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AVERAGE EXCESS AND AVERAGE EFFECT
OF A GENE SUBSTITUTION

By R. A. FISHER

1. INTRODUCTION

SoME years ago (Fisher, 1930), in the course of a study of the relations between the quantita-
tive variation of natural populations, and the elementary factors which may contribute
to this variation, I found it necessary to draw certain distinctions between ideas which had
previously been ill developed or confused. In particular, as a first step towards clarifying
the effects of selection, it was necessary to distinguish between what I defined as the average
excess of a quantitative characteristic in relation to any given gene substitution, and a
second quantity which I defined as the average effect of the gene substitution on the quantita-
tive character in question. That these two quantities are distinet in definition, and in their
quantitative values, may be made clear by quite simple examples.

The average excess of any measurement in respect of any gene substitution, such as that
of G for g, is defined directly in terms of the numbers and mean measurements of the three
genotypes GG, Gg and gg, into which the population may be divided. If the numbers of
these are P, 2Q and R, and the mean measurements ¢, j and k, then

Pi+Qj_Qj+Rk=a )

P+@Q Q+R ’
is defined as the average excess. Thus, if gametes bearing G or g are chosen at random, and
the zygotes to which they ultimately give rise are measured, the average for those bearing
G will exceed the average for those bearing g by the difference a. This difference is not,
however, to be ascribed to the gene substitution, as though it were necessarily an effect of it,
and of it only; for by reason of such common phenomena as homogamy, or the mating
of like with like, or a variety of similar causes, it may well be, and is probably the case in
all real populations, that the two moities, of which the averages are compared, differ not
only in the one gene substitution selected, but in the frequencies of a number of other genes
affecting the measurement in question.

We require, therefore, to form an equally definite conception, explicitly defined, of what
is meant by the average effect of a given gene substitution. It is natural to conceive this
as the actual increase in the total of the measurements of a population, when without
change in the environment, or in the mating system, the gene substitution is experimentally
brought about, as it might be by mutation. If, however, we think thus in experimental
terms it is necessary, for the idea to be applicable to all cases, to draw a further distinction.
A change in the proportion of any pair of genes itself constitutes a change in the environment
in which individuals of the species find themselves. In mammals, for example, a gene
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54 EXCESS AND EFFECT OF A GENE SUBSTITUTION

substitution may affect milk yield, and thus directly influence infantile nutrition. To find
the effect of the gene substitution in a constant environment, any effect of the gene substitu-
tion itself on the environment must be discounted. In other words, the effect that is wanted
is only that due to the change in the frequencies of the different possible genotypes, not
including any change in the average measurement of a given genotype, which the change
in gene frequency may in fact bring about.

The logic of this distinction must be pressed even further, for, since the number of geno-
types greatly exceeds the number of gene ratios on which their frequencies depend, we are
concerned only with those changes of genotype frequency directly consequent on the
proposed change of gene ratio, in the actual condition of the population, and not on any
further changes in genotype frequency of such kinds as might be imposed without change
of gene frequency, but which may in fact be brought about experimentally by a change
in gene frequency. This might happen for example, by a gene increasing the frequency of
self-fertilization, or by the existing frequency of self-fertilization exerting a more or less
powerful effect when the primary gene ratio is changed.

The direct mathematical measure of the average effect of a proposed gene substitution
is the partial regression, in the population as actually constituted, of the genotypic measure-
ment on the numbers 0, 1 or 2 of the allelomorphic genes in each genotype. This is the
natural measure of the average effect of the gene substitution, and avoids the difficulties
which surround a definition based on the conceptual experiment discussed above. The experi-
ment would determine the average effect combined with other effects acting through the
gene environment brought about by change in gene ratios. These other effects which must
often be infinitesimal, but may conceivably be important, are irrelevant to the effect of
the gene substitution considered, in the actual circumstances in which we wish to evaluate it.

A simple-example which brings out the main quantitative features, is provided by the
case of a single factor in a population not mating at random; this may be due to homogamy,
or to the partial isolation of sections of the population. It is well known that if mating
were at raindom the frequencies P, 2Q and R of the three possible genotypes would be related
so that @? = PR. We shall consider the case in which this is not true, but, on the contrary,

2 = APR, where A is a constant differing from unity. No complexity beyond this is needed
to bring out the distinction we are illustrating. All individuals of the genotype G& may be
characterized by a measurement ¢, all Gg by j, and all gg by k. Then, if @ is the average excess

we have . Pi+Qj_Qj+Rk
T P+Q Q+R-

We may now calculate the average effect, of substituting & for g, from the regression in
the actual population of the genotypic measurement on the number of & genes; the
‘expected’ or genetic values of the genotypes will be y + «, 42 and g — «, 8o that « and g may
be determined by minimizing the sum of squares

