- published: 31 May 2009
- views: 1089557
The Wärtsilä RT-flex96C is a two-stroke turbocharged low-speed diesel engine designed by the Finnish manufacturer Wärtsilä. It is designed for large container ships that run on heavy fuel oil. Its largest 14-cylinder version is 13.5 metres (44 ft) high, 26.59 m (87 ft) long, weighs over 2,300 tonnes, and produces 80,080 kilowatts (107,390 hp). The engine is the largest reciprocating engine in the world.
The 14-cylinder version was put into service in September 2006 aboard the Emma Mærsk. The design is like the older RTA96C engine, with common rail technology instead of traditional camshaft, chain gear, fuel pumps and hydraulic actuators. All this provides the maximum performance at low revolutions per minute (rpm), lower fuel consumption and lower harmful emissions.
The engine has crosshead bearings so that the always-vertical piston rod allows a tight seal under the piston. Consequently, the lubrication of the engine is split: the cylinders and the crankcase use different lubricants, each being specialised for and dedicated to its role. The cylinders are lubricated by continual, timed injection of consumable lubricant, formulated to protect the cylinders from wear and to neutralise the acids formed during combustion of the high-sulfur fuels commonly used. The crosshead design reduces sideways forces on the piston, keeping diametral cylinder liner wear in the order of only about 0.03 mm per 1000 hours.
Don't forget to subscribe to our channel! Everyday we do our best to bring you the best content on the internet, cheers! Do you wanna know more? Follow us on Instagram: https://instagram.com/how.does.it.work?igshid=YmMyMTA2M2Y=
The Largest engine in the world: Wärtsilä RT-flex96C engine
WinGD's 14RT-flex96C is the most powerful diesel engine ever in the world.
A video of a walk around the running Sulzer/Wärtsilä 12RTA96C main engine on board the Maersk Kimi, currently at 70 revolutions per minute. A powerful reciprocating engine. The walk starts with an topview over the engine. It continues with a walk over the cylinder cover platform, the fuel pump platform, and finally the floor. More on Maritiem-Officier.nl via http://www.maritiem-officier.nl/
A tour around one of the worlds largest ship engines. This powers a 400 meter long container ship. Please subscribe to my channel, more videos like this will come.
Richard Hammond gets to check out the engine room of the Marie Maersk container ship. The massive two-stroke diesel engine is so big that Richard is able to walk inside it! Subscribe to Discovery Australia for more great clips: https://bit.ly/DiscoveryAustralia
The world’s first 14-cylinder low-speed engine entered service on 1 September 2006 in a large, fast container vessel. Developed by Wärtsilä Corporation, the 14-cylinder Wärtsilä RT-flex96C engine is also the world’s most powerful engine with an output of 80,080 kW (108,920 bhp) at 102 rpm.
The Wärtsilä RT-flex96C is a two-stroke turbocharged low-speed diesel engine designed by the Finnish manufacturer Wärtsilä. It is designed for large container ships that run on heavy fuel oil. Its largest 14-cylinder version is 13.5 metres (44 ft) high, 26.59 m (87 ft) long, weighs over 2,300 tonnes, and produces 80,080 kilowatts (107,390 hp). The engine is the largest reciprocating engine in the world.
The 14-cylinder version was put into service in September 2006 aboard the Emma Mærsk. The design is like the older RTA96C engine, with common rail technology instead of traditional camshaft, chain gear, fuel pumps and hydraulic actuators. All this provides the maximum performance at low revolutions per minute (rpm), lower fuel consumption and lower harmful emissions.
The engine has crosshead bearings so that the always-vertical piston rod allows a tight seal under the piston. Consequently, the lubrication of the engine is split: the cylinders and the crankcase use different lubricants, each being specialised for and dedicated to its role. The cylinders are lubricated by continual, timed injection of consumable lubricant, formulated to protect the cylinders from wear and to neutralise the acids formed during combustion of the high-sulfur fuels commonly used. The crosshead design reduces sideways forces on the piston, keeping diametral cylinder liner wear in the order of only about 0.03 mm per 1000 hours.