide the truth tables into 64 rows for o5x5o2o6o8o4and 4096 
olumns for the other 12 input variables. Then pla
e appropriate 1s into\
are" positions, in su
h a way that the 
olumns have relatively few 1s. Then �nd asmall number of 
olumn types that mat
h the 
ares in all 
olumns; 23 types suÆ
efor the 
 fun
tion, 20 types for s, and 6 for m. We 
an then 
ompute ea
h output asW(gt ^ ht), sharing mu
h of the work of the minterm 
al
ulations within gt and ht.[This exer
ise was inspired by a dis
ussion in John Wakerly's book Digital Design(Prenti
e{Hall, 3rd edition, 2000), x6.2.7. In
identally, Babbage planned to 
hooseamong k possible moves by looking at N mod k, where N was the number of games wonso far; he didn't realize that su

essive moves would tend to be highly 
orrelated until N
hanged. Mu
h better would have been to let N be the number of moves made so far.℄68. No. That method yields a \uniform" 
hain with a 
omprehensible stru
ture, but its
ost is 2n times a polynomial in n. A 
ir
uit with approximately 2n=n gates, 
onstru
tedby Theorem L, exists but is more diÆ
ult to fabri
ate. (In
identally, C(�5) = 10.)69. (a) One 
an, for example, verify this result by trying all 64 
ases.(b) If xm lies in the same row or 
olumn as xi, and also in the same row or 
olumnas xj , we have �111 = �101 = �110 = 0, so the pairs are good. Otherwise there areessentially three di�erent possibilities, all bad: If (i; j;m) = (1; 2; 4) then �101 = 0,�100 = x5x9 � x6x8, �011 = x9; if (i; j;m) = (1; 2; 6) then �010 = x4x9, �011 = x7,�100 = x5x9, �101 = x8; if (i; j;m) = (1; 5; 9) then �111 = 1, �110 = 0, �010 = x3x7.70. (a) x1^((x5^x9)�(x6^x8))� x2^((x6^x7)�(x4^x9))� x3^((x4^x8)�(x5^x7)).(b) x1^((x5^x9)_(x6^x8)) _ x2^((x6^x7)_(x4^x9)) _ x3^((x4^x8)_(x5^x7)).(
) Let y1 = x1^x5^x9, y2 = x1^x6^x8, y3 = x2^x6^x7, y4 = x2^x4^x9, y5 =x3^x4^x8, y6 = x3^x5^x7. The fun
tion f(y1; : : : ; y6) = [y1 + y2 + y3>y4 + y5 + y6 ℄
an be evaluated in 15 further steps with two full adders and a 
omparator; but there isa 14-step solution: Let z1 = (y1�y2)�y3, z2 = (y1�y2)_(y1�y3), z3 = (y4�y5)�y6,z4 = (y4� y5)_ (y4� y6). Then f = (z1� (z2^ (�z4�(z1_z3))))^ (�z3_z4). Furthermorey1y2y3 = 111() y4y5y6 = 111; so there are don't-
ares, leading to an 11-step solution:f = ((�z1^z3)_�z4) ^ z2. The total 
ost is 12 + 11 = 23.(The author knows of no way by whi
h a 
omputer 
ould dis
over su
h an eÆ
ient
hain in a reasonable amount of time, given only the truth table of f . But perhaps aneven better 
hain exists.)71. (a) P (p) = 1 � 12p2 + 24p3 + 12p4 � 96p5 + 144p6 � 96p7 + 24p8, whi
h is 1132 +92 �2 � 3�4 � 24�6 + 24�8 when p = 12 + �.(b) There are N = 2n�3 sets of eight values (f0; : : : ; f7), ea
h of whi
h yields goodpairs with probability P (p). So the answer is 1� P (p)N.(
) The probability is �Nr �P (p)r(1� P (p))N�r that exa
tly r sets su

eed; and insu
h a 
ase t trials will �nd good pairs with probability (r=N)t. The answer is therefore1�PNr=0 �Nr �P (p)r(1� P (p))N�r(r=N)t = 1� P (p)t +O(t2=N).(d)PNr=0 �Nr �P (p)r(1�P (p))N�rPt�1j=0(r=N)j = (1�P (p)t)=(1�P (p))+O(t3=N).72. The probability in exer
ise 71(a) be
omes P (p)+ (72p3� 264p4+432p5� 336p6+96p7)r+(60p2�240p3+456p4�432p5+144p6)r2+(�48p2+144p3�216p4+96p5)r3+(�36p2 + 24p3 + 12p4)r4 + (48p2 � 24p3)r5 � 12p2r6. If p = q = (1 � r)=2, this is(11 + 48r + 36r2 � 144r3 � 30r4 + 336r5 � 348r6 + 144r7 � 21r8)=32; for example, it's7739=8192 � 0:94 when r = 1=2.