P(i —p=a) +2Q(j— P+ Rl ~ -+ a)?
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for variations of 4 and a. This yields two equations for the unknowns, # and « specifying
the regression lines, namely,

Pl a—i)+2Q(u—j) + Rip—a—k) = 0,
P{p+a—1i) - R(p—a-k)=0,
or (P+2Q+R)u+(P—Rya = Pi+2Qj+ Rk,
(P—R)p+ (P+ R)a = Pi— Rk.
Solving these simultaneous equations for 1 and & we find
(PQ+QR+2PR)a = P(Q+ R)i—Q(P~R)j— R(P+Q)k. (2)

Tt is therefore clear that even in the simplest case of non-random mating the values
of @ and « may be unequal. To equate one with the other is always inaccurate unless the
full consequences of random mating are assured.

For a single factor, we may express @ and « in a form in which they are more readily
compared, namely, Y P(Q+ R)(i—j)+ RP+Q)(j—k)

(P+Q)(@+ R) ’ ‘

_ P(Q+ R)(i—j)+ R(P+Q) (j~F) }
PQ+QR+2PR ?

3)

which are clearly equivalent when
(P+@Q)(@+R) = PQ+QR+2PR,
or, otherwise stated, when Q2 =

When, on the contrary, Q2 is less than PR, as is frequently the case, « will be less than a.
It should be noticed that c, unlike @, is a true average of the measurable differences i —j,
and j — k produced by substituting G for g in heter ozygotes and in homozygotes respectively,
for in the case of « the denominator

PQ+QR+2PR
is the sum of the coeflicients of i —j and j — & in the numerator.

The nature of the quantity « measuring the average effect of a gene substitution may be

illustrated by another fact. If the increase of genes G is distributed so as to give an increase

of GG homozygotes
IP = 2P(@+ R) dl
P(Q+R)+ R(P+@Q)
the decrease of gg homozygotes will be
o 2R(P+(Q) d
~dR = TR RO
the same change requiring an increase of heterozygotes
24
00 = QB D) gy,

PO+ R) T R(P+Q)
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Then the increase in the total measurement of the population will be just « times the number
of g gametes replaced by G gametes. In this case we observe that

so that the change in genotypic frequencies ascribable only to change in gene ratio is that
oceurring when % P R maintains a constant ratio A. If A remains constant the actual change
in the mean or total measurement in constant environment will be that due to change of
gene ratio only. Constant genic environment is assured by a constant value of A.

If, in fact, the value of A changes, the change in the population mean will differ from that
ascribable merely to the change in gene ratio, and this whether the change in A is due to
the change in gene ratio or to other causes. Whether A remains constant or changes is,
in fact, one of the things which cannot be predicted merely from the initial genotypic
constitution of the population; for it requires knowledge of the ulterior causes governing
differential viability, for example, or the choice of mates, by which the genotypic con-
stitution is moulded.

This exact specification of the meaning of the average effect of a gene substitution is
necessary for clarity of thought, and obviously also necessary for the development of its
properties. It has, for example, been proved in general that the genetic variance of the
population of diploid individuals in respect of any quantitative character is equal to

22 pqac,
where the summation is taken over all pairs of allelomorphic genes. In the case of a single
factor, in the absence of random mating, discussed above, the genetic variance is the variance
of the genetic values u+a, g and u—a occurring with frequencies P, 2¢ and R, namely,

= 2pqac,
the expression to which the general formula reduces in the case of a single factor. The
multiplier 2 represents the number of loci in each zygote, and would be four for autotetra-
ploids. In the case of a single factor it follows that a and & must be of the same sign, but this
is not necessarily true if more than one factor is effective.

