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Genome-wide association studies (GWASs) seek to understand the
relationship between complex phenotype(s) (e.g., height) and up to
millions of single-nucleotide polymorphisms (SNPs). Early analyses
of GWASs are commonly believed to have “missed” much of the
additive genetic variance estimated from correlations between rel-
atives. A more recent method, genome-wide complex trait analysis
(GCTA), obtains much higher estimates of heritability using a model
of random SNP effects correlated between genotypically similar in-
dividuals. GCTA has now been applied to many phenotypes from
schizophrenia to scholastic achievement. However, recent studies
question GCTA’s estimates of heritability. Here, we show that GCTA
applied to current SNP data cannot produce reliable or stable esti-
mates of heritability. We show first that GCTA depends sensitively
on all singular values of a high-dimensional genetic relatedness ma-
trix (GRM). When the assumptions in GCTA are satisfied exactly, we
show that the heritability estimates produced by GCTA will be bi-
ased and the standard errors will likely be inaccurate. When the
population is stratified, we find that GRMs typically have highly
skewed singular values, and we prove that the many small singular
values cannot be estimated reliably. Hence, GWAS data are neces-
sarily overfit by GCTA which, as a result, produces high estimates of
heritability. We also show that GCTA’s heritability estimates are
sensitive to the chosen sample and to measurement errors in the
phenotype. We illustrate our results using the Framingham dataset.
Our analysis suggests that results obtained using GCTA, and the
results’ qualitative interpretations, should be interpreted with
great caution.
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In recent years, genome-wide association studies (GWASs)
have become an important tool for investigating the genetic

contribution to complex phenotypes. These studies use statistical
techniques to find associations between single nucleotide poly-
morphisms (SNPs) and phenotype(s) (e.g., continuous traits such
as height or discrete traits such as presence/absence of a disease).
A widely used measure of genetic influence on a phenotype is the
(narrow-sense) heritability, defined as the ratio of the additive
genetic variance to the total phenotypic variance. A major co-
nundrum revealed by many analyses of GWAS data has been
that the small number of significant associations explain much
less of the heritability than is estimated from correlations between
relatives [i.e., much heritability is “missing” (1–3)]. To address this
problem, Yang et al. (4) posited that heritability is not missing
but is “hidden.” The authors developed a statistical framework
[genome-wide complex trait analysis (GCTA)] in which each SNP
makes a random contribution to the phenotype, and these con-
tributions are correlated between individuals who have similar
genotypes. Applied to many GWASs, GCTA yields estimates of
heritability far larger than those obtained using earlier analyses.
GCTA has been used to estimate the heritability of many phe-
notypes from schizophrenia (5) to scholastic achievement (6).
Despite its current wide use, recent studies (7, 8) have questioned
the reliability of GCTA estimates.
We show here that the results produced using GCTA hinge on

accurate estimation of a high-dimensional genetic relatedness
matrix (GRM). We show that even when the assumptions in

GCTA are satisfied exactly, heritability estimates produced by
GCTA will be biased, and it is unlikely that the confidence
intervals will be accurate. When there is genetic stratification in
the population, we show that GCTA’s heritability estimates are
guaranteed to be unstable and unreliable, which is especially
relevant because stratification is common in human GWASs.
Our analysis has two other important consequences: (i) the

heritability estimate produced by GCTA is sensitive to the choice
of the sample used; and (ii) the estimate is sensitive to mea-
surement errors in the phenotype. We argue that this instability
and sensitivity are attributable to the fact that GCTA necessarily
overfits typical GWASs. We show that a direct approach to
eliminating this overfitting leads back to the small SNP heritability
estimates derived previously from association studies. We illus-
trate our results using the Framingham dataset (9, 10) comprising
information on 49,214 SNPs in 2,698 unrelated individuals.
We conclude that application of GCTA to GWAS data may not

reliably improve our understanding of the genomic basis of phe-
notypic variability. Even when the assumptions for GCTA all hold,
we recommend the use of diagnostic tests, and we describe one such
test. We also discuss several ways of moving toward better methods.

The Data and the GCTA Model
The Data. A typical GWAS takes phenotypic values for N indi-
viduals and assays the individuals’ genotypes at P single nucle-
otide sites (SNPs). Typically, N � P [e.g., our illustrations use
the Framingham data on 2,698(=N) unrelated individuals at
49,214(=P) SNPs]. The genetic data can be represented as an
N ×P matrix X whose ði, jÞ entry takes the value 0, 1, or 2 cor-
responding to the number of copies of the reference allele of the
jth SNP in the ith individual.
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Mixed-Effect Models. To quantify how genes influence phenotypes,
mixed linear models (11, 12) of the form

y=Fβ+Zu+ e [1]

are used in the animal-breeding literature. Here, y= fyig is a vec-
tor of phenotype values for the N individuals, Fβ= μ is a vector of
“fixed effects,” u is a vector of random effects of an individual’s
genotype, e is a vector of residuals, and Z is a matrix describing
how genetic effects are correlated between individuals. In animal-
breeding studies and some human studies, the entries of Z are
estimated from pedigrees.