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52 ANSWERS TO EXERCISES 7.1.273. Consider the Horn 
lauses 1^2)3, 1^3)4, : : : , 1^(n � 1))n, 1^n)2, andi^j)1 for 1 < i < j � n. Suppose jZj > 1 in a de
omposition, and let i be minimumsu
h that xi 2 Z. Also let j be minimum su
h that j > i and xj 2 Z. We 
annot havei > 1, sin
e i^j)1 in that 
ase. Thus i = 1, and xj 2 Z for 2 � j � n.74. Suppose we know that no nontrivial de
omposition exists with x1 2 Z or � � � orxi�1 2 Z; initially i = 1. We hope to rule out xi 2 Z too, by 
hoosing j and m
leverly. The Horn 
lauses i^j)m redu
e to Krom 
lauses j)m when i is asserted.So we essentially want to use Tarjan's depth-�rst sear
h for strong 
omponents, in adigraph with ar
s j)m that may or may not exist.When exploring from vertex j, �rst try m = 1, : : : , m = i � 1; if any su
himpli
ation i^j)m su

eeds, we 
an eliminate j and all its prede
essors from thedigraph for i. Otherwise, test if j)m for any su
h eliminated vertex m. Otherwisetest unexplored verti
es m. Otherwise try verti
es m that have already been seen,favoring those near the root of the depth-�rst tree.In the example f(x) = (detX) mod 2, we would su

essively �nd 1^2 6)3, 1^2)4,1^4)3, 1^3)5, 1^5)6, 1^6)7, 1^7)8, 1^8)9, 1^9)2 (now i  2); 2^3 6)1,2^3)4, 2^4 6)1, 2^4 6)5, 2^4)6, 2^6)1 (now 3, 4, and 6 are eliminated fromthe digraph for 2), 2^5)1 (and 5 is eliminated), 2^7 6)1, 2^7)3 (7 is eliminated),2^8)1, 2^9)1 (now i 3); 3^4 6)1, 3^4)2, 3^5)1, et
.75. This fun
tion is 1 at only two points, whi
h are 
omplementary. So it is inde-
omposable; yet the pairs (58) are never bad when n > 3. Every partition (Y;Z) willtherefore be a 
andidate for de
omposition.Similarly, if f is de
omposable with respe
t to (Y;Z), the inde
omposable fun
-tion f(x) � S0n(x) will a
t essentially like f in the tests. (A method to deal withapproximately de
omposable fun
tions should probably be provided in a general-purposede
omposability tester.)76. (a) Let al = [i� l℄ for 0 � l � 2m. The 
ost is � 2t(m), as observed in answer38(b); and in fa
t, the 
ost 
an be redu
ed to 2m+1 � 2m � 2 with �(m) depth.Furthermore the fun
tion [i� j ℄ = (�{1 ^ j1) _ ((i1 � j1) ^ [i2 : : : im� j2 : : : jm ℄) 
an beevaluated with 4m�3 gates. After 
omputing x�y, ea
h zl 
osts 2m+1+1 = O(n=logn).(b) Here the 
ost is at most C(g0) + � � �+ C(g2m) � (2m + 1)(22m=(2m + O(m)))by Theorem L, be
ause ea
h gl is a fun
tion of 2m inputs.(
) If i � j we have zl = x for l � i and zl = y for l > i; hen
e fi(x) = 
0�� � �� 
iand fj(y) = 
j+1 � � � � � 
2m . If i > j we have zl = y for l � i and zl = x for l > i;hen
e fj(y) = 
0 � � � � � 
j and fi(x) = 
i+1 � � � � � 
2m .(d) The fun
tions bl = [j < l℄ 
an be 
omputed for 0 � l � 2m in O(2m) steps, asin (a). So we 
an 
ompute F from (
0; : : : ; 
2m) with O(2m) further gates. Step (b)therefore dominates the 
ost, for large m.(e) a0 = 1, a1 = i, a2 = 0; b0 = 0, b1 = j, b2 = 1; d = [i� j ℄ = �{ _ j; ml = al � d,zl0 = x0 � (ml ^ (x0 � y0)), zl1 = x1 � (ml ^ (x1 � y1)), for l = 0; 1; 2; 
0 = z01;
1 = z10 ^ �z11; 
2 = z20 _ z21; 
0l = 
l ^ (d� al), 
00l = 
l ^ (d� bl), for l = 0; 1; 2; and�nally F = (
00 � 
01 � 
02) _ (
000 � 
001 � 
002 ).The net 
ost (29 after obvious simpli�
ations) is, of 
ourse, outrageous in su
ha small example. But one wonders if a state-of-the-art automati
 optimizer would beable to redu
e this 
hain to just 5 gates.[This result is a spe
ial 
ase of more general theorems inMatemati
heskie Zametki15 (1974), 937{944; London Math. So
. Le
ture Note Series 169 (1992), 165{173.℄
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7.1.2 ANSWERS TO EXERCISES 5377. Given a shortest su
h 
