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ABSTRACT
We present the results of a pan-American campaign to observethe 2009 June 5 transit of the exo-

planet HD 80606b. We report the first detection of the transitingress, revealing the transit duration to be
11.64±0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at
midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary or-
bital axis are misaligned. The Keck data show that the projected spin-orbit angleλ is between 32–87 deg with
68.3% confidence and between 14–142 deg with 99.73% confidence. Thus the orbit of this planet is not only
highly eccentric (e = 0.93), but is also tilted away from the equatorial plane of its parent star. A large tilt had
been predicted, based on the idea that the planet’s eccentric orbit was caused by the Kozai mechanism. Inde-
pendently of the theory, it is noteworthy that all 3 exoplanetary systems with known spin-orbit misalignments
have massive planets on eccentric orbits, suggesting that those systems migrate differently than lower-mass
planets on circular orbits.
Subject headings: planetary systems — planetary systems: formation — stars: individual (HD 80606) —

stars: rotation

1. INTRODUCTION

Discovered by Naef et al. (2001), HD 80606b is a giant
planet of approximately 4 Jupiter masses whose orbit carries
it within 7 stellar radii of its parent star. Yet it is no ordinary
“hot Jupiter”: the other end of the planet’s 111-day orbit is
about 30 times further away from the star. With an orbital ec-
centricity of 0.93, HD 80606b presents an extreme example
of the “eccentric exoplanet” problem: the observation thatex-
oplanets often have eccentric orbits, despite the 20th-century
expectation that more circular orbits would be common (Lis-
sauer 1995).

Wu and Murray (2003) proposed that HD 80606b formed
on a wide circular orbit that was subsequently shrunk and
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elongated by a combination of the Kozai (1962) effect and
tidal friction. In this scenario, the gravitational perturbation
from the companion star HD 80607 excites large-amplitude
oscillations of the planet’s orbital eccentricity and inclination.
During high-eccentricity phases, tidal friction drains the or-
bital energy and shrinks the orbit until the oscillations cease
due to competing perturbations arising from stellar aspheric-
ity and general relativity. Fabrycky & Tremaine (2007) noted
that a probable consequence of this scenario is that the star-
planet orbit was left tilted with respect to its original orbital
plane, which was presumably aligned with the stellar equa-
tor. Hence, a demonstration that the planetary orbital axisand
stellar spin axis are misaligned would be supporting evidence
for the Kozai scenario.

For a transiting planet, it is possible to measure the angle
between the sky projection of those two axes through obser-
vations of the Rossiter-McLaughlin (RM) effect, a distortion
of spectral lines resulting from the partial eclipse of the rotat-
ing stellar surface (Rossiter 1924, McLaughlin 1924, Queloz
et al. 2000; see Fabrycky & Winn 2009 for a recent summary
of results). In a series of fortunate events, it recently became
known that the orbit of HD 80606b is viewed close enough
to edge-on to exhibit transits and thereby permit RM observa-
tions. First, Laughlin et al. (2009) detected an occultation of
the planet by the star, an event that is visible from only 15%
of the sight-lines to HD 80606. Then, three groups detected
a transit (Moutou et al. 2009, Fossey et al. 2009, Garcia-
Melendo & McCullough 2009), which was predicted to occur
with only 15% probability even after taking into account the
occurrence of occultations.

All three groups detected the transit egress, but not the
ingress. The lack of information about the ingress, and hence
the transit duration, hampered previous determinations ofthis
system’s parameters. In particular, Moutou et al. (2009) gath-
ered radial-velocity data bracketing the transit egress that dis-
plays the RM effect, but due to the unknown transit duration
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it was not immediately clear whether meaningful constraints
could be placed on the angleλ between the sky projections
of the stellar spin axis and the orbital axis. Pont et al. (2009)
concluded thatλ is nonzero based on a Bayesian analysis of
the available data, but their results were sensitive to prior as-
sumptions regarding the stellar mean density, the stellar ro-
tation rate, and the treatment of correlated noise, and were
therefore not as robust as desired.16

We report here on a multi-site campaign to observe the
photometric transit ingress of UT 2009 June 5, and to mea-
sure more precise radial velocities during the transit. We also
present and analyze data that have been accumulated by the
California Planet Search over the 8 years since the planet’s
discovery. Our observations and data reduction are presented
in § 2, our analysis is described in § 3, and the results are
summarized and discussed in § 4.

2. OBSERVATIONS

2.1. Photometry

The ingress was expected to begin some time between
UT 23:00 June 4 and 06:00 June 5, and to last several hours.
However, in June, HD 80606 is only observable from a given
site for a few hours (at most) following evening twilight. To
overcome this obstacle we organized a pan-American cam-
paign, with observers in Massachusetts, New Jersey, Florida,
Indiana, Texas, Arizona, California, and Hawaii.

On the transit night, each observer obtained a series of im-
ages of HD 80606 and its neighbor HD 80607. In most cases,
we used only a small subraster of the CCD encompassing both
stars, and defocused the telescope, both of which allow an in-
crease in the fraction of time spent collecting photons as op-
posed to reading out the CCD. Defocusing also has the salu-
tary effects of averaging over pixel-to-pixel sensitivityvaria-
tions, and reducing the impact of natural seeing variationson
the shape of the stellar images.

