
Mining Roles Structure of OSS projects in SourceForge

Lin Yuan, Huaimin Wang, Gang Yin, Dianxi Shi, Yanxu Zhu

School of Computer, National University of Defense Technology, fkefss@gmail.com

Abstract
Open Source Software (OSS) evaluation uses various metrics to compute the scores or levels of OSS. However

the metrics used in existing evaluation models are difficult to rate and costly to obtain, and the rates of metrics are
often tendentiously subjective and inconvincible. This paper tries to find some kinds of data in OSS repositories
which can be easily obtained and used as metrics for more practical OSS evaluation. By mining and analyzing
nearly 8,000 SourceForge projects, this paper achieves three interesting observations: (1) The Pearson correlation
coefficients between the role number and the rank of projects are surprisingly high which means they are strongly
related; (2) the centralities of roles reveal a irradiative deduction that the projects with higher rank usually tend to
have more rational and balanced role structure; (3) the centralities and correlation of roles provide valuable clues
for constructing a reference role structure model. These results show that the role structure in OSS projects has a
great influence on their quality and provide a new dimension of metrics for more automatic and practical OSS
evaluation.

Keywords: open source software, data mining, social network, software repository

1. Introduction

Open source software is increasingly considered and adopted for business purposes. OSS provides free and vast
software resources ranging from low-quality individual efforts to high-quality enterprise solutions. Deciding which
software package to adopt is always a challenging and costly task because there are so many candidates and
evaluation factors, such as issues of compatibility, usability, scalability, and even legality. For example,
SourceForge contains over 230,000 open source projects with source codes, documents and various resources
related to the projects.

Different approaches have been presented to evaluate OSS projects. The Open Source Maturity Model
developed by Bernard Golden of Navicasoft [1] and the CapGemini Open Source Maturity Model [2] aim to offer a
methodology for assessing and evaluating the suitability of open source software. The Center for Open Source
Investigation at Carnegie Mellon West, and Intel Corporation have developed the Business Readiness Rating model
(BRR) [3], which lets IT managers quickly make informed and educated decisions about open source software.
Atos Origin Corporation conceived and formalized the method for Qualification and Selection of Open Source
software (QSOS) [4].

In the process of evaluating OSS projects, many metrics in these models are not only hard to obtain, but also
difficultly to score even after they had been obtained, such as end-user UI experience, quality of professional
support, number of books in Amazon, leading team, training, documentations, and so on. Therefore it is very
important to find some evidence in software repository, which would be obtained easily and quantified
convincingly.

After comprehensively studies of nearly 8,000 SourceForge projects, we find that, generally the projects with
higher rank are more inclined to have special roles to undertake different works. Therefore，role structure of an
OSS project not only represents the reasonable degree of labor division, but also reflects the quality of some
properties to a certain extent. In most of OSS communities, the participators and roles information of projects can
be obtained easily. Then, if the participators and role structure of a project can reflect some properties of OSS
projects truly and effectively, could we take them as evidence in OSS evaluation, or even as alternatives of some
existing metrics which were obtained difficultly and used unconvincingly? By mining the data of roles and
participators in the projects selected from SourceForge, the above question is discussed in this paper. We hope our
conclusion will be helpful to evaluate OSS projects quantitatively, effectively, and automatically.

The rest of the paper is structured as follows. Section 2 describes related conceptions and data collection.
Section 3 evaluates the Pearson correlation coefficient between roles of project participators and project rank in
SourceForge. Section 4 presents the centralities of roles and the layered role structure of projects. Section 5
discusses the results and presents a conjecture. Section 6 mentions limitations of our work, and the future work.
Section 7 presents some related work and section 8 concludes.

2. Related conceptions

SourceForge is the largest OSS development web site in the world. By June 2009, more than 230,000 software

projects have been registered by more than 2 million users. It provides large amounts of real data covering the
entire software life cycle for academic research. The SourceForge data used in this paper is collected from the
Flossmole web site [5].

There are 7 kinds of projects statuses in the SourceForge, which are planning, pre_alpha, alpla, beta,
production/stable, mature, and inactive.

In SourceForge, the recommendation and rank of projects are determined by activity scores. It means the rank of
project is actually one kind of quantization of project’s recent activity, in generally, we are able to consider that the
projects with higher ranks indicate that they have enjoyed higher popularity and won more widespread applications.
So the rank can reflect the quality of projects to a certain degree.