hain for fn or �fn, let Ul = fi j l = j(i) or l = k(i)g be the\uses" of xl, and let ul = jUlj. Let ti = 1 if xi = xj(i) _xk(i), otherwise ti = 0. We willshow that there's a 
hain of length � r�4 that 
omputes either fn�1 or �fn�1, by usingthe following idea: If variable xm is set to 0 or 1, for any m, we 
an obtain a 
hainfor fn�1 or �fn�1 by deleting all steps of Um and modifying other steps appropriately.Furthermore, if xi = xj(i) Æ xk(i) and if either xj(i) or xk(i) is known to equal ti whenxm has been set to 0 or 1, then we 
an also delete the steps Ui. (Throughout thisargument, the letter m will stand for an index in the range 1 � m � n.)Case 1, um = 1 for some m. This 
ase 
annot o

ur in a shortest 
hain. For if theonly use of xm is xi = �xm, eliminating this step would 
hange fn $ �fn; and otherwisewe 
ould set the values of x1, : : : , xm�1, xm+1, : : : , xn to make xi independent of xm,
ontradi
ting xn+r = fn or �fn. Thus every variable must be used at least twi
e.Case 2, xl = �xm for some l and m, where um > 1. Then xi = xl Æ xk for some iand k, and we 
an set xm  �ti to make xi independent of xk. Eliminating steps Um,Ul, and Ui then removes at least 4 steps, ex
ept when ul = ui = 1 and um = 2 andxj = xm Æ xi; but in that 
ase we 
an also eliminate Uj .Case 3, um � 3 for some m, and not Case 2. If i; j; k 2 Um and i < j < k, setxm  tk and remove steps i, j, k, Uk.Case 4, u1 = u = 2 = � � � = un = 2, and not Case 2. We may assume that the�rst step is x1 = x1 Æ x2, and that xl = x1 Æ xk for some k < l.Case 4.1, k > 0. Then k > 1. If uk = 1, set x1  tl and remove steps 1, k, l, Ul.Otherwise set x2  t1; this for
es xk = �tl, and we 
an remove steps 1, k, l, Uk.Case 4.2, xl = x1 Æ xm. Then we must have m = 2; for if m > 2 we 
ouldset x2  t1, xm  tl, and make xr independent of x1. Hen
e we may assume thatx1 = x1 ^ x2, x2 = x1 _ x2. Setting x1  0 allows us to remove U0 and U1; settingx1  1 allows us to remove U0 and U2. Thus we're done unless u1 = u2 = 1.If xp = �x1, set x1  0 and remove 1, 2, p, Up; if xq = �x2, set x1  1 and remove 1,2, q, Uq. Otherwise xp = x1 Æ xu and xq = x2 Æ xv , where xu and xv do not depend onx1 or x2. But that's impossible; it would allow us to set x3, : : : , xn to make xu = tp,then x2  1 to make xr independent of x1.[Problemy Kibernetiki 23 (1970), 83{101; 28 (1974), 4. With similar proofs,Red'kin showed that the shortest AND-OR-NOT 
hains for the fun
tions `x1 : : : xn <y1 : : : yn' and `x1 : : : xn = y1 : : : yn' have lengths 5n� 3 and 5n� 1, respe
tively.℄78. [SICOMP 6 (1977), 427{430.℄ Say that yk is a
tive if k 2 S. We may assume thatthe 
hain is normal and that kSk > 1; the proof is like Red'kin's in answer 77:Case 1, some a
tive yk is used more than on
e. Setting yk  0 saves at least twosteps and yields a 
hain for a fun
tion with kSk � 1 a
tive values.Case 2, some a
tive yk appears only in an AND gate. Setting yk  0 eliminates atleast two steps, unless this AND is the �nal step. But it 
an't be the �nal step, be
auseyk = 0 makes the result independent of every other a
tive yj .Case 3, like Case 2 but with an OR or NOT-BUT or BUT-NOT gate. Setting yk  
for some appropriate 
onstant 
 has the desired e�e
t.Case 4, like Case 2 but with XOR. The gate 
an't be �nal, sin
e the result shouldbe independent of yk when (x1 : : : xm)2 addresses a di�erent a
tive value yj . So we 
aneliminate two steps by setting yk to the fun
tion de�ned by the other input to XOR.79. (a) Suppose the 
ost is r < 2n � 2; then n > 1. If ea
h variable is used exa
tlyon
e, two leaves must be mates. Therefore some variable is used at least twi
e. Pruningit away produ
es a 
hain of 
ost � r � 2 on n� 1 variables, having no mates.