2. APPLICATION TO THE MEASURE OF BIOLOGICAL FITNESS

The most important application of this analysis (which can be applied to any measurable
character) is to give a rational account of the action of natural selection. For this purpose
I pointed out that we might choose as the metrical variable, characteristic of the different
genotypes, the Malthusian parameter of population increase (m) measuring the survival
value of each. If we do this, then a, the difference between the logarithmic rates of increase
of two allelomorphic genes, is equal to

1
»q

Sfa
&ls

a = —log

3
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The increase of average fitness of the population ascribable to a change in gene frequency dp
will be 2adp.
Hence the rate of increase in the average value of the Malthusian parameter ascribable to
natural selection acting on a single factor is
2pgqaa,
and the rate of increase due to all factors will be
22 pqac, (5)
equal to the genetic variance of fitness due to all factors.
Since 1936, Sewall Wright has repeatedly put forward a formula of his own, namely,
_ pg AW

oW dp (6)

1
In this we may recognize the portion E)—q—Ap,

as the average excess ¢ of my formula expressed, not as a differential coefficient with respect
to time, but as a finite difference for the lapse of one generation. As Wright does not
regard his formula as limited to organisms having separated generations, and as he equates
his expression to a differential coefficient on the right, this seems to be merely an accident
in his notation. The remainder of Wright’s formula, to which « is equated by him, is
1 dW
2W dp’

and is evidently intended to represent the genetic effect of a change in the gene ratio p on
Llog W, where W is the mean fitness (¢” in my notation) of the different diploid zygotes.
If all values of m are small, this is equivalent to « in my notation. Apart, then, from some
inaccuracy of expression, which is probably unintentional, Wright’s fundamental formula
is merely a=a, (7)

a relationship which is certainly not true in general, or approximately true in such a variable
as the survival value of different genotypes.
Tt is, I think, clear from Sewall Wright’s allusions to the subject that he has never clearly

grasped the difficulties of interpretation of such expressions as

aw

o’
in which the numerator involves the average of W for a number of different genotypes
greatly exceeding the number of gene frequencies p on which their frequencies are taken
to depend. Itis likely, therefore, that he does not share my reasons for putting a particular
and well defined meaning upon the phrase ‘average effect of a gene substitution’. The pro-
cedure of obtaining the rate of gene change by equating ¢ to « is not, however, to be
redeemed by finding a new definition for &. This may be seen even in the case of a single
factor, where the effect of a given substitution must be in some cases i —j, and in others
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58 EXCESS AND EFFECT OF A GENE SUBSTITUTION

j—k. For, as we have seen, the quantity ¢ cannot be equated to any sort of average of
these two quantitics. It may, indeed, exceed both of them.
We have only to put, for example, P = 03, @ = 0-2, B = 0-3 for the phenotypic fre-
gquencies, then 0-15(; = j) + 0-15(j — k)
“= 0-25 ’
which, if 2 —j and j— k are equal, exceeds both of them in the ratio 6 : 5.
The attempt to equate ¢, measuring the selective intensity in favour of a given gene
substitution, to the average effect of that substitution on the mean fitness of the population,
hcwever this average effect may be defined, is, therefore, foredoomed to failure just so soon

as the simplifying, but unrealistic, assumption of random mating is abandoned.

3. SELECTION IN FAVOUR OF SELF-FERTILIZATION

Wright’s conception embodied in equation (8) that selective intensities are derivable,
like forces in a conservative system, from a simple potential function dependent on the
gene ratios of the species as a whole, has led him into extensive but untenable speculations.
For example, in the New Systematics, p. 170, we find: * As already noted, W is a function of
all gene frequencies. In the practically infinite field of gene combinations, possible from
differences in only a few thousands, or even hundreds of loci, there are likely to be an
enormous number of different harmonious combinations of characters. These would
appear as peak values of W, separated by valleys or saddles in a multidimensional
surface.’

Prof. Wright here confuses the number of genotypes, e.g. 3190, which may be distinguished
among individuals, with the continuous field of variation of gene trequencies. Even if
a potential function, such as W is supposed to be, really existed, the large number of geno-
types supplies no reason for thinking that even one peak, maximal for variations of all
gene ratios should occur in this field of variation.

In regard to selection theory, objection should be taken to Wright’s equation principally
because it represents natural selection, which in reality acts upon individuals, as though
it were governed by the average condition of the species or inter-breeding group. Early
selectionists, following in this respect the language of earlier theological writers on organic
adaptation, often speak of selection as directed ‘for the good of the species’. In reality it
is always directed to the good, as measured by descendants, of the individual. Unless
individual advantage can be shown, natural selection affords no explanation of structures
or instincts which appear to be beneficial to the species. Yet in Wright’s equation the
whole evolutionary sequence would appear to be governed by the principle of increasing
the ‘general good’. It may therefore be worth while to examine in detail a model involving
powerful selection, in which the fitness of the species as a whole, judged by external criteria
is entirely inoperative.

