In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells.
The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron.
Topologically 4-polytopes are closely related to the uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space; similarly the 3D cube is related to the infinite 2D square tiling. Convex 4-polytopes can be cut and unfolded as nets in 3-space.
A 4-polytope is a closed four-dimensional figure. It comprises vertices (corner points), edges, faces and cells. A cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.
There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the rectified 6-simplex are located at the edge-centers of the 6-simplex. Vertices of the birectified 6-simplex are located in the triangular face centers of the 6-simplex.
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S1
6. It is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as .
The vertices of the rectified 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,1). This construction is based on facets of the rectified 7-orthoplex.
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S2
6. It is also called 03,2 for its branching Coxeter-Dynkin diagram, shown as .
In geometry, a 9-orthoplex or 9-cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cells 4-faces, 5376 5-simplex 5-faces, 4608 6-simplex 6-faces, 2304 7-simplex 7-faces, and 512 8-simplex 8-faces.
It has two constructed forms, the first being regular with Schläfli symbol {37,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {36,31,1} or Coxeter symbol 611.
It is one of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 9-hypercube or enneract.
There are two Coxeter groups associated with the 9-orthoplex, one regular, dual of the enneract with the C9 or [4,37] symmetry group, and a lower symmetry with two copies of 8-simplex facets, alternating, with the D9 or [36,1,1] symmetry group.
The sky turned an autumn brown
Then back to blue
In your pain I ran away
Then back to you
When I returned you were gone
Your body swept away
Where are you now?
Tell me please
I've got so much to say
I want to know
Tell me please
I want to know
Sands of life pass through my hands
Like drops of rain
When my hands are void of sand
What still remains
When all my life has been swept away?
I've kept my fast
The pain revealed a darker blue
In dying eyes of glass
Now I know...
I'm gonna be there
I'm gonna be there with you
When my time has come
And the sands are gone
I'm gonna be there with you
When I see your face
I'll thank in praise