In nearly 230,000 SourceForge projects, roles are used to distinguish different development tasks. After
combining the roles which actually undertaking the same activities, finally we get 27 roles in all SourceForge
projects, which are listed in Table 1:

TABLE 1. The Roles in SourceForge

Index Role Name Index Role Name
1 Advisor/Mentor/Consultant 2 Cross Platform Development
3 All-Hands Person 4 Project Manager
5 Analysis/Design 6 Requirements Engineering
7 Build Engineer 8 Researcher
9 Content Management 10 Sr. Customer Support Manager
11 Database Administrator 12 Support Manager
13 Developer 14 Support Technician
15 Director of Operations 16 Tester
17 Distributor/Promoter 18 Translator (I18N/L10N)
19 Doc Writer 20 Systems Programmer/Analyst
21 Editorial/Content Writer 22 Unix Admin
23 Graphic/Other Designer 24 UI Designer
25 Packager(.rpm, .deb, etc) 26 VP of Media Operations

3. Relationship between role numbers and rank of projects

In our studies, the selection of data source relies on two factors: project status and its rank. We selected the

projects which are beta, production/stable, or mature status, and before 10000 in rank list. There are total 7,779
projects meeting both conditions in SourceForge in Jun 2009.

3.1 Distribution of roles

The distribution of roles in SourceForge projects is calculated by:

1
_ [] [] [1,]

N

j
j

role num i project i i n
=

= ∈∑

1

_ []_ []
_ []

n

i

role num irole percent i
role num i

=

=

∑

Where N is the number of target projects, n is the number of roles; projectj[i] is the participators number of role i
in the target project j; role_num[i] describes the total number of role i in all of target projects; role_percent[i] shows
the percentage of the role i in total participators of all target projects.

Figure 1. Percentages of roles in SourceForge projects

Fig.1 illustrates the proportions of each role in all target projects. It shows that the most participators are
developers(66%), and the second are project managers(19%). The percentages of the other roles are much smaller
and even many kinds of roles no more than 1%. Fig.1 indicates that the participators of OSS projects are mainly
composed of developers and project managers.

3.2 The number of roles in projects

For further studying the relationship between role numbers and rank of projects, we divide the rank range from 1

to 10000 into 10 intervals averagely, and analyze the target projects in different intervals. Parts of the results are
described in Fig.2 and Fig.3, and several observations can be concluded from them.

i. A quite number of projects in SourceForge only have one or two roles, and a very small proportion of
projects own more than 7 kinds of roles;

ii. Comparing the different intervals (Fig.2 X-axis), in the rank range from 1 to 1000, the proportions of
projects owning more than 3 roles are obviously higher than others intervals, and there is a downward
tendency of role numbers in projects as the rank declines.

iii. Comparing the role numbers (Y-axis), the proportions of projects with 1 or 2 roles in the ranges [1,1000] in
Fig.2 and [1,100] in Fig.3 are clearly lower than behind ranges; and the proportions of projects with more
than 3 roles in front ranges are larger than behind.

Figure 2. Role numbers of projects in rank range

[1,10000]

Figure 3. Role numbers of projects in rank range

[1,1000]

For discovering the relationship between the number of roles and rank of projects, we further mined and
analyzed the related data in the target software repositories.

3.3 Average number of roles in different rank intervals

Based on the situation that there are only few projects with more than 7 roles, we only take the projects with role

numbers from 1 to 7 into account.
Fig.4 and Fig.5 illustrate the proportions of the projects with the same role numbers in different rank ranges.

And we can find in both figures as the role number (X-axis) increases, proportions of the projects with higher rank
increase too. It means that the projects with higher rank would have the tendency to own more roles. In other words,

we can believe the projects with higher rank usually have the better division of work than the projects with lower
rank.

Figure 4. Distribution of projects based on role

numbers in rank [1,5000]

Figure 5. Distribution of projects based on role

numbers in rank [1,1000]

We calculated the average number of roles in different rank intervals by the follow formula.

1
_

_ _

iN

j
j

i

role num
avg role num

N
==
∑

Where Ni is the total number of projects in the i-th interval, role_numj

TABLE 2. average role numbers in rank rang [1,1000]

 represents the role number of the project j.
The results are described in Table 2 and Table 3.

