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ABSTRACT 

The quest for control and the subsequent pursuit of continuous quality 

improvement in the manufacturing sector, due to mcreasingly keen competition, has 

stimulated interest in statistical process control (SPC). Whilst traditional SPC techniques 

are well suited to the mass production industries, their usefiilness in short run or low 

volume manufacturing environments is questionable. The major problem with short-run 

SPC is lack of data for estimation of the control parameters. In view of this limitation, 

many alternatives and adaptations of existing techniques have been devised. However, 

these efforts have largely been devoted to monitoring and controlling univariate 

processes. 

In practice, the quality of manufactured products is oflien determined by reference 

to several quality characteristics which are correlated. Under these circumstances, it is 

necessary to use multivariate quality control procedures which take the correlational 

structure into consideration. Although this area has received considerable attention in the 

literature, most of the published work assumes that prior information about the process 

parameters is available. This assumption is rarely the case in the short run environment. 

This thesis is primarily concerned with the development of multivariate quality 

control procedures that can be effectively used in situations where prior estimates of the 

process parameters are unavailable. For completeness, some better alternatives to 

previously proposed procedures are also provided for the case where the process 

parameters are assumed known in advance of production. These techniques are intended 

for detecting a shift in the mean vector, the variance-covariance matrix and other process 

disturbances. Using the proposed procedures, control can be initiated early in 
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production, whether or or not prior information about the process parameters is 

available. 

The techniques presented for controlling the mean vector of multivariate 

processes utiUze the probability integral transformation technique in order to produce 

sequences of independent or approximately independent standard normal variables. This 

offers greater flexibility than the 2-stage procedures recommended by some authors in 

the design of control charts for the unknown parameter case. Apart fi-om the 

conventional rule that signals when a plotted value exceeds either of the 3-sigma limits, 

run tests as well as the methods of Cumulative Sum (CUSUM) and Exponentially 

Weighted Moving Average (EWMA) can be used. A simulation study indicates that the 

techniques, with the usual decision rule imposed, are particularly usefiil for 'picking up' a 

persistent change in the process mean vector when subgroup data are used, even if prior 

information about the process parameters is not available. For detecting step shifts and 

linear trends based on individual observations, two specifically designed EWMA charts 

based on similarly transformed variables but which use a different estimator of the 

process variance-covariance matrix are found to be much more effective than other 

competing procedures. 

For dispersion control, use is made of the independent statistics that result from 

the decomposition of variance-covariance matrices and the modified likelihood ratio 

statistic for testing the equality of several covariance matrices, for the cases with known 

and unknown dispersion parameters respectively. The proposed techniques are based on 

some aggregate-type indices computed from such independent variables. It is found that 

these techniques outperform previously proposed procedures for many sustained shifts in 

the process variance-covariance matrix. In addition, it is demonstrated that the dispersion 
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control chart, for the known parameters case, is more sensitive to certain shifts than that 

which involves separate charting of the standardized variances of the principal 

components or the individual variables resuhing from the partitioning of the variance-

covariance matrices. The proposed techniques also possess some practical advantages 

over existing procedures. In particular, better control over the false signal rate, ease of 

locating control limits and identification of the nature of process changes. 

To satisfactorily describe the capability of multivariate processes, a multivariate 

capability index is required. This thesis describes three approaches to designing capability 

indices for multivariate normal processes. Three process capability indices are presented 

and some simple rules provided for interpreting the ranges of values they take. The 

development of one index involves the projection of a process ellipse, containing at least 

a specified proportion of products, on to its component axes. The other two are based on 

Bonferroni and Sidak's multivariate normal probability inequalities in their constructions. 

A comparison indicates that the latter two are superior to the former and that the Sidak-

type capability index is marginally better than that based on the Bonferroni Inequality. An 

approximate test is developed for the Sidak-type capability index. A possible method of 

forming robust multivariate capability indices based on multivariate Chebyshev-type 

inequalities is also considered. 

In addition, whilst not multivariate, a statistical comparison is made between the 

adjusted X and R charting technique and the method of 'pre-control'. These techniques 

are suitable for application in the short run environment since they do not require 

accumulation of process data for calculation of the control limits but instead determine 

their pseudo limits based on given specifications. The results of comparison show that 

the former are superior in many circumstances. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to SPC 

Dr. Walter Shewhart (1931) introduced the notion of statistical process control 

(SPC), and in particular control charts, as a means of monitoring industrial processes and 

controlling the quality of manufactured products. These and other statistical tools have 

proven usefiil in many industries. 

Regardless of the nature and the state of an industrial process, any measurable 

characteristics of the process or the manufactured product exhibit a certain amount of 

variability. In SPC, a distinction is often made between two types of variability : one due 

to common causes and the other that results from special or assignable causes. 

Examples of common causes are machining operations, setting-up methods, 

measurement systems and atmospheric conditions. Variability due to these factors is 

either non-controllable or cannot be reduced or eliminated economically. On the other 

hand, special causes include, amongst others, machine failure, tool wear, defective 

material and operator error, which are preventable or at least correctable or controllable. 

The primary objective of SPC is to help detect the presence of these extraneous sources 

of variability so that timely corrective actions can be taken. In this manner, it is hoped 

that the production process will be capable of meeting given product specifications 

consistently and economically. 

Once the common-cause or inherent variability has been quantified, control charts 

can be used to determine when and whether or not special causes affecting the process 

under consideration are present. A process is said to be in a state o^ statistical control or 



simply in control if it is free from the influence of such factors. Otherwise, it is said to be 

out of control. In statistical terms, this means an in-control process variable has a 

constant distribution. In applications, however, it is generally considered sufficient for 

the process parameters such as the mean, \x and the standard deviation, a to remain 

constant. 

A control chart portrays the values of some chosen statistic in chronological 

order and provides graphical evidence of when and whether or not process troubles 

occur. As shown in Figure 1.1, a typical control chart is a plot of a control statistic 

against the sample number and consists of a center line (CL), a lower control limit (LCL) 

and an upper control limit (UCL). 

Control 
Statistic 

out-of-control signal 

UCL 

Sample or Observation Number 

Figure 1.1. A typical control chart 

Common examples of a control statistic are the individual observations of a quality 

characteristic {X}, sample mean {X), sample range {R), sample standard deviation {S), 

sample proportion of defective items (/?) and sample fraction of nonconformities (C). The 



control Umits, which depend on the process or control parameters, act as the thresholds 

for the plotted values beyond which out of control conditions are indicated. These limits 

may or may not be symmetric and it is also possible that only a single control limit is used 

under certain circumstances. In any event, the control Umits are usually determined such 

that the resulting_^t/5e signal rate can be tolerated. A false signal occurs when the value 

of the control statistic plots outside the control limits whilst in fact the process under 

consideration is in control. 

In practice, the control parameters are estimated based on data collected from a 

process assumed to have been in control. Certain rules of thumb or practical experience 

are often employed to determine the necessary amount of calibration data. The 

commonly recommended approach is then to 'plug in' these sample estimates to the 

formulae for the control limits. Thus, unless the set of calibration data is reasonably 

large, there is often no assurance that the resulting estimated control limits will behave 

essentially like the known limits (see Quesenberry (1993)). 

The effectiveness of a control procedure is often determined based on its 

associated run length (RL) distribution. RL refers to the number of samples taken (since 

the last signal) before a signal is triggered. As a summary measure of sensitivity, the 

average number of samples required for the detection of a change in the control 

parameters, termed the average run length (ARL), has commonly been used. Using a 

simplified ecomonic model. Ghost, Reynolds and Hui (1981) showed that ARL is the 

most important measure associated with the RL distribution that determines the 

effectiveness of a control procedure. They also noted that other measures may be of 

interest for some applications. Quesenberry (1995d) demonstrated that for comparison of 

various competing procedures, if RL distributions are known to be geometric before and 



after a shift in the process parameters, ARL is an appropriate performance criterion 

because the run length distribution ftinction, 'PT[RL < k] at any fixed value k is a strictly 

monotonic ftinction of ARL irrespective of shift size. On the other hand, if some of the 

RL distributions are not geometric or unknown, even combining information on the 

standard deviation of run length (SDRL) with ARL, as considered by some authors, may 

lead to misleading conclusions about their relative performance. This issue has either 

been dismissed or overlooked by numerous authors. 

The idea of SPC can be extended to a more practical situation in which several 

correlated quality characteristics are monitored simultaneously. Under these 

circumstances, procedures which take into account the correlational structure of the 

individual variables are required in order to correctly reflect the process status. 

1.2 Problems of Traditional SPC for Short Production Runs 

Shewhart control charts have enjoyed considerable popularity as control and 

monitoring tools. These and more recent variations of them, enable production operators 

to detect process troubles or out-of-control situations before they become critical. 

Appropriate corrective action can then be initiated to prevent farther deterioration in 

process operation and so avoid a negative impact on product quality. While these 

techniques are well suited to the mass production industries, their usefiilness in low 

volume manufacturing environments is subject to debate. 

Besides the continuance of traditional small job shops, there has been, even in the 

mass production industries, an increased demand for more frequent production changes 

and a consequential proliferation of short runs. Attempts made to apply traditional 

control charting techniques in such environments are plagued with difficulties. The 
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essential problems facing those seeking to provide usefiil statistical tools for application 

in the short production run environment are those of machine 'warm up', control 

parameter estimation and parameter changes between the manufacture of different 

product types. 

In short-run environments, the control limits for traditional control charts, such as 

X and R charts, often cannot be located in the usual manner due to insufficient data. 

Thus, one might consider estimating the control limits based on a much smaller number 

of samples or subgroups than usually recommended. However, it has been adequately 

demonstrated in the literature that this practice is not reliable. Amongst others, 

Quesenberry (1993) provided a most reasonable evaluation of the effect of estimated 

control limits on the overall run length performance for conventional X and X charts. 

He showed by means of simulation, that the rate of false alarms after short runs, 

increases, and much larger sets of calibration data are required so that the resulting 

estimates of the control limits for these charts are practically the same as their true 

values. However, these requirements can rarely be met for small batch manufacturing. 

The problems of lack of process performance data are fiirther aggravated by 

process 'warm up', which is perhaps the most important and yet least considered obstacle 

to meaningfiil and successftil application of traditional control charts in small lot 

production. This phenomenon is a common and dominant feature of short-run processes, 

as instability after set-up or reset often constitutes a large proportion of production run 

time. Neglecting this fact and using sample data from such a period to obtain control 

limits will often lead to erroneous conclusions regarding past, current and fiiture states of 

the process. Murray and Oakland (1988) demonstrated this using simulation, specifically, 

if process variability increases during the calibration period, an out-of-control process 



will often appear to be in control, as reflected by either a standard deviation or range 

chart with the usual decision rules imposed. 

Another practical reality that characterizes short run environments, is the 

diversity of products made. If separate control charts are maintained for each type of 

product, the system becomes unwieldy. 

1.3 Multivariate Quality Control 

Due to the rapid development of data-acquisition and computer technology, it is 

not uncommon in many industrial situations to monitor on-going performance of a 

manufacturing process with respect to more than one process or product characteristics. 

If the product characteristics are correlated and no consideration is made of their joint 

distribution, the use of separate control charts for each of them can be misleading. 

Specifically, the related variables, when studied separately, may appear to be in statistical 

control but appear out of control when considered in a multivariate context. 

Montgomery and Wadsworth (1972) and Alt and Smith (1990) illustrated this for the 

case of /? = 2 variables. Under these circumstances, it seems necessary to consider the 

use of multivariate quality control procedures which take into account the covariance 

structure of the quality characteristics. 

Over the last 2 decades, the problem of multivariate quality control has received 

considerable attention in the literature. A review of this work can be found in Alt et 

al.(1990) and Jackson (1985) and this has been updated recently by Wierda (1994) and 

Lowry and Montgomery (1995). Besides the problem of lack of data for parameter 

estimation in low volume and short-run environments, multivariate SPC procedures 

suffer from practical drawbacks such as computational complexities and difficulties in 



interpreting the out-of-control signals. Other issues include use and understanding, 

complexity of the distribution theory involved and statistical efficiency. Some previously 

proposed procedures such as the dispersion control technique based on generalized 

variance of Alt et al.(1990) are fiindamentally flawed because they are unlikely to 'pick 

up' certain shifts in the dispersion parameters. The computational aspect of multivariate 

control procedures can be handled by computers but other problems remain and need 

fiirther investigation. 

1.4 Thesis Objectives 

The main thrust of this thesis is to present some multivariate quality control 

procedures that can be effectively used in situations where prior estimates of the process 

parameters are unavailable. For completeness, some better alternatives to existing 

multivariate SPC procedures are also provided for known parameter situations. The 

types of process change considered include step shift in both the process mean vector 

and the variance-covariance matrix and linear trend. Some simulations, as well as 

previously published data, are used to assess the practicality of the models and the 

methods. Where appropriate, the relative control performance of proposed and currently 

existing procedures are also evaluated. 

Statistical process control is often considered with no reference to product 

specifications. It merely ensures that the process under focus is in a state of statistical 

control so that its behaviour is predictable under normal operating conditions. In 

practice, however, the quality and the 'acceptability' of the products is determined by 

conformance to given specifications. Having confirmed that the process is in control, the 

next step is thus to measure the process capability. Process capability can often be 



conveniently summarized by an index. Whilst substantial efforts have been devoted to the 

development of capability indices for univariate situations in the literature, the work on 

multivariate process capability study is at a relatively rudimentary stage. In order to 

satisfactorily describe the capability of multivariate processes, some indices are therefore 

presented. 

In addition to the above, the relative merits of the adjusted X and R charting 

technique and Pre-control are provided for the univariate situation. These tools are 

attractive for application in short-run environments since they do not require 

accumulation of process data for computation of the control limits but instead determines 

pseudo limits by reference to given specifications. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In view of the limitations of traditional SPC techniques, many alternatives and 

adaptations of them have been devised for the express purpose of removing the barriers 

between SPC and short production runs. Recently, a review of the literature on the use 

of SPC in batch production has been presented by Al-Salti and Statham (1994). Much of 

their article is devoted to a particular aspect of short-run SPC, namely, the use of data 

transformation techniques. This chapter, however, gives a more comprehensive review of 

techniques proposed for short runs along with some possible methods and provides its 

own contribution to the debate. Whilst the focus is on univariate processes, wherever 

appropriate consideration is also given to the multivariate environment for which little 

has appeared in the literature. 

It should be pointed out that process monitoring in the chemical industries (eg. 

Nomikos and MacGregor (1995), Doganaksoy, Schmee and Vandeven (1996)) are, in 

most cases, not applicable to short-run SPC which assumes small production volume of 

the monitored product. In chemical or continuous process industries, various products or 

grades of the same product are manufactured in lots or batches and production of the 

same product continues, although intermittently, followed by batches of other products 

or grades and so forth. Thus, adequate historical data from past succesfiil batches are 

usually available for calibrating the in-control behaviour of the quality/product variables 

which are usually measured once at the end of each batch run and the process variables 

which are monitored during each batch run. 
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For ease of presentation, the techniques to be reviewed are grouped into several 

general approaches and discussed under appropriate headings although there is, of 

course, inevitable overlap between the groups. 

2.2 Adjusting Control Limits Based On The Number of Suberoups or 
Observations 

In the event of only a small number of subgroups being available yet where early 

control of the process is still desirable, Hillier (1964,1967,1969) and Yang and HilHer 

(1970) proposed adjusting the control limits for Shewhart-type variable control charts, 

both for retrospective (stage I) testing and for fiiture (stage II) control in such a way that 

the predetermined probability of a type I error is preserved. A similar approach, based on 

individual observations, has also been presented by Roes, Does and Schurink (1993). It 

should be pointed out, however, that the limits so adjusted do not always ensure that the 

resulting probability of a type I error for each fiiture subgroup is as desired. In fact, this 

probability, as well as the adjusted limits, vary stochastically with the mean and the 

dispersion of the calibration sample. As such, the resulting control procedure may either 

be too conservative, causing delay in reacting to process troubles, or too stringent, 

giving rise to too many false alarms. Note also that, as opposed to setting the limits by 

the conventional method, even if the estimates of the process parameters are accurate, 

the resulting control limits are wider than necessary ! Furthermore, since the estimated 

control limits may not be close to the nominal values, additional run rules such as those 

discussed by Nelson (1984) cannot be used indiscriminately. Other drawbacks are the 

number of calculations required and the likelihood of misinterpreting the information 

contained in the control charts, arising from the use of different control limits for stage I 
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and stage II, as well as changing control Umits after every couple of subgroups (Ermer 

and Born (1989)). 

A generalization of this approach to the control of the mean vector of a 

multivariate normal process, based on the well known Hotelling T^ statistic, was 

presented by Alt, Goode and Wadsworth (1976) and Tracy, Young and Mason (1992) 

for the cases when subgroup data and individual measurements are used respectively. 

Some issues of importance regarding the use of such a composite measure to monitor the 

stability of multivariate processes were raised, for example, in Hawkins (1991,1993). 

More recently, Scholz and Tosch (1994) proposed updating the parameter 

estimates and the stage II control Umits for the individual values charts based on the 

student-t statistic and T^ charts respectively after every fiiture observation. In order to 

reduce the effect of any systematic process behaviour on the estimates of the dispersion 

parameters, they suggested using a moving variance of successive observations for the 

individual values chart and an analogous procedure for estimating the in-control process 

variance-covariance matrix, E that is required for computing the value of the T^ 

statistic. The latter procedure uses vector differences of successive observations to form 

the estimator of S as foUows ;-

1 "" 
^" ~ 2(n I) ^ '^^'^^ ~ ^/)(^/+i ~ ^ / ) 2(«-l)t, 

where X, and n denote respectively the /th observation vector and the number of 

previous observation vectors. This estimator was considered by Holmes and Mergen 

(1993) and compared to other estimators including the usual sample covariance matrix 

by SuUivan and Woodall (1995) for application in the retrospective stage. It was 
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demonstrated that, step shifts in the mean vector and linear trends are more likely to be 

detected with the use of this estimator. 

King (1954) has also presented a similar approach for analysis of past data or 

retrospective testing using X charts with control limits based on average subgroup 

range except that the control chart factors are derived in such a way that the joint 

probability of a false alarm, y is as required instead of the individual probability of a 

false signal for each initial subgroup. He gave a nomogram for a selected range of 

common subgroup sizes and numbers of subgroups from which an appropriate value of 

the control chart factor can be obtained for the case where y = 0.05. Except when limits 

are constructed based on 3 or 4 subgroups, the given factors were obtained through 

simulation by ignoring the random fluctuations of the average subgroup range R. As 

such, the validity of the given factors is questionable. Furthermore, this method can only 

be usefiil if nomograms or tables for other values of y , which might be preferable in 

practice, are widely available. 

2.3 Control Charts Based On Individual Measurements 

If the problem is one of short production runs and lack of data, a possible 

solution might be use of individual readings in place of averages. The use of individual 

readings is natural anyway if there is no natural subgrouping of the observed data. Two 

basic types of chart employing individual measurements are: 

(i) Individual values and Moving Range (I-MR) charts or X-MR charts. 

(ii) Target Individual-Moving Range (Target I-MR) charts or the AX-MR charts. 
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These charts attempt to maximise the information obtained from the limited amount of 

available data. Apart from being suitable for processes with limited output within a single 

set-up, they can be used in situations where : 

• processing time per unit item is long or the data accumulation rate is slow, 

• testing or measurement is expensive or time consuming, 

• testing is destructive. 

The first of these two charting methods has been around for many years and is 

weU documented (see for eg., Grant and Leavenworth (1980)). Burr (1954) suggested 

this as one of the possible methods which can cater for short production runs. In his 

proposal, he advocates use of 2-cr control Umits rather than the conventional 3-cr limits 

for the individual values chart to compensate for its lack of sensitivity to mean shifts. The 

method has also been considered by Nugent (1990) for use in short-run manufacturing 

environments. 

The second, as its name implies, differs slightly from the first in that the target or 

the nominal specification is subtracted from the measurements before they are plotted. 

Ermer et al.(1989) highlighted some practical merits of this charting method in 

comparison to other existing 'short-run' techniques. However, this method will not work 

in circumstances where no target is available as often occurs with products having a one

sided specification. 

The fiindamental problem of lack of data has not been adequately addressed by 

the above authors, except for the indication that estimation of the process parameters 

and subsequent computation of the control limits should be based on data from either the 

present run or on previous runs of identical or similar products. In fact, no clear 
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guidelines are provided as to how many observations are sufficient for the purpose of 

estimating the control limits. 

For both types of chart, the control Umits may be determined based on successive 

moving ranges of size 2. Several other estimators of process spread such as that given by 

Roes et al.(1993) can also be used for this purpose. Although it is weU known that the 

sample standard deviation provides the most efficient estimate of the inherent process 

variability for a stable normal process, the average moving range is used because it is not 

only computationaUy simpler but it can also safeguard against the likely events of trends, 

cycles or other irregular patterns in the calibration data (i.e it minimizes the inflationary 

effects from these conditions and hence the inherent process variability will not be 

overestimated). However, besides re-emphasizing the fact that displaying a moving range 

chart will only cause confiision due to correlation between consecutive moving ranges. 

Roes et al.(1993) substantiated Nelson's (1982) view that doing so has no real added 

value because the chart of individual values contains almost all the information available. 

If the process measurements are known to be independently normally distributed and a 

state of statistical control has been achieved, as demonstrated by the retrospective use of 

I-MR or Target I-MR charts, Cryer and Ryan (1990) suggested that, for fixture process 

monitoring, control Umits for individual values charts should be estimated based on the 

sample standard deviation instead of the average moving range, due to its relatively 

superior efficiency. 

As for X charts, additional run rules can be effectively applied to the individual 

values charts to identify non-random variations or systematic process changes, hence 

providing better protection against potential process problems, provided the estimated 

control limits do not differ considerably from the 'true' limits. Of course, there is an 
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increased false alarm rate associated with these additional control rules but if power of 

the charts is of paramount importance and outweighs the costs of searching needlessly 

for non-existing assignable causes, the use of these rules can be usefiil. 

The major practical benefits that can be gained by using individual readings 

instead of averages are : 

• Measurements can be seen, compared to specification limits and easily 

understood. 

• Substantial savings in time and cost may be accrued as a result of less sampling, 

testing or measurement. 

• Improved employee involvement in decision making and problem solving which 

could be catalytic in bringing about quality and productivity improvements, as a 

result of operators having better appreciation of the techniques in use. 

Individual values charts with conventional control limits should, however, be 

considered with reference to statistical efficiency. First, and most importantly, their 

sensitivity to substantial shifts in process average is less than that of the usual X charts. 

Although greater sensitivity may be gained by the use of narrower limits or additional 

warning lines, such sensitivity is gained at the expense of increasing the chance of false 

lack of control indications. 

The second problem with individual values charts centres around the normality 

assumption of the process distribution. If the underlying distribution is not normal, this 

will tend to distort the interpretation of the control limits. On the other hand, X values 

will tend to normality fairly rapidly by virtue of the Central Limit Theorem, provided the 

underlying distribution isn't too skewed. 
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2.4 Mixing Production Lots and Normalizing Process Output Data 

Recent developments in the use of statistical process control in multi-component 

and low-volume manufacturing environments have focussed mainly on studying and 

monitoring the process irrespective of the type of parts or products being manufactured. 

The basic idea with this approach is that values for different products or components 

being assessed on the basis of the same quality characteristic but with different design 

specifications can be plotted together on the same chart, provided that they are the 

output of a homogeneous process. Homogeneity means that the components should, 

technically, be machined under similar conditions, for example, in terms of cutting tools, 

tool holders, component holding methods and setting-up methods etc (Al-Salti and 

AspinwaU (1991)). The same principle applies to chemical manufacturing processes 

where similar chemicals are produced in smaU batches on an, 'as needed' basis. Emphasis 

on process homogeneity is important in order to reduce or eliminate the effect of 

variability due to extraneous sources, thus ensuring only inherent variation exists. This 

avoids erroneous appraisal of the process and any process irregularities can be more 

readily detected. In addition, the measurement process should be adequate enough, in 

terms of accuracy, and carried out in a consistent manner for every measured 

component. 

Several papers (Al-Salti et al.(1991), Armitage and Wilharm (1988), Bothe 

(1989), Burr (1989), Crichton (1988), Nugent (1990), Thompson (1989)) have given 

accounts of this approach. It is accomplished by means of data transformations which 

effectively eliminate the differences between the types of products or components. A list 

of possible transformation techniques that cover a claimed majority of manufacturing 

situations, along with conditions of use, is presented by Al-Salti, AspinwaU and Statham 
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(1992). A comparison of control charts based on the given techniques for a set of 

industrial data is also provided in the same paper. Koons and Luner (1991) outlined a 

related approach and illustrated the technique with a case study. Al-Salti et al.(1991) 

investigated the appropriateness of the moving average, moving range and cusum control 

charting techniques using transformed individual observations. 

This approach of mixing production lots and normalizing process output data has 

been highlighted by many authors as an integral part of quality assurance and 

improvement strategies for two main reasons : 

(a) Reduction of the number of control charts and charting effort required which results 

in time and cost savings as well as higher productivity. 

(b) Time-related process changes such as runs, trends and cycles can be more readily 

detected since pertinent process data is not scattered over separate charts. 

However, there are a number of critically important problems with this approach. 

As an example of some important issues that the previous authors either overlooked or 

dismissed, consider the so-called Short Run X &. R charts as proposed by Bothe 

(1989,1990b), that have been extensively discussed in the literature. To 'control' the 

process mean and the process dispersion, Bothe suggested use of the statistics 

:r; ^ , -..^™.„«„^™ T7 A^—TARGETA^ _̂ ,^ 
X PLOT POE ĴT = Z„„ = =— (2.1) 

PP TARGET/? 

and R PLOT POINT = il, = = (2.2) 
^P TARGET i? 

respectively. The notation TARGET X and TARGET R here denote respectively the 

target values of the mean and the range of the process distribution which can be 

determined in a number of possible ways. A related control charting method based on the 

assumption of constant standard deviation across different parts or products has also 
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been presented by Bothe (1990a) in another paper. This involves charting the statistic 

(^ -TARGET^) and the usual subgroup range resulting in so-called Nominal charts. 

When data are available from previous runs of identical or similar products, the author 

recommends estimating TARGET X and TARGET R from these data (which wiU 

usually be small data sets). Without relevant historical data, he suggests taking TARGET 

X equal to nominal specification and 

TARGET ^ = -^^^^—^ (2.3) 

where U, L, C (̂goai) ^^d ^i denote respectively the upper specification limit, lower 

specification limit, the target value of the process capability index, Cp = ^ ^ and the 

control chart factor (which is a fiinction of the sample size, n). 

Note that when X^^ and R^^ are computed from (2.1) and (2.2), the sequences 

of statistics plotted on each chart wiU be highly correlated. If TARGET R from (2.3) is 

used, one cannot possibly have any reaUstic idea of how this value relates to the process 

standard deviation. Even for this case, the plotted points are correlated. As a result, one 

does not know what kinds of point pattern to expect for a stable process, and thus one 

cannot possibly determine when a process is not stable. 

As stated by Ermer et al.(1989), this normalizing approach also loses its appeal as 

a quality control procedure due to practical problems : 

• Although the calculations for standardized charts are not difficult, they are more 

involved than traditional Shewhart charts. 

• The coded data do not appear to have any physical meaning to production operators 

who usually have little background in statistics. 
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• Since the control limits for this chart never change, process improvements that are 

being implemented from time to time will not be reflected by the chart. In other 

words, no visual impression is available as to how much improvement has been 

made to the process. 

Additionally, considerable effort and time have to be spent to obtain, review and 

revise the scaling factors if necessary. Furthermore, care must be taken to ensure that 

proper scaling factors are being used in each calculation to avoid misinterpretation 

regarding the stability of the controlled process. 

2.5 Setup Variation and Measurement Errors Considerations 

In any kind of machine set-up, whether manual or automatic, there exists a 

certain amount of natural variability in the setting regardless of how well it is performed. 

This issue must not be overlooked and set-up acceptance should be based on sound 

statistical principles. On a long term basis, for the same machine or production process, 

the set-up error, which is defined as the deviation of average output from the desired 

value, tends to fluctuate in a random manner around its expected value which is usually 

assumed to be zero. In every set-up, therefore, as long as the set-up error is within its 

natural spread, no adjustment is necessary and the production should be allowed to run 

to avoid over control. The set-up method can of course be improved to reduce this 

source of variation provided it is economically feasible to do so. 

As demonstrated by Robinson (1991) and Bothe (1990b), in the presence of 

significant set-up variation, the use of Nominal and Short Run charts as reviewed in the 

preceding section is not appropriate. In particular, out of control conditions are indicated 

by the charts although the process is well in statistical control. These warning signals are 
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actually caused by the set-up variation rather than out of control conditions. To cope 

with this situation, Bothe suggested that two sets of scaling factors, i.e 'set-up' and 'run' 

factors should be used for each part number, he fiirther discussed how they can be 

derived. Similarly, Robinson proposed that separate charts should be drawn for 

monitoring between-setup and within-setup variation in isolation. He and Robinson, 

Touw and Veewers (1993) illustrated this idea and exemplified how it can be achieved. 

For monitoring the first source of variation, he suggested charting the average value of 

the first five pieces (or the so called 'first offs') relative to nominal specification and the 

control limits for the resulting chart are derived by treating this as an individual values 

chart. As for control of within-setup variation, he suggested use of the traditional Range 

chart or a chart for the difference in average departure from nominal between the first 

five pieces and the last five pieces (or the 'last offs') for each short production run. He 

also mentioned use of the more practical 'Modified' control limits on the 'Deviation' chart 

to ensure that most individual items produced will conform to specifications, with the 

impUcit assumption that C p > l . However, as he pointed out, this approach is not 

suitable if the specification band varies between runs. 

When piece-to-piece variation is confounded with set-up variation, the Nominal 

and Short run charts do not provide an adequate means of reflecting the actual status of 

the process. By contrast, separate monitoring of these components of variation does not 

only give a real picture of the process but also provides some guidance as to what might 

need to be fixed when an out-of-control signal is present (Robinson (1991)). 

In statistical process control, measurement error should also be given due 

consideration as this constitutes part of the inherent variation of a stable cause system. 

More simply stated, the natural variability observed in measured values of the quality 
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characteristic of any industrial product is due in part to the variability of the product and 

in part to the variability in the method of measurement. This latter is sometimes 

negligible, but at other times cannot be ignored without risk. If the standard deviation of 

measurement error varies in some systematic manner, both nominal and short run charts 

will give misleading signals, especially when the measurement error is relatively 

significant. 

In his paper, Farnum (1992) incorporated this component of variation into some 

process models having made certain reasonable assumptions. He then developed a 

charting procedure for one particular model. This assumes nonconstant process and 

measurement error, more specifically the short run process has constant coefficient of 

variation coupled with a measurement system whose error variability is proportional to 

the true reading. The resulting procedure seeks to remove the differences in average and 

dispersion between various components to enable them to be monitored with the use of a 

single chart. As long as subgroup size does not change, this charting method yields a 

common set of control Umits for every component, irrespective of their design 

specifications. Provided the appropriate model has been identified, these limits can be 

established early by utilizing data from different production lots in a predetermined 

manner. As with any charting method which plots different components on the same 

chart, caution should be exercised when sequence rules are applied. 

2.6 'Self-Starting' Procedure Based on 'Running' Estimates of the 
Process Parameters 

A series of articles by Quesenberry (1991a,b,c) presented an innovative approach 

to control, particularly pertinent to short-run processes and processes during the start-up 
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phase. The first paper considered independently and identically distributed (i.i.d) normal 

processes whereas the foUowing two are devoted to monitoring processes with attribute 

data, namely. Binomial and Poisson processes, under various assumptions about the 

process parameters. Unlike the preceding approach, a non-Unear transformation 

technique, specifically the 'Probability Integral Transformation' technique, in 

conjunction with the usual linear transformation, was used to develop new charting 

procedures. These so-caUed 'Q' charting procedures enable production operators to 

begin monitoring the process essentially with the first units or samples of production 

whether or not prior knowledge of the process parameters is available. Consequently, the 

task of identifying and removing assignable causes, and thereby bringing the process into 

control, can begin at an earlier stage. For the case where no relevant data is available in 

advance of a production run, the control parameters are 'estimated' and 'updated' 

sequentially from the current data stream. These 'running' estimates, together with the 

immediately succeeding observations are in turn used to test whether the process remains 

stable. 

Since the 'Q' statistics are either standard normal variables with independent 

observations or approximately so, the resulting charts can aU be constructed using the 

same scale and with the same control limits irrespective of the type of product being 

monitored, thus simplifying charting administration. Additional run rules can also be used 

to detect any non-random patterns on such standardized charts which suggest various 

process instabilities. When subgroups or sampling inspection units vary in size, it is well 

understood that this situation is difficult to handle by classical methods. By contrast, the 

control limits and interpretation of point patterns for 'Q' charts are not affected by a 

varying sample size. 
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The behaviour of these charts for particular situations was studied using 

simulated data. The results show that 'Q' charts based on known and unknown 

parameters, are in close agreement with each other after the first few points, for in-

control processes. As for processes with sustained shift in a parameter, the points on 'Q' 

charts which update the parameter estimates progressively from the data sequence will 

eventually settle into a pattern indicative of an in-control process. However, Quesenberry 

(1995a) quoted standard results as saying, that under common assumptions, the 

traditional 1-of-l test (i.e one point outside the 3 - a control limits) on each of the 'Q' 

charts has the maximum possible detection capability on the next observation after a 

shift, among all control schemes with equal probability of a false alarm. As such, these 

classical 'Q' charts are recommended by some authors including Quesenberry himself for 

the problem of outlier detection. 

CastiUo and Montgomery (1994) showed that the strength of the signal from 'Q' 

charts for variables (with unknown mean but with known standard deviation) when a 

persistent step change in mean occurs depends on both the number of samples before and 

after the shift. It was also demonstrated that, as a consequence of this, the ARL 

performance of the 'Q' charts is poor in some cases. However, the accuracy of their 

simulation results is doubted. For instance, the run length distribution of the 'Q' charts 

considered in Table 1 for (5 = 0 has a known geometric distribution with mean of 370.4 

and standard deviation of 369.9 but the simulated values given are 410.8 and 383.6 

respectively. Another problem with this paper is the use of ARL as a performance 

criterion. It was mentioned in chapter 1 that the only case where ARL is a useful 

criterion is when the run length distribution is geometric. As most of the run length 

distributions involved in Quesenberry's (1991a) paper are not geometric after a shift in 
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the control parameters, their results are of limited usefulness in assessing the overall 

performance of 'Q' charts. 

Due to the discrete nature of Binomial and Poisson processes, some comparisons 

were made between the 'Q' charts, standard normalizing charts and charts using other 

transformation techniques in the goodness of their normal approximations for the known 

parameter case. Generally, it is found that charts based on 'Q' transformations are 

superior. As for the unknown parameter case, Quesenberry simply stated that it is 

unlikely for other charts to perform as well as the proposed techniques due to their 

exceUent theoretical properties. 

Since no simple recursive formula is available and highly sophisticated 

computations are involved, implementation of the 'Q' control scheme requires 

computing facilities and complex algorithms. Fortunately, these algorithms are widely 

available and have been built into most of the commercial statistical software packages 

such as S-plus. 

Like any other methods involving transformation, the resulting plotted points on 

'Q' charts do not appear to have any physical meaning to production operators. Besides, 

'Q' charts with unknown parameters fail to reflect both the process-tolerance 

incompatibilities and severe off-target conditions which occur right from the beginning of 

production runs. Therefore, unless close examination of the raw data is carried out, 

timely corrective actions will likely not be initiated until a considerable number of defects 

have been produced. This problem arises because such charts are designed to ensure that 

the process under surveilance is in a state of statistical control and hence they are 

unlikely to indicate any process trouble if no change in the process parameters takes 
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place, even though the process is incapable or substantially off-target immediately after 

set-up. 

It is perhaps worth noting that there is an error in Quesenberry's (1991a) paper 

that has not been pointed out correctly in the literature. The sequence of control statistics 

given by formula (12) of this paper, i.e 

a(^,)=^-' ni+n2+...+«j 

« , (^ , - /^o ) 

•^0,, 

! «« 

with ^ 2 _ g=l /=! 
'J 0,1 -

SZK-^o) 
«, + «2 +• • •+«, 

/ = 2,3, 

where the notation used here is as defined in the original paper, is in fact not a sequence 

of i.i.d standard normal variables as claimed by Quesenberry (1995a,d) because the zth 

subgroup mean X^ is not independent of the standard deviation estimate ^o, and 

successive arguments of the normalizing transformation are correlated. Thus, using this 

formula indiscriminately can be misleading. To form a sequence of approximately i.i.d 

standard normal variables, simply replace «, and SQ^ by «,_i and 5*0,_i respectively in the 

above formula. 

Recently, the RL properties of the 1-of-l and three tests for point patterns made 

on the 'Q' charts as weU as specially designed CUSUM and EWMA charts based on the 

values of 'Q' statistics, for detecting a one step shift in a control parameter, were studied 

by Quesenberry (1995a,b,c). The major conclusions drawn from this work are 

• the classical 1-of-l test has poor sensitivity 

• the test that signals when 4 out of 5 consecutive points are beyond one standard 

deviation in the same direction is a reasonable choice 
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• the EWMAQ and CUSUMQ tests are the most sensitive and are about 

comparable in overall performance 

In accordance with the empirical findings, he also made some recommendations for 

practical application. For more insight into 'Q' charting procedures and an interesting 

debate of their potential and limitations, see the discussions of these techniques by 

Castillo (1995), Hawkins (1995), Farnum (1995), Woodall, Crowder and Wade (1995) 

and the response from Quesenberry (1995d). 

A logical extension of the 'Q' charting techniques to the control of the mean level 

of a multivariate normal process when prior estimates of the process parameters are not 

available has also been presented by Tang (1995). The author demonstrated that this 

method is particularly useful for 'picking up' a sustained shift in the mean vector when 

subgroup data are used. 

In fact, this dynamic approach of charting was first perceived by Hawkins (1987). 

He proposed two related CUSUM procedures based on transformed individual readings 

for checking the constancy of process average and variability, along with some 

implementation details and illustrative examples. These were proposed as substitutes for 

the standard CUSUM procedures which generally assume known parameters. The 

proposed method provides another useful alternative for controUing, particularly, short 

run processes as it does not require knowledge of process parameters in advance of 

production runs and eliminates the need for a separate preliminary study. 

In order to effectively apply the CUSUM procedure, it is well understood that 

successive values for which the sum is accumulated should be independent and 

identically distributed. For this reason, the following transformation formula (attributable 
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to WaUace (1959)) was suggested to obtain a sequence of independent and 

approximately standard normal variables, 2^'s, :-

^/ = 
8/-15 

U / - 1 3 . 
(7-2) In 1+ ' 

2 ^ 

V 7-2. 

where T, = 0-1) A J Aj_^ 

J V Sj_^ J 

Xj : /th individual reading 

Xj : mean of the first 7 readings 

5^ : standard deviation of the firsty readings 

By maintaining a cumulative sum of successive Zj's, starting from the 3rd observation, 

and using the established control rule, process mean stability can thus be monitored 

progressively without having to wait until adequate process performance data has built 

up. However, this method should not be used indiscriminately. Careful examination of 

the above transformation formula reveals that the resuhing Zj 's are always positive and 

can be regarded as 'folded' standard normal variables which can assume positive values 

only. In fact, this normal approximation formula was originally considered by Wallace 

(1959) for converting upper tail values of the student-? distribution to corresponding 

standard normal deviates. Hence, the need for a modification to the formula is indicated. 

The minor change necessary is simply the addition of a negative sign to the transformed 

value Zj if 7] is less than zero. For purposes of controUing process dispersion, 

Hawkins suggested using the scale CUSUM given in his previous paper (Hawkins 

(1981)) which involves cumulative summing of the foUowing quantities :-
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¥J 0.822 

^ 0.349 

He made some efforts to justify his recommendation for a 'self-starting' CUSUM 

over the adoption of a CUSUM procedure based on some start-up calibration data. 

These included consideration of the average run length properties of the two methods. 

His simulation resuUs indicate that 'self-starting' CUSUM procedures are superior to 

those obtained with some 25 special start-up values, not to mention the short run 

situations where usually much less than this is available for initiating conventional cusum 

charts. 

A final concern about this approach is its likely lack of robustness to both non-

normality and to the presence of outliers in the underlying distribution of process 

measurements. Without previous data, there is often no assurance that the process 

output will conform reasonably to a normal distribution. The question arises, therefore, 

as to what effect departures from the normality assumption wUl have upon performance. 

Hawkins (1987) argued, by quoting others' resuUs, that his method works for non-

normal heavy-tailed data with little loss in ARL performance. 

The latter issue is particularly pertinent as a sequence of measurements (which 

might include occasional outliers) is used simuUaneously both for process control and to 

refine parameter estimates. Apparently, incorporating unknowingly occasional valid 

extreme observations into the estimates of the process parameters will cause inflation or 

deflation of them. This can have a substantial negative impact on the performance of the 

control method. To cope with this as well as to protect the CUSUM method (which is 

intended primarily for 'picking up' sustained mean shifts of small magnitude) from signals 

generated solely by isolated outliers, Hawkins (1987) suggested a robustification 
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approach using 'winsorisation'. 'Winsorizing' the measurements means that any 

measurement beyond a preset threshold wiU be set equal to it and used in subsequent 

calculations. In this manner, 'winsorisation' reduces or limits the effect of outliers on the 

parameter estimates and the properties of the control charts. This idea was further 

discussed by Hawkins (1993b) who also examined the relationship between the 

'winsorizing' constants for 'self-starting' CUSUM and CUSUM based on a large process 

performance study. He stated that this method provides good protection against outliers 

with little additional cost in computational effort. In the same paper, he also showed that, 

'winsorizing' causes little loss to CUSUM procedures in responsiveness to actual mean 

shifts for various sets of clean, contaminated and clean-contaminated data. 

Note that, for monitoring process dispersion based on individual observations, 

the Exponentially Weighted Mean Squares (EWMS) and Exponentially Weighted 

Moving variance (EWMV) by MacGregor and Harris (1993) may be used following 

some adaptations. The latter is particularly useful for processes with drifting means when 

it is used in conjunction with the conventional EWMA. In the absence of historical data, 

these monitoring procedures may be initiated at the 3rd observation where the first two 

observations are used to provide some initial estimates of the mean and the standard 

deviation, resuhing in some essentially 'self-starting' procedures. Approximate control 

limits for the resulting techniques may either be obtained algebraically or by means of 

simulation. 

2.7 Control Based on Exponentially Weighted Moving Averages 

CastUlo et al.(1994) proposed two aUernative methods as improvements to the 

'Q' charting technique, for monitoring the deviations from target based on individual 
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measurements where the process standard deviation is assumed unknown. These 

methods are based on some exponentially weighted moving average (EWMA) type 

control statistics. The first method resuUs from a straightforward adaptation of the 

standard EWMA control algorithm with the smoothing factor, X chosen to be 0.1, the 

initial value of the EWMA statistic ZQ equated to the specified or known target, /̂ g and 

the unknown standard deviation, a estimated sequentially in some suggested manner. 

The resuhing EWMA statistic 

Z, = (1 - A.)Z,_i + AJr, ,?=1,2,... 

is plotted on a control chart with limits 

^° \2-X 

where & - ' 
^ 4 

with S,:^X,-Mo, S,= l^j;^(X,-X,y, t = 2,3,. 
1=1 

C4 is a control chart factor depending on t that can be found from most of the standard 

text books on SPC and L denotes a constant that is chosen to achieve specified run 

length performance. The authors also noted the use of the more exact transient control 

limits (for the rth observation) given by 

^io ± ^ 1 
A- r, / , , \ 2 f 

1 - ( 1 - ^ ) ' <^t 
2-?iL 

The other control algorithm was derived from the well known Kalman model 

(see, for example, Crowder (1989)) upon noting that the assumed i.i.d in-control model 

for the process measurements can be represented by a special case of the Kalman model. 

The resuhing control statistic is given by the following recursive expression :-
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Z,=(\-X,)Z,_i+X,X,- Zo=^o 

This latter was referred to as the adaptive Kalman filtering control method since the 

smoothing factors or Kalman weights, I / 5 change adaptively according to 

K-ir^ (2.4) 

The variance components of the model, including the process variance, <j^ and the 

posterior variance of the process mean after the fth observation, q^-X^o^, are 

estimated and updated from the data sequence as follows:-

o-j =i5i , a^ =d^ t = 2,3,... 

FoUowing Crowder (1989), the control limits for this method were given as 

Mo±L^ (2.5) 

The initial value q^ was found to have practically no effect on the ARL performance of 

the method provided it is greater than zero. A variant of this method has also been 

presented by the same authors (Castillo and Montgomery (1995)) where the of in (2.4) 

and L in (2.5) are respectively replaced by 1 and KG^, and K is a constant chosen to 

yield specified ARL performance. In the same paper, they provided some guidelines for 

the economic design of the control scheme with respect to K and the number of 

observations to take in a batch. The objective of the economic model is to minimize the 

expected total cost per batch (which comprises sampling/inspection cost, cost associated 

with false alarms and cost of running an out-of-control process) subject to certain in-

control run length performance requirements. 
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It was demonstrated using simulation, that for a particular choice of the design 

parameters; X, % and L, the first two methods have better ARL performance than the 

corresponding 'Q' chart for 'picking up' ofiF-target conditions from start-up, especially 

when the size of the deviation (in muUiple of standard deviations), 5 , is small. It was 

also found that, these methods (with the particular choice of the design parameters) are 

superior to the classical Shewhart chart (classical in the sense that the process parameters 

are assumed known) in terms of ARL for small 5 . Furthermore, it was observed that, 

using the same criterion, the first control method has a comparable performance to the 

classical EWMA chart. Despite these, the choice of the design parameters are quite 

arbitrary and no consideration is made of the optimality of the design for these control 

techniques. In addition, it is necessary to consider more complete profile of the RL 

distributions instead of only the use of ARL (and SDRL) for the reasons given in the 

first chapter. 

Another contribution along this Une comes from Wasserman (1994) who 

proposed the use of the so-called Dynamic EWMA control chart. This technique differs 

from the former methods in the charting convention and the manner in which the 

variance components are estimated. In particular, the Dynamic EWMA chart compares 

the specified target \1Q with the varying control limits (constructed from the posterior 

distribution of the process mean) given by 

l^Cl^i — ZJ—Lo i-,JX( 

UCL, = Z , + Z a , 7 > ^ 

where Xi= ^ ^' \ . , q, = - q = ^ 
q,-i+Oi_i l-X 
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a ? = - ^ , a , = a , _ i + l, ^,=^,_,+{\-X)(X,-Z,_,f. 
a, 

An out-of-control condition is signaUed by the chart if the target M-Q is outside these 

limits. Note that this is equivalent to plotting and comparing Z, 's with the control limits 

Note also that the equations for estimating o^ and q^ are derived from Bayesian 

considerations, ag and pg ^^^ the parameters for the chosen Gamma distributional prior 

of the precision parameter, -^. X represents the prespecified steady state value of the 

o 

EWMA smoothing parameter. Wasserman and Sudjianto (1993) developed a similar 

technique for detecting the presence of linear trend in process measurements. This is 

based on the second order dynamic linear model, 2-DLM (a special case of the Kalman 

model) defined by the following observation and system equations : 

Observation : 
System : 

where X, and fi, denote respectively the observed value and the process mean of the 

quality variable at time t or for the rth sampling inspection unit and b, represents the 

level change or trend parameter in the interval [t-\,t]. The observation error, v, and 

the random errors in the system equations, Wj, and ^2?' ^^^ assumed to be distributed as 

V, ~7V(0,V), w,, ~A^(0,Wi), w^, ~N{0,W,) 

where V, Wj and W2 are some constants. As with Dynamic EWMA control chart, the 

resulting technique involves charting the varying control limits. 

X, = } i , + v , . 

^ i r = ^ ^ r - l + ^ - l + ^ l / . 

b, = b,_^+W2t, 

t = l2 ... 
1. - ^ 5 ^ 3 • • • 

/ = 1,2,... 

t = \,2,... 
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LCL, =ii,-1,^07 

UCL, = a r + ^ V ^ 

and signal the departure of process mean from its in-control value or speficied target p,Q 

if these Umits do not enclose [XQ. |J., and Q , in the above expressions are updated 

recursively using the following equations : 

A/ = Kt^t + ( l -^u) (Ar- i + 4-i) 

b, =A,2,(^,- | ir_i) + (l-A-2,)Vi 

^i , f -
^u 

^u+V-
^2,r -

^ 3 J 

R, + V 

Q , r - ^l ,f "^ ' ^2,1 - ^2,t - '^2,t^3,r' Q , f - ^ 2 , / " ^ 

- ^ 1 / ~ ^I , r -1 + 2C3^,_2 "^ ^ 2 , / - l + ^ l , f ' -^2,f ~ ^2 , f - l + '^2,t' ^3,C ~ ^2,t-\ + ^3 , f - l + ^3 , / -

w,= 
l f ^ 3 , f^2, . cp (p 

ri 1̂  
.0 I 

r r ~ 
•^ l . t - l '-"3,f-l 

.Q,f-1 ^2,t-lJ 

'1 0̂  

U L 

where )i,o=M.o> K-^^ ^^^ ^ ' the so-called discount factor, is chosen to yield 

specified ARL performance. CQ is the variance-covariance matrix for the prior 

distribution of the vector of process mean and trend parameter and is chosen to reflect 

the uncertainty of the prior estimates, [XQ and SQ. If V is unknown, it is suggested 

estimating it sequentially using a Bayesian procedure. Using a set of simulated data, the 

resuhing technique was shown to be more effective than the classical individual values 

chart and the 'Q' chart with known mean and unknown variance for detecting small 

process trends. Table 1 of the same paper also indicates that the transient 2-DLM 

control charts (with observational variance assumed known) tend to react more quickly 
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to smaU process trends than the steady state 2-DLM and the conventional EWMA 

charts. 

A control method based on adaptive Kalman filtering, coupled with a tracking 

signal feature, has also been proposed by Castillo et al.(1994) as an aUernative to the 'Q' 

chart for the case where both ju and CF are unknown. It was noted that besides being 

capable of 'picking up' sudden mean shifts, this control procedure can also be used to 

detect other out-of-control conditions such as linear process trends. In order to use this 

method, some prior estimates of p. (denoted by Jj,^) and a (denoted by a^) are 

required. In the short-run environment, reasonably accurate estimates may not be 

available. However, it was shown using simulation, that this control technique can 

provide better ARL performance than the 'Q' chart especially for early shifts of large 

sizes (more than 2 standard deviations) if the estimate of p. differs from the true value 

by less than 1.5 standard deviation and a is under or over-estimated by less than 50%. 

Again, since the RL distributions for both procedures after the shift are unknown, the 

resuhs may not reflect their actual relative performance correctly. 

The method involves the computation of the so-called smoothed error statistic 

and the smoothed mean absolute deviation, defined respectively as (Trigg and Leach 

(1967)) :-

Q(t)=ccelt) + {\-a)Q{t-\); Q[o) = 0 

A{t) = a\e, {t)\ + (1 - a)A{t -1); A(0) = 0.8^^ ^2I{2-X,) 

where the one-step-ahead forecast error is 

and the variance of the process is updated sequentially by 
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T^ \ 2 a',=a&l,+{l-a){x,-X,_,) 

For this control technique, a signal is triggered when 

>L 
A(r) 

the control limit, L being between 0 and 1. 

As the computational effort involved is substantial, implementation of the above 

control algorithms requires computerisation. No guidelines about the choice of the 

design parameters to achieve desired operating performance are available. 

All the methods discussed thus far either ignore or give inadequate consideration 

to the problem of process 'warm up', when the process is invariably unstable. On the 

other hand, the following approach, which determines the 'control' limits based on given 

specifications, appears to be capable of handUng this problem effectively. 

2.8 Deriving 'Control' Limits From Specifications 

Without the data necessary to set up conventional control charts, compounded by 

the problem of process 'warm up', it makes some sense to use product specifications to 

provide control information. A control technique that pre-determines its 'control' limits 

by reference only to the specifications rather than requiring an accumulation of data for 

computation of control Umits, is known as 'pre-control' (PC). 

P.C was first proposed by Shainin (1954) as an aUernative to various traditional 

on-line quality control methods and, in particular, as an improvement to X and R charts. 

It provides a simple and flexible tool for process monitoring as well as set-up approval, 

particularly in the low volume manufacturing environment. P.C is conceptually different 

from traditional charting techniques in that it focusses directly on preventing non-
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conforming units from occurring rather than on maintaining a process in a state of 

statistical control. The details of operation and the practical merits of this method are 

given in Chapter 6. 