What GCTA Assumes and Does. GCTA applies Eq. 1 to GWASs,
where genetic and phenotypic information are usually measured
on unrelated individuals. Each individual’s genotype is given by
P numbers, so the vector u of random effects is P× 1 and the
matrix Z is N ×P. GCTA estimates Z by centering and scaling the
data matrix X using Hardy–Weinberg assumptions and assumes
that u∼Nð0, σ2IÞ and e∼Nð0, α2IÞ.
The fixed effects term μ is commonly dropped from the analysis

and the GCTA model written as

y=Zu+ e, [2]

which we use henceforth. This model can be rewritten more
clearly, with the same e, as

y= g+ e, [3]

where g∼Nð0,VgAÞ is a random vector of genetic contributions to
the phenotypes, Vg =Pσ2 is the variance of total additive genetic
effects, and A=ZZT=P is the GRM between pairs of individuals.
GCTA obtains maximum-likelihood estimates (MLEs) of the

parameters α2 and Vg and then estimates the heritability as
the ratio Vg=Vp, where Vp =Vg + α2 is the observed variance in
the phenotype (4).
The relatively simple structure of Eq. 3 (linear, additive, and

no environmental or epigenetic effects) relies on assumptions
that GCTA has in common with the animal-breeding literature.
GCTA assumes that the SNPs used are in linkage equilibrium; in
practice, SNPs in linkage disequilibrium are avoided. In our
analysis and example, we assume that this selection has been
made. However, GCTA makes important additional assumptions:
assumption 1, each SNP makes a random contribution to the
phenotype independent of the others; assumption 2, the distri-
bution of these random contributions is identical for all SNPs; and
assumption 3, there is no genetic stratification in the population.
In this paper, we use a rigorous mathematical analysis of

GCTA to answer two key questions. How reliable are the GCTA
estimates when the assumptions in the model are satisfied ex-
actly? How robust are the GCTA estimates to violations of as-
sumption 3 (with or without a correction)?
We begin with the key point that any observed realization of

the matrix Z in Eq. 2 is a sample from some underlying distri-
bution of possible data. In fact, Z is a random matrix. Hence, the
data (the entries of Z) and the resulting GRM (A=ZZT=P) will
have sampling errors. As a consequence, the MLEs produced by
GCTA are statistical estimates of the parameters in Eq. 3. To
analyze the precision and stability of these MLEs, we now de-
velop the connection between the MLEs and the geometry of Z
(in terms of the matrix’s singular values and singular vectors).

Singular Values and GCTA. The MLEs produced by GCTA depend
on the properties of the GRMmatrix (A=ZZT=P). We prove here
that these MLEs can be expressed in terms of the singular values
and associated singular vectors—the spectral properties—of the
data matrix Z. Readers will be familiar with spectral properties in

the context of principal component analysis (PCA). In PCA, we
rank the N eigenvalues (and associated eigenvectors) of the sym-
metric matrix ZZT. PCA is equivalent to a singular value de-
composition (SVD) of the matrix Z, which produces a set of
k=minðN,PÞ real singular values (fwig for 1≤ i≤ k), a set of left
singular vectors (fuig for 1≤ i≤ k) of dimension N × 1, and a
corresponding set of right singular vectors (fvig for 1≤ i≤ k) of
dimension P × 1. The eigenvalues of ZZT in a PCA are the squares
of the singular values of Z (the PCA eigenvectors are the left
singular vectors of Z).
We find (Appendix A) that the MLEs computed by GCTA are

explicit functions of the singular values and singular vectors of Z.
We write the MLEs for α2 and σ2 as the sum of three terms, the
second of which (Eqs. A3 and A8) is a function of

log
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note the terms in ð1=w2
i Þ. Using y1 to represent a realization of y,

the third term (Eqs. A3 and A9) is a function of ZTy1 and of the
left singular vectors (fuig for 1≤ i≤ k) of Z. We use these results
to determine how sampling errors influence the estimates pro-
duced by GCTA in two cases.

Case 1: GCTA’s Assumptions Are Satisfied Exactly. When assumptions
1 through 3 hold, the matrix Z (asymptotically) has an N variate
Wishart distribution with P degrees of freedom. Marčenko and
Pastur (13) (also see refs. 14 and 15 for more readable exposi-
tions) show that for samples Z from a Wishart distribution, the
empirical distribution of the eigenvalues of A= ð1=PÞZZT (Fig.
1A) converges to a limiting form when N→∞, P→∞, and P=N is
finite. This limit distribution depends only on the value of P=N
and, although asymptotic, accurately describes the eigenvalue
distribution of A even for sample sizes as small as N = 1,000 (Fig.
1B). Note from Fig. 1A that for all values of P=N, almost all ei-
genvalues of A lie within the interval 0–4, and that as P=N ap-
proaches 1, the spectrum of A becomes ill-conditioned (i.e., the
ratio of its largest to its smallest eigenvalue becomes large).
In all available GWASs, there are more SNPs than people, so

P=N � 1. For such cases, the known results above imply that the
eigenvalues of the GRM are well-conditioned, so that the errors
in the second term of the MLE [i.e., in ðð1=w2