Rank intervals Project numbers Average role numbers
0-100 64 4.64
100-200 65 3.86
200-300 51 3.20
300-400 60 2.81
400-500 58 3.24
500-600 62 2.61
600-700 62 2.73
700-800 64 2.61
800-900 62 2.44
900-1000 52 2.92

TABLE 3. average role numbers in rank rang [1,10000]

Rank intervals Project numbers Average role numbers
0-1000 645 2.70
1000-2000 708 1.91
2000-3000 878 1.70
3000-4000 1022 1.57
4000-5000 1097 1.46
5000-6000 1232 1.47
6000-7000 1241 1.46
7000-8000 1192 1.41
8000-9000 1182 1.48
9000-10000 1029 1.42

In order to observe the tendency of average role numbers in different intervals, Fig.6 and Fig.7 are given as
follows.

Figure 6. Average role numbers in the rank range

[1,1000]

Figure 7. Average role numbers in the rank range

[1,10000]

3.4 Pearson correlation coefficients

The Pearson correlation coefficient is a measure of the correlation between two variables, which is defined as:

(,) XY

X Y

corr X Y σ
σ σ

=
×

Where σX, σY and σXY

1

1 ()()
1

n

XY i i
i

X X Y Y
n

σ
=

= − −
− ∑

 can be calculated as follows:

2

1

1 ()
1

n

X i
i

X X
n

σ
=

= −
− ∑

2

1

1 ()
1

n

Y i
i

Y Y
n

σ
=

= −
− ∑

Where X and Y are the variables to be measured, X and Y are their means respectively; n is the number of
samples. The Pearson correlation coefficient ranges from -1 to 1, and the detailed interpretation is shown in Table 4.

TABLE 4. meaning of Pearson correlation coefficent

Correlation |corr(X,Y)|
None 0.0 to 0.09
Small 0.1 to 0.3

Medium 0.1 to 0.3
Large 0.5 to 1.0

Based on the data in Fig.6, the values in X-axis are taken as the samples of variable X, and the same to Y, then

the correlation coefficient |corr1-1000| is calculated. Based on the data in Fig.7, we consider the different rank
intervals, within the intervals from 1 to 5, the |corr1-5000| is calculated; within the intervals from 6 to 10, the
|corr5000-10000| is calculated; and within the whole intervals, the |corr1-10000| is obtained. The results of Pearson
correlation coefficients between the average role numbers and projects rank intervals are shown as follows:

|corr1-1000| = 0.790 |corr1-5000| = 0.902
|corr5000-10000| = 0.406 |corr1-10000| = 0.752

The correlation coefficient of rank range [1, 1000] shows there is strong correlation between role number and
rank of projects. The coefficient of range [1, 5000] is even higher than 0.90, and further confirms the conclusion.
Most of the projects in the range [5000, 10000] own only 1 or 2 roles, which cause the coefficient of this range is
much lower than other intervals.

So we can infer that there is strong relationship between projects’ role number and their rank. The projects with
higher rank would be inclined to have more roles, especially in the rank range [1, 5000]. In other words, it means
that the projects with higher rank would be organized better, and the work of these projects would be divided and
assigned better. Based on the analyzing of Pearson correlation coefficients between the numbers of projects’ roles
and their rank, we can obtain the first Conclusion.

Conclusion 1: The number of roles in an OSS project has a great influence on its rank.

Ⅳ . Role structure of OSS projects

In order to retrieve the role structure model that can provide better support (e.g. helping projects to get higher

rank) for the development of OSS projects in SourceForge, we calculated the absolute centralities and relative
centralities of each role in different rank intervals.

4.1 Mathematical Models

The calculation method of role centrality is defined as follows. It can be described by absolute centrality and

relative centrality.

1
_ [,]

_ [,]
_

n

i
y

i

role matrix j y
absolute centrality i j

project num
==
∑

1

_ [,]_ [,]
_ [,]

n

x

absolute centrality i jrelative centrality i j
absolute centrality i x

=

=

∑

Where the variable n is the number of major roles we considered, role_matrixi is a matrix which describes the
relation between roles, the variable i denotes the i-th interval, i∈ [1, 10]; role_matrixi[x,y] describes the times of
both role x and y occur in one same project in the i-th interval, and role_matrixi

The absolute centralities and relative centralities of major roles are shown in Table 5 and Table 6.