A new type of control chart which originates from the idea of 'pre-control', 

named the 'Balance' chart (B.C) has been introduced by Thomas (1990). B.C can be used 

in several different modes. When B.C is used in 'pre-control' mode, it eliminates the 

need for estimating the process parameters but instead, derives 'pseudolimits' (±pL) from 

the specified tolerance. In B.C, successive measurements from the process on a certain 

quality characteristic are classified as -1 , 0 or 1 according to their values relative to ±pL 

and specification boundaries. Cumulative recording and plotting of these data about a 

target line give information both on the process 'accuracy' and 'precision'. A mathematical 

derivation of the control limits which define the maximum deviation of the plot from the 

target line, and the maximum number of positive and negative changes from the start of 

the run is provided in the same paper. In addition, several rules governing the maximum 

number of changes in a given run length were developed to indicate the possible presence 

of process troubles. With manual charting, however, too many supplementary rules wUl 

complicate the interpretation of the Balance chart. 

Besides data scoring, B.C has the unique feature that the operating rules and 

control limits are common to every application of the chart. Thus, it has great potential 

for computerisation. 

Like Pre-Control, this technique does not require exact measurements, but only 

needs to know into which 'band' the measurements faU. In order to justify his 

recommendation, Thomas also provides comparison of the Balance chart and the X 
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chart operating characteristics for a mean shift of 1 standard deviation, along with some 

Ulustrative examples which clearly show that B.C possesses higher sensitivity. 

The last two charting methods fallmg m this category were presented by Bayer 

(1957) (see also Sealy (1954)) and MaxweU (1953). Both methods are essentially the 

same, as they are adaptations of the Nominal X & R charts with limits derived on the 

assumption that the process is just capable of meeting the specification. The only 

difference between them is that the latter expresses the coded measurements and 

'control' limits in terms of'ceUs'. 

Representing the specification band by 10 ceUs, the resulting 'ceU' chart has 

constant control limits regardless of the specification or the actual process capability, 

provided the sample size remains unchanged. Thus, it is possible to have just one chart 

per machine on which all parts having possibly different specifications processed can be 

controlled. However, these methods of control charting cannot handle one-sided 

specification situations. 

A comparison between these adjusted X &, R charts and 'pre-control', based on 

certain statistical grounds is presented in Chapter 6. The resuUs of the comparison 

indicate that the former are superior in many circumstances. 

2.9 Adjusting Set-up Continuously Based On Process Output 

As a substitute for conventional SPC for low volume production, an entirely 

different approach was proposed in Lill, Chu and Chung (1991), 'Statistical Setup 

Adjustment' (SSA). This represents a form of'feedback control' where the deviation from 

the desired dimension or error of the measured output characteristic, is used to calculate 

the best possible adjustment to be made in a machine set-up, starting with the first piece 
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produced. As such, it is not a set-up approval method but one which provides an 

algorithm as to how much adjustment should be made as each of the successive 

observations arises. Methods are also presented to minimize the number of adjustments, 

to avoid early false signals and to anticipate the effects of a known trend such as tool 

wear. 

As discussed earlier, in the presence of significant set-up variation, Robinson 

(1991) and Bothe (1990b) proposed separate monitoring of the set-up processes and 

their subsequent runs. If the set-up varies from the desired setting but is within 

predictable limits, no machine adjustment is necessary. This is due to the fact that such 

corrective action is not only uneconomical, but would probably result in a greater 

percentage of defects. SSA differs from this method in that it does not accept the risk of 

inaccurate set-up as a consequence of natural set-up variation which inevitably exists, but 

is constantly 'forcing' the set-up value to the desired dimension. This approach is, 

therefore, in line with Taguchi's idea of quality loss, i.e emphasis is placed on the 

uniformity of product quality characteristic about its target value rather than on mere 

conformance to specifications. 

In SSA, both the machine variations and set-up errors are modeUed with 

conceptual normal populations. From available information and experience, a 'maximum 

likelihood' estimator of the set-up error can be obtained and hence the correct adjustment 

derived. However, determination of the standard deviation of set-up variability based on 

subjective judgement, as suggested, leads to doubts about its reUability. In fact, it is 

possible to obtain such an estimate directly from the avaUable data. 

In this work, the implicit assumption is made that set-up is the critical or 

dominant 'system' that largely determines quality of the output. In other words, defects 
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are the direct result of the accuracy of tools or precision of adjustment of the set-up. 

Therefore, theoretically, SSA does not provide protection against mean shifts or increase 

in process spread due to some special causes during the production run. 

If set-up is the dominant cause system, this method works provided the effects of 

adjustments are manifested instantaneously and in full. The realization of this, however, 

requires dynamic machine control with automatic inspection feedback and measurable 

means of adjustment. 

2.10 Monitoring Process Input Parameters 

By monitoring the process output, traditional SPC and the approaches discussed 

above, at best, indicate only when production is not free of troubles. In many instances, 

when an out-of-control condition is indicated, numerous corrective measures are possible 

and the correct course of action is not always obvious. As such, delay in preventing 

waste is inevitable. For smaU lot production, this can be regarded as the same 

shortcoming as 'post mortem' inspection ! 

In view of this Umitation, recent research into the area of applying SPC in low 

volume manufacturing environments has given up trying to monitor the process output 

but instead has concentrated on the process inputs (Foster (1988) and Thompson 

(1989)). Foster presented this idea for controlling highly technical or time consuming 

processes where corrective measures for unacceptable work are often uncertain or even 

unknown. The implementation strategy for the suggested approach involves the creation 

of a 'true' process by compiUng a 'Master Process Requirements List' from all 

specifications used for a particular process, selection of the vital few critical input 

parameters to be monitored and process capability evaluation. 

40 



2.11 Economically Optimal Control Procedures 

While, traditionally, the development of SPC techniques has been mainly 

concerned with statistical efficiency, the ultimate objective of any process control 

strategy is cost reduction as a result of reduced scrap, rework and rejects, improved 

product quality and increased productivity. This objective may be accomplished by 

having an economically optimum policy governing the process monitoring, adjustment 

and maintenance activities. In the light of this, over the last four decades, a considerable 

amount of study has been devoted to the design of process control methods with respect 

to economic criteria. Various process models and cost structures have been proposed 

and the corresponding optimal control strategies derived. However, much of the 

theoretical work on incorporating cost considerations into the design of process control 

procedures has been undertaken implicitly in the context of long production runs. 

The economic decision models currently available for on-Une quality control can 

be broadly classified into two types. These are economic-process-control models and 

economic models for traditional SPC. In their paper, Adams and Woodall (1989) 

distinguished between these two types and highlighted some simUarities and differences 

between them. A thorough review of the literature on the latter was provided by 

Montgomery (1980). Ho and Case (1994) supplemented this work by presenting more 

detaUed and complete discussions of different models and aspects of economic design for 

traditional SPC, and by summarizing the pubUshed work on economic designs of control 

charts covering the period from 1981 to 1991. For typical examples of the former, see 

Box and Jenkins (1963), Box, Jenkins and MacGregor (1974), Bather (1963) and 

Taguchi(1981). 
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Crowder (1992) considered a short run economic-process-control model in 

which observations on a certain measured quality characteristic of the product are 

assumed to be generated by an integrated moving average (IMA(1,1)) process and the 

costs involved consist of the usual quadratic loss of process mean being off-target and 

the fixed cost for each adjustment. He also made the assumptions that any adjustment 

made to the process has a known effect (i.e no adjustment error) and that an adjustment 

changes the process mean instantaneously or before the next sample measurement is 

taken (i.e no process dynamics or inertia). Sampling cost and sampling interval were not 

formally considered. Furthermore, deterministic drift and step or cyclical changes were 

not taken into consideration. 

The proposed model seeks to find the sequence of adjustments, a /5 , which 

minimizes the total expected loss, L{n), incurred throughout the production run as given 

by the following expression :-

L{n) = ^j Z (̂ i-"' + c,(5(a,_,)) \ 

where c^ is the cost parameter associated with any squared deviation of process mean, 

//, from target (assumed, without loss of generality, to be 0), c^ represents the cost of 

adjustment irrespective of magnitude, n is the terminating sample number and 

6{a)=\ ifa^O 
= 0 ifa = 0 

Using dynamic programming or the backwards induction technique, the author 

derived an algorithm which enables the optimal control or adjustment strategy (i.e the 

optimal sequence of adjustments, a/5) to be obtained numerically. An approximation 

formula was also given for the case where the total number of inspections, « < 10 and 
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the cost ratio, c = - ^ > 200. In general, his results can be stated as follows. The resulting 
^1 

decision procedure as to when and how much adjustment should be made is based on the 

Bayes (or Posterior) estimate of the current process mean. It was also found that the 

'control' or adjustment Umits are changing with time and becoming wider towards the end 

of a production run, in contrast to the fixed limits proposed by some for the asymptotic 

case. This solution, he stressed, is consistent with the philosophy of traditional SPC in 

that it calls for adjustments only when the process mean is substantially off-target. In 

addition, it is found to be intuitively reasonable as the 'widening' action limits will 

decrease the UkeUhood of performing economically unjustifiable adjustments or 

maintenance near the end of a production run. In the same paper, Crowder 

demonstrated, by an example, that using the infinite-run (fixed) limits for the short-run 

problem with relatively large adjustment costs can significantly increase the total 

expected cost. 

Woodward and Naylor (1993) also presented an approach to short run SPC 

which takes economic factors into consideration. In this work, a normal linear model is 

assumed in which three components of variation are involved. These are the set-up, 

adjustment (or resetting) and inherent process variabilities. The model also implies that 

there is no delay for any adjustment to take effect, no occurrence of parameter changes 

within a machine set-up or production run and that the process standard deviation is 

constant irrespective of product types. In comparison to that of Crowder, these authors 

proposed a more reaUstic cost structure which includes the foUowing components : 

• inspection cost 

• rework cost 
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• scrapping cost 

• cost associated with adjustment 

• quadratic loss of being off-target 

They considered a sequential scheme with three possible control actions at each 

decision point and attempted to derive a control rule using Bayesian methods such that 

the decision made at any stage of the sequential procedure minimizes the expected loss 

over aU possible fiiture decisions based on a given cost function. However, the solution 

of this optimal control problem is not straightforward and requires the use of techniques 

such as backwards induction. As they stated, in practice, it is impossible to find an 

optimal rule for this control plan because of the complexity introduced by the three-way 

decision structure. In view of this, a simplification in which a control decision is only 

made at two stages was considered. Even with this simplified scheme, determination of 

the decision boundaries remains compUcated and requires a great deal of numerical 

computation. 

For both the proposed economic process control models, some prior knowledge 

of the process parameters such as the variance terms or availability of some relevant 

historical data for their estimation is assumed. Woodward et al. described a method to 

quantify the historical information pertinent to their model. In practice, this could be a 

problem because historical data for this purpose is rarely sufficient in the short-run 

environment. 

Another practical problem with these SPC approaches is the difficulty in 

specifying the cost parameters. This is due to the fact that some of the cost factors are 

intangible. For example, it is difficult to figure out the value of the cost parameters 

associated whh the quadratic loss of being off-target and the loss due to process 
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downtime (as a consequence of process adjustment), even by someone who has 

substantial knowledge of production and of the cost involved. As a first step to the 

implementation of these economic decision models, it is advisable to carry out a 

sensitivity analysis of the models to identify the critical parameters and subsequently 

exercise greater caution in their determination. However, this is a time-consuming 

exercise. 
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CHAPTER 3 

MEAN CONTROL FOR MULTIVARIATE 

NORMAL PROCESSES i 

3.1 Introduction 

The majority of the statistical process control (SPC) techniques proposed to date 

for controlling the mean of a multivariate process are based on Hotelling's (1947) x^ or 

7^-type statistic. Other multivariate control procedures, including the use of principal 

components and multivariate cusum (MCUSUM) techniques, were reviewed by Jackson 

(1991). A multivariate version of the exponentially weighted moving average chart, 

referred to as the MEWMA chart, has also been presented by Lowry, Woodall, Champ 

and Rigdon (1992). Apart from these, some techniques that are designed to provide 

protection against changes in the process covariance matrix have been presented, for 

example, by Montgomery et al. (1972) and Alt and Bedewi (1986). In recent years, some 

attempts have also been made to develop control techniques which can both detect 

process irregularities and identify the actual set of out-of-control variables, taking into 

account the correlational structure of the quality characteristics (see for eg., 

Doganaksoy, Faltin and Tucker (1991), Hawkins (1993a) and Hayter and Tsui (1994)). 

All of this work, however, assumes that the process mean, ji and the process covariance 

matrix, Y, are known or that they can be reliably estimated prior to fiiU scale production. 

Thus, these techniques do not readily lend themselves to applications in the short-run or 

^ Part of the material from this chapter is based on the paper entitled 'Mean control for multivariate processes with 
specific reference to short runs'. Proceedings of the International Conference on Statistical Methods and 
Statistical Computing for Quality and Productivity Improvement, August 1995, Seoul, Korea. 
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low-volume manufacturing environment where data for estimating the process 

parameters are invariably unavailable. 

The main thrust of this chapter is to present some 'self-starting' and unified 

procedures, for monitoring the stability, and in particular, the mean level of a multivariate 

normal process where prior estimates of the process parameters are not available, such as 

frequently occurs in short-run, low-volume and multi-product manufacturing 

environments. The proposed techniques also facilitate the control of long-run processes 

at an earlier stage. For completeness, control procedures are also given for the cases 

where \i, E or both are assumed known in advance of the production runs. In addition, 

two EWMA procedures specifically designed for detecting sustained mean shifts and 

linear trends are considered. These are shown to be superior to some competing 

procedures. The total discourse of this chapter is in the context of discrete items 

manufacture. 

3.2 Methodological Basis 

One of the desirable properties for any SPC procedure is that the in-control 

behaviour is predictable. This is the case if successive values of the control statistic are 

independent realizations of a known constant distribution or at least approximately so 

under in-control conditions. Another desirable property is the capacity to use additional 

run rules with the associated control chart to help identify any non-random patterns 

otherwise not apparent. The control statistics presented in the next section possess these 

properties. As the arguments involved in establishing the distributional properties of 

these control statistics are similar, this section considers only a particular case, namely. 
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that based on individual observations where the process mean vector and variance-

covariance matrix are unknown prior to production. 

Let Xj,X2,...,X^ be independent/7-variate random observation vectors which 

have the same covariance structure and are distributed as, 

X,. ~A^^(^i^.,2:), j = \,2,...,k 

where Z denotes the unknown non-singular variance-covariance matrix. Next, define 

V, = X,. - X, 7 = 1,2,...,it 

where 
^ ; = 1 

We wish to test the hypothesis, 

Ho: |J . i= | i2= "̂M-zk = M'(say) vs. H^ : not all |i^'s are equal 

Under Hg and the assumption of a constant process variance-covariance matrix. 

=K V/f-AfipCuvSv) 

where M^V - ^ykpxl Z v ^ Z O C , 

(8> denotes the {left) Kronecker Product (GraybiU (1983), p.216) and 

Ck-\ _ J. 
k k 

k k 

c = 

V k 

k 

1 
k 

k-\ 
k J kxk 

Some linear combinations of the pxl component vectors Vi, V2, , V^ that are 

uncorrected are now obtained using the standard principal components approach. 

Consider the following linear combinations ; 
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Y i = « n V i + a j 2 V 2 + +ai^V^ 

Y2 =a2iVi +a22V2+ +fl2;kV^ 

^k = « H V I +a^2V2+ +«^^V^ 

In matrix notation, these are represented by the following equation 

Y = r V = (l(8)A)V 

where I isa. px p identity matrix and 

(3.1) 

A = 

«11 «12 

^^21 ^^22 

... a Ik 

V«H ^kkJ kk^ kxk 

Thus, the variance-covariance matrix of Y = (Yj^ Y v;) ' i IS 

Z Y = r S v r ' ^ 

= Z<8)ACA .̂ 
(3.2) 

To produce vectors Yj, Yj, ... ,Y^ which are uncorrelated, A in (3.2) is chosen to 

diagonalize the symmetric matrix C. One choice for A is 

A = 

1 
4k 

1 
V2 
1 

V6 
1 

V4(4-l) 

1 
^ 
-1 
V2 
1 

V6 
1 

N/4(4-1) 

0 

-2 
V6 
1 

V4(4-l) 

. . . 

. . . 

0 
-3 

N/4(4-1) 
0 

4k 
0 

0 

0 

\ylk{k-l) ^jk(Jc-\)J 

where the rows of the matrix are the normalized eigenvectors of C. Substituting A into 

(3.1) resuhs in the following linear combinations : 

49 



Yi=0, 
Y2-;^(Vi-V2) = ;^(x,-X2) 

Y3=i(Vi+V2-2V3) = -^(X,+X2-2X3) 

k ^k(k-l) 

k-l 

2 V , - ( ^ - l ) V , 
7=1 

^k(k-l) 

k-l 

2:X,-(A:-1)X, 
7=1 

Note that the transformation resuUs in a new set of uncorrelated random vectors 

Y2, Y3, , Y^, one less than the set of original random vectors. This is due to the fact 

that the transformation is subject to a constraint, namely, the sum of the component 

vectors, Vi,V2, ,V^ is equal to a zero vector leading to 

rank(Ty)- kp- p = k{p - l) . It is also clear from (3.2) that Zy is a 'quasi-diagonal' 

matrix with diagonal submatrices Z except for the first one which is a zero matrix. 

Since the resulting transformed vectors Y2, Y3, , Y^ are linear combinations 

of multivariate normal vectors and Z y is a quasi-diagonal matrix as mentioned above, 

they are mutually independent with common variance-covariance matrix Z . As the ^ h 

observation vector X^, the sample mean vector X^_, and variance-covariance matrix 

1 *- i _ _ 
Ŝ _i = ^ (X; - X^_i )(X, - X^_i )^ of the first k-\ observations are independent. 

k-2 i=\ 

A-Y^(Sfc-i) Ŷ  

1 

k{k-\) 

k-\ 

Y^Xj-{k-\)X, 
7=1 

k-\ 

J^X^-{k-\)X, 
7=1 

~ \T')\^k ~ ^k-\) ^k-iy^k ~ ^k-\) k = p + 2, 

are easily seen to be distributed as (Anderson (1984), p. 163) 

A, 
{k-2)p 

{k-\-p) ^P\k-\-p 
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where F ,̂î 2 denotes the F-distribution with vl and v2 degrees of freedom. Before 

proceeding to show that successive A/^'s are statistically independent, a number of 

remarks wUl be made. Note that ^^ is the familiar T^-type statistic that can be used to 

check the consistency of X^ as coming from the same normal distribution as the sample 

of k-\ preceding observations. This statistic possesses certain optimal properties, as 

reported in Anderson (1984, pp.181). Of aU tests whose power depend on 

k — l T _i 
(|i^ -p.) Z~ {[i-ic -\^), the test based on Aj^ can be shown to be uniformly most 

powerful for testing the equality of mean vectors of the two normal populations from 

which X;. and the sample of k-l preceding observations are drawn, when the unknown 

variance-covariance matrix Z is assumed to be constant (see Lehmann (1959)). It can 

also be shown, using a theorem of Stein (1956), that this test is admissible i.e, there 

exists no other test which is better or uniformly more powerful. Besides, note that the 

denominator degree of freedom of theF-distribution associated with Aj^ varies according 

to k. If the values of the A/^'s are plotted in different scales, they are likely to give a 

misleading visual impression about the status of the process. Thus, it is advantageous to 

transform the A,^'s into a sequence of independent and identically distributed variables, 

preferably having standard normal distribution, because any anomalous process 

behaviour will then show up more clearly in the resuhing control chart. This can also be 

assisted by means of additional run rules. 

To estabUsh mutual independence of successive Aj^'s, it is first proved that they 

are pairwise independent. Clearly, 

Y,~Ar^(0,Z), Y,,i~A^^(0,Z), {k-2)S,_,~Wp{k-2,l) 
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are mutually independent. The notation Wp(v,'E) here denotes the p-dimensional 

Wishart distribution with v degrees of freedom and parameter Z • Let D be a non-

singular matrix such that DSD = I and define 

Y ; = DY, , Yl, = DY,,i , S:_, = DS,_iD^ 

Thus, 

Y ; ~Np(0,1), Yl, ~Np(0,1), {k-2)S;_i ~Wp(k~2,1) 

and their independence is preserved. Due to the invariance property of the 

transformation. 

-^k - Y^ S^_jY^ - Y^ \^k-i) Y^ , 

A - Y ' T S"^Y - Y * ' ^ / ' S * W * 

^k+l - '-k+l'^k '-k+l - ^k+\\^k) */fc+l 

Noting that (A:-2)S^_i = (A: -1)8^ - Y^Y^ and using an identity for matrix inverses 

(Press(1982), Binomial Inverse Theorem, p.23), Aj^ may be expressed as foUows : 

A -fc^ •r(s:)"'Y; 
r(s;)"'Y; 

+ 
(k-l)-Yl\slYYl 

As Y^*'̂ (s;^r'Y^* is independent of S; (Srivastava and Khatri (1979), Theorem 3.6.6, 

p.94) and Yj^, , it is also independent of any fiinction of S]̂  and Ŷ *̂ j . Thus, 

Y^^IS^ j Y^ is independent of A,^^^ = Y^JJS^ j Y +̂j and it foUows immediately that 

A^ (a fiinction of Y^^fs^j Y^) is independent of ^^^,. Similariy, it can be shown that 

any pair of A^ 's are pairwise independent. Note that. 
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^k+2 •̂ yt+2 ~^Y^+2J^(« v^jt+Y^^jY^^iJ Y^^ 

and since Y^^(s]^) Yl is independent of S^ , Ŷ '̂ , and Y*̂ ^ ' it is clear that A^ is also 

independent of ^̂ .̂ 2 • ^Y induction, A^^^ and A^^„ {m^n)aiQ independent. 

Using the result of pairwise independence, it is now possible to proceed to show 

that they are mutually independent. As Y^^lsH Y^, S^, Yĵ , and Y*̂ ^ are mutually 

independent, their joint probability density function (p.d.f) is 

/(Y;sr'Y;,S;, Y;,„ Y;,2) = g(Yrsr'Y,J/Z(S:)^(Y,;,)Z(Y;,2) 

where g,h,q and Z represent their marginal probability density flinctions respectively. 

The joint moment generating fimction of 

A=Y;X-IY;=/I(Y;X"Y;) 

^k+\ - Yyfc+iS^ Y^+1 = j2\^ky^k+\) 

A — V*^ S* V * — /" l^ l* V * V * \ 
^k+2 - ^k+2'^k+\ *yfc+2 - J 3\^k^ *A:+1' *A:+2J 

where / ^ / j and f^ are some fuctions of the indicated arguments, is given by 

^4 .4 . . ^ . . . (̂ 1 > ̂ 2, ̂ 3) = j .''̂ ^^^^^-'̂ ^34- 2 (A, A.X, A.2 )dA,dA,,,M,,, 
all possible 

(4.-4^+1,4+2) 

where Q(A,^,A,^^^,A,^^^ denotes the joint p.d.f of Aj^, A,^^^ and..4̂ +2- Integrating over 

the original space gives. 
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W4,.<,.,./I,.,('l.'2>'3) 

^ Je'''('''"'':''''>'-^>(^*-''>-'^''^'(''"''^'"-''")/(Yrs:-'Y;,s;,Y;,Y;,,)<<,<.,<s; 
all possible 

l^,4.^sr^;y.Msi.:..)Msir..,.r..,)^^^^^^^^^ 
all possible 

[-rkyUiyk^z-^k] 

As Yj^^Sl 'Y^ and Ŝ  are independent and the region or space for two independent 

variables over which the joint density is not zero must factor (see Lindgren (1973), p.96 

and Hogg and Craig (1971), p.78), from the above, 

^4A+lA+2(^l'^2,^3) 

= j/'^'("^*'*^"'^^*'g(Yrs;-Y;)^(YrsrY;) 
all possible 

all possible 

= ^AM)-^A,^uAkJhJ3) 

= ^A, i.h )• ^ 4 ^ , ih )• ̂ 4 , 2 (̂ 3 ) *•• \+\ ^"dA,^^2 ""-^ ̂ dependent 

where M^ , M^ and M^^^ are the moment generating flinctions of A^,Af^^^ and 

A^^^ respectively. Hence, Ai^,A^^^ and A^^._ are mutually independent. The proof can be 

extended to any set of ^^'5 in a similar manner. 

3.3 Monitoring the Mean of Multivariate Normal Processes 

Like the 'Q' charting approach previously proposed by Quesenberry (1991) for 

controlling univariate normal processes, the techniques presented in this paper involve 

the use of the probability integral transformation of some (scaled) quadratic forms in 

order to produce sequences of independent or approximately independent standard 
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normal variables. These procedures essentially enable charting to commence v^th the 

first units or samples of production whether or not prior knowledge of the process 

parameters is available. For the case where no relevant data is available prior to a 

production run, the process parameters |i and Z are 'estimated' and 'updated' 

sequentially from the current data stream. These dynamic estimates, together with the 

next observation or subgroup are in turn used to determine whether the process is stable. 

In the following sub-sections, control statistics for use with individual 

observations and subgroup data are given for the cases when both, either or neither of 

the process parameters î and Z are assumed known in advance of production. 

3.3.1 Control Charts Based on Individual Measurements 

Let Xi,X2,... be the vectors of measurements on p quality characteristics for 

products produced in time sequence. Assume that these observation vectors are 

independently and identically distributed having been collected from a /?-variate normal 

Np[\i,'E) process. Further, let X .̂, S^ and S^^ denote respectively the mean vector, 

the usual and the 'mean-dependent' covariance matrices of the first k observations as 

defined below : 

« 1=1 

i=l 

, k 

These values can be updated sequentially using the following recursive formulae 
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X,=j[{k-l)X,_,+X,] k = 2,3,. 

k ~J7~7\^k-i'^T\^k '^k-i){^k~^k-i) k-3,A,. 

k-l 
S ^ , . - i + | ( X , - n ) ( X , - n f ^ = 2,3, S ,̂̂  ^ ^'^-^ k 

Additionally, the following notation will be used ;-

0(«) : distribution function of a standard normal variable 

0~^(») : inverse of the standard normal distribution fiinction 

xl{*) '• distribution function of a chi-square variable with v degrees of freedom 

F^i v2(*) • distribution function of an F variable with vl numerator degrees of 

freedom and v2 denominator degrees of freedom. 

The appropriate control statistics are now presented as follows: 

Case (I) : Both |i and Z known 

Z,=^-\xl(T,)] ^ = 1,2, 

where T; = (X, - ti)""Z'^X, - n) (3.3) 

Case ( n ) : p, unknown, Z known 

Z,=0-ypiT,)] k = 2,3, 

where T, = ( ^ ) ( x , - X , _ i ) ' z - ^ ( x , -X,_,) (3.4) 
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Case (nn : \i known, Z unknown 

Z, = cD-^[F,,,_/r,)] k = p + l. 

where T, = | ^ ( X , - n ) " s - ; , _ i ( X , - n ) (3.5) 

Case (IV): Both p. and Z unknown 

Zk=^~'[Fp,k-i-p(T,)] k^p + 2, 

where T, = ( i ^ ^ ^ ) ( x , - X , _ , ) ' s ^ ! , ( x , - X,_,) (3.6) 

As shown above, for case (I), a value of Z^ corresponds to X^ for aU values of 

A: = 1,2,.... However, no value of Z^ corresponding to the first observation Xj is 

calculated for case (II). This is due to the fact that the unknown process mean vector \x 

has to be estimated from Xj before its constancy can be subsequently monitored. For 

case (III), the monitoring procedure begins after p +1 observations. When the process 

parameters are unknown, control is initiated at the (p + 2)th observation. In this case, no 

value is plotted prior to the (p + 2)th observation because the sample covariance matrix 

Ŝ _j , used in formula (3.6), is not positive definite and hence is not invertible for k less 

than p + 2. For the latter two cases, ifp is small relative to the volume of production, the 

effect of not charting the first few observations on the performance of the procedures is 

negligible. Ifp is relatively large, it is recommended that the quality characteristics be 

partitioned into smaUer groups and simUar procedures appUed to them so that monitoring 

can begin sooner. The overall false alarm rate from these muhiple charts can be adjusted 

using Bonferroni inequalities. Note that, there will be situations where historical data for 
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estimating the process parameters are available but insufficient for us to assume that the 

in-control values of the process parameters, particularly the covariance matrix, are 

essentially known. Under these circumstances, such data may be used to provide more 

stable estimators and to initiate process monitoring sooner, as considered by 

Quesenberry(1991a) for the univariate setting. 

It is clear from the preceding section, that {Z^} for each case is a sequence of 

independently and identically distributed (i.i.d) normal variables with mean 0 and 

standard deviation 1 under the stable in-control normality assumption. The distributional 

property obtained for case (IV) is the most pertinent resuU for short run SPC. 

As the plot statistics for all cases are sequences of i.i.d. N(p, l) variables, the 

resulting control charts can be constructed using the same scale and with the common 

Shewhart control Umits ±3. In addition, supplementary run rules can be employed to 

reveal any assignable causes hidden in the point patterns of the charts. Although the 

argument statistics 7^' s can be plotted instead of the transformed variables Z^' s, this 

practice is not recommended because for those cases other than case (I), the use of 7^'5 

involves the added complexity of varying control Umits. The use of these procedures is 

illustrated later. 

3.3.2 Control Charts Based on Subgroup Data 

In practice, the use of subgroup data is often preferable to individual 

measurements even in situations where only a limited amount of data are available. This 

is due to the fact that the resulting control charts are more sensitive to substantial shifts 

in the process average and that the subgroup mean (vector) is less affected by departure 

from the underlying normality assumption, by virtue of the central limit theorem. 
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Adaptation of the above formulae yields appropriate control statistics for 

monitoring the stability of the process mean vector based on subgroup data. Discussion 

wiU be restricted to the case of constant subgroup size. Let X,̂ , n and k denote 

respectively theyth observation vector of the /th subgroup, the common subgroup size 

and the subgroup number, and define the following quantities : 

\ " 

" 7=1 

j = i 

7=1 

k n 

«?'=i^ZZK-*--^y 
;=1 7=1 

(,_,)s<;-.>+l|;(x,-^)(x,-j.)^ 
7=1 

/=1 

where S[̂ °̂  = ̂ ^plud - ^ • ^^^ ^^^^ technique is now appUed to transform the sample 

mean vectors X ,̂)' s to standard normal variables for each of the cases considered above 

for individual measurements. 

Case (I): Both p, and Z known 

Z,=0-\xl{T,)] k = l,2,. 
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where T, = n[x^,^ - M)"I.-\x^k) ' n) (3.7) 

Case (ID : \x. unknown, Z known 

Zk=^-Yp{T,)] k = 2X 

where T,=[^){^^,^-%,_,^\-'^^,^-%_^ (3.8) 

Case (DT) : p. known, Z unknown 

Two alternative techniques which employ different process covariance matrix 

estimates will be considered for this case. The first one incorporates |LI into its 'running' 

estimate of Z whereas the other ignores knowledge of p and is based on the pooled 

estimate Ŝ '2,ed. It wiU be seen in section 3.5 that the latter gives better run length 

performance. 

(a) Uses p. in estimation of Z 

Zi=4>-'[iV,„(j_,>.^,(rj)] i = 2,3, r,>p 

where T, = ( ^^g fe f )(x<„ - n ) \ s t ' ^ ) - \ \ , , -^) (3.9) 

(b) Uses Pooled Sample Covariance Matrix 

Z,=<I.-'[/v„„_,^,„(?;)] k = \.2, ,n>p + \ 

where T, = [^lig=S^](x<„ - ^.)^(s« ) - ( x , „ -^) (3.10) 
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Case (TV) : Both p and Z unknown 

Zk=^~'[FpMn-iyp.i(T,)] k = 2,3, , « > f + l 

where T, = ( " ^ " ^ y r r " 1 ( ^ ( ^ ) -^(^- ' ) ) ' (^^^-)"(^(^) '^i^-^) ^'''^ 

Under the assumption that the X,̂  's are independent observation vectors obtained 

from a common process with a 7Vp(p,Z) distribution, the control statistics given by 

(3.7), (3.8) and (3.9) are sequences of i.i.d. N(0, l) variables (see section 3.2). For 

those given by (3.10) and (3.11), successive plotted values arise from a standard normal 

distribution but they are correlated due to the use of the pooled sample covariance 

matrix, S^̂ ,̂ .̂ Sequences of independently distributed variables can be obtained for these 

latter cases by replacing the Ŝ '̂ ,̂̂ ^ by the sample covariance matrix of the current 

subgroup, S(^). This is not considered, however, because it is found that the 

performances of the resulting charts are poor, even when some addUional run rules are 

used. Furthermore, ignoring the issue of dependence among the Z .̂'5 of (3.10) and 

(3.11) has no significant effect on the false signal rate. In particular, the probability of 

getting a false signal from any one of the first 50 subgroups using both techniques was 

simulated for various combinations ofp and n based on 5,000 runs when either 3-sigma 

limits or only the upper 99.73th probabUity limit is used. The results, which are tabulated 

in Table 3.1, appear to agree well with the nominal value of 1 - 0.9973^° = 0.1264. The 

reason the above criterion is chosen as a measure of in-control performance instead of 

the usual average run length is that the control statistics given by (3.10) and (3.11) are 

primarily concerned with short production run situations in which the total number of 
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samples rarely exceeds 50. Furthermore, note that for case (IV), h is possible for each 

individual sample covariance matrix to be of less than fuU rank provided the (common) 

sample size is not less than y +1 . This is because for the pooled covariance matrix, 

^^pliied to be distributed as a positive definite scaled Wishart matrix such that F̂  is well 

defined, the total degrees of freedom for the k possibly rank deficient sample covariance 

matrices that form S^^^^^, k{n-1) must be at leastp, or equivalently, n>j + l (see 

Sullivan et al.(1995)). For this condition to hold for aU k, starting from k = 2, the 

minimum sample size is thus « = y +1 where [•] denotes the greatest integer function. 

A remark should be made about the computation of the argument statistics for 

(3.3) to (3.11) above which involve evaluation of the inverse of a matrix. In fact, each of 

these arguments can be expressed as a quotient of two determinants, thus eUminating the 

need for inverting either the known process covariance matix or some estimates of it (see 

for example, Morrison (1976), p. 134). For instance, the argument statistic of (3.6) has 

the following alternative expression 

cj (k-lXk-1-p) (^ V V Y 
^k-l + kp(k-2) \^k ^k-l)\^k 

k 1 

-x«)' 
J _ _ 1 

Evaluating an expression of this form is much more convenient than that of its original 

form especially when the number of quality characteristics,/? is large. 

For some general guidelines on using the above control charting approach, 

readers are referred to the article by Quesenberry (1991a) from which the ideas of this 

present work originate. 
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TABLE 3.1. Probability of a False Signal from Any One of the First 50 Subgroups. 

Control Statistic 

n (3.10) (3.11) 

2 3 0.1340 * 0.1196 
(0.1242) t (0.1266) 

4 0.1240 0.1270 
(0.1172) (0.1284) 

5 0.1208 0.1220 
(0.1176) (0.1152) 

3 4 0.1200 0.1160 
(0.1186) (0.1146) 

5 0.1224 0.1194 
(0.1288) (0.1168) 

6 0.1284 0.1202 
(0.1186) (0.1248) 

5 6 0.1190 0.1210 
(0.1256) (0.1250) 

7 0.1222 0.1230 
(0.1260) (0.1210) 

8 0.1192 0.1218 
(0.1220) (0.1114) 

* Unbracketed values correspond to the use of upper control limit only with a = 0.0027 . 
t Bracketed values correspond to the use of two-sided 3-sigma control limits. 
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3.4 Examples 

In this section, use of the proposed techniques are illustrated by some numerical 

examples based on simulated data as weU as using data from a previously published 

article. The examples presented here are not mtended to cover all possible situations, 

however, they provide some insight into the behaviour of the proposed techniques under 

various circumstances. 

Example 3.4.1 

The first illustration uses the formulae for individual measurements. 30 

observations have been generated from a bivariate normal distribution with the following 

parameters 

AO'̂  ( I 1.275̂  
H U5; 

z= 
U.275 2.25J 

These data are shown in Table 3.2, along with the computed values of the control 

statistics (3.3) to (3.6). The corresponding control charts have also been constructed as 

shown in Figures 3.1(a) to 3.1(d). It should be noted that the use of 3-cr control limits in 

this and subsequent examples is merely for the purpose of Ulustration. In practice, it may 

be preferable to use nartower control limits or only the upper control limit in line with 

the traditional Hotelling T^ charting approach. 

Note that for the cases with some unknown parameters, the corresponding 

statistics were computed using the values of p and Z as given above. Note also that 

since p = 2, calculations of the plotted values of the control statistics (3.4), (3.5) and 

(3.6) have been started with the 2nd, 3rd and 4th observations respectively. As shown in 

the figures, none of the plotted points exceed the control limits for each of the control 
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charts. This is as expected because the data for this example can be regarded as having 

been coUected from an in-control process. It is also interesting to note that after the first 

few observations, the movement of the charted points are very similar for aU cases. This 

phenomenon is typical for in-control multivariate normal processes. 

TABLE 3.2. Simulated Data and Values of The Control Statistics based on 
Individual Measurements for Example 3.4.1 

Obs. No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Variable 1 

10.39 
9.02 
9.28 
8.67 
9.22 
8.82 
9.07 

11.70 
10.92 
9.64 
8.31 
9.56 

10.39 
10.11 
9.53 

11.15 
8.03 
9.68 
9.57 
9.05 

12.40 
10.17 
8.41 

10.31 
9.66 
9.50 

10.91 
10.59 
9.71 
9.48 

Variable 2 

15.70 
14.19 
13.71 
14.04 
14.99 
11.54 
14.14 
17.31 
16.35 
14.84 
12.85 
14.23 
14.74 
15.84 
13.79 
16.77 
11.89 
14.04 
14.11 
13.58 
18.15 
15.17 
13.00 
16.11 
13.57 
13.78 
17.65 
16.43 
14.05 
13.85 

(3.3) 

-1.27 
-0.08 
-0.50 
0.61 
0.40 
1.98 

-0.24 
0.73 

-0.35 
-1.15 
0.70 

-1.16 
-0.22 
-0.43 
-0.42 
0.05 
1.24 

-0.67 
-0.95 
-0.29 
1.59 

-2.14 
0.58 

-0.33 
0.19 

-0.44 
1.22 

-0.20 
-0.62 
-0.60 

Cnntrnl Statistir 

(3.4) 

NA 
-0.28 
-0.62 
-0.19 
-0.55 
1.99 

-1.39 
1.50 
0.22 

-1.80 
0.18 

-1.55 
0.15 

-0.30 
-0.57 
0.46 
0.88 

-0.86 
-1.48 
-0.98 
1.98 

-1.37 
0.22 

-0.07 
0.05 

-0.80 
1.44 
0.03 

-0.73 
-0.87 

(3.5) 

NA 
NA 
0.07 
0.52 
0.46 
2.09 

-0.37 
0.47 

-0.60 
-1.21 
0.45 

-1.29 
-0.14 
-0.36 
-0.39 
0.01 
1.05 

-0.62 
-1.00 
-0.40 
1.37 

-2.12 
0.38 

-0.03 
0.55 

-0.35 
1.40 

-0.23 
-0.54 
-0.66 

(3.6) 

NA 
NA 
NA 

-0.32 
-0.21 
1.56 

-1.52 
1.83 

-0.07 
-1.91 
-0.01 
-1.56 
0.19 

-0.33 
-0.55 
0.45 
0.72 

-0.72 
-1.39 
-1.01 
1.80 

-1.49 
0.07 
0.08 
0.44 

-0.62 
1.52 

-0.11 
-0.55 
-0.86 
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Example 3.4.2 

Next, in order to demonstrate the behaviour of the control charts based on 

subgroup data for a stable process, 120 observations have been generated from a 

trivariate normal distribution with 

^ = 

^ 5 ^ 

12 

U5; 
and Z = 

^0.0625 0.10625 0.05^ 

0.10625 0.25 0.136 

^ 0.05 0.136 0.16 y 

These observations are grouped into samples of size n = A and the corresponding values 

of the control statistics (3.7), (3.8), (3.9), (3.10) and (3.11) are calculated and plotted in 

Figures 3.2(a) to 3.2(e). Note that except for the case with known parameters and when 

the statistic (3.10) is used, charting begins with the 2nd subgroup. 

Again, as shown in the figures, the point patterns of the resulting control charts 

are similar after the first few points. This similarity in the point patterns will generally be 

the case for other in-control processes and the appearance of the control charts will be 

more simUar as the subgroup size increases. FoUowing Quesenberry's (1991) suggestion, 

since p and Z are not likely to be known precisely, the safer approach to charting is to 

use (3.6) and (3.11) which do not assume known values for the process parameters. 
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Example 3.4.3 

In this example, two charts are shown in order to compare the control techniques 

based on subgroup data for the cases when the parameters p and Z are assumed 

known and when they are both unknown. Figures 3.3(a) and 3.3(b) show these control 

charts for 30 samples of 3 observations each from a bivariate process where the mean of 

the 1st variable increases by 1.5 standard deviations after the 8th sample. The first 8 

samples were generated from a A''2(p,Z) process distribution with 

Â 
10> 

and Z = 
U3J 

^ 0.25 0.375^ 

1̂ 0.375 1 ; 

whereas samples 9 to 30 were simulated from iV2(p„g^,Z) where 

\^, 
'10.15^ 

. 23 , 

Note that the correct values of p and Z to use for computing statistic (3.7) are 

those before the shift occurs. The figures show that whilst the shift is large enough to 

trigger out-of-control signals from both charts as soon as subgroup 9 is observed, that 

based on unknown parameters gradually settles into a pattern indicative of in-control 

conditions. This is due to the fact that the corresponding control statistic utUizes the 

current data stream to estimate the unknown values of the process parameters 

sequentially, causing the effect of parameter changes to 'dilute' as more out-of-control 

data are incorporated into the parameter estimates. It should be noted, that if an outUer 

or out-of-control observation (or subgroup) is present, that observation should be 

removed from subsequent computations. If this is not done, the parameter estimates wiU 

be distorted, causing an out-of-control process to appear in-control or vice versa. 
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Example 3.4.4 

As a preliminary investigation of the effect of changes in process standard 

deviations on the individual values control charts, 30 observations are considered that 

have been generated from a trivariate normal process where the standard deviations of 

two of the variables double after the 13th observation. Observations 1 to 13 were 

generated from A''3(p,Z) with 

^i = 25 

.27> 

and Z = 
^ 0.01 0.042 0.0825"̂  

0.042 1.44 -0.18 

V0.0825 -0.18 2.25 y 

while the remaining subsequent observations were generated from N^{yi,Y.r,ew) where 

^ 0.01 0.084 0.165^ 

0.084 5.76 -0.72 

^0.165 -0.72 9 ; 

The individual values control charts for the case when both or neither of the process 

parameters are assumed known were constructed based on these simulated data and 

these are displayed in Figures 3.4(a) and 3.4(b) respectively. 

As shown, the change in the process standard deviations causes a spike on both 

of the control charts at the 15th and the 17th observation respectively. However, the 

signal from the latter is less pronounced than that corresponding to the known parameter 

case. This example demonstrates that the individual values control chart, which does not 

assume known values of the process parameters, can also detect changes in the process 

covariance matrix Z • 
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0 1 2 3 4 5 6 7 8 9 10111213 1415 1617 18 19 20 2122 23 24 25 26 27 28 29 30 31 

Observation Number 

Figure 3.4(a). Multivariate Control Chart for Example 3.4.4, Known Parameters. 
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0 1 2 3 4 5 6 7 8 9 1011 1213 1415 1617 18 19 20 2122 23 24 25 26 27 28 29 30 31 

Observation Number 

Figure 3.4(b). Multivariate Control Chart for Example 3.4.4, Unknown Parameter.̂ . 
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Example 3.4.5 

To illustrate the usefulness of individual values control procedure for the 

unknown parameters case, consider the data analysed by Holmes et al.(1993) which 

gives the composition of 'grit' manufactured by a plant in Europe. These data are 

reproduced in Table 3.3 where the columns headed L, M, and S show the percentage 

classified as large, medium and small respectively, for each of the 56 observations. Since 

the percentages sum to 100 and the sample variance-covariance matrix wUl not be 

invertible under this condition, we analyse the data in the first two columns only, as 

Holmes et al. did, using a technique based on statistic (3.6). The computed values of this 

statistic are provided in the same table and the associated control chart is shown in 

Figure 3.5. Note that, as opposed to Holmes et al.'s retrospective testing for process 

stability based on all these 56 observations, the proposed charting is done essentially in 

real time i.e it begins as soon as the 4th observation is avaUable. Thus, this approach has 

the potential to react to process instability sooner than the former method. 

As shown in the figure, a signal is triggered by the 26th observation which, 

according to Holmes et al., actually occurred in the presence of process troubles. This 

observation is thus deleted from subsequent computations. To stress this point, the 

charted points corresponding to this and the next observation are disconnected. Although 

the plotted point for the 45th observation which was also affected by some identified 

special causes does not exceed the 3-a control limUs, using the common run rule that 

signals when 2 of 3 consecutive points exceed 2- a limits (in this case ±2) on the same 

side of the center line, the process trouble is detected as soon as the next observation is 

available. This additional rule provides enhanced detection capability with little loss in 

the in-control RL performance, especially for short run situations (refer to Palm (1990) 
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for the in-control RL probabilities of the combined test above). It is, in fact, the ability to 

recognise many anomalous point patterns through, for instance, the use of such 

additional run rules that the strength of the proposed charting technique lies. 
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Table 3.3. Holmes and Mergen (1993)'s Data and Values of Statistic (3.6). 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

L 

5.4 
3.2 
5.2 
3.5 
2.9 
4.6 
4.4 
5 
8.4 
4.2 
3.8 
4.3 
3.7 
3.8 
2.6 
2,7 
7.9 
6.6 
4 
2.5 
3.8 
2.8 
2.9 
3.3 
7.2 
7.3 
7 
6 
7.4 
6.8 
6.3 
6.1 
6.6 
6.2 
6.5 
6 
4.8 
4.9 
5.8 
7.2 
5.6 
6.9 
7.4 
8.9 
10.9 
8.2 
6.7 
5.9 
8.7 
6.4 
8.4 
9.6 
5.1 
5 
5 
5.9 

M 
93.6 
92.6 
91.7 
86.9 
90.4 
92.1 
91.5 
90.3 
85.1 
89.7 
92.5 
91.8 
91.7 
90.3 
94.5 
94.5 
88.7 
84.6 
90.7 
90.2 
92.7 
91.5 
91.8 
90.6 
87.3 
79 
82.6 
83.5 
83.6 
84.8 
87.1 
87.2 
87.3 
84.8 
87.4 
86.8 
88.8 
89.8 
86.9 
83.8 
89.2 
84.5 
84.4 
84.3 
82.2 
89.8 
90.4 
90.1 
83.6 
88 
84.7 
80.6 
93 
91.4 
86.2 
87.2 

s 
1 
4.2 
3.1 
9.6 
6.7 
3.3 
4.1 
4.7 
6.5 
6.1 
3.7 
3.9 
4.6 
5.9 
2.9 
2.8 
3.4 
8.8 
5.3 
7.3 
3.5 
5.7 
5.3 
6.1 
5.5 
13.7 
10.4 
10.5 
9 
8.4 
6.6 
6.7 
6.1 
9 
6.1 
7.2 
6.4 
5.3 
7.3 
9 
5.2 
8.6 
8.2 
6.8 
6.9 
2 
2.9 
4 
7.7 
5.6 
6.9 
9.8 
1.9 
3.6 
8.8 
6.9 

2, 

NA 
NA 
NA 
0.6399 
-0.4774 
-1.4148 
-2.0361 
-0.1776 
2.7482 
-1.1743 
-0.7038 
-1.3520 
-1.0359 
-0.8824 
0.5530 
0.2870 
1.4587 
1.4113 
-1.3677 
0.6618 
-0.7556 
-0.2284 
-0.4814 
-0.5848 
0.8209 
3.2867* 
2.0908 
1.4377 
1.0241 
0.3840 
-0.4525 
-0.6524 
-0.2495 
0.3005 
-0.3970 
-0.7454 
-1.6929 
-1.9147 
-0.7932 
0.5805 
-0.9938 
0.2369 
0.3382 
1.3784 
2.4500 
2.0966 
0.7397 
-0.3457 
0.6670 
-1.1449 
0.3555 
1.4025 
0.8303 
-0.2968 
0.4030 
-1.4174 

* This observation is removed from computation of subsequent Z , ' S. 
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 

Observation Number 

Figure 3.5. Multivariate Control Chart for Holmes and Mergen's Data. 
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Example 3.4.6 

To see how the control technique with unknown parameters that is based on 

subgroup data performs in comparison to an existing method, consider the data given by 

Alt et al.(1976). These authors presented formulae to compute the control limits for the 

r^-type control chart based on a small number of subgroups, both for retrospective and 

fiiture testing of the mean level of a muhivariate normal process and used the data to 

illustrate the use of these so-called small sample probability limits. The data consists of 

measurements on /? = 2 quality characteristics which are grouped into subgroups of size 

« = 10. Due to Umited space, the summary data are not reproduced here. However, for 

ease of comparison, the values of the T^-type statistic, the stage 1 (retrospective) and 

stage 2 (future) control limits are given in Table 3.4, together with the results obtained 

using the technique (3.11) proposed in this paper. Note that the stage 1 and stage 2 

control limits are set at a = 0.001 and a = 0.005 respectively. 

As shown in the table, the use of the proposed technique also results in an 

abnormally large value of the control statistic for subgroup 4 as when Alt et al.'s method 

is used, indicating that the process was out-of-control when this sample was taken. 

Similarly, subgroup 8 is also detected as being out-of-control using both control 

procedures. 
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TABLE 3.4. Values of Alt et al.'s Test Statistic, Small Sample Probability Limits 
and Control Statistic (3.11) for Example 3.4.6. 

Subgroup 
No. 

1 
2 
3 
4 
5 

Subgroup 
No. 

6 
7 
8 
9 
10 
11 
12 

Alt et al.'s 
Stage 1 
Statistic 

0.009 
1.147 
0.136 
4.901* 
0.632 

Alt et al.'s 
Stage 2 t 
Statistic 

0.392 
0.197 
4.594* 
0.190 
0.226 
0.410 
0.460 

Stage 1 
UCL 

1.3268 
1.3268 
1.3268 
1.3268 
1.3268 

Stage 2 
UCLJ 

1.5906 
1.5906 
1.5906 
1.5906 
1.5906 
1.5906 
1.5906 

Revised Value 
of Altetal's 

Statistic 

0.327 
0.264 
0.034 
NA 

0.057 

Revised Stage 1 
UCL 

0.9546 
0.9546 
0.9546 

0.9546 

Control 
Statistic 
(3.11) 

NA 
1.0758 

-1.4909 
5.0192* 

-0.5821t 

0.7766 
0.5906 
4.8528* 
0.4045t 
0.3248 
1.0596 
0.9490 

* These numbers exceed their respective UCLs indicating the presence of assignable causes. 
t These and subsequent values are calculated after removing the out-of control subgroups immediately 

preceding them. 
J These are based on subgroups 1, 2, 3 and 5. 
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3.5 Control Performance 

It is shown in Appendix (A.l), (A.2) and (A.3), that the statistical performance 

of the techniques presented above depend on the foUowing parameter(s) (scalar, vector 

or matrix) for each of the given types of process changes (besides the change point r, i.e 

the observation or sample after which the change takes place) : 

(a) A sustained shift in the mean vector from p to p„̂ ,. whilst Z remains unchanged 

'^ = i{\i-r,e^-V)^^ \\i-new-V) 

(b) A sustained shift in covariance matrix from Z to I] „c,, whilst p remains unchanged 

Eigenvalues, X^,...,Xp, of Z„^S"^ or Z"'Z„e^ 

(c) A simuhaneous sustained shift in mean vector from p to p„̂ .̂ and covariance matrix 

from E JQ_E^ 

Ti = S"H^i„^-li) and Q = Z " ' E _ Z ^ ' 

Note that Z ' here denotes the symmetric square root matrix of Z such that 

Y. = l}l? (Johnson and Wichern (1988), p.51) and Z"^ = (z^J . The importance of 

these resuUs is clear when one realizes that the effort for determining the control 

performance of the proposed techniques is greatly reduced. For instance, in order to 

determine the performance under the first type of process change, U may be assumed, 

without loss of generality, that p = (0,0,..,,0) , Z = I and p„^ subsequently 
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considered in the form of \i„^ ={X,0,...,0) for various values of X. Note that X is 

sometUnes referred to as the noncentrality parameter (eg., Lowry et al.(1992)). Some 

issues of importance regarding the use of X are discussed in the same paper (see also 

PignatieUo and Runger (1990)). 