T'he model chosen is that of a gene, which, without affecting the fertility or pollen produe-
tion of a plant, insures the self-fertilization of the ovules, as may be done, for example,



R. A. FISHER 59

by cleistogamic flowers. In particular we shall suppose that homozygotes gg are fertilized
at random by open pollen; in heterozygotes Gg half the ovules are fertilized by open pollen,
and half are self-fertilized; while in homozygotes GG all ovules are self-fertilized, although
the plant contributes its share to the openly disseminated pollen.

If P, 2Q and R stand for the frequencies of these three types of plant in any one genera-
tion, the frequencies in the next generation are calculated as in the following table, in which
all progeny are counted twice:

frﬁc b(;ggoc;f Genotype of offsprir'xg
queéency | parent ge Ge GG

P gg Open pollinated seed P(P+Q) PQ+R) .
. Pollen PP +4Q) PQ —

2Q Gg Open pollinated sced 3Q(P+Q) 1P +2Q+ R) 3Q(Q + R)
Selfed progeny WQP+20+R) | QP +20+R) | $Q(P+2Q0+E)
Pollen UL +1Q) QP +Q) 1Q*

R GG Selfed progeny — . 2R(P+2Q+R)
Pollen —_ R(P+1Q) QR

In all, if P’, 2Q’ and R’ are the frequencies in the second generation, it appears that
P =P +1PQ+@Q*+1QR, .
Q = (P+Q)(@+3iR) : (8)
R =}1PQ+@*+ PR+ QR+ R‘E.}

These constitute the recurrence equations by which the constitution of each generation

may be calculated from that of the last; in respect of gene frequency it follows that

P+Q =P+Q—}HPQ+2PR+QR), Q+R =Q+R+}PQ+2PR+QR),

showing that selection always favours the gene G, which must constantly inecrease in
frequency. Natural selection, indeed a selection of great intensity, is at work, although
by external criteria the average fitness of the species as a whole is entirely independent
of the gene ratio. Individuals differ greatly in their fitness to the circumstances in which
they are placed. The mean fitness of the species as a whole is, however, no guide to the
selective intensities in action.

The analytic solution of a set of equations such as (8), which constantly occur in genetic
problems, offers apparent difficulties. These may frequently, perhaps always, be overcome
by seeking an analytic expression valid for extreme values, as in the solution (Fisher, 1930,
p. 85) of the exponential recurrence equations encountered in the theory of rare mutations.
In the present instance, if the gene G is rare, both @ and R must be small, and P is brought
as near as may be wished to unity, then the equations may be written

Q =Q+iR, R =}Q+R (9)
If now we seek a solution such that

Q =A@, R =AR,
t appears that A—1)2=§;
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and since A must exceed unity A= 14 e 3 J 5
and @ =4A-1)R=R,2
If, then, z =N,

where v stands for the generation number, when x is small (v large and negative) ¢ and R

will change proportionately to x, and we may anticipate the convergence in the appropriate
region of expansions such as

Q=22+q2%+g2’+... = Z q,x‘,l

- (10)

R=x+ra?+rya®+ Z J

These expressions may now be substituted in the exact recurrence equations (8)
Zg et = @ = Q+4R—(Q+ B)(Q+1R),
Zrlat = R = }Q+ R+ $Q(Q+ R),
and equations for the coefficients found by equatmg those of equal powers of x. In general,

Ny = q+ §r,— ‘%Z (295 +7) (@t 7 s)s
(11)

/VTI = %qt + Ty + % Zl Qg(%—s + rt~s)! ]
§=

of which the summations on the right are known when ¢ and r have been evaluated from 1
to {—1.
We thus obtain pairs of equations such as
0-8321¢, — 0-5r, = — 4-6213,
—0-25¢, +0-83217, = 1-7070,
and 1-4798¢; — 0-57; = 21-3659,
—0-25¢,+ 1-4798r; = — 9-7634,

which yield the series of solutions

t q r ¢ q r

1 1-4142,1356 1-0000,0000 4 —257043,377 11-8437,469
2 - 5-2730,5835 0-4671,4547 5 44-9719,708 —23-4828,802
3 12-9477,773 —4-4102,2710 6 —69-5245,614 39-9406,205

Convergence seems sufficiently rapid if z is as small as 0-05. At this point v = — 9-895616,

and the genotypic frequencies are
P 0-8313,1837,

@ 0-0589,9889,
R 0-0506,8385.
From these the frequencies in subsequent generations may be obtained by the direct
application of equations (8).
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A similar analysis is possible when the gene g israre. In this case, putting B = 1, we have