[x,y] = 0. Here, we don’t take those
projects with only one role into account; the variable project_numi is the number of projects which own two or
more roles in the i-th interval; absolute_centrality[i,j] and relative_centrality[i,j] are respectively the absolute
centrality and relative centrality of role j in the i-th interval.

TABLE 5. absoulute centralities of major roles

Role Rank intervals
[1,1000) [1000-2000) [2000-3000) [3000-4000) [4000-5000) [5000-6000) [6000-7000) [7000-8000) [8000-9000) [9000-10000]

Developer 2.2636 1.7072 1.386 1.37 1.2874 1.3723 1.1437 1.3088 1.3324 1.2027
projectmanager 1.7841 1.313 1.0052 1.1314 0.9824 1.0951 0.8534 1.0294 1.1108 0.897
tester 0.7932 0.4464 0.2358 0.2279 0.2111 0.1902 0.0205 0.1294 0.1946 0.196
DocWriter 0.6932 0.3536 0.1839 0.1743 0.0997 0.1495 0.0381 0.1147 0.1324 0.1561
Translator 0.6932 0.3478 0.1554 0.1421 0.1378 0.106 0.0411 0.0853 0.0838 0.1694
WebDisigner 0.6409 0.3275 0.1865 0.1501 0.176 0.1413 0.0792 0.1618 0.2324 0.1063
Allhandsperson 0.6273 0.4261 0.3782 0.2681 0.3109 0.2527 0.2522 0.3059 0.327 0.3289
Packer 0.5795 0.258 0.1658 0.1903 0.1026 0.1793 0.1114 0.1294 0.1054 0.1163
Graphic 0.4386 0.1391 0.0751 0.0697 0.1437 0.0788 0.044 0.0382 0.1568 0.0764
advisor/Mentor/Consultant 0.3773 0.2174 0.1451 0.1019 0.0997 0.1603 0.1056 0.0765 0.1811 0.1329
porter 0.3 0.1884 0.0492 0.0885 0.0557 0.0543 0.0264 0.0471 0.0541 0.1163
EditorialContentWriter 0.2727 0.1101 0.0699 0.059 0.0059 0.0245 0.0088 0.0265 0.0811 0.0498
SupportManager 0.2614 0.1275 0.044 0.0697 0.0528 0.0625 0.044 0.0647 0.0514 0.0831
ContentManagement 0.2159 0.1333 0.0311 0.0429 0.0352 0.0707 0.0117 0.0412 0.0703 0.0432
SupportTechnician 0.2068 0.0899 0.0337 0.0161 0.0557 0.0082 0.0264 0.0324 0.0108 0.0399
UI 0.1591 0.0551 0.0233 0.0188 0.0381 0.0136 0.0059 0.0206 0.0216 0.0399
DistributorPromoter 0.1545 0.1188 0.0907 0.0241 0.0381 0.038 0.0059 0.0706 0.0432 0.093
analysisDesign 0.1159 0.0435 0.0311 0.0322 0.0059 0.0217 0.0088 0.0324 0.0324 0.0066
requirementEngineering 0.05 0.0435 0.0026 0.0107 0.0205 0.0082 0.0117 0.0147 0.0108 0.0399

TABLE 6. Relative centralities of major roles

Role Rank intervals
[1,1000) [1000-2000) [2000-3000) [3000-4000) [4000-5000) [5000-6000) [6000-7000) [7000-8000) [8000-9000) [9000-10000]