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54 ANSWERS TO EXERCISES 7.1.2(In
identally, the 
ost is at least 2n � 1 if every variable is used at least twi
e,be
ause at least 2n uses of variables must be 
onne
ted together in the 
hain.)(b) Noti
e that S0n = Vu��v(u� v) whenever the edges u���v form a free tree onfx1; : : : ; xng. So there are many ways to a
hieve 
ost 2n� 3.Any 
hain of 
ost r < 2n�3 must have n > 2 and must 
ontain mates u and v. Byrenaming and possibly 
omplementing intermediate results, we 
an assume that u = 1,v = 2, and that f(x1; : : : ; xn) = g(x1 Æ h(x3; : : : ; xn); x2; : : : ; xn), where Æ is ^ or �.Case 1, Æ is AND. We must have h(0; : : : ; 0) = h(1; : : : ; 1) = 1, for otherwisef(x1; x2; y; : : : ; y) wouldn't depend on x1. Therefore f(x1; : : : ; xn) = h(x3; : : : ; xn) ^g(x1; x2; : : : ; xn) 
an be 
omputed by a 
hain of the same 
ost in whi
h 1 and 2 aremates and in whi
h the path between them has gotten shorter.Case 2, Æ is XOR. Then f = f0 _ f1, where f0(x1; : : : ; xn) = (x1�h(x3; : : : ; xn))^g(0; x2; : : : ; xn) and f1(x1; : : : ; xn) = (x1 � h(x3; : : : ; xn)) ^ g(1; x2; : : : ; xn). But f =S0n has only two prime impli
ants; so there are only four possibilities:Case 2a, f0 = f . Then we 
an repla
e x1 � h by 0, to get a 
hain of 
ost � r � 2for the fun
tion g(0; x2; : : : ; xn) = S0(n�1)(x2; : : : ; xn).Case 2b, f1 = f , is similar to Case 2a.Case 2
, f0(x) = x1 ^ � � � ^xn and f1(x) = �x1 ^ � � �^ �xn. In this 
ase we must haveg(0; x2; : : : ; xn) = x2 ^ � � � ^ xn and g(1; x2; : : : ; xn) = �x2 ^ � � � ^ �xn. Repla
ing h by 1therefore yields a 
hain that 
omputes f in < r steps.Case 2d, f0(x) = �x1 ^ � � � ^ �xn and f1(x) = x1 ^ � � � ^ xn, is similar to Case 2
.Applying these redu
tions repeatedly will lead to a 
ontradi
tion. Similarly, one
an show that C(S0Sn) = 2n� 2. [Theoreti
al Computer S
ien
e 1 (1976), 289{295.℄80. [Mathemati
al Systems Theory 10 (1977), 323{336.℄ Without loss of generality,a0 = 0 and the 
hain is normal. De�ne Ul and ul as in answer 77. We may assume bysymmetry that u1 = max(u1; : : : ; un).We must have u1 � 2. For if u1 = 1, we 
ould assume further that xn+1 = x1 Æx2;hen
e two of the three fun
tions S�(0; 0; x3; : : : ; xn) = S�00 , S�(0; 1; x3; : : : ; xn) = S0�0 ,S�(1; 1; x3; : : : ; xn) = S00� would be equal. But then S� would be a parity fun
tion, orS0�0 would be 
onstant.Therefore setting x1 = 0 allows us to eliminate the gates of U1, giving a 
hain forS�0 with at least 2 fewer gates. It follows that C(S�) � C(S�0) + 2. Similarly, settingx1 = 1 proves that C(S�) � C(S0�) + 2.Three 
ases arise when we explore the situation further:Case 1, u1 � 3. Setting x1 = 0 proves that C(S�) � C(S�0) + 3.Case 2, U1 = fi; jg and operator Æj is 
analizing (namely, AND, BUT-NOT, NOT-BUT, or OR). Setting x1 to an appropriate 
onstant for
es the value of xj and allowsus to eliminate U1 [ Uj ; noti
e that i =2 Uj in an optimum 
hain. So either C(S�) �C(S�0) + 3 or C(S�) � C(S0�) + 3.Case 3, U1 = fi; jg and Æi = Æj = �. We may assume that xi = x1 � x2 andxj = x1 � xk. If uj = 1 and xl = xj � xp, we 
an restru
ture the 