Each observer also gathered images on at least one other
night when the transit was not occurring, to establish the base-
line flux ratio between HD 80606 and HD 80607 with the
same equipment, bandpass, and range of airmass as on the
transit night. Details about each site are given below.17 In
what follows, the dates are UT dates, i.e., “June 5” refers to
the transit night of June 4-5 in U.S. time zones.

Wallace Astronomical Observatory, Westford, MA. Thick
clouds on the transit night prevented any useful data from
being obtained. However, out-of-transit data in the Cousins
R band were obtained on June 3 using a 0.41 m telescope
equipped with a POETS camera (Souza et al. 2006), and a
0.36 m telescope equipped with an SBIG STL-1001E CCD
camera.

Rosemary Hill Observatory, Bronson, FL. We observed in
the Sloani band using the 0.76 m Tinsley telescope and SBIG
ST-402ME CCD camera. Conditions were partly cloudy on
the transit night, leading to several interruptions in the time
series. Control data were obtained on June 11.

De Kalb Observatory, Auburn, IN. We used a 0.41 mf /8.5
Ritchey-Chretien telescope with an SBIG ST10-XME CCD
camera. Data were obtained in the CousinsR band on May 30
and on the transit night. Conditions were clear on both nights.

16 Gillon (2009) has submitted for publication the results of asimilar anal-
ysis of the same data, with similar results.

17 Observations were also attempted from Brookline, MA; Princeton, NJ;
Lick Observatory, CA; and Winer Observatory, AZ; but no useful data were
obtained at those sites due to poor weather.

McDonald Observatory, Fort Davis, TX. Two telescopes
were used: the McDonald 0.8m telescope and its Loral 20482

prime focus CCD camera with anRC filter; and the MONET-
North18 1.2m telescope with an Alta Apogee E47 CCD cam-
era and SDSSr filter, controlled remotely from Göttingen,
Germany. Conditions were partly cloudy on the transit night,
shortening the interval of observations and causing several in-
terruptions. Control data were obtained with the McDonald
0.8m telescope on June 11, and with the MONET-North 1.2m
telescope on May 31 and June 4.

Fred L. Whipple Observatory, Mt. Hopkins, AZ. We used
the 48 in (1.2m) telescope and Keplercam, a 40962 Fairchild
CCD camera. Cloud cover prevented observations on the tran-
sit night, but out-of-transit data were obtained on June 6 inthe
Sloanriz bands. Out-of-transit data in thei band were also
obtained on Feb. 13 and 14, 2009.

Mount Laguna Observatory, San Diego, CA. We observed
in the Sloanr band with the 1.0m telescope and 20482 CCD
camera. Conditions were humid and cloudy. The target star
was observable through a thin strip of clear sky for several
hours after evening twilight. Out-of-transit data were obtained
on June 8.

Mauna Kea Observatory, HI. We used the University of
Hawaii 2.2m telescope and the Orthogonal Parallel Transfer
Imaging Camera (OPTIC; Tonry et al. 1997). Instead of defo-
cusing, we used the charge-shifting capability of OPTIC to
spread the starlight into squares 40 pixels (5.′′4) on a side
(Howell et al. 2003). We observed with a custom “narrow
z” filter defining a bandpass centered at 850 nm with a full
width at half-maximum of 40 nm. Out-of-transit data were
obtained on June 4.

Reduction of the CCD images from each observatory in-
volved standard procedures for bias subtraction, flat-fielddi-
vision, and aperture photometry. The flux of HD 80606 was
divided by that of HD 80607, and the results were averaged
into 10 min bins. This degree of binning was acceptable be-
cause it sampled the ingress duration with≈15 points. We
estimated the uncertainty in each binned point as the standard
deviation of the mean of all the individual data points con-
tributing to the bin (ranging in number from 8 to 63 depend-
ing on the telescope). We further imposed a minimum uncer-
tainty of 0.001 per 10 min binned point, to avoid overweight-
ing any particular point and out of general caution about time-
correlated noise that often afflicts photometric data (Pontet
al. 2006). Fig. 1 shows the time series of the flux ratio based
on the data from the transit night of June 5, as well as the
out-of-transit flux ratio derived with the same telescope.

Determining the out-of-transit flux ratio and its uncertainty
was an important task. Since it was not possible to gather out-
of-transit data on June 5, we needed to compare data from
the same telescope that were taken on different nights. Sys-
tematic errors are expected from night-to-night differences in
atmospheric conditions and detector calibrations. We believe
this uncertainty to be approximately 0.002 in the flux ratio,
based on the following two tests.

First, in two instances the out-of-transit flux ratio was mea-
sured on more than one night, with differences in the resultsof
0.0004 and 0.0017 from the MONET-North and FLWO tele-
scopes respectively. In the latter case, the data were separated
in time by 112 days, raising the possibility that longer-term
instabilities in the instrument or the intrinsic variability of the

18 MONET stands for MOnitoring NEtwork of Telescopes; see Hess-
man (2001).
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FIG. 1.— The flux ratio between HD 80606 and HD 80607, as measured on thetransit night UT 2009 June 5. The solid blue line
is the out-of-transit flux ratio as determined on a differentnight. The uncertainty in the out-of-transit flux ratio is indicated with
an error bar on the left side. The dashed red line shows the 1% drop that was expected at midtransit.

stars contribute to the difference, and that the night-to-night
repeatability is even better than 0.0017.