Developer 0.213 0.2646 0.3229 0.3271 0.3331 0.3389 0.4029 0.3509 0.3148 0.3089
projectmanager 0.1679 0.2035 0.2342 0.2702 0.2542 0.2705 0.3006 0.276 0.2625 0.2304
tester 0.0746 0.0692 0.0549 0.0544 0.0546 0.047 0.0072 0.0347 0.046 0.0503
DocWriter 0.0652 0.0548 0.0428 0.0416 0.0258 0.0369 0.0134 0.0308 0.0313 0.0401
Translator 0.0652 0.0539 0.0362 0.0339 0.0357 0.0262 0.0145 0.0229 0.0198 0.0435
WebDisigner 0.0603 0.0508 0.0435 0.0359 0.0455 0.0349 0.0279 0.0434 0.0549 0.0273
Allhandsperson 0.059 0.066 0.0881 0.064 0.0804 0.0624 0.0888 0.082 0.0773 0.0845
Packer 0.0545 0.04 0.0386 0.0455 0.0266 0.0443 0.0393 0.0347 0.0249 0.0299
Graphic 0.0413 0.0216 0.0175 0.0166 0.0372 0.0195 0.0155 0.0103 0.037 0.0196
advisor/Mentor/Consultant 0.0355 0.0337 0.0338 0.0243 0.0258 0.0396 0.0372 0.0205 0.0428 0.0341
porter 0.0282 0.0292 0.0115 0.0211 0.0144 0.0134 0.0093 0.0126 0.0128 0.0299
EditorialContentWriter 0.0257 0.0171 0.0163 0.0141 0.0015 0.006 0.0031 0.0071 0.0192 0.0128
SupportManager 0.0246 0.0198 0.0103 0.0166 0.0137 0.0154 0.0155 0.0174 0.0121 0.0213
ContentManagement 0.0203 0.0207 0.0072 0.0102 0.0091 0.0174 0.0041 0.011 0.0166 0.0111
SupportTechnician 0.0195 0.0139 0.0078 0.0038 0.0144 0.002 0.0093 0.0087 0.0026 0.0102
UI 0.015 0.0085 0.0054 0.0045 0.0099 0.0034 0.0021 0.0055 0.0051 0.0102
DistributorPromoter 0.0145 0.0184 0.0211 0.0058 0.0099 0.0094 0.0021 0.0189 0.0102 0.0239
analysisDesign 0.0109 0.0067 0.0072 0.0077 0.0015 0.0054 0.0031 0.0087 0.0077 0.0017
requirementEngineering 0.0047 0.0067 0.0006 0.0026 0.0053 0.002 0.0041 0.0039 0.0026 0.0102

4.2 Charactering relationship between roles

Based on the analysis of relationship between roles, we get the Fig.8 and Fig.9, in which the node is role,

and the edge represents the relation between roles. The weight of edge in different rank ranges is defined as:

, _ [,]x y iweight role matrix x y=

If weightx,y≥30, we consider it as strong relationship; if 15≤weightx,y<30, we consider it as medium
relationship; and if 1≤weightx,y

From Fig.8 and Fig.9, though only relationships in the first and second intervals are shown in this paper,
they indicate very clearly as the rank declines, the relationships between roles tend to decline too. It can be
interpreted as the degree of work division in OSS projects is unclearly more and more when their rank declines.

<15, we consider it as weak relationship. In Fig.8 and Fig.9, the thick solid
lines, thin solid lines and dotted lines represent strong, medium and weak relationship respectively.

Figure 8. Relationships of major roles in the rank

[1-1000]

Figure 9. Relationships of major roles in the rank

[1000-2000]

4.3 Relative centralities of role

In order to further characterize the role structure of OSS projects in SourecForge, we compare the relative
centralities of some major roles in different rank intervals.

Figure 10. Relative centralitis of major roles in different intervals.

Fig.10 shows that: (1) For the OSS projects in SourceForge, the most important role is developer, and the
second is project manager. (2) From the 1st to 7th rank interval, the centralities of both developer and project
manager rise while most of the other roles decline. (3) With the rank declines, the centralities of all-hands
person are obviously higher than other roles except the roles of developer and project manager. This
phenomenon indicates that the clarity degree of work division in projects declines as the rank of projects
declines. In other words, the development tasks are not properly divided and assigned to special participators
in most of the projects with lower rank. Therefore, we can obtain the second Conclusion:

Conclusion 2: In OSS projects, absence of some specific roles impacts the projects’ quality to a certain extent,
and the existence of some roles will be beneficial to projects evolution

4.4 Role structure of OSS projects in SourceForge

According to the Fig.8 and Fig.10, there are some reasons to believe that the distribution of roles and the
degree of project work division in the rank range [1, 1000] are the most reasonable and suitable for OSS
development. Therefore, the role structure of OSS projects in SourceForge is constructed as Fig.11. Some of
roles which occurred very few times are neglected.

