
Covert Wireless: Practical LPD-LPI

Resistance is NOT futile

Wireless Warrior

7 August 2015

Why Develop Open Covert Communications?

- As an enabler to privacy and liberty
 - Circumvent government restrictions and targeting
 - Political groups, NGOs, demonstrations, war and insurrections
 - Journalists (Marie Colvin)
- Wireless Warrior: a WW II Allied underground radio operator

- Disaster communications
 - Friends and Family
- Affordable/fee-free
- An untapped market: What the intelligence community has today the rich will want tomorrow and many soon after

Why Wireless?

- Infrastructure-less use
- Local, regional and even international links
- Mobility
- No fees

Why NOT wireless?

- Link reliability
- Software immaturity
- Specialized, often nonminiature, antennas
- Only low-speed covert
- Equipment cost
- May not be locally legal

Covert Focus

- Low Probability of Detection/Intercept (LPD/LPI)
- Most reliably implemented at the radio/PHY level

Pros

- No more identifiers available as all transmitted bits obfuscated
- No correlations between requests and replies
- Location privacy

Cons

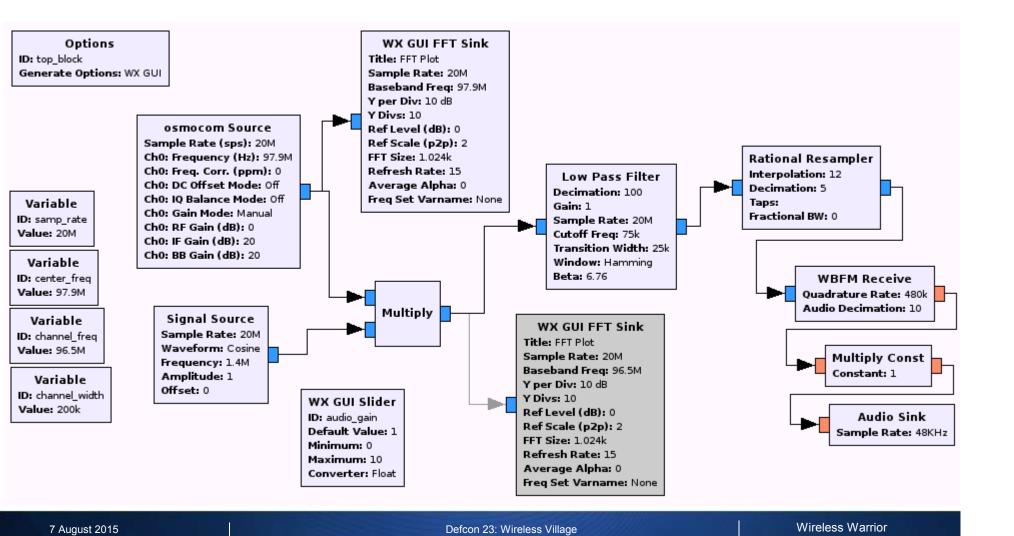
- Usually not accessible to software developers
- Requires deep understanding of radio and signal processing

What is Covert Communications

- Covert channels
 - Messages hidden within ordinary data (similar to steganography)
 - Never intended for information exchange
 - Can be used to hide encrypted communication
- Signals-based
 - Modulation
 - Coding
 - Directivity (e.g., antenna pattern)
- A complement to encryption which is often used in tandem

SDR and Gnu Radio Changed Everything

- Before SDR radio design only for large entities and RF engineers
- First SDRs were expensive commercial and proprietary
- Gnu Radio, created to make FOSS radio practical and affordable, is now mature
- Special signal capture and generator devices make SDR practical


- SDR receivers common
 - RTL dongles ~\$20 USD
 - FunCube covers LF-UHF
- Transceivers less so, (e.g., HackRF One and USRP)
- Proper COTS transmitter
 configurations (SDR +
 amp) outside of ham gear
 needed

Gnu Radio

- Free & open-source toolkit
 (GPL) version 3
- Signal processing blocks to implement software radios
 - With low-cost external RF hardware or in a simulation environment
- Mature: widely used in hobbyist, academic and commercial environments

- C++ and Python APIs
- For computation intensive parts C++/VOLK = (vectoroptimized library of kernels)
- GR Companion: GUI IDE for prototyping applications