A second comparison can be made by including data from
different telescopes that employed the same nominal band-
pass. This should give an upper bound (worst-case) estimate
for the systematic error in the measurement from asingle tele-
scope on different nights. Using the data in Table 1, we asked
for each bandpass: what value ofσsys must be chosen in order

for

χ2 =
N

∑

i=1

( foot,i − f̄oot,i)2

σ2
i + σ2

sys
= N − 4, (1)

where foot,i is the ith measurement of the out-of-transit flux
ratio,σi is the statistical uncertainty in that measurement, and
f̄oot,i is the unweighted mean of all the out-of-transit flux ra-
tio measurements made in the same nominal bandpass asfi.
There areN = 15 data points, andN − 4 is used in Eq. (1) be-
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TABLE 1
OUT-OF-TRANSIT FLUX RATIO BETWEEN HD 80606AND HD 80607

No. Observatory/Telescope Date Band Flux Ratio

1 University of London 0.35m 2009 Feb 14 RC 1.12796±0.00023
2 De Kalb 0.41m 2009 May 30 RC 1.12305±0.00110
3 Wallace 0.41m 2009 Jun 03 RC 1.12859±0.00046
4 Wallace 0.36m 2009 Jun 03 RC 1.12582±0.00057
5 McDonald 0.8m 2009 Jun 11 RC 1.12230±0.00130
6 MONET-North 1.2m 2009 May 31 r 1.12281±0.00062
7 MONET-North 1.2m 2009 Jun 04 r 1.12240±0.00060
8 Mt. Laguna 1.0m 2009 Jun 08 r 1.12592±0.00290
9 Whipple 1.2m 2009 Jun 06 r 1.12565±0.00320
10 Rosemary Hill 0.76m 2009 Jun 11 i 1.12072±0.00041
11 Whipple 1.2m 2009 Jun 06 i 1.11927±0.00510
12 Whipple 1.2m 2009 Feb 13 i 1.11758±0.00085
13 Whipple 1.2m 2009 Feb 14 i 1.11814±0.00066
14 Mauna Kea UH2.2m 2009 Jun 04 za 1.11635±0.00021
15 Whipple 1.2m 2009 Jun 06 z 1.11584±0.00047
NOTE. — Based on data from our campaign, except for the data from the University

of London Observatory which was kindly provided by Fossey etal. (2009). The quoted
uncertainties represent only the “statistical error,” defined as the standard error of the
mean of the flux ratios derived from all the images.
a A custom “narrowz” bandpass, centered at 850 nm with a full width at half-maximum
of 40 nm.

FIG. 2.— Deviations between the measured out-of-transit flux ratio, and the
mean value of the out-of-transit flux ratio across all data sets obtained with the
same nominal bandpass. The data are given in Table 1. The black error bars
represent statistical errors. The gray error bars have an additional systematic
error of 0.0018 added in quadrature with the statistical error. The value of
0.0018 was chosen because it gives a reducedχ

2 of unity [see Eq. (1)].

cause there are 4 independent bandpasses for which means
are calculated.19 In this sense, we fitted a model to the out-of-
transit flux-ratio data with 4 free parameters. The quantities
( foot,i − f̄oot,i) are plotted in Fig. 2. The result isσsys = 0.0018.

In our subsequent analysis we assumed the error in the out-
of-transit flux ratio to follow a Gaussian distribution witha
standard deviation given by the quadrature sum of 0.0020 and
statistical error given in Table 1. Given the preceding results,
we believe this to be a reasonable and even a conservative esti-
mate of the systematic error. Though it may seem too small to
those readers with experience in synoptic photometry, it must
be remembered that this is an unusually favorable case: the
Universe was kind enough to provide two stars of nearly equal
brightness and color separated by only 20′′. It is also worth
repeating that for our analysis we did not need to place data
from different telescopes on the same flux scale; we needed
only to align data from thesame telescope obtained on differ-
ent nights.

We call attention to a few key aspects of the time series
in Fig. 1: (1) All the observers measured the flux ratio be-
tween HD 80606 and HD 80607 to be smaller on the tran-
sit night than it was on out-of-transit nights. We conclude
that the transit was detected. (2) The data from Rosemary

19 For this exercise we considered the “narrowz” band of the UH 2.2m
observations to be equivalent to the Sloanz band.

TABLE 2
RELATIVE RADIAL VELOCITY MEASUREMENTS OFHD 80606

HJD RV [m s−1] Error [m s−1]

2452007.89717 −144.75 2.06
2452219.16084 −111.52 1.68
2452236.05808 −163.28 1.85
2452243.16763 −182.50 1.72

NOTE. — The RV was measured relative to an arbitrary template spectrum; only the
differences are significant. The uncertainty given in Column 3 is the internal error only
and does not account for any possible “stellar jitter.” We intend for this Table to appear
in entirety in the electronic version of the journal. An excerpt is shown here to illustrate
its format.

Hill and De Kalb show a decline in the relative brightness of
HD 80606 over several hours. We interpret the decline as the
transit ingress. (3) The data from McDonald, Mt. Laguna, and
Mauna Kea show little variability over the interval of theirob-
servations, suggesting that the “bottom” (complete phase)of
the transit had been reached.

