Earth Rotation & revolution around the sun which in turn moving around the galaxy.
Rotation period:
Earth's rotation period relative to the Sun (its mean solar day) is 86,400 seconds of mean solar time. Each of these seconds is slightly longer than an SI second because Earth's solar day is now slightly longer than it was during the
19th century due to tidal acceleration. The mean solar second between 1750 and 1892 was chosen in
1895 by
Simon Newcomb as the independent unit of time in his
Tables of the Sun. These tables were used to calculate the world's ephemerides between
1900 and
1983, so this second became known as the ephemeris second.
The SI second was made equal to the ephemeris second in 1967
Earth's rotation period relative to the fixed stars, called its stellar day by the
International Earth Rotation and
Reference Systems Service (
IERS), is 86,164.098 903 691 seconds of mean solar time (
UT1) (23h 56m 4.098 903 691s Earth's rotation period relative to the precessing or moving mean vernal equinox, misnamed its sidereal day is 86,164.090 530 832 88 seconds of mean solar time (UT1) (23h 56m 4.090 530 832 88s). Thus the sidereal day is shorter than the stellar day by about 8.4 ms.
The length of the mean solar day in SI seconds is available from the IERS for the periods 1623 -
2005 and 1962 - 2005.
Recently (
1999 - 2005) the average annual length of the mean solar day in excess of 86,400 SI seconds has varied between 0.3 ms and 1 ms, which must be added to both the stellar and sidereal days given in mean solar time above to obtain their lengths in SI seconds.
The angular speed of
Earth's rotation in inertial space is 7.2921159 × 10−5 radians per SI second (mean solar second).Multiplying by (
180°/π radians)×(86,400 seconds/mean solar day) yields
360.9856°/mean solar day, indicating that Earth rotates more than 360° relative to the fixed stars in one solar day. Earth's movement along its nearly circular orbit while it is rotating once around its axis requires that Earth rotate slightly more than once relative to the fixed stars before the mean Sun can pass overhead again, even though it rotates only once (360°) relative to the mean Sun. Multiplying the value in rad/s by Earth's equatorial radius of 6,378,
137 m (
WGS84 ellipsoid) (factors of 2π radians needed by both cancel) yields an equatorial speed of 465.1 m/s, 1,674.4 km/h or 1,
040.4 mi/h. Some sources state that Earth's equatorial speed is slightly less, or 1,669.
8 km/h. This is obtained by dividing Earth's equatorial circumference by 24 hours. However, the use of only one circumference unwittingly implies only one rotation in inertial space, so the corresponding time unit must be a sidereal hour. This is confirmed by multiplying by the number of sidereal days in one mean solar day, 1.002
737 909 350 795, which yields the equatorial speed in mean solar hours given above of 1,674.4 km/h.
The permanent monitoring of the Earth's rotation requires the use of
Very Long Baseline Interferometry coordinated with the
Global Positioning System,
Satellite laser ranging, and other satellite techniques. This provides the absolute reference for the determination of universal time, precession, and nutation.
Over millions of years, the rotation is significantly slowed by gravitational interactions with the
Moon: see tidal acceleration. However some large scale events, such as the
2004 Indian Ocean earthquake, have caused the rotation to speed up by around 3 microseconds.
Revolution:
Earth orbits the Sun at an average distance of about
150 million kilometers every
365.2564 mean solar days, or one sidereal year. From Earth, this gives an apparent movement of the Sun eastward with respect to the stars at a rate of about 1°/day, or a Sun or Moon diameter every 12 hours. Because of this motion, on average it takes 24 hours—a solar day—for Earth to complete a full rotation about its axis so that the Sun returns to the meridian. The orbital speed of the Earth averages about
30 km/s (
108,
000 km/h), which is fast enough to cover the planet's diameter (about 12,600 km) in seven minutes, and the distance to the Moon (384,000 km) in four hours
.. Viewed from the celestial north pole, the motion of Earth, the Moon and their axial rotations are all counter-clockwise. Viewed from a vantage
point above the north poles of both the Sun and the Earth, the Earth appears to revolve in a counterclockwise direction about the Sun.
Sun's motion in the
Milky Way:
The Sun is currently traveling through the
Local Interstellar Cloud in the
Local Bubble zone, within the inner rim of the
Orion Arm of the
Milky Way Galaxy. Of the 50 nearest stellar systems within 17 light-years from the Earth, the Sun ranks 4th in mass.The Sun orbits the center of the
Milky Way galaxy at a distance of approximately 24,000 - 26,000 light years from the galactic center, completing one clockwise orbit, as viewed from the galactic north pole, in about 225 - 250 million years.
- published: 02 Dec 2008
- views: 768740