hain by lettingxj = xk�xp, xl = x1�xj ; therefore we 
an assume that either uj 6= 1 or xl = xjÆxp forsome 
analizing operator Æ. If U2 = fi; j0g, we 
an assume similarly that xj0 = x2�xk0and that either uj0 = 1 or xl0 = xj0 Æ0 xp0 for some 
analizing operator Æ0. Furthermorewe 
an assume by symmetry that xj does not depend on xj0 .If xk does not depend on xi, let f(x3; : : : ; xn) = xk; otherwise let f(x3; : : : ; xn) bethe value of xk when xi = 1. By setting x1 = f(x3; : : : ; xn) and x2 = �f(x3; : : : ; xn),or vi
e versa, we make xi and xj 
onstant, and we obtain a 
hain for the non
onstant
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7.1.2 ANSWERS TO EXERCISES 55fun
tion S0�0 . We 
an, in fa
t, ensure that xl is 
onstant in the 
ase uj = 1. We 
laimthat at least �ve gates of this 
hain (in
luding xi and xj) 
an be eliminated; hen
eC(S�) � C(S0�0) + 5. The 
laim is 
learly true if jUi [ Uj j � 3.We must have jUi [Uj j > 1. Otherwise we'd have p = i, and xk would not dependon xi, so S� would be independent of x1 with our 
hoi
e of x2. Therefore jUi[Uj j = 2.Case 3a, Uj = flg. Then xl is 
onstant; we 
an eliminate xi, xj , and Ui [Uj [Ul.If the latter set 
ontains only two elements, then xq = xi Æ xl is also 
onstant and weeliminate Uq. Sin
e S0�0 isn't 
onstant, we won't eliminate the output gate.Case 3b, Ui � Uj , jUj j = 2. Then xq = xi Æxj for some q; we 
an eliminate xi, xj ,and Uj [ Uq. The 
laim has been proved.(b) By indu
tion, C(Sk) � 2n + min(k; n � k) � 3 � [n = 2k℄, for 0 < k < n;C(S�k) � 2n + min(k; n + 1 � k) � 4, for 1 < k < n. The easy 
ases are C(S0) =C(Sn) = C(S�1) = C(S�n) = n � 1; C(S�0) = 0. (A

ording to Figs. 4 and 5, thesebounds are optimum for k = dn=2e when n � 5. All known results are 
onsistent withthe 
onje
ture that C(Sk) = C(S�k) for k � n=2.)81. If some variable is used more than on
e, we 
an set it to a 
onstant, de
reasing nby 1 and de
reasing 
 by � 2. Otherwise the �rst operation must involve x1, be
ausey1 = x1 is the only output that doesn't need 
omputation; making x1 
onstant de
reasesn by 1, 
 by � 1, and d by � 1. [J. Algorithms 7 (1986), 185{201.℄82. (62) is false.(63) reads, \For all numbers m there's a number n su
h that m < n + 1"; it istrue be
ause we 
an take m = n.(64) fails when n = 0 or n = 1, be
ause the numbers in these formulas are requiredto be nonnegative integers.(65) says that, if b ex
eeds a by 2 or more, there's a number ab between them. Of
ourse it's true, be
ause we 
an let ab = a+ 1.(66) was explained in the text, and it too is true. Noti
e that `^' takes pre
eden
eover `_' and `�' takes pre
eden
e over `,', just as `+' takes pre
eden
e over `�' and`<' over `^' in (65); these 
onventions redu
e the need for parentheses in senten
es of L.(67) says that, if A 
ontains at least one element n, it must 
ontain a minimumelement m (an element that's less than or equal to all of its elements). True.(68) is similar, but m is now a maximum element. Again true, be
ause all sets areassumed to be �nite.(69) asks for a set P with the property that [02P ℄ = [3 =2P ℄, [12P ℄ = [4 =2P ℄,: : : , [9992P ℄ = [1002 =2P ℄, [10002P ℄ 6= [1003 =2P ℄, [10012P ℄ 6= [1004 =2P ℄, et