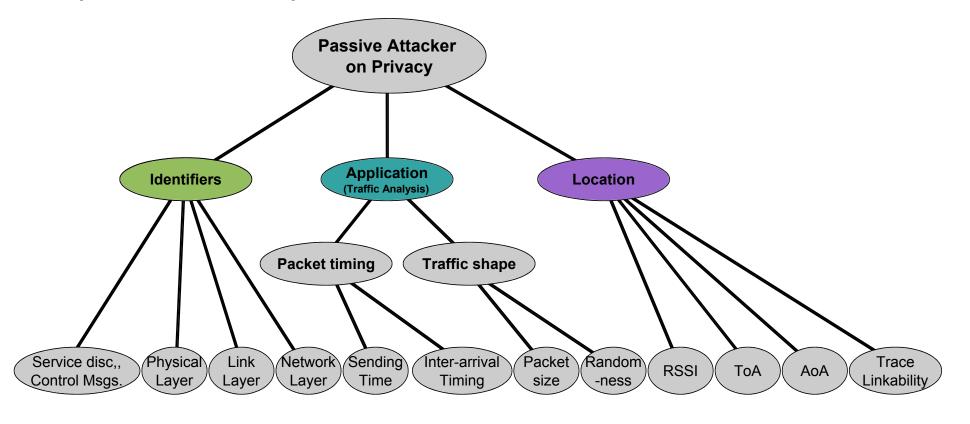
GnuRadio Companion Example: FM Receiver

HackRF One

- ~1 MHz to 6 GHz coverage
- Half-duplex transceiver
- Up to 20 MSPs
- Nominal 10 mW transmitter
- 8-bit quadrature samples I/Q
- Compatible with GNU Radio, SDR#, and more
- Software-configurable RX and TX gain and baseband filter
- Powered antenna port
- USB peripheral or stand-alone
- Clock input and output for synchronization
- Programmable buttons

- Internal pin headers for expansion (e.g.,up to 16-bit A/D or FPGA)
- Hi-Speed USB 2.0 powered
- Open source firmware and hardware

Defcon 23: Wireless Village


Wireless Threats

- Passive
 - Signal analysis
 - Type, frequency, bandwidth, etc.
 - Where Location Privacy?
 - Traffic Analysis
 - Who's communicating with whom?
 - When is someone communicating?
 - Eavesdropping
 - What is the content of their communication?

- Active
 - May mean you are targeted!
 - Jammers
 - Block Communications
 - Force Insecure Reversion
 - Man-in-the-Middle
 - Black-bag intrusion

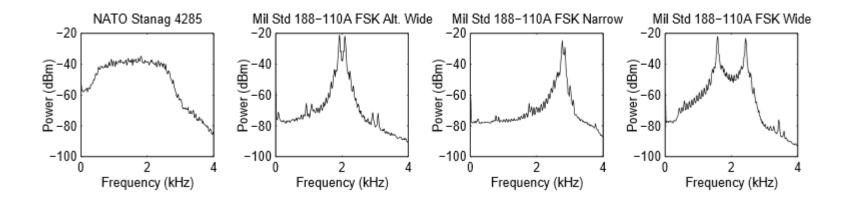
Passive Threats

 Many potential privacy leaks of wireless communication protocols for a passive attacker

7 August 2015

Defcon 23: Wireless Village

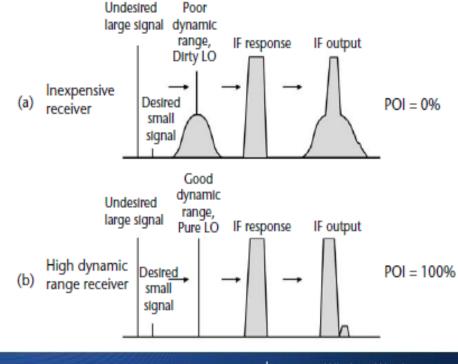
Wireless Warrior


Signal Features Targeted

- Common emission sources and types
 - Frequency, location, time and (if possible) content
- Red October Crawler/Seismic scenario
 - Unusual modulation/coding
 - Transmitter physical layer fingerprinting
 - Code/symbol rate signatures

Signal Tech They Are Using

- Feature Extraction
 - Instantaneous amplitude
 - Phase variance
 - Spectral symmetry
 - Transmission models
 - Higher order statistics

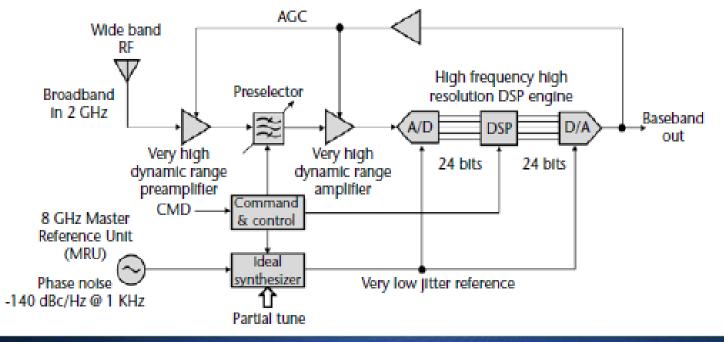

- Classification association
 - Threshold detection
 - Artificial neural networks
 - Pattern recognition algorithms

High Probability Of Intercept (HPOI) Receivers

- Purpose: Capture as much RF spectrum as quickly as possible with the highest frequency resolution and dynamic range.
- Probability of Intercept (POI) % = probability to detect, process, and identify an emitter within a specified time

- Example
 - A weak CW signal hidden in the side-bands of a strong signal and close frequency

