- published: 06 Nov 2012
- views: 1599
Dataspaces are an abstraction in data management that aim to overcome some of the problems encountered in data integration system. The aim is to reduce the effort required to set up a data integration system by relying on existing matching and mapping generation techniques, and to improve the system in "pay-as-you-go" fashion as it is used. Labor-intensive aspects of data integration are postponed until they are absolutely needed.
Traditionally, data integration and data exchange systems have aimed to offer many of the purported services of dataspace systems. Dataspaces can be viewed as a next step in the evolution of data integration architectures, but are distinct from current data integration systems in the following way. Data integration systems require semantic integration before any services can be provided. Hence, although there is not a single schema to which all the data conforms and the data resides in a multitude of host systems, the data integration system knows the precise relationships between the terms used in each schema. As a result, significant up-front effort is required in order to set up a data integration system.