2.2. Radial Velocities

We measured the relative radial velocity (RV) of HD 80606
with the Keck I 10m telescope on Mauna Kea, Hawaii. We
used the High Resolution Echelle Spectrometer (HIRES; Vogt
et al. 1994) in the standard setup of the California Planet
Search program (Howard et al. 2009), as summarized here.
We employed the red cross-disperser and used the iodine gas
absorption cell to calibrate the instrumental response andthe
wavelength scale. The slit width was 0.′′86 and the exposure
time ranged from 240–500 s, giving a resolution of 65,000
and a typical signal-to-noise ratio (SNR) of 210 pixel−1. Ra-
dial velocities were measured with respect to an iodine-free
spectrum, using the algorithm of Butler et al. (1996) as im-
proved over the years.

The 73 measurements span 8 yr, from 2001 to the present.
Table 2 gives all of the RV data. There are 39 data points
obtained prior to the upgrade of the HIRES CCDs in August
2004, and 34 data points obtained after the upgrade. Results
from the pre-upgrade data, and some of the post-upgrade data,
were published by Butler et al. (2006). For our analysis we
re-reduced the post-upgrade spectra using later versions of the
analysis code and spectral template. Due to known difficulties
in comparing data obtained with the different detectors, inour
subsequent analysis we allowed for a constant velocity offset
between the pre-upgrade and post-upgrade data sets.

The post-upgrade data include nightly data from the week
of the June 5 transit, which in turn include a series of 8 obser-
vations taken at 30 min intervals on the transit night. Fig. 3
shows the RV data as a function of time, and Fig. 4 shows the
RV data as a function of orbital phase. Fig. 5 is a close-up
around the transit phase. Shown in all of these figures is the
best-fitting model, described in § 3.

3. ANALYSIS

We fitted a model to the photometric and RV data based
on the premise of a single planet in a Keplerian orbit around
a star with a limb-darkened, uniformly rotating photosphere.
We assumed the orbit to be strictly periodic, i.e., that any per-
turbations to the RV and transit characteristics are negligible.
The model flux was computed using the equations of Mandel
& Agol (2002) for a quadratic limb darkening law. The model
RV was given byvO(t) + ∆vR(t), wherevO is the line-of-sight
component of the Keplerian orbital velocity and∆vR is the
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FIG. 3.— Radial-velocity variation of HD 80606, as a function of time. Red squares are the data obtained prior to the upgrade of
the HIRES CCDs. Blue dots are the post-upgrade data. The grayline is the best-fitting model. Velocity offsets were subtracted
from the data based on the best-fitting model parameters, andthe error bars represent the quadrature sum of the measurement
errors quoted in Table 2 and a term representing possible systematic errors (“stellar jitter”). For the pre-upgrade andpost-upgrade
data, the velocity offsets are 184.55 and 182.45 m s−1, and the systematic error terms are 5 and 2 m s−1, respectively.

anomalous velocity due to the Rossiter-McLaughlin (RM) ef-
fect.

To compute∆vR as a function of orbital phase we used
the “RM calibration” procedure of Winn et al. (2005): we
simulated spectra exhibiting the RM effect at various orbital
phases, and then measured the apparent radial velocity of the
simulated spectra using the same algorithm used on the actual
data. We found the results to be consistent with the simple
formula ∆vR = −(∆ f )vp (Ohta et al. 2005, Giménez 2006),
where∆ f is the instantaneous decline in relative flux andvp is
the radial velocity of the hidden portion of the photosphere.20

The model parameters can be divided into 3 groups. First
are the parameters of the spectroscopic orbit: the periodP,
a particular midtransit timeTt , the radial-velocity semiampli-
tudeK, the eccentricitye, the argument of pericenterω, and
two velocity offsetsγ1 andγ2 (for the pre-upgrade and post-
upgrade data). Next are the photometric parameters: the
planet-to-star radius ratioRp/R⋆, the orbital inclinationi, the
scaled stellar radiusR⋆/a (wherea is the semimajor axis),
and the out-of-transit flux ratiofoot,i specific to the data from

20 We also found this to be true for the cases of HAT-P-1 (Johnsonet
al. 2008) and TrES-2 (Winn et al. 2008a), although for other cases a higher-
order polynomial relation was needed. It is noteworthy thatthe 3 systems for
which the linear relation is adequate are the slowest rotators. This is consis-
tent with work by T. Hirano et al. (in preparation) that aims at an analytic
understanding of the RM calibration procedure.

each telescope. Finally there are the parameters relevant to
the RM effect: the projected stellar rotation ratevsini⋆ and
the angleλ between the sky projections of the orbital axis
and the stellar rotation axis [for illustrations of the geometry,
see Ohta et al. (2005), Gaudi & Winn (2007), or Fabrycky
& Winn (2009)]. The limb-darkening (LD) coefficients were
taken from the tables of Claret (2000, 2004), as appropriate
for the bandpass of each data set.21

We fitted all the Keck/HIRES RV data and all the new pho-
tometric data except the data from McDonald Observatory,
which were the noisiest data and gave redundant time cover-
age. To complete the phase coverage of the transit, we also
fitted the egress data of Fossey et al. (2009) obtained with the
Celestron 0.35m telescope, which were the most precise and
exhibited the smallest degree of correlated noise.