In this section, we will consider only the simplest type of process change, namely, 

a persistent change in the process mean vector. The performance of the proposed 

techniques are evaluated on the basis of probability of detection within m = 5 successive 

observations or subgroups by means of simulation. This is chosen as the performance 

criterion instead of the common measure of ARL because, as demonstrated in the 

examples using simulated data, the first few observations or subgroups after the change 

are the critical ones. If the mean shift is not detected within the first few observations or 

subgroups after its occurrence, it is even more unlikely that this will be 'picked up' by 

subsequent observations or subgroups because of the 'diluting' effect. In addition, the run 

length distributions for the techniques wUh some unknown parameters are not geometric, 

so ARL is not a suitable performance criterion (see Quesenberry (1993,1995d)). 

Furthermore, this paper is particularly concerned with short production runs or low 

volume manufacturing and as such early response of the techniques to any process 

anomalies or irregularities is a crucial factor. 

It should be pointed out that only an upper control limit is used in the simulation. 

This approach is used because the control techniques are intended primarily for 'picking 

up' changes in the mean vector and U appears that any such change is likely to resuU in 

unusually large values for the control statistics. In practice, however, it might be 

preferable to use both lower and upper control limits because the former can provide 

protection against occasional changes in the variance-covariance matrix and other 
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process disturbances which may cause abnormally small values for the control statistics. 

The Umit is set at the 99.73th percentage point so that the false alarm rate for the 

proposed techniques equates to that of the traditional Shewhart charts with 3-sigma 

limits. As a partial check of the simulation, we have included results for those cases with 

known parameters. 

The resuhs for the individual values control techniques obtained through 10,000 

simulation runs are tabulated in Table 3.5 for various combinations of p, X and r. In 

Table 3.6, the results for those techniques based on subgroup data are given. Note that 

the exact probabilities for techniques (3.3) and (3.7) are obtainable from the noncentral 

chi-square distribution tables or standard statistical software packages. The simulation 

results for these techniques are found to agree well with the theoretical values. For 

instance, the theoretical probabilities for technique (3.3) are 0.0569, 0.3452, 0.8571 and 

0.9972 respectively for X = l, 2, 3 and 4 when /? = 3. These are very close to the 

corresponding figures in Table 3.5. 

As shown in Table 3.6, the control techniques based on subgroup data for the 

cases with at least some unknown parameters can be expected to perform as well as the 

technique with known parameters under this type of process change especially when the 

noncentrality parameter, X is larger than or equal to 2. For instance, using control 

statistic (3.10) and (3.11) with a subgroup size of « = 6 when /? = 5, the probabUities of 

'picking up' a mean shift of A, = 2 which occurs after the 10th subgroup, within 5 

consecutive subgroups, are respectively 0.9966 and 0.9402. For smaller values of X, 

these control techniques can also be expected to perform reasonably well relative to the 

technique corresponding to the known parameter case. For example, these probabilities 

are 0.3812 and 0.2834 respectively when statistics (3.10) and (3.11) are used, as 
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compared to 0.4513 for the known parameter case. As for control based on individual 

observations, those techniques with some unknown parameters have poor performance 

relative to that based on known parameters when X and r are small and p is large. 

However, the performance of these individual values control charts improves with 

increasing value of X and r. As shown in Table 3.5, the probability of detecting a shift of 

A, = 5 for a bivariate process within 5 successive observations using statistic (3.6), which 

does not assume known values for the process parameters, is 0.8514 if r = 20. Apart 

from these, a number of points can be noted from the tables. It is found that except for 

control statistic (3.10), the proposed techniques decline in performance according to the 

number of unknown parameters on which they are based. Specifically, those based on 

known values of the process parameters have the best performance as expected, followed 

by those with unknown mean vector p , those with unknown covariance matrix Z and 

those whh both process parameters unknown. Note also that, for the same A, and r, the 

performance of the individual values control techniques become worse as p increases. 

Finally, it can be seen from Table 3.6 that using statistic (3.10) is always better or as 

good as statistic (3.9) although the former ignores knowledge of p in the estimation of 
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TABLE 3.5. Probability of Detection Within m-5 Subsequent Observations. 

Control Statistic 

(3.3) (3.4) (3.5) (3.6) 

6 

10 

20 

10 

20 

10 

20 

10 

20 

10 

20 

10 

20 

2 
3 
5 
2 
3 
5 
2 

3 
5 

2 
3 
5 
2 
3 
5 
2 

3 
5 
2 
3 
5 
2 
3 
5 
2 
3 
5 
2 
3 
5 
2 

3 
5 
2 

3 

5 

0.0720 
0.0537 
0.0417 
0.0736 
0.0545 
0.0403 
0.4430 
0.3437 
0.2500 
0.4357 
0.3456 
0.2508 
0.9153 
0.8550 
0.7477 
0.9124 
0.8533 
0.7530 
0.9993 
0.9966 
0.9880 
0.9994 
0.9960 
0.9900 

1 
1 
1 
1 
1 

0.9999 

1 
1 
1 

1 

1 
1 

0.0492 
0.0399 
0.0306 
0.0588 
0.0432 
0.0345 
0.2560 
0.2033 
0.1428 
0.3230 
0.2525 
0.1830 
0.7050 
0.6014 
0.4752 
0.8074 
0.7220 
0.5920 
0.9687 
0.9354 
0.8762 
0.9921 
0.9796 
0.9456 
0.9996 
0.9982 
0.9930 

1 
1 

0.9988 
1 
1 

0.9998 

1 

1 

1 

0.0328 
0.0260 
0.0197 
0.0437 
0.0363 
0.0267 
0.0807 

0.0553 
0.0342 
0.1660 
0.1172 
0.0755 
0.1887 
0.1191 
0.0570 
0.4011 

0.2863 
0.1747 
0.3735 
0.2483 
0.1026 
0.7040 
0.5624 
0.3576 
0.6114 
0.4292 
0.1560 
0.9096 
0.8122 
0.5866 
0.8180 
0.6304 
0.2624 
0.9862 

0.9500 
0.8094 

0.0245 

0.0223 
0.0172 
0.0367 
0.0304 
0.0247 

0.0541 
0.0364 
0.0228 

0.1353 
0.0925 
0.0614 
0.1325 
0.0827 
0.0408 
0.3314 

0.2333 
0.1385 
0.2728 
0.1967 
0.0722 
0.6213 
0.4837 
0.2962 
0.4880 
0.3076 
0.0984 
0.8514 
0.7366 
0.5074 
0.6980 
0.4832 
0.1568 

0.9702 
0.9162 

0.7468 
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TABLE 3.6. Probability of Detection Within m = 5 Subsequent Subgroups. 

X r 

I 10 

20 

2 10 

20 

3 10 

20 

P 

2 
3 
5 
2 
3 
5 
2 
3 
5 
2 
3 
5 
2 
3 
5 
2 
3 
5 

n 

3 
4 
6 
3 
4 
6 
3 
4 
6 
3 
4 
6 
3 
4 
6 
3 
4 
6 

(3.7) 

0.2970 
0.3411 

0.4549 
0.2925 
0.3410 
0.4513 
0.9864 

0.9966 
1 

0.9880 
0.9966 

(3.8) 

0.1794 

0.1981 

0.2692 
0.2128 
0.2521 
0.3256 
0.8772 
0.9399 
0.9908 
0.9460 
0.9774 
0.9984 

Control Statistic 

(3.9) 

0.1670 

0.1918 
0.2938 
0.2088 
0.2469 
0.3367 
0.7356 
0.8637 

0.9716 
0.8992 
0.9582 
0.9952 
0.9924 
0.9991 
1 
1 
1 
1 

(3.10) 

0.2102 

0.2381 
0.3638 
0.2192 
0.2787 
0.3812 
0.8680 
0.9582 

0.9966 
0.9440 
0.9816 
0.9997 
0.9990 

(3.11) 

0.1276 

0.1356 
0.2063 
0.1712 
0.2025 
0.2834 
0.6512 
0.7996 
0.9402 

0.8566 
0.9402 

0.9926 
0.9796 
0.9979 

1 
0.9994 

0.9979 
1 
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3.6 Detecting Step Shifts and Linear Trends Using A Robust 

Estimator of Y and EWMA 

As demonstrated by examples 3.4.4 and 3.4.5, when a sustained shift in a process 

parameter occurs, the technique presented for the unknown parameter case that is based 

on subgroup data wiU either 'pick up' the process change within the first few samples or 

it will not signal at all due to the effect of mcorporating out-of-control observations in 

the estimation of the process variance-covariance matrix, Z . The latter event is likely to 

occur when the shift takes place early in the production and the shift size (as measured 

by A) is smaU. This problem is particularly acute when the corresponding individual 

values control technique is used. 

Apart from one-step shifts, there are situations where the process mean vector, 

p changes linearly with time or with the chronological order of the observations or 

samples. A linear trend in the multivariate observations is defined by Chan and Li (1994) 

as the event which occurs when there exists a constant/7-dimensional vector P such that 

PP is a linear function of the sample or observation number. As a special case of this, a 

linear trend that occurs after the rth observation is represented by 

X , = p , + 8 , 

where p , = j ^ ^~ ''"'^ (3.12) 
^ ' [p + /0 i = r + l,... ^ ^ 

0 and 8,'5 denote respectively a constant vector characterising the linear trend and the 

i.i.d Np(0,'E) vectors of random errors. This is the model that is considered herein. If 

the linear trend occurs soon after the commencement of production, the control 

procedures for the unknown Z case, particularly those based on individual observations 
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are likely to be ineffective since the associated sample estimates of Z appear to be 

adversely affected by such systematic process changes. 

In order to minimize the effect of step shifts, trends and other types of process 

irregularities on the Z estimates, it is suggested that the estimation procedure 

recommended by Holmes et al.(1993) and Scholz et al.(1994) is used. This aUernative is 

analogous to the use of successive squared differences for the univariate situation. When 

k observations are available, the suggested estimator of the process variance-covariance 

matrix is given by 

^'"2(ri)^^^'^^"^'^^^'^^~^'^^-

This was shown to be unbiased by Sullivan et al.(1995) for situations where the 

observation vectors are i.i.d. 

In this section, we examine the appropriateness of using EWMA computed from 

the sequence of normalized T statistics based on S^ estimator and individual 

observations as a control procedure, for the case where p is either specified or 

unknown. To do this, first note that Scholz et al. approximate the distribution of S^ with 

fk^k-^Wpif^Y) 

where /^ = —̂̂  —. In addition, they stated that X^ is independent of S^. Thus, it 
3k-4 

follows that 

^k+i,ii - 7 v^k+i ~ M'j ^k V^k+i ~\^)'^ Fp,fk-p+\ 
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Note also that the Tj^^^'s (and Tj^'s) are approximately independent when k becomes 

large. Thus, as in section 3.3, these statistics can be transformed to sequences of 

approx/'/wafe/y i.i.d standard normal variables [zlA and fz^j as follows: 

and z; = 3'-[f,,,._,_^,(r;)]. 

It is now possible to form EWMA statistics with Zl^^ and Z^ taken as the inputs. The 

resulting techniques for the known and unknown p case are based on the EWMA 

statistics, EWMAZl^ and EWMAZIU^, given respectively by 

EWMAZl^ = yZl^ + (1-Y)EWMAZ1^_I 

and EWMAZ lUfc = yZ; + (1 - y )EWMAZ lU^_i. 

For ease of subsequent discussion, these techniques are referred to as EWMAZl and 

EWMAZIU respectively. Note that using these procedures, process monitoring begins 

with the kth observation where EWMAZl^_i and EWMAZ lU^_i are set to 0 and k is 

the smallest integer greater than . The values of EWMAZl^ 

and EWMAZIU^ are plotted on a chart whh control limits at ±h.yJy/(2-y) where the 

smoothing constant y and the control limits factor h are chosen to achieve specified in-

control run length performance. Using the resuUs obtained by Quesenberry (1995a), 

these design parameters are set to 0.25 and 2.9 respectively to give the control limits at 

±1.096. These same EWMA parameters are used in all the work reported subsequently 

in this chapter. This combination of y and h gives an in-control ARL of 372.6 and an 

ARL of 5.18 for a shift of 1.5 standard deviation in the mean of a normal variable. Since 
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the proposed procedures are not based on sequences of exactly i.i.d standard normal 

variables, their in-control RL distributions wUl be generally different from those 

expected. However, as shown later, the effect of approximating \Z].A and |Z^ | with 

sequences of i.i.d A''(0,1) variables on the in-control RL performance of the associated 

EWMA procedures appears to be insignificant, at least for the first 50 observations, the 

selected combination of y and h, and the dimensions considered. 

In order to illustrate the use of the proposed EWMA procedures, consider again 

the data of Holmes et al.(1993) which are shown in Table 3.3. As before, only the first 

two columns of the data, namely, those giving the percentages of large (L) and smaU (S) 

'grits', are analysed. As the process mean vector is not specified, the appropriate statistic 

to be used for this problem is EWMAZIU^. Since 

(3p+5) + V(p-l)(9/7-17)^(3x2 + 5)V(2^nO(9x2-17)^^ 

for this situation, the control procedure is initiated at the 4th observation by letting 

EWMAZIU3 = 0 . The resulting EWMAZIU chart is shown in Figure 3.6. As shown in 

the figure, this chart issues out-of-control signals at observations 27, 29, 45, 46 and 52. 

Note that these observations are removed before calculating the control statistic for their 

subsequent observations. To emphasize this, the points corresponding to observations 

28, 30, 46, 47 and 53 are disconnected from the immediately preceding ones. It can also 

be seen that observations- 28 and 30 almost trigger a signal. They have 

EWMAZIU28 = 1083 and EWMAZIU3Q =1.081 which are very close to the upper 

89 



u 

—r 

• O 

VD 

i n 

<N 
wo 

o 
wo 

00 

O 

OO 

m 
VD 

m 

CO 

(N 
m 
O 
m 

oo 
CN 

\o 

C ^ 
C N 

O 
(N 

OO 

o 

- 00 

- \o 

- -rf 

- (N 

O 

I 

t-i 

I 
C3 
O 

00 

o 

CO 
^—> 
CD 

Q 
co" 
Cf) 
O ) 

C/3 

"c 
CD 

CD 
^ 

•D 
C 
CO 
CO 
CD 

E 
o 
I 

tr 
CO 

O 

N 
< 

LU 

CD 

CO 

CD 

IJL 

niZVIAIAVH 90 



control limit of 1.096. In comparison to the use of statistic (3.6) (see Example 3.4.5) and 

the retrospective tests of Holmes et al. and Sullivan et al.(1995) using the S,^ estimator, 

there are more signals from the EWMAZIU chart for this set of data. These findmgs are 

not surprising since it was found by Sullivan et al. that the difference between the mean 

vectors of the first 24 and the last 32 observations are statistically significant (an 

evidence of a shift in the process mean vector foUowing the 24th observation), while the 

'within' variance-covarince matrices are not statistically different. 

Next, to see how the proposed procedures respond to linear trends, 50 bivariate 

observations have been generated from the process model (3.12) with k = I, p = 0, 

1 = 1 and 0 = (0.3,0)"^. Besides EWMAZl and EWMAZIU charts, M charts 

specifically designed by Chan et al.(1994) for detecting such process changes have also 

been constructed based on the same data. These are aU shown in Figure 3.7. The latter 

procedures are developed based on projection pursuit and linear regression techniques. 

These procedures involve charting the values of certain statistics based on moving 

samples of t/observations. In this example, the size of the moving samples used is d=7. 

If p is specified, the sequence of control statistics involved is given by 

M t = — T ; V^—^^ , k = d,d+l,... 

where W is a <i-dimensional vector wUh the /th element being , 

2 

G^ = (X^_^ î - p , ••• X ^ - p ) ^ , U ^ = G J G ^ and d>p. The values of M^ are 

plotted on a chart with upper control limit at Fp,d-p,a > ^^^ upper lOOath percentUe of an 

F distribution with p and d-p degrees of freedom. If the process mean vector is 
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unknown, the procedure is similar except that p and Fpd^p^^ should be replaced by the 

mean vector of the current moving sample. 

k 

i=k-d+l 

- J_ 
d 

and Fpd-p-ia respectively, with the condUion that d>p + l. As shown in the figure, 

although the process trend begins at the 2nd observation, no signal is generated by both 

the M charts with known and unknown p when a 1% significance level is used. In 

contrast, EWMAZl and EWMAZIU control procedures 'pick up' the trend at 

observations 11 and 17 respectively. In addition, the upward trends of the charted points 

for these EWMA charts provide very strong visual evidence of process troubles. This 

point pattern is typical for processes affected by linear trends. Note that since d=7, 

both the M charts have been started from the 7th observation. Note also that the values 

of the M chart with specified p are generally lower than the corresponding values for 

the p unknown case. As wiU be seen later, this technique is very ineffective. This is due, 

in part, to the effect of estimating the in-control value of Z based on 

= i(x,-p)(x,-pf, 
i=k-d+l 

which apparently incorporates both the 'local' and the 'long term' variabilities in the 

presence of systematic process changes. 

In order to provide more insight into the relative performance of the proposed 

and other procedures including the M charts, some simulation results for the RL 

probabUUies, ?T{RL < k), are presented. These are all based on 2000 repUcations, giving 

93 



^ , ^ 10.5(1-0.5) 
a maximum standard error of J — = 0.0112 which occurs when the probabUity 

being estimated is actually 0.5. For the case where p is assumed known, two other 

procedures similar to EWMAZl, abbreviated hereafter as EWMAZ2 and EWMAZ3 

respectively are considered. The first uses the EWMA computed from the Z^' s of (3.5) 

whereas the other is based on the EWMA computed from the following sequence of 

statistics : 

Zk = ^~' ^P,k-\-p (7(Ff|̂ ('^-^)^^»(''-^)' k = p + 2,.... (3.13) 

As for the case with unknown p , a similar EWMA procedure with the Z '̂ s of (3.6) 

taken as inputs is also considered. For convenience, this technique is referred to as 

EWMAZ2U. 

For a linear trend that occurs immediately (i.e. r = I), the simulated run length 

probabilities are shown graphically in Figures 3.8 to 3.13 for A: = 1(1)50 and various 

combinations ofp and the trend parameter X^^^^ =yjQ^ H ^ 0 . In fact, using the similar 

arguments as that for a step shift, it can be shown that the statistical performance of all 

the control procedures considered above depend on A ĝ„̂  under linear trend conditions 

as specified in (3.12). Note that the run lengths here are measured from the 1st 

observation although several observations are necessary for initiating the stated 

procedures. Note also that statistical comparison of various control techniques can be 

misleading if their in-control RL distributions differ considerably. However, as shown in 

Figures 3.8(a) to 3.10(a), the difference between the in-control RL distributions for 

EWMAZl, EWMAZ2 and EWMAZ3 are practically insignificant for k = 1(1)50 andp = 

2, 3 and 5. The same is true for EWMAZIU and EWMAZ2U (see Figures 3.11(a) to 
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3.13(a)). This is found to be generally the case for any dimension, p. For the M charts, 

the significance level, a , used in each case was 'tuned' to give approximately the same 

or slightly worse in-control RL performance than that for the proposed procedure. For 

the case with specified or known p , the values of a used in the simulation are 0.03, 

0.02 and 0.005 respectively for;? = 2, 3 and 5. For the unknown p case, these are 0.02, 

0.01 and 0.005. 

As shown in Figures 3.8 to 3.10, EWMAZl is far superior to EWMAZ2 and the 

M charting technique for all the cases considered. It is also seen to be better than 

EWMAZ3 except when k is small in which case the difference in their RL probabilities is 

marginal. In general, these procedures rank in performance in the order of EWMAZl, 

EWMAZ3, EWMAZ2 and the M charting technique. EWMAZ2 performs much better 

than the M chart especially when/? is small and A,̂ g„̂  is large. Apart fi-om these, it can 

be seen fi-om the figures that the RL probability, ^x{RL <k), of the M charting 

technique decreases as the trend parameter, A-,̂ g„̂  increases ! This counter-intuitive 

phenomenon suggests that the technique is of littie value. For the unknown p case. 

Figures 3.11 to 3.13 reveal that EWMAZIU has much better RL performance than 

EWMAZ2U irrespective ofp and X,̂ g„̂ . It is also observed that the proposed procedure 

is considerably better than the corresponding M charting technique except when both p 

and X,^g„d ^re large in which case no definitive conclusion can be made. Limited 

simulation using other values ofd, a and A,̂ g„̂  yields simUar conclusion. For instance, 

when p=5 and X^^„d=0.5, the run length probability, FT(RL<k), of the former 

method is relatively higher for A: > 16 but is smaUer for k from 9 to 15. However, the 

observed inferiority of the proposed technique for small values of k is compensated for 
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by its lower likelihood of false alarms. Another interesting point that can be noticed from 

the figures is that the RL probabUities for the M chart are higher for the unknown p case 

than for the known p case. Thus, if process changes are anticipated to be in the form of 

linear trends and an M chart is to be used, U is advisable to use that which does not 

assume known value of p even though p is specified or known. 

In the comparison above, U is assumed that the trends occur immediately after the 

process set-up. This is, however, not always the case in practice. For deferred trends, the 

EWMA procedures : EWMAZl, EWMAZ2, EWMAZ3, EWMAZIU and EWMAZ2U 

can be expected to improve in performance since the sample covariance estimate used 

with each is based on some in-control observations and has greater degrees of fi"eedom. 

However, it is readily seen that this deferral of trends has no effect on the RL properties 

of the M charting techniques. Thus, h appears that the proposed procedures outperform 

the M charting techiuques for most circumstances. 

The results for step shiflis are shown in Figures 3.14 to 3.19 for various 

combinations ofp, r and X . As shown in Figures 3.14 to 3.16, EWMAZl is far superior 

to EWMAZ2 and is as good as or significantly better than EWMAZ3. For r = 10 and 

X = 2 or 3, the RL probabilities of EWMAZl wUhin short runs are slightly lower than 

those for the other two procedures. For the case with unknown parameters, it is evident 

from Figures 3.17 to 3.19 that EWMAZIU is more likely to 'pick up' the shift 

irrespective ofp, r and X . 

Although Zl^, Z\ and similarly transformed variables as given by (3.5), (3.6) 

and (3.13) can be used in their own rights, some limited simulations not reported here 

indicate that using the associated EWMA procedures resuUs in significantly better RL 

performance for step shift and linear trend condUions. However, control charts based on 

102 



statistics (3.5) and (3.6) are good as the fiUers to isolate outUers and they wUl exhibU 

various discernible point patterns for other erroneous processes. Thus, it is 

recommended that in practice these charts be used and supplemented by EWMAZl and 

EWMAZIU respectively. 

Note that, EWMAZl and EWMAZIU are also sensUive to other process 

disturbances including changes in the variance-covariance structure of the measured 

variables. To distinguish between location and scale changes, a reasonable approach is to 

construct maximum likelihood ratio or Schwarz information criterion (SIC) statistics for 

the respective out-of-control models (see Chen and Gupta (1994, 1995)) and use the p-

value as an indicator of the most probable type of change. This is an interesting problem 

which needs fiirther investigation and U wiU not be considered fiirther here. 

3.7 Computational Requirements 

In this work, evaluation of the standard normal distribution. Us inverse, chi-

square and F distribution flinctions are required in order to compute the trasformed Ẑ  

statistics. In addition, computation of the argument statistics 7̂ 's involve matrix 

muUiplication and inversion. To implement the proposed control scheme, therefore, 

requires some fairly complex algorithms. Fortunately, these are widely avaUable and have 

been built into most of the commercial statistical software packages. The simulated data 

and the charts in this and the next chapter were generated and made by the authour using 

programs written in S-plus. 
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CHAPTER 4 

DISPERSION CONTROL FOR MULTIVARIATE 

NORMAL PROCESSES ^ 

4.1 Introduction 

Over the last decade, the problem of muhivariate quality control has received 

considerable attention in the literature (see for eg., WoodaU and Ncube (1985), Murphy 

(1987), Healy (1987), Crosier (1988), PignatieUo et al.(1990), Doganaksoy et al.(1991), 

Sparks (1992), Tracy et al.(1992), Lowry et al.(1992), Hawkins (1991,1993), Hayter et 

al.(1994), Chan et al.(1994) and Mason, Tracy and Young (1995)). This work has 

focussed on the detection of parameter changes, departures from distributional 

assumptions, and the identification of out-of-control variables. Most of the work is based 

on the assumption that the observation vectors, X/5 are independently and idenrically 

distributed (i.i.d) multivariate normal variables and that the true values of the process 

parameters, in particular the process variance-covariance matrix, Z , are known. In 

chapter 3, a control procedure for monitoring the mean level of muhivariate normal 

processes for situations where prior information about the in-control process parameters 

is unavailable has been presented. It was demonstrated that the procedure is particularly 

usefiil when subgroup data are used. 

Whilst substantial work has been devoted to the control of the process mean 

vector, p , very little emphasis has been placed on the importance of monitoring and 

controlling Z . In fact, the issue is a formidable one due to the complexity of the 

This chapter is based on the papers entitled 'Dispersion Control for Multivariate Processes', Australian Journal 
of Statistics 38 (3), pp.235-251, 1996 and 'Dispersion Control for Multivariate Processes - Some Comparisons', 
Australian Journal of Statistics 38 (3), pp.253-273, 1996. 
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distribution theory involved. One exception is the paper by Alt et al.(1986) who 

proposed two control techniques for S ; one based on the UkeUhood ratio principle and 

the other that makes use of the sample generalized variance, which is sometimes taken as 

a measure of dispersion or spread of muhivariate processes. Although tradUional 

muhivariate control charts such as the Hotelling x^ or T^ charts may signal certain 

shifts in S (see Hawkins (1991)), other particular changes in Z wiU remain undetected. 

This is also true for the technique based on generaUzed variance. For instance, if H 

shifts in such a way that the resuhing process region (i.e the ellipsoidal region in which 

almost all observations fall) is contained completely wUhin the undisturbed one, this 

'shrunken' process is unlikely to be detected by a x^ chart, especially when the sample 

size is smaU. In addition, Hawkins (1991) stated that 'measures based on quadratic forms 

(like T ) also confound mean shifts with variance shifts and require quUe extensive 

analysis following a signal to determine the nature of the shift'. Note that the ' T^' term 

that he used actually refers to the more commonly caUed ^^ statistic which uses 

(presumably) the true value of the process covariance matrix. When 'special' or 

'assignable' causes affecting both process parameters are present, it is also possible that 

the effect of the mean (vector) shift is masked or 'diluted' by the accompanying change 

in the variance-covariance matrix. 

The purpose of this chapter is to present some control procedures for the 

dispersion of multivariate normal processes based on subgroup data. Special attention is 

drawn to the situations where prior information about S is not available as is often the 

case in situations of short production runs, which have become increasingly prevalent. 

When Z is specified or assumed known, the proposed procedure involves the 
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decomposition of the sample covariance matrix and uses the resulting independent 

components, which have meaningfial interpretations, as the bases for checking the 

constancy of the process covariance matrix. Another possible approach is also outUned 

for this case. As for the case where E is unknown in advance of production, the 

proposed procedure is adapted from the step-down test of Anderson (1984, p.417) 

which is based on the decomposition of the UkeUhood ratio statistic for testing the 

equality of several covariance matrices. When these procedures are used together wUh 

Hotelling x^ or T -type charts, they supplement the latter by providing independent 

information about the stability of the process covariance matrix. Furthermore, these 

techniques effectively replace existing procedures to provide enhanced detection of 

general shifts in H . 

This chapter is organized into five subsequent sections. In 4.2, the underlying 

methodology is presented. In 4.3, appropriate control statistics are given for both the 

cases regarding prior knowledge or lack of prior knowledge of the process covariance 

matrix. Methods to cope with rank deficient problem which arises from the use of sample 

sizes not exceeding the number of quality variables are briefly considered in section 4.4. 

Comparisons are made between the proposed techniques and various competing 

procedures in section 4.5. In 4.6, an Ulustrative example is presented. In the last section, 

the effect of incorporating independent components from the decomposition to form an 

aggregate-type statistic, on the control performance, is examined for the known E case. 

The total discourse is given in the context of the manufacture of discrete Uems. 

4.2 Methodology 

Suppose that the vectors of observations on p correlated product characteristics, 

X/s follow a multivariate normal A^^(p,S) distribution with mean vector p and 
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covariance matrix S when the process is operating under stable condUions. In practice, 

the validity of this assumption should be checked using, for example, a muhivariate 

normal goodness-of-fit test (Gnanadesikan (1977)). The aim here is to develop control 

procedures for monitoring and controUing the dispersion of such a multivariate process 

based on rational subgroups where the sample size, n may vary. It is assumed in this and 

the next section that n> p so that the suggestion works. When this is not the case, Uttle 

adaptation of the proposed procedures as discussed in section 4.4 is required. 

In order to provide more flexibility, ease of implementation and better control of 

the false alarm rate than existing procedures, as well as to facilitate the interpretation of 

out-of-control signals, it is suggested that the sample variance-covariance matrix be 

partitioned into various statistically independent components having physical 

interpretation and known distributions. These components are then used to indicate the 

stability of the process covariance matrix. 

It is well known, that under the stable or in-control normality assumption, the 

sample covariance matrix, S, multiplied by the factor ( « - l ) foUows the Wishart 

distribution with parameters [n -1) and Z , denoted by 

in-l)S~Wp(n-l,I) 

Let the sample and population covariance matrices be similarly expressed in partitioned 

form as foUows :-

S = 
rs 11 

V»21 

^12 

>22> 

^Sl i S 

Sj2 ; S 

12 

22 
Z = ̂S.. \ E,.̂  

11 

V Ezi i I 22̂ ^ 

r_2 

1:12 '22 

where Sl {(^l), Sjj ( E n ) and Sjj (Z22) denote respectively the sample (population) 

variance of the 1st variable, the vector of sample (population) covariances between the 
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1st and each of the remammg variables, and the sample (population) covariance matrix 

excluding the 1st variable. Next, define 

^22.1 = ^22 - ^21^11 S j 2 

^12 ^12 

then according to a weU-known theorem (see for eg., theorem 6.4.1, p. 120, Giri (1977), 

where Z(22)-X(2i)S^ii)S(i2) in (c) should be replaced by Z(ii)-Z(i2)S^)Z(2i) 

using his notation), 

(i) S22,1 ^^ independent of S^,Si2 
V ~ y 

(ii)(«-lK~a?xli, 

(iii) {n -1)822.1 ~ Wp-i(n - 2,Z22.i) where Z22.1 = Z22 "^21 ^il ^u 

E12 E12 
'22 

s 12 
2 „2 

^l 

^v _ ^ 
(iv) The conditional distribution of - ^ , given S^ = ĵ , is A'̂  

5'i 

E 12 
^ 2 2 « l 

^Oj '(«-l)5?^ 

Note that 822,1 and S22.1 ^̂ ^̂ e denote respectively the conditional sample and 

population covariance matrices of the last (p-l) variables given the 1st. Note also that 

S12 2! 12 
~ and - ^ represent respectively the vectors of sample and population regression 
S^ aj 

coefficients when each of the last (p-l) variables is regressed on the 1st variable. 
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•̂ 12 

Furthermore, S^ , -^ and S22.1 may be regarded as independent components following 

the above decomposition of the sample covariance matrix 8. Further, decomposing 

822,1 in the same manner yields ^2,1 (the condUional sample variance of the 2nd 

Sl2.1 
variable given the 1st one), —— (the vector of regression coefficients when each of the 

last {p - 2) variables is regressed on the 2nd whilst the 1 st variable is held fixed) and 

834 ^^. 12 (the conditional sample covariance matrix of the last (/?- 2) variables given 

the first two) which are independently distributed as 

<:2 -(A E>2\r.2 0 j l P l l & . v 2 

^12.1 
/ e 2 _ „ 2 _ A ^ 

„2 / ^2.1 -•^2.1 ^V 
'̂ 2»1 

(«-l) 

•^12.1 y 

^-^ -^3,. . . ,p. 1,2 

C72.1 ' ( « - 1 ) 5 2 . 1 

and S3,...,;.l,2 ~ - ^ ^ p - 2 ( « - 3 , i : 3 , . . . , p . u ) , 

where R^2 and Pjj are respectively the squares of the sample and population 

correlations between the 1 st and the 2nd variables. Repeating the above procedures until 

fiirther decomposUion is impossible resuUs in p scaled chi-square variables S^ , 

Sj,i j _ ^ , j-2,...,p and p-l conditional (univariate or multivariate) normal 

variables which are independent and have meaningfiil interpretations. 5^.1 ^_i here 

denotes the condirional sample variance of theyth variable given the first7-1 variables. 

Note that the ordering of the variables is not unique. In fact, there are/?! possible 

permutations each of which resuUs in (2/?-l) terms in the decomposition. If aU of these 
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p\ X (2/7-1) variables are used as the control statistics, there wiU be a multitude of 

control charts even when p is qmte small. For instance, when /? = 3, there wUl be 

p\{2p-l) = 30 terms in total that can be obtained from the various decompositions. 

When /7=8, this number increases to /7!(2/7-l) = 604800 which clearly renders the 

approach impractical ! Furthermore, there are component variables in common to the 

various partUionings and terms that reflect essentially the same information. Therefore, 

one particular arrangement of the variables is deemed to be adequate for the purpose of 

decomposUion. It is suggested that the choice of this should reflect the relative 

importance of the variables involved. In particular, the variables should be arranged in 

decreasing order of importance from I to p. For the case of a 'cascade' process as 

described by Hawkins (1993), the variables should be arranged from the most 'upstream' 

(being the 1st) to the most 'downstream' one (being the last) so that a shift in a variable 

will not be masked by the accompanying change in the downstream variables. 

If YJ is specified or assumed known in advance of production, the statistics 

obtained in the above manner can of course be used separately to monitor the dispersion 

of the multivariate process. However, due to independence, these statistics can be 

combined into a single aggregate-type control statistic as considered in the next section. 

In practice, if the latter approach is adopted, U is recommended that the values of the 

individual statistics be retained for post-signal analysis. 

To illustrate the above idea, consider the case of/> = 3 product characterisfics. 

Using conventional notation, the sample covariance matrix of n observations on these 

variables is given by 
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s= 
^l •^2'^1'^2 -^IS'^l'^S 

O2 -f^3'J2'^3 R12S1S2 

^•^B'^l'^S ^3^ 2^ 3 '3 y 

Letting Sii = ^ ^ 81^ =(i?i2'^i52, i^,3'̂ i^3) , 822 = 

proceeding as previously, we have 

( « - l ) S 2 2 . . 1 - ( « - l ) [ S 2 2 - S 2 i S i X ] 

*-*2 'f\23'J2'^3 

V./V23O2O3 03 y 

= ( « - ! ) ^2 (1 - -^12 ) ' ^ 2 ' ^ 3 ( ^ 3 " -^12-^13 ) 

^ 2 ^ 3 ( ^ 3 - ^ 1 2 ^ 1 3 ) " ^ ' ( l - ^ n ) J 

and 

f^2(«-2,I ,2. l ) 

independently distributed of (811,812) = (5'l^ i?i2^i^2' RuS^S^) and 

(n-l)S^-oh'(n-l) 

^-1 (821811 Sii - S i i ) Rl2^2 ^\3^3 

V Si s, J 
's^=s^ -N ^ 2 1 ^ 2 2 » i 

^ a f ' (n-l)s^J 

Pn^2 P l3^3^ 

V a, ^1 J 

^ 2 2 «i 

(«-l)^? 

(4.1) 

(4.2) 

where 

'^22.1 - [-^22 -^21 -^11 -^12 I 

«72(1-Pl2) CJ2CJ3(P23-P12PI3) 

^2^3(P23-P l2P l3 ) f^3(l-p?3) J 

Note that SjiSi/=(^^12^2/-^i'-^13*^3/"^i)^ represents the vector of regression 

coefficients when each of the 2nd and 3rd variables is regressed on the 1st variable. 

Further, decomposing S22.1 in the same manner yields independent components, 

('̂ '2.1 , A2.1'^2.1'^3.1 j = (̂ 2̂ (1 - -^12)' 'S'2^3(i^3 - ^12^13)] 
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and ^3,1,2 - -^3^1 - ^3(1,2)) 

where 

(«-l)^2'(l-A'2)~a^(l-pf2)x'-2 (4.3) 

^ ^ ^ / ^ ^ ( l - i ? 2 ) - 2 ^ ( 1 - 4 ) 
<^3 (P23 - P12P13 ) ^ 3 (1 - P3(U)) 

• ^ (4.4) 
1, a2(l-p^2) («-l>52(l- ' i2); 

(n - l)S^{l - 4 ,2 ) ) ~ CT?(l - P3(U))X13 (4.5) 

and RL 2) and P3(j 2) denote respectively the sample and population multiple R^ when 

the 3rd variable is regressed on the first two variables. Note that ——-^1 T T ^ ^ is an 

unbiased estimate of the slope coefficient for the regression of the 3rd variable on the 

2nd variable whilst the first variable is held fixed. 

It is suggested that, if E is known, the stafistics given in (4.1), (4.2), (4.3), (4.4) 

and (4.5) should aU be used to provide protection against changes in the process 

covariance matrix E • It is advocated using aU these components instead of only S^ , 

r ' / - n _ D D \ 

2̂̂ 1 and 3̂̂ .12 because (RuSifSi, R^S^ f S^) and - ^ ^ ^j^ may reveal 
•^2(1-^12] 

some changes in E that may not be reflected by the former statistics. For instance, if the 

3rd quality characteristic is independent of others i.e P3(i2) = P13 + 2 ~ ' 

and (02, P12) shifts to (G2„^, Pnne.) such that ^^J^^-P^^"^^ = 1, then this change 
<^2(1-Pl2) 

IS unlikely to be detected when only 5"!̂ , 82,1 and '̂3̂ ,12 are used because their 

118 



respective distributions are not distorted under these circumstances. However, this 

change induces a shift in the slope coefficient for the regression of the 2nd quality 

characteristic on the first. Therefore, it is possible to 'pick up' such a change if the vector 

of population regression coefficients (p^cJi/^b Pn'^s/'^i) is also monitored based 

on the corresponding vector of sample regression coefficients {R12S2 IS^, R12S3 / S^) 

which is known to be bivariate normal for fixed S^ under the in-control and normality 

assumption (see (4.2)). If the traditional HoteUing X^ chart based on these coefficient 

vectors is used, it is readily seen that its statistical performance depends on the 

noncentrality parameter 

(«-l)^?(±Va^^ -CT (̂1-P?2) -Pi2^2) 
2~2 2 

Cia2 ( l -p i2 ) 

where the +ve sign is used when Pi2new > ̂  and the -ve sign otherwise. Thus, whilst the 

use of the control statistics S^ , S2,i and iS'3̂ .12 are unlikely to register the change, it is 

clear that the probability of detection by the Hotelling ^^ chart may increase depending 

on the value of S^ for the current subgroup, the sample size, n, as weU as the dispersion 

parameters. The same is true if the aggregate-type control statistic as given in the next 

section is used. 

As an alternative, the foUowing method of decomposition may be employed. Let 

S^j^ and I]<y> be the upper left-hand square submatrices of S and S respectively, of 
order j . Also, let Sr 1 and 2r,i denote respectively the sample and population 
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covariance matrices of theyth, 1st, 2nd, ... and (/'-l)th variable in the order indicated. In 

addition, let Sy and a j be such that 

%] -
V ~ y 

and Zf.j = 

.T A 
;; 

^ i ^<j-i> 
7 = 2,...,/?. 

where S^^ =Sj and Ojj =GJ. Repeatedly applying theorem 6.4.1 of GUi (1977) to 

8r 1, starting with j = p and decreasing in steps of 1, resuUs in the foUowing 2p-l 

(condUionally) independent statistics : 

r,2 
'^yi,...,;-! 

^y«l,...,;-l 2 

(n-l) ^''-^' 
7 = 1,...,/?. 

'<;-i> ^y 8, ~A^;_i z;;_i>ay. a /•1,...,;-1 c _ i 

(«-l) 
s;; '-1> 7=2,...,/?. 

^^^'•6 '̂ '̂ .i y_i = Sjj - S j S;;._i, Ŝ . and o%,_j_, = a^. - a J !.-]_,, Oj are 

respectively the conditional sample and population variances of theyth variable given the 

first j-l variables. Note that S~J_i> 8^ is the ( / - l ) dimensional vector estimating the 

regression coefficients of the y'th variable regressed on the first (/' -1) variables (see 

Mason et al.(1995)). Note also that S^Q and of.o are taken to be S^ and af 

respectively. 

The hypothesis Ho:E = Eo niay be tested based on these statistics for each 

subgroup in a sequential or step-down manner. At theyth step, the component hypothesis 

2 2 

cjy.i y_i = (Oj,i_j_i)o is tested at the a^ significance level by means of a chi-square 

test based on 
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7 # ^ • (̂  '̂ 

(cfy.i,..,/-i)o 

If there is failure to reject this sub-hypothesis, then a^ = cSj\ (or 

S<J_i> cr̂  = |̂ S<y_i> j ^ C7y ) is tested at significance level bj on the assumption that 
'~ V '~y Q 

E<y_i> = (E<y_i>) . The test statistic. 

^ ~ ^ ~ ^ 0 y ^^/.l,...,y-ljg V ~ v ~ . 
(4.7) 

is a Xy-i variable if the component hypothesis is true. If there is failure to reject this 

component hypothesis, then the (/+l)th step is taken. The hypothesis Ho:E = Eo is 

accepted provided there is failure to reject all the 2/?-l component hypotheses. The 

overall significance level of this test for each subgroup is then given by 

i-na-^;)n(i-5;). 
7=1 7=2 

Anderson (1984, p.417-418) has presented such an approach for testing the 

equality of covariance matrices as an alternative to the standard maximum UkeUhood 

ratio procedure, with the unknown parameters replaced by appropriate estimates based 

on previous subgroups and other suitable adjustments made. The resulting statistics for 

all successive subgroups follow Snedecor-F distributions and were shown by this author 

to be stochastically independent (Anderson (1984), theorem 10.4.2, p.414). Although 

this method is not proposed in the context of SPC, it can be used for monUoring the 

stability of the process covariance matrix for which the true in-control value is unknown 

and cannot be reliably estimated. FoUowing the conventional approach, however, a 
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single control chart based on all these statistics is considered instead of using them 

separately. This control technique, which is particularly usefiil for short production runs 

and low volume manufacturing, is discussed in detaU in the next section. 

4.3 Monitoring the Dispersion of Multivariate Processes 

The techniques now presented involve use of the probability integral 

transformation in order to produce sequences of independent chi-square variables (see 

Quesenberry (1991a)). The suggested approach permits the monitoring of various 

components resulting from the decomposition of the covariance matrix on a single chart. 

For uniformity of notation and ease of presentation, define 8*̂  iY*k) and 8^^ 

(ay„) respectively as the sample (population) covariance matrix of the last k variables 

and the vector of sample (population) covariances between the vth variable and each of 

thQ first u variables. Accordingly, the sample and population covariance matrices are 

expressible as 

(^<j-\> I S y j - l ,•• 

8 = 

s ^ 

fj-i I 

gT j 
V-7+1 

^y ^<j-i> 

and S = 
'jj-i 

^pj'i 

^jj-i ' • • • ' ^pj-i 

^-^ *p-j+i 

where 8<.> (Z<,>) denotes the sample (population) covariance matrix of the first j 

variables and Sŷ y_i = 8y (ayy_i=CTy) as defined in the preceding section. The 

conditional sample variance of theyth variable given the first j - 1 variables, is then given 

by 
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; .1 , . . . , ; -1 - ^j - ^jj-l ^<j-l> » y , y - i • (4.8) 

SimUarly, the corresponding population parameter is 

^;.l,...J-l = Crj - a j_y_l Z;j-1> CTy y_i (4.9) 

In terms of variances and muhiple correlation coefficients, these are expressible as 

'̂ y.i,...,;-i ='^;(l~^y(i,..j-i)) and <^;.i,...j-i = cyy(l-py(i y_i)). The conditional sample 

and population covariance matrices of the last p-j + l variables given the remaining 

j - 1 variables are respectively 

^j,...,p>\,...j-\-^*p-j+\ ^j,]-i '" ^pj-i 
o - l 
>'</-l> V.y-1 - S,,y_i (4.10) 

and 

^ ; , . . . , p . 1,...J-1 - ^ * p-j+i y j - i ' p j - i 
y~^ 

'jj-i p j - i (4.11) 

Apart from these, let d and ^ (/ = 2,..., /?) denote respectively the vectors of sample 

and population regression coefficients when each of the last p-j+l variables is regressed 

on the (j-l)th variable whilst the remainingy'-2 variables are held fixed. Then, these are 

given by the following expressions :-

\\^J-hj '" ^j-l,p)~^j-hJ-2^ <j-2> 'j,J-2 

d = 

and 

^J-lJ-l ^j-lJ-2 S<y-2> Sy_l,y_ 

M 
P j - 2 

(4.12) 
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e = 

(ay_i,y - Oy_,^)-aJ_i^y_2l;;._ -2> ^ ^ ; . ; - 2 - Op^j_2 

(4.13) 
^ /-1,/-1 Cy y_l y_2 Z <y_2> a y_l y_2 

Note that d and 0 should be interpreted as the vectors of uncondUional sample and 
~ 2 ~ 2 ^ 

population regression coefficients when each of the last p-l variables is regressed on the 

1st variable and these are given by 

d J'" ••• ''^y and e = K ^ l J 
~ 2 5jj ~ 2 a n 

respectively. 

In addition to the above, the following notation will be used :-

<!>"(•) : inverse of the standard normal distribution fiinction 

X V (•) '• distribution fiinction of a chi-square variable with v degrees of 
freedom 

^vi;v2 (•) • distribution fiinction of an F variable with vl numerator and v2 

denominator degrees of freedom 

In the following subsections, control statistics for monitoring the stability of the 

process covariance matrix are presented for the case where eUher E is known or 

unknown. In order to specify the chronological order of the subgroups, the sample 

statistics are indexed with an additional subscript enclosed wUhin a bracket. 

Case (D : E known 

In practice, the process parameters, in particular the true value of the process 

covariance matrix E , is never known exactly. Instead, U is estimated based on a 
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presumably large enough set of relevant data that have been collected during the period 

in which the production process is assumed to be stable or in control. It will be assumed 

for curtent purposes that E is known precisely prior to production. In this case, the 

appropriate control statistic is 

n 
2p-l 

2 
J(k) k = l,2,. (4.14) 

where 

Zm = ^~'< KiriK-l 
( « . - ! ) % ) 

.2 
O, 

^m = ^~' 
(j^k ^)^ j.\,...J-\{k) 

•/•i , . . , ;-i 

j-2,...,p. 

'P+Kk) = 0 -1 
Xp-1 (^.-D'^iw 

\~2(k} 
0 I.-2'i d -e 

\^2{k) 

^p^j-m-^ • ILp-j-w («^-l>S^_H..,y. •m 

( 
d -

V.~;(fe) 

A 

-e 
~;V 

E-̂  '/,..,M-.j-i d -6 
V~;(fc) ~ ;y 

, 7 = 3,...,/?. 

It is readily seen from the foregoing discussion, that under the in-control and 

normality assumption, IZy^j^J, j = l,...,2p-l are sequences of independently and 

identically distributed (i.i.d) standard normal variables, whence the T/^'s are independent 

Xip-i variables. Although control charts may be constructed based on the arguments of 

Zj(^k^'s, this is not considered a viable option due to the proliferation of charts that 

resuUs even when/? is fairly small. Besides, U is found that combining the Zj^i^^'s in the 

proposed marmer results in better control performance for certain shifts in E . 
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Note that since the arguments of the normalizing transformation are independent 

chi-square variables, a single aggregate-type control statistic may be obtained by 

summing them. The resuhing test is commonly called the sum test. Similarly, the sum 

may be taken over the transformed statistics Zj^^^s giving a sequence of independent 

N{0, 2p-l) variables. In either case, however, certain deviations of the process 

covariance matrix from the specified E are likely to be missed by the resuhing 

techniques. In particular, if E shifts in such a way that the values of some Zj^^^^'s tend 

to be larger whilst others tend to be smaller than that attributable to common causes, 

then this type of change is unlikely to be detected by the resuhing charts. To provide 

protection against such changes, U is suggested that the Zŷ ^̂ '̂  be squared before 

summation as in formula (4.14), and only an upper control Umit is then necessary. It 

should be noted that a similar techiuque can also be developed based on the alternative 

partitioning method outlined in the foregoing section. This is, however, not considered 

fiirther because it is found that the proposed technique always performs better. 

Case (n) : E unknown 

In the absence of prior information about the process parameters, a natural 

solution is to estimate the various components resulting from the decomposition of E 

sequentially from the data stream of the current production. The resulting estimates, 

together with the corresponding observations from the next sample are then used to test 

whether or not E remains constant. 

Before proceeding, define the quantities :-

k 

^J,k=J](ni-J) , 
/ = 1 
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^J,k(pooled) - ~ Au^"i~^^^J»l,...J-Ki N j.k ,=1 
y = i,---,/? 

with i>i.o(,) - i J ^ , ) , 

j = l,...,p-l. 

I 
7 = 2,...,/?. 

These values can be updated respectively through the following recursive equations 

C.2 
"^ J,k+K pooled) ~ \ r \^J,k^J,k (pooled)+("k+l l ) ' ^ ; . l , . . , ; - l ( / t+ l ) 

U j,k+l 
(k + iy 

f^"^j,k+in,,,-i)-'s:],,,. 

and V j,k+l 
k + l ^ ^j,k + ^<y- l> ( ; t+ l ) S ; J '-l(yt+l) 

The appropriate control statistic for this case is then given by 

2/7-1 

^k = Zu ^Kk) ' 
/=1 

k = 2. (4.15) 

where 

ZjXk) = ^ R "k-r'^j,k-i 
(« . - i )^ ; . i . . . . , ; - •l(^) 

("yfc J)^J,k-l (pooled) 
j=l,...,p. 

and 

Wm=^' ^J-^-Nj., 
0 ^)^j.k( pooled) 

, 7 = 2,...,/?. 
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Note that when k = 2, the argument of Z + v̂ x is 

Kj-\>Q-) ̂ ;.;-l(2) S<;-I>(1) Sy.y_,(i) I ((«i -1) 8<y_]>(,) + (/^ -1) 'S<J._^2)) ^<j-\>{2) S;.;-l(2)- S^-IXD S;.y_l(l) 

(7-1)5?.: 

where 

p2 _ (^1 ~l)'^y«l,...,/-l(l) + ( ^ 2 ~0'^>1,..,;-1(2) 
•^ j,2(pooled) - /-v, _i_ :« O V\ 

( « i+»2-27) 

This is different from that given by Anderson (1984, p.418, expression (21)) which 

apparently contains a typographical error. 

When the process covariance matrix is constant, |Zy(^)>, j = l,...,2p-l are 

independent sequences of i.i.d JV"(0,1) variables (see Theorem 10.4.2, p.414 of 

Anderson(1984)). Thus, the Tj^'s here are again distributed as xlp-i variables. Note 

that although the arguments of the Zj^^i^^'s have different degrees of freedom, the control 

limit for the resulting technique remains constant for successive subgroups. Note also 

that, using this technique, process monitoring can begin with the second subgroup 

wUhout having to wait until considerable process performance data have been 

accumulated for computation of the unknown E . 

It should be pointed out that the proposal in this chapter is not the only method 

for combining the information in independent tests. In fact, many other procedures have 

been presented in the Uterature. The most widely discussed method is attributed to Fisher 

(1950). Using this technique, the overaU nuU hypothesis, UQ. f^Hoj is rejected at a 

level of significance if 
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-22lnP,>X^,,i_„ 

where P/s denote the /?-values of the mdependent tests for the q sub-hypotheses 

Hoy's. Another common procedure is based on the minimum significance level of the 

independent tests as suggested by Tippett (1931). For this method, HQ is rejected at a 

level of significance if 

xmn{P„...,P^}<l-{l-afr 

We note that our procedure of forming a smgle control statistic is actually a special case 

of Lancaster's (1961) method which rejects HQ at a level of significance if 

where r~J^{») and 7"̂  ^ denote respectively the inverse and the lOOorth percentile of a 

Gamma distribution with parameters (v, 1/2). This is so when Vy = 1/ 2 for 7 = 1,...,^. A 

review of these and other test combination procedures is given in Folks (1984). Previous 

studies indicate that Fisher and Tippett methods are good omnibus procedures if the test 

statistics for the sub-hypotheses are independent chi-square or F variables. However, the 

resuUs of these studies do not apply in the present context since the problem here does 

not involve non-central chi-square or /^variables under the alternative hypothesis. 