. It'strue if (and only if) P = fx j xmod 6 2 f1; 2; 3g and 0 � x < 1000g.Finally, the subformula 8n (n 2 C , n+ 1 =2 C) in (70) is another way of sayingthat C = ;. Hen
e the parenthesized formula after 8A8B is a tri
ky way to say thatA = ; and B 6= ;. (Sto
kmeyer and Meyer used this tri
k to abbreviate statementsin L that involve long subformulas more than on
e.) Statement (70) is true be
ause anempty set doesn't equal a nonempty set.83. We 
an assume that the 
hain is normal. Let the 
analizing steps be y1, : : : , yp.Then yk = �k Æ �k and f = �p+1, where �k and �k are �'s of some subsets offx1; : : : ; xn; y1; : : : ; yk�1g; at most n+k�2 �'s are needed to 
ompute them, 
ombining
ommon terms �rst. Hen
e C(f) � p+Pp+1k=1(n+ k � 2) = (p+ 1)(n+ p=2)� 1.84. Argue as in the previous answer, with _ or ^ in pla
e of �. [N. Alon and R. B.Boppana, Combinatori
a 7 (1987), 15{16.℄
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56 ANSWERS TO EXERCISES 7.1.285. (a) A simple 
omputer program shows that 13744 are legitimate and 19024 aren't.(An illegitimate family of this kind has at least 8 members; one su
h is f00; 0f; 33; 55;ff; 15; 3f; 77g. Indeed, if the fun
tions x1_x2 (3f), x2_x3 (77), and x1^(x2_x3) (15)are present in a legitimate family L, then x2 t 15 = 33 j 15 = 37 must also be in L.)(b) The proje
tion and 
onstant fun
tions are obviously present. De�ne A� =T fB j B � A and B 2 Ag, or A� = 1 if no su
h set B exists. Then we havedAe u dBe = dA \ Be and dAe t dBe = d(A [ B)�e.(
) Abbreviate the formulas as x̂l � xl_W li=n+1 Æi, xl � x̂l_W li=n+1 �i, and argueby indu
tion: If step l is an AND step, x̂l = x̂j u x̂k � x̂j ^ x̂k � (xj _W li=n+1 Æi) ^(xk_W li=n+1 Æi) = xl_W li=n+1 Æi; xl = xj ^xk � (x̂j _W l�1i=n+1 �i)^ (x̂k _W l�1i=n+1 �i) =(x̂j ^ x̂k) _W l�1i=n+1 �i, and x̂j ^ x̂k = x̂l _ �l. Argue similarly if step l is an OR step.86. (a) If S is an r-family 
ontained in the (r + 1)-family S0, 
learly �(S) � �(S0).(b) By the pigeonhole prin
iple, �(S) 
ontains elements u and v of ea
h part,whenever S is an r-family. And if �(S) = fu; vg, we 
ertainly have u���v.(
) The result is obvious when r = 1. There are at most r � 1 edges 
ontainingany given vertex u, by the \strong" property. And if u��� v, the edges disjoint fromfu; vg are strongly (r � 1)-
losed; so there are at most (r � 2)2 of them, by indu
tion.Thus there are at most 1 + 2(r � 2) + (r � 2)2 edges altogether.(d) Yes, by exer
ise 85(b), if r > 1, be
ause strongly r-
losed graphs are 
losedunder interse
tion. All graphs with � 1 edges are strongly r-
losed when r > 1, be
ausethey have no r-families 
ontaining distin
t edges.(e) There are �n3� triangles xij ^xik ^xjk, only n�2 of whi
h are 
ontained in anyterm xuv of f̂ . Hen
e the minterms for at most (r� 1)2(n� 2) triangles are 
ontainedin f̂ , and the others must be 
ontained in one of the fun
tions �i = x̂i � (x̂j(i) ^ xk(i)).Su
h a term has the form T = (dGeudHe)�(dGe^dHe) = (dGe^dHe)^dG \He, whereG and H are strongly r-
losed; we will prove that T 