Figure 11. Role structure of OSS projeccts in SourceForge

According to the relative centralities of some major roles, the role structure is categorized into five layers:
Developer is the most fundamental and crucial role and placed at the core position;
Project manager, which is responsible for dividing project work, coordinating each role’s, and pushing the

project forward etc., is also the key role in OSS development and placed at the second layer;
The roles in the third layer, such as doc writer, translator, tester, packager, etc., are important roles in

development of OSS software. They undertake the necessary work of OSS projects, such as projects’
standardization, related documents, quality, or popularization. However, in some OSS projects, which are
small in size and only own a few participators, these work may be undertook by all-hands people.

The roles in the fourth layer usually undertake some auxiliary projects work. These roles can help
development of projects and improve project influence.

The centralities of roles in the outside layer are lower than others. Comparing with the other roles, we think
they have only limited help to the developments of OSS projects.

By analysis of the role structure of OSS projects in SourceForge, we believe that the existing roles can
reflect quality and characteristic of OSS projects to a certain extent. So we can obtain the third Conclusion.

Conclusion 3: Analysis of the role structure in OSS projects conduces to OSS evaluation.

5. Discussion

The purpose of our work is to find some evidence in software repository for OSS evaluation. The evidence,
which will be used as the metrics of some properties in OSS evaluation, should be more objective and more
easily retrieved. This paper focuses on the roles of OSS projects in SourceForge. By comparing the roles with
the detailed metrics in BRR and QSOS models, we try to construct the connections between the roles and the
properties of these models, which are showed in Fig.12.

Figure 12. Roles and OSS evaluation properties

Fig.12 is a reference model of such connections that may be used to mapping the project roles to the
properties (and thus metrics) in OSS evaluation models. This reference model is based on the following
hypothesis:

Conjecture 1: The information of role structure can improve or even replace some metrics in the existing
evaluation models and will help evaluate OSS projects efficiently and automatically.

6. Limitation and future work

We must admit that a successful OSS project may be only one participator; in fact, there are many projects

in SourceForge with only 1 or 2 participator(s). Currently, our work doesn’t take some important factors of
OSS projects into account, such as project size, total number of participators, etc., and we will continue
processing in-depth studying in the future.

In addition, the capabilities and contributions of the participators undertaking specific roles are usually
different, and these will surely impact on the related properties too. In the future work, we will consider the
abilities of every participator in projects, which can be calculated by one’s historical behavior in the OSS
communities.

7. Related work

In recent years, Software engineering has increasingly come to understand that there are predictable

relationships between the structure of code and the social structure of the development team; better
understanding of social structure can improve development planning. Academic research examining OSS
development is rapidly growing and has begun to investigate the social structure of projects. Researchers have
studied project size and action patterns, concentrating on code production and interaction between project
members, but until now, we don’t find any papers concerning the roles in OSS projects.

A noteworthy contribution in this field is the onion model [9], Mockus, etc. shows how developers and
users are positioned in communities. The focus of their studies has largely been on the contribution of code,
therefore they have largely discussed development centralization. In this model, it is possible to differentiate
among core developers (those who have a high involvement in the project), co-developers (with specific but
frequent contributions), active users (contributing only occasionally) and passive users. At the center of the
onion are the core developers, who contribute most of the code and oversee the design and evolution of the
project. In the next out layer are the co-developers who submit patches (e.g., bug fixes) which are reviewed
and checked in by core developers. Further out are the active users who do not contribute code but provide
use-cases and bug-reports as well as testing new releases. Further out still, and with a virtually unknowable
boundary, are the passive users of the software who do not speak on the project’s lists or forums.

Kevin Crowston and James Howison address the question of whether OSS projects exhibit consistency in
their social structure [10]. They chose to examine the network centrality of communication during the bug-
fixing process, and found that the centralizations are negatively correlated with number of developers and
active users who contributed to the bug reports, and the centralization of OSS projects engaged in bug-fixing is
in fact widely distributed, with a few highly centralized projects, a few decentralized and most somewhere in
the middle (the distribution cannot be distinguished from a normal distribution). Their study demonstrates that
a particular pattern of communications centralization or decentralization is not a characteristic of OSS projects
when engaged in the task of bug-fixing.

Gregorio Robles shows how to better understand the evolution of the most active group of developers
contributing to an OSS software project in [11]. They believe the stability and permanence of this group of
most active developers is of great importance for the evolution and sustainability of the project. The “code
gods” scenario means that the activity of the different core teams is high over their whole history, and the
“code gods” scenario means the composition of the core group changes seldom. An important open problem
was discussed in their work, to which extent other, non-coding activities (such as discussion, writing of
documentation, or even mediation between developers) should be considered to better identify the core team of
developers.