In this chapter, no attempt has been made to determine the optimal choice of 

combination method except for the simulation study of the relative performance of 

Fisher, Tippett and the proposed procedures as reported in section 4.5. Other methods 

such as the weighted average of normal scores obtained from independent statistics and 

the weighted version of Fisher's method are not considered due to the arbUrary choice of 
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the weighting constants. If equal weights are used, the former is equivalent to the 

commoly called Inverse Normal procedure. This technique, which is based on the sum, 

2p-l 

^Zj^j^) for the problem under consideration, is expected to be ineffective for the 

reason given earlier. Similarly, the Bayes or likelihood ratio procedures derived by 

Koziol and Periman (1978) and Marden (1982) for combining independent noncentral 

chi-square and F statistics respectively are inappropriate since the aUernative hypotheses 

in question do not fit the specified models. Even if the models are appropriate, 

determination of critical values for the resuhing techniques can be quUe involved. The 

same is true for the other techniques not considered here including those based on the 

sum of chi statistics (see Koziol et al.(1978)). 

4.4 Rank-Deficient Problem 

As stated earlier, the proposed techniques are applicable only if the sample size 

exceeds the number of jointly monitored variables or the sample covariance matrix is of 

fiiU rank. However, these techniques can be adapted to the rank-deficient situations as 

described below. 

For mathematical convenience, suppose that samples of equal size n are used 

where n<p. In this case, simply transform the sample covariance matrices, 8(, '̂5 to 

matrices of reduced dimension, W^,)'̂  as follows : 

W(-;) = A8(,)A 

where A is a fiiU rank (n-l)xp matrix of constants. By theorem 3.3.7 of Srivastava et 

al.(1979). 
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(«-l)W(,^~fF^i(«-l,AEA^). 

FoUowing this transformation, the problem becomes one that checks the constancy of the 

variance-covariance matrix, E through AEA^. The same methods of decomposition 

and combination of the resuhing independent statistics can then be applied to the fiiU 

rank matrices, 'W(,)'5 and the associated likelihood ratio statistics for the known and 

unknown E cases respectively. Although dimensional reduction inevitably leads to some 

loss in information and the choice of A is somewhat arbUrary, this approach can be used 

irrespective of the sample size (provided n>2) and valid control limits can be easily 

located. 

Notice that as a special case of the transformation, W ,̂) becomes the sample 

covariance matrix of the first n-l quality characteristics if 

^~\}(n~l)x(n-l)^ "(«-l)xp j • 

This choice of A is undesirable since U sacrifices the information regarding the last 

p-n + l variables. If E is known, a reasonable choice of A is that whose rows consist of 

the normalized eigenvectors corresponding to the largest n-l eigenvalues, A,i,...,A,„_i, of 

E . Under this transformation, Ŵ y) becomes the sample covariance matrix of the first n-

1 principal components and AEA^ = A = diag(Xi,...,X„_i). 

Other methods that can be used for the known E case include those which are 

based on all the principal components, any set of Unearly independent combinations of 

the quality variables and the union-intersection principle (Srivastava et al. (1979)). 
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4.5 Comparisons 

In this section, the relative performance of the proposed techniques are tested 

against some competing procedures. For the case where E is assumed known, 

comparison is made between the proposed technique, the associated Fisher's and 

Tippett's procedures, the modified likelihood ratio test (MLRT), the IS]'̂ ^ chartmg 

technique as weU as a possible method based on principal components. MLRT and |8|^^ 

charting procedure appear to be the most widely discussed techniques for monitoring the 

dispersion of multivariate normal processes (see for eg., Alt et al.(1986, 1990)). The last 

method is included merely because it appears to be a reasonable technique in situations 

where principal components possess meaningfiil physical interpretations. In fact, as 

stated in Jackson (1989), this phenomenon is very common in industrial situations. In 

addition. Crosier (1988) has identified situations where ' if the mean shifts, it does 

so along the major axis '. Under these circumstances, U is expected that changes in E 

may well occur along some of the principal axes, namely the variances of some principal 

components may shift. As for the unknown E case, the decomposUion methods 

(Tippett, Fisher and the proposed techruques) are compared wUh the modified likelihood 

ratio test for the equality of covariance matrices (MLRTECM) as given, for eg., in 

Anderson (1984, p.405). For clarity of subsequent discussion, these techniques are 

briefly reviewed. 

MLRT is an unbiased version of the likelihood ratio test of HQIE = EQ against 

H^iE^^^Eo 'with the sample size, n, replaced by the number of degrees of freedom, 

n-l. This test rejects the null hypothesis HQ and suggests a departure of the process 
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covariance matrix from the standard or the known value Eo when the test or control 

statistic, W* exceeds Wp„a where 

PF* =- /?(«- l ) - («- l ) ln |8 | + («-l)ln|EoI+ («-l)tr(Eo S) . (4.16) 

a and Wp„a^ denote respectively the false signal rate and the upper 100 a th percentage 

point of W* which depends on p and n. The distributional theory involved with this 

technique is prohibitively complicated thus limiting Us practicality. Although W* can be 

approximated by a chi-square distribution with ^-^—- degrees of freedom when « is 

large, and the exact upper 1% and 5% percentage points of W* have been tabulated, for 

example, in Anderson (1984), for/? - 2(1)10 and various values of «, these may be of 

little value in the context of control charting. In practice, the control or monitoring 

procedures are likely to be based on samples not sufficiently large to justify the use of the 

chi-square approximation. Besides, it may be preferable to have a control technique wUh 

false signal rates considerably smaUer than 1% or 5%. Although MLRT is admissible 

(Giri (1977), p. 186), it wiU be seen later that this technique is inferior to the proposed 

technique for all of the cases considered. 

The other competing procedure is based on the use of the square root of the 

generalized sample covariance matrix, |8j . The resulting chart can be regarded as a 

I |1^2 

muhivariate analogue of the univariate S chart. When p = 2, |S| is distributed as a 

scaled chi-square variable under the stable or in-control multivariate normality 

assumption (Anderson (1984), p.264). Thus, control Umits may be set at 

LCL = 
l-^ol X2(n-2),a/2 

2(«-l) 
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and UCL = 
_ 1-̂ 01 X2(«-2),l-a/2 

2(«-l) 
(4.17) 

where Xv,5 denotes the 1005 th percentage point of the chi-square distribution with v 

degrees of freedom. For higher dimensions, Alt et al. (1986) suggested the use of the 3-

sigma limits as given by the following formulae : 

LCL=(Z>3-3^»f)|Eor 

l/2xlv^ |V2 and UCL = (Z)3+3Z>r)|E (4.18) 

where 

2 v/^A 
/ = 1 

v«-iy . 2 J 

n-l (4.19) 

and ^ = — ^ ff(«-/)-2^ n 
( = 1 

« - z+r 
2 Ĵ 

-\2 

(4.20) 

The use of this charting technique is iU-advised because :-

(i) U is incapable of detecting changes in E such that |E| remains constant. 

(ii) the formula (4.18) above yields negative values for the lower control limit for most 

practical values of/? and n. If LCL is thus set to zero as suggested by Alt et al.(1990), 

this means no protection is provided by the resulting |8| chart against a decreasing 

value in |E| . 

(iu) the associated false alarm rate is considerably larger than the nominal value of 

0.0027 especially when n is relatively smaU. Refer to Table 4.1 for the false signal 

rates for various practical combinations of/? and n. These figures are obtained based 

on 10,000 simulation runs except when /? = 3 or 4 in which case the entries are 
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found by numerical integration. Note that, in some cases, the false signal rate is as 

large as 2%. 

1/2 
Table 4.1. False 8ignal Rate of S Chart with '3-sigma' Limits 

W'^^^v^ 

4 
5 
6 
7 
8 
9 
10 
15 
20 
25 
30 

P 
3 

0.0203 
0.0174 

0.0154 

0.0139 
0.0128 
0.0118 
0.0111 
0.0087 
0.0085 
0.0071 
0.0056 

4 

0.0206 

0.0188 

0.0172 

0.0159 
0.0149 
0.0140 

0.0110 
0.0093 
0.0079 
0.0075 

5 

0.0203 
0.0187 

0.0191 
0.0141 
0.0178 
0.0130 
0.0108 
0.0108 
0.0106 

6 

0.0219 
0.0197 
0.0191 
0.0192 
0.0143 
0.0121 
0.0123 
0.0111 

7 

0.0202 
0.0199 
0.0207 
0.0157 
0.0148 
0.0125 
0.0098 

8 

0.0203 
0.0220 
0.0170 
0.0166 
0.0121 
0.0119 

9 

0.0205 
0.0204 
0.0164 
0.0124 
0.0137 

10 

0.0180 
0.0140 
0.0169 
0.0114 

To illustrate the first two points, consider the case of a trivariate process. In this case, 

the population generalized variance is expressible as 

IVl ^ 2 ^ 2 2 
H = ^1^2.1^3.1,2 

= CTja^(l-Pl2)03(l-p3(l,2)) 

= c5{ai{l-Q{2)^U 1- 2 , (P23-P12P13) 
Pl3 "̂  , ^2 

I -P12 

subject to the constraint 

1 - 9n - 9x3 - P23 + 2pi2pi3p23 > 0 • 

Thus, U is readily seen that, theoretically, U is possible for |E| to remain constant or even 

decrease in the presence of process troubles. For example, suppose that 

0̂  = 02=03 = 1, pi2 = 0.1, Pi3 = 0.7 and P23 = 0.5 are specified as the in-control 

values, but in fact Oj is 3 times as large as that specified and P23 is 0.7553, then |E| 

remains at the value 0.32. If a . doubles instead, then this resuUs in a smaller value of 
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|E|. In either case, the departure is unlikely to be 'picked up' by the |8|^^ charts 

presented by Alt et al.(1986). 

It is perhaps worth noting that, for/? = 3 or 4, control limits for the 181̂ ^̂  chart 

can be obtained numerically at any desired a level. In this case, the control limits are 

given by 

LCL= .^«^^ „ n | l o r ' and UCL= ^'-'=^'^ \ z r (4.21) 
2^^(«-l)^^^' °' 2^-^(«-l)^^^' °' ^ ^ 

where 5̂ is a numerical solution to the integral equation, 

j G2(.-p){kJx^'-'~^'')g^p_2^„_p,2ix)dx = 5 . (4.22) 

0 

The notation g^(«) and G^(«) here denote respectively the probability density and the 

distribution fiinction of a chi-square variable with v degrees of freedom, k^ is obtained in 

this manner using Mathematica version 2.2 (Wolfram (1991)) and is given to 4 

significant digits in Table 4.2 for/? = 3 and 4, and various combinations of 6 and n. 

The last technique considered for the known E case is aimed at changes of E 

along the principal axes. It involves charting the sum of the standardized variances for 

the principal components, abbreviated hereafter as SSVPC, which is known to be 

distributed as a scaled chi-square variable under the multivariate normal assumption with 

the hypothesized E . The value of SSVPC may be calculated from the familiar equivalent 

statistic («-1)^^(8Eo/ (see Appendix A.6). Note that, unlike all other control 

procedures considered in this section, this technique is applicable even in situations 

where n< p. It has also been shown by Kiefer and Schwartz (1965) that U is admissible. 

Although separate momtoring of the variances for the different principal components is 
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possible, this is not considered due to the large number of charts to be kept when p is 

large. It is also for meaningfiil comparison with other techniques involving a smgle chart 

that separate monitoring of the variances is not considered. However, in practice, it is the 

recommendation that these individual variances be retained in order to faciUtate the 

mterpretation of out-of-control signals from the SSVPC charts. 

J»i 

^ 

3 

4 

4 
5 
6 
7 
8 
9 
10 
15 
20 

5 
6 
7 
8 
9 
10 
15 
20 

Table 4.2. 
1 |J/2 

|8| Control Chart Factor, A^ 
S 

0.00135 

.0034 

.1513 

.6842 
1.673 
3.117 

5.050 
7.417 
25.39 
52.80 

.0108 

.5297 

2.620 
6.981 

14.10 
24.36 
132.1 
350.0 

0.0025 

.0063 

.2082 

.8573 
2.007 

3.652 
5.780 
8.375 
27.76 
56.65 

.0200 

.7308 
3.303 
8.427 
16.60 
28.13 
146.0 
379.1 

0.005 

.0126 

.2994 
1.112 
2.473 
4.367 
6.770 
9.659 
30.73 
61.51 

.0401 
1.055 
4.318 
10.49 
20.03 
33.30 
164.1 
416.6 

0.995 

20.98 
34.48 
48.15 
62.25 
76.85 
91.92 
107.5 
191.7 
285.6 

90.46 
169.3 
260.4 
364.3 

480.6 
609.1 
1427 
2522 

0.9975 

24.48 
38.87 
53.81 
68.86 
84.35 
100.3 
116.7 
204.9 
302.6 

108.0 
195.9 
296.2 

409.6 
535.7 
674.2 
1546 
2703 

0.99865 

27.73 
43.18 
58.90 
74.70 
91.01 
107.7 
124.8 
216.5 
317.4 

124.5 
220.5 
329.1 
450.4 

585.0 
732.7 
1652 
2862 

In the absence of prior information about E, Alt et al.(1990) suggested using the 

,|l/2 
MLRT and |S| control charts wUh the unknown process dispersion parameters in 

(4.16) and (4.18) being replaced by some unbiased estimates based on current 

production data. Under these circumstances, the data used for estimating the unknown 

parameters are likely to be either small or moderate data sets. Accordingly, the false 

signal rates of the resuhing techniques are not fixed but instead vary stochastically wUh 

the parameter estimates. This causes some difificuUies when a comparison is to be made 
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between these and the proposed technique. Thus only MLRTECM, which was originaUy 

proposed in the context of hypotheses testing, is considered. 

The criterion for MLRTECM is 

W = [EA2, - ^ J ln|s^,,,,^|- ^ (« , . -l)ln|S(,)| (4.23) 
/=i 

where Ŝ ,-,, «, and 8̂ ^̂ ^̂ ^ denote respectively the rth sample covariance matrix, Us 

associated sample size and the pooled covariance matrix based on the q samples. It was 

shown by Anderson (1984) that U is an admissible test if «, >2/?- l , i = l,...,q. For 

equal sample sizes n^=n, this test rejects the null hypothesis that all the q samples are 

drawn from populations wUh the same covariance matrix if W> W^p„^ where W^p^^ 

denotes the critical value at the 100a% significance level. The upper 5% points of W 

have been tabulated, for example, in Anderson (1984) for various combinations of/?, q 

and n. There are two problems wUh the use of MLRTECM in the context of SPC. The 

existing tables for the percentiles of W are incomplete in regard to other values of/?, q, n 

and a which are required for SPC applications. Besides, successive values of W are 

correlated and thus the in-control behaviour of the resulting technique is somewhat 

unpredictable. However, it is found that ignoring this issue does not appear to have any 

remarkable effect on the overall false signal rate. Therefore, a reasonable comparison can 

stUl be made between this and the decomposition procedures by using the same a value 

for all the methods. 

It is shown in Appendices A.4, A.6 and A. 7 respectively that the statistical 

performance of MLRT, SSVPC and MLRTECM (for a step shift in E from EQ to Ej) 

_ i _ i _ i 

depend on the eigenvalues, Xi,...,X of E o ^ S i E o \ or equivalently, of EQ S I or 
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I l E o ^ whereas that of the |8| chartmg technique depends on EQ and Ei only 

through the product of these eigenvalues, X{X2...Xp (see A.5). Note that X{X2...Xp 

represents the ratio of the 'equal-content' volumes of the process ellipsoids 

corresponding to Ei and EQ respectively. In addition, Nagao (1967) and Das Gupta 

(1969) independently showed that the power fiinction of the MLRT is monotonically 

increasing with respect to |>-,-l| V/. Furthermore, note that the MLRT, SSVPC, 

I l l /2 

MLRTECM and |8| charting procedures are invariant w.r.t. the transformation 

X* = r x + p where T is any nonsingular matrix. This is not true with the 

decomposition techniques except when Y is diagonal. By letting F = diag\-^,...,^\, it 

is readily seen that the values of Fisher, Tippett and the proposed statistics are the same 

whether they are computed from the covariance or correlation matrix (see A. 8 and A. 9), 

and this is also true for the other invariant procedures considered above. However, 

difficulties arise when an attempt is made to compare their operating characteristics, 

since the statistical properties of the decomposUion techniques do not appear to be 

completely determined by the eigenvalues of E Q ^ E I E O ^ - TO provide a 'sensible' 

comparison, it is therefore necessary to consider several possible combinations of EQ 

and El which yield the same eigenvalues Xi,...,Xp (and thus the same eigenproduct 

X{X2...Xp) and determine the 'average' performance of the decomposition techniques 

relative to that of the competing procedures. Note, however, that only HQ'S in the form 

of correlation matrix need to be considered. 

A somewhat systematic way of studying the relative performance of the various 

competing techniques is to use several arbitrary orthonormal matrices F 's that 
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diagonalize E Q ^ ^ S I S O ^ ^ giving the same diagonal matrix of eigenvalues, 

A = diag(Xi,...,Xp). For a given EQ , A and T , Ei is then determined from 

Ei = Err^ArEr. 

Amongst others, the orthonormal matrix that diagonaUzes EQ , T = FQ is used. This 

corresponds to situations where the shift is along the principal axes, namely, the 

variances of some principal components either increase or decrease. Under these 

circumstances, the eigenvalues of EQ^^ E I EQ^^ are the ratios of variances for the 

principal components, after and before the shift, and hence the control performance of 

MLRT, MLRTECM, SSVPC and |8| depend on them (see A. 10). Note that if the 

eigenvalues of E Q ^ ^ E I E Q ^ ^ are identical, then Ei is the same irrespective of F . In 

this case, Ei = A-EQ where X is the common eigenvalue. This situation may occur in 

practice as a consequence of all variances increasing proportionally and tUe correlational 

structure of the variables remaining the same (see Healy (1987)). 

The techniques considered for the known E case above are compared on the 

basis of the probability of detecting a persistent shift in the process covariance matrix 

from Eo to El . It is assumed that this change, as well as the shift in the process mean 

vector if any, occurs somewhere during the time interval between the sampling of two 

adjacent subgroups. Accordingly, the covariance matrices for samples or subgroups 

taken after the shift are characterized by a common distribution and the mean shift has no 

effect on this distribution. Of course, if desired, the average run lengths (ARLs) of the 

various techniques can be determined as the reciprocals of their corresponding 

probabilities of detection. As for the unknown E case, a more complete profile of the 

run length (RL) properties is required. This is because the out-of-control RL 
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distributions of aU techniques under consideration are not geometric so that the ARL is 

not a suitable performance criterion (see Quesenberry (1993,1995d)). Furthermore, since 

these techniques estimate the in-control dispersion parameters sequentially from the 

current data stream and the efficiency of these estimates increases as more data are 

incorporated into the computations, it can be expected that their RL performance 

depends on when the shift takes place. As such, the relative performance of MLRTECM, 

Fisher, Tippett and the proposed techniques are evaluated based on Pr(7?L < k) for a 

step change in E after the rth subgroup, for various combinations of r and k. 

The resuUs for the known E case are tabulated in Tables 4.3, 4.4 and 4.5 

respectively for the cases where (p = 3, n = 4), (p = 4, n = 5) and (/? = 5, « = 8). These 

are based on simulations consisting of 5000 iterations each. Thus, the estimated 

Pr(l-Pr) 
maximum standard error of the resuUs is J—^^ « 0.0071 which occurs when the 

V 5000 

estimated probability, Pr = 0.5. For the unknown E case, the results are based on 2000 

simulation runs each (with maximum standard error w 0.0112) and these are shown in 

Tables 4.6, 4.7 and 4.8 respectively for (p = 2, n = 3),(p = 3,n = 4) and (p = 4, « = 5). 

Here, U is assumed that the control procedures are based on subgroups of equal size, n. 

The false signal rate associated with each of the control schemes is fixed at 0.0027, in 

line with the tradional control charting approach. Note that the control Umits for MLRT 

and MLRTECM are obtained to sufficient accuracy using the work of Davis and Field 

(1971). The control Umits for the | s f ^ chart are determined from Table 4.2 for/? = 3, 4 

and by means of simulation consisting of 100,000 Uerations for/? = 5 and « = 8. Note 

also that 2-sided control limits with equal significance level on each side are used with 

SSVPC. 
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,|l/2 Table 4.3. Power Comparison of MLRT, \S\"'\ S8VPC and Decomposition (Proposed, 
Fisher and Tippett) Techniques for/? = 3, « = 4 and a = 0.0027. 

Eigenvalues 

ofEo'Si 

4, 1, 1 

6.25, 1, 1 

2.25,2.25, 2.25 

4, 4, 4 

6.25, 6.25, 6.25 

'(1,0.25,4) 

(1,0.16,6,25) 

(1,0.1,10) 

(1,0.05,20) 

MLRT 

0.0226 

0.0888 

0.0102 

0.1326 

0.4276 

0.0342 

0.1046 

0.3026 

0.6062 

,;l/2 

0.0206 

0.0340 

0.0862 

0.3182 

0.5234 

0.0030 

0.0028 

0.0040 

0.0042 

SSVPC 

0.1668 

0.3374 

0.2140 

0.6674 

0.8944 

0.1298 

0.2890 

0.5036 

0.7410 

Power 

' Decomposition Methods 

Max Med Min 

* 0.1820; 0.1286; 
0.1660; 0.1494 <?.7202; 0.0968 0 

t 0.1622; 0.1474; 
0.1314;0.U3S 0.7250; 0.1100 0 

t 0.1390; 0.1334; 
0.747<J; 0.1216 0.7752; 0.1044 0 

0.3490; 0.3060; 
0.3336; 0.3210 0.3168; 0.2868 0 

0.3174; 0.3122; 
0.3092; 0.2786 0.2906; 0.2540 0. 

0.3010; 0.2976; 
0.2988; 0.2754 0.2832; 0.2452 0 

0.1254; 
7074; 0.0832 

0.1346; 
7222; 0.1034 

0.1262; 
7775; 0.1036 

0.2926; 
2842; 0.2476 

0.2874; 
25P4; 0.2508 

0.2936; 
2768; 0.2356 

0.1688 

0.6014 

0.8664 

0.1704 

0.0886 

0.1306 

0.3324 

0.2786 

0.2732 

0.5622 

0.4610 

0.4846 

0.8066 

0.7528 

0.7430 

0.1546; 0.U4S 

0.6006; 0.4622 

0.8524; 0.7634 

0.7J70; 0.1824 

0.7044; 0.0998 

0.7752; 0.1190 

0.3148; 0.3366 

0.2522; 0.2358 

0.2744; 0.2706 

0.5580; 0.5826 

0.45iS; 0.4522 

0.4542; 0.4538 

0.7702; 0.8008 

0.752(5; 0.7214 

0.7i7(J; 0.7290 

n= 
I" 1 

0.75 

la45 

a7s 
1 

09 

0.45"̂  

OS 

1 J 

is used. 

The entries for the decomposition methods are for the paiticulai permutations of eigenvalues enclosed within the brackets. 

* The entries in 1st block are for shifts along the principal axes. 

t The entries in 2nd block are for shifts determined by 
r= 

X The entries in 3rd block are for shifts determined by 

1 / ^ 

U,l2 
11 Je 

0.44 

0.78 

0.44 

uji 
-vji 
i/Ji 

0.85 
-052 
ao6 

uji 
0 

-2/^6 

0:27 I 

035 
-090 
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ll/2 
Table 4.4. Power Comparison of MLRT, |8| , 8SVPC and Decomposition (Proposed, 

Fisher and Tippett) Techniques for/> = 4,« = 5 and a = 0.0027. 

Eigenvalues 

ofZo'Si MLRT All SSVPC 

Power 

' Decomposition Methods 

Max Med Min 

4, 1, 1, 1 0.0154 

6.25, 1, 1, 1 0.0688 

2.25,2.25,2.25,2.2^ 0.0110 

4 ,4 ,4 ,4 0.1914 

6.25,6.25,6.25,6.25| 0.6144 

b "(0.25,0.25,4,4) 

(1,1,0.16,6.25) 

(0.16,0.16,6.25,6.25) 

(1,1,0.1,10) 

0.0810 

0.0932 

0.3412 

0.3040 

0.0214 

0.0346 

0.1358 

0.4480 

0.6968 

0.0040 

0.0012 

0.0038 

0.0036 

Io = 

( 1 0.5 0.9 0.6^ 

0.5 1 0.2 0.7 is used. 

0.9 0.2 t 0,4 

1,0.6 0.7 0.4 1 J 

0.1712 

0.3812 

0.3802 

0.8846 

0.9842 

0.3218 

0.3114 

0.6570 

0.5662 

* 0.1782; 0.1664; 0.1452; 
0.7522; 0.2084 0.7574; 0.1665 0.7iPO; 0.1538 

t 0.1850; 0.1530; 0.1326; 
0.7725; 0.1876 0.7452; 0.1511 0.7225; 0.1258 

% 0.1656; 0.1480; 0.1350; 
0.7772; 0.1416 0.1331; 0.1292 0.1138; 0.1004 

0.3996; 0.3790; 0.3502; 
0.3838; 0.4270 0.3546; 0.3653 0.3428; 0.3570 

0.4010; 0.3373; 0.3320; 
0.3602; 0.4076 0.3370; 0.3312 0.3228; 0.2942 

0.3850; 0.3448; 0.3280; 
0.3584; 0.3380 0.3158; 0.3276 0.3008; 0.2694 

0.2970; 0.2762 

0.8300; 0.8528 

0.9746; 0.9680 

0.4116; 0.4088 

0.4150; 0.3664 

0.4466; 0.4352 

0.3616; 0.3570 

0.3742; 0.3622 

0.3380; 0.3074 

0.7208; 0.7122 

0.7358; 0.6858 

0.7587; 0.7552 

0.6116; 0.5972 

0.6064; 0.5990 

0.5868; 0.5440 

0.1686 

0.6470 

0.9186 

0.3726 

0.3478 

0.3434 

0.3778 

0.3454 

0.3754 

0.6816 

0.6602 

0.6340 

0.5984 

0.5902 

0.6006 

' The entries for the decomposition methods are for the particular permutations of eigenvalues enclosed within the brackets. 

* The entries in 1st block are for shifts along the principal axes. 
r 1/2 1/2 1/2 

t The entries in 2nd block are for shifts determined by 

t The entries in 3rd block are for shifts determined by 

1/2 

1/^2 -I/V2 0 0 

l/Vs 1/V6 -2/V6 0 
,1/̂ 12 i/Vi2 i/i/iz -21 Jn) 

(0S9 0.07 0.09 0.06' 
-0.11 OJO 058 0J5 
-0.08 0.71 -019 0.04 

10.06 0J5 0.68 -0.72; 
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11/2 
Table 4.5. Power Comparison of MLRT, |8| , 8SVPC and Decomposition (Proposed, 

Fisher and Tippett) Techniques for/; = 5, « = 8 and a = 0.0027. 

Eigenvalues 

ofSo'Si MLRT |S| 
1/2 SSVPC 

Power 

* Decomposition Methods 

Max Med Min 

4 ,1 ,1 ,1 ,1 0.0946 0.0320 0.2604 

9,1,1,1,1 0.5336 

2.25,2.25,2.25,2.25,2.25 

4 ,4 ,4 ,4 ,4 

''(1,1,1,0.25,4) 

(1,4,0.25,0.25,4) 

(1,6.25,0.16,0.16,6.25) 

(1,1,1,0.1.10) 

0.1356 

0.8440 

0.1332 

0.4620 

0.8692 

0.7622 

0.0844 0.7406 

0.4694 

0.9232 

0.0026 

0.0008 

0.0040 

0.0042 

0.7560 

0.9954 

0.1766 

0.4624 

0.8156 

0.7398 

* 0.2356; 0.2206; 0.1926; 
0.2052; 0.2174 0.2004; 0.1702 0.7858; 0.1550 

t 0.2788; 0.2450; 0.2206; 
0.2674; 0.2474 0.2782; 0.2302 0.2048; 0.2040 

% 0.3174; 0.2362; 0.2176; 
0.3020; 0.2472 0.2224; 0.1834 0.1896; 0.1768 

0.7456; 0.7256; 0.7188; 
0.7505; 0.7058 0.7724; 0.6722 0.5872; 0.6370 

0.7708; 0.7626; 0.7262; 
0.75P4; 0.7476 0.7542; 0.7208 0.7220; 0.7042 

0.7838; 0.7350; 0.7174; 

0.8050; 0.7202 0.7478; 0.6902 0.7005; 0.6784 

0.5792; 0.5738; 0.3152 

0.9926; 0.9882; 0.8998 

0.1866; 0.7740; 0.1702 

0.2990; 0.2932; 0.2414 

0.2766; 0.2850; 0.2486 

0.5422; 0.5576; 0.3652 

0.6694; 0.6672; 0.4354 

0.6244; 0.6160; 0.4072 

0.9006; 0.9052; 0.7574 

0.9344; 0.9398; 0.7618 

0.9396; 0.9470; 0.7854 

0.7780; 0.7758; 0.7098 

0.8642; 0.8502; 0.7676 

0.8532; 0.8360; 0.7972 

1 0.58 051 039 0.46' 
0j8 1 0.6 039 032 is used. 
Oil 0.6 1 0.44 0.43 

039 039 0.44 1 052 

0.46 032 0.43 052 1 

Tlie entries for the decomposition methods are for the paiticulai permutations of eigenvalues enclosed within brackets. 

* The entries in 1st block are for shifts along the principal axes. 
t The entries in 2nd block are for shifts determined by \/.^ \/Ji \ o o 

r= 1/76 i/Vs -2/1/6 0 0 
1/JI2 vJn \ijn -)ijn o 
,1/,^ 1/,/M I/TM UM /̂TZO, 

t The entries in 3rd block are for shifts determined by 0.88 -0.48 0.00 0.00 0.00' 
0.47 0.87 OJl 0.08 0.07 

-0.07 -Oi3 052 059 059 
-0.02 -0.03 0«5 -034 -0.41 
nnn nnn ni\A nft n/:Q 
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Table 4.6 Pr(RL < k) for a Change in Z after the rth Subgroup, by MLRTECM and 
Decomposition (Proposed, Fisher and Tippett) Techniques for p = 2, n = 3 
and a = 0.0027. 

Eigenvalues 

of So ' Si MLRTECM 

' Decomposition Methods 

Max Min 

4, 1 10 

20 

9, 1 10 

4, 4 

6.25, 6.25 

9, 9 

20 

10 

20 

10 

20 

10 

20 

10 

10 

10 

10 

5 
10 
5 

10 
5 

10 
5 

10 
5 

10 
5 

10 

0.0110 

0.0205 

0.0125 

0.0165 

0.0360 

0.0525 

0.0485 

0.0970 

0.0265 
0.0425 
0.0330 
0.0645 
0.0675 
0.1090 
0.0940 
0.1905 
0.1465 
0.2270 
0.2365 
0.4120 

* 0.7275 (0.1230) 0.1315 0.0955 (0.0945) 0.0705 
t 0.1675 (0.1745) 0.1925 0.1040 (0.1185) 0.0990 
t 0.1610 (0.1725) 0.1730 0.0895 (0.0930) 0.0800 

0.1830 (0.1840) 0.1835 0.1350 (0.1370) 0.0965 
0.2025 (0.2185) 0.2490 0.1505 (0.1605) 0.1210 
0.7P55 (0.2060) 0.1985 0.75P0 (0.1385) 0.1150 
0.2265 (0.2480) 0.2415 0.7955 (0.1950) 0.1475 
0.2515 (0.2775) 0.3050 0.1935 (0.2045) 0.1870 
0.2180 (0.2370) 0.2320 0.1975 (0.1915) 0.1480 
0.3315 (0.3345) 0.3285 0.2810 (0.2845) 0.2400 
0.3290 (0.3490) 0.3675 0.2950 (0.2955) 0.2715 
0.3270 (0.3545) 0.3720 0.3035 (0.3050) 0.2530 
0.4730 (0.4915) 0.4960 0.3445 (0.3470) 0.2445 
0.4635 (0.5055) 0.5450 0.2990 (0.3035) 0.2490 
0.4445 (0.4670) 0.5225 0.3120 (0.3140) 0.2270 
0.5360 (0.5675) 0.5780 0.3920 (0.3855) 0.2855 
0.5360 (0.5740) 0.6150 0.4065 (0.4065) 0.3270 
0.5355 (0.5620) 0.5940 0.4090 (0.4045) 0.3240 
0.6510 (0.6675) 0.6760 0.5475 (0.5490) 0.4175 
0.7210 (0.7425) 0.7680 0.5800 (0.5845) 0.5130 
0.6565 (0.6805) 0.7105 0.5685 (0.5640) 0.4530 
0.7760 (0.7980) 0.8085 0.7030 (0.6955) 0.5535 
0.8055 (0.8245) 0.8490 0.7790 (0.7205) 0.6295 
0.7765 (0.8045) 0.8090 0.6955 (0.6920) 0.5730 

0.5540(0.3575)0.3200 
0.4055(0.4160)0.3815 
0.5035 (0.5135) 0.4730 
0.5570(0.6705)0.6340 
0.5950(0.6110)0.5445 
0.5555(0.6820)0.6265 
0.8275(0.8405)0.7810 
0.9240(0.9320)0.8865 
0.8025(0.8100)0.7370 
0.8570(0.8535)0.7930 
0,9550(0.9725)0.9450 
0.9745(0.978510.9780 

Io = 
1 0.5 

05 1 
is used. 

* The entries in 1st row are for shifts along the principal axes. 
f-0.996 0.094^ 

t The entries in 2nd row are for shifts determined by T= 
1,-0.094 -0996J 

f0.189 0982) 
I The entries in 3rd row are for shifts determined by F = A . oo ' 
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Table 4.7. Pr(RL < k) for a Change in Z after the rth Subgroup, by MLRTECM and 
Decomposition (Proposed, î w/zer and Tippett) Techniques for/; = 3, « = 4 and 
a = 0.0027. 

Eigenvalues 

of l o ' S , MLRTECM 

' Decomposition Methods 

Max Med Min 

4,1,1 10 

10 

20 

9,1,1 

4,4,4 

9,9,9 

10 

10 

20 

10 

20 

10 

20 

10 

10 

5 
10 
5 
10 
5 
10 
5 
10 

' I 0.75 0.45' 

0.75 1 09 

,0.45 0,9 1 , 

is used. 

0.0100 

0.0170 

0.0135 

0.0145 

0.0300 

0.0495 

0.0335 

0.0785 

0.0420 
0.0690 
0.0450 
0.0810 
0.3090 
0.4460 
0.4768 
0.7655 

*0.1560 
1-0.7465 
10.1575 
0.2010 
0.1880 
0.2375 
0.2975 
0.2595 
0.2440 
0.3665 
0.3270 
0.3705 
0.5560 
0.5455 
0.4990 
0.6065 
0.6325 
0.5340 
0.7570 
0.7255 
0.7630 
0.8560 
0.8460 
0.8415 

(0.1685)0.1605 
(0.1740)0.2160 
(0.1750)0.1670 
(0.2175) 0.1915 
(0.2145) 0.2780 
(0.2510) 0.2740 
(0.3130) 0.2555 
(0.2935) 0.3515 
(0.2665) 0.2900 
(0.3760) 0.3405 
(0.3575) 0.4685 
(0.3990) 0.3970 
(0.5895) 0.5840 
(0.6040) 0.7005 
(0.5385) 0.6120 
(0.6480) 0.6410 
(0.6855) 0.7940 
(0.5955) 0.6825 
(0.7865) 0.7705 
(0.7780) 0.8590 
(0.8035)0.7915 
(0.8785) 0.8440 
(0.8915) 0.9480 
(0.8650) 0.8910 

0.7470(0 
0.7255(0. 
0.7505(0. 
0.7755(0. 
0.7555(0. 
0.7725(0. 
0.2540 (0. 
0.1065(0. 
0.7970(0. 
0.3560 (0. 
0.3075 (0. 
0.3010 (0. 
0.5270 (0, 
0.4225 (0. 
0.4760(0. 
0.5740 (0. 
0.4920 (0. 
0.5310 (0. 
0.7450(0 
0.6825(0. 
0.6885 (0, 
0.8465 (0 
0.7860(0 
0.7870(0 
0.5945 (0. 
0.6740 (0. 
0.8220(0 
0.9055 (0. 
0.9810 (0 
0.9890 (0 
1.0000 (1, 
1.0000(1. 

1545)0.1160 
1335)0.1380 
1460)0.1500 
1815)0.1325 
1770) 0.2085 
2035) 0.2530 
,2590)0.1965 
2210)0.1990 
2235) 0.2575 
3705) 0.2905 
3410) 0.3230 
3305) 0.3640 
,5405) 0.3990 
4535) 0.4360 
5360) 0.5500 
,5935) 0.4795 
5220) 0.5320 
5795) 0.5970 

L7565) 0.6230 
7055) 0.6680 
,7440) 0.7875 
,8545) 0.7500 
,8175) 0.7855 
8255) 0.8775 
6125) 0.4750 
6840) 0.5365 
8245) 0.6780 
9230) 0.8310 
9845) 0.9500 
9895) 0.9540 
0000) 0.9955 
0000) 1.0000 

0.0935 (0, 
0.0605 (0. 
0.0755 (0. 
0.1130(0. 
0.1160 (0. 
0.7780 (0. 
0.7870 (0, 
0.1435(0. 
0.1450 (0. 
0.2565 (0, 
0.2280 (0. 
0.2055 (0. 
0.2575 (0, 
0.2710 (0. 
0.5770 (0, 
0.3260 (0, 
0.3615 (0 
0.3630 (0. 
0.5455 (0, 
0.5350 (0. 
0.5155 (0. 
0.6270(0 
0.6810 (0 
0.6595 (0 

,0940)0.1040 
0575) 0.0495 
0745) 0.0580 
,1175) 0.1220 
1240) 0.0895 
1205)0.0845 
.1935)0.1930 
1445)0.1060 
1440)0.1205 
,2765) 0.2805 
2335)0.1705 
2185)0.1640 
,2670) 0.2350 
,2695)0.1550 
,3065) 0.2325 
3505) 0.3290 
,3640) 0.2305 
,3760) 0.2785 
.5770) 0.5240 
5275) 0.3250 
,5235)0.3615 
1.6590) 0.6485 
6785) 0.4700 
6560)0.5130 

* The entries in 1st row are for shifts along the principal axes. 

t The entries in 2nd row are for shifts determined by _ _ 

t The entries in 3rd row are for shifts determined by _ 

f'0.87 

-0.36 

I 0.34 

^0.85 

0.31 

^-0.43 

0.23 

-0.31 

-0.92 

0.04 

-0.85 

-0.53 

0.44 "l 

0.88 

-0.19J 

0.53) 

-0.43 

0.73 j 
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Table 4.8. Pr(RL < k) for a Change in Z after the rth Subgroup, by MLRTECM and 

Decomposition (Proposed, Fisher and Tippett) Techniques for/7 = 4, « = 5 and 
a = 0.0027. 

Eigenvalues 

of l o ' Si 

4, 1, 1, 1 

9,1,1,1 

4,4,4, 4 

9, 9, 9, 9 

10 

20 

10 

20 

10 

20 

10 

20 

10 

10 

10 

10 

5 
10 
5 
10 
5 
10 
5 
10 

MLRTECM 

0.0055 

0.0205 

0.0130 

0.0225 

0.0300 

0.0465 

0.0370 

0.0745 

0.0585 
0.1125 
0.0750 
0.1675 
0.5755 
0.7580 
0.7500 
0.9535 

' Decomposition Methods 

Max Med Min 

*0.1800 
\0.1705 
10.1675 
0.2305 
0.2080 
0.2040 
0.3130 
0.2635 
0.2745 
0.4150 
0.3515 
0.3545 
0.6220 
0.6085 
0.5825 
0.6800 
0.6415 
0.6625 
0.8205 
0.7980 
0.7940 
0.9040 
0.8625 
0.8740 

(0.2005) 0.2730 
(0.1940)0.2530 
(0.1885)0.2340 
(0.2585) 0.3340 
(0.2420) 0.3095 
(0.2435)0.3140 
(0.3365) 0.4245 
(0.3130) 0.3960 
(0.3175) 0.4150 
(0.4650) 0.5305 
(0.3925) 0.5030 
(0.4015)0.5145 
(0.6895) 0.7910 
(0.6740) 0.8425 
(0.6540) 0.7995 
(0.7465)0.8670 
(0.7105) 0.8240 
(0.7390) 0.8450 
(0.8820) 0.9175 
(0.8565) 0.9095 
(0.8735) 0.9185 
(0.9285) 0.9555 
(0.9090)0.9610 
(0.8980) 0.9475 

0.7555(0. 
0.7575(0. 
0.1015(0. 
0.2020 (0. 
0.1895 (0. 
0.1430 (0. 
0.2700 (0 
0.2295 (0. 
0.2210 (0. 
0.3670 (0 
0.3210 (0, 
0.3145 (0. 
0.5180 (0 
0.4955 (0. 
0.4710 (0. 
0.5975 (0, 
0.5370 (0. 
0.5330 (0. 
0.7895(0 
0.7545(0. 
0.7325(0. 
0.8535 (0 
0.8365 (0 
0.8775 (0 
0.8190 (0, 
0.8595 (0. 
0.9690 (0. 
0.9960 (0. 
7.0000(1. 
1.0000 (1. 
7.0000 (L 
1.0000(1. 

1710)0.1695 
1415)0.1475 
1125)0.1080 
,2200) 0.2295 
1985)0.1850 
1465)0.1745 
.3055)0.3130 
,2515) 0.2550 
2415) 0.2555 
,4015) 0.4220 
3460) 0.3585 
,3380) 0.3415 
5640) 0.5335 
5355) 0.5080 
5020) 0.4895 
.6395) 0.6275 
5840)0.5515 
,5765) 0.5530 
.8210)0.8110 
7870) 0.7510 
7685) 0.7425 

1.9015) 0.8930 
8625) 0.8355 
8505) 0.8345 

,8305) 0.6405 
9030) 0.6985 
,9690) 0.8380 
9965) 0.9200 
,0000) 0.9865 
0000) 0.9980 
,0000) 1.0000 
0000) 1.0000 

0.0580 (0, 
0.0690 (0. 
0.0650 (0. 
0.0900 (0. 
0.1030 (0. 
0.0950(0. 
0.1325(0. 
0.1320 (0. 
0.1315 (0. 
0.7575(0. 
0.2060 (0. 
0.2090 (0. 
0.7975(0 
0.2560 (0. 
0.2590 (0. 
0.2755 (0. 
0.3355 (0, 
0.3190 (0. 
0.4965(0 
0.5290 (0. 
0.5215 (0. 
0.5845 (0. 
0.6445(0. 
0.6245(0 

.0575) 0.0570 
0630) 0.0650 
,0635) 0.0265 
,0925) 0.0950 
1060) 0.0895 
1005) 0.0690 
.1350)0.1350 
1405)0.0955 
1435)0.1080 
,1835)0.2100 
2160)0.1755 
2145)0.1690 
.1990)0.1665 
2765) 0.2360 
2655)0.1770 
.2830) 0.2480 
.3450) 0.2575 
3295) 0.2460 
,5185) 0.4660 
5400) 0.4025 
,5335) 0.3760 
6100) 0.5675 
6715) 0.5200 
6320) 0.4960 

20 = 

1 

0 5 

0.9 

0.6 

0 5 

1 

0.2 

0.7 

0.9 

0.2 

1 

0.4 

0.6'| 

0.7 

0.4 

1 J 

is used. 

* The entries in 1st row are for shifts along the principal axes 
t The entries in 2nd row are for shifts determined by 

r 

X The entries in 3rd row are for shifts determined by 

( 096 

-0.27 

0.04 

1-0.06 

' 0 9 6 

0.28 

0.01 

^0.07 

OJl 

0.11 

-0.66 

0.74 

0.12 

-0.23 

0.62 

-0.74 

0.26 

0.94 

0.22 

0.02 

0.26 

-0.87 

-0.42 

-0.04 

0.03] 

0.17 

-0.72 

-O.67J 

0.04 "] 

- 0 3 3 

0.66 

-0.6 7J 
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For every set of eigenvalues X^,...,Xp not enclosed within a bracket, the 

probabilities for the decomposition techniques are simulated for all possible permutations 

and the maximum, median and minimum values are tabulated, except for /? = 2 in which 

case the median is not applicable. The results for the other control procedures are 

unaffected by these permutations. Note that for the cases where the eigenvalues are 

identical, the results for each of the decomposition techniques are theoretically the same 

irrespective of ZQ (see section 4.7). As shown in Tables 4.3, 4.4 and 4.5, the proposed 

. |l/2 

technique is far more sensitive to all the shifts considered than the MLRT and |S| 

charting procedures. Note that even its worst performance in each case is significantly 

better than these procedures. For instance, when/? = 5, « = 8 and the standard deviation 

of a principal component trebles, the results for the MLRT and |S| techniques are 

respectively 0.5336 and 0.0844 whereas the smallest probability of detection for the 

proposed procedure is 0.7188. It is also observed that the proposed technique is 

generally better than Fisher's and Tippett's procedures. As compared to SSVPC, the 

proposed technique is seen to be marginally worst in most cases where one of the 

eigenvalues are greater than 1 whilst others are 1. However, in cases where some 

eigenvalues are greater and others are smaller than 1 (a situation which typically occurs 

as a result of some but not all of the variances increasing), the proposed technique is 

almost always superior. Particularly notable is the situation when/? is large. For instance, 

when/> = 5, « = 8 and the eigenvalues are (1, 1, 1, 0.1, 10), the result for SSVPC is 

0.7398 whereas those for the proposed technique are 0.7780, 0.8642 and 0.8532 

respectively for the different T considered. Note that the exact probabilities for SSVPC 

and |S|^^ charting technique (for/? = 3, 4) are obtainable using a published program and 
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standard statistical software. The program of Davies (1980) can be used for finding the 

cumulative probability of SSVPC since the latter is distributed as a linear combination of 

independent chi-square variables with coefficients X^,...,Xp (see A.ll). If X^,...,Xp are 

identical, resulting in a scaled chi-square distribution, then many of the statistical 

software packages currently available can be used. If p = 3 or 4, the cumulative 

probability of |S| can be determined by means of numerical integration. However, as a 

partial check of the simulation, the simulation results for these techniques are included. 

They are found to agree well with the theoretical values. For instance, the theoretical 

I r1 /2 

probabilities for |S| and SSVPC are (0.1333, 0.3828), (0.4575, 0.8873) and (0.7020, 

0.9866) for/? = 4, « = 5, a = 0.0027 and X^,...,Xp all equal to 2.25, 4 and 6.25 

respectively. These are very close to the corresponding figures in Table 4.4. 

As for the comparison for the unknown Z case. Tables 4.6, 4.7 and 4.8 clearly 

reveal that the proposed technique and the associated Fisher's and Tippett's procedures 

are far superior to MLRTECM irrespective of the dimension /?, the change point r, the 

eigenvalues X^,...,Xp and the direction of the shift as specified by T. It can also be seen 

that the proposed technique is as good as or significantly better than Fisher's procedure. 

As compared to Tippett's procedure, the proposed technique is generally worse in terms 

of'maximum performance'. However, the opposite is true when comparison is based on 

the 'medium' and the 'minimum performance'. Furthermore, the proposed technique is 

consistenly better than Tippett's procedure when the eigenvalues X^,...,Xp are all equal. 

Like the known E case, limited comparisons using other values of/?, n,r, EQ and some 

arbitrarily chosen F's yielded similar conclusions. 
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It is perhaps worth noting that Calvin (1994) has developed a one-sided test of 

covariance matrix with a known null value. However, no attempt has been made to 

compare the operating characteristics of this and the proposed technique. A reasonable 

comparison cannot be made since the former is specifically designed for situations where 

the deviations take the form of Z = Z Q + B (B is a symmetric positive definite matrix) 

whereas the proposed technique is not meant for any specific shifts. If the shift is 

anticipated to be of the form Z = ZQ + B , then the recommendation is to use the former 

technique. 

4.6 An Example 

In order to illustrate the behaviour of the proposed techniques and to compare 

them with previously proposed procedures, consider the hypothetical bomb 

manufacturing data analysed by Alt et al. (1986). The data consist ofm= 15 samples of 

« = 10 observations on the overall length of the bomb base (X^) and the depth to 

shoulder of bomb heads (Xj). The specified values of the dispersion parameters are 

Oi = 0.00216, 02 = 0.00384 and p = -0.6. Note that the values for samples 12, 13, 14 

and 15 have been generated fi-om an out-of-control process where both the process 

standard deviations, Oj and O2 were increased by 25%, 50%, 75% and 100%» 

respectively. The sample values of the dispersion parameters are reproduced in Table 

4.9. The authors found that samples 14 and 15 provide out-of-control indications when 

I 11/2 MLRT is used with a = 0.01. For the |S| technique using either exact control limits 

given by (4.17) with a = 0.02 or 3-sigma limits given by (4.18), it was found that only 

the 15th sample produces a signal. 
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Since the dispersion parameters are specified in this example, control statistic 

(4.14) can be used. The computed values of this statistic for all of the 15 samples are 

given in the same table and the associated control chart is shown in Figure 4.1(a). At 

a = 0.0027, UCL = 14.16. Thus, this technique 'picks up' the increased process 

variability at both the 14th and the 15th sample, as the MLRT does. Note particularly the 

impact of increased variability on the 14th sample. For this sample, the value of the 

control statistic is infinity giving a very strong indication of process troubles ! 

Next, suppose that the in-control process variance-covariance matrix is unknown 

as in the retrospective stage of the two-stage control procedure considered by Alt et al. 

(1990). In this case, the authors suggested replacing the unknown parameters |Zo| and 

Zo' in expression (4.16) for the MLRT statistic, W*, by the unbiased estimates 

m 

S|S(o| (n-p-2)ZSl^ 
|V| = ̂ ^i-—- and A = - - ^ 
' mb^ m{n-i) 

p , 

respectively where b^-{n-1)~^ J~[(« - 0 and treating the resulting values of W as the 
;=1 

true values. If W* exceeds appropriate percentage point or the control limit for any of 

the m samples, that sample is discarded and W* are recalculated for the remaining 

samples using the revised value of m, | V| and A . This procedure is repeated until there 

are no other samples with PF* beyond the control limit. Similarly, for the 3-sigma |S| 

charts, they suggested substituting the unknown parameter |Zo| with the unbiased 

estimate 

151 



y2 

I|s ( ' • ) 

;=1 

mb^ 

in expression (4.18) for the control limits where 3̂ is given by (4.19). If any of the m 

samples give out-of-control signal, that sample is deleted and control limits are 

recomputed using the remaining samples. This procedure is continued until none of the 

I 1I/2 
values of jS| exceed the control limits. Unlike these methods, the technique presented 

for the unknown Z case may be used as soon as the 2nd sample is available. Besides, the 

proposed technique does not involve recalculation of the control statistic and the revision 

of the control limits. The results for the respective techniques are provided in Table 4.9. 

In addition, the control chart associated with the proposed technique is shown in Figure 

4.1(b). Note that for the same value of a, this control chart has the same control limit as 

that for the known Z case. As shown in the figure, the out-of-control condition causes a 

spike on the control chart at the 14th sample. This out-of-control sample is removed 

I | l /2 

before control statistic (4.15) is computed for the next sample. For the 3-sigma |S| 

chart, the estimated control limits are respectively LCL = 0 and UCL = 3.41 x 10" . Note 

that LCL is set to 0 because its calculated value is negative. As shown in Table 4.9, this 

technique also reveals that sample 14 is affected by some special causes. After leaving 

out this sample and recalculating, the control limits become LCL=0 and 

UCL = 1.49 X10"̂  where again LCL here is set to zero for the same reason. No fiirther 

sample triggers out-of-control signal based on these revised limits. As for MLRT, the 

values of W* with the 'plug in' estimates are larger than the upper 1% point of 12.38 

(see Anderson (1984), p.641) for all of the 15 samples ! This is an unusual phenomenon 

that is likely to cause misinterpretation about the process status. However, it is seen from 
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Table 4.9 that the problem might be due in part to sample 14 since its W* value of 

2581.67 is unusually large. If this sample is dropped and W* is recalculated for the 

remaining samples, then there is an evidence that the last sample is affected by some 

special causes since its W* value of 12.65 is slightly larger than 12.38. No fiirther out-

of-control samples are found when this procedure is repeated. Note that the revised 

values of W are negative for a few samples. This is due to the use of the sample 

estimates in place of the unknown parameters in the expression for W*. 