P=3Q, Q=K Q) (12)
and, if P=uP, Q=nq,
then 1-4p—{p*=0,
or o= 2(y3~1),
4
and Q:;P=(~/3+1)P.
Then, if x=p",
and in the exact equations (8) we substitute
P=x+pa+...= Y pa, P =73 ppid,
(=1 t=1
and Q=(3+Dart+gr*+...=Yqd, Q=X qutrty
< (=1
we obtain the equations for the coefficients
-1 ‘
=4 = 1 X 2P+ a) (Beestas)s |
=1 (13)

t—1 '
- :‘BPt + (1”‘”,"‘ é) 4= i 2-:1 ps(plws + ql—'s)a}

which lead to the solutions

P q P 9
1 1-0000,0000 2-7320,5081 4 669-1361,56 —1627-0013,3
2 54205,1219 —25-2056,946 5 —5907-93074 13641-1755
3 —72-7411,373 201-7580,69 6 52629-6872 —~ 118904-651

The coefficients increase more rapidly than in the first case, but convergence seems
sufficiently rapid when z is so small as 0-01. To find the relationship between v and v’ the
successive frequencies were calculated for sixteen generations as follows:

v P Q I
—~9-895616 0-8313,1837 0'0589,988¢9 0'0506,8385
—8-895616 0-7811,5069 0'0750,9008 0'0686,6015
—7-895616 0'7197,7318 ©'0936,9385 00928,3912
—6-895616 0-6470,4364 0'1139,7764 0'1250,0108
— 5895616 0°5642,7809 0-1343,0365 0'1671,1461
—4-895616 0°4746,8131 0'1521,93069 0°2209,3131
—3-895616 0-3833,1747 0'1046,5458 0-2873,7337
—2-895616 0-2963,5435 o 1689,6240 0-3657,5125
—1-895616 0°2194,2404 0-1037,0543 0°4531,4510
0895616 0°1563,5435 0'1495.3083 0'5445,8399

0-104384 0-1080,7882 0'1290,2935 063386248
1104384 0-0731,8000 ©0°1057,4090 0'7153,3754
2-104384 0-0489,8849 0'0829,1398 0'7851,8355
3-104384 0-0326,5848 00627,2038 0'8419,0076
4104384 0'0217,8611 0'0461,3197 0-8850,4905
5-104384 0'0145,7927 0'0332,1920 0°9189,8233
6-104384 0'0097,9558 0'0235,5080 ©'9431,0282
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The frequencies of the last line tally well with those obtained using x = 0-009374385,
these being

cljl};éigél(jﬁl By expansion Difference
P 0°0097,9558 0-0097,9558,52 52
Q 0-023_5,5080 070235,5079,53 =47

This value of x corresponds with v' = 12-248851, so that

V' —v = 6144467 generations.

2Q

Trilinear diagram representing the field of variation of the coordinates P, 2¢}, B and the
constitution of the populations in successive generations,
This constant, which suffices to complete the solution, arises from the convention that
and 7, in the expansion formulae should both be unity; if, for example ¢, had been taken
Y4 1 ple gy
to be unity in each case the constant would have been reduced by
log /2 . log (J3+1)
log A log s
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Indeed, a number of equally suitable conventions might have been adopted.
The natural logarithms of A and x represent the initial and final values of the selective

intensity {(a); these are: Formula. Value
Initial selective intensity log (l + 5 \/7) 0-30273

Final selective intensity log 2(/3 1) 0-38124

Between these extreme values the selective intensity steadily increases as the gene g
is replaced by G.

A second quantity which shows a similar steady increase is the ratio of the average effect a,
to the average excess a. These are always of the same sign, as is necessarily the case where
only a single factor is at work. In this case a is always the smaller; the ratio, easily calculable
from the tabulated values of P, @ and R, rises from a limiting initial value /§ = 0-70711,
to a limiting final value }(3 +/3) = 0-78868. Thus both a and « increase as the population
changes, the latter the more rapidly.

SUMMARY

The definitions of the primary quantities ¢ and « arising in quantitative inheritance are
elaborated.

It is not permissible to assume that @ is equal to a except for groups in which random
mating is and has for long been the rule.

Apart from some technical difficulties of interpretation, Wright's formula for natural

selection pq AV
=7 E; ,
seems intended merely to assert the equality of these two quantities for any factor in-
fluencing survival. If it were true, then selective intensities could in general be derived from
a function of the species as a whole, without regard to the competition among individuals.
An example is examined in detail of a hypothetical factor affecting self-fertilization.
Intense selective activity is shown to be compatible with an entire absence of change in
the average survival value of the population. Throughout the process, the selective intensity,
a, is greater than the average effect of the gene substitution, @, and changes at a different
rate.
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