The fitting statistic was a combination of the usual chi-
squared statistic and terms representing Gaussiana priori
constraints. Schematically,

χ2 = χ2
f + χ2

v + χ2
oot+ χ2

occ, (2)

21 For theRC band, we usedu1 = 0.3915 andu2 = 0.2976; for ther band,
u1 = 0.4205 andu2 = 0.2911; for thei band,u1 = 0.3160 andu2 = 0.3111; and
for the “narrowz” band,u1 = 0.2424 andu2 = 0.3188. We did not allow the
LD coefficients to be free parameters because the photometric data are not
precise enough to give meaningful constraints on them (and conversely, even
large errors in the theoretical LD coefficients have little effect on our results).
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FIG. 4.— Radial-velocity variation of HD 80606, as a function of orbital phase. The same plotting conventions apply as in Fig. 3.

with the various terms defined as

χ2
f =

N f
∑

i=1

[

fi(obs)− fi(calc)
σ f ,i

]2

, (3)

χ2
v =

Nv
∑

i=1

[

vi(obs)− vi(calc)
σv,i

]2

, (4)

χ2
oot =

4
∑

i=1

[

foot,i − f̄oot,i

0.0020

]2

, (5)

χ2
occ=

[

To(obs)− To(calc)
σTo

]2

+
[

τo(obs)− τo(calc)
στo

]2

, (6)

(7)

in which fi(obs) is a measurement of the relative flux of
HD 80606,σ f ,i is the uncertainty, andfi(calc) is the rela-
tive flux that is calculated for that time for a given set of
model parameters. Likewisevi(obs) andσv,i are the RV
measurements and uncertainties, andvi(calc) is the calcu-
lated RV. The third term enforces the constraints on the out-
of-transit flux ratios for each bandpass. The fourth term
enforces constraints based on the measured mid-occultation
time and total occultation duration. We adopted the values
To = 2,454,424.736± 0.004 [HJD] andτo = 1.80± 0.25 hr
from Laughlin et al. (2009). In contrast to the previous anal-
ysis of Pont et al. (2009), we did not impose prior constraints
based on theoretical stellar-evolutionary models, or on the
stellar rotation rate. (In § 4.1 we discuss how the results
change if such constraints are imposed.)

For the RV uncertaintiesσv,i, we used the quadrature sum
of the estimated measurement errors quoted in Table 2, and a
termσv,sys representing possible systematic errors. The latter
term is often called “stellar jitter” and may represent Doppler
shifts due to additional planets, non-Keplerian Doppler shifts
due to stellar oscillations or stellar activity, as well as any
errors in the instrument calibration or spectral deconvolution
code. We usedσv,sys = 5 m s−1 for the pre-upgrade data, and
σv,sys = 2 m s−1 for the post-upgrade data, based on the scat-
ter in the observed RVs for other planet-search program stars
with similar spectral types that do not have any detected plan-
ets.

With these choices, and with the flux uncertainties deter-
mined as described previously, the minimumχ2 is 206 with
202 degrees of freedom. This indicates a good fit and sug-
gests that the estimated uncertainties are reasonable. Therms
scatter in the RV residuals is 5.7 m s−1 for the pre-upgrade
data and 2.1 m s−1 for the post-upgrade data. The rms scatter
in the photometric residuals is (respectively) 0.0015, 0.0012,
0.0013, and 0.00031 for the Rosemary Hill, De Kalb, Mt. La-
guna, and UH 2.2m data.

We determined the best fitting values of the model parame-
ters and their uncertainties using a Markov Chain Monte Carlo
algorithm [see, e.g., Tegmark et al. (2004), Gregory (2005), or
Ford (2005)]. This algorithm creates a chain of points in pa-
rameter space by iterating a jump function, which in our case
was the addition of a Gaussian random deviate to a randomly-
selected single parameter. If the new point has a lowerχ2

than the previous point, the jump is executed; if not, the jump
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FIG. 5.— Radial-velocity variation of HD 80606, as a function of orbital phase, for the week of the transit (top panel) and the
day of the transit (bottom panel). The in-transit RVs are allfrom 2009 June 5. Of the out-of-transit RVs, 5 are from the week
of 2009 June 1–6, and the others are from different orbits. Blue dots are the post-upgrade Keck/HIRES data, after subtracting
offsets and enlarging the error bars as in Figs. 4 and 3. Gray dots are the SOPHIE data of Moutou et al. (2009), which were not
used to derive the best-fitting models plotted here. The solid line is the best-fitting model with no prior constraint onvsini⋆. The
dashed line is the best-fitting model with a prior constrainton vsini⋆ as explained in § 3.

is executed with probability exp(−∆χ2/2) and otherwise the
current point is repeated in the chain. We set the sizes of
the random deviates such that∼40% of jumps are executed.
We created 10 chains of 106 links each from different starting
conditions, giving for each parameter a smoothly varyinga
posteriori distribution and a Gelman & Rubin (1992) statis-
tic smaller than 1.05. The phase-space density of points in
the chain is an estimate of the jointa posteriori probability
distribution of all the parameters, from which may be calcu-
lated the probability distribution for an individual parameter
by marginalizing over all of the others.