POI Factors


- A priori signal knowledge
 - Prevention is key to covert
 - Frequency and modulation
 - Probable location
 - Bandwidth and coding
 - Transmission time(s)
 - Repetition rate
 - Antenna (e.g., pattern)
- HPOI design elements
 - Dynamic range
 - LO and synthesizer quality
 - Noise figure & Compression points

- Capture likelihood
 - Emitter's vs. receiver's beam width
 - Emitter pulse width
 - Instantaneous bandwidth
 - Receiver sensitivity, resolution, dwell time, scan time
 - SIGINT system throughput
 - Reaction time constraints
 - Emitter parameter validation
 - Channel conditions (e.g., number of emitters/Hz &QRM)

HPOI Designs

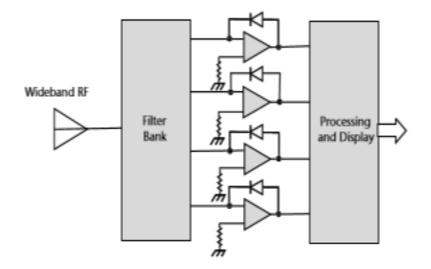
- Ideal HPOI Receiver
 - SDR on steroids
 - Cognitive radio: recognize & adapts to received information
 - Wanted a GR HPOI

- Limitations
 - A/D speed dynamic range
 - Synthesizers/oscillators
 - Band/channel conditions

7 August 2015

Defcon 23: Wireless Village

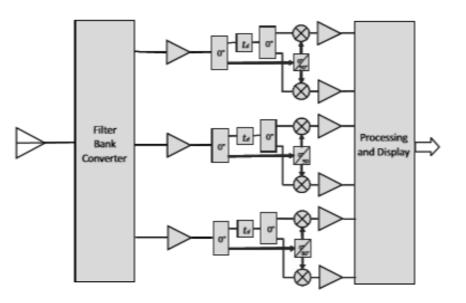
Common Electronic Warfare Receivers


- Crystal video—warning receiver
- Instantaneous frequency measurement (IFM)
- Phase detection—used for direction of arrival
- Ultra-wideband scanning superheterodyne

- Channelized receiver activity monitor
- Bragg cell—activity monitor
- Combinations of the above

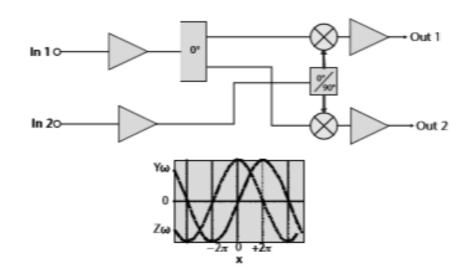
Crystal Video Receiver

- A form of a tuned radio frequency (TRF) receiver
 - Splits a wide input frequency range into several broad contiguous bands, which are
 - Filtered and logarithmically amplified before detection
- Simplest electronic counter measures (ECM) receiver
- Usually used as warning (police) radar receivers


- Low cost and small but
 - Low sensitivity due to a large noise bandwidth, and
 - Subject to blocking from strong in-band signals.

Instantaneous Frequency Measurement (IFM)

- A more complex form of the TRF receiver, using
 - Bandpass/band-reject frontend filters +
 - Delay lines and phase detectors
- Near instantaneous frequency measurement of single pulse signatures


- For jammer quick set-on or
- Acquisition receiver to set up a slower, narrowband, high-resolution receiver

Phase Detection in Interferometer Receivers

- Not strictly considered a type of receiver but
- An important discriminator type used in interferometer receivers
- Used for direction finding

 Typical phase detector arrangement used in an interferometer receiver

Swept Superheterodyne Receivers (SSR)

Wideband

7 August

- Fast sweeping/hopping wide IF bandwidth receiver
- FFT directly at the IF and
- >1 GHz, center frequency, bandpass A/D-DSP
- Complex auto-switched halfoctave front-end filters

Typical Performance

Narrowband

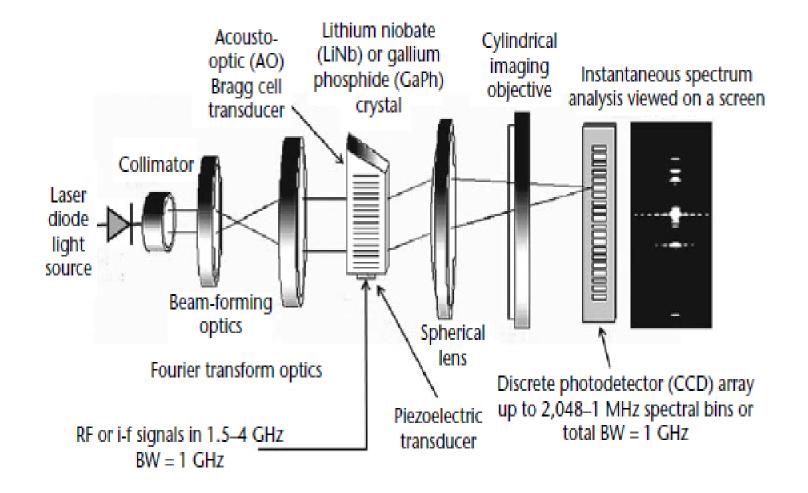
 Wideband SSR + narrowband second or third IF sweeping through the first very wide bandwidth IF for increased resolution