i ÞÞ] will be small.
In addition to the eigenvalues, the third term in the MLE

expression depends on the eigenvectors of the GRM. Because
the eigenvectors of the true GRM are unknown, GCTA proceeds
by approximating the eigenvectors of the true GRM by the ei-
genvectors of the sample GRM. This approximation will be valid
if the eigenvectors of the true GRM are “similar” to the eigen-
vectors of the sample GRM. Standard results from perturbation
theory show that the eigenvectors will be similar only if the ei-
genvalues of the sample GRM are not packed close to one an-
other. However, because N ∼Oð103Þ eigenvalues of the GRM
are packed in the interval 0–4, the eigenvalues of the sample
GRM are guaranteed to be packed close to one another (for our
simulations in Fig. 1B, where N = 1,000 and P=N = 4, the two
closest eigenvalues have magnitudes 0.2412 and 0.2417, re-
spectively). As a result of this close packing, the eigenvectors of
the sample GRM can be drastically different from the eigen-
vectors of the true GRM and, these differences bias the MLEs of
α2 and σ2 by amplifying the sampling errors associated with the
GRM (see Appendix B for details). If these biases in the MLEs
are large, the heritability estimates produced by GCTA will not
be representative of the true underlying heritability of the phe-
notype. Furthermore, because GCTA estimates the SE of the
heritability as a function of the MLEs, large biases would make
this SE meaningless.
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To demonstrate this bias, we simulated a dataset comprising
50,000 SNPs in linkage equilibrium for 2,000 people [using
PLINK software (16)] and a phenotype with a heritability of 0.75
(using GCTA). The simulation assumes that the entire additive
genetic contribution to the phenotype comes from 45,000 out of
the total 50,000 SNPs (the causal SNPs) whose effect sizes are
normally distributed with mean 0 and variance 1.
Using GCTA on this dataset, we estimate the genotypic vari-

ance Vg =Pσ2 as ≈ 0.685 with a SE of 0.151. This result, along
with standard results from large sample theory (17), state that
the MLE of σ2 is approximately normally distributed with mean
0.685/50,000 = 1.37×  10−5 and SD 1.51/50,000 = 3.1×  10−6 which
forms GCTA’s null hypothesis.
To test this hypothesis, we construct 500 genotype matrices, each

comprising all 2,000 people but only 5,000 SNPs randomly chosen
from the initial 50,000. We ran GCTA using each of these genotype

matrices, and in each case, estimated σ2 (Fig. 2). More than half of
these estimates lie outside the 95% confidence interval (marked by
red arrows), with the largest of these estimates (4.497  ×   10−5)
being more than 10 SDs away from the mean; these results suggest
that GCTA’s null is almost certainly being violated.
Although our results guarantee that each estimate of σ2 in Fig.

2 will be biased, our results do not provide any general in-
formation about the magnitude of the bias. It is possible that the
bias in some of these estimates is small, and some resampling
procedure might resolve problems raised in this section; we do
not pursue this here.

Case 2: There Is Genetic Stratification. Assumption 3 is typically
violated: stratification is widely observed in humans (18, 19) and
animals (20, 21) and is a major reason for the high number of
false discoveries in GWASs (22). GCTA claims to address this by

Fig. 1. The M-P distribution. (A) Plots of the M-P distribution of eigenvalues for different values of P=N. For P=N values close to 1, the eigenvalues of the GRM
are extremely skewed. As P=N increases, the eigenvalues are concentrated on a smaller interval. (B) A frequency histogram of the eigenvalues for a sample
GRM simulated using N= 1,000 and P=N= 4. One eigenvalue had a magnitude greater than 400 (which is not represented in this plot). Note that even for
sample sizes as small as 1,000, the M-P distribution accurately captures the distribution of the eigenvalues of the GRM.

Fig. 2. Large deviations in σ2 estimates. Estimates of σ2 are produced by GCTA using 500 randomly sampled genotype matrices, each comprising 5,000 SNPs
drawn at random from a simulated dataset (comprising 50,000 SNPs), which satisfies all of GCTA’s assumptions. When GCTA is run on the entire dataset, we
get a σ2 estimate of 1.37  ×   10−5 and SE of 3.1  ×   10−6; the 95% confidence interval corresponding to this estimate is marked with red arrows. Clearly, the
confidence intervals produced by GCTA are grossly underestimating the uncertainty in the σ2 estimates.
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incorporating eigenvectors of the GRM as fixed effects [as col-
umns of F in Eq. 1, as suggested by Eigenstrat software (23)].
Surprisingly, GCTA finds that in most cases, the fixed-effect
term has little influence (i.e., the heritability estimate from
GCTA is nearly independent of the stratification). We will show
that the analysis provided by GCTA is flawed and that stratifi-
cation will induce large errors in the MLEs. We illustrate our
points using the Framingham dataset (9, 10), which is known to
be stratified.
We begin by analyzing how genetic stratification influences the

spectral properties of Z. A plot of the singular values of Z for the
Framingham dataset (Fig. 3) reveals that these values are ex-
tremely skewed. The first four singular values are greater than
1,000, and the next 20 or so are between 100 and 1,000, whereas
thousands of singular values are close to 0: the largest singular
value is ∼1010 times the smallest singular value.
It is well known (see theorem 3 in ref. 24 and section 4.3 in ref.

25) that such skews must occur in stratified populations. In es-
sence, these studies show that if N is large, and the markers are
sampled from K different populations, the first K −   1 singular
values of Z will be much larger than the remaining N −   K +   1.
Because in most cases, N � K > 1, we expect most of the sin-
gular values of Z to be close to 0, as in Fig. 3.
This skew, and the long tail of near-zero singular values, have

serious implications for the MLEs from GCTA. Recall that the
second term in the MLE (Eq. A8) is sensitive to the near-zero
singular values of Z. The third term (Eq. A9) is a function of ZTy1
and so is also sensitive to the near-zero singular values when Z is
ill-conditioned (i.e., the ratio of the largest to the smallest sin-
gular value of Z is large). Therefore, the accuracy of both terms
in the MLE expression hinge on the precise estimation of the
near-zero singular values of Z. Stewart (26) shows that in the
presence of noise, the estimation errors of a singular value whose
“true” magnitude is 0 will be larger than the noise by a factor