ontains at most 2(r�1)3 triangles.A triangle xij ^ xik ^ xjk in T must involve some variable (say xij) of dGe andsome variable (say xik) of dHe, but no variable of dG\He. There are at most (r� 1)2
hoi
es for ij; and then there are at most 2(r � 1) 
hoi
es for k, sin
e H has at mostr � 1 edges tou
hing i and at most r � 1 edges tou
hing j.(f) There are 2n�1 
omplete bigraphs obtained by 
oloring 1 red, 
oloring otherverti
es either red or blue, and letting u���v if and only if u and v have opposite 
olors.By the �rst formula in exer
ise 85(
), the minterms B for every su
h graph must be
ontained in one of the terms T = Æi = x̂i � (x̂j(i) _ xk(i)) = d(G [ H)�e ^ dG [He.(For example, if n = 4 and verti
es (2; 3; 4) are (red, blue, blue), then B = �x12 ^ x13 ^x14 ^ x23 ^ x24 ^ �x34.) A minterm B is 
ontained in T if and only if, in the 
oloringfor B, some edge of (G[H)� has verti
es of opposite 
olors, but all edges of G[H aremono
hromati
. We will prove that T in
ludes at most 2n�rr2 su
h B.Let G be any graph, and T = dG�e ^ dGe. The following (ineÆ
ient) algorithm
an be used to �nd G�: If there's an r-family S with j�(S)j < 2, stop with G� = 1.Otherwise, if �(S) = fu; vg and u�+�v, add the edge u���v to G and repeat.At most 2n�r bipartite minterms B have mono
hromati
 fuj ; vjg for 1 � j � rwhen j�(S)j < 2. And when �(S) = fu; vg there are 2n�r�1 with mono
hromati
fuj ; vjg and bi
hromati
 fu; vg. So we want to show that the algorithm for G takesfewer then 2r2 iterations when G is strongly r-
losed.For k � 1, let uk ��� vk be the �rst new edge added to G that is disjoint fromfuj ; vjg for 1 � j < k. At most r su
h edges exist, by \strongness"; and ea
h of them
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7.1.2 ANSWERS TO EXERCISES 57is followed by at most 2r � 3 new edges that tou
h uj or vj . So the total number ofsteps to �nd G� is at most r(2r � 2) + 1 < 2r2.(g) Exer
ise 84 tells us that q < �p2�+(p+1)�n2�. Thus we have either 2(r�1)3p ��n3�� (r � 1)2(n� 2) or �p2�+ (p+ 1)�n2� > 2r�1=r2. Both lower bounds for p are112� n6 lgn�3�1 +O� log lognlogn �� when r = l lg� n6186624(lgn)4�m:[Noga Alon and Ravi B. Boppana, Combinatori
a 7 (1987), 1{22, pro
eeded in thisway to prove, among other things, the lower bound 
(n=logn)s for the number of ^'sin any monotone 
hain that de
ides whether or not G has a 
lique of �xed size s � 3.℄87. The entries of X3 are at most n2 when X is a 0{1 matrix. A Boolean 
hainwith O(nlg 7(logn)2) gates 
an implement Strassen's matrix multipli
ation algorithm4.6.4{(36), on integers modulo 2blgn2
+1.
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INDEX AND GLOSSARYWhen an index entry refers to a page 
ontaining a relevant exer
ise, see also the answer tothat exer
ise for further information. An answer page is not indexed here unless it refers to atopi
 not in
luded in the statement of the exer
ise.0{1 matri
es, 29, 34, 57.2m-way multiplexer, 13, 31.3-variable fun
tions, 8{9.4-variable fun
tions, 2{9, 16{18, 26, 30, 33.5-variable fun
tions, v, 9{10, 30, 48.�x (sideways sum), v, 12, 30, 42, 44.� (
ir
le ratio), as \random" example,2, 22, 32, 38.� fun
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