MDS	-110 dBm typical	MDS	-138 dBm typical
Linear dynamic range	>100 dB typical	Linear dynamic range	>130 dB
Ultimate resolution	Limited by A/D	Ultimate resolution	10/100 Hz typical
Instantaneous bandwidth	1 GHz typical	Instantaneous bandwidth	>0.5 GHz typical
	1889년 1989년 1989년 1987년 19 1987년 1987년 1987	Front end composite	7 half-octave filter bank
IF center frequency Front end composite	1 GHz typical 8 half-octave filter bank	Double conversion superheterodyne	First IF: 1.5 GHz typical, second IF: 0.5 GHz typical
Total bandwidth	2 to 18 GHz	Total bandwidth	2 to 20 GHz

Channelized Bulk Filter (Cued) Receiver

- A multiple superhet
 - Divides the frequency range into contiguous channels
 - Parallel receiver architecture with a wide input bandwidth and multiple narrowband outputs

Features

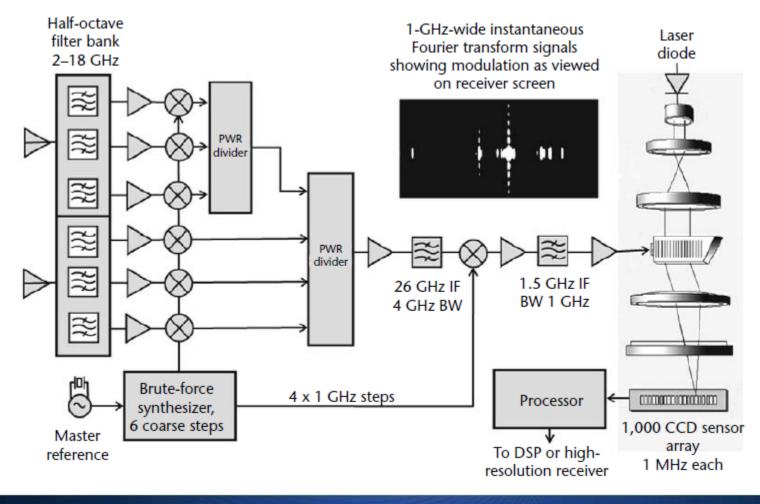

- Wider bandwidths monitored at each coarse frequency step
- 2-20-GHz band scanned in 36 steps instead of 1,800 steps for a 10-MHz IF bandwidth
- Reduces scanning time and greatly increases POI

Bragg Cell Receiver

- Originally from radio astronomy
 - Ultra-wide-band instantaneous receiver
 - Blends RF and photonic technologies (acousto-optic modulator)
 - Can be used to steer much higher resolution receivers, or
 - Replacement for state-of-the art A/D converter technology receivers
- Pros
 - No variable LO required for resolution over the bandwidth of interest
 - Allows simultaneous HPOI of many signals (e.g., crowded band)
- Cons
 - Limited linear spurious-free dynamic range (may not very effective against some broadband, very low spectral energy, signals especially under crowded band conditions)

Bragg cell receiver principle

Commercial Bragg Cells


- Single cell (256 frequency spots)
- Bragg cell assembly
 - 16 channels 180 MHz each
 - I GHz composite bandwidth
 - 20 spots/channel
 - 2 watts of RF drive/channel
 - Laser wavelength is 355 nm

Defcon 23: Wireless Village

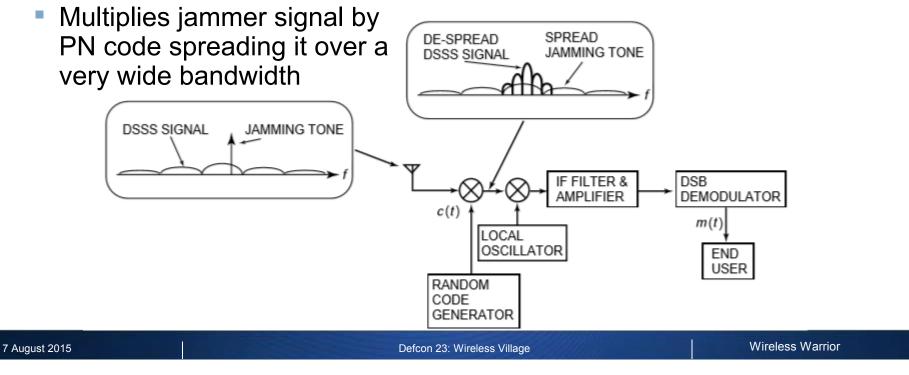
EW Bragg Cell Receiver

Defcon 23: Wireless Village

Active Threats

Jammers

- Detecting a jammer is challenging because there exist numerous intelligent jammer strategies
- Either blocks the source from sending packets or the receiver from receiving legitimate packets
- Performance indices/measures
 - JSR (Jammer-to-Signal Ratio)
 - PSR (Packet Send Ratio): creating congestion to cause sender's network interface packet buffer to drop packets
 - PDR (Packet Delivery Ratio)