ffiffiffi
P

p
(i.e., the estimates of the near-zero singular values are extremely
imprecise). We now illustrate several problems with the GCTA
estimates in genetically stratified populations, all of which stem
from the imprecision of the near-zero singular values.
Sensitivity to the SNPs used in the study. The heritability estimates
from GCTA will be sensitive to the SNPs used in the study be-
cause the errors associated with the near-zero singular values
(and in turn the MLEs) for datasets constructed using different
sets of SNPs will be different. To demonstrate this, we construct
2,500 genotype matrices, Xi for 1≤ i ≤ 2,500, each comprising
5,000 (of the total 49,214 SNPs) randomly sampled SNPs, and
use GCTA to estimate the heritability of systolic blood pressure
(BP) (27) using each of these Xi. Contrary to the claim in ref. 4,
these heritability estimates show high variability (Fig. 4A), be-
cause of sampling errors associated with one or more of the near-
zero singular values (Fig. 4B).
Sensitivity to the measurement errors in the phenotype. Because Z is ill-
conditioned, small changes in the phenotype vector can cause

large changes in the heritability estimates from GCTA. Hence,
GCTA violates the “unspoken assumption that imprecision of
measurement of phenotype will not have large systematic effects
on the location of significant associations in GWAS” (28). To
demonstrate this violation, we generate 2,500 noisy samples of
the BP phenotype vector [for each sample, the ith entry of the
vector is drawn uniformly over the minimum and maximum of
the four BP readings available to us for person i; in general, BP
readings are much noisier (29)] and use GCTA to estimate the
heritability using each of these vectors. Even for the modest
errors in this case, GCTA shows high variability in its heritability
estimates (Fig. 5).
Saturation of heritability estimates. According to GCTA, each SNP
makes a random contribution to the phenotype; therefore, the
heritability estimate, Pσ2=Vp, is necessarily directly proportional
to P (because Vp is fixed). Several studies (see figure 5 in ref. 30)
using GCTA have found results contradicting this; these studies
report a threshold value above which, introducing more SNPs in
the analysis produces only marginal increases in the heritability
estimates from GCTA. This saturating behavior implies that
above a threshold of P, Pσ2 is nearly independent of P (i.e., σ2 is
inversely proportional to P) which violates GCTA’s assumption
that the contribution of each SNP to the heritability estimate is
independent of the others.
Bias in the heritability estimates.We have shown that for a stratified
population, the MLEs produced by GCTA are guaranteed to be
biased. The bias arises because thousands of eigenvalues of the
GRM are closely packed (near 0) and have large sampling errors
associated with their values (Appendix B). As a result of the bias,
the heritability estimates produced by GCTA are not reflective of
the “true” underlying heritability. Furthermore, the SEs reported
by GCTA are functions of the MLEs, and so these SEs will also
be unreliable.
To demonstrate this unreliability, we first ran GCTA on the

Framingham dataset with BP as the phenotype. GCTA reports that
Vg =Pσ2 has an estimate of 0.263 and a SE of 0.048. This result plus
large sample theory imply that the MLE for σ2 will be approxi-
mately normally distributed with mean 0.263/49,214 = 5.34  ×   10−6
and SD 0.048/49,214 = 9.75  ×   10−7 which forms GCTA’s
null hypothesis.
To test this hypothesis, we computed the estimate and SEs of

σ2 for each of the samples used in Fig. 4A. The σ2 for almost all
of these samples lies outside the 95% confidence intervals pre-
dicted by GCTA’s null (marked by the red arrows), with the
largest of these estimates (5.46 ×  10−5) being more than 50 SDs
away from the mean; these results suggests that GCTA’s null is
almost certainly being violated.
Resampling techniques like the bootstrap cannot be used to

correct for the bias in heritability estimates because every run of
the bootstrap will produce a biased estimate of heritability, and
there is no way of estimating the magnitude of the bias in any of
these samples. Are there other approaches to fixing GCTA when

Fig. 3. Skew in the singular values. Notice that Z has a long tail of near-zero singular values. The largest singular value of Z is Oð103Þ, and the smallest
nonzero singular value of Z is Oð10−7Þ, showing that Z has a very high condition number.
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there is genetic stratification in the population? Two common
approaches to fixing this problem are (i) constraining the random
effects associated with only some of the SNPs to be relevant
(sparsity) (31) or (ii) denoising the matrix Z (i.e., setting its lower
noisy singular values to 0) before constructing it (32). We do not
pursue the first approach because it violates the premise of GCTA
that each SNP makes a random contribution to the phenotype.
Using the latter approach, we show (Appendix C) that the con-
tribution of the random effects term will not be significantly dif-
ferent from 0 (Fig. 6); these results are consistent with our findings
on denoising the Framingham dataset. Because the random ef-
fects term is the sole driver of the “improved” heritability esti-
mates produced by GCTA, in the term’s absence, the heritability
estimates will be no better than those obtained using the signifi-
cant SNPs in association studies.
It is not surprising that the estimates produced by GCTA are

sensitive and biased because the method estimates NP+ 2 pa-
rameters (NP parameters for the N nonzero singular values and
their corresponding left and right singular vectors, plus α2 and
σ2) from a dataset containing NP entries and therefore overfits
the data. In contrast, association studies insist on stringent
P values for significance and so greatly reduce the effective
number of parameters being estimated (see ref. 33 for details);
the resulting effective number of parameters is much smaller
than the size of the dataset, so overfitting is not a problem.
The MLEs produced by GCTA will be unreliable irrespective

of the number of principal components that are included in the
model (see Fig. 7, where the MLEs produced by GCTA are
unreliable even when five principal components are used as
fixed effects; similar unreliabilities were observed when one
and three principal components were used as fixed effects,
respectively). Price and coworkers (23, 24) have shown that

principal components are useful for identifying population
stratification and when used with reliable methods like associa-
tion studies, are effective in correcting for population stratifi-
cation. When principal components are used in conjunction with
GCTA, the analysis step is unreliable as a result of the over-
fitting. Therefore, although the principal components are still
able to accurately identify population stratification, they only
serve to compound the bias of GCTA.