8. Conclusion

In this paper, the relationship between roles and projects rank in SourceForge community are mined and

studied. The roles used in SourceForge are wholly examined and finally a reference role structure of OSS
projects is proposed based on 3 conclusions: (1) The number of roles in an OSS project has a great
influence on its rank; (2) In OSS projects, absence of some specific roles impacts the projects’ quality to
a certain extent, and the existence of these roles will be beneficial to projects evolution; (3) Analysis of
the role structure in OSS projects conduces to OSS evaluation.

Based on the work in this paper, we believe that the data on roles and participators in OSS projects can be
used to improve or even replace some metrics in the existing evaluation models, and will help evaluate OSS
projects efficiently and automatically. We also believe that this paper initiates the research on evaluation and
health detection of OSS projects by using the roles, tasks and contributions of projects participators, and thus
opens a window towards more automatic and practical OSS evaluation.

9. Acknowledgement

This work was partially funded by National High-Tech Research and Development Plan of China under

Grant (2007AA010301), National Natural Science Foundation of China under Grant (No.60903043), and the
“ Core electronic devices, high-end general chip and fundamental software” Major Project (2009ZX01043-
001-04).

10. References

[1] Golden's OSMM, http://www.navicasoft.com/pages/
[2] CapGemini's OSMM. http://www.seriouslyopen.org/nuke/html
[3] OpenBrr, Business Readiness Rating for Open Source (BRR2005). http://www.openbrr.org/BRR2005.pdf
[4] Atos Origin, Method for Qualification and Selection of Open Source software (QSOS), version1.6.

http://www. qsos .org/download/qsos-1.6-en.pdf
[5] Flossmole, http://www.flossmole.com
[6] TRUSTIE-STC, Software Trustworthiness Evidence Framework Specification (V2.0),

http://www.trustie.net, 2009.5.
[7] TRUSTIE-STC, Software Trustworthiness Classification Specification (V2.0), http://www. trustie.net ,

2009.5.
[8] WANG Huaimin, TANG Yangbin, YIN Gang, LI Lei. Trustworthiness of Internet-based software.

Science in china Series F: Information Sciences， vol.49, no.6, 759-773, 2006.
[9] Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of Open Source software development:

Apache and Mozilla . ACM Transactions on Software Engineering and Methodology, vol. 11, no. 3, pp.
309–346, 2002

[10] Kevin Crowston, James Howison，The social structure of open source software development. First
Monday, 2005,Vol.10, No.2

[11] Gregorio Robles, Jesus M. Gonzalez-Barahona, Israel Herraiz. Evolution of the core team of developers in
libre software projects. In Proceedings of the International Workshop on Mining Software Repositories
(MSR), pages 167–171, 2009.

[12] Megan Conklin, James Howison, and Kevin Crowston, 2005. Collaboration Using OSSmole: A repository
of FLOSS data and analyses. In Proceedings of the Mining Software Repositories Workshop of the
International Conference on Software Engineering (ICSE 2005). St. Louis, MO, USA. May 17, 2005

[13] James Howison and Kevin Crowston, 2004. The Perils and Pitfalls of Mining Sourceforge. In Proceedings
of the Mining Software Repositories Workshop at the International Conference on Software Engineering
(ICSE 2004). Edinburgh, Scotland.

[14] T. Dinh-Trong and J. M. Bieman, “Open source software development: A case study of freebsd,” in
Proceedings of the 10th International Software Metrics Symposium, Chicago, IL, USA, 2004

[15] D. E. Perry, N. Staudenmayer, and L. G. Votta. People, organizations, and process improvement. IEEE
Softw., 1994.

[16] P. M. Johnson, H. Kou, M. G. Paulding, Q. Zhang, A. Kagawa, and T. Yamashita. Improving software
development management through software project telemetry. In IEEE Software, 2005

http://www.navicasoft.com/pages/�

	Mining Roles Structure of OSS projects in SourceForge
	Abstract
	3.1 Distribution of roles
	3.2 The number of roles in projects
	3.3 Average number of roles in different rank intervals
	3.4 Pearson correlation coefficients
	4.1 Mathematical Models
	4.2 Charactering relationship between roles
	4.3 Relative centralities of role
	4.4 Role structure of OSS projects in SourceForge