Jammer Types

- Repeat-back (Multipath)
 - DSSS largely immune as autocorrelation of spreading code typically very small for time delays greater than one chip time
- Partial-band
- Broadband
 - Additive White Gaussian Noise (AWGN)

- Multitone
- Pulse
- Packet jammer
 - Sends initiation data packets in a loop to capture receiver's state machine

CW and Multitone Jammers

- DSSS has relative immunity
 - Despreading mixer collapses the DSSS signal back to a NB signal
- Majority will fall well outside the passband of the IF filters, significantly decreasing the JSR at the demodulator

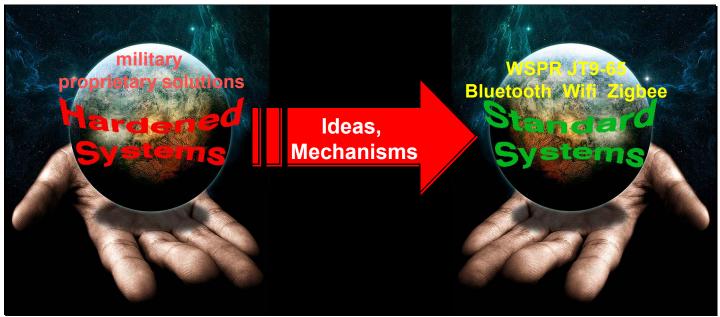
Fortune Favors the Prepared

- Intel agencies have huge resources & experience
- But monitoring all wireless communications is still a Sisyphean task
- Defender must counter all exploits, attacker must only find one and exploit: works for intel and adversaries

- Physics and HPOI receiver constraints are like Zero-Days that cannot be fixed
- Unless targeted, those using good covert communications and tradecraft, are in minimal danger

Good OPSEC

- ... means hiding in plain sight
- Invisible to neighbors and average citizens
- "Plausible deniability"
- Not this -->

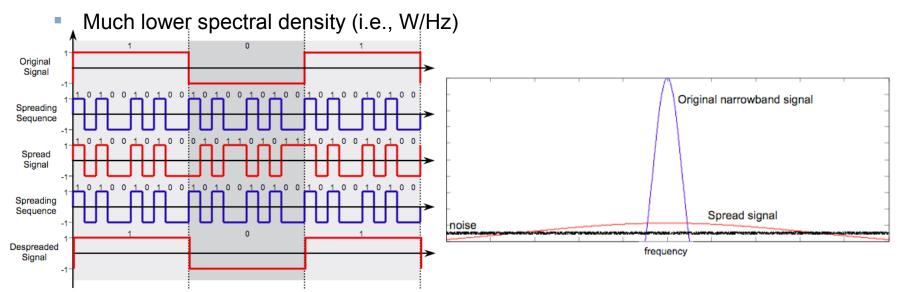

Where To Look For Solutions

- Hardened Systems:
 - Specialized
 - High security and privacy
 - High costs
 - Proprietary and hard to get

- Open Systems:
 - Standardized/Open source
 - Low security and privacy
 - Low costs
 - High interoperability

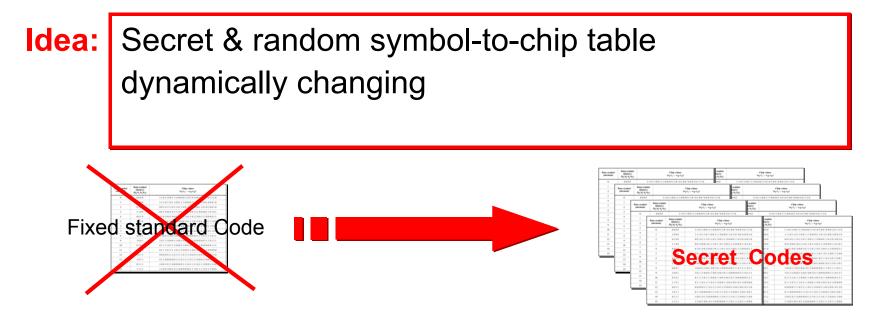
Where To Look For Solutions (con't)

- Goal: Harden open/standard wireless communication protocol(s) to increase the users "privacy"
- Conditions: Informational
 Based on an open source/standards Communication
 Using OS Software Defined Radio (SDR)
 Communication Relationships