Discussion
GCTA analyses have been widely accepted in large part because
they produce heritability estimates that are many times larger
than earlier estimates from GWAS data and are closer to those

Fig. 4. Sensitivity of GCTA estimates to SNPs retained in GWASs. (A) Heritability and corresponding σ2 estimates from the Framingham dataset produced by
GCTA using 2,500 randomly sampled genotype matrices comprising 5,000 SNPs each (from the total 49,214). When GCTA is run on the entire dataset, we get a
σ2 estimate of 5.34  ×   10−6 with a SE of 9.75  ×   10−7; the 95% confidence interval for the corresponding σ2 and heritability estimates are marked with red and
blue arrows, respectively. Note how drastically the null hypothesis is violated. (B) Histogram of the “standardized” 814th singular value of Z (w814) for the
2,500 samples. This singular value has an extremely small magnitude for all of the samples (∼O(10−13)) but has high estimation error and therefore can induce
large errors in the heritability estimates produced using GCTA (see Eq. A8 in Appendix B for details).

Fig. 5. Sensitivity of GCTA estimates to measurement errors in the pheno-
type. Heritability estimates produced by GCTA using 2,500 “noisy” estimates
of the phenotype (systolic blood pressure) vector; in our study, we used all
2,698 people and 49,214 SNPs.
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obtained from data with reliable pedigrees. The statistical model
in GCTA assumes that each SNP makes a small random con-
tribution to the variability in the phenotype. Our analytical and
numerical results illustrate the problems with GCTA when
(i) the assumptions of the model are satisfied exactly or (ii) the
assumptions are violated as a result of genetic stratification. In
both cases, the problems associated with GCTA stem from the
fact that a high-dimensional correlation matrix is being estimated
from a limited amount of data without dimensionality reduction.
When there is genetic stratification in the population, the

GRM has a long tail of near-zero eigenvalues; here, GCTA will
produce unreliable heritability estimates. GCTA claims that
including the first few principal components as fixed effects
(following ref. 23) will resolve the problem of stratification, but
this is not the case; even after including principal components as
fixed effects, the problems associated with the near-zero sin-
gular values of Z remain. Principal components are useful for
dealing with stratification in the context of association studies
because principal components reduce the dimensionality of
the problem via stringent P value criteria. We believe that strati-
fication is responsible for many of the counterintuitive results
reported by studies using GCTA (a more detailed discussion of
these studies can be found in ref. 8). Furthermore, numerous
studies on sensitive subjects like childhood intelligence (34),
Tourette syndrome (35), and schizophrenia (36) need to be
critically reviewed.
Even when there is no genetic stratification, our analysis

strongly suggests that the heritability estimates and their SEs
produced by GCTA will be unreliable. These unreliabilities are
illustrated by our simulations (Fig. 2). We do not prove that they
will apply for all datasets where there is no genetic stratification.
Our illustration does suggest a simple test of the reliability of
GCTA’s estimates by a resampling procedure: first, construct
many, say 500, genotype matrices by randomly sampling ðP=10Þ
SNPs from the total P SNPs in the dataset and use GCTA to
compute the σ2 estimate corresponding to each of these geno-
type matrices. Next, compute the estimate (e1) and SE (s1) for σ2
using all P SNPs. Under GCTA’s null, ∼99.5% of the distribution
should lie in the interval [e1 − 4s1, e1 + 4s1]; if any of the 500
simulations estimates a σ2 far outside this range, GCTA’s esti-
mates should not be trusted.
Heritability estimates using methods other than GCTA are

generally low ≈ 3%  to  4%. These methods use, for example,
either single SNP associations or polygenic scores constructed
from a few significant SNPs. We have shown that GCTA grossly
underestimates the uncertainties associated with the individual

SNP contributions and as a result, the only reliable heritability
estimates are the 3–4% produced by these other methods.
The problems in GCTA stem from the overfitting of a high-

dimensional GRM. To make progress with GCTA-like mixed
models, it is critical that the estimates of this matrix be refined.
Some progress has been made in this direction using, for ex-
ample, methods for covariance smoothing (37). There are sev-
eral alternative methods of describing the relatedness between
individuals (for a survey of these methods, see ref. 38), some of
which could prove useful in improving the estimate of the GRM.
We have shown that a brute force approach to estimating the

covariance structure of the random effects of SNPs (as in
GCTA) does not resolve the problem stemming from the num-
ber of SNPs (P) being much larger than the number of subjects
genotyped (N). We believe that future studies of GWAS data
can make progress by incorporating prior information. Two
possible ways of so doing are (i) insisting that the basis used for
constructing the GRM is sparse (i.e., only some SNPs make
random contributions and the rest have fixed contributions) and

Fig. 6. Fixing GCTA by denoising the GRM. (A) Heritability estimates for a highly heritable phenotype computed using the GRM as prescribed by GCTA (the
phenotype was simulated as a quantitative trait using GCTA; the desired heritability of the trait was set to 0.65). Notice that the P values suggest a significant
contribution from the random effects term. (B) Heritability estimates for the same phenotype vector computed using a denoised GRM (obtained by setting
the noise terms to 0). Notice that the random effects associated with the SNPs are no longer significant. This result shows that the pathologies of GCTA are
general and not dataset-specific (we have verified a similar trend with the Framingham dataset; a significant random effect term loses significance upon
denoising the GRM).