4. RESULTS

Table 3 gives the results for the model parameters. The
quoted value for each parameter is the median of thea pos-
teriori distribution, marginalized over all other parameters.
The quoted uncertainties represent 68.3% confidence limits,
defined by the 15.85% and 84.15% levels of the cumulative
distribution. Fig. 6 shows the transit light curve and the best-

fitting model. This figure also includes the the MEarth obser-
vations of the 2009 Feb. 14 transit (Pont et al. 2009), which
are the most constraining of the available pre-ingress data.

4.1. Spin-orbit parameters

Fig. 7 shows the probability distributions for the parameters
describing the Rossiter-McLaughlin effect,vsini⋆ andλ. A
well-aligned system,λ = 0, can be excluded with high confi-
dence. With 68.3% confidence,λ lies between 32 and 87 deg,
and with 99.73% confidence, it lies between 14 and 142 deg.
The distribution is non-Gaussian because of the correlation
betweenλ andvsini⋆ shown in the right panel of Fig. 7. No
other parameter shows a significant correlation withλ.

The strong exclusion of good alignment (λ = 0) follows
from the observation that the RV data gathered on June 5 were
blueshifted relative to the Keplerian velocity (see Fig. 5), over
a time range that proved to include the midtransit time. Were
the spin and orbit aligned, the anomalous RV would vanish at
midtransit, because the planet would then be in front of the
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FIG. 6.— The photometric transit of HD 80606. The solid curves show the best-fitting model, which depends on bandpass due
to limb darkening. From top to bottom the model curves are forther, RC, i, andz bands.

FIG. 7.— Probability distributions for the projected spin-orbit angle (λ) and projected stellar rotation rate (vsini⋆). Blue solid
curves show the results when fitting the photometry and the Keck/HIRES RVs with no prior constraint onvsini⋆. Red dotted
curves show the effect of applying a Gaussian priorvsini⋆ = 1.9±0.5 km s−1 based on analyses of the stellar absorption lines in
Keck/HIRES spectra.Left.—Probability distribution forλ. Center.—Probability distribution forvsini⋆. Right.—Joint probability
distribution forvsini⋆ andλ. The contours are the 68.3% and 95% confidence levels.

stellar rotation axis where there is no radial component to the
stellar rotation velocity. The observed blueshift at midtransit
implies that the midpoint of the transit chord is on the red-
shifted (receding) side of the star. This can only happen if the
stellar rotation axis is tilted with respect to the orbital axis.

For the projected stellar rotation rate, we findvsini⋆ =
1.12+0.44

−0.22 km s−1. In their previous analysis using the SO-
PHIE data, Pont et al. (2009) imposed prior constraints on
vsini⋆ based on the observed broadening in the stellar absorp-
tion lines. This was necessary to break a degeneracy between
the transit duration,vsini⋆, andλ. Here, since we have mea-
sured the transit duration and obtained higher-precision RV
data, we have determinedvsini⋆ directly from the data. This
is preferable whenever possible, to avoid bias due to errors
in the “RM calibration” procedure (see § 3). It is especially

preferable in this case because for slowly rotating stars such
as HD 80606, the effects of rotation on the line profiles are de-
generate with those of macroturbulence and other broadening
mechanisms, leading to systematic error in the spectroscopic
determination ofvsini⋆.

For comparison we review the spectroscopic determina-
tions of vsini⋆. Naef et al. (2001) found 0.9± 0.6 km s−1,
based on the width of the cross-correlation function measured
with the ELODIE spectrograph, after subtracting the larger
“intrinsic width” due to macroturbulence and other broaden-
ing mechanisms that was estimated using the empirical cal-
ibration of Queloz et al. (1998). This result might be con-
sidered tentative, given that Queloz et al. (1998) only claim
their calibration to be accurate down to 1.5–2 km s−1. Valenti
& Fischer (2005) foundvsini⋆ = 1.8± 0.5 km s−1 based on
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synthetic spectral fitting to the pre-upgrade Keck spectra,and
a particular assumed relationship between effective temper-
ature and macroturbulence (see their paper for details). We
used the same spectral model and macroturbulence relation-
ship to analyze one of the post-upgrade Keck spectra, finding
vsini⋆ = 2.0±0.5 km s−1, in good agreement with Valenti &
Fischer (2005) but not with Naef et al. (2001).

We investigated the effect of imposing ana priori con-
straint onvsini⋆ by adding the following term to Eq. (2):

χ2
rot =

[

vsini⋆ − 1.9 km s−1

0.5 km s−1

]2

. (8)

After refitting, the results for the spin-orbit parameters were
vsini⋆ = 1.37+0.41

−0.33 km s−1 andλ = 39+28
−13 deg. The best-fitting

model is shown with a dashed line in Fig. 5. The constraints
on λ are tightened; the new credible interval is 25% smaller
than the credible interval without the constraint. However, the
improved precision does not necessarily imply improved ac-
curacy, given the uncertainties mentioned previously regard-
ing the RM calibration and other broadening mechanisms be-
sides rotation. For this reason we have emphasized the results
with no external constraint onvsini⋆, and provide only those
results in Table 3.