Major LPD/LPI methods

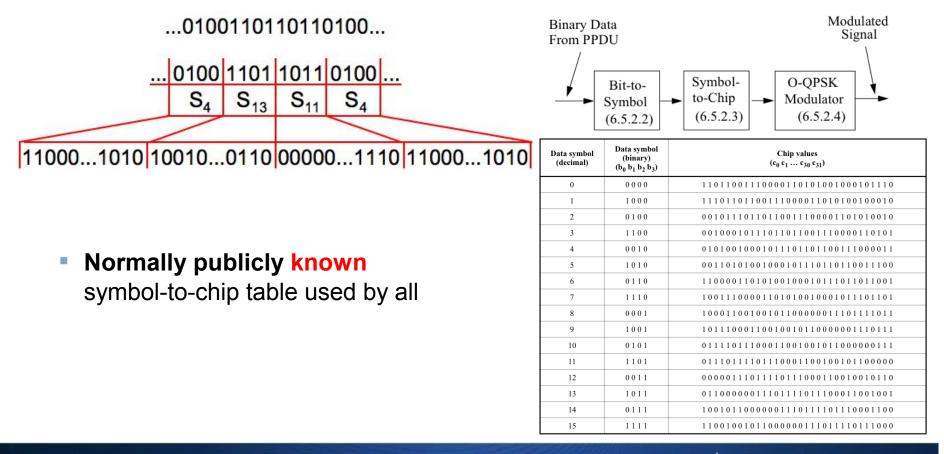
- Hide the Signal below the noise (Spread spectrum/UWB, chaotic and QRP)
- Hide the Signal within or below a cover signal or data (Steganography)
- Alice selectively blocks Bob's Signal to thwart Eve (Controlled jamming)
- Greatly reduce narrow-beam off-axis reception (Side-lobe suppression)
- Re-purpose widespread commercial service

Hiding the Signal below the Noise


Direct Sequence Spread Spectrum

- Information spread to a bandwidth much greater than required for transmission
- Spreading by modulating each information bit on a spreading sequence (chips)
 - Spreading sequence independent of data
 - Narrowband signal spread to a broadband signal

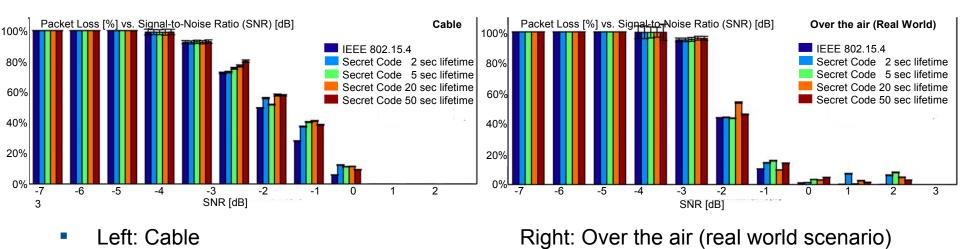
 Benefits: anti-jamming, anti-interference, possible low probability of detection/intercept, uncoordinated frequency reuse (e.g. CDMA)


Hiding the Signal Below the Noise Approach #1

- Obfuscate all transmitted data at the lowest possible layer (PHY)
- Maximize LPD/LPI properties of DSSS

M-ary Spread Codes

 Example: 16-ary Direct Sequence Spread Spectrum technique and O-QPSK modulation (16 spreading sequences, not only one!)

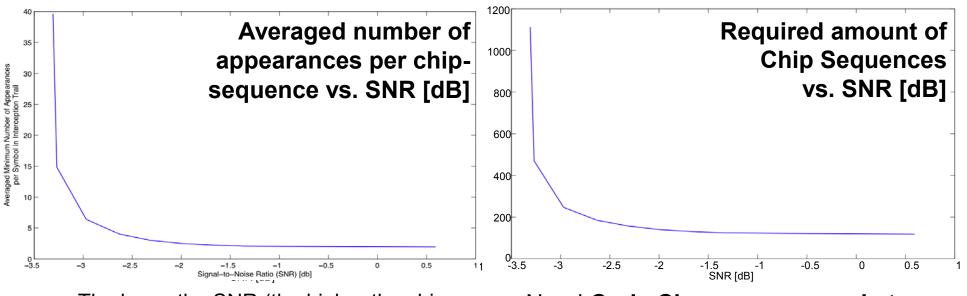


7 August 2015

Defcon 23: Wireless Village

Wireless Warrior

Evaluation: Packet Loss


- Random Codes compared to nearly orthogonal Code from IEEE 802.15.4 standard:
 - No minimum distance between chip-sequences of a Code
- PER increase below 13 %

9

Attacking the Secrecy of the Codes

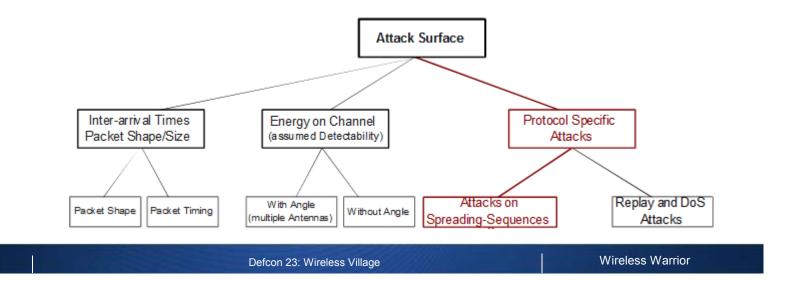
- Worst Case Attacker:
 - Protocol parameters assumed to be known (its FOSS)
 - Adapted m-ary DSSS attack [Wang, ICC, 2008]
- Attacker Strategy:
 - 1. Record chip stream from channel As synchronization assumed this results in a list of intercepted chip-sequences
 - 2. K-means Clustering to eliminate chip errors
 - 3. Collect centroids / compare with true codes
- → Measure performance of attacker
- Determine how often each individual chip sequence is needed
- Determine required amount of chip sequences

