Audio feedback or acoustic feedback, often referred to simply as "feedback", (also known as the Larsen effect after the Danish scientist, Søren Absalon Larsen, who first discovered its principles) is a special kind of positive feedback which occurs when a sound loop exists between an audio input (for example, a microphone or guitar pickup) and an audio output (for example, a loudspeaker). In this example, a signal received by the microphone is amplified and passed out of the loudspeaker. The sound from the loudspeaker can then be received by the microphone again, amplified further, and then passed out through the loudspeaker again. This re-amplification is an example of positive feedback. The frequency of the resulting sound is determined by resonance frequencies in the microphone, amplifier, and loudspeaker, the acoustics of the room, the directional pick-up and emission patterns of the microphone and loudspeaker, and the distance between them.
The conditions for feedback follow the Barkhausen stability criterion, namely that, with sufficiently high gain, a stable oscillation can (and usually will) occur in a feedback loop whose frequency is such that the phase delay is an integer multiple of 360 degrees and the gain at that frequency is equal to 1. If the gain is increased until it is greater than 1 for some frequency, then it will be equal to 1 at a nearby frequency, and the system will start to oscillate at that frequency at the merest input excitation, that is to say: sound will be produced without anyone actually playing. This is the principle upon which electronic oscillators are based; although in that case the feedback loop is purely electronic, the principle is the same. If the gain is large, but slightly less than 1, then high-pitched slowly decaying feedback tones will be created, but only with some input sound.