4.2. Other parameters and absolute dimensions

Our orbital parameters are generally in agreement with
those derived previously. One exception is the argument of
pericenter, for which our result (300.83± 0.15 deg) is 2σ
away from the result of Laughlin et al. (2009) (300.4977±
0.0045 deg), although the uncertainty in the latter quantity
seems likely to be underestimated. Another exception is that
our orbital period differs from that of Laughlin et al. (2009) by
3σ, although our period agrees with the period found by Pont
et al. (2009). It is also noteworthy that the Bayesian analysis
of Pont et al. (2009) was successful in predicting the transit
duration: their prediction was 11.9±1.3 hr which agrees well
with our result of 11.64±0.25 hr.

The transit parameters, including the transit duration, are
related directly to the stellar mean densityρ⋆ (Seager &
Mallen-Ornelas 2003). In their previous study, due to the
poorly known transit duration, Pont et al. (2009) used the-
oretical expectations forρ⋆ to impose constraints on the
lightcurve solution. Since we have measured the transit du-
ration, we can determineρ⋆ directly from the data, finding
ρ⋆ = 1.63± 0.15 g cm−3.22 This is 10–30% larger than the
Sun’s mean density of 1.41 g cm−3, as expected for a metal-
rich star with the observed G5 spectral type (Naef et al. 2001).

We used this new empirical determination ofρ⋆ in conjunc-
tion with stellar-evolutionary models to refine the estimates
of the stellar massM⋆ and radiusR⋆, which in turn lead to re-
fined planetary parameters (see, e.g., Sozzetti et al. 2007,Hol-
man et al. 2007). The models were based on the Yonsei-Yale
series (Yi et al. 2001; Demarque et al. 2004), and were ap-
plied as described by Torres et al. (2008) [with minor amend-
ments by Carter et al. (2009)]. Figure 8 shows the theoretical
isochrones, along with some of the observational constraints.
The constraints wereρ⋆ = 1.63± 0.15 g cm−3, along with
Teff = 5572±100 K and [Fe/H] =+0.34±0.10. The temper-
ature and metallicity estimates are based on the spectroscopic

22 Although Seager & Mallen-Ornelas (2003) considered only circular or-
bits, their results are easily generalized. Needless to saywe cannot assume
a circular orbit in this case and our quoted uncertainty inρ⋆ incorporates the
uncertainties ine andω.

analysis of Valenti & Fischer (2005), but with enlarged error
bars, as per Torres et al. (2008). The results are given in Ta-
ble 3.

We did not apply any constraint to the models based on
the spectroscopically determined surface gravity (logg⋆), out
of concern over systematic errors in that parameter (Winn et
al. 2008b). Instead we performed the reverse operation: given
our results forM⋆ andR⋆ we computed the implied value of
logg⋆, finding logg⋆ = 4.487± 0.021. Reassuringly this in
agreement with, and is more precise than, the spectroscopi-
cally determined values of 4.50±0.20 (Naef et al. 2001) and
4.44±0.08 (Valenti & Fischer 2005).

FIG. 8.— Stellar-evolutionary model isochrones in the space ofeffective
temperature vs. stellar mean density, from the Yonsei-Yaleseries by Yi et al.
(2001). The point and shaded box represent the observationally determined
values and 68.3% confidence intervals. Isochrones are shownfor ages of 1 to
14 Gyr (from left to right) in steps of 1 Gyr for a fixed stellar metallicity of
[Fe/H] = 0.344.

5. SUMMARY AND DISCUSSION

The poorly constrained transit duration was the main limit-
ing factor in previous determinations of the system parameters
of HD 80606b. The duration is now known to within 2.2%,
from a combination of the transit ingress detected in our pan-
American campaign, the photometric egress detected dur-
ing the previous transit, and the orbital period that is known
very precisely from the RV data. In addition, our new and
more precise RV data show definitively that at midtransit the
starlight is anomalously blueshifted. This is interpretedas
the partial eclipse of the redshifted half of the rotating pho-
tosphere. For this to happen at midtransit, the orbital axisof
the planet and the rotation axis of the star must be misaligned.

Despite these achievements, the RV signal during the later
phase of the transit is known less precisely, and the RV sig-
nal during the early phase of the transit remains unmeasured.
This incompleteness leads to relatively coarse bounds on the
projected spin-orbit angleλ in comparison with many other
systems.

As described in § 1, the Kozai migration scenario of Wu
& Murray (2003) carried an implicit prediction that the stel-
lar spin and planetary orbit are likely to be misaligned. In
this sense, the finding of a nonzeroλ corroborates the Kozai
migration hypothesis. The quantitative results forλ derived
in this paper are in good agreement with the theoretical spin-
orbit angle of 50◦ predicted by Fabrycky & Tremaine (2007)
in an illustrative calculation regarding HD 80606b (see their
Fig. 1). This agreement should not be overinterpreted, given



10 Winn et al. 2009

the uncertainties in the measurement, the issue of the sky pro-
jection, and the uncertainties in some parameters of the calcu-
lation. Nevertheless the calculation demonstrates that values
of λ of order 50◦ emerge naturally in the Kozai scenario.

The Kozai scenario is not without shortcomings. The or-
bital plane of the stellar binary must be finely tuned to be
nearly perpendicular to the initial planetary orbit. This would
be fatal to any scenario that purported to explain the major-
ity of exoplanetary orbits, but it may be forgivable here, since
we are trying to explain only one system out of the several
hundred known exoplanets. Another possible problem is that
(depending on the initial condition, and the characteristics of
the stellar binary) the relativistic precession may have been
too strong to permit Kozai oscillations (Naef et al. 2001).