Attacking the Secrecy of the Codes

- The lower the SNR (the higher the chip error rate) the more often each individual chip sequence is required
- Asymptote:
 - No Chip Errors → each once
 - E[each Chip Seq. received once]
 [≅] 54
 (if uniform distributed)
- Need **Code Change every packet** to defend against Worst Case Attacker

 $b \le 27$ bytes

 Code Change every packet (average packet size of 22 bytes)


Evaluation: Secret Codes

- Initial protocol tests using GnuRadio SDR
 - Secret and dynamically changing but only 32-bit codes instead of the publicly known 16-bit codes in 802.15.4
- Packet Error Rate increase < 13%</p>
- Protocol overhead < 1%</p>
- Worst Case Attacker requires only 27 bytes to break the secrecy of the Codes

Possible Ways to Decrease PHY Attack Surface

- Combine DSSS + FH
- Cryptographic primitive changes
- Entropy maximization of packet timings and size and dynamic spreading factor
- Burst frame improvements

7 August 2015

Low Detectability

- Often cited attribute for SS and CDMA
 - Only valid if spread code and/or seed remain secret
 - Static PRNG seeds may be discovered by theft or tampering

Long-Wire & Dipole HF Antennas

Dipole

- Simple and cheap
- Hidden in attics
- Broadband & low efficiency
- Usually horizontally polarized
- Longwire

Magnetic Loop

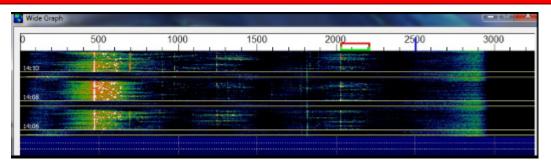
- Small (<1/10 wave circumference), expensive, efficient for narrow-band, Requires careful tuning
- High immunity to nearby noise
- Somewhat directional
- Excellent for NVIS (when vertical) and skip
- Needed: wideband capable, HF, "efficient", travel, transmit magloop for QRP
 - Status: research

 Transmit varieties narrowband only and over-designed for QRP

Hiding the Signal Below the Noise Approach #2

Idea: Random Code DSSS + enhanced WSPR beacons (LF-HF) to help coordinate p-t-p links between Alice and Bob

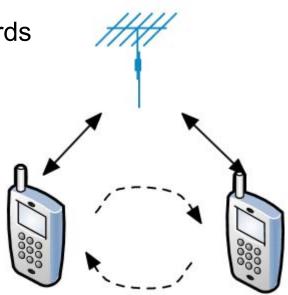
- Medium range using NVIS (MF-HF) or ground wave
- Long range via ionospheric skip
- Asynchronous CDMA for efficient band-sharing
- Specialized antennas for portable use (in development)
- Low-moderate cost
- Regulatory issues
- Probably invulnerable even to well-equipped adversaries
- Only low-speed data
- Status: planned


Steganography: Hiding below or within another Signal

- Physical forms used since ancient times
- Commercially used for watermarking content
- Simplest use LSB of noisy images or sounds
- Most breakable with COTS software
- Some forms (e.g., noiseless) may be near impossible to break from a purely technical standpoint

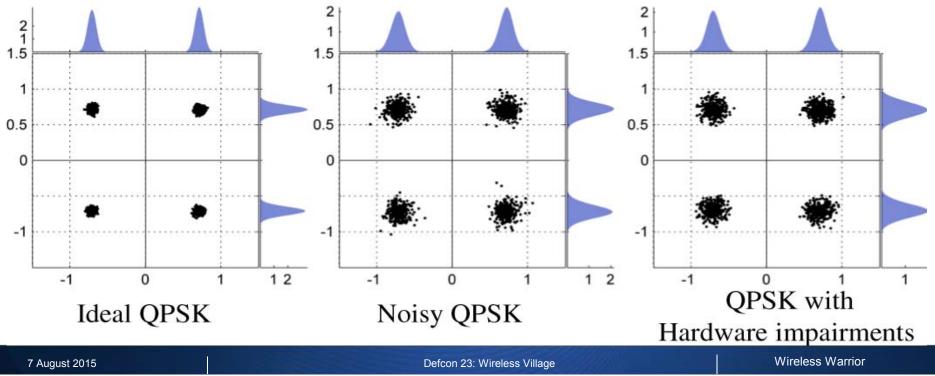
Steganographic Approach #1

Idea: Modify JT65 timing or injecting errors (e.g., in the FEC)



- Can, in theory, provide a long-distance capable, short message, platform
- Not tested OTA due to regulatory issues
- Probably vulnerable to well-equipped adversaries