Fig. 7. Using principal components as fixed effects do not resolve problems
with stratification. Resampling experiments were identical to those per-
formed in Fig. 4, with five principal components included as fixed effects;
GCTA’s predicted 95% confidence intervals for the σ2 and heritability esti-
mates are marked with red and blue arrows, respectively. Note that the SEs
are drastically underrepresenting the “true” variation in the σ2 estimates,
despite the inclusion of principal components as fixed effects. Near-identical
plots are obtained when the simulations are run with one and three prin-
cipal components, respectively.
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(ii) incorporating biological information about the relationships
between elements in the random covariance matrix.

Appendices
Appendix A: The Likelihood Function and Sensitivity. Expressing
Eq. 2 in probabilistic form, we have

PðuÞ=N �uj0, σ2I�  and  PðyjuÞ=N �yjZu, α2I�. [A1]

Therefore, the marginal distribution of y will be given by

PðyÞ=Nðyj0,CÞ,   where   C= α2I+ σ2ZZT. [A2]

We have only one sample of the vector y, namely our observed
vector of phenotypes (which we call y1). Because y has a multi-
variate normal distribution, the log likelihood of observing y1 is

logP
�
y1jα2, σ2

�
=
−N
2

logð2πÞ− log detðCÞ− 1
2
yT1C

−1y1. [A3]

The Woodbury matrix identity (39) states that the inverse of a matrix
B=A+PRQ is given by B−1 =A−1 −A−1PðR−1 +QR−1PÞQA−1.
Hence in Eq. A3 with A= α2I, P= σ2Z, Q=ZT, and R= I, we
have

C−1 =
1
α2

I−
σ2

α4
Z
�
I+

σ2

α2
ZTZ

�−1

ZT. [A4]

We now use this formulation to show that for a stratified pop-
ulation, the heritability estimates will be sensitive to the data used
in the GWAS.
Instability of the second term in Eq. A3. Using the SVD of Z (Z=
U1W1VT

1 ) in Eq. A2, we have

detðCÞ= α2Ndet
�
I+

σ2

α2
U1W2

1U
T
1

�
. [A5]

Sylvester’s theorem for determinants (40) states that for in-
vertible matrices R1,R2, the determinant detðR1 +PR2QTÞ=
detðR−1

2 +QTR−1
1 PÞdetðR2ÞdetðR1Þ. Hence in Eq. A5, setting

R1 = I, P=Q= ðσ=αÞU1, and R2 =W2
1, we obtain

detðCÞ= α2Ndet
�
W−2

1 +
σ2

α2
UT

1U1

�
det
�
W2

1

�
. [A6]

Therefore, because UT
1U1 = I,

log  detðCÞ= 2N   logðαÞ+ log
�
det
�
W2

1

��
+log

�
det
�
W−2

1 +
σ2

α2
I
��

.
[A7]

To find the MLEs of α2, σ2 using Eq. A3, we must differentiate
log  detðCÞ with respect to α2 and σ2 and set the derivatives to 0.
The derivative of the first term is independent of W1, and the
derivative of the second term is 0 because log  ðdetðW2

1ÞÞ is inde-
pendent of α2 and σ2. The last term in Eq. A7 is

log
�
det
�
W−2

1 +
σ2

α2
I
��

= log

 Yi=k
i=1

�
1
w2
i
+
σ2

α2

�!
. [A8]

For a stratified population, thousands of singular values, wi of Z
will be close to 0, and Eq. A8 will be extremely sensitive to small
changes in the values of wi

Instability of the third term in Eq. A3. From Eq. A4, we have

yT1C
−1y1 =

1
α2

yT1 y1 −
σ2

α4
yT1Z

�
I+

σ2

α2
ZTZ

�−1

ZTy1|ffl{zffl} . [A9]

Consider just the factor with an underlying curly bracket. Sup-
pose, we perturb y1 to y1 + γy2 for some small γ. Then, that factor
becomes

ZTðy1 + γy2Þ=
�
ZT + γET�y1, [A10]

where we chose ET such that ETy1 =ZTy2 (the matrix ET can be
trivially constructed to have elements only on its primary diago-
nal). Because a small perturbation of Z causes a large change in
its spectral properties (26), the vector ðZT + γETÞy1 can be vastly
different from ZTy1, and hence yT1C

−1y1 is extremely sensitive to
measurement errors in the phenotype.

Appendix B: The Likelihood Function and Bias.Here, we reformulate
the likelihood function in terms of the eigenvalues [ai = ð1=PÞw2

i
for 1≤ i ≤ N] and the eigenvectors (ui for 1≤ i ≤ N) of the
GRM, A= ð1=PÞZZT. Because e∼Nð0,α2IÞ, we have

UT
1 e∼N

�
0, α2I

�
. [A11]

Using the SVD of Z described in Singular Values and GCTA, we
have A= ð1=PÞU1W2UT

1 . Now,

UT
1 g∼UT

1N
�
0, σ2U1W2UT

1

�
∼N �0,W2�. [A12]

Premultiplying Eq. 3 by UT and using Eq. A12,

UT
1 y1 =UT

1 g+UT
1 e∼N �0,α2I+ σ2W

�
. [A13]

Setting the diagonal matrix, S= α2I+ σ2W2, we note thatU1SUT
1 =C,

where C is defined in Eq. A2. Using Eq. A13, we can write the
likelihood function as

log  P
�
y1jα2, σ2

�
=
−N
2

logð2πÞ− log  detðSÞ− 1
2
yT1U1S−1UT

1 y1.