Table 4.9. Alt and Bedewi (1986)'s Data and Values of Control Statistic (4.14), 
(4.15), MLRT statistic (unknown Z ) and IS | l /2 

Sampl( 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

^ i3i 

(xlO-^) 

3.71 

3.59 

5.56 

3.26 

6.70 

8.85 

7.93 

4.50 

4.71 

1.25 

4.89 

4.71 

4.71 

7,82 

10.93 

S'2 

(xlO-^) 

1.94 

1.46 

1.31 

1.11 

1.94 

3.26 

2.04 

1.79 

1.68 

0.99 

2.54 

1.38 

1.38 

390.30 

1.38 

"̂ 12 

(xlO-^) 

-4.40 

-2.82 

-2.56 

-2.96 

-10.44 

-14.13 

-11.04 

-6.29 

-3.26 

-1.60 

-8.28 

0.33 

0.33 

94.44 

1.28 

Statistic 

(4.14) 

2.65 

1.20 

2.11 

0.93 

3.89 

4.40 

2.60 

0.13 

1.95 

5.32 

1.59 

6.19 

6.19 

0 0 

19.85 

Statistic 

(4.15) 

NA 

0.25 

0.02 

1.98 

4.61 

0.89 

1.05 

0.10 

1.13 

1.30 

0.52 

4.53 

3.61 

0 0 

7.71 

MLRT 

28.25 

28.61 

29.11 

29.76 

35.38 

30.77 

32.27 

28.81 

28.18 

35.35 

29.01 

31.70 

31.70 

2581.70 

40.31 

Revised 

MLRT 

-0.40 

-0.11 

0.53 

0.84 

6.39 

2.20 

3.37 

-0.03 

-0.39 

6.32 

0.35 

3.37 

3.37 

NA 

12.65 

1̂ 11̂ 2 

(xlO"^) 

7.24 

6.67 

8.16 

5.24 

4.57 

9.41 

6.33 

6.42 

8.28 

3.13 

7.48 

8.06 

8.06 

147.00 

12.22 
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4.7 Effect of Aggregation on Control Performance 

As presented earlier, the proposed techniques involve the charting of some 

aggregate-type statistics formed using independent components resulting from the 

partitioning of the covariance matrices. Certainly, if the use of such a statistic incurs 

some loss in control performance, then it is preferable to chart the individual components 

separately though the improved performance is gained at the expense of increasing the 

charting effort. In this section, the effect of such 'aggregation' on the control 

performance, is briefly considered for the known Z case. This effect is examined by 

comparing the probabilities of detection by the proposed technique with that based on 

the use of the individual components for certain shifts in Z, having equated first their 

false signal rates. Note that the latter technique, abbreviated hereafter as the IC 

technique, involves the plotting of the following statistics :-

("^ - ^)Sx(k) 
(4.24) 

^\ 

{n, r)SU...,-.(k) ^^2,...,/?. (4.25) 

{n^-l)SlJd -e^.lr2p,id -e] (4.26) 
k l^''\~2(/fc) - 2 7 ' '̂  \-2(k) ~2J 

and 

(«. - ̂ sU.....,-J^^.^- e)' ^..^..,-ii^^^-i) J = X-,P (4.27) 

It may also be of some value to study the control performance of the technique 

based on the use of principal components. In the presence of Z, it is reasonable to chart 
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the standardized variances of the principal components (multiplied by (n-l) each) 

separately. These are given by the diagonal elements of («-l)AoToSroA~o^ where AQ 

and TQ denote respectively the diagonal matrix containing the eigenvalues of ZQ and 

the matrix of the corresponding eigenvectors. For ease of subsequent discussion, this 

technique is referred to as ISVPC. 

Following a shift in the process covariance matrix Z, the statistics (4.24) and 

(4.25) are readily seen to follow some scaled chi-square distribution whereas the 

Hotelling X^-type statistics in (4.26) and (4.27) can be shown to be generally distributed 

as linear combinations of independent noncentral chi-square variables (see A.ll). 

Furthermore, note that the (conditional) independence of these statistics is preserved. 

Thus, given the program of Davies (1980), it is possible to determine the overall 

probability of 'picking up' any given shift in Z by the use of these statistics. However, 

for mathematical convenience, only a special case is considered, namely, when the shifts 

take the form :-

Zi = ^Zo> 

a situation which has been noted earlier. Note that under these circumstances, all the 

above statistics are chi-square except for the scalar multiple X. The same is true for the 

ISVPC technique. Thus, the statistical performance of these and the proposed technique 

depends on A, (besides/? and n) irrespective of ZQ • 

For reasonable comparison, suppose that the significance levels associated with 

the control charts for the IC and ISVPC techniques are set to be equal to a so that the 

overall false signal rate, a, for each control scheme is the same as that of the proposed 

technique. Accordingly, the a* for both techniques are respectively given by 
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I 

a = l - ( l - a ) ' ' ' - ' and a = l - ( l - a ) ^ 

Furthermore, both the lower and upper control limits are used with each chart and these 

* * 
OC ct 

are set at — and 1 - — probability levels respectively. Note that under this condition, 

the former technique is equivalent to Tippett's combination procedure as considered 

earlier. The power of these and the proposed technique are given to 4 decimal places in 

Table 4.10 for various combinations of/?, n, X and a. Note that the results for the 

proposed technique are obtained by means of 5000 simulation runs. Note also the 

proximity of the exact probabilities and the corresponding simulation resuhs for the IC 

technique as given in Tables 4.3, 4.4 and 4.5. In all these cases, it is observed that the 

proposed technique is significantly better than the IC and ISVPC techniques. It is also 

seen that ISVPC ranks between the proposed and the IC technique in performance for all 

the given shifts. Although no attempt has been made to study their relative performance 

thoroughly, the results provide an indication that incorporating the individual 

components into a composite statistic in the suggested manner may well result in 

improved control performance. 
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Table 4.10 Power Comparison of Proposed, IC and ISVPC Charting Technique 
for Shifts in the Form of Zi = >-Zo-

p 

3 

4 

5 

n 

4 

5 

8 

a 

0.0027 

0.01 

0.0027 

0.01 

0.0027 

0.01 

X 

2.25 
4.00 
6.25 

2.25 

4.00 

6.25 

2.25 
4.00 
6.25 

2.25 
4.00 
6.25 

2.25 
4.00 
6.25 

2.25 
4.00 
6.25 

Power 
Proposed 

0.1688 
0.6014 
0.8664 

0.2604 
0.6818 

0.8912 

0.2970 
0.8300 
0.9746 

0.4050 
0.8792 
0.9822 

0.5792 
0.9926 
1.0000 

0.7132 
0.9938 
1.0000 

IC 

0.1149 
0.4666 
0.7596 

0.1995 
0.5928 
0.8404 

0.1669 
0.6468 
0.9127 

0.2781 
0.7672 
0.9542 

0.3078 
0.9036 
0.9962 

0.4648 
0.9566 
0.9989 

ISVPC 

0.1334 
0.5134 
0.7965 

0.2238 

0.6342 
0.8662 

0.2017 
0.7097 
0.9390 

0.3216 
0.8145 
0.9686 

0.3877 
0.9459 
0.9986 

0.5495 
0.9772 
0.9996 
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CHAPTER 5 

CAPABILITY INDICES FOR MULTIVARIATE 

PROCESSES 1 

5.1 Introduction 

Since the pioneering work of Kane (1986), there have been many articles 

published dealing with process capability indices. Some developments in process 

capability analysis are outlined by Rodriguez (1992) in a special issue of the Journal of 

Quality Technology, entirely devoted to the topic. In Marcucci and Beazley (1988), it 

was noted that 'an index for multidimensional situations is another outstanding 

problem '. Most of the relevant work to date has focussed on the developments of 

process capability indices for single product characteristics. In many manufacturing 

situations, the quality of a manufactured product is more often than not determined by 

reference to more than one product characteristic. Invariably manufacturing conditions 

are such that there is an inter-dependency in the development of these product 

characteristics. To discuss process capability under these circumstances then, requires a 

method that acknowledges this inter-dependency and constructs an index that 

incorporates knowledge of the covariance structure of the quality characteristics. 

The most commonly used univariate capability indices are the Cp, Cp^. and Cp^ 

indices which are defined as :-

r -U-L 

^ This chapter is based on the paper entitled 'Capabilitity Indices for Multivariate Processes', Technical Report 49 
EQRM14, Department of Computer and Mathematical Sciences, Victoria University of Technology, December 
1994. 
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and Cp^ = 
6Va'+(p-T)2 

where p , a, U, L and T = - ^ denote the process mean, standard deviation, upper 

and lower specification limits, and target respectively. The first is strictly concerned with 

process potential in that it makes no reference to the process mean, p . However, they all 

essentially reflect process potential in that they implicitly assume a perfectly controlled 

process. For meaningfiil use of these indices to describe actual process behaviour 

consideration of their sampling distributions is necessary. Statistical issues of estimation 

and hypothesis testing and practical matters such as the use and interpretation of these 

indices have been extensively discussed in the literature (see for eg., Kushler and Hurley 

(1992), Franklin and Wasserman (1992), Peam, Kotz and Johnson (1992), Bamett 

(1990) and Boyles (1991)). These indices are applicable for situations involving two-

sided specifications but some adaptations for one-sided specifications can also be found 

in the literature. 

After reviewing existing work on multivariate process capability indices, this 

chapter explores fiirther the possibility of assessing multivariate process performance by 

using a single composite measure and describes three approaches for doing so. In 

particular, three bivariate process capability indices are proposed and some simple rules 

provided for interpreting the values they take. The relative effectiveness of the proposed 

indices as a comprehensive summary of process performance, with respect to all of the 

measured characteristics, is also provided. An approximate test for one of the proposed 

indices is developed. Possible methods of developing robust capability indices are also 

considered. The paper focuses on the commonly encountered situations in which the 
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measured characteristics of a process or a product have two-sided specifications forming 

a rectagular specification region. The extension of this work to situations involving 

unilateral or a mixture of unilateral and bilateral tolerances is a straightforward matter. 

The total discourse is given in the context of discrete item manufacturing. 

5.2 A Review of Multivariate Capability Indices 

Chan, Cheng and Spiring (1991) introduced a so-called multivariate version of 

the Cp,„ index which is defined as : 

C - ' "^ 
P^ \ n 

Z(X,-T)^A-HX,-T) 
/=i 

To do this, they made the assumption that the specification requirements for a v-variate 

process or product are prescribed in the form of an ellipsoidal region given by 

(X-T)^A"^(X-T)<c^ 

where X, T, A and C are respectively the v-dimensional random observation vector, 

some specified v x 1 vector, a v x v positive definite matrix and a constant. These may 

either be the actual engineering requirements or that created from various forms of 

specifications in the suggested manner. For the latter case, it generally imposes more 

stringent requirements than actually needed. 

As the definition of Cp^ involves the sample observations rather than being based 

on the process parameters (i.e the mean vector )LI and the covariance matrix Z), Pearn 

et al.(1992) stated, quite correctly, that it should be taken as an estimator (denoted C „̂ 

) of the following revised index : 
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^pm 
£[(X-T)'^A-'(X-T)] 

Much of the discussion of Chan et al.(1990) was devoted to the test of C „ = 1 based 

on the univariate statistic, 

Z) = X(X,-T)'^A-^(X,-T), 
;=1 

which is distributed as a chi-square variable with nv degrees of freedom under the 

multinormal assumption, with |Ll = T and Z = A. Note that the quadratic form 

(X-T) A" (X-T) and D are distributed as linear combinations of independent 

noncentral chi-square variables (see Appendix A.ll) under the alternative hypothesis. 

Thus, using the program of Davies (1980), it is possible to determine the power of the 

test and relate it to the expected proportion of items satisfying the ellipsoidal 

specification requirements. It is also worth noting that this work is more concerned with 

'process capability analysis' rather than with the design of a unitless capability measure. 

As in Chan et al.(1990), Pearn et al.(1992) considered a v-variate process with 

specification requirements formulated as an ellipsoidal region and proposed the following 

capability indices, 

and 

v^p 

C^ =-
V ^ pm 

A 
r 1 (H-Tf A-'c^-T)! 

J 
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as generalizations of the univariate Cp and Cp„ mdices. If (i = T and Z = A, then cj 

in the above definitions is equated to xl,0.9913, the 99.73th percentile of the chi-square 

distribution with v degrees of freedom, otherwise, it is computed such that 

Pr|(X-T)'^A"^(X-T)<c; I = 0.9973 . 

Note that both indices have the same value if jLl = T. These indices correctly reflect 

process capability in the sense that their values decrease with declining process 

performance. However, as noted in their paper, the essential problem with these indices 

lies in the estimation of them. 

In view of the fact that it is unlikely to have specifications given as ellipsoids, 

Rodriguez (1992) suggested the direct estimation of the proportion of nonconforming 

items by integration of the multivariate normal density fiinction over the rectangular 

specification region. Boyles (1994) also considered this alternative of estimating process 

capability and discussed its statistical and practical merits over a competing procedure 

which is based on simple binomial estimates. The total discussion is in the context of 

repeated lattice-structured measurements. 

Unlike others, Hubele, Shahriari and Cheng (1991) proposed a capability vector 

for a bivariate normal process which consists of three components. The first is the ratio 

of the area of the specification rectangle to that of the projected process rectangle, 

giving an analogue of the univariate Cp index. The second component, is defined as the 

significance level computed from a T^-type statistic which measures the relative location 

of the process centre and the target. The last component is designed to capture situations 

where one or more of the process limits fall beyond the corresponding specification 

limits. Although some efforts were made to demonstrate the usefiilness of this capability 
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vector as a summary measure of the process performance, interpretation is sometimes 

difficult. 

Other contributions come from Taam, Subbaiah and Liddy (1993) who proposed 

a multivariate capability index defined as 

MC - ^o^^"^6 of-^1 
'"" Volume of i?2 

where R^ and i?2 represent respectively the modified tolerance region (modified 

according to the process distribution) and the scaled 99.73% process region (scaled by 

the mean squared error, Z j = ̂ [(X - T)(X - T)^l). If the process follows a multivariate 

normal distribution, then the modified tolerance region here is the largest ellipsoid 

inscribing the original specification region and the scaled process region, R2, is an 

ellipsoidal region represented by (X - p,)^ Zj^ (X - (i) < xl,0.9973 • Thus, under normality 

assumptions, this index becomes 

Vol.(i?3) [i + (^_T)Tz- ' ( ^ -T) ] 

^MCp 

where Rj is the natural process ellipsoid containing 99.73% of items, MCp = voir '̂) is 

an analogue of the univariate Cp (squared) index which measures the process potential 

and Dj = 1 + ( J L I - T ) ^ Z " H M ' ~ T ) is a measure of process mean deviation from target. 

As stated by Taam et al.(1993), this is an analogue of the univariate Cp^ (squared) 

index. Note also that this index is similar to ^ Cp^, except in the marmer in which the 

process potential and the deviation of mean from target are quantified. In terms of its 

ease of computation and general applicability, it is superior to the latter. Besides the fact 
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that it can be used for different types of specification region (see the example on 

geometric dimensioning and tolerancing (GDT) in the same paper), this index can be 

extended to non-normal processes provided the specifications are two-sided. This, 

however, entails the determination of the proper process and modified tolerance region 

and the resuhing computations are likely to be complex. In the same paper, Taam et 

al.(1993) considered the estimation of this capability index. However, they simply 

replace the unknown mean vector |Ll and the covariance matrix Z in the expression for 

the proposed index with the usual unbiased estimates and use Xv,o.9973 ̂ s the boundary of 

the process ellipsoid without taking into consideration issues such as unbiasedness, 

efficiency and uncertainty of the resulting capability index estimate. They also highlighted 

some similarities and differences between the proposed index {MCp„), Cp^ and the 

bivariate capability vector proposed by Hubele et al.(1991). A major problem with this 

index is its potential to provide misleading conclusions. For instance, if the measured 

characteristics are not independent and the index value is 1 (as a result of the process 

being on-target and the volume of the process ellipsoid being the same as that of the 

modified tolerance region), there is no assurance that the process under consideration is 

capable of meeting the specifications consistently or can be expected to produce 99.73% 

of conforming items. This is in conflict with the statement made by Taam et al.(1993) 

that, ' when the process is centered at the target and the capability index is 1, it 

indicates 99.73% of the process values he inside the tolerance region.' The deficiency in 

this comment is illustrated in Figure 5.1 for a bivariate normal process. 
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Natural Process Ellipse 
centered at target having 
the same area as Specification rectangle 

Out of Specs. Modified Tolerance region (MTR) 

Figure 5.1. Graphical Illustration of An Incapable Bivariate Normal Process with 

MCp^ = 1 

Boyles (1996) introduced the concept of exploratory capability analysis (ECA) 

which is aimed at capability improvement rather than assessment. This should be 

distinguished from the so-called confirmatory capability analysis (CCA) which involves 

formally assessing whether the process under consideration is capable of meeting the 

given specifications or not. ECA, essentially utilizes exploratory graphical data analysis 

techniques, such as boxplots, to reveal or to assist in identifying new opportunities for 

process improvement. Three real examples involving repeated measurements with lattice 

structure were used to illustrate the usefulness of the concept. 

In another paper, Boyles (1994) proposed an expository technique of analyzing 

muhivariate data using repeated measurements with a lattice structure where the number 

of measurements for the same characteristic on each part or product, v, may possibly 

exceed the number of inspected parts or products, n. He developed a class of Direct 

Covariance (DC) models cortesponding to a general class of lattices and obtained some 
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positive definite estimates of the covariance matrix denoted by Zp^ even when n<v. 

This property of positive definiteness for the estimated covariance matrix permits the 

computations of multivariate capability indices and estimated process yields which 

depend on Z~^ when « < v or when n is not much greater than v, in which case the 

usual sample covariance is ill-conditioned with respect to matrix inversion. He made 

some efforts to justify the use of the proposed model for process capability analysis. In 

particular, he demonstrated the superiority of employing Zĵ ^ to provide an estimate of 

the proportion of nonconforming units over the use of sample covariance and the 

empirical approach of simple binomial estimates. To do this he used sets of data from 

Boyles (1996) along with some simulation results. 

5.3 Constructing A Multivariate Capabilitv Index 

With the assumption that the process under focus follows a multivariate normal 

distribution, consider the following approaches to the design of a muhivariate process 

capability index. Before proceeding, it should be pointed out that, although these 

approaches have been widely discussed in simuhaneous interval estimation problems 

(see, for example, Johnson et al. (1988) and Nickerson (1994)), they are used here in a 

different context. 

The first approach entails the construction of a conservative /?-dimensional 

process rectangle from the projection of an exact ellipsoid (ellipse if bivariate) containing 

a specified proportion of items on to its component axes. The edges of the resulting 

process rectangle (the process limits) are then compared with their corresponding 

specification limits. The associated index is defined in such a way that it is 1 if the 

process rectangle is contained within the /?-dimensional specification rectangle with at 
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least one edge coinciding with its cortesponding upper or lower specification limits, 

greater than 1 if the process rectangle is completely contained within the specification 

rectangle and less than 1 otherwise. A bivariate capability mdex developed using this 

approach is presented in the next section. 

The second approach is based on the well known Bonferroni inequality. Unlike 

the first one, this approach actually requires only the weaker assumption of normahty for 

each individual product characteristic. The capability index using this approach is defined 

in the same manner as above. The resulting process rectangular region having at least a 

specified proportion of conforming items is compared with the specification rectangle. 

The value of the proposed capability index reflects conservatively the process capability 

of meeting the specifications consistently. In fact, the assessment of process performance 

based on the Bonferroni inequality has been perceived by Boyles (1994) but it is used in 

a different way and context. It should also be pointed out, despite his statement to the 

contrary, that the given inequality 

where 

1-TZ = FT[-DI<XJ<D,, l<j<p\li,l) , 

l-TT, =Pr(x^. > - A , I<y</7 |H ,Z) , 

l -7r„=Pr(^, .<Z)„, l<7</? |H,Z) , 

is not generally true. 

Another approach utilizes the multivariate normal probability inequality given by 

Sidak (1967). It will be seen later, that a capability index constructed based on this 

168 



inequality and using arguments similar to the above, provides the best measure among all 

those proposed in this paper. 

5.4 Three Bivariate Capabilitv Indices 

Suppose that the vector of the/? product characteristics, X = (Xi,X2,...,Xp] 

follows a multivariate normal distribution with mean vector \i = ([i^,[i2,...,[Xp) and 

covariance matrix Z . Further, suppose that a manufactured product is considered usable 

if all its measured product characteristics are within their corresponding specification 

limits i.e Lj < Xj <'Uj for j = l,...,p. Let 5 denote the proportion of unusable items 

produced that can be tolerated. Our aim is to obtain the relationship between the 

component means, the elements of the covariance matrix, 6 and the specification Umits 

of all the measured characteristics by solving the following integral equation : 

j ••• J j/(^l'^2---.^p)-^A2-"^p=l-5, 

so that an index can be defined that reliably reflects the actual process capability. Directly 

attempting to solve this equation is generally inadvisable due to computational 

difficulties, so some approximations are presented. 
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5.4.1 Projection of Exact Ellipsoid Containing a Specified Proportion of Products 

It is known, for eg., Johnson et al.(1988) that, if X~Np(\i,T), the quadratic 

form (X- |Ll) Z ' \ X - p) ~ xJ. Thus, a region containing 100(1-5)% of the products 

is the soUd ellipsoid given by 

(x-nfz-Xx-^)<xli-5. 

As given by Nickerson (1994), the projection of the above ellipsoid on to each of its 

component axes is given by : 

Xj-[ij - V'^pj-s [yth diagonal element of Z]^ 

or 

^j-^jy^^^^j^XJ<[iJ+^[xl^csJ 7 = 1,2...,/?. (5.1) 

Note that rewriting (5.1) yields the well known 100(1-5)% simuhaneous confidence 

interval for [i-\u.i,ii2,...,]ip] based on a sample of size n = l when ai,a2,...,a^ 

are known (Johnson et al.(1988)). As a special case, consider developing a capability 

index for bivariate processes, though it can easily be extended to the more general case. 

Note that, for p = 2, x^,i-8 =-2In5. Thus, we have from (5.1) that, the 'bivariate 

process limits' (i.e the limits beyond which at most 1005% of items are expected to be 

produced) are, 

x^^p^. ±a^V-2ln5 j = l,2. 

It follows, that for 

U^Ui 

l\f(xi,X2)dxidx2>l-^, 
L2L1 

the following conditions need to be simuhaneously satisfied :-
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Ui>Pi+aiV-21n5 , 

Ll <Pi-aiV-21n5 , 

U2 >[i2+02^p2\nE, 

Lj <P2 -cy2V-21n5 , 

or equivalently. 

Ui -L i 

l | o i V - 2 1 n 5 + | p i - ^ | | 
>1 

and U2-L2 

l |a2V-21n5+|p2--^^ |} 
>1 

Accordingly, the bivariate process capability index, CyJ, is defined as 

Cĝ  = Mini 
C pi c p2 

| V = 2 b 5 + 4 ^ ' i V = 2 b 6 + ^ 3c 3a, 

where Cpj and Tj {j = 1,2) are respectively the univariate process capability indices 

(C )and the target values for the two product characteristics. Note that if the process is 

on-target i.e Pi = Tj and P2 = 2̂ , 

'-'pk 
_Min\Cp^Xp2[ 

V-21n5 

which can be taken as a measure of the process potential. Although this capability index 

is conservative by nature and thus must be carefijUy interpreted, it does provide some 

insight into the practical capability of the process. A value of 1 or greater can safely be 

interpreted as the process producing at a satisfactory level provided there is no serious 

departure from normality. However, if it has a value smaller than 1, it does not 

necessarily indicate that the expected proportion of usable items produced is less than 

- 5 , unless it is significantly different from 1. In this case, perhaps some simple 
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guidelines or ad hoc rules would help to determine if the process capability is adequate. 

Note the interesting fact that, although the covariance structure of the product 

characteristics is considered in the development of the above, the proposed bivariate 

capability index does not involve the correlation coefficient p of the two characteristics. 

It is also noted that the proposed index has some similarity to the bivariate capability 

vector proposed by Hubele et al.(1991). It differs from the latter, however, in that it 

incorporates both the process potential and the deviation of the process mean from target 

into a unitless measure. Hubele et al's capabihty index consists of three components, one 

for measuring the process location, one for process dispersion (potential) and the other 

for indicating whether any of the process limits is beyond its corresponding specification 

limit(s). Whilst it may be argued that using separate indicators for each of the above 

factors to reflect the process status may make the interpretation clearer, this process 

capability vector involves more calculation and does not have any clear advantages over 

the proposed index. 

5.4.2 Bonferroni-Type Process Rectangular Re2ion 

According to the Bonfertoni inequality, for a /?-variate process for which the 

marginal distributions are normal, the p-dimensional centered process rectangle 

containing at least 100(l -5 )% of items is given by : 

p — z^o < Xj < ]ij + z^Oj, j = 1,2, , /? . 

where Zg/2„ denotes the upper 100(5/2/?)th percentile of a standard normal 

distribution. By replacing /? by 2 in the above, the bivariate process limits are obtained. 

Proceeding as previously, another bivariate capability index is obtained and defined as. 
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'C^$ = Mm{ 
C pi c p2 

i . .1 l>"i-Til ' 1 _ , h - T 2 | 
3 ^ 8 / 4 ^ 3o, 3 ^ 5 / 4 + ^ ^ — 

which has a similar interpretation. If /? = 1, 5 = 0.0027 and the process is on-target, this 

type of multivariate capability index reduces to the univariate Cp, Cp,, and Cp„ indices. 

It should be noted that this method of developing capability indices can be extended to 

non-normal processes by replacing -Z5/4 and Z5/4 by the appropriate quantiles of the 

process distribution. 

5.4.3 Process Rectangular Region based on Sidak's Probability Inequality 

As given by Sidak (1967), the multivariate normal probability inequality is :-

Pr ^> flTr{\z,\<c,] 
/=1 

where Zj's are standard normal variables and c^'s denote some specified constants. For 

Cj =c (/' = 1,2...,/?), this inequality becomes 

Pr riKN' 
y=i 

>[2<I>(c)-l]' 

where 0(») denotes the cumulative distribution function of the standard normal variable. 

Setting the lower bound, [20(c)-1]^ of the joint probability above, equal to - 6 , 

resuhs in a/?-dimensional process rectangle containing at least 100( -6 )% of items 

given by :-

[ij - a , 0-'(i[i+(i-5)'''']) < Xj < ̂ j + a,4)-^(i[i+(i-5y''']), j = l,2,...,p, 
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where O ^(•) represents the inverse of the standard normal distribution fiinction. A 

bivariate capability index is obtainable by replacing/? with 2 and comparing the resulting 

bivariate process limits with the corresponding specification limits. This index is defined 

as 

^Cg = Mini ^p\ Cp2 

[i<i.-'(i[i+vr5])+M'i<s-(i[uvr5]) So, 

In the development of the above indices, it has been assumed that the tolerances 

are bilateral and that the target or nominal specification is the midpoint of the 

specification band, this, of course, is not always the case in practice. Under these 

circumstances, redefinition of the indices using similar arguments is straightforward and 

will not be discussed further. 

As all of the above are of similar form, it is preferable to choose the one which is 

least conservative or that best reflects the actual process capability. In the following 

section, some comparisons between the three are provided in order to resolve this issue. 
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5.5 Some Comparisons of the Projected. Bonferroni and Sidak-tvpe 
Capabilitv Indices 

Following conventional practice, the relative merits of the proposed capability 

indices can be evaluated based on the following ratios : 

_ Width of 100(1 - 5)% projected Interval for jth characteristic 
1 "D.p — T T" ' ' ' 

Width of 100(1 - 5 j% Bonferroni Interval for jth characteristic 

^ l l p , l -

^5/2/7 

and 

Width of 100(1 - 5)% projected Interval for jth characteristic 
•lSP ^^ / \ 

Width 0/100(1 - 5)% Sidak Interval for jth characteristic 

ylx 2 

P,i-5 

<i,-i(i[i+(i_s)"^]) • 

Note that the expressions for I^.p and I^.p remain the same irrespective of the product 

characteristic being considered. One capability index is said to be less conservative than 

the other if its construction is based on a shorter interval for the same 6 . Thus, according 

to the definitions above, if Ig.p is greater than 1, the Bonferroni-type capability index is 

better (less conservative) than that which is based on projections. Similarly, a value of 

Isp greater than 1 implies that the Sidak-type index is superior to the projected one. As 

for the relative effectiveness of the Bonferroni and Sidak-type indices, this is measured 

by the relative magnitude of their corresponding I^.p and I^.p values. The values of 

these indices are tabulated in Table 5.1 for some selected values of/? and 5 . It can be 

seen from this table that, in all the reahstic cases considered, both the capability indices 

based on the Bonfertoni and Sidak inequalities provide better measures than the 
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Projection-type capability index. The table also shows that, as the number of measured 

characteristics, p increases, the better the Bonferroni or Sidak-type capabihty indices 

become. Furthermore, as shown in the table, the Sidak-type capability mdex is marginally 

better than that based on the Bonferroni inequality. The following section is devoted to 

the development of a test concerning process capability based on the Sidak-type index. 

Table 5.1. Relative Conservativeness of Projected, Bonferroni and Sidak-type 
Capability Indices. 

p 

2 

3 

5 

10 

5 

0.0025 
0.005 
0.01 
0.02 
0.05 

0.0025 
0.005 
0.01 
0.02 

0.05 

0.0025 
0.005 
0.01 
0.02 
0.05 

0.0025 

0.005 
0.01 

0.02, 
0.05 

1.0726 
1.0767 
1.0811 
1.0859 
1.0921 

1.1325 
1.1397 
1.1475 
1.1561 
1.1677 

1.2319 
1.2438 
1.2569 
1.2713 
1.2917 

1.4218 

1.4419 
1.4641 
1.4886 
1.5243 

^^^ ~ cI,-'(i[l+(l-5)"'']) 

1.0727 

1.0768 
1.0815 
1.0867 
1.0945 

1.1326 
1.1398 
1.1479 
1.1570 
1.1708 

1.2320 
1.2440 
1.2574 
1.2724 
1.2953 

1.4219 

1.4421 
1.4646 
1.4899 
1.5283 
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5.6 Testing the Capabilitv of a Bivariate Process 

In practice, the assessment of process performance is often based on sample 

estimates of some capability indices which are subject to uncertainty. Unless the sample 

size is reasonably large, it is inappropriate to draw definite conclusions from these 

process capability estimates. Of course, the need for process stability before computation 

should also be emphasized, otherwise the interpretation of these indices is distorted, 

regardless of how large the sample is. If meaningful interpretation of the estimated 

capability is sought, it is important to take the sampling fluctuations of these estimates 

into consideration. A common approach is to employ confidence mtervals. If point 

estimates are to be used, it is desirable that estimation is unbiased and that the minimum 

sample size required for an acceptable margin of estimation error is adhered to. Another 

approach is based on testing hypotheses. Either approach generally requires knowledge 

of the sampling distributions which are complicated. To circumvent this problem, we 

develop an approximate test for the Sidak-type index C^C^^). 

Consider the problem of testing the following hypotheses : 

Under the null hypothesis, HQ , the process is capable and the worst scenario is when 

both the Sidak-type process and specification rectangles coincide, in which case 

^Cf^ = 1, On the other hand, the ahernative hypothesis, H^ corresponds to situations 

where at least one edge of the process rectangle is beyond its corresponding specification 

limit. The test proposed here is designed to capture such a situation. 

A reasonable choice of the test statistic for this problem is. 
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'C^^,;=Min\ Ui-L, U 2 - L 2 

2c5' i+2^1-Ti | '20^2+21^2-T2 

where 

c = <I>-'(i[l + V P 8 | 

and, Xj and Sj denote respectively the mean and standard deviation of the jth product 

characteristic based on a sample of size n. The decision rule is to reject HQ in favor of 

Vf < k 
pk 

where k is some positive constant depending on the significance level of the test (a) and 

is determined from 

MaxPrl^Cj^^ <k\HQistme| = a 

The maximum value on the left-hand side of the above equation occurs when \Xj = T̂  

and Uy -Ly =2caj for y = 1,2 (the worst situation under HQ). Thus, we have, 

[ [c5i+|X,-^,|'c5'2+|X2-^2|J J 

or 

Pr n \{n-\)S] 
+ 

^r^i < 
n - l ."Y CTy c4n ylycsjl4n j ^ 

I = l - a (5.2) 

According to the Bonferroni inequality. 

Hn 
M 

^ \ ' 
fOM)!^^ 

4~n- >l-XPr< 
7=1 

/«-! 
| ("- i )^; I 1 ^j-^j 

cyfn \\aJl^fn 
> ^ 

(5.3) 
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A conservative test of the hypotheses stipulated above may now be obtained by replacing 

the left-hand side of (5.2) by the right-hand side of (5.3) giving, 

2 

/=1 

L /("-^)-^7 I 1 
h-\ c4n "Vv̂  <Jjlyfn ^ >i^ = a 

As 

^ /("-̂ )̂ > I 1 ir^ii^^"' 
/ M - 1 CVM "y V <^ j i ^ y 

7 = 1,2. 

are identically distributed, it follows that. 

Pr 
-hTA 

\in-\)SJ ^ 1 
^ \ \ Ojl4n^ k{ 2 

(n-l)S^ _, fx-a' 
If J/ = ::̂  _LJ_ and W = —-̂̂  ^ the problem reduces to finding the (l-^)th 

quantile of 

h-\ 
VF. 

:Vn 
w 

which is a linear combination of the square root of two independent chi-square variables 

with n-l and 1 degrees of freedom respectively. A closed-form representation of the 

probability density of this Unear combination is not available. However, it is possible to 

obtain the approximate values of the required quantiles and thus the critical values, k, 

using Cornish-Fisher expansions. Johnson and Kotz (1970) outlined the method of 

obtaining these expansions and provided a formula which expresses the standardized 

quantiles of any distribution in terms of its standardized cumulants and the corresponding 

standard normal quantiles. However, it is found that there are some inconsistencies in the 
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results obtained by using the expression provided by these authors. As an ahernative, 

numerical solutions are obtamed from the following integral equation :-

\FA{n-l)[llk-4^lc4^)%,{w)dw = l-^, 
0 J 2 

where /,(•) and F^(») respectively denote the probability density and the cumulative 

distribution function of a chi-square variable with v degrees of freedom. The approximate 

critical value, k, is obtained in this way using Mathematica version 2.2 (Wolfram (1991)) 

and given to 4 significant digits in Table 5.2 for various combinations of tolerable 

proportion of unusable items (5 ), sample size («) and significance level (a). 

Table 5.2. Critical Values for Testing "̂ Ĉ ^̂  

n 

10 

15 

20 

25 

50 

100 

0.01 

* 0.5763 
t (0.5636) 

0.6284 
(0.6158) 
0.6630 
(0.6507) 

0.6884 
(0.6765) 
0.7594 
(0.7489) 
0.8178 

(0.8091) 

a 

0.025 

0.6093 
(0.5960) 
0.6590 
(0.6461) 
0.6918 
(0.6794) 

0.7158 
(0.7038) 
0.7820 
(0.7717) 
0.8359 
(0.8275) 

0.05 

0.6397 
(0.6258) 
0.6869 
(0.6737) 
0.7178 
(0.7052) 
0.7403 
(0.7283) 
0.8020 
(0.7918) 
0.8516 
(0.8434) 

0.1 

0.6770 
(0.6624) 
0.7206 
(0.7070) 
0.7490 
(0.7362) 

0.7695 
(0.7574) 
0.8254 
(0.8154) 
0.8698 
(0.8619) 

* unbracketed values correspond to 5 = 0.01. 
t bracketed values correspond to 5 = 0.05. 
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5.7 Robustness to Departures From Normalitv — Some 
Considerations 

Various attempts have been made to extend the definitions of the standard 

univariate capability indices to situations where the process distribution is non-normal 

and corresponding estimation procedures have been proposed. These are intended to 

correctly reflect the proportion of items out of specification irrespective of the form of 

the process distribution. No attempts have appeared in the literature, however, to 

develop muhivariate capability indices which are insensitive to departures from 

muhivariate normality. Some robust univariate capability indices and procedures for 

assessing process performance currently available are briefly reviewed and an approach 

ouflined for designing robust multivariate capability indices. 

Chan, Cheng and Spiring (1988) suggested the use of a tolerance interval 

approach to estimate, with a certain level of confidence, the interval within which at least 

a specified proportion of items is contained. This estimated interval is then used in place 

of the normal-theory based interval (some muhiple of a ) in the expressions for Cp, C ĵ. 

and Cp^. The 100(l-a)% confidence P -content tolerance interval is designed to capture 

at least 1003% of the process distribution, 100(l-a)% of the time by using appropriate 

order statistics. However, it was found by Chan et al. (1988) that the natural choice of 

P, 0.9973 and a , 0.05, results in the requirement of taking sample sizes, n of 1000 or 

larger. To circumvent this problem, they proposed the use of a tolerance interval with 

smaller P, specifically, with P = 0.9546 and p = 0.6826 in place of 4a and 2a 

respectively in the expressions for Cp, Cp^ and Cp^, and provided the corresponding 

95% confidence estimators for sample sizes less than 300. Although this modification 
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greatly reduces the minimum sample size required, Peam et al. (1992) pointed out that 'it 

depends on the (somewhat doubtful) assumption that the ratios of distribution-free 

tolerance interval lengths for different P are always approximately the same as that for 

normal tolerance intervals'. Furthermore, the proposed extensions retain the process 

mean, p in the original definitions of C^̂  and Cp^ rather than replacing it by the 

median. This complicates the interpretation of the resulting indices since the median may 

differ considerably from the process mean for heavily skewed distributions. 

Another approach to analysing process capability for non-normal processes 

(especially unimodal and fairly smooth distributions) is based on systems or families of 

distributions. Having redefined the standard Cp and C^̂  indices as 

U - L 
P P _ P 

-'0.99865 -MD.OOnS 

and 

Cpi, = Mini . 
[-^.99865 " M 

= MJ "-̂ 0 = 

M-L 1 
^ ~M).00135j 

^ 0 . 5 - L 

1-^.99865 -^.5 -'O.S -^.00135. 

where Pg denotes the 1005 th percentile of the distribution, Clement (1989) proposed 

fitting a Pearson-type curve to the observed data using the method of moments and the 

percentiles required for computation of these indices are then obtained from the fitted 

distribution. The required standardized percentiles were tabulated for various 

combinations of the coefficients of skewness and kurtosis. Some potential difficulties 

with this approach were given by Rodriguez (1992). In view of the complexity and 

difficulty of interpreting the equations for fitted Pearson and Johnson-type curves. 
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Rodriguez (1992) suggested the fitting of a particular parametric family of distributions 

such as the Gamma, Lognormal or Weibull distribution to the process data. For checking 

the adequacy of the distributional model, he recommended the use of statistical methods 

based on the empirical distribution fiinction (EDF) including the Kolmogorov-Snumov 

test, the Cramer Von Mises test and the Anderson-Dariing test. As for the graphical 

checking of distributional adequacy, he stated that this can be accomplished by means of 

quantile-quantile plots or probability plots. In the same paper, he also briefly described 

the use of kernel density estimates for process capabihty analysis, especially for non-

normal distributions. 

Pearn et al. (1992) suggested a possible approach to obtain a robust capability 

index by defining an index 

where 0 is chosen such that 

PQ = P r [ p - e a < X < p + 0a] , 

is as insensitive as possible to the form of the distribution of X. He showed that, for 

PQ = 0.99 the choice of 9 = 5.15 is quite adequate for a wide range of distributions. 

For non-normal multivariate processes, it seems reasonable to use capability 

indices constructed based on multivariate Chebyshev-type inequahties (see Johnson and 

Kotz (1972), p.25) to reflect the process performance as no normality assumption is 

required. The most basic type of these inequalities is obtained by combining the 

Bonferroni and Chebyshev inequalities as follows :-

For our purpose here, the Bonferroni inequality is given by 
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" Q 
^j-^j <k ) • > l - | ; p r { 

;=1 '̂  

Xj-^j 
>k] (5.4) 

Upon applying the Chebyshev inequality to each term in the summation on the right-hand 

side of (5.4), the following is obtained :-

Hn 
/= i 

^r^j <k 

.1-4 
(5.5) 

Note that, for the same k, the lower bound for (5.5) is smaller than that for (5.4). 

However, this does not imply that the capability index constructed based on inequality 

(5.5) is less conservative than that which is based on (5.4). For the same lower bound, 1-

6, the process rectangle based on the multivariate Chebyshev-type inequality (5.5) is 

always larger (as a resuh of larger k) than that of (5.4) irrespective of the underlying 

distribution. Note, however, that the Bonferroni-type capability index proposed in this 

chapter is obtained by imposing a normality condition on the marginal distributions of the 

process and thus it can be either too liberal or too stringent as a performance measure for 

non-normal processes. For instance, a value greater than 1 for this index does not 

guarantee that the expected proportion of non-defective items is more than 1-5 if the 

process distribution is heavy-tailed (such as a muhivariate-? distribution) unless it is 

significantly different from 1. 

There are some improvements to the above muhivariate Chebyshev-type 

inequality, however, the expressions involved are complicated, causing the construction 

of multivariate capability indices based on them to be difficult except for situations where 

there are relatively few variables. It is also found that these capability indices are only 
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margmally better than that based on inequality (5.5). Thus, h is reasonable to use (5.5) 

whenever the use of distribution-free capability indices is wartanted. 
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CHAPTER 6 

A COMPARISON OF MEAN AND RANGE CHARTS 

WITH THE METHOD OF PRE-CONTROL i 

6.1 Introduction 

In 1924 Dr. Waher Shewhart first introduced the X and R charting technique 

for the statistical monitoring and control of industrial processes. Now, after many 

decades of use, they have become the core around which has been buih a body of 

statistical techniques expressly designed for the purpose of controlling the quality of 

manufactured products. 

A competing procedure, employing a different strategy and known as 'pre-

control' (p.c), was proposed by Shainin (1954) as a replacement for various special 

purpose plans for quality control and, in particular, as an improvement to the then 30 

year old technique of X and R control. 'Pre-control' focuses directly on preventing non

conforming units from occurring, rather than on maintaining a process in a state of 

statistical control, which is the strategy underpinning the use of X and R charts. 

When assessing the merits and shortcomings of competing industrial control 

procedures, the issue of statistical efficiency and more practical matters such as cost 

effectiveness, extent and ease of use should all be considered. In fact these factors, to 

varying degrees, play major roles in determining the overall success of quality 

monitoring, maintenance and improvement efforts. 

' This chapter is based on the paper entitled 'A comparison of mean and range charts with pre-control having 
particular reference to short-run production', Quality and Reliability Engineering International, Vol. 10, pp.477-
485,1994. 
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After giving a brief outhne of 'pre-control' and re-kerating hs claimed practical 

benefits, this chapter provides a rationale for making a statistical comparison between the 

technique and that of traditional X and R charts. Special attention is drawn to the 

application of both techniques to the short run manufacturing environment where, for the 

use of X and R charts, parameter estimation is a problem. The total discussion in this 

chapter is in the context of the manufacture of discrete items. 

6.2 A Review of Pre-Control 

The basic principles underlying the 'pre-control' technique are illustrated in Figure 

6.1. 

Lower 

red zone 

Spec. LP 

^ ^ ^ (7%) 

yellow zone 

1/4 X 

CL 

^ Target Area ^ 

12/14 (86%) 

UP 

green zone 

\ii\ 

CL Upper 

yellow zone 

1/4 X 

spec. 

red zone 

Figure 6.1. Pre-Control Scheme. 

Suppose that the quality characteristic of interest is of the variable type such as a 

physical dimension. The tolerance (or specification band) is divided into four equal 

187 



sections and the boundaries of the outer two are called 'pre-control' Unes. The area 

between these lines is described as the 'target area' or the green zone. The remaining 

areas between the two specification limits, L and U, are labelled the yellow zones and 

those beyond the specification hmits, the red zones. Assuming that the measurements on 

the product characteristic are normally distributed, correctly centered and that the 

process is just capable of meeting the specifications, then approximately 1 in 14 times an 

observation will fall in either yellow zone by chance alone. A barely capable process is 

one having Cp = 1 where Cp={U-L)l6a, a being the process standard deviation. A 

single observation falling in these zones is not deemed an indication of the presence of a 

process disruption. Two consecutive values in these zones, however, or one in the red 

zone, is considered adequate evidence of trouble and grounds for process adjustment. 

'Pre-Control' operating rules are developed around these fiindamental notions. In 

a slightly different version (Bhote (1980) and Logothetis (1990)), the decision for 

approval of set-up and resumption of a corrected process is based on the following rule : 

'... If five consecutive units are within the target area before the occurrence 

of a red or a yellow, the set-up is qualified and full production can begin ...'. 

The reason is that this occurrence indicates that the process is well centered and highly 

likely to be producing at a satisfactory quality level. The probabiUties of approving a set

up which is centered at the nominal dimension, for various process capabilities, C , and 

using the above rule, are given in Table 6.1. 

Table 6.1. Probability of Set-up Approval for Pre-Control 

Cp 

Prob. 

0.50 

0.0489 

0.75 

0.2210 

1.00 

0.4882 

1.25 

0.7308 

1.33 

0.7919 

1.50 

0.8838 
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If five consecutive greens prove difBcuh to obtain, then this is an indication that 

the process is either incorrectly centered and requires adjustment, or that the process is 

not capable of consistently meeting the specifications. This check rule is useful for short 

production runs for which the 'set-up' is a crucial factor affecting the quality of the 

subsequent process output. 

Once the process has passed the initial set-up stage, periodically two 

consecutively produced items are examined to monitor performance. Having hems in 

either of the yellow zones is acceptable, except when two occur consecutively. Two 

successive yellows on the same side of the target, signal the departure of the process 

mean from the target value. If they occur on different sides of the target, the process 

spread has most likely increased beyond its acceptable limit. In this manner, 'pre-control' 

enables corrective action to be taken usually before unacceptable work is produced and, 

hopefully, avoids repeated minor, and unnecessary cortections. In the event of getting an 

item in either part of the red zone, the process is stopped immediately, as h is already 

producing defectives. Variations in this 'pre-control' plan, apphcable to less common 

situations are given by Shainin (1954) and Putnam (1962). 

In order to justify his recommendation for 'pre-control', Shainin (1965, 1984) made 

some efforts to discuss its statistical power. These included consideration of the long run 

expected proportion of nonconforming units produced resulting from the ongoing use of 

'pre-control' based on a particular sampling rule. He showed that the maximum value of 

this quality measure, termed the average produced quality limit (APQL), does not exceed 

2% for normally distributed processes if 6 inspection checks, on average, are made 

between typical process adjustments (Shainin (1984)). Some very general discussion 
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about the sampling frequency appeared in Satterthwahe (1973), Shainin (1990) and 

Traver (1985). Without previous knowledge of the average time between process 

adjustments, Shainin (1984) suggested that a 20-minute sampling interval should first be 

used and adjusted subsequently. 

As pointed out by Cook (1989), some of the expressed doubts about 'pre-

control' relate to the normality assumption. The general consensus amongst practitioners 

is that even for stable processes it is doubtful that the fit to normality in the distribution 

tails is particularly close. Sinibaldi (1985) used simulation techniques to examine the 

effect of non-normality on the appropriateness of'pre-control'. In addition, he evaluated 

the relative performance of 'pre-control' and X and R control on normal and skewed 

distributed processes with frequently changing means. The resuhs of the comparison 

indicate that X control causes fewer incorrect mean shift signals and has better control 

to target (as measured by the overall average, X and the average distance of all hems 

produced from the process target) than 'pre-control'. However, using the R chart to 

detect deterioration in the process spread resuhs in more false alarms than using 'pre-

control' for the same purpose. 

Bhote (1980) attempted to illustrate some 'weaknesses' in X and R control 

charting, using two case studies. Taking a more complete view, Logothetis (1990) 

argued effectively that, desphe its simplicity, 'pre-control' cannot be considered a serious 

technique of statistical process control (SPC). He, in fact, used the same case studies as 

Bhote (who used them to illustrate the 'weaknesses' of X and R control charts) to 

demonstrate the usefulness of SPC as a whole and the weaknesses of 'pre-control'. 

However, no comparison has been made between 'pre-control' and X and R charts on 

the basis of average run length (ARL). This is due to the fact that, 'pre-control' lines are 
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derived from specification hmits, causing the ARL for a given mean shift to vary 

according to the actual process capability (C^). 

6.3 The Practical Merits of Pre-Control 

There is little mention of 'pre-control' in many standard text books on statistical 

process control, desphe h having certain practical advantages over X and R charts. This 

could indicate a belief that a reasonable statistical comparison between the two 

techniques is not legitimate, that there is a reluctance to forsake X and R charting since 

the method has proven usefiil over many years and in many industries or indicate a view 

aligned with that of Logothetis (1990) that 'pre-control' is too limited in hs perspective. 

With the unique setup rule of 'pre-control', the first five consecutively 

manufactured units are all that is required to determine whether any process-tolerance 

incompatibilities exist before fiiU production is aUowed to commence. There is, of 

course, no definite knowledge of how many units will have to be checked before five 

consecutive good ones are obtained. In comparison, when using X and R charts, it is 

necessary to have fairly long process trial runs in order to collect sufficient sample data 

to establish the existence of a state of statistical control, and subsequently, to estimate 

the process standard deviation so as to correctly locate the control lines. 

Following setup approval, 'pre-control* provides for the occasional sampling of two 

consecutively produced hems in order to monitor on-going process performance, in 

contrast to the routine sample size of four or five often recommended for use of 

X and R charts. No calculations need to be performed for 'pre-control' operation except 

for the extremely simple initial setting of 'pre-control' lines, whereas continual routine 
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computations are involved whh use of X and R charts. For these latter, h is not only 

necessary to calculate the control statistics for subgroups, but also necessary to estimate 

and revise the control hmits from time to time. 

For 'pre-control', measurements can be observed and compared to specification 

limits in a way that is easily understood by operators whhout much likehhood of 

misinterpretation. Additional worker participation in decision making and problem 

solving may be gained through operators having a better appreciation of the techniques 

in use. 

Whilst, in practice, determination of the sampling interval for X and R charts is 

arbitrary, 'pre-control' provides a simple and flexible rule of six inspection checks per 

trouble indication which, on a long term basis, resuhs in a maximum average fraction 

defective of less than 2% for a normally distributed process (Shainin (1984)). A 

successful application of 'pre-control' in a 'zero defects' environment has been reported 

by Brown (1966). Regulating sampling on the basis of recent process performance, 

seems a more reasonable and efficient approach to adopt than sampling at fixed intervals, 

as it entails more frequent sampling when the process is unsatisfactory. 

Such eventualities as tool wear do not cause a premature reaction from 'pre-

control'. It will only issue warning signals at times when the process is soon likely to 

produce defective products. What can be considered un-necessary process adjustments, 

which have the potential to make production performance worse, are, therefore, avoided. 

Since 'pre-control' does not require exact measurements but only needs to note 

the zone into which the measurements fall, complex and expensive measuring equipment 

may be replaced by 'go/no-go' colour coded gauges. Furthermore, electronic gauging can 
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be considerably simplified if it is only required to distinguish between a few measurement 

bands. As a resuh, there can be a reduction in caphal investment and calibration costs 

Another important feature of 'pre-control' is hs ready applicabihty to a variety of 

situations including the short production run manufacturing environment which has 

become increasingly prevalent following the general move into Just-In-Time (JIT) 

production and flexible manufacturing. 

Despite its many years of existence and its apparent practical merits, given in 

brief here, 'pre-control' has not been widely adopted as a replacement for traditional 

X and R charts. Logothetis (1990) extensively criticised adoption of'pre-control' over 

the use of X and R charts on a number of grounds. It is intended that the material 

contained in this chapter will provide some additional, statistically based arguments that 

will help facihtate a rational judgement on which of the two techniques to adopt in any 

given situation. 

6.4 Short Runs and Pre-Control 

There is no universally agreed definition of a 'short run', however, the term is 

often used to describe production processes Avith typically fewer than 50 hems made 

within a single machine set-up. Short runs, therefore, at a first glance, do not readily lend 

themselves to the use of Shewhart X and R charts. 