Steganographic Approach #2


Idea: Add hidden data, as noise, to modulation constellation

- Alice and Bob send innocuous cover traffic through a router
- Mimics noisy signal or hardware impairment
- Changes fall within modulation quality standards
- Hardware/firmware assist to SDR
- Experiments conducted to verify covertness
- Hotspots and private networks

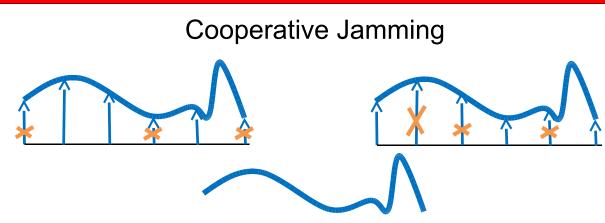
Stego Data Hidden in Noisy Constellations

- QPSK and QPSK with hardware impairments are indistinguishable, even at same SNR
- 10dB of modulation error at transmission is allowed in IEEE 802.11 standard

Key Generation

- Alice and Bob must have a way to generate shared secret key(s) in the presence of Eve
 - Should be computationally efficient
 - For DSSS it seeds the initial random spreading sequences
 - Before any communication detectable by Eve

Key Generation Method #1


Idea: Use station "addresses" known only to Alice and Bob + randomizing factors (e.g., Time-of-Day)

Works like RSA key dongle

- Alice's station device creates a series of random addresses
- Bob gets one, Charlie another, etc.
- Out-of-band key distribution issues
- Key generated from each address tells each party device what frequency & code to initially transmit and when to listen
- Beacons help coordinate station location and propagation

Key Generation Method #2

Idea: Exploit or create randomness at the wireless physical layer

- Practical key needs 2048 bits
- Exploiting existing channel randomness yields only 1-44 bps
- Selective jamming by receiver can yield >3kbps secret bits
- Receiver reconstructs signal by picking clean samples
- May work best when Alice and Bob are near (T.B.D.)

Satellites

- Commercial
 - Older C-band and newer Ku-band
 - Worldwide, 24/7, coverage
 - Easily obtained, innocuous, affordable, up- and down-link equipment
 - Almost all are "bent pipes"
 - FFT/IFFT used to clean-up up-link signals and relay on down-link
 - Signal blocking limited to narrow-band
- Military
 - FLTSAT and UFO
 - Brazilian trucker and narco exploits
- Interfering signal
 - Detection based on down-link tuned intercept receiver
 - Direction of Arrival DoA across adjacent satellites

Covert Satellite Approach #1

Idea: Random Code DSSS in C/Ku bands to enable point-to-point links between Alice and Bob

- 24/7 reliability
- Low-moderate station cost using VSAT modem + GR + HackRF/USRP
- Can use innocuous small dishes like your neighbour's
- Uncoordinated CDMA for efficient band-sharing
- Supports both voice and low-speed data
- Possibly invulnerable to well-equipped adversaries when (prior) DSSS covert tech is used

Covert Satellite Approach #2

Idea: Use military radar tech to narrow effective up-link beam width so only one "bird" can see it

- May prevent triangulation and reception by multiple satellites
- Might work with only small- (DTV-VSAT) moderate-size antenna
- Works with all transmitter modulation and protocols
- Inexpensive when manufactured in volume
- Similarity but simpler than Artimis pCell massive MIMO technology
- Can also be used for Line-of-Sight (LoS) and troposcatter/ducting
- Status: needs R&D

Anonymously re-purpose and existing service

Pager Networks

- Still widely used worldwide
- Simplex operation = anonymous receiver location
- Cheap and portable simple messaging
- Easily hacked
 - Assume any device ID
 - Group sharing via sub-IDs
- Encrypted messages permitted
- Anon message injection via service's email
- SDR support on Android mobiles via RTL/specialized HW

Thank you for listening...

... any questions?

7 August 2015

Defcon 23: Wireless Village

Wireless Warrior

Resources

- My email: wirelesswarrior@safe-mail.net
- Wireless for the Warrior http://www.wftw.nl/
- GnuRadio https://en.wikipedia.org/wiki/GNU_Radio
- HackRF http://greatscottgadgets.com/
- USRP http://www.ettus.com/
- FunCube dongle http://www.funcubedongle.com/
- Selected covert wireless tech papers: by request

More Resources

- WSJT http://physics.princeton.edu/pulsar/K1JT/wsjt.html
- QRSS http://www.w0ch.net/qrss/qrss.htm
- Future radio beacons http://www.g4jnt.com/BeaconPres-2.ppt
- Magnetic loop antennas http://www.dxzone.com/catalog/Manufacturers/Antennas/HF/ Magnetic_Loop/
- Sat-jacking

http://archive.wired.com/politics/security/news/2009/04/fleetcom

- FireChat
 - Bruce Schneier https://www.schneier.com/blog/archives/2014/10/firechat.htm
 - FC's creator http://www.wired.co.uk/news/archive/2014-06/25/firechat