[A14]

Because U1 is an orthogonal matrix, detðU1ÞdetðUT
1 Þ = 1. There-

fore, we have

detðSÞ= detðU1Þdet
�
UT

1

�
detðSÞ= detðU1ÞdetðSÞdet

�
UT

1

�
= det

�
U1SUT

1

�
= detðCÞ.

[A15]

Using Eq. A15 in Eq. A14 and comparing with Eq. A3, we note
that the first two terms in the likelihood function are identical.
The only term whose derivative with respect to α2 and σ2 depends
on the eigenvectors is the third term, and therefore we analyze this
term in more detail. The eigenvalues of S will be si = α2 + σ2w2

i for
1≤ i ≤ N. The last term in Eq. A14 can be written as

J =
1
2
yT1U1S−1UT

1 y1 =
X
i

1
2si

	
yT1 u1


2
. [A16]

Now, suppose that the GRM, A, estimated by GCTA differs
from the “true” underlying GRM (eA) by a small sampling error
E. Using standard results from perturbation theory, we can ex-
press the eigenvectors of eA in terms of the spectral properties of
A and the error matrix, E, as
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eui = ui +
X
j≠i

�
1

ai − aj

�
uTj Eui = ui +

X
j≠i

 
P

w2
i −w2

j

!
uTj Eui, [A17]

where aj = ð1=PÞw2
j is the jth eigenvalue of A, wj is the jth singular

value of Z, and eui and ui are the ith eigenvectors corresponding toeA and A, respectively. Using Eq. A17 in Eq. A16, we get

J =
X
i

1
2si

	
yT1ui


2
+
X
i

1
2si

X
j≠i

1�
ai − aj

�2	yT1uj
2	uTj Eui
2
+
X
i

1
si

�
yT1ui

�X
j≠i

1�
ai − aj

� 	yT1uj
	uTj Eui
.
[A18]

Note that J is not symmetric in E (because the second term is
not symmetric). Differentiating J with respect to σ2, we have

∂J
∂σ2

=
X
i

−w2
i

2s2i

�
yT1ui

�2
+
X
i

−w2
i

2s2i

X
j≠i

1�
ai − aj

�2	yT1uj
2	uTj Eui
2
+
X
i

−w2
i

s2i

�
yT1ui

�X
j≠i

	
yT1 uj


	
uTj Eui



.

[A19]

Note in Eq. A19 that unless E is exactly 0, the MLE of σ2 will
always have a factor that does not average out to 0 (because the
second term is not symmetric in E), and therefore σ2 is guaran-
teed to be biased. Similar derivations show that the MLE of α2
are also guaranteed to be biased.
Case 1: There is no stratification in the population. When the as-
sumptions of GCTA are met exactly, Z asymptotically has an
N variate Wishart distribution with P degrees of freedom (15).
Marčenko–Pastur theory (13) provides an empirical distribution
(which we henceforth refer to as the M-P distribution) for the
eigenvalues of the variance-covariance matrix (which in our case
will be the GRM, A) as a function of P=N, which although as-
ymptotic, works well even for sample sizes as small as N = 1,000
(Fig. 1B). The distribution shows that most of the eigenvalues of
the GRM will lie in 0–4. Note from Fig. 1A that when P=N is
close to 1, the eigenvalues will be skewed and as the value of P=N
becomes smaller, the eigenvalues become concentrated on
smaller intervals. For example, when P=N = 4, the eigenvalues lie
within 0.25–2.25 (Fig. 1A).
Because the M-P distribution is continuous, we assume with-

out loss of generality that the eigenvalues are unique (i.e., there
are no repeated eigenvalues). Because N is large, the eigenvalues
of A are necessarily packed extremely close to one another. To
be specific, for N = 2,000 and N=P= 0.25, the maximum value
of the minimum separation between the eigenvalues will be
2=2,000= 0.001. This upper bound is not tight; our ballpark es-
timate assumes a (best-case) uniform spread of eigenvalues on
the interval. In reality, the distribution is peaked near 0.5 (Fig.
1A), and therefore we expect the eigenvalues near 0.5 to be a lot
closer than 0.001 (for our simulation in Fig. 1B, the minimum
spacing between the eigenvalues is 5  ×   10−4).
This small separation causes the eigenvectors of the estimated

GRM to be drastically different from those of the true GRM. To
see why, consider an eigenvalue (say the pth one) of A, which is
closely packed to another eigenvalue (say the qth one). From Eq.
A17, the angle between up and eup will have terms of the form
ð1=ðap − aqÞÞuTpEuq, which will be large because ap − aq is close

to 0. This is just one of the terms; all eigenvalues that are
“sticking” close to the pth eigenvalue will induce large differences
between the estimated and true eigenvectors.
These differences are amplified in the expressions for the

MLE and its derivatives (see the second and third summations
in Eqs. A18 and A19). Therefore, the bias in the heritability
estimates produced by GCTA can be large.
Case 2: The population is stratified. In a stratified population, there
are two sources of bias in the GCTA estimates. The first source
of bias is identical to that described in the case when there is no
stratification for a stratified population, thousands of eigen-
values of the GRM are tightly packed near 0, and therefore from
Eqs. A18 and A19, there can be large errors associated with the
MLEs produced by GCTA.
The second source of bias comes from the large errors asso-

ciated with the eigenvalues of the GRM (26). Specifically, sup-
pose there are sampling errors Δap and Δaq associated with two
closely packed eigenvalues whose true magnitudes are ap and aq,
respectively. We have