The essential problem that obstructs the apphcation of standard control charting 

techniques in short production run situations is the inability to estimate the process 

variability, because of insufficient data. The problem is fiirther aggravated by problems of 

process 'warm up'. Using data from the 'warm up' period to obtain control limits can 
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lead to erroneous conclusions regarding past, current and future states of the process 

(see Murtayetal.( 1988). 

Unlike X and R charts, 'pre-control' is a control technique which predetermines 

its control limits by reference to product specifications only, rather than requiring an 

accumulation of data for computation of them. It is also capable of handling the problem 

of process 'warm up'. It is, therefore, highly suitable for application to short production 

runs. 

6.5 A Statistical Comparison Between Pre-Control and X-bar and R 
Charts 

For short production runs, when there is insufficient previous data available to 

obtain the control limits for X and R charts, a number of authors (see, for example, 

Sealy (1954) and Bayer (1957) have proposed setting control limits on the assumption 

that the process is just capable of meeting specifications (i.e. C^ = 1) and assuming that 

the mean level of the process is equal to the nominal or target value. This adaptation 

provides a basis for a statistical comparison between 'pre-control' and X and R charts. 

In the following comparison, a subgroup size of four is chosen for the application 

of X and R charts because this is commonly recommended. It is also assumed that the 

quality characteristic under consideration is normally distributed or approximately so and 

that no supplementary run rules are used with the X chart. First, consider the 

probabilhies of detection by the sample immediately following a process mean shift, 

using an X chart and a 'pre-control' chart. These probabilities are provided in Tables 6.2 

and 6.3 for various combinations of process capability (C^) and mean shifts in multiples 

{k) of the standard deviation {a). In both tables, the entries are the probabilities of 

194 



issuing a cortect signal of the mean shift except when k = 0, in which case the values 

tabulated are the probabilhies of a false warning. Signals from 'pre-control' that we 

employ here as indication of a process mean shift, are 2 consecutive hems in the same 

yellow zone, or 1 in the red zone and the other not faUing beyond the 'pre-control' line on 

the opposhe side of the nominal value. Furthermore, h should be noted that the control 

lunits for the X and R charts are set using conventional control chart factors with the 

addhional assumptions that, 

f/+Z ^ U-L 
u = and <j- . 

2 6 

The entries in Table 6.3, other than those corresponding to Ĉ  = , are the probabilities 

of detecting a mean shift of the indicated magnitudes when the Ĉ  has been assumed 1 

but is in fact the value indicated. It has been adequately demonstrated in the literature 

that the X chart is tardy in registering small changes in the process mean. Where the 

'speedy' detection of small mean shifts is required, addhional control rules or ahernative 

charting techniques are necessary. Thus the tables provide, for comparison, probabilities 

for a number of realistic mean shifts; realistic in the sense that they reflect situations 

where X (with no additional rules) and 'pre-control' can conceivably be considered 

competing techniques. Besides having a lower likelihood of a false signal, the X chart 

possesses a higher probability of 'picking up' the mean shift irrespective of the actual 

process capability, except where indicated by *, when the difference between 

corresponding entries in the two tables is marginal. In one sense, a more reasonable 

comparison can be accomplished through adjusting the control limits for the X chart in 

such a way that the resulting probability of issuing a false signal, when C^ = 1, is the 

same as that of'pre-control'. This involves moving the control lines nearer to the nominal 
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or target value. Following such a modification, the cortesponding probabihties of 

immediate detection are given in Table 6.4. Tables 6.2 and 6.4 clearly illustrate the 

superiority of the X chart in terms of senshivity to process mean shifts. 

Table 6.2. Power of Pre-Control-Mean Shift 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

0.2488 

0.0701 

0.0136 

0.0022 

0.0012 

0.0003 

±1.0 

0.5814 

0.3153 

0.1264 

0.0412 

0.0279 

0.0116 

±1.5 

0.8125 

0.5759 

0.3166 

0.1410 

0.1051 

0.0534 

±2.0 

0.9418 

0.8072 

0.5759 

0.3383 

0.2752 

0.1685 

±2.5 

0.9879 

0.9391 

0.8057 

0.5950 

0.5223 

0.3767 

Table 6.3. Power of X Chart with 3a Limits (assumed C = 1) 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

0.1336 

0.0244 

0.0027 

0.0002 

0.0001 

0.0000 

±1.0 

0.6915 

0.4013 

0.1587 

0.0401* 

0.0232* 

0.0062* 

±1.5 

0.9332 

0.7734 

0.5000 

0.2266 

0.1611 

0.0668 

±2.0 

0.9938 

0.9599 

0.8413 

0.5987 

0.5040 

0.3085 

±2.5 

0.9998 

0.9970 

0.9773 

0.8944 

0.8438 

0.6915 
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Table 6.4. Power of X Chart with Adjusted Limits (assumed C = 1) 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

0.2173 

0.0642 

0.0136 

0.0020 

0.0010 

0.0002 

±1.0 

0.7782 

0.5594 

0.3201 

0.1391 

0.0985 

0.0444 

±1.5 

0.9613 

0.8748 

0.7028 

0.4664 

0.3890 

0.2416 

±2.0 

0.9972 

0.9842 

0.9373 

0,8201 

0,7637 

0.6174 

±2.5 

0.9999 

0.9992 

0.9943 

0.9723 

0.9571 

0.9030 

It is also of value to study the probabiUstic behaviour of these two control 

techniques in relation to how quickly they respond to an increase in process dispersion. 

For 'pre-control', two successive measurements beyond different 'pre-control' lines 

consthute a warning signal that the process spread is worse than the one implichly 

assumed. However, the occurrence of this event does not only depend upon the process 

capability, h is also affected by the deviation of the process mean from target. As 

reflected in Table 6.5, for a given level of process capability, the larger the deviation, the 

smaller the chance of getting such a signal. The corresponding probabihties of a signal 

from the R chart are given in Tables 6.6 and 6.7 for cases where conventional and 

adjusted control limits are used. Control lines are adjusted in the sense that they equate 

the probabilities of false alarms for the two methods. As shown in these tables, an R 

chart clearly provides better protection against a worsening process capabihty. 
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Table 6.5. Power of Pre-Control - Increase in Dispersion 

Cp \ 

0.50 

0.65 

0.75 

0.85 

1.00 

0 

0.1027 

0.0543 

0.0340 

0.0205 

0.0089 

±1.0 

0.0480 

0.0246 

0.0151 

0.0090 

0.0038 

±1.5 

0.0189 

0.0093 

0.0056 

0.0033 

0.0014 

±2.0 

0.0053 

0.0025 

0.0014 

0.0008 

0.0003 

±2.5 

0.0011 

0.0005 

0.0003 

0.0001 

0.0001 

Table 6.6. Power of R Chart-Conventional Limits (assumed C„ = 1) 

Cp 

Prob. 

0.50 

0.3445 

0.65 

0.1349 

0.75 

0.0613 

0.85 

0.0246 

1.00 

0.0049 

Table 6.7. Power ofR Chart-Ad justed Limits (assumed C = 1) 

Cp 

Prob. 

0.50 

0.3940 

0.65 

0.1715 

0.75 

0.0850 

0.85 

0.0376 

1.00 

0.0089 

Tables 6.8 and 6.9 provide average run lengths for detection of a mean shift using 'pre-

control' and an X chart respectively, based on the probabihties contained in Tables 6.2 

and 6.3. 
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Table 6.8. Average Run Lengths for Pre-Control 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

4.02 

14.27 

73.53 

454.55 

833.33 

3333.33 

±1.0 

1.72 

3.17 

7.91 

24.27 

35.84 

86.21 

±1.5 

1.23 

1.74 

3.16 

7.09 

9.51 

18.73 

±2.0 

1.06 

1.24 

1.74 

2.96 

3.63 

5.93 

±2.5 

1.01 

1.06 

1.24 

1.68 

1.91 

2.65 

Table 6.9. Average Run Lengths for X Chart - Adjusted Limits (assumed C- = 1) 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

7.49 

40.98 

370.37 

5000 

10000 

-

±1.0 

1.45 

2.49 

6.30 

24.94 

42.92 

161.29 

±1.5 

1.07 

1.29 

2.00 

4.41 

6.21 

14.97 

±2.0 

1.00 

1.04 

1.19 

1.67 

1.98 

3.24 

±2.5 

1.00 

1.00 

1.02 

1.12 

1.19 

1.45 

It can be seen that if Cp is correctly taken to be 1, then the X chart is superior in terms 

of ARL. This is the case even if the true value of Ĉ  is as low as 0.5 or as high as 1.25. 

Of course an ARL comparison is particularly meaningfiil if h is assumed that the 

sampling interval is common for the two methods. This fiirther raises the matter of 

sampling effort, since 'pre-control' has an implied sample size of 2 and the X and R 

charts being used here for comparison, have a sample size of 4. This latter issue will be 

discussed later. 

Tables 6.10, 6.11 and 6.12 are extensions to Table 6.3 where different Ĉ  values 

are assumed at the outset. From these h can be seen that if Cp is taken to be 0.75 then 
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there is little difference in the two methods even if the C value is in fact 0.5. 'Pre-

control' has less likelihood of false alarms, however. When Cp is assumed to be 1.25, 

even if the actual value is as low as 0.5 or as high as 1.50 the X chart is superior for 

detecting all the given mean shifts. Similarly for the assumption of Cp = 1.50, except 

here, 'pre-control' is marginally superior with respect to false alarms. Tables 6.13 and 

6.14 are similar extensions to Table 6.6. 

Table 6.10. Power of X Chart (assumed C_ = 0.75) 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

0.0455 

0.0027 

0.0001 

0.0000 

0.0000 

0.0000 

±1.0 

0.5000 

0.1587 

0.0228 

0.0014 

0.0005 

0.0000 

±1.5 

0.8413 

0.5000 

0.1587 

0.0228 

0.0102 

0.0014 

±2.0 

0.9773 

0.8413 

0.5000 

0.1587 

0.0934 

0.0228 

±2.5 

0.9987 

0.9773 

0.8413 

0.5000 

0.3745 

0.1587 

Table 6.11, Power of X Chart (assumed C_ = 1.25) 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

0.2301 

0.0719 

0.0164 

0.0027 

0.0014 

0.0003 

±1.0 

0.7881 

0.5793 

0.3446 

0.1587 

0.1166 

0.0548 

±1.5 

0.9641 

0.8849 

0.7258 

0.5000 

0.4239 

0.2743 

±2.0 

0.9974 

0.9861 

0.9452 

0.8413 

0.7905 

0.6554 

±2.5 

0.9999 

0.9993 

0.9953 

0.9773 

0.9647 

0.9192 
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Table 6.12. Power of X Chart (assumed C = 1.50) 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

0.3173 

0.1336 

0.0455 

0.0124 

0.0078 

0.0027 

±1.0 

0.8413 

0.6915 

0.5000 

0.3085 

0.2546 

0.1587 

±1.5 

0.9773 

0.9332 

0.8413 

0.6915 

0.6331 

0.5000 

±2.0 

0.9987 

0.9938 

0.9773 

0.9332 

0.9099 

0.8413 

±2.5 

1.0000 

0.9998 

0.9987 

0.9938 

0.9904 

0.9773 

Table 6.13. Power of i? Chart (assumed C_ = 1.25) 

Cp 

Prob. 

0.50 

0.5445 

0.65 

0.3093 

0.75 

0.1904 

0.85 

0.1078 

1.00 

0.0393 

1.25 

0.0049 

Table 6.14. Power of if Chart (assumed C_ = 1.50) 

Cp 

Prob. 

0.50 

0.6851 

0.65 

0.4745 

0.75 

0.3445 

0.85 

0.2355 

1.00 

0.1192 

1.25 

0.0289 

1.50 

0.0049 

If the X and R charts are for use whh short production runs, it may not make a 

great deal of sense to compare their effectiveness with 'pre-control' on the basis of 

average run length. This is the case when the total production time is less than the time 

taken to collect enough samples to match the ARL. As an alternative, we consider the 

probability of detection whhin 5 successive samples following a given mean shift. This 

probability is plotted against process mean shift in standard deviation units for 'pre-

control' and X charts with both conventional and adjusted control limits in figures 6.2(a) 

to 6.2(f) where the X chart is constructed under the assumption that Ĉ  is 1. As shown, 

there is no remarkable difference between 'pre-control' and X charts whh either 
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conventional or adjusted control hmits if C^ = 0.5 or 0.75 . However, considerable 

differences exist between these techniques if the process is more than capable, especially 

for mean shifts ranging from la to 2a. 
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Cp= 0.5 

0 0 .5 1 1 .5 2 2 .5 3 0 0.5 1 1.5 2 2 .5 3 
k k 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.2. Probability of Detection Within 5 Successive Samples (P) vs Mean Shift 
in Multiples of Standard Deviation (k). A, B and C denote respectively 
Pre-Control, X Chart with Coventional and Adjusted Limits. 
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6.6 Equating Sampling Effort 

In our discussion so far, the total sampling effort has not been taken into 

consideration; the assumption being made that the time and cost of sampling, 

measurement or testing are not significant. This may, however, be unrealistic in certain 

circumstances. If h is, no usefiil comparison can be made unless the relative sampling 

frequency of'pre-control' and X and R control is first set in such a way that use of both 

methods involves the same sampling effort. 

To compensate for the smaller sample size of 2 for 'pre-control', we assume that 

process checks are made twice as often as X andR control with a sample size of 4. This 

being the case, we focus on the average number of items required to detect a change in 

the process mean or process dispersion, using the two methods. 

In Tables 6.15 and 6.16, the average number of units sampled before 'picking up' 

various mean shifts under different process capability levels are given for 'pre-control' 

and X chart control (control hnes fixed on the basis that C^ = 1). To facihtate the 

comparison, we have computed the following index : 

•ANIIMS(PC) 

-'MS 

ANII(X) 

ANII(J) 

if k ^ 0 

if yt ^ 0 
[ANII^s(PC) 

where ANIIj^s(PC) and ANII(X) denote the average number of hems inspected before 

detecting the mean shift using 'pre-control' and conventional X chart (control based on 

Cp = l) respectively except when A: = 0, in which case they are the average number of 

hems inspected prior to the occurrence of a false signal. 
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If /j^s > 1 when k^O then 'pre-control' performs better than the X chart in the 

sense that, on average, h 'picks up' the mean shift with fewer sampled hems. Similariy, 

whenk=0 and /^s > 1 then 'pre-control' takes longer, on average, before issuing a false 

signal. The values of this index for various combinations of mean shift (in multiples of a) 

and actual process capability are tabulated in Table 6.17. As shown, although h is 

superior in detecting mean shifts of all the given magnitudes, irrespective of the actual 

process capability, 'pre-control' is far worse than the X chart whh regard to false alarms, 

a factor alluded to by Logothetis (1990). 

Table 6.15. ANnMs(PC) 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

8.04 

28.53 

147.01 

917.36 

1686.06 

6407.56 

±0.5 

6.30 

15.95 

56.60 

243.97 

400.16 

1200.90 

±1.0 

3.44 

6.34 

15.83 

48.53 

71.69 

172.74 

±1.5 

2.46 

3.47 

6.32 

14.19 

19.03 

37.42 

±2.0 

2.12 

2.48 

3.47 

5.91 

7.27 

11.87 

±2.5 

2.02 

2.13 

2.48 

3.36 

3.83 

5.31 

±3.0 

2.00 

2.03 

2.13 

2.45 

2.63 

3.18 

Table 6.16. ANn(Ar) (sample size 4, Control based on C = 1) 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

30 

164 

1481 

22611 

60458 

588674 

±0.5 

13.0 

37.9 

175.8 

1342.4 

2867.5 

17189.8 

±1.0 

5.79 

9.97 

25.21 

99.85 

171.71 

644.16 

±1.5 

4.29 

5.17 

8.00 

17.65 

24.83 

59.87 

±2.0 

4.03 

4.17 

4.75 

6.68 

7.94 

12.96 

±2.5 

4.00 

4.01 

4.09 

4.47 

4.74 

5.78 

±3.0 

4.00 

4.00 

4.00 

4.05 

4.09 

4.29 
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Table 6.17. / MS 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

0 

0.27 

0.17 

0.10 

0.04 

0.03 

0.01 

±0.5 

2.06 

2.37 

3.11 

5.50 

7.17 

14.31 

±1.0 

1.68 

1.57 

1.59 

2.06 

2.40 

3.73 
.,, 

±1.5 

1.74 

1.49 

1.27 

1.24 

1.30 

1.60 

±2.0 

1.90 

1.68 

1.37 

1.13 

1.09 

1.09 

±2.5 

1.98 

1.88 

1.65 

1.33 

1.24 

1.09 

±3.0 

2.00 

1.97 

1.88 

1.65 

1.56 

1.35 

A similar comparison between 'pre-control' and use of the R chart (control based 

on C- = 1) with respect to detection of increase in process variance can also be made. 

Let 

'VI 

ANIIvi(PC) jf c ^ 1 
ANII(i?) ^ 

ANII(i^) if c < 1 
ANIIvi(PC) ' 

where AMI VI (PC) and ANII(R) denote the average number of hems inspected prior to 

a signal from 'pre-control' and a conventional R chart (control based on C^ = 1) 

respectively. 

The values of ANIIvi(PC), ANII(i^) and /yj are provided in Tables 6.18, 6.19 

and 6.20 respectively. The R chart can be seen to be more sensitive to increase in process 

spread except where marked by *. 
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Table 6.18. ANnvi(PC) 

Cp \ k 

0.50 

0.65 

0.75 

0.85 

1.00 

T 

0 

19.47 

36.83 

58.90 

97.73 

224.05 

able 6.19. 

Cp 

ANIl(R) 

Cp \ k 

0.50 

0.65 

0.75 

0.85 

1.00 

±0.5 

23.59 

44.94 

72.19 

120.23 

277.05 

±1.0 

41.70 

81.25 

132.25 

222.93 

521.94 

±1.5 

105.77 

214.38 

357.20 

615.09 

1481.50 

±2.0 

375.23 

805.58 

1389.97 

2471.39 

6215.00 

±2.5 

1805.10 

4180.40 

7557.50 

14040.90 

37483.00 

±3.0 

11445 

29010 

55637 

109485 

315409 

ANn(i?) (sample size 4, control based on C^ = 1) 

0.50 

11.61 

0 

0.5964 

0.8060 

1.1102* 

1.6673* 

0.2760 

0.65 

29.68 

0.75 

65.39 

Table 6.20. /yi 

±0.5 

0.4923 

0.6605 

0.9059 

1.3552* 

0.3413 

±1.0 

0.2785 

0.3653 

0.4945 

0.7309 

0.6430 

±1.5 

0.1098 

0.1385 

0.1831 

0.2649 

1.8252 

0.85 

162.94 

±2.0 

0.0309 

0.0369 

0.0471 

0.0659 

7.6569 

1.00 

811.69 

±2.5 

0.0064 

0.0071 

0.0087 

0.0116 

46.1790 

±3.0 

0.0010 

0.0010 

0.0010 

0.0010 

388.5830 

In many applications, the cost, effort or time expended to investigate a trouble-free 

process only to conclude subsequently that no change has occurred, is high. Under such 

circumstances, h seems appropriate to evaluate the relative effectiveness of competing 

control procedures having equated, for the two methods, the average number tested to 

produce a false signal. For this reason, the control limits of the Z and i? charts were 

adjusted so that both lead to the same average time elapsed or average number of hems 

inspected prior to occurrence of a false signal as 'pre-control', when Cp=l. The 
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resulting ANn(X) and ANII(i?) values are shown in Tables 6.21 and 6.22 respectively. 

As illustrated in Tables 6.15 and 6.21, if the process capability is correctly assumed (i.e 

Ĉ  = 1) or underestimated (i.e C^ > 1), the adjusted X chart requires a much smaller 

number of units, on average, to 'pick up' the given mean shift except when C_ = 1 and k 

= 2, in which case the difference is marginal. For Cp - 0.5 or Cp = 0.75, h is found that 

in most cases (marked whh *), 'pre-control' is marginally better than the adjusted X 

chart. It can also be seen that false signals from the adjusted X chart tend to occur after 

a longer period of time when the process is incapable. However, if the process is more 

than capable, the adjusted X chart will tend to issue a false signal sooner than 'pre-

control' although, due to the large magnitudes, this is of little practical consequence. It 

should be noted that we have delibrately omitted those cases where k = 2.5 and A: = 3.0 in 

Table 6.21 because mean shifts as large as these are likely to be detected early anyway 

irrespective of method. The R chart is found to be far superior to 'pre-control' in reacting 

to worsening process capability (refer to Tables 6.18 and 6.22). This is especially true 

when the process is not on target. 
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Table 6.21. ANn(Ar) (sample size 4, adjusted limits, control based on C = 1) 

Cp \ k 

0.50 

0.75 

1.00 

1.25 

1.33 

1.50 

these are slig 

0 

14.84 

40.96 

147.01 

693.331 

1208.12t 

4329.05t 

itly larger thaj 

±0.5 

8.72* 

15.64 

35.27 

102.17 

151.78 

385.80 

n the correspo 

±1.0 

4.91* 

6.30 

9.58 

17.90 

22.95 

42.27 

nding figures 

±1.5 

4.12* 

4.39* 

5.09 

6.73 

7.62 

10.60 

for 'pre-contro 

±2.0 

4.01* 

4.04* 

4.15* 

4.48 

4.67 

5.30 

r in table 6.15 * 

t these are smaller than the corresponding figures for 'pre-control' in table 6.15. 

Table 6.22. ANn(i?) (sample size 4, adjusted limits, control based on C = 1) 

Cp 

ANII( Adjusted R) 

0.50 

8.72 

0.65 

17.69 

0.75 

32.28 

0.85 

65.13 

1.00 

224.05 

6.7 Concluding Remarks 

On practical considerations and from the perspective of monitoring and control, 

proponents of 'pre-control' state the method to be superior to X and R charts. Its 

simplichy and versatility make h a usefiil tool for a large variety of applications. 

Nevertheless, as shown in the previous sections, X and R control charting still have 

merits on statistical grounds. 

It is clear that, if sampling effort is of Ihtie importance, Cp is known and 

provides a value of 1, 1.25 or 1.50, then the X chart is superior in 'picking up' mean 

shifts greater than la . When a is not known, as is frequently the case in short 

production runs, and therefore its value has to be estimated or assumed for use of 

Shewhart charts, in many instances X control is seen to still be superior. Specifically, if 
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the Cp is assumed to be 1.25 but is actually between 0.5 and 1.5 then X control is 

superior to 'pre-control' in 'picking up' shifts in the process mean. If Cp is assumed to 

be 1, yet actually has a value somewhere between 0.5 and 1.50, then an X chart is as 

good as or significantly better for detecting mean shifts than 'pre-control'. For detection 

of a deterioration in the process capability we have observed the standard R chart to be 

more sensitive than 'pre-control'. It would seem, therefore, that the advocacy of 

Maxwell (1953) and others is sound, that in the absence of knowledge of a we can use, 

for construction of standard X and R charts, an assumed Cp value of 1. Certainly this is 

so in regard to providing a more sensitive instrument for process control than 'pre-

control' . 

When sampling effort is important, a comparison that fairly compares the two 

techniques when the sampling effort is the same, reveals that for capable processes, X 

and i? charts are superior to 'pre-control'. 

The material presented in this chapter has taken a perspective that focuses 

narrowly on monitoring and control. Broadening the perspective and perceiving charting 

techniques as merely a part in the effort of continuous improvement underscores further 

the value of traditional Shewhart charts. 

We have sought to create some common ground for X and R control and 'pre-

control' in order to examine their performance for monitoring and control on a statistical 

basis. It is hoped that the material contained herein will provide more complete grounds 

on which to base a comparison between the two techniques and thus to facihtate more 

rational judgements on which of the two to use in any given situation. 
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CHAPTER 7 

CONCLUSIONS AND SOME SUGGESTIONS FOR 

FUTURE INVESTIGATION 

7.1 Summary and Conclusions 

In this thesis, some techniques for monitoring the mean vector of a muhivariate 

normal process have been presented. As the proposed techniques involve sequences of 

independent or approximately independent standard normal variables, the resultmg 

control charts can all be plotted in the same scale and whh the same control limits 

irrespective of product types, thus simplyfying charting administration. Any non-random 

patterns on such standardized charts which suggest various process instabilities can also 

be readily detected by the use of additional sequence rules. Those techniques presented 

for the case whh no prior knowledge of process parameters are particularly attractive for 

short production runs and low volume manufacturing environments since control can be 

initiated essentially whh the first umts or samples of production. When used in the 

context of new or long run processes, this charting approach ehminates the need for a 

separate calibration study. Simulation results indicate that the techniques presented for 

use with subgroup data have desirable performance whether or not the process 

parameters are assumed known in advance of the production run. As for individual 

values control techniques, those which do not assume known values of the process 

covariance matrix Z or both the process parameters, are found to be insensitive to 

sustained mean shift. However, the two alternative EWMA procedures (EWMAZl and 

EWMAZIU) specifically designed for detecting this type of process change have been 

demonstrated to be very effective. In addition, they are found to be far superior to some 
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competing techniques including the M charts of Chan et al.(1994) for 'pickmg up' linear 

trends. 

In practice, h is also of value to monitor the process dispersion as measured by 

the variance-covariance matrix Z which may be subject to occasional changes. The 

procedures presented for this purpose (which are based on subgroup data) involve use of 

mdependent statistics resulting from the decomposition of the covariance matrix. A 

simulation study indicates that the proposed techniques outperform previously proposed 

procedures for many sustained shifts in Z. It has also been demonstrated that the 

technique presented for the known Z case is more powerful in 'picking up' certain shifts 

than that which involves the separate charting of the standardized variances of the 

principal components or the individual components resulting from the decomposhion of 

the covariance matrices. In addition, the proposed methods have some practical 

advantages over the existing procedures. Besides providing better control over the false 

alarm rate and the ease of locating the control Umhs, the proposed techniques can help 

identify the nature of change in the process dispersion parameters. 

In order to satisfactorily describe the capability of multivariate processes, three 

muhivariate capability indices have been presented. These are based on the relative area 

and position of a conservative process rectangle containing at least a specified proportion 

of hems, and the specification rectangle. The development of the first involves the 

projection of a process ellipse containing a specified percentage of products on to hs 

component axes whereas the other two are based on the Bonferroni and Sidak 

inequalities respectively. Although this work is devoted to two-sided rectangular 

specifications, h can be extended to unilateral specification situations in a straightforward 

manner. Some calculations that fairly compare the three reveal that the latter two are 

212 



superior to the former and that the Sidak-type capability index is marginally better than 

that based on the Bonfertoni inequahty. A reasonable test for the Sidak-type index has 

also been proposed and critical values provided for some chosen levels of significance, 

sample sizes and acceptable percentages of nonconforming items. The computation of 

these mdices is easier than other proposed indices and capability analysis methods. 

However, as whh other muhivariate capabihty indices, h has not yet been possible to 

obtain the unbiased estimators and appropriate confidence intervals for the proposed 

indices except to note that for large sample sizes, h seems appropriate to replace the 

parameters involved whh the usual sample estimates. A conservative type of distribution-

free capability index has also been considered. This is obtained by use of multivariate 

Chebyshev-type probability inequahties. Although this is no better (more conservative) 

than the Bonferroni-type capability index, the process rectangle containing at least a 

specified proportion of items used for defining the index can be constructed easily for 

any type of process distribution. If the underlying distribution for each quality 

characteristic is known to belong to some well-known system or family of distributions 

and hence appropriate quantiles may be obtained, it is advisable to consider the use of the 

capability index constructed based on the Bonferroni inequality although in some cases, 

this might not be practical. 

A rationale for making a statistical comparison between the techniques of 'pre-

control' and tradhional X and R charts has also been provided in this thesis. Special 

attention was drawn to the application of both techniques to the short run manufacturing 

environment where, for the use of X and R charts, parameter estimation is a problem. 

Despite hs many touted practical attributes, the results show that 'pre-control' is not as 

good as the X and R charting techniques in many circumstances. 
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7.2 Suggestions for Future Work 

In the following, some suggestions are made for fiiture investigation, building on 

the work of this thesis. 

1. A study of the robustness of the proposed mean and dispersion control procedures to 

departures from the multivariate normality assumptions using run length distributions. 

Convenient process models recommended for this purpose include the Elliptically 

Co«/owreJ distributions (see Johnson (1987), p. 106-124) which have the multivariate 

normal distributions as special cases. 

2. A comparison of the statistical performance of the proposed procedures, including 

EWMAZl and EWMAZIU, with the corresponding nonparametric techniques of 

Hawkins (1992) for various distributional models and types of process change. 

Performance criteria recommended include the run length probability, Vr{RL <k). A. 

comparison could also be made between EWMAZl and the MEWMA technique of 

Lowry et al.(1992). 

3. A study of the properties of applying multiple univariate 'Q' charts to the principal 

components and the individual quality characteristics for the cases with known and 

unknown E respectively, and similar charts constructed based on independent 

variables that resuh from the decomposition of the % and T statistics of (3.3) to 

(3.11) in a manner similar to that of Mason et al.(1995). 

4. Analysis of "?x{RL<k) for the multivariate mean control techniques based on 

statistics (3.4), (3.5), (3.6), (3.8), (3.9), (3.10) and (3.11) and the proposed dispersion 

control procedures for sustained shifts in p and Z respectively. 
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5. Develop dispersion control methods based on individual observations for the case 

where Z is unknown and study hs RL performance relative to that of the 

nonparametric procedure presented by Hawkins (1992). For the case with specified or 

known Z , consideration should be made of the use of separate univariate charts 

based on the variability of the principal components or some aggregate-type statistic 

like those of Chapter 4 whh a comparison of the resuhing RL performance with that 

of Hawkins's method. 

6. Develop exact multivariate capability mdices which accurately reflect the process 

status (i.e the expected proportion of usable items produced) and the expected costs 

mcurred. As not all the measured characteristics are equally important in determining 

the product quality in some shuations, indices which take this factor into 

consideration should also be designed. 

215 



References 

1. Adams, B. M. and WoodaU, W. H. (1989). "An Analysis of Taguchi's On-Line 

Process-Control Procedure Under a Random-Walk Model". Technometrics 13, pp. 

401-413. 

2. Al-Salti, M. and AspinwaU, E. M. (1991). "Movhig Average Moving Range and 

CUSUM Modelling in SmaU Batch Manufacturing". Proceedings of 3rd Conference 

of Asia Pacific Quality Control Organisation. 

3. Al-Salti, M., and Statham, A. (1994). "A Review of the Lherature on the Use of SPC 

in Batch Production". Quality and Reliability Engineering International 10, pp. 49-

61. 

4. Al-Salti, M., AspinwaU, E. M. and Statham, A. (1992). "Implementing SPC in a Low-

volume Manufacturing Environment". Quality Forum 18, pp. 125-132. 

5. Alt, F. B. and Bedewi, G. E. (1986). 'SPC of Dispersion for Multivariate Data'. ASQC 

Quality Congress Transaction - Anaheim. American Society for Quality Control, pp. 

248-254. 

6. Alt, F. B. and Smith, N. D. (1990). "Multivariate Quality Control' in Handbook of 

Statistical Methods for Engineers and Scientists, Ed. H.M. Wadsworth, McGraw-

Hill, New York, NY. 

7. Alt, F. B.; Goode, J. J. and Wadsworth, H. M. (1976). 'SmaU Sample Probability 

Limits For the Mean of a Multivariate Normal Process'. ASQC Technical Conference 

Transactions - Toronto. American Society for Quality Control, pp. 170-176. 

8. Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd 

ed., John WUey & Sons, New York, NY. 

9. Armitage, S. J. and Wilharm, M. T. (1988). "Techniques For Expanding The Sphere 

of Statistical Process Control". Tappi Journal, July, pp.71-77. 

lO.Barnett, N. S. (1990). 'Process Control and Product Quality - The C^ and C^A: 

Revisited'. International journal of Quality and Reliability Management, Vol.7, 

No.4, pp.34-43. 

11.Bather, J. A. (1963). "Control Charts and Minimization of Costs". Journal of Royal 

Statistical Society, Series B 25, pp. 49-80. 

216 



12.Bayer, H. S. (1957). "Quality Control AppUed to a Job Shop". ASQC National 

Convention Transactions, pp. 131-137. 

O.Bhote, K. E. (1980). World Class Quality, AMA Management Briefing. 

M.Bothe, D. R. (1989). "A Powerfiil New Control Chart for Job Shops". ASQC 43rd 

Annual Quality Congress Transactions, pp. 265-270. 

15.Bothe, D. R. (1990). "A Control Chart for Short Production Runs". Quality Australia 

7, pp. 19-20. 

16.Bothe, D. R. (1990). "SPC For Short Production Runs". Quality Australia 7, pp. 53-

56. 

17.B0X, G. E. P. and Jenkins, G. M. (1963). "Further Contributions to Adaptive Quality 

Control : Simuhaneous Estimation of Dynamics : Non-Zero Costs". Bulletin of the 

International Statistical Institute 34, pp. 943-974. 

IS.Box, G E. P., Jenkins, G. M. and MacGregor, J. F. (1974). "Some Recent Advances 

in Forecasting and Control, Part II". Applied Statistics 23, pp. 158-179. 

19.Boyles, R. A. (1991). 'The Taguchi Capability Index'. Journal of Quality Technology, 

Vol.23, No. 1, pp. 17-26. 

20.Boyles, R. A. (1994). 'Covariance Models for Repeated Measurements with Lattice 

Structure'. Submitted for publication. 

21.Boyles, R. A. (1996). 'Exploratory Capability Analysis'. Journal of Quality 

Technology, Vol.28, No.l, pp.91-98. 

22.Brown, N. R. (1966). "Zero Defects the Easy Way with Target Area Control". 

Modern Machine Shop, July, pp. 96-100. 

23.Burr, I. W. (1954). "Short Runs". Industrial Quality Control, September, pp. 17-22. 

24.Burr, I. W. (1976). Statistical Quality Control Methods. Marcel Dekker Inc., 

Milwaukee, Wisconsin. 

25.Burr, J. T. (1989). "SPC in The Short Run". ASQC 43rd Annual Quality Congress 

Transactions, pp. 776-780. 

26.Calvin, J. A. (1994). 'One-sided Test of Covariance Matrix with A Known Null 

Value'. Communications in Statistics - Theory and Methods 23, pp.3121-3140. 

27.Castillo, E. D. (1995). Discussion o f 'Q ' Charts. Journal of Quality Technology 27, 

pp.316-321. 

217 



28.Castillo, E. D. and Montgomery, D. C. (1994). "Short-Run Statistical Process 

Control : Q-Chart Enhancements and Alternative Methods". Quality and Reliability 

Engineering International 10, pp. 87-97. 

29.Castillo, E. D. and Montgomery, D. C. (1995). 'A Kalman Filtering Process Control 

Scheme with An Application in Semiconductor Short Run Manufacturing'. Quality 

and Reliability Engineering International 11, pp. 101-105. 

30.Chan, L. K. and Li, Guo-Ying. (1994). 'A Multivariate Control Chart for Detecting 

Linear Trends'. Communications in Statistics - Simulation and Computation 23, 

pp.997-1012. 

31.Chan, L. K.; Cheng, S. W. and Spiring, F. A. (1988). 'A Graphical Technique for 

Process Capability'. ASQC Quality Congress Transactions - DaUas, pp.268-275. 

32.Chan, L. K.; Cheng, S. W. and Spiring, F. A. (1990). 'A Multivariate Measure of 

Process Capability'. International Journal of Modeling and Simulation 11, pp. 1-6. 

33.Chen, J. and Gupta, A. K. (1994). 'Likelihood Procedure for Testing Change Points 

Hypothesis for Multivariate Gaussian Model'. Technical Report No.94-01, Dept. of 

Mathematics & Statistics, Bowling Green State University. 

34.Chen, J. and Gupta, A. K. (1994). 'Estimation and Testing of Change Points for 

Covariance in Multivariate Gaussian Model'. Proceedings of the International 

Conference on Statistical Methods and Statistical Computing for Quality and 

Productivity Improvement (ICSQP '95), pp.405-432. 

35.Clements, J. A. (1989). Process Capabihty Calculations for Non-Normal 

Distributions'. Quality Progress, September, pp.95-100. 

36.Cook, H. M. Jr. (1989). "Some Statistical Control Techniques for Job Shops". 43rd 

Annual Quality Congress Transactions, pp. 638-642. 

37.Crichton, J. R. (1988). "Guidelines and Techniques for Applying Control Charts in a 

Batch Operation". Tappi Journal, December, pp. 91-95. 

38.Crosier, R. B. (1988). 'Multivariate Generalization of Cumulative Sum Quality-

Control Schemes'. Technometrics 30, pp. 291-303. 

39.Crowder, S. V. (1989). 'An Application of Adaptive Kalman Fihering to Statistical 

Process Control', in Statistical Process Control in Automated Manufacturing, Eds. J. 

B. Keats &. N.F. Hubele, Marcel Dekker, New York, NY. 

218 



40.Crowder, S. V. (1992). 'An SPC Model For Short Production Runs : Minimizing 

Expected Cost'. Technometrics 34, pp. 64-73. 

41.Cryer, J. D. and Ryan, T. P. (1990). 'The Estimation of Sigma For an X Chart : 

M ^ d j or S/C4 1\ Journal of Quality Technology 22,1^^. 187-192. 

42.Das-Gupta, S. (1969). 'Properties of Power Functions of Some Tests Concerning 

Dispersion Matrices of Multivariate Normal Distributions'. Annals of Mathematical 

Statistics 40, pp.697-701. 

43.Davis, A. W. and Field, J. B. F. (1971). 'Tables of Some Multivariate Test Criteria'. 

Technical Paper ^0. 32, C.S.I.R.O, Australia. 

44.Doganaksoy, N.; Faltin, F. W. and Tucker, W. T. (1991). 'Identification of Out Of 

Control Quality Characteristics in a Muhivariate Manufacturing Environment'. 

Communications in Statistics - Theory and Methods 20, pp. 2775-2790. 

45.Doganaksoy, N.; Schmee, J. & Vandeven, M. (1996). 'Process Monitoring with 

Multiple Product Grades'. Journal of Quality Technology 28, pp.346-355. 

46.Ermer, D. S. and Born, D. D. (1989). "Statistical Process Control for Short 

Production Runs : AX-MR Control Charts". Quality Improvement Techniques For 

Manufacturing, Products And Services, Eds. A.H. Abdelmonem, AT & T Bell 

Laboratories, pp.43-87. 

47.Farnum, N. R. (1992). "Control Charts for Short Runs: Nonconstant Process and 

Measurement Error". Journal of Quality Technology 24, pp. 138-144. 

48.Farnum, N. R. (1995). Discussion of 'Q ' Charts. Journal of Quality Technology 27, 

pp.322-323. 

49.Fisher, R. A. (1950). Statistical Methods for Research Workers, London : Oliver and 

Boyd. 

SO.Folks, J. L. (1984). 'Combination of Independent Tests', in Handbook of Statistics, 

Vol.4, Eds. P. R. Krishnaiah and P. K. Sen, Elsevier Science Pubhsher. 

51.Foster, G. K. (1988). 'Implementing SPC in Low Volume Manufacturing'. ASQC 

Annual Quality Congress Transactions, pp. 261-267. 

52.Franklin, L. A. and Wasserman, G. S. (1992). 'Bootstrap Lower Confidence Limits 

for CapabUity Indices'. Journal of Quality Technology 24, pp. 196-210. 

53.Giri, N. C. (1977). Multivariate Statistical Inference, Academic Press, New York, 

NY. 

219 



54.Gnanadesikan, R. (1977). Methods for Statistical Data Analysis of Multivariate 

Observations, John Wiley & Sons, New York, NY. 

55.Ghosh, B. K.; Reynolds, M. R. Jr and Hui, Y. V. (1981). 'Shewhart J-Charts with 

Estimated Process Variance'. Communications in Statistics - Theory and Methods 10, 

pp. 1797-1822. 

56.Grant, E. L. and Leavenworth, R. S, (1980). Statistical Quality Control, 5th ed., 

McGraw-Hill, New York, NY. 

57.GraybiU, F. A. (1983). Matrices with Applications in Statistics, 2nd ed., Wadsworth 

Inc., Belmont, CA. 

58.Hawldns, D. L. (1992). 'Detecting Shifts in Functions of Multivariate Location and 

Covariance Parameters'. Journal of Statistical Planning and Inference 33, pp.233-

244. 

59.Hawkins, D. M. (1981). 'A CUSUM for A Scale Parameter'. Journal of Quality 

Technology 13, pp.228-231. 

60.Hawkins, D. M. (1987). 'Self-Starting Cusum Charts for Location and Scale'. The 

Statistician 36, pp.299-315. 

61.Hawkins, D. M. (1991). 'Multivariate Quality Control Based on Regression-Adjusted 

Variables'. Technometrics 33, pp. 61-75. 

62.Hawkins, D. M. (1993a). 'Regression Adjustment for Variables in Multivariate 

Quality Control'. Journal of Quality Technology 25, pp. 170-182. 

63.Hawkins, D. M. (1993b). 'Robustification of Cumulative Sum Charts by 

Winsorization'. Journal of Quality Technology 25, pp. 248-261. 

64.Hawkins, D. M. (1995). 'Discussion o f 'Q ' Charts. Journal of Quality Technology 

27, pp.324-327. 

65.Hayter, A. J. and Tsui, K. (1994). 'Identification and Quantification in Multivariate 

Quality Control Problems'. Journal of Quality Technology 26, pp. 197-208. 

66.Healy, J. D. (1987). 'A Note on Muhivariate CUSUM Procedures'. Technometrics 

29, pp.409-412. 

67.HiUier, F. S. (1964). 'X Chart Control Limits Based on A Small Number of 

Subgroups'. Industrial Quality Control, February, pp.24-29. 

68.HiUier, F. S. (1967). 'SmaU Sample Probability Limits for the Range Chart'. 

American Statistical Association Journal, December, pp. 1488-1493. 

220 



69.Hillier, F.S. (1969). 'X andR Chart Control Limits Based On a Small Number of 

Subgroups'. Journal of Quality Technology 1, pp. 17-26. 

70.Ho, C. and Case, K. E. (1994). 'Economic Design of Control Charts : A Literature 

Review for 1981-1991'. Journal of Quality Technology 26, pp.39-53. 

71.Hogg, R. V. and Craig, A. T. (1971). Introduction to Mathematical Statistics, 3rd 

ed., The Macmillan Co., New York, NY. 

72.Holmes, D. S. and Mergen, A. E. (1993). 'Improving the Performance of the T^ 

Control Chart'. Quality Engineering, Vol.5, No.4, pp.619-625. 

73.Hotelling, H. (1947). 'Multivariate Quality Control' in Techniques of Statistical 

. Analysis, Eds. Eisenhart, Hastay and Wallis. McGraw-Hill, New York, NY. 

74.Hubele, N. F.; Shahriari, H. and Cheng, C-S. (1991). 'A Bivariate Process Capability 

Vector', in Statistical Process Control in Manufacturing, Eds. JB. Keats and D.C. 

Montgomerry, Marcel Dekker, New York, NY & ASQC Press, Milwaukee, 

Wisconsin. 

75.Jackson, J. E. (1991). 'Multivariate Quality Control : 40 Years Later' in Statistical 

Process Control in Manufacturing, Eds. J.B. Keats and D.C. Montgomery, Marcel 

Dekker NY and ASQC Quality Press Wisconsin. 

76. Johnson, M. E. (1987). Multivariate Statistical Simulation. John WUey & Sons, New 

York, NY. 

77.Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics : Continuous 

Univariate Distributions 1, Vol.2, John Wiley & Sons, New York, NY. 

78.Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics : Continuous 

Multivariate Distributions, Vol.4, John Wiley & Sons, New York, NY. 

79. Johnson, R. A. and Wichern, D. W. (1988). Applied Multivariate Statistical Analysis, 

2nd ed., Prentice-Hall, Englewood Cliffs, NJ. 

SO.Kane, V. E. (1986). 'Process Capability Indices'. Journal of Quality Technology, 

Vol.18, No.l, pp.41-52. Corrigenda p.265. 

Sl.Kiefer, J. and Schwartz, R. (1965). 'Admissible Bayes Character of T^ - and R^ -

and Other Fully Invariant Tests for Classical Normal Problems'. Annals of 

Mathematical Statistics 36, pp.747-760. 

82.King, E. P. (1954). "Probability Limhs for The Average Charts When Process 

Standards Are Unspecified". Industrial Quality Control, May, pp. 62-64. 

221 



83.Koons, G. F. and Luner, J. J. (1991). "SPC m Low Volume Manufacturing : A Case 

Study". Journal Of Quality Technology 23, pp. 287-295. 

84.Koziol, J. A. and Periman, M. D. (1978). 'Combining Independent Chi-Squared 

Tests'. Journal of the American Statistical Association 73, pp.753-763. 

85.Kushler, R. H. and Huriey, P. (1992). 'Confidence Bounds for Capability Indices'. 

Journal of Quality Technology, Vol.24, No.4, pp. 188-195. 

86.Lancaster, H. O. (1961). 'The Combmation of Probabilities : An Apphcation of 

Orthonormal Functions'. Australian Journal of Statistics, Vol.3, pp.20-33. 

87.Lehmann, E. L. (1959). Testing Statistical Hypotheses, John WUey & Sons, New 

York, NY. 

88.Lill, M. H., Yen Chu and Ken Chung. (1991). "Statistical Setup Adjustment for Low 

Volume Manufacturing", in Statistical Process Control in Manufacturing, Eds. J.B. 

Keats & D.C. Montgomery, Marcel Dekker, New York, NY & ASQC Quality Press, 

Milwaukee, Wisconsin. 

89.Lindgren, B. W. (1976). Statistical Theory, 3rd ed., MacmiUan PubUshing Co., New 

York, NY. 

90.Logothetis, N. (1990). "The Theory of Pre-Control : A Serious Method or A 

Colourful Naivity ?". Total Quality Management I, pp.207-220. 

91.Lowry, C. N. (1989). 'A Multivariate Exponentially Weighted Moving Average 

Control Chart'. Ph.d thesis. University of Southwestern Louisiana, U.S.A. 

92.Lowry, C. N. and Montgomery, D. C. (1995). 'A Review of Multivariate Control 

Charts'. HE Transactions 27, pp.800-810. 

93.Lowry, C. N.; Woodall W. H.; Champ, C. W. and Rigdon, S. E. (1992). 'A 

Multivariate Exponentially Weighted Moving Average Control Chart'. Technometrics 

34, pp. 46-53. 

94.MacGregor, J. F. and Harris, T. J. (1993). 'The Exponentially Weighted Moving 

Variance'. Journal of Quality Technology 25, pp. 106-118. 

95.Marcucci, M. O. and Beazley, C. C. (1988). 'Capability Indices : Process Performance 

Measures'. ASQC Quality Congress Transactions, American Society for Quality 

Control, pp.516-523. 

96.Marden, J. I. (1982). 'Combining Independent Noncentral Chi Squared Or F Tests'. 

The Annals of Statistics 10, pp.266-277. 

222 



97.Mason, R. L.; Tracy, N. D. and Young, J. C. (1995). 'Decomposition of T^ for 

Multivariate Control Chart Interpretation'. Journal of Quality Technology 27, pp.99-

108. 

98.MaxweU, H.E. (1953). A Simplified Control Chart For The Job Shop. Industrial 

Quality Control, November, pp.34-37. 

99.Montgomery, D. C. (1980). "The Economic Design of Control Charts : A Review 

and Lherature Survey". Journal of Quality Technology 12, pp.75-87. 

lOO.Montgomery, D. C. and Wadsworth, H. M. (1972). 'Some Techniques For 

Muhivariate Quality Control Applications'. Annual Technical Conference 

Transactions, American Society for Quality Control, pp.427-435. 

10I.Morrison, D. F. (1976). Multivariate Statistical Methods, 2nd ed., McGraw-HiU, 

New York, NY. 

102.Murphy, B. J. (1987). 'Selecting Out of Control Variables with the T^ Multivariate 

Quality Control Procedure'. The Statistician 36, pp.571-583. 

103 .Murray, I. and Oakland, J.S. (1988). 'Detecting Lack Of Control In A New, Untried 

Process'. Quality And Reliability Engineering International, Vol.4, pp.331-338. 

104.Nagao, H. (1967). 'Monotonicity of the Modified Likelihood Ratio Test for a 

Covariance Matrix. Journal of Science Hiroshima University A1 31, pp. 147-150. 

105.Nelson, L. S. (1982). "Control Charts for Individual Measurements". Journal of 

Quality Technology 14, pp. 172-173. 

106.Nelson, L. S. (1984). "The Shewhart Control Chart Tests for Special Causes". 

Journal of Quality Technology 16, pp. 237-239. 

107.Nickerson, D. M. (1994). 'Construction of a Conservative Region From Projections 

of an Exact Confidence Region in Multiple Linear Regression'. The American 

Statistician 48, pp. 120-124. 

108.Nomikos, P. and MacGregor, J. F. (1995). 'Muhivariate SPC Charts for Monitoring 

Batch Processes'. Journal of Quality Technology 37, pp.41-59. 

109.Nugent, B. A. (1990). "SPC in Short Run Processes". Proceedings of The IEEE 

1990 National Aerospace and Electronics Conference - Dayton, Ohio, USA. 

pp. 1304-1307. 

223 



llO.Pearn, W. L,; Kotz, S, and Johnson, N. L. (1992). 'Distributional and Inferential 

Properties of Process Capabihty Indices'. Journal of Quality Technology 24, pp.216-

231. 

111.PignatieUo, J. J. Jr and Runger, G C. (1990). 'Comparisons of Muhivariate 

CUSUM Charts'. Journal of Quality Technology 22, pp. 173-186. 

112.Press, S. J. (1982). Applied Multivariate Analysis : Using Bayesian and Frequentist 

Methods of Inference, 2nd ed., Robert E. Krieger PubUshing Co., Malabar, FL. 

113.Putnam, A.O. (1962). Pre-Control. Quality Control Handbook, 2nd edition, Eds. 

Juran, J.M., Seder, L.A. & Gryna, F.M. Jr., McGraw-HiU Inc. 

IH.Quesenberry, C. P. (1991a). 'SPC Q Charts for Start-Up Processes and Short or 

Long Runs'. Journal of Quality Technology 23, pp.213-224. 

115.Quesenberry, C. P. (1991b). 'SPC Q Charts for a Binomial Parameter : Short or 

Long Runs'. Journal of Quality Technology 23, pp.239-246. 

116.Quesenberry, C. P. (1991c). 'SPC Q Charts for a Poisson Parameter : Short or Long 

Runs'. Journal of Quality Technology 23, pp. 296-3 03. 

IH.Quesenberry, C. P. (1993). 'The Effect of Sample Size on Estimated Limits for X 

and X Control Charts'. Journal of Quality Technology 25, pp. 237-247. 

118.Quesenberry, C. P. (1995a). 'On Properties of Q Charts for Variables'. Journal of 

Quality Technology 27, pp. 184-203. 

119.Quesenberry, C. P. (1995b). 'On Properties of Binomial Q Charts for Attributes'. 

Journal of Quality Technology 27, pp.204-213. 

120.Quesenberry, C. P. (1995c). 'On Properties of Poisson Q Charts for Attributes'. 

Journal of Quality Technology 27, pp.293-303. 

121.Quesenberry, C. P. (1995d). Response to Discussions of 'Q' Charts. Journal of 

Quality Technology 27, pp.333-343. 

122.Robinson, G. (1991). "SPC for Short Production Runs: An Example". Quality 

Australia 8, pp. 55-57. 

123.Robinson, G, Touw, J. V. D. and Veevers, A. (1993). "Control Processes, Not 

Products". The Quality Magazine, June, pp.88. 

124.Rodriguez, R. N. (1992). 'Recent Developments in Process Capability Analysis'. 

Journal of Quality Technology 24, pp. 176-187. 

224 



125.Roes, K. C. B., Does, R. J. M. M. and Schurink, Y. (1993). "Shewhart-Type 

Control Charts for Individual Observations". Journal of Quality Technology 25, pp. 

188-198. 

126.Satterthwahe, F.E. (1973). 'Pre-Control For Supervisors'. Quality Progress, 

February, pp.26-28. 

127.Scholz, F. W. and Tosch, T. J. (1994). 'SmaU Sample Uni- and Multivariate Control 

Charts for Means'. American Statistical Association 1994 Proceedings of the Section 

on Quality and Productivity. 

128. Sealy, E.H. (1954). A First Guide To Quality Control For Engineers, Her Majesty's 

Stationery Office, UK., pp.22-23. 

129.Shainin, D. (1954). Chart Control Without Charts — Simple, Effective J. & L. 