Another mechanism that can produce large eccentricities
and large spin-orbit misalignments is planet-planet scattering,
in which close encounters between planets cause sudden al-
terations in orbital elements (Chatterjee et al. 2008, Jurić &
Tremaine 2008, Nagasawa et al. 2008). Ford & Rasio (2008)
found that planet-planet scattering rarely produces eccentrici-
ties exceeding 0.8, although it is possible to produce such high
eccentricities if the orbit was initially eccentric or the other
planet that participated in the encounter remained bound to
the system. One can also imagine a combination of the scat-
tering and Kozai scenarios. Perhaps the Kozai effect enlarged
the eccentricity of an outer planet, which led to a close en-
counter with an inner planet (Malmberg, Davies, & Cham-
bers 2007). Or, perhaps a scattering event left two planets
in mutually inclined orbits, and the outer planet became the
agent of the Kozai effect for the inner planet (Nagasawa et
al. 2008). By attributing the Kozai effect to a distant planet,
rather than the stellar companion, one might also rescue the
Kozai scenario from the problem mentioned above regarding
the relativistic precession rate.

For these reasons, further theoretical work is warranted, as
is continued RV monitoring to seek evidence for additional
planets. On an empirical level, it is striking that the only three
exoplanetary systems known to have a strong spin-orbit mis-
alignment all have massive planets on eccentric orbits: the
present case of HD 80606b (4.2MJup, e = 0.93), WASP-14b
(7.3MJup, e = 0.09; Joshi et al. 2008, Johnson et al. 2009), and
XO-3b (11.8MJup, e = 0.26; Johns-Krull et al. 2008, Hébrard
et al. 2008, Winn et al. 2009). There are also two cases of
massive planets on eccentric orbits for whichλ was found
to be consistent with zero: HD 17156b (3.2MJup, e = 0.68;
Cochran et al. 2008, Barbieri et al. 2008, Narita et al. 2009)
and HAT-P-2b (8.0MJup, e = 0.50; Winn et al. 2007, Loeillet
et al. 2008). Thus although less massive planets on circularor-

bits seem to be well-aligned, as a rule, it remains possible that
most of the massive eccentric systems are misaligned. Such
systems are fruitful targets for future RM observations.
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TABLE 3
SYSTEM PARAMETERS OFHD 80606

Parameter Value Uncertainty

Orbital period,P [d] 111.43740 0.00072
Midtransit time [HJD] 2,454,987.7842 0.0049
Transit duration (first to fourth contact) [hr] 11.64 0.25
Transit ingress or egress duration [hr] 2.60 0.18
Midoccultation time [HJD] 2,454,424.736 0.004
Occultation duration (first to fourth contact) [hr] 1.829 0.056
Occultation ingress or egress duration [hr] 0.1725 0.0063
Velocity semiamplitude,K [m s−1] 476.1 2.2
Orbital eccentricity,e 0.93286 0.00055
Argument of pericenter,ω [deg] 300.83 0.15
Velocity offset, pre-upgrade [m s−1] −184.58 0.93
Velocity offset, post-upgrade [m s−1] −182.46 0.66
Planet-to-star radius ratio,Rp/R⋆ 0.1033 0.0011
Orbital inclination,i [deg] 89.324 0.029
Scaled semimajor axis,a/R⋆ 102.4 2.9
Semimajor axis,a [AU] 0.4614 0.0047
Transit impact parameter 0.788 0.016
Occultation impact parameter 0.0870 0.0019
Projected stellar rotation rate,vsini⋆ [km s−1] 1.12 −0.22,+0.44
Projected spin-orbit angle,λ [deg] 53 −21,+34

Stellar parameters:
Mass,M⋆ [M⊙] 1.05 0.032
Radius,R⋆ [R⊙] 0.968 0.028
Luminosityb, L⋆ [L⊙] 0.801 0.087
Mean density,ρ⋆ [g cm−3] 1.63 0.15
Surface gravity, logg⋆ [g⋆ in cm s−2] 4.487 0.021
Effective temperatureb, Teff [K] 5572 100
Metallicityb, [Fe/H] 0.34 0.10
Age [Gyr] 1.6 −1.1,+1.8
Distancea [pc] 61.8 3.8

Planetary parameters:
Mass,Mp [MJup] 4.20 0.11
Mass ratio,Mp/M⋆ 0.00382 0.00016
Radius,Rp [RJup] 0.974 0.030
Mean density,ρ⋆ [g cm−3] 5.65 0.54
Surface gravity,gp [m s−2] 110.5 8.2

NOTE. — Based on the joint analysis of the Keck/HIRES RV data, our new photometric data, the Celestron data of Fossey et
al. (2009), and the occultation time and duration measured by Laughlin et al. (2009), except where noted.
a Based on the apparentV magnitude of 9.06 and the luminosity implied by the stellar-evolutionary models.b Based on an
analysis of the iodine-free Keck spectrum using theSpectroscopy Made Easy (SME) spectral synthesis code; see Valenti &
Piskunov (1996), Valenti & Fischer (2005).