1
ap +Δap −

�
aq +Δaq

�= 1
ap − aq −

�
Δaq −Δap

�,
≈
1+ κðp, qÞ
ap − aq

[A20]

where κðp, qÞ= ðΔaq −ΔapÞ=ðap − aqÞ. Because the errors in the
near-zero eigenvalues can be large, κ need not be close to 0. As a
result, all of the error terms in Eqs. A18 and A19 will have
additional amplification factors of the form ð1+ κðp, qÞÞ for every
pair (p and q) of near-zero eigenvalues of the GRM.
The bootstrap and GCTA.Here, we show that resampling techniques
(e.g., the bootstrap, jackknife, etc.) cannot be used to improve
the estimates produced by GCTA. Loosely put, the bootstrap
estimates the parameter in question (in this case, the heritability)
by resampling from the original sample and relying on the fact
that the sampling errors “average out” to 0. We have shown in
Appendix B that the GCTA estimates are overly (erroneously)
biased by local information.
For run i of a bootstrap, let the heritability estimate obtained

by GCTA be θgðiÞ, the biasing error be κðiÞ, the sampling error
(with mean 0) be πðiÞ, and the “true” heritability estimate be θ0.
The ith bootstrap estimate can be expressed as

θgðiÞ= θ0 + κðiÞ+ πðiÞ. [A21]

Taking the mean in Eq. A21 over sufficient bootstrap samples,
we have

E
�
θg
�
= θ0 +EðκÞ. [A22]

The bootstrap will estimate EðθgÞ, which is not helpful because
we have no handle on EðκÞ. More importantly, EðθgÞ provides no
useful information about θ0.

Appendix C: Dynamics of GCTA and More Problems with Stratification.
Consider the most general case, where N random people and P
random SNPs are used to construct the random genotype matrix eX
(of which one realization is the observed data matrix X). From eX,
we construct the matrix eZ by centering and scaling so that the
entries of matrix eZ will be i.i.d., with mean 0 and variance 1. As a
result, eZeZT

and eZTeZ will be random Wishart matrices (15), whose
eigenvectors are known to be uniformly distributed over the unit
sphere in N dimensions (41) which implies that with high proba-
bility, the eigenvectors of eZeZT

(feuig for 1≤ i ≤ k) and eZTeZ (fevig for
1≤ i ≤ k) satisfy jeuij∞ =Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logN=N
p Þ and jevij∞ =Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logP=P
p Þ,

respectively (42) (the ∞ norm of a vector x = fx1, x2 . . . xng is
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defined as jxj∞ =maxðjx1j, jx2j . . . jxnjÞ) [i.e., the maximum entries
in the eigenvectors are very small (for n = 2,698 and P = 49,214,
ðlogN=NÞ≈ 0.001 and ðlogP=PÞ≈ 0.0001)].
Suppose the first k1 singular values of eZ are much larger

than the others. We analyze g= eZu, the term primarily re-
sponsible for the high heritability estimates obtained using Eq. 3.
First, we express g as a function of the singular values and sin-
gular vectors of Z, namely

g=
Xi=k1
i=1

ewi eui	evTi u
+ Xi=k
i=k1+1

ewi eui	evTi u

= eZ1u+

Xi=k
i=k1+1

ewi eui	evTi u
. [A23]

In such cases, it is best to discard the near-zero singular values
(26) while constructing the GRM. Accordingly, Eq. A23 becomes

g=
Xi=k1
i=1

ewi eui	evTi u
= eZ1u. [A24]

In this expression, note that evTi u will be very close to 0 (because
the∞ norm of evi is close to 0) for all 1≤ i ≤ k1, and therefore the
random effect term will never be significant. Because the ∞
norm of eui for 1≤ i ≤ k1 is also close to 0, we expect eZ1 to be
close to the 0 matrix, which is observed to be true in most cases.
GCTA tries to explain the variance of the phenotype vector y

by k random projections onto a plane defined by the columns of
Z. In Eq. A23, we expressed these random projections using the
left singular vectors of X as a basis. When N is fixed, P→∞ (i.e.,

as we collect more genotypic information on a fixed set of in-
dividuals) and one (or a few) of the singular values is much larger
than the rest, the singular vector corresponding to these singular
values will be consistent and the singular vectors corresponding
to most of the remaining nonzero singular values will be strongly
inconsistent (32) (informally put, consistency describes whether
the singular vector estimates from the data matrix approach the
“true” singular vector as more data are collected). This implies
that the subspace defined by the higher singular vectors of the
data matrix contain little biological information about the ge-
notype matrix. [Similar inconsistency results hold for the case
where N→∞,   P→∞, and P=N→ c for some constant c (43)].
In Eq. A23, we showed that the random projection of ey onto

the first k1 singular vectors (given by eZ1u) is almost surely 0.
Because the subspace defined by the higher singular vector es-
timates (euk1+1,eu3, . . . . euk) is inconsistent, there is little biological
connection between

Pi=k
i=k1+1

ewieuiðevTi uÞ in Eq. A23 and the heri-
tability estimate. It appears that it is this term that is responsible
for the high values of the GCTA estimate (because the first term
makes nearly 0 contribution to the projection). For every set of
people and SNPs that are chosen, the data matrix generates a
new set of OðPÞ arbitrary singular vectors, which in turn generate
arbitrary α2 and σ2 estimates.
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