Quality Pre-Control. ASQC Quality Convention Paper, American Society For Quality 

Control, pp.405-417. 

130.Shainin, D. (1965). Techniques For Maintaining A Zero Defects Program. AMA 

Management Bulletin, Vol.71, pp. 16-21. 

131.Shainin, D. (1984). Better Than Good OidXScR Charts Asked By Vendees. ASQC 

38th Quality Congress Transactions - Chicago, American Society For Quality 

Control, pp.302-307. 

132. Shainin, D. (1990). Pre-Control. Quality Control Handbook, 4th edition, Ed. Juran, 

J.M., McGraw-HiU Inc. 

13 3. Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Product. 

D. van Nostrand Co. Inc., New York, NY. 

134. Sidak, Z. (1967). 'Rectangular Confidence Regions for the Means of Multivariate 

Normal Distributions'. Journal of the American Statistical Association 62, pp.626-

633. 

135.Sinibaldi, F.J. (1985). Pre-Control, Does It Really Work With Non-Normality. 

ASQC Quality Congress Transactions - Baltimore, American Society For Quality 

Control, pp.428-433. 

136.Sparks, R. S. (1992). 'Quality Control with Multivariate Data'. Australian journal 

of Statistics 34, pp.375-390. 

137.Srivastava, M. S. and Khatri, C. G (1979). An Introduction to Multivariate 

Statistics, Elsevier North Holland, New York, NY. 

225 



138.Stein, C. (1956). 'The AdmissibUity of HotelUng's 7^-test'. Annals of 

Mathematical Statistics 27, pp.616-623. 

139.SuUivan, J. H. and Woodall, W. H. (1995). 'A Comparison of Multivariate Quality 

Control Charts for Individual Observations', accepted for publication in Journal of 

Quality Technology. 

HO.Taguchi, G. (1981). On-Line Quality Control Control During Production. Tokyo, 

Japanese Standards Association. 

141.Taam, W.; Subbaiah, P. and Liddy, J. W. (1993). 'A Note on Multivariate Capability 

Indices'. Journal of Applied Statistics 20, pp.339-351. 

142.Tang, P. F. (1995). 'Mean Control for Multivariate Processes with Specific 

Reference to Short Runs'. International Conference on Statistical Methods and 

Statistical Computing for Quality and Productivity Improvement - Seoul. The 

International Statistical Institute (ISI), pp.579-585. 

143.Thomas, D. E. (1990). "The Balance Chart : A New SPC Concept". Quality And 

Reliability Engineering International 6, pp. 357-371. 

144.Thompson, L. A. Jr. (1989). "SPC and The Job Shop". ASQC 43rd Annual Quality 

Congress Transactions, pp. 896-901. 

145.Tippett, L. H. C. (1931). The Method of Statistics, London : Williams andNorgate. 

146.Tracy, N. D.; Young, J. C. and Mason, R. L. (1992). 'Multivariate Control Charts 

for Individual Observations'. Journal of Quality Technology 24, pp.88-95. 

147.Traver, R.W. (1985). 'A Good Alternative To X-R Charts'. Quality Progress, 

September, pp. 11-14. 

148.Trigg, D. W. and Leach, A. G. (1967). 'Exponential Smoothing with An Adaptive 

Response Rate'. Operational Research Quarterly 18, pp. 53-59. 

149.WaUace, D. L. (1959). 'Bounds on Normal Approximations to student's and the 

Chi-square Distributions'. Annals of Mathematical Statistics 30, pp. 1121-1130. 

150.Wasserman, G S. (1994). 'Short Run SPC Using Dynamic Control Chart'. 

Computers and Industrial Engineering 27, pp.353-356. 

151.Wasserman, G S. and Sudjianto, A. (1993). 'Short Run SPC Based Upon the 

Second Order Dynamic Linear Model for Trend Detection'. Communications in 

Statistics - Simulation and Computation 22, pp. 1011-1036. 

226 



152.Wierda, S. J. (1994). 'Multivariate Statistical Process Control - Recent Resuhs and 

Directions for Future Research'. StatisticaNeerlandica 48, pp. 147-168. 

153.Wolfram, S. (1991). Mathematica : A System for Doing Mathematics by Computer, 

2nd ed., Addison-Wesley, Redwood City, CaUfomia. 

154.WoodaU, W. H. and Ncube, M. M. (1985). 'Multivariate CUSUM Quality-Control 

Procedures'. Technometrics 21, pp.285-292. 

155.Woodall, W. H.; Crowder, S. V. and Wade, M. R. (1995). Discussion of'Q' Charts. 

Journal of Quality Technology 27, pp.328-332. 

156.Woodward, P. W. and Naylor, J. C. (1993). "An Apphcation of Bayesian Methods 

in SPC". The Statistician 42, pp.461-469. 

157.Yang, C. H. and HiUier, F. S. (1970). "Mean and Variance Control Chart Limits 

Based On a SmaU Number of Subgroups". Journal of quality Technology 2, pp.9-16. 

227 



Appendices 

A.1 Dependence of Statistical Performance on the Noncentrality Parameter, X 

for a Step Shift in Process Mean Vector 

Assume that the process variance-covariance matrix, Z is constant but that the 

process mean vector may change from p to p„^ at an arbhrary point in time. It is 

shown below that for the same change point i.e the observation or subgroup number 

after which the shift occurs, the joint distribution of the T^ 's (or equivalently, Ẑ  's) and 

hence the statistical performance of the control techniques presented in section 3.3 of 

Chapter 3 depends on p , p„g^ and Z only through the value of the noncentrality 

parameter. 

To estabUsh the proof for the above, use is made of the foUowing lemmas and theorems 

which are adapted from Crosier (1988) and Lowry (1989). 

Lemma 1 

If X:=MX,, x r = M ( X , - p ) , X;.=MX^. and X " = M ( x ^ . - p ) , k^l,2,..., 

j = l,2,...,n where Mis a pxp matrix of fliU rank, then the relevent 7; statistics have 

the same values whether they, are computed from X^, (X;̂  - p), X ,̂ and (X ,̂ - p) or 

the corresponding transformed vectors X*, X", X^ andXj*, i.e, the j ; statistics are 

invariant whh respect to these transformations. In other words, a fiiU rank linear 

transformation of the observation vectors or their deviations from target (known mean 

vector) has no effect on the 7ĵ  statistics. 
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Proof: Immediate. 

Lemma 2 

If X:=MX„ x r = M ( X , - p ) , X;.=MX^. and X *̂ = M(X;,. - p), ^ = 1,2,..., 

j = 1,2,...,n where Misa px p matrix of fliU rank, then 

ii*=E{xl) = E{xl) = 
^ i l = M p 

^iL=Mp, 

k<r 

, k>r 

p**=4xr)=4x-)= PZ = 0 , k<r 

^l^l=M(p„^^-p) ,k>r 

where r is the observation or subgroup number after which the process mean vector 

changes from p to p„^. Thus, 

(n:: - i^zf r'~\viZ - P::)=(P„. - ̂ r Z-XP„^ - P) 

Proof: Immediate. 

This resuh implies that the noncentrality parameter has the same value whether 

computed from the original dependent variables or from some Unearly independent 

combinations of them (or their deviations from targets or known means). 
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Lemma 3 

If (^iw-^il)^S"'H^^w-^^l) = (^^2^-^A2f S~H^^2^.-^i2)> there exists a 

nonshigular matrix M such that 

( ^ i w - ^ i l ) = M ( p 2 _ - P 2 ) 

M Z M ' ^ = Z 

Proof: 

First, transform each variable of the form (X^^,. -X ,̂̂ ^^) to Y, principal components 

scaled to have unit variances where X̂ ^̂ ^̂  and X̂ ,̂̂ ^ respectively denote observation 

vectors before and after the change in the process mean vector. Let E(Y) = V, by 

lemma 2, 

Vî Vi = V^V^ where % = D"'p(pi_ - p^) 

V 2 = D " ' P ( P 2 _ - P 2 ) 

and P is an orthogonal matrix that diagonaUzes Zrv , _v„, i giving 
' - ' "-̂  (•'^ After ^Befortl ^ ^ 

PZ.v X ,P^ = D 

C ̂  After ~^ Befon ) 

Hence, there exists an orthogonal matrix Q such that 

V,=QV, 

Upon substituting Vi = D"^P(pi„^ - Pi) and Vj = D~P(p2_ - P2) into the equation 

above, M is obtainable as follows : 
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= P^D^QD-P(p ,_-P , ) 

Now, h is shown that MZM^ = Z . We have 

MZfx X ^M"" 
'^'^After ^Before' 

=> 

=> 

M(2Z)M^ 

M Z M ^ 

= P^D^QD" 

= P^D^QD 

= P^DP 

^^After~^Befi 

= 2Z 

=z. 

"PZ, 

^DD 

,«) 

•^After~^Before 

^Q^D^P 

)P^D ^Q^D^P 

(Q.ED.) 

This lemma is also applicable to cases with known p, namely, if 

(^il«^-^i) 5:"^(pi_-p) = (p2„«.-^i) 2~'(p2„.«-n), there exists a nonsingular 

matrix M such that 

MZM'^ = Z. 

The proof for this is similar to the above except that Pi and pj should both be replaced 

by p. 
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Theorem 1 

For the cases with unknown p, if 

T v l i 
(^ iw-^ i I ) 2:"X^iw-^ll)=(^i2. .-^A2) 2"'(n2™»-iLi2), 

then/7;'54x,orX^.) = r ^ 
Pi ,k<r 

^iw .^>0 
- / r,'54x,orX^.) = 

P2 ,k<r 

.^i2«. , ^ > ' ' . 

where / r,'̂  4x,orX .̂) = 'Pi ,A:<r 
denotes the joint pdf of 7 '̂ 5 given 

£(x,) = 4x,,) = 

and / Tk'^ 
/ X rp2 ,^^^1 

EyXj^ or X^ \ = < denotes the joint pdf of 7 '̂ 5 given 

£(x,) = 4x,,) = 'P2 ,k<r 

where r is the change point. This theorem implies equivalent performance of the control 

techniques under the two alternative probability densities. 

Proof: 

Note that the T^'s of (3.3), (3.6), (3.8) and (3.11) are expressible either in terms of 

random vectors of the form ( x ^ - X ^ j for p^q or (x^ , -X^ j for p^q, 

i,j = 1,2,...,n and p = q, i'^j, i,j = 1,2,...,n. Let pdf 1 refer to the multivariate 

normal density specified by 

E(X,)=E{X^)= 
'Pi ,k<r 

> i „ ,k>r 

md pdf 2 refer to the multivariate normal density specified by 
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E(X,)=E{X^) = P2 ,k<r 

M2r.. ^>r 

If pdf 2 is expressed in the transformed variates Z^=MX^ (orZ^^MXK) where 

1 1 

M = P^D»QD 'P is as given in lemma 3, then Far(Zi) = Far(Zj,) = M I M ' ' = 1 and 

£ ( Z , - Z , ) = 4 z , , - Z ^ ) 

0 if p,q < r 01 p,q>r 

^Aw-^il ifp>r,q<r 

l^Ai-iiw ifp<r,q>r 

It can also easily be shown that the covariance of the transformed variates (Zp-Z^) 

and (Z_j-Zf) under pdf 2 is the same as the covariance of (x^ -X^) 

[(X,, - X^.)]and (X, - X,) [(X,, - X^)] underpJ/1, i.e 

Cov[(z^ -Z , ) , (Z , -Z, ) ] = C^(X^ -X,),(X, -X,)] 

xmdei pdf 2 under pdf I 

'Cov[(Zp, -Z^),(Z,„ -Z^) ] = Cov[(x^, -X^),(X,„ -X^)[^ 

uadcT pdf 2 nndQrpdfl 

for aWp, q, s and t (p, q, s, t, i,j, u and v). Hence, pdf 2 expressed in the transformed 

variates Z^ ( Z^) is the same as pdf I expressed in X^ P^ig) variates, i.e 

/ TJ^ E{x,orX^.) = 
Vl ,k<r 

Mu ,k>r = f Tk'^ 4z,orz^.)=|; Mp2 

MP2«. , 

,k<r 

k>r 
(A. 1.1) 

By lemma 1, the values of the 7 '̂5 are invariant whh respect to the transformation from 

X, (X^.)toZ^(Z^^.)sothat , 

/ Tk's ̂ (x^orX^.) = j 
P2 ,k<r 

^2r^ ,k>rj 
-f Tk's 'i^^-^HZ:jT>rj (A. 1.2) 
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Combining (A. 1.1) and (A. 1.2) gives 

/ Tk's 4 x , o r X , ) = ̂  ' f ; l = / f r , ' . 4 x , o r X , > ^ 'f^" 

Therefore, the joint distribution of 7 '̂5 given p^ and Pj„^ (and Z) is the same as the 

joint distribution of 7̂  '5 given P2 and P2„«, (and Z) if 

T ^ - l i 
{y-lne.-S^l) 2 : \\i'lr..-\i-l)^{\i.2ne.-\^2) ^ ^ 1 ^ 2 ^ ^ " 1 ^ 2 ) 

(Q.ED.) 

Theorem 1 can be adapted to cases with known p, namely, if 

T v - l i 
i^lne^-p) 2 \[il„e.-li) = (P2ne.-\^) ^ ^ ( p 2 „ ^ " p ) , thCU 

/ Tk'^ 4x,orX,)J^ fj^ = f Tk's 4x,orX,)J^ '7/. 

The proof for this is similar to the above except that X^ (X^) and P,„^ - p , , ' = 1,2 

should be replaced by X^ - p (X^̂  - p) and p,„^ - p respectively. 
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Theorem 2 

For the cases with unknown p , let X^,^'s (Xj^'j) be independent observation vectors 

frompdfl and Xj^t'^ 0^2k;'^) be independent observation vectors ^ompdf2. Letpdfl 

he multivariate normal with mean vector pj and Pi„_̂  before and after the change and 

variance-covariance matrix Zi- Let pdf 2 be multivariate normal with mean vector P2 

and P2„„ before and after the change and variance-covariance matrix Z2 • Denote the 

change point by r. If (pi^^ - p^)"^ Z r ' ( l i u . - V-x) = (!̂ 2«.w - ^A2)̂  ^'^{s^ine^ ' 1^2). then 

fi{Tk's) = f2{Tks) where fi{T^'s) and f2{TkS) represent the joint distribution of T '̂5 

given/JfiJ l̂ and p t ^ 2 respectively. 

Proof 

Let X\, = D~'PiXi, (x:,^. = D-'PjX J and X^, = D ; ' P 2 X 2 , (X^,^ = D2'P2X2;^. 

where Pj and Pj are matrices that diagonalize Z(Xip-Xi,) (o^ 2](Xip,-x,^)) ^nd 

^(x,,-x,,) (or 2:(x,,,-x,,.))> /^'^^ respectively, i.e 

'1 2](Xip-XiJ I*i2]rx,„-x,„)Pi - ^ 1 

P2S(X2„-X2jI*2 -1^2 

Then, 

E[x\p-X\^)=\i\p-K 1 . = ^ 

D:'Pi(Pw-iii) , p > ^ ^ ^ ^ 

D ; ^ P I ( P I - P I J .P<r,q>r 

0 elsewhere 
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E{Kp-^lq)=U'lp-\ilg = 

^?^2{l^2ne.-\^2) ,p>r,q<r 

WMP2-li2r^) ,p<r,q>r 

0 elsewhere 

By lemma 2, 

and 

(^^^p-^i;,) Z("^.^_^.^) (pr , -P: , )=(PI_-Pi f Z(-^_^_^_^)(Pi.^-PO 

> i^ip - \^%)^v\\i\p - p^)=i(pi_ - Pi)'"zrx^iw - \ix) 

[\^2p-\^\,) ^("i^-xg(^^2;, -^i2,) = (̂ i2„̂  -^X2f 2:(-̂ ^̂ _̂ ^̂ j(p2„̂  -P2) 

for p>r, q<r or p<r, q>r. Because the values of 7 '̂ 5 are invariant with respect to 

the transformations, the condition 

(^iw - l^iY Sr̂ C^Aw -^Al) = (P2^. - 2̂)̂ 2:2X1̂ 2™^ - P2) 

is equivalent to 

{i^lp-Pig) ^~'(l^%-PU) = {l^lp-l^*2q) ^~^{p*2p-P*2<i) 

for p>r, q<r or p<r,q>r. Since (Xi^-XM and (Xj^-Xj^l are principal 

components of (Xi^-Xi^j and (X2^-X25) scaled to have the same variance-

covariance matrix, the identity matrix I , by theorem 1, the joint distribution of 7 '̂5 

given pcjj/̂ l is the same as the joint distribution of 7 '̂5 given pdf 2. 
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{Q.E.D.) 

This theorem can also be adapted to the cases where p is known, namely, if 

T v l i (^iw~^l) 5:/(^iw-^i)=(ti2„^-^i) ^~2(p-2ne.-v). 

then 

/ TkS 
,k<r 

4x,orX^.) = f ' - ' ,Z, = / r,'54x,orX^.) = 
P-Ue. ^k>r 

1 " ^ 2 

M2ne. ,k>r J 

The proof for this is along the same line of argument as above except that X,̂  (X,̂ )̂ and 

p,„^ - p,. should be replaced by X^^ - p (X^̂  - p) and p,„^ - p respectively for / = 1,2. 
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A.2 Dependence of Statistical Performance on X-^,..,.Xp for a Change in 

Process Covariance Matrix 

Suppose that the process under consideration changes in covariance matrix from 

Z to Z„^ after the rth observation, whilst the mean vector p remains constant. It is 

shown below that the joint distribution of the 7 '̂5 (or equivalently, Z^'5) for each of the 

control techniques (3.3) to (3.11) depends on p, Z and X„^ through the eigenvalues, 

X^,...,X of Z~^Z„e^ or equivalently, of Z„^Z"^ 

Lemma 4 

If Z L 2:r' S L = ^L. ^~2 S L ^ , then there exists a fiiU rank matrix D such that 

DZ2D^ = i:i and DZ2„^D^ = Z i „ ^ . 

Proof 

FromZL Sr^ ^L = slew ^2 S l ^ .we haveZi = [ z L I'lL) I'2[n„^ ^2 

Since DZ2 D"̂  = Zi, D = z L S2L • It can easily be verified that D = Z ^ ^ i also 

satisfies the equation DZj^ew©^ =2 i„^ . Furthermore, h can readily be seen that 

D ^ z L s i i s o f f i i U r a n k . 

{Q.E.D.) 

.1 ^ T 

Inew 
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Theorem 3 

Let pdfl be the probabUity density fiinction of the independent multivariate normal 

observation vectors X^'s (or X^/5) with mean vector pj , covariance matrix Zi and 

^hiew Wore and after the change. Let pdf2 be the probability density fiinction of the 

independent multivariate normal observation vectors X^'s (or X^ '5) with mean vector 

P2, covariance matrix Z2 and Z2new Wore and after the change. If 

z L s r ' S L = S L ^ T-^ i : i _ , then f{T,'s) = f,{T,'s) where f{T,'s) and f(T,'s) 

represent the joint distribution of 7^'5 given/^c^ andpdf2 respectively. 

Proof 

The proof here is similar to that of theorem 1 except that M should be replaced by 

D = ZL^ Z 2 L as given in lemma 4. 

Theorem 4 

If Xj^'s (or X/^'s) are independent random vectors from a multivariate normal 

distribution whh constant mean p and a step shift in the covariance matrix from Z to 

Z„ew. after the rth observation (or subgroup), then the joint distribution of T/^'s depend 

on the eigenvalues of Z~^ Ẑ v̂f or equivalently, of Z„gvv '^'^ • 

Proof 

- - I -Theorem 3 implies that the joint distribution of T/^'s depend on Z^^^ Z Z ên-- Since 

Tj^'s are invariant w.r.t any orthogonal transformation, h is readily seen that Tj^'s 
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^ . - 1 depend on the eigenvalues of Z^^^Z Z^e^. Using the characteristic equation, these 

eigenvalues can in turn be shown to be the eigenvalues of Z~^ Ẑ ê ,, or T.„ew S~' • 

{Q.E.D.) 
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A.3 Dependence of Statistical Performance on n and Q for a Change in Mean 

vector and Covariance Matrix 

Suppose that the process under consideration changes in mean vector from p to 

p„^ and covariance matrix from Z to Z , ^ after the rth observation or subgroup. It is 

shown below that the joint distribution of the 7 '̂5 (or equivalently Z^'s) for each of the 

control techniques (3.3)-(3.11) depends on p , p„^, Z and Z„^ through 

T̂  = Z~(p„ew-^i) 

, which can be interpreted as the vector of noncentrality parameter in the directions of 

the principal axes, and the symmetric matrix 

_ i - i 
^1 = 2~i ^new ^ 

Theorem 5 

Let pdfl be the probability density of the independent multivariate normal observation 

vectors X^'s (or X;^'5) with parameters (Pi,Zi) and {\^xnew^^\new) before and after 

the change. Let pdfl be the probability density of the independent muhivariate normal 

observation vectors X^'s (or X^ '̂̂ ) with parameters (P2,5^2) and {P2new^^2new) 

before and after the change. If 

1 1 _ l —i —-

i:?{Plne.-Pl)^^2'{P2ne.-P2) and ZV^Z.^^IL? ^^?T.,„^^2' 

then /,(r,'5) = A(r,'5) where f{T,^s) and f,{T,^s) denote the joint distribution of 

r ;5 given pdfl and pdfl respectively. This theorem impUes equivalent performance of 

the control techniques under the two ahernative probability densities. 
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Proof 

The proof here is similar to that of theorem 2. 
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A.4 The Distributional Properties of W* Depend on the Eigenvalues of 
-I - 1 

ZQ Z I Z Q 

Note that W may be written as 

W* =-p{n-l)-{n-l)lri Zo^SZo^+(«-i)trfZo'sz"^ '0 

where {n- l)Zo' S Z ? ~ Wp[n-1, Zo^ Zi Z ? ) when Z = Zj • 

T T -TT 
Since A = ZQ^ DiI^o^ is positive definite, 3 an orthogonal matrix r ( r r = r r = I ) 

s.t. 

FAr"̂  = A = dia^^,...,x)^ = 

fA.1 0 

0 A.2 

0 ••• 

o\ 

0 
0 X pj 

where X^,...,X are the eigenvalues of A. Due to invariance w.r.t. any orthonormal 

transformation {upon ILQ^X), 

S 2 C V 2 
0 "^-^0 

1 p 
-JL_TTx,,^ 

where V-s are independently distributed as xJ-, variables (see Theorem 3.3.8, p.82, 

Srivastava et al.(1979)). Similarly, tr\ Zo ' SZoM is distributed as 
1 _ i 

("-Dtr 

where U^s are i.i.d X«-i variables. Combining these, the distribution of W* therefore 

depends on the combination of X„...,Xp. In addition, h is readily shown that the 
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eigenvalues of Z o ' I i Z o ' are the same as that of Zo^Zi or ZiZo' by using the 

characteristic equation. Note also that the resuh is not affected by the rotation of the 

coordinate axes. 

11/2 
A.5 The Statistical Performance of |S| Chart Depends on the Product of the 

Eigenvalues_of. Z 0 ̂  Z1Z 0 ̂  

|V2 
Note that the use of |S| charts with control limits of the form ^i|Zo|and 

A:2|Zo| is equivalent to charting and comparing the statistic 2 Zo SZo' whh the 

constants k^ and ATJ . By using similar arguments to those in A.4, h is readily shown that 

the statistical performance of this control technique depends on the product of the 

- 1 _ i 

eigenvalues of Zo^ Z I Z Q ^ , ie. X{X2...Xp. 

A.6 The Distributional Properties of The Sum of Standardized Variances of The 
- 1 - 1 

Principal Components (SSVPC) Depend on The Eigenvalues of Zq^ Z^ Zp^ 

The sum of the standardized variances (multiplied by « - 1) of the principal 

components is given by 

tr (« -1) AoTo S Ao^o 

tr («-i)A7roSroX' 

where AQ and TQ denote respectively the diagonal matrix of the eigenvalues of ZQ and 

the matrix with the corresponding normalized eigenvectors. This statistic is invariant 
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w.r.t. any pxp orthonormal transformation (upon AQ'TQX). In particular, h is 

expressible as 

tr («-i)roMA7roSroXMro 

= tr 

= tr 

= tr 

(« - l ) Fo^Ao^ S F o X ^ 

(«-l)Zo^S Zo^ 

(«-l)Z7SZo' 

(see Johnson et al.(1988), p.51) 

•' ZQ^ is symmetric 

= (n-l)tr ZQ S Z Q 

Note that this implies that the value of the plot statistic remains the same whether h is 

computed from the principal components or any other set of linearly independent 

combinations of the individual variables obtained in the above manner. 

Now, let F be an orthogonal matrix such that 

r{TQ^i:,T~o^r'' = A = diag(x„...,Xp) 

where X^,...,Xp represent the eigenvalues of ZQ^ Zi ZQ^ • Since 

(n-i)tr Zo SZc 

= (n-l)tr r[zo'sZo^)r' 

where r[^Zo^ SZQAT'^ ~Wp{n-1, A) when Z = Zi, h is readily seen that the sum of 

the standardized variances of the principal components is distributed as a linear 

combination of;? independent chi-square variables with n-l degrees of freedom each and 

with coefficients Xi,...,Xp. Thus, the statistical performance of this technique depends 

onXi,...,X^. 
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A.7 statistical Performance of MLRTECM Depends on the Eigenvalues of 
0 • ^ l • ^ o 

The MLRTECM criterion is ^ = -21n ;i where 

niS(. i(",-i) 
_ 1=1 

pooled] 
ij(ni+...+n^-q) 

= C—'^ 

i(",-l) 

1 

/=1 

i;(«/-l)S(,; 
("!+•• •+",-9) 

and C is a constant depending on the n^'s. Due to invariance, X may be characterized 

by 

x = —^'-' 

\{r-j-l) 

| («,+.. .+«^-g) ' 

where 

-Wp{nj-l,A), 

j = \--;r 

j = r + l,...,q 

r is the change point and A denotes a diagonal matrix containing the eigenvalues 

Xi,...,X of Zo SiZo • Thus, h is readily seen that the statistical performance of 

MLRTECM depends on these eigenvalues. 
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A.8 Scale Invariance of Fisher, Tippett and The Proposed Statistic (Known T. 

Case) 

Let G = dia^-^,...,-^\ be the diagonal matrix with /th element being the 

reciprocal of the standard deviation of the /th variable. The sample covariance matrix 

computed from the variables scaled to have unit variances (i.e the sample correlation 

matrix) is then given by 

S = GSG' 

r^ Ar^fs^ s ^ d 

d D 
y 

12 

>s S,, 
V~12 ' V 

d D ' 

i;S +d^S , - . , . .22 
1 _ _ j2 ' ~12 ~ 
d ^ f + D S dS^+DS22 

V 
/^c2 

'12 

^ s ^ + d ^ s „ Y ^ d'̂ ^ 

v3 « y 

- 1 2 / 
DS 

V -12 
f 02 / „ 2 

DS 22 

-~12 

d D T 

S^al+S^ d M (^iV^i)d'"+S^ DVa, 
~ 1 2 ~ / ^ ^~ ~12 / 

DS / a i + D S j j d 
V - 1 2 / ~ 

DS„D 22 J 

~12 / 
DS la, DS22D^ 

- 1 2 / ^ 

(seep.591, Anderson(1984)) 

where d denotes the zero vector of (p-l) elements, S22 is the sample covariance 

matrix of the last (p-l) variables, D = ^ J ' « ^ ^ > " M ^ ] and 

S"̂  = (7 î2 î'S'2 RuS.Sj • • • RipS^Sp). Similarly, the population correlation matrix is 
~12 ^ 

Z =GZG^ 

^ 1 ^Z[2D"^ Oi 

i D Z i 2 0X22 D' 

247 



where Z22 represents the population covariance matrix of the last (p-l) variables and 

I12 = (pi2 îCf2 Pi3̂ i< 3̂ • • • Pip^i^p) • Furthermore, the conditional correlation 

matrix of the last (p-l) variables, given the first one, is :-

i:;2.i - 01:22 D^-f—DzJ(irf-xLD'' 

= DZ22 D"" - I>2i2(c7f ) ' ^J2 D"" 

^22-212(^0"'^J^ID" = D 

where Z22.1 denotes the corresponding quantity calculated from the covariance matrix. 

Note that the charting variables of Fisher, Tippett and the proposed procedures are 

flinctions of, amongst others, the variance ratio of the first variable and the HoteUing chi-

square statistic based on the vector of regression coefficients when each of the last (p-l) 

variables is regressed on the first variable (1st off-diagonal vector divided by 1st diagonal 

element of the sample covariance matrix). When calculated from S and Z , these are 

respectively 

2 / _ 2 

o? 1 "a? 

and 
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/ s 
~12 

*T / \ 

*2 
r. -1 r^* 

22>1 

V(n-l)SiV 

1 V T TkTA :^S^D^ i S i 2 D 
^ D l 2 2 . i D ' " ^ " ' 

/• 
fDS 

12 
oi 

DZ 12 

2 / _ 2 ^1 / a i 

i.e their values remain the same whether they are calculated from the original or 

standardized variables. Note also that the other statistics incorporated into the charting 

variables are obtained from Ŝ  _̂ i..._y_i and Zy,...,p.i,...j_i (/ = 2,...,p) in exactly the 

same manner. Thus, to complete the proof, h is only required to show that Ŝ  ^^i ._̂ _i 

and Z* ...,p.i,.,.j-i are of the same form as S* and Z* • For this, let 

G = 
G i l ^ 1 2 

^ ^ 2 1 ^ 2 2 ^ 
and S = 

S i i Si2 

,821 s 22> 

where Gu and Sn denotes the ( y - l ) x ( 7 - l ) submatrices. Note that G12 here 

represents the (7 -1) x (/> - 7 +1) zero matrix. Thus, 

S =GSG' = 
22 ^^11^11^11 G11S12G 

VG22S21G11 G22S22G22>' 

and 

S;,.„,.i....,;-i = G22S22GI2 -(G22S2iG[i)(GnSHG;^i)'^(GHSi2Gl2) 

= G22S22GI2 -G22S2iGi\(G?-,)"'sr;Gr/G„S,2GL 

= G22S22G22 -G22S21S11S12G22 

= 022^822 -S21S11S12JG2 

= G22Sy^...^p.l^..^y_lG22 

.T 
^22 
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* T 

which is clearly of the same form as S = GSG . Likewise, h can be shown that 

Z* ...,p.i,...j-i is of the same form as Z* • 

A.9 Scale Invariance of Fisher, Tippett and The Proposed Statistic (Unknown 

Z Case) 

The proof here is similar to those in A.8. 
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II1/2 A.10 Statistical Performance of MLRT, SSVPC, MLRTECM and |S| Charting 
Technique when Z Shifts Along The Principal Axes 

The eigenvalues of Zo^EiZo^ are the solutions (Vs) to the following 

characteristic equation 

Zo^ ZiZo^ ~^I 

=>|Zi-?.Zo| = o 

= 0 

z^|rXri-^(roXro)| = o, 

where AQ=diag{XQi,...,XQp) and Ai=diag{x^^,...,Xip) denote the diagonal matrices 

containing the eigenvalues of ZQ and Zi respectively, TJ and T^ are the orthogonal 

matrices with the corresponding normalized eigenvectors. 

If Z changes from ZQ to Zi in the directions of the principal axes, ZQ and Zi 

T T-T can be diagonaUzed by the same orthogonal matrix i.e. Fi = FQ . Thus 

Ai-^Ao||ro| = 0 

|Ai-A,Ao| = 0 

X = ^11 ^12 

A,oi A-

-lp 

, . . . , X Op 

Combining this with A.4, A.5, A.6 and A.7 yields the foUowing resuhs : 

(i) The statistical performance of MLRT, SSVPC and MLRTECM depend on the ratios 

of variances of the principal components when Z changes along the principal axes, 

(ii) The statistical performance of the |sf̂ ^ charts depends on the product of the ratios of 

variances of the principal components when Z changes along the principal axes. 
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A.11 The Distributional Properties of Hotelling Y^ -type Statistic When the 
Mean vector and Covariance Matrix are Not As Specified 

The HoteUing X^-type statistic is of the form 

G- (Y-Po) ' 'Zo ' (Y-Po) 

where Y denotes a /7-dimensional random vector, pg and ZQ are respectively the 

specified population mean vector and covariance matrix of the same dimension. Due to 

invariance, Q is expressible as 

e = [^Ii• '^(Y-^^„)f[^Ii"^(Y-^.„)] 

where F is any (conformable) orthonormal matrix. Thus, Q is a function of 

rZo^ ' (Y-po) which is distributed as A^^(rZo'''(Pi - Po), FZo'^'Zj Zo''^ F^) 

when Y ~Np{iii, Zi) . By letting F to be the orthonormal matrix that diagonaUzes 

2 0̂^̂  Z1Z 0̂ ^̂ , h is readily seen that Q is distributed as 

where X/s denote the eigenvalues of ZQ^^^ZIZQ^'^ and U/s are independent 

noncentral chi-square variables whh one degree of freedom and noncentrality parameters 

vfs given by 

. [rZ5"^(n,-n„)]; 
^ = X, • 

where the subscript^ in the numerator indicates the7th component of F ZQ {\^\ - Ĵ o) 
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Simulation Programs 
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"PR0G1"<-
function(p, r, m, X, noiter) 

{ 
jmmmmmmimwmmmmmmmitiiiiiiiiiiiiiiiiiiffititif^ 
# This program, which is written in Spins, simulates the probabiUties of detecting a sustained shift in # 
# the mean vector within m observations by the multivariate control charts (3.3), (3.4), (3.5) and (3.6). # 
# Only upper control limit is used. This is set at 0.27% level of significance, p - dimension, r - change # 
# point, X - noncentrality parameter, noiter - number of replications. # 

noobs <- r + m 
resultl <- 0 
result2 <- 0 
result3 <- 0 
result4 <- 0 
stat3sing <- 0 
stat4sing <- 0 
tempi <- rep(0,p) 
temp2 <- c(A, ,rep(0,p-l)) 
temp3 <- diag(p) 
for(iin 1: noiter) { 

samp <- rbind(GENERATE(templ,temp3, r), GENERATE(temp2,temp3,m)) 
meanvec2 <- apply(samp[(l:r), ], 2, mean) 
meanvec4 <- meanvec2 
covmat4<-var(samp[(l:r), ]) 
devmat3 <- samp - matrix(templ, noobs, p, T) 
sumcrspd3 <- matrix(0, p, p) 
for(ginl:r){ 

sumcrspd3 <- sumcrspd3 + outer(devmat3[g, ], devmat3[g, ]) 
} 
j <- r + 1 
repeat { 

statl <- sampD, ] %*% sampO, ] 
statl <- pchisq(statl, p) 
if(statl >= 0.9973) { 

resultl <- resultl + 1 
break 

} 
j<- j + l 
if(j > noobs) 

break 
} 

j <- r + 1 
repeat { 

stat2 <- ((j - l)/j) * (samp[j, ] - meanvec2) %*% (sampO, 1 - meanvec2) 
stat2 <- pchisq(stat2, p) 
if((stat2>= 0.9973)) {-

resultZ <- result2 + 1 
break 

meanvec2 <- {(Q -1) * meanvec2) + samp[j, ])/j 

if(j > noobs) { 
break 

} 
} 
j <- r + 1 
repeat { 
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if (qr(sumcrspd3)$rank < p){ 
stat3sing <- stat3sing + 1 
break 

} 
stat3 <- (((j - p) * (j - l))/(p * (j -1))) * devmat3[j, ] %*% solve(sumcrspd3) %*% 

devmat3[j, ] 
stat3 <- pf(stat3, p, j - p) 
if(stat3 >= 0.9973) { 

results <- results + 1 
break 

} 
sumcrspd3 <- sumcrspd3 + outer(devmat3[j, ], devmat3[j, ]) 
j < - j + l 
if(j > noobs){ 

break 
} 

} 
j <- r + 1 
repeat { 

if (qr(covmat4)$rank < p){ 
stat4sing <- stat4sing + 1 
break 

} 
stat4 <- (((j - 1 - P) * (j - !))/(] * (j - 2) * p)) * (samplj, ] - meanvec4) %*% 

solve(covmat4) %*% (samp[j, ] - meanvec4) 
stat4 <- pf(stat4, p, j - 1 - p) 
if(stat4 >= 0.9973){ 

result4 <- result4 + l 
break 

} 
meanvec4 <- (((j -1) * meanvec4) + samp[j, ])/j 
covmat4 <-var(samp[(l:j), ]) 
j < - j + l 
if(j > noobs) { 

break 
} 

} 
results <- results / (noiter - statSsing) 
result4 <- result4 / (noiter - stat4sing) 
c(resuhl,result2,resultS,result4) 
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"PR0G2"<-
function(p, n, r, m, X, noiter) 

{ 

# This program, which is written in Spins, simulates the probabilities of detecting a sustained shift in # 
# the mean vector within m subgroups of size n each by the multivariate control charts (3.7), (3.8), # 
# (3.9), (3.10) and (3.11). Only upper control limit is used. This is set at 0.27% level of significance. # 
#/7-dimension. A--change point, X - noncentrality parameter, no/7er-number of replications. # 

nosub <- r + m 
resultl <- 0 
result2 <- 0 
results <- 0 
result4 <- 0 
results <- 0 
StatSsing <- 0 
stat4sing <- 0 
StatSsing <- 0 
tempi <- rep(0,p) 
temp2 <- c( X ,rep(0,p-l)) 
tempS <- diag(p) 
temp4 <- matrix(0,p,p) 
for(i in 1: noiter) { 

samp <- rbind(GENERATE(templ, tempS, r*n), GENERATE(temp2, tempS, m*n)) 
sumcrspd3 <- crossprod(samp[(l:(n * r)), ], samp[(l:(n * r)), ]) 
meanvec2 <- apply(samp[l:(n * r), ], 2, mean) 
meanvecS <- meanvec2 
covS <- temp4 
fo r (g in l : ( r+ l ) ){ 

covS <- covS + var(samp[(((g -1) * n) + l):(g * n), ]) 

} 
covS <- cov5/(n +1) 
cov4 <- covS 
j <- r + 1 
repeat { 

statl <- n * apply(samp[(((j -1) * n) + 1):CJ * n), ], 2,mean) %*% 
apply(samp[(((j -1) * n) + l):(j * n), ], 2, mean) 

if(statl >= qchisq(0.9973,p)) { 
resultl <- resultl + 1 
break 

} 
j < - j + l 
if(j > nosub) { 

break 

} 
} 
j <- r + 1 
repeat { 

stat2 <- (n/j) * (j -1) * (apply(samp[(((j -1) * n) + l):(j * n), ], 2, mean) -
meanvec2) %*% (apply(samp[((a -1) * n) + l):(j * n), ], 2, mean) -
meanvec2) 

if(stat2 >= qchisq(0,9973,p)) { 
result2 <- result2 + 1 
break 

} 
j < - j + l 
if(j > nosub) { 
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break 

} 
meanvec2 <- (((j - 2) * meanvec2) + apply(samp[(((j - 2) * n) + l):((j -1) * 

n), ], 2, mean))/(j -1) 
} 
j <- r + 1 
repeat { 

if( qr(sumcrspdS)$rank < p){ 
StatSsing <- statSsing + 1 
break 

} 
stat3 <- (n/p) * (n * (j -1) - p + 1) * apply(samp[((0 -1) * n) + 1):G * n), ], 

2, mean) %*% solve(sumcrspd3) %*% apply(samp[(((j - 1) * n) 
+l):(j * n), ], 2, mean) 

if(statS >= qf(0.997S, p, n * (j-l) - P + 1)) { 
results <- results + 1 
break 

> 
j < - j + l 
if(i > nosub) { 

break 
} 
sumcrspdS <- sumcrspdS + crossprod(samp[(((j - 2) * n) + l):((j -1) * n), ], 

samp[(((j - 2) * n) + l):((j -1) * n), ]) 
} 
j <- r + 1 
repeat { 

if( qr(cov4)$rank < p ){ 
stat4sing <- stat4sing + 1 
break 

} 
stat4 <- (n/(p * j * (n - 1))) * (0 * (n -1)) - p + 1) * apply(samp[(((j - 1) * n) 

+ l):(j * n), ], 2, mean) %*% solve(cov4) %*% apply(samp[(((j -1) 
* n) + l):(j * n), ], 2, mean) 

if(stat4 >= qf(0.997S, p, (j * (n - 1)) - P + 1)){ 
result4 <- result4 + 1 
break 

} 
j < - j + l 
if(j > nosub) { 

break 
} 
cov4 <- ( ( j - l ) * cov4 + var(samp[((0 -1) * n) + l):(j * n), ]))/j 

} 
j <- r + 1 
repeat { 

if( qr(cov5)$rank < p){ 
StatSsing <- statSsing + 1 
break 

stats <- (n/(j * j * P * (n -1))) * 0 -1) * (C * (n -1)) - P + D * 
(apply(samp[((0 -1) * n) + l):a * n), ], 2, mean) - meanvecS) %*% 
solve(covS) %*% (apply(samp[((a -1) * n) + l):(j * n), ], 2, mean) -
meanvecS) 

if(statS >= qf(0.9973, p, j * (n -1) - p + 1)){ 
results <- results + 1 
break 

} 
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j<- j + l 
if(j > nosub) { 

break 
} 
meanvecS <- ((0 - 2) * n * meanvecS) + apply(samp[(((j - 2) * n) + l):((j -1) 

* n), 1, 2, sum))/((i -1) * n) 
covS <- ((0 -1) * covS) + var(samp[(((j -1) * n) + l):(j * n), ]))/j 

} 
} 
resultl <- resultl / noiter 
result2 <- result2 / noiter 
results <- results / (noiter - stat3sing) 
result4 <- result4 / (noiter - stat4sing) 
resuhs <- results / (noiter - statSsing) 
c(resultl,result2,result3,result4,resultS) 
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"PR0G3"<-
fimction(p, y , h, d, r, k, noiter, a , X^g„^) 

{ 

mmitiiiiiiiiiiitmmmmimmimmmMmiiiiiiiiiiiiiiiiiiHiummmmfifimiii^^ 
#This program, which is written in Splus, simulates the n/w length probabilities of EWMAZl, # 
# EWMAZ2, EWMAZS and M chart for a linear trend, p - dimension, y - EWMA smoothing constant # 
#h- control chart factor of EWMA, d - moving sample size for M chart,r - change point,̂ : - maximum # 
# run length for which the probability is simulated, noiter- number of iterations, a - significance level # 
# used with the M chart, X,f^g„^-trend parameter. # 
#4^^ifimmmmmmimmmmmmmfiiiiiiiiiiiiiiiiiiititim 

if(p = 2){ 
a<-2 

} 
else { 

a <- ceiling((3 * (p -1) + sqrt((p -1) * (9 * p -17)))/4) 
} 
EWMAZ IRL <- numeric(k) 
MRL <- numeric(k) 
EWMAZ2RL <- numeric(k) 
EWMAZSRL <- numeric(k) 
EWMAZ ICP <- numeric(k) 
MCP <- numeric(k) 
EWMAZ2CP <- numeric(k) 
EWMAZS CP <- numeric(k) 
EWMAZl sing <- 0 
Msing <- 0 
EWMAZ2sing <- 0 
EWMAZS sing <- 0 
temp <- matrix(0, p, p, T) 
tempi <- matrix(seq(l, k), k, p, F) * matrix(c( A,̂ g„ ,̂ rep(0, p -1)), k, p, T) 
temp2 <- h * sqrt( y /(2 - y )) 
temp3 <- k + r - a -1 
temp4 <- qf(l - a , p, d - p) 
tempS <- k + r - d + 1 
temp6 <- r + 2 - d 
for(i in 1 inciter) { 

cov <- temp 
samp <- rbind(GENERATE(rep(0, p), diag(p), r), GENERATE(rep(0, p), diag(p), k) 

+ tempi) 
for(gin l:a) { 

cov <- cov + outer(samp[g + 1, ] - samp[g, ], samp[g +1, ] - samp[g, ]) 
} 
EWMAZl <- 0 
if((a + 2)>r){ 

j < - l . 
repeat { 

if(qr(cov)$rank < p) { 
EWMAZl sing <- EWMAZl sing + 1 
break 

} 
f <- (2 * ((j + a - 1)̂ 2))/(S * (j + a) - 4) 
Z K - ((f - p + 1) * (3 * (j + a) - 4) * (sampD + a + 1, ]) %*% 

solve(cov) %*% (sampLJ + a + 1, l))/(p * (j + a -
D) 

ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- y * ZI + (1 - y ) * EWMAZl 
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if(abs(EWMAZl) > temp2) { 
EWMAZlRL[j + a + 1 - r] <-EWMAZlRLO + a + 1 - r] +1 
break 

} 
cov <- cov + outer(samp[j + a + 1, ] - sampO + a, ], sampO + a + 1, 

] - sampO + a, ]) 
j<- j + l 
if(j > tempS) { 
break 

} 
> 

} 
else if((a + 2) < r) { 

Zlflag <- 0 
for(jin l:(r-a-1)) { 

if(qr(cov)$rank < p) { 
EWMAZlsing <- EWMAZlsing + 1 
Zlflag <-1 
break 

} 
f <- (2 * ((j + a -1)''2))/(3 * (j + a) - 4) 
Zl<- ((f - p + 1) * (3 * (j + a) - 4) * (samp[j + a + 1, ]) %*% 

solve(cov) %*% (sampO + a + 1, ]))/(p * (j + a -
D) 

ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- y * ZI + (1 - y ) * EWMAZl 
cov <- cov + outer(sampD + a + 1, ] - samp[j + a, ], samp[j + a + 1, 

] - samplj + a, ]) 
} 
if(Zlflag == 0) { 

j <- r - a 
repeat { 

if(qr(cov)$rank < p) { 
EWMAZlsing <- EWMAZlsing + 1 
break 

} 
f <- (2 * ((j + a - 2)^2))/(3 * (j + a) - 4) 
Zl<- ((f - p + 1) * (3 * (j + a) - 4) * (samp[i + a + 1, ]) %*% 

solve(cov) %*% (sampD + a + 1, ]))/(p * C + a -1)) 
ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- y * ZI + (1 - y ) * EWMAZl 
if(abs(EWMAZl) > temp2) { 
EWMAZIRLD - r + a + 1] <-EWMAZIRLO - r + a + 1] + 1 
break 

:COV <- cov + outer(sampO + a + 1, 1 - samp[j + a, ], samp[j + a + 
l,]-sampO + a, ]) 

j< - j + l 
if(j > tempS) { 
-' break 
} 

} 
} 

} 
else { 

if(qr(cov)$rank >= p) { 
f<-(2*(a'^2))/(3*a-l) 
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Z K - ((f - p + 1) * (3 * a -1) * samp[a + 2, ] %*% solve(cov) %*% 
samp[a + 2, ])/(p * a) 

ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- Y * ZI + (1 - y ) * EWMAZl 

cov <- cov + outer(samp[a + 2, ] - samp[a +1,], samp[a + 2, ] -
samp[a+ 1, ]) 

j < - l 
repeat { 

if(qr(cov)$rank < p) { 
EWMAZlsing <- EWMAZlsing + 1 
break 

} 
f<- (2*(G + a)^2))/(3*0 + a ) - l ) 
Z K - ((f - p + 1) * (3 * 0 + a) -1) * samp[j + a + 2, ] %*% 

solve(cov) %*% samp[j + a + 2, ])/(p * (j + a)) 
ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- y * ZI + (1 - y ) * EWMAZl 
if(abs(EWMAZl) > temp2) { 

EWMAZIRLO] <- EWMAZlRL[j] + 1 
break 

} 
cov <- cov + outer(samp[j + a + 2, ] - samp[j + a + 1, ], samp[j + a 

+ 2, ]-sampD + a + l , ]) 

j < - j + l 
if(j > k) { 

break 
} 

} 
} 
else { 

} 
} 
i f (d>r){ 

j < - l 
repeat { 

EWMAZlsing <- EWMAZlsing + 1 

X <- samp[(j:0' + d -1)). I 
w <- seqO, j + d -1) - rep((2 * j + d -1)/2, d) 
z <- (t(x) %*% w)/sqrt(as.numeric(w %*% w)) 
M <- t(x) %*% X 
if(qr(M)$rank >= p) { 

M <- t(solve(M) %*% z) %*% z 
M <- M/(l - M) 
if(M > temp4) { 

MRLIj + d -1 - r] <- MRL[j + d -1 - r] + 1 
. break 

} 
j < - j + l 
if(j > tempS) { 

break 

} 
} 
else { 

Msing <- Msing + 1 
break 

> 
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} 
else { 

j <- temp6 
repeat { 

x<-samp[a:a + d - l ) ) , ] 
w <- seqO, j + d -1) - rep((2 * j + d -1)/2, d) 
z <- (t(x) %*% w)/sqrt(as.numeric(w %*% w)) 
M <- t(x) %*% X 
if(qr(M)$rank >= p) { 

M <- t(solve(M) %*% z) %*% z 
M <- My(l - M) 
if(M > temp4) { 

MRLIj + d -1 - r] <- MRL[j + d -1 - r] + 1 
break 

} 
j <-J + 1 
if(j > tempS) { 
break 

} 
} 
else { 

Msing <- Msing + 1 
break 

} 
} 

} 
if((p + 1) <= r) { 

EWMAZ2 <- 0 
Z2flag <- 0 
for(j in (p + l):r) { 

Z2 <- apply(samp[(l:(j -1)), ], 2, mean) 
w <- ((j - 2)/(j -1)) * var(samp[(l:(j -1)), ]) + outer(Z2, Z2) 
if(qr(w)$rank < p) { 

Z2flag <-1 
EWMAZ2sing <- EWMAZ2sing + 1 
break 

} 
Z2 <- (G - p) * sampO, ] %*% solve(w) %*% samp[j, ])/(p *Q-l)) 
ZI <- qnorm(pf(Z2, p, j - p), 0, 1) 
EWMAZ2 <- y * Z2 + (1 - y ) * EWMAZ2 

} 
if(Z2flag == 0) { 

j <- r + 1 
repeat { 

Z2 <- apply(samp[(l:(j -1)), ], 2, mean) 
w <- (0 - 2)/(j - 1)) * var(samp[(l:(j -1)), ]) + outer(Z2, Z2) 

'if(qr(w)$rank < p) { 
EWMAZ2sing <- EWMAZ2sing + 1 
break 

} 
Z2 <- ((j - p) * sampO, ] %*% solve(w) %*% samp[j, ])/(p * (j -

D) 
Z2 <- qnorm(pf(Z2, p, j - p), 0, 1) 
EWMAZ2 <- y * Z2 + (1 - y ) * EWMAZ2 

if(abs(EWMAZ2) > temp2) { 
EWMAZ2RL[j - r] <- EWMAZ2RL[j - r] + 1 
break 
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} 
j < - j + l 
if(j>(r + k)){ 

break 
} 

} 
} 

} 
else { 

EWMAZl <- 0 
j < - p + l 
repeat { 

Z2 <- apply (samp [(l:(j -1)), ], 2, mean) 
w <- ((j - 2)/0 - 1)) * var(samp[(l:(j -1)), ]) + outer(Z2, Z2) 
if(qr(w)$rank < p) { 

EWMAZ2sing <- EWMAZ2sing + 1 
break 

} 
Z2 <- ((j - p) * sampLj, ] %*% solve(w) %*% samp[j, ])/(p * (j -1)) 
Z2 <- qnorm(pf(Z2, p, j - p), 0, 1) 
EWMAZ2 <- y * Z2 + (1 - y ) * EWMAZ2 

if(abs(EWMAZ2) > temp2) { 
EWMAZ2RLIJ - r] <- EWMAZ2RL[j - r] + 1 
break 

} 
j < - j + l 
if(j>r + k){ 

break 
} 

} 
} 
if((p + 2) <= r) { 

EWMAZS <- 0 
ZSflag <- 0 
for(j in (p + 2):r) { 

w<-var(samp[(l:(j-l)), ]) 
if(qr(w)$rank < p) { 

EWMAZSsing <- EWMAZSsing + 1 
ZSflag <-1 
break 

} 
ZS <- (CJ - P - 1) * sampD, ] %*% solve(w) %*% samp[j, ])/(p * 0 -

2)) 
ZS <- qnorm(pf(Z3, p, j - p -1), 0, 1) 
EWMAZS <- y * ZS + (1 - y ) * E W M A Z S 

} :. 
if(ZSflag = 0) { 

j <- r + 1 
repeat { 

w<-var(samp[(l:(j -1)), 1) 
if(qr(w)$rank < p) { 

EWMAZSsing <- EWMAZSsing + 1 
break 

ZS <- ((j - p -1) * sampO, ] %*% solve(w) %*% sampLj, ])/(p * (j 

-2)) 
ZS <- qnorm(pf(Z3, p, J - p -1), 0,1) 

263 



EWMAZS <- y * ZS + (1 - y ) * EWMAZS 

if(abs(EWMAZS) > temp2) { 
EWMAZ3RL[j - r] <- EWMAZ3RL[j - r] + 1 
break 

} 
j < - j + l 
i fa>(k + r)){ 
break 

} 
} 

} 
else { 

EWMAZS <- 0 
j < - p + 2 
repeat { 

w<-var(samp[(l:(j-l)), ]) 
if(qr(w)$rank < p) { 

EWMAZSsing <- EWMAZSsing + 1 
break 

} 
ZS <- ((j - p -1) * samplj, ] %*% solve(w) %*% samp[j, ])/(p * (j 

2)) 
ZS <- qnorm(pf(Z3, p, j - p -1), 0, 1) 
EWMAZS <- y * ZS + (1 - y ) * EWMAZS 
if(abs(EWMAZ3) > temp2) { 

EWMAZSRL[j - r] <- EWMAZSRL|j - r] + 1 
break 

} 

j <-J + 1 
if(j>(k + r)){ 
break 

} 
} 

} 
} 
for(iinl:k){ 

EWMAZlCP[i] <- sum(EWMAZlRL[l:i])/(noiter - EWMAZlsing) 
MCP[i] <- sum(MRL[l:i])/(noiter - Msing) 
EWMAZ2CP[i] <- sum(EWMAZ2RL[l:i])/(noiter - EWMAZ2sing) 
EWMAZ3CP[i] <- sum(EWMAZ3RL[l:i])/(noiter - EWMAZSsing) 

} 
results <- maUix(c(EWMAZlCP, MCP, EWMAZ2CP, EWMAZSCP), k, 4, F) 
if((r==l)&&(A-^,„^==0)){ 

results <- rbind(rep(0,4),results[(l:(k-l)),]) 

} 
results 
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"PR0G4"<-
function(p, y , h, d, r, k, noiter, a , Xf^^„j) 

{ 

if^MumwuummmmmmMiiiiiiiiiiififmiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii^^ 
# This program, which is written in Splus, simulates the run length probabilities of EWMAZIU, # 
#EWMAZ2U, MCHARTU for a linear trend. /?-dimension, y -EWMA smoothing constant, # 
# h - control chart factor of EWMA, d - moving sample size for MCHARTU, r - change point, k - max # 
# run length for which the probability is simulated, noiter- number of iterations, a - significance level # 
# used with the MCHARTU, X ̂ ^̂ ^̂  - trend parameter. # 

##################################i///////////////////////####M#^^ 
if(p = 2){ 

a < - 2 

} 
else { 

a <- ceiling((S * (p -1) + sqrt((p -1) * (9 * p -17)))/4) 

} 
EWMAZlURL <- numeric(k) 
MURL <- numeric(k) 
EWMAZ2URL <- numeric(k) 
EWMAZlUCP <- numeric(k) 
MUCP <- numeric(k) 
EWMAZ2UCP <- numeric(k) 
EWMAZlUsing <- 0 
MUsing <- 0 
EWMAZ2Using <- 0 
tempi <- matrix(0, p, p, T) 
temp2 <- matrix(seq(l, k), k, p, F) * mattix(c( X^^^^^, rep(0, p -1) 

), k, p, T) 
tempS <- h * sqrt(y /(2 - y )) 

temp4 <-k + r - a - l 
temps <- qf(l - a , p, d - p -1) 
temp6 <- k + r - d + 1 
temp7 <- r + 2 - d 
for(iin 1: noiter) { 

cov <- tempi 
samp <- rbind(GENERATE(rep(0, p), diag(p), r), GENERATE(rep(0, p), diag(p), k) 

+ temp2) 
meanvec <- apply(samp[(l:(a + 1)), ], 2, mean) 
for(gin l:a) { 

cov <- cov + outer(samp[g + 1, ] - samp[g, ], samp[g + 1, ] - samp[g, ]) 

} 
EWMAZIU <- 0 
if((a + 2) > r) { 

j < - l 
repeat { 

if(qr(cov)$rank < p) { 
EWMAZlUsing <- EWMAZlUsing + 1 
break 

} 
f <- (2 * ((j + a -1)^2))/(3 * (j + a) - 4) 
ZIU <- ((j + a) * (f - p + 1) * (3 * (j + a) - 4) * (sampO + a + 1, ] -

meanvec) %*% solve(cov) %*% (sampD + a + 1, ] -
meanvec))/(p * (j + a -1) * (j + a + 1)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * E W M A Z I U 

if(abs(EWMAZlU) > tempS) { 
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EWMAZlURL[j + a + 1 - r] <- EWMAZlURL[j + a + 1 - r] + 1 
break 

} 
meanvec <- apply(samp[(l:(j + a + 1)), ], 2, mean) 
cov <- cov + outer(samp[j + a + 1, 1 - samp[j + a, ], sampO + a + 1, 

]-sampO + a, ]) 
j < - j + l 
if(j > temp4) { 

break 

} 
} 

} 
else if((a + 2) < r) { 

j < - l 
while((j <= (r - a - 1)) && (qr(cov)$rank >= p)) { 

f <-(2 * (0 + a -1)^2))/(3 * (j + a) - 4) 
ZIU <- (0 + a) * (f - p + 1) * (3 * a + a) - 4) * (samp[j + a + 1, ] -

meanvec) %*% solve(cov) %*% (samp[j + a + 1, ] -
meanvec))/(p * (j + a -1) * 0 + a + 1)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * EWMAZIU 
meanvec <- apply(samp[(l:Cj + a + 1)), ], 2, mean) 
cov <- cov + outer(samp[j + a + 1, ] - sampjj + a, ], samp[j + a + 1, 

] - samplj + a, ]) 
j <-J + 1 

} 
if(j = (r - a)) { 

repeat { 
if(qr(cov)$rank < p) { 

EWMAZlUsing <- EWMAZlUsing + 1 
break 

} 
f <- (2 * ((j + a - l)'^2))/(3 * (j + a) - 4) 
ZIU <- ((j + a) * (f - p + 1) * (3 * (j + a) - 4) * (sampD + a + 1, ] -

meanvec) %*% solve(cov) %*% (samp[j + a + 1, ] -
meanvec))/(p * (j + a -1) * 0 + a + 1)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * E W M A Z I U 

if(abs(EWMAZlU) > tempS) { 
EWMAZIURLD + a + 1 - r] <- EWMAZlURL[j + a + 1 - r] + 1 
break 

meanvec <- apply(samp[(l:(i + a + 1)), ], 2, mean) 
cov <- cov + outer(samp[j + a + 1, ] - sampQ + a, ],samp[j + a + 

1, ] - sampU + a, ]) 

J <-J + 1 
if(j > temp4) { 

break 

} 
} 

} 
else { 

EWMAZlUsing <- EWMAZlUsing + 1 

} 
} 
else { 

if(qr(cov)$rank >= p) { 
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f< - (2* (a^2 ) ) / (3*a - l ) 
Z l U < - ( ( a + l ) * ( f - p + l ) * ( 3 *a - l )* ( samp[a + 2, ] -

meanvec) %*% solve(cov) %*% (samp[a + 2, ] -
meanvec))/(p * a * (a + 2)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * EWMAZIU 

meanvec <- apply(samp[(l:(a + 2)), ], 2, mean) 
cov <- cov + outer(samp[a + 2, ] - samp[a + 1,], samp[a + 2, ] -

samp[a + 1, ]) 

j < - l 
repeat { 

if(qr(cov)$rank < p) { 
EWMAZlUsing <- EWMAZlUsing + 1 
break 

} 
f <- (2 * ((i + a)^2))/(S * (j + a) -1) 
ZIU <- ((j + a + 1) * (f - p + 1) • (3 * 0 +a) -1) * (samp[j + a + 2, 

] - meanvec) %*% solve(cov) %*% (samplj + a + 2, ] -
meanvec))/(p * (j + a) * (j + a + 2)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * EWMAZIU 

if(abs(EWMAZlU) > tempS) { 
EWMAZlURLIj] <- EWMAZlURL[j] + 1 
break 

} 
meanvec <- apply(samp[(l:(j + a + 2)), ], 2, mean) 
cov <- cov + outer(samp[j + a + 2, ] - samp[j + a + 1, ], sampjj + a 

+ 2, ] - samplj + a + 1, ]) 
j <-J + 1 
ifO>k){ 

break 
} 

} 
} 
else { 

} 
} 
i f (d>r){ 

j < - l 
repeat { 

EWMAZlUsing <- EWMAZlUsing + 1 

X <- samp[(j:(j + d -1)), ] - matrix(apply(samp[(j:(j + d -1)), ], 2, 
mean), d, p, T) 

w <- seq(j, j + d -1) - rep((2 * j + d -1)/2, d) 
z <- (t(x) %*% w)/sqrt(as.numeric(w %*% w)) 
MU <- t(x) %*% X 
if(qr(MU)$rank >= p) { 

MU <- t(solve(MU) %*% z) %*% z 
MU <- MU/(1 - MU) 
if(MU > tempS) { 

MURL[j + d -1 - r] <- MURL[j + d -1 - r] + 1 
break 

} 
j < - j + l 
if(j > temp6) { 

break 
> 
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} 
else { 

MUsing <- MUsing + 1 
break 

} 
} 

} 
else { 

j <- temp7 
repeat { 

X <- samp[(j:(j + d -1)), ] - mattix(apply(samp[(j:(j + d -1)), ], 2, 
mean), d, p, T) 

w <- seq(j, j + d - 1) - rep((2 * j + d -1)/2, d) 
z <- (t(x) %*% w)/sqrt(as.numeric(w %*% w)) 
MU <- t(x) %*% x 
if(qr(MU)$rank >= p) { 

MU <- t(solve(MU) %*% z) %*% z 
MU <- MU/(1 - MU) 
if(MU > tempS) { 

MURLIj + d -1 - r] <- MURL|j + d - 1 - r] +1 
break 

} 
j < - j + l 
if(j > temp6) { 
break 

} 
} 
else { 
MUsing <- MUsing + 1 
break 

} 
} 

} 
if((p + 2) <= r) { 

EWMAZ2U <- 0 
j < - p + 2 
repeat { 

Z2U <- apply(samp[(l:(j -1)), ], 2, mean) 
w <- var(samp[(l:(j -1)), ]) 
if(qr(w)$rank >= p) { 

Z2U <- ((i -1) * (j - P -1) * (samplj, ] - ZIU) %*% solve(w) %*% 
(sampD, ] -Z2U)) /a*P*( j -2 ) ) 

Z2U <- qnorm(pf(Z2U, p, j - p - 1), 0, 1) 
EWMAZ2U <- y * Z2U + (1 - y ) * EWMAZ2U 
j < . j + l 
,ifG > r) { 
' break 

} 
} 
else { 

EWMAZ2Using <- EWMAZ2Using + 1 
break 

} 
} 
i fO==( r+ l ) ){ 

repeat { 
Z2U <- apply(samp[(l:0 -1)), ], 2, mean) 
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w<-var(samp[(l:(j-l)), ]) 
if(qr(w)$rank < p) { 

EWMAZ2Using <- EWMAZ2Using + 1 
break 

} 
Z2U <- (0 -1) * (j - P -1) * (samp[j, ] - Z2U) %*% solve(w) %*% 

(samplj, ] -Z2U)) / ( j*p*a-2) ) 
Z2U <- qnorm(pf(Z2U, p, j - p -1), 0, 1) 
EWMAZ2U<-y * Z2U + (1 - y ) * EWMAZ2U 
if(abs(EWMAZ2U) > tempS) { 

EWMAZ2URL0 - r] <- EWMAZ2URL[j - r] + 1 
break 

} 
j <-j + 1 
if(j>(k + r)){ 
break 

} 
} 

} 
} 
else { 

EWMAZ2U <- 0 
J < - P + 2 
repeat { 

Z2U <- apply(samp[(l:(j -1)), ], 2, mean) 
w <- var(samp[(l:(j -1)), ]) 
if(qr(w)$rank < p) { 

EWMAZ2Using <- EWMAZ2Using + 1 
break 

} 
Z2U <- (0 -1) * (j - P -1) * (samplj, ] - Z2U) %*% solve(w) %*% 

(sampO, ] - Z2U))/(j * p * (j - 2)) 
Z2U <- qnorm(pf(Z2U, p, j - p - 1), 0, 1) 
EWMAZ2U <- y * Z2U + (1 - y ) * EWMAZ2U 
if(abs(EWMAZ2U) > tempS) { 

EWMAZ2URLIJ - r] <- EWMAZ2URL|j - r] + 1 
break 

} 
j <-j + 1 
if(j>(k + r)){ 
break 

} 
} 

} 
} 
cat("", fill = T) 
for(iinl:k){ "̂  

EWMAZlUCP[i] <- sum(EWMAZlURL[l:i])/(noiter - EWMAZlUsing) 
MUCP[i] <- sum(MURL[l:i])/(noiter - MUsing) 
EWMAZ2UCP[i] <- sum(EWMAZ2URL[l:i])/(noiter - EWMAZ2Using) 

} 
results <- matrix(c(EWMAZlUCP, MUCP, EWMAZ2UCP), k, 3, F) 
if((r==l)&&(A,, , ,„^==0)){ 

results <- rbind(rep(0,S),results[(l:(k-l)),]) 
} 
results 
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"PR0G5"<-
fimction(p, y , h, r, k, noiter, X ) 

{ 
####M#M#M##M#####################////////////////#####M#^^ 
# This program, which is written in Splus, simulates the run length probabilities of EWMAZl, # 
# EWMAZ2 and EWMAZS for a step shijt in the mean vector, p - dimension, y - EWMA smoothing # 
# constant, h - control chart factor for EWMA,r - change point,̂ ^ - maximum run length for which the # 
# probability is simulated, noiter - number of iterations, X - noncentrality parameter. # 

if(p == 2) { 
a < - 2 

} 
else { 

a <- ceiling((3 * (p -1) + sqrt((p -1) * (9 * p -17)))/4) 

} 
EWMAZ IRL <- numeric(k) 
EWMAZ2RL <- numeric(k) 
EWMAZSRL <- numeric(k) 
EWMAZ ICP <- numeric(k) 
EWMAZ2CP <- numeric(k) 
EWMAZSCP <- numeric(k) 
EWMAZlsing <- 0 
EWMAZ2sing <- 0 
EWMAZSsing <- 0 
tempi <- matrix(0, p, p, T) 
t emp2<-h*sqr t (y / (2 - y ) ) 

tempS <- k + r - a - 1 
for(i in 1: noiter) { 

cov <- tempi 
samp <- rbind(GENERATE(rep(0, p), diag(p), r), GENERATE(c( >» ,rep(0, p-l)), 

diag(p), k)) 
for(g in l:a) { 

cov <- cov + outer(samp[g + 1, ] - samp[g, ], samp[g +1, ] - samp[g, ]) 

} 
EWMAZl <- 0 
if((a + 2) > r) { 

j < - l 
repeat { 

if(qr(cov)$rank < p) { 
EWMAZlsing <- EWMAZlsing + 1 
break 

} 
f <- (2 * (C + a -1)^2))/(3 * (j + a) - 4) 
ZI <- ((f - p + 1) * (3 * a + a) - 4) * (sampU + a + 1, ]) %*% 

solve(cov) %*% (samplj + a + 1, ]))/(p * (j + a -
D) 

ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- y * ZI + (1 - y ) * EWMAZl 

if(abs(EWMAZl) > temp2) { 
EWMAZIRLO + a + 1 - r] <- EWMAZIRLO + a + 1 - r] + 1 
break 

cov <- cov + outer(sampO + a + 1, ] - samp[j + a, ], sampO + a + 1, 

] - sampO + a, ]) 

j < - j + l 
if(j > tempS) { 
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break 
} 

} 
} 
else if((a + 2) < r) { 

Zlflag <- 0 
for(j inl:(r-a-l)){ 

if(qr(cov)$rank < p) { 
EWMAZlsing <- EWMAZlsing + 1 
Zlflag <-1 
break 

} 
f <- (2 * (0 + a - l)^2))/(3 * (j + a) - 4) 
Z K - ((f - p + 1) * (3 * (j + a) - 4) * (sampO + a + 1, ]) %*% 

solve(cov) %*% (sampO + a + 1, ]))/(p * (j + a -
D) 

ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- y * ZI + (1 - y ) * EWMAZl 
cov <- cov + outer(sampO + a + 1, ] - sampO + a, ], sampO + a + 1, 

] - sampO + a, ]) 
} 
if(Zlflag == 0) { 

j <- r - a 
repeat { 

if(qr(cov)$rank < p) { 
EWMAZlsing <- EWMAZlsing + 1 
break 

} 
f <- (2 * ((j + a - 2)'̂ 2))/(3 * (j + a) - 4) 
Z K - ((f - p + 1) * (3 * (j + a) - 4) * (sampO + a + 1, ]) %*% 

solve(cov) %*% (sampO + a + 1, ]))/(p * (j + a -1)) 
ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- y * ZI + (1 - y ) * EWMAZl 
if(abs(EWMAZl) > temp2) { 
EWMAZIRLO - r + a + 1] <- EWMAZIRLO - r + a + 1] + 1 
break 

} 
cov <- cov + outer(sampO + a + 1, ] - sampO + a, ],sampO + a + 

1,]- sampO + a, ]) 
j <-j + 1 
if(j > tempS) { 
break 

} 
} 

} 
} 
else { 

if(qr(cov)$rank >= p) { 
f<-(2*(a'^2))/(3*a-l) 
Zl<- ((f - p + 1) * (3 * a -1) * sampla + 2, ] %*% solve(cov) %*% 

samp[a + 2, ])/(p * a) 
ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- y * ZI + (1 - y ) * EWMAZl 
cov <- cov + outer(samp[a + 2, ] - samp[a + 1, ], samp[a + 2, ] -

samp[a+ 1, ]) 
j < - l 
repeat { 
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if(qr(cov)$rank < p) { 
EWMAZlsing <- EWMAZlsing + 1 
break 

} 
f<-(2*((i + a)'^2))/(S*(i + a ) - l ) 
ZI <- ((f - p + 1) * (3 * (j + a) -1) * sampO + a + 2, ] %*% 

solve(cov) %*% sampO + a + 2, ])/(p * (j + a)) 
ZI <- qnorm(pf(Zl, p, f - p + 1), 0, 1) 
EWMAZl <- y * ZI + (1 - y ) * EWMAZl 
if(abs(EWMAZl) > temp2) { 
EWMAZIRLO] <-EWMAZIRLO]+ 1 -
break 

} 
cov <- cov + outer(sampO + a + 2, ] - sampO + a + 1, ], sampO + a 

+ 2, ] - sampO + a + 1, ]) 
j< - j + l 
if(j>k){ 
break 

} 
} 

} 
else { 

EWMAZlsing <- EWMAZlsing + 1 
} 

} 
if((p + 1) <= r) { 

EWMAZ2 <- 0 
Z2flag <- 0 
forO in (p + l):r) { 

Z2 <- apply(samp[(l:(j -1)), ], 2, mean) 
w <- ((j - 2)/(j -1)) * var(samp[(l:(j -1)), ]) + outer(Z2, Z2) 
if(qr(w)$rank < p) { 
Z2flag <-1 
EWMAZ2sing <- EWMAZ2sing + 1 
break 

Z2 <- ((j - P) * sampO, ] %*% solve(w) %*% sampO, ])/(P * (j -1)) 
Z2 <- qnorm(pf(Z2, p, j - p), 0, 1) 
EWMAZ2 <- y * Z2 + (1 - y ) * EWMAZ2 

} 
if(Z2flag = 0) { 

j <- r + 1 
repeat { 
Z2 <- apply(samp[(l:(j -1)), ], 2, mean) 
w <- ((j - 2)/G -1)) * var(samp[(l:(j - 1)), ]) + outer(Z2, Z2) 

^if(qr(w)$rank<p){ 
EWMAZ2sing <-EWMAZ2sing + 1 
break 

Z2 <- ((j - p) * sampO, ] %*% solve(w) %*% sampO, l)/(p * G -

D) 
Z2 <- qnorm(pf(Z2, p, j - p), 0, 1) 
EWMAZ2 <- y * Z2 + (1 - y ) * EWMAZ2 
if(abs(EWMAZ2) > temp2) { 
EWMAZ2RL0 - r] <- EWMAZ2RL0 - r] + 1 
break 

} 
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j <-j + 1 
if(i>(r + k)){ 

break 
} 

} 
} 

} 
else { 

EWMAZ2 <- 0 
j < - p + l 
repeat { 

Z2 <- apply(samp[(l:(j -1)), ], 2, mean) 
w <- (0 - 2)/a -1)) * var(samp[(l:a -1)), ]) + outer(Z2, Z2) 
if(qr(w)$rank < p) { 

EWMAZ2sing <- EWMAZ2sing + 1 
break 

} 
Z2 <- ((j - p) * sampO, ] %*% solve(w) %*% sampO, ])/(p * (j -1)) 
Z2 <- qnorm(pf(Z2, p, j - p), 0, 1) 
EWMAZ2 <- y * Z2 + (1 - y ) * EWMAZ2 

if(abs(EWMAZ2) > temp2) { 
EWMAZ2RL0 - r] <- EWMAZ2RL0 - r] + 1 
break 

} 

j < - j + l 
i f a > r + k){ 

break 
} 

} 
} 
if((p + 2) <= r) { 

EWMAZS <- 0 
ZSflag <- 0 
for(j in (p + 2):r) { 

w <- var(samp[(l:(j -1)), ]) 
if(qr(w)$rank < p) { 

EWMAZSsing <- EWMAZSsing + 1 
ZSflag <-1 
break 

} 
ZS <- ((j - p -1) * sampO, ] %*% solve(w) %*% sampO, ])/(p * (j -

2)) 
ZS <- qnorm(pf(Z3, p, j - p -1), 0, 1) 

EWMAZS <- y * ZS + (1 - y ) * E W M A Z S 

} 
if(Z3flag-=0){ 

j <- r + 1 
repeat { 
w<-var(samp[(l-.(j -1)), ]) 
if(qr(w)$rank < p) { 

EWMAZSsing <- EWMAZSsing + 1 
break 

} 
ZS <- (0 - p -1) * sampO, ] %*% solve(w) %*% sampO, ])/(P * (j 

-2)) 
ZS <- qnorm(pf(Z3, p, j - p -1), 0, 1) 
EWMAZS <- y * ZS + (1 - y ) * E W M A Z S 
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if(abs(EWMAZ3) > temp2) { 
EWMAZSRLO - r] <- EWMAZ3RL0 - r] + 1 
break 

} 
j <-j + 1 
ifO > (k + r)) { 
break 

} 
} 

} 
} 
else { 

EWMAZS <- 0 
j< -p + 2 
repeat { 

w<-var(samp[(l:(j-l)), ]) 
if(qr(w)$rank < p) { 
EWMAZSsing <- EWMAZSsing + 1 
break 

} 
ZS <- ((j - p -1) * sampO, ] %*% solve(w) %*% sampO, ])/(p * (j 

2)) 
ZS <- qnorm(pf(ZS, p J - p -1), 0, 1) 
EWMAZS <- y * ZS + (1 - y ) * EWMAZS 
if(abs(EWMAZ3) > temp2) { 
EWMAZSRLO - r] <- EWMAZSRLO - r] + 1 
break 

} 
j< - j + l 
ifa>(k + r)){ 
break 

} 
} 

} 
} 
for(iinl:k){ 

EWMAZlCP[i] <- sum(EWMAZlRL[l:i])/(noiter - EWMAZlsing) 
EWMAZ2CF[i] <- sum(EWMAZ2RL[l:i])/(noiter -EWMAZ2sing) 
EWMAZ3CP[i] <- sum(EWMAZSRL[l:i])/(noiter - EWMAZSsing) 

} 
results <- matrix(c(EWMAZlCP, EWMAZ2CP, EWMAZSCP), k, 3, F) 
results 
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"PR0G6"<-
fvmction(p, y , h, r, k, noiter, X) 

{ 

# This program, which is wirtten in Splus, simulates the run length probabilities of EWMAZIU and # 
# EWMAZ2U for a step shift in the mean vector, p - dimension, y - EWMA smoothing constant, # 
#h- control chart factor for EWMA,r - change point,fc - maximum run length for which the probability* 
# is simulated, noiter - number of iterations, X - noncentrality parameter. # 

if(p = 2){ 
a<-2 

} 
else { 

a <- ceiling((S * (p -1) + sqrt((p -1) * (9 * p -17)))/4) 
} 
EWMAZ lURL <- numeric(k) 
EWMAZ2URL <- numeric(k) 
EWMAZIUCP <- numeric(k) 
EWMAZ2UCP <- numeric(k) 
EWMAZlUsing <- 0 
EWMAZ2Using <- 0 
tempi <- matrix(0, p, p, T) 
temp2<-h*sqrt(y/(2- y)) 
tempS <- k + r - a - 1 
for(i in 1: noiter) { 

cov <- tempi 
samp <- rbind(GENERATE(rep(0, p), diag(p), r), GENERATE(c( >. ,rep(0, p-l)), 

diag(p), k)) 
meanvec <- apply(samp[(l:(a + 1)), ], 2, mean) 
for(gin l:a) { 

cov <- cov + outer(samp[g + 1, ] - samp[g, ], samp[g + 1, ] - samp[g, ]) 
} 
EWMAZIU <- 0 
if((a + 2)>r){ 

j < - l 
repeat { 

tf(qr(cov)$rank < p) { 
EWMAZlUsing <- EWMAZlUsing + 1 
break 

} 
f <- (2 * (0 + a -1)'^2))/(3 * C + a) - 4) 
ZIU <- ((j + a) * (f - p + 1) * (3 * (j + a) - 4) * (sampO + a + 1, ] -

meanvec) %*% solve(cov) %*% (sampO + a + 1, ] -
meanvec))/(p * (j + a -1) * (j + a + 1)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * E W M A Z I U 

if(abs(EWMAZlU) > temp2) { 
EWMAZIURLO + a + 1 - r] <- EWMAZIURLO + a + 1 - r] + 1 
break 

meanvec <- apply(samp[(l:(j + a + 1)), ], 2, mean) 
cov <- cov + outer(sampO + a + 1, ] - sampO + a, ], sampO + a + 1, 

] - sampO + a, ]) 
j<- j + l 
ifO > tempS) { 
break 
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} 
} 

} 
else if((a + 2) < r) { 

j < - l 
while((j <= (r - a -1)) && (qr(cov)$rank >= p)) { 

f <- (2 * (0 + a - 1)'̂ 2))/(S * (j + a) - 4) 
ZIU <- (0 + a) * (f - p + 1) * (3 * (j + a) - 4) * (sampO + a + 1, ] -

meanvec) %*% solve(cov) %*% (sampO + a + 1, ] -
meanvec))/(p * (j + a -1) * (j + a + 1)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * EWMAZIU 
meanvec <- apply(samp[(l:(j + a + 1)), ], 2, mean) 
cov <- cov + outer(sampO + a + 1, ] - sampO + a, ], sampO + a + 1, 

] - sampO + a, ]) 
j < - j + l 

} 
i f a==( r - a ) ){ 

repeat { 
if(qr(cov)$rank < p) { 

EWMAZlUsing <- EWMAZlUsing + 1 
break 

} 
f <- (2 * ((j + a -1)^2))/(3 * (j + a) - 4) 
ZIU <- (G + a) * (f - p + 1) * (3 * (j + a) - 4) * (sampO + a + 1, ] -

meanvec) %*% solve(cov) %*% (sampO + a + 1, ] -
meanvec))/(p * (j + a - 1) * (j + a + 1)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * EWMAZIU 

if(abs(EWMAZlU) > temp2) { 
EWMAZIURLO + a + 1 - r] <- EWMAZIURLO + a + 1 - r] + 1 
break 

} 
meanvec <- apply(samp[(l:G + a + 1)), ], 2, mean) 
cov <- cov + outer(sampO + a + 1, ] - sampO + a, ],sampO + a + 

1,] - sampO + a, ]) 
j < - j + l 
if(j > tempS) { 
break 

} 
} 

} 
else { 

EWMAZlUsing <- EWMAZlUsing + 1 

} 
} 
else { 

if(qr(cov)$rank >= p) { 
f<-(2*(a '^2)) / (3*a- l ) 
ZIU <- ((a + 1) * (f - p + 1) * (3 * a -1) * (samp[a + 2, ] -

meanvec) %*% solve(cov) %*% (samp[a + 2, ] -
meanvec))/(p * a * (a + 2)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * E W M A Z I U 

meanvec <- apply(samp[(l:(a + 2)), ], 2, mean) 
cov <- cov + outer(samp[a + 2, ] - samp[a + 1, ], samp[a + 2, ] -

sampla + 1, ]) 
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j < - l 
repeat { 

if(qr(cov)$rank < p) { 
EWMAZlUsing <- EWMAZlUsing + 1 
break 

} 
f < - ( 2 * ( a + a)^2))/(S*a + a ) - l ) 
ZIU <- (0 + a + 1) * (f - p + 1) * (3 * (j + a) -1) * (sampO + a + 2, 

] - meanvec) %*% solve(cov) %*% (sampO + a + 2, ] -
meanvec))/(p * (j + a) * 0 + a + 2)) 

ZIU <- qnorm(pf(ZlU, p, f - p + 1), 0, 1) 
EWMAZIU <- y * ZIU + (1 - y ) * EWMAZIU 
if(abs(EWMAZlU) > temp2) { 

EWMAZIURLO] <- EWMAZIURLO] + 1 
break 

} 
meanvec <- apply(samp[(l:G + a + 2)), ], 2, mean) 
cov <- cov + outer(sampO + a + 2, ] - sampO + a + 1, ], sampO + a 

+ 2, ]-sampO + a + l , ]) 
j < - j + l 
if(j>k){ 
break 

} 
} 

} 
else { 

EWMAZlUsing <- EWMAZlUsing + 1 
} 

} 
if((p + 2) <= r) { 

EWMAZ2U <- 0 
j < - p + 2 
repeat { 

Z2U <- apply(samp[(l:0 - 1)), ], 2, mean) 
w<-var(samp[(l:(j-1)), ]) 
if(qr(w)$rank >= p) { 

Z2U <- ((j -1) * (j - P -1) * (sampO, ] - Z2U) %*% solve(w) %*% 
(sampO, ]-Z2U))/G*P*(j-2)) 

Z2U <- qnorm(pf(Z2U, p, j - p -1), 0, 1) 
EWMAZ2U <- y * Z2U + (1 - y ) * EWMAZ2U 

j <-J + 1 
ifG > r) { 
break 

} 
} 
else { 

EWMAZ2Using <- EWMAZ2Using + 1 
break 

} 
} 
i f G = = ( r + l ) ) ( 

repeat { 
Z2U <- appIy(samp[(l:G -1)), ], 2, mean) 
w <- var(samp[(l:G -1)), ]) 
if(qr(w)$rank < p) { 

EWMAZ2Using <- EWMAZ2Using + 1 
break 
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} 
Z2U <- (G -1) * G - P -1) * (sampO, ] - Z2U) %*% solve(w) %*% 

(sampO, ] -Z2U)) /G*p*G-2)) 
Z2U <- qnorm(pf(Z2U, p, j - p -1), 0, 1) 
EWMAZ2U <- y * Z2U + (1 - y ) * EWMAZ2U 
if(abs(EWMAZ2U) > temp2) { 

EWMAZ2URL0 - r] <- EWMAZ2URL0 - r] + 1 
break 

} 
j <-J + 1 
ifG > (k + r)) { 

break 

} 
} 

} 
} 
else { 

EWMAZ2U <- 0 
j < - p + 2 
repeat { 

Z2U <- appIy(samp[(l:G -1)), ], 2, mean) 
w<-var(samp[(l:G- 1)), ]) 
if(qr(w)$rank < p) { 

EWMAZ2Using <- EWMAZ2Using + 1 
break 

} 
Z2U <- (G -1) * G - P -1) * (sampO, ] - Z2U) %*% solve(w) %*% 

(sampO, ] -Z2U))/G*p*G-2)) 
Z2U <- qnorm(pf(Z2U, p, j - p - 1), 0, 1) 
EWMAZ2U <- y * Z2U + (1 - y ) * EWMAZ2U 

if(abs(EWMAZ2U) > temp2) { 
EWMAZ2URL0 - r] <- EWMAZ2URL0 - r] + 1 
break 

} 
j < - j + l 
ifG > (k + r)) { 

break 
} 

} 
} 

} 
cat("", fill = T) 
for(iinl:k){ 

EWMAZlUCP[i] <- sum(EWMAZlURL[l:i])/(noiter - EWMAZlUsing) 
EWMAZ2UCP[i] <- sum(EWMAZ2URL[l:i])/(noiter - EWMAZ2Using) 

} 
results <- matrix(c(EWMAZlUCP, EWMAZ2UCP), k, 2, F) 
results 

278 



"PR0G7"<-
function(ZQ , Z i , n, a, noiter) 

{ 
# 

# This Splus program simulates the probability of a signal fiom the proposed dispersion control # 
# technique (process covariance matrix assumed known) and the associated Fisher and Tippett # 
# procedures for a change in the process covariance matrix from ZQ to Z i . # 

# n - subgroup size, a - significance level, noiter - number of iterations # 

wmimmmumMmmmmmimmmmmmmimmmmmmmmmmmm 

p<-mow(Zo) 
gsize <- noiter * n 
result <- 0 
popmat <- vector("list", p) 
popmat[[l]] <- Zo 
forG in 2:(p - 1)) { 

if(qr(Zo [(l:a - 1)), (l:(i - l))])$rank < {i - 1)) { 

stopC'One of the principal minors of ZQ is not of full rank !") 

} 
else { 

popmat[[i]] <- Zot(i:p), (i:p)] - ZolGip), (1:G -1))] %*% solve(ZoI(l:(i -

D), (LG -1))]) %*%t(Zo[(i:p), (l:(i -1))]) 
if(qr(popmat[[i]])$rank < (p - i + 1)){ 

StopC'One of the conditional ZQ is not of full rank") 

} 
} 

} 
if(qr(Zo [(1:(P - D), (l:(p - l))])$rank < (p -1)) { 

stopC'The (p-l) by (p-l) principal minor of ZQ is not of fiiU rank !") 

} 
else { 

popmat[[p]] <- Zo [P, P] - Zo IP, (1:(P -1))] %*% solve(Zo [(1:(P -1)), (1:(P -1))]) 

%*%Zolp,(l:(p-l))] 

} 
samp <- GENERATE(rep(0,p), Z j , gsize) 
results <- DISPER(samp, n, popmat, a) 
results 
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Z i , n, MLRTlim, gvL, gvU, a , noiter) 

# 11II ti IIII ti It II11 ll tt II It II ll It ll /i 

# This Splus program simulates the probability of a signal from the MLRT, generalized # 
# variance chart and SSVPC for a change in the process variance-covariance matrix from # 
# ZQ to Zi • " - subgroup size, MLRTlim - control limit for MLRT, gvL and gvC/ are # 
# respectively the lower and upper control limit factors for the generalized variance chart, # 
# a - significance level, noiter - ntmiber of iterations. # 

# 

p<-nrow(Zo) 
if(qr(sigma)$rank < p) { 

stopC Zo is not of fiill rank !") 

} 
else { 

invsigma <- solve(Zo) 
LCL <- sqrt(prod(eigen(Zo)$values)) * gvL 

UCL <- sqrt(prod(eigen(Zo)$values)) * gvU 

} 
resultl <- 0 
result2 <- 0 
results <- 0 
samp <- generate6(rep(0,p), Z i , n * noiter) 
forG in 1: noiter) { 

sampcov <- var(samp[((G -1) * n) + 1):G * n), ]) 
temp <- invsigma %*% sampcov 
temp <- (n -1) * (- p - log(prod(eigen(temp)$values)) + sum(diag(temp))) 
if(temp > MLRTlim) { 

resultl <- resultl + 1 
} 
temp <- sqrt(prod(eigen(sampcov)$values)) 
if((temp > UCL) || (temp < LCL)) { 

result2 <- result2 + 1 
} 
temp <- eigen( Z Q > T)$vectors %*% diag(sqrt(eigen( ZQ ,T)$values)) %*% 

t(eigen(Zo,T)$vectors) 
temp <- solve(temp) %*% sampcov %*% solve(temp) 
tempS <- (n - l ) * sum(diag(temp)) 
if((temp3 > qchisq(l - (a/2), p * (n -1))) || (tempS < qchisq(a /2, p * (n - !)))){ 

results <- results + 1 
} 

} 
resultl <- resultl / noiter 
result2 <- result2 / noiter 
results <- results / noiter 
c(resultl, result2, resuUS) 
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"PR0G9"<-
function(Zo, Z i , n, r, k, noiter, a) 

{ 
# 

# This Splus program simulates the probability of detection by the proposed dispersion control # 
# technique (for the case with unknown process covariance matrix) and the associated Fisher and # 
# Tippett procedures, within k subgroups of size n each, following a change in the process covariance# 
# matrix from Z o to Z i • r - change point, noiter - number of iterations, a - significance level. # 

p<-ncol (Zo) 
mvec <- rep(0, p) 
convar <- numeric(p) 
V <- vectorC'list", p -1) 
u <- vectorfhst", p -1) 
propres <- 0 
tippettres <- 0 
fisherres <- 0 
nosing <- 0 
forG in 1 inciter) { 

flag <- 0 
flagl <-0 
flag2 <-0 
flags <-0 
samp <- rbind(GENERATE(mvec, Z Q , r * n), GENERATE (mvec, Z i , k * n)) 

cov <- var(samp[(l:n), ]) 
convar[l] <-ccv[l, 1] 
forG in2:p) { 

if(qr(ccv[(l:G -1)), (1:G - l))])$rank < G -1)) { 
nosing <- nosing + 1 
flag <- 1 
break 

convarO] <- covO, j] - covO, (LG -1))] %*% solve(cov[(l:G -1)), (l:(j -1))]) 
%*%cov[(l:G-l))J] 

v[0 -1]] <- solve(cov[(l:G -1)), (l-G -1))]) %*%cov[(l:G - D), j] 
u[0 -1]] <- solve(cov[(l:G -1)), (l-G -1))]) / (n -1) 

} 
if(flag==l){ 

next 

} 
for(g in 2:r) { 

cov <- var(samp[((((g -1) * n) + l):(g * n)), ]) 
convar[l] <- ((g -1) * convar[l] + cov[l, l])/g 
forG in 2:p) { 

if(qr(cov[(l:G - DX (l:(i" l))])$rank < G -1)) ( 
nosing <- nosing + 1 
flag <-1 
break 

temp <- covO, j] - covO, (l:(i -1))] %*% solve(cov[(l:G - D), (1: 0 
l))])%*%cov[(l;G-l))J] 

convarO] <- ((g -1) * convarO] + temp)/g 
temp <- solve(cov[(l:G - D), (l-CJ" D)!) %*"/» ̂ ^^t^^'O" 1))' Jl 
v[0 -1]] <- ((g -1) * vIO -1]] + temp)/g 
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u[0 -1]] <- (((g -1)^2) * u[0 -1]] + solve(cov[(l:G -1)), (1:G -
l))])/(n - l))/(g'^2) 

} 
i f ( f l ag=l ){ 

break 
} 

} 
i f ( f l ag=l ){ 

next 
} 
g <- r + 1 
repeat { 

cov <- var(samp[((((g -1) * n) + l):(g * n)), ]) 
prop <- qnorm(pf(cov[l, l]/convar[l], n - 1 , (g -1) * (n -

1)),0, 1)^2 
tippett <-1 - pchisq(prop,l) 
fisher <- -2 * log(tippett) 
convar[l] <- ((g -1) * convar[l] + cov[l, l])/g 
forG in2:p) { 

if(qr(cov[(l;G - 1)), (1:G - l))])$rank < G - 1)) { 
nosing <- nosing + 1 
flag <-1 
break 

} 
temp <- covO, j] - covO, (1:G -1))] %*% solve(covKl:G -1)), (1: (J -

l))])%*%cov[(l:G-l)),j] 
dummyl <- qnorm(pf(temp/convarO], n - j,(g -1) * (n - j)), 0,1)'̂ 2 
dummy2 <- l-pchisq(dummyl,l) 
prop <- prop + dummyl 
tippett <- min(tippett, diunmy2) 
fisher <- fisher + (-2 * log(dununy2)) 
convary] <- ((g -1) * convarO] + temp)/g 
temp <- solve(cov[(l:G - D), (1:G -1))]) %*% cov[(l:G - 1))J] 
dummyl <- qnorm(pf(t(temp - v[0 -1]]) %*% solve 

(solve(cov[(l:G - 1)), (1:G - l))]y(n -1) + u[0 -1]]) %*% 
(temp - v[0 - 1]])/(G -1) * convarO]*(n-l)/(n-j)), j - 1 , (g*(n 
-j))), 0,1)^2 

dummy2 <- 1 -pchisq(dummyl,l) 
prop <- prop + dummyl 
tippett <- min(tippett,dummy2) 
fisher <- fisher + (-2 * Iog(dummy2)) 
v[0 - 1]] <- ((g -1) * v[0 -1]] + temp)/g 
u[0 - 1]] <- (((g -1)^2) * u[0 - 1]] + solve(cov[(l:G -1)), (LG -

l))])/(n - l))/(g'^2) 

} 
if(flag==l){ 

break 
} 
if(flagl == 0){ 

if(tippett <= (1 - (1 - alp)^(l/(2*p -1)))){ 
tippettres <- tippettres + 1 
flagl <-1 
if((flag2 = 1) && (flags == 1)){ 

break 
} 

} 
} 
if(flag2 = 0){ 
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if(fisher > qchisq(l - alp, 2 * (2 * p -1))) { 
fisherres <- fisherres + 1 
flag2 <-1 
if((flagl = 1) && (flags = 1)){ 

break 
} 

} 
} 
if(flagS == 0){ 

if(prop > qchisq(l - alp, 2*p -1)){ 
propres <- propres + 1 
flags <-1 
if((flagl = 1) && (flag2 == 1)){ 

break 
} 

} 
} 
g <- g + 1 
if(g>r + k){ 

break 
} 

} 
} 
results <- c(propres, fisherres, tippetties) / (noiter - nosing) 
results 
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'TROG10"<-
function(p, n, r, k, Z Q , S i > cwec, noiter) 

{ 

immmmmmmimmmuummuMimiWififimimiiiiiu 
# This Splus program simulates the probability of detection by MLRTECM within k subgroups of size # 
# n each, following a change in the process variance-covariance matrix from ZQ to Zi • p -dimension,# 
#r- change point, noiter - nmnber of iterations, cwec - vector of critical values at 0.11% significance # 
# level. # 
mmmmmmmtmmm##mM#MMm#mmiiiiiiiiiiiiimimmimimmmtifiw^ 
# 

mvec <- rep(0, p) 
result <- 0 
for(i in l:m) { 

samp <- rbind(GENERATE(mvec, Z Q , r * n), GENERATE(mvec, Z i , k * n)) 
cov<-var(samp[(l:n), ]) 
covavg <- cov 
gvprod <- prod(eigen(cov)$values) 
for(g in 2:r) { 

cov <- var(samp[((((g -1) * n) + l):(g * n)), ]) 
covavg <- ((g -1) * covavg + cov)/g 
gvprod <- gvprod * prod(eigen(cov)$values) 

} 
g <- r + 1 
repeat { 

cov <- var(samp[((((g -1) * n) + l):(g * n)), ]) 
covavg <- ((g -1) * covavg + cov)/g 
gvprod <- gvprod * prod(eigen(cov)$values) 
statl <- -2 * log((gvprod'̂ (O.S * (n - l)))/(prod(eigen(covavg)$values)'"(0.5 * 

g * (n -1)))) 
if(statl > cwec[g -1]) { 

result <- result + 1 
break 

} 
g <- g + 1 
if(g>r + k){ 

break 
} 

} 
} 
result <- result / noiter 
result 
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"PR0G11"<-
fimction(p, n, noiter) 
{ 

mmmmmmmmmmmmmmm* 
# This Splus program simulates the false signal rate of |S|''^ chart with '3-sigma' limits # 

#/7 - dimension, n - subgroup size, noiter - number of replications. # 
gsize <- noiter * n 
result <- 0 
prodl <-1 
prod2 <-1 
forG in l:p) { 

prodl <- prodl * (n - i) 
prod2 <- prod2 * (gamma((n - i + l)/2)/gamma((n - i)/2)) 

} 
bS <- (2/(n - l))^(p/2) * prod2 
b4 <- (n - 1)^( - p) * (prodl - ((2^p) * (prod2^2))) 
LCL <- b3 - (3 * sqrt(b4)) 
UCL <- b3 + (3 * sqrt(b4)) 
samp <- GENERATE(rep(0,p),diag(p),gsize) 
forG ill l:noiter) { 

temp <- sqrt(prod(eigen(var(samp[((G -1) * n) + 1):G * n), ]))$values)) 
if((temp > UCL) H (temp < LCL)) { 

result <- result + 1 
} 

} 
result <- result / noiter 
result 

} 
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TR0G12"<. 
fimction(p, n, a , noiter) 

{ 
# 

# This Splus program simulates the lower and upper 100 a th percentiles of Is T^ for a multivariate # 

# normal distribution, p - dimension, n - subgroup size, noiter - nmnber of replications. # 

# 
result <- numeric(noiter) 
forG in 1 inciter) { 

randsamp <- GENERATE(rep(0,p),diag(p),n) 
resultO] <- sqrt(prod(eigen(var(randsamp))$values)) 

} 
result <- sort(result) 
L <- (resuU[floor(O.S * a * noiter)] + result[flocr(O.S * a * noiter) + l])/2 
U <-(result[ceiling((l -O.S * a)*noiter)] +result[ceiling((l-0.S*a)*noiter)-l])/2 
c(L,U) 

} 
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"GENERATE"<-
function( p , Z , n) 

{ 
# 
###########################################M#//////////ff//////////#^ 
# This Splus subroutine, which is called by PROGl, PR0G2, PR0G3, PR0G4, PROGS, PR0G6, # 
# PR0G7, PROGS, PROG9 and PROGIO, generates n random vectors from multivariate normal # 
# distribution with mean vector p and variance-covariance matrix Z • # 
iiMmmuuimmmmmmimmiiiiiiiiiiimmmm#mmimtim 
# 

randsamp <- matrix(morm(n*length( p )),n,length( p ),T) %*% 

chol( Z ) + matiix( p ,n,length( p ),T) 
randsamp 

} 
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"DISPER"<-
fimction(samp, n, popmat, a ) 
{ 
# 

mfifMifmium4mmimim#iWifmfifimiiiiiiiiiiiiiiiiiiiiiiin 
# This Splus subroutine, which is called by PR0G7, computes the munber of samples in samp that # 
# result in a signal by the proposed dispersion contiol technique (process variance-covariance matrix # 
# assumed known) and the associated Fisher and Tippett procedures when the contiol limit is set at # 
#100a%sig. level. # 
####################################M////////////////M##^^ 
# 

p <- ncol(samp) 
m <- mow(samp)/n 
result <- matrix(0, m, (2 * p -1)) 
nosing <- 0 
flag <- 0 
propres <- numeric(m) 
fisherres <- mmieric(m) 
tippetties <- numeric(m) 
sampmat <- vector("list", m) 
forG in l:m) { 

sampmatlOJ] <- vector("hst", p) 
} 
cov <- var(samp[l:n,]) 
sampmat[[l]][[l]] <- cov 
if(qr(cov[(l:(p-l)),(l:G5-l))])$rank < (p-l)){ 

sampmat[[l]][03]]<--99 
flag <-1 

} 
else { 

sampmat[[l]][[p]] <- cov[p, p] - cov[p, (l:(p -1))] %*% solve(cov[(l:(p -1)), (l:(p 
l))])%*%cov[p,(l:(p-l))] 

} 
if(flag==0){ 

forG in 2:0? -1)) { 
if(qr(cov[(l:(i-l)),(l:(i-l))])$rank < (i-l)){ 

sampmat[[l]][[p]]<--99 
break 

sampmat[[l]][[i]] <- cov[G:p), G:p)] - cov[G:p), (1:0 - D)] %*% solve(cov[(l:G -1)), 
(1:G -1))]) %*% t(ccv[G:p), (1:G -1))]) 

} 
} 
forG in 2:m) { 

cov <- var(samp[((G-l)*n)+l):G*n),]) 
sampmat[0]][ll]]<-ccv 
sampmatlO]] <- DiSPERiEnerl(cov,sampmat,j,p) 

} 
forG in l:m) { 

if(sampmat[0]]llp]] = -99){ 
resultO,] <- rep(0,2*p-l) 
nosing <- nosing + 1 

} 
else{ 

resuhO, ] <- DISPERinner2(sampmat, popmat, resuU, j , n, p) 
resuhO, ] <- DISPERinner3(sampmat, popmat, result, j , n, p) 
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} 
forainl:(2*p-l)){ 

propres[l:m] <- propres[l:m] + result[(l:m),i]^2 
fisherres[l:m] <-fisherres[l:m] + (-2 * log(rep(l,m)-pchisq(result[(l;m),i]^2,l))) 

for(i in l:m){ 
tippettres[i] <- min(rep(l,2*p -1) - pchisq(result[i,(l:(2*p -1))]^2,1)) 

propres <- lenglh(propres[propres > qchisq(l-a ,2*p-l)]) 
fisherres <- lengtii(fisherres[fisherres > qchisq(l-a, 2*(2*p -1))]) 
tippetties <- length(tippetti-es[tippettres <= (1-(1 - a)'^(l/(2*p -1)))]) 
results <- c(propres,fisherres,tippettres) / (m - nosing) 
results 
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"DISPERinnerl"<-
function(cov,sampmatj,p) 
{ 
# 

mmmmfifim#imiiiiiiiiiiiiiiiiiiiiiiumufiiiiiiiiiiiiiiiiiiiiiiiH^^ 
# This Splus subroutine is called by DISPER. # 
^##umiiiitiiiiimmmimm#mmm#mmiiiiiniiiiiiiiiimmmmmmmm^ 
# 

flag <- 0 
if(qr(cov[(l:(p-l)),(l:(p-l))])$rank < (p-l)){ 

sampmat[0]][03]]<--99 
flag <-1 

} 
else{ 

sampmat[0]][[p]] <- cov[p,p] - cov[p,(l:(p-l))] %*% solve(cov[(l:(p-l)),(l:(p-l))]) 
%*%cov[p,(l:(p-l))] 

} 
if(flag==0){ 

forG in 2-.(p - 1)) { 
if(qr(cov[(l:(i-l)),(l:(i-l))])$rank < (i-l)){ 

sampmat[0]][[p]]<--99 
break 

} 
sampmat[0]][[i]] <- ccv[G:p), G:p)] - cov[G:p), (1:G -1))] %*% solve(cov[(l:(i -1)), 

(1:G -1))]) %*%t(cov[G:p), (1:G -1))]) 
} 

} 
sampmatlO]] 

} 
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'•DISPERmner2"<-
fimction(sampmat, popmat, result, j , n, p) 
{ 
# 
###################M#######iW##f^^ 
# This Splus subroutine is called by BISPER. # 

# 
for(iin l;p) { 

resultO, i] <- ((n -1) * sampmat[0]l[[i]][l, l])/popmat[[i]][l, 1] 
resultO, i] <- qnorm(pchisq(resultO, i], n - i), 0, 1) 

} 
resultO, ] 

} 
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"DISPERiimer3"<-
fimction(sampmat, popmat, result, j , n, p) 
{ 
# 
mfimiiiiiiimummifimMiiiiiiiiiiiiiiiiiiiimtifiiiiiiiiiiiiiiiiiMmMumt^ 
# This Splus subroutine is called by DISPER. # 
###jmjmmmmmmmffMifiiiiiiiiiiiimmim^iiiiiiiiiiiiiiimmmi^ 
# 

forG in (p + 1):(2 * p - 1)) { 
temp <- (sampmat[0]][[i - p]][l, (2:(2 * p - i + l))]/sampmat[0]][[i - p]][l, 1] -

popmat[[i - p]][l, (2:(2 * p - i + l))]/popmat[[i - p]][l, 1]) 
resultO, i] <- (n - l ) * sampmat[0]][[i - p]][l, 1] * temp %*% solve(popmat[[i - p + 

1]]) %*% temp 
resultO, i] <- qnorm(pchisq(resultO, i], (2 * p - i)), 0, 1) 

} 
resultO, ] 

} 
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