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Ch.1: Basics of Shallow Water Fluid
Sec. 1.1: Basic Equations

1. Shallow Water Equations on a Sphere

We start with the shallow water fluid of a homogeneous density and focus on the effect of
rotation on the motion of the water. Rotation is, perhaps, the most important factor that
distinguishes geophysical fluid dynamics from classical fluid dynamics.

There are four basic equations involved in a homogeneous fluid system. The first is the
mass equation:

1d
S0 v, e, =0 (1.1.1)
p dt

where V,=id, +jd, +Kkd_, u;=(u,v,w) . The other three equations are the

momentum equations, which, in its 3-dimensional vector form can be written as:

d;3 +2U xu, =—lV3p—g+F
! p (1.12)
d
where— =9, +u; *V,
dt
z
'\
>y

On the earth, it is more convenient to cast the equations on the spherical coordinate with
¢,0,r being the longitude, latitude and radians, respectively. That is:
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1d 1 1 0
[__p+ ﬂ+ d(vcos )+ﬂ

=0
dt rcosf dp rcos@  J0 or
0
| d L s
= _(2Q +———)(vsinf - wcosh) = — 2L
| ar rcos6 prcosf dp 7 s
%d" . wy 1 dp (1.1.3)
| —+(2Q+ yusin@ + — = ———=—+ F,
| dt rcos6 r or 36
2
|d_w_(2Q+ u )MCOSB—V—=—la_p_g+E‘
| dt rcos6 r o dr

This is a complex set of equations that govern the fluid motion from ripples, turbulence to
planetary waves. For the atmosphere and ocean, many approximations can be made.
Don’t be afraid of making approximations! Indeed, proper approximations are the keys
for the understanding of the dynamics! You can never include everything in your
equations, no matter how fast is your computer (even if you are a good programmer).
Therefore, to truly understand a certain dynamic issue, you have to know what the most
important is for this phenomenon and make sure you absolutely keep this term.

Here, to study large scale flows, we will make 6 approximations. (i) First of all, for a
homogeneous fluid, the density is constant. So the mass equation degenerates to
p = const , which, according to (1.1.1), gives the so called incompressibility condition:

V,*u, =0 (1.1.4)
This is a very good approximation for the ocean, because the density of the water varies
by less than a few percent. This is not a good approximation for the atmosphere, because
the air density decreases significantly, even within the troposphere. Essentially, (1.1.4)
states that the mass conservation becomes volume conservation.

(i1) The second approximation is the thin layer approximation r = a . The thickness of the
atmosphere and ocean is roughly D o 10km , which is tiny compared with the radius of
the earth a = 6370km . Therefore, this is a very good approximation with an error of less
than 1 percent. For convenience, we often use the new vertical coordinate z = r —a that
starts from the surface of the earth.

ii1) The third approximation is important for large scale circulation. This is the shallow
water approximation 7 << 1, where D and L are the characteristic scales of the motion in
the vertical and horizontal respectively. Examples that satisfy the shallow water

approximation are cyclone and ocean eddies, as well as planetary flows. A cumulus cloud
has its scales of D ~ L ~1-10 km and therefore does not satisfy the shallow water

approximation.

The shallow water approximation results in an important simplification to the vertical
momentum equation, and leads to the so called hydrostatic approximation. Indeed, our
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scaling analysis below shows that all the terms in the w-equation is much smaller than the
dynamic pressure gradient term. First, we separate the pressure into the dynamic p” and
static p,=-pgz parts: p= p,+p’. The static part satisfies the hydrostatic equation

1 dp,
—— =8,
p oz
such that the vertical momentum equation reduces to
2 1 '
D00 r—" yucoso - o LP g (1.1.5)
dt rcos6 r p or

In a shallow water system, we can show that all the acceleration terms are unimportant.
Take the term ud,w for example:

uw DU’
ud .w L 12 D,
=~ ~(— 1
Tap l(ips e (L) <<
pd pD D

Here we have used the scaling relationship

S|=

< %, which can be derived from the

continuity equation w, = —(d u +d,v).

<
W)

L

We have also used the scaling relationship between the dynamic pressure and the
horizontal velocity as dp~U-. This relation is derived from the horizontal momentum
equation if one recognizes that the horizontal acceleration is driven by the dynamic
pressure (in the case of weak rotation), and therefore,

2
’ p ox L plL
Since all the terms in the w-equation (try other terms yourself!) are negligible relative to
the pressure gradient term, (1.1.5) at the first order can be reduced to:

1 dp'
L (1.1.6)
p oz

The total pressure therefore satisfies the hydrostatic approximation
14
~P_ (1.1.7)
p 0z

or
P(2) = Dyupuce +P8M = 2) (1.1.7a)
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where 1 is the free surface elevation and we have neglected the pressure above the free
surface. The last equation states that the pressure at a level equals the weight of the fluid
above it!

Eqn.(1.1.7a) in turn simplifies the horizontal pressure gradient force as:
lLdp 1ap" 1 pgon
pox pox p Oox

Eqn. (1.1.6) (which is the result of the two approximations of shallow water and

homogeneous fluid) states that the dynamic pressure gradient force is independent of the

depth of the fluid. This implies the absence of vertical shear of horizontal velocities as
du=d,v=0.Indeed, since 1o =gdn and n=n(x,yt), we havei(la—p) =0.
' ) p & oz p ox

Thus the pressure-driven flow should not have vertical shear either. The absence of

vertical shear further simplifies the horizontal momentum equations and the continuity

equation as follows. For the momentum equations, the vertical advection terms are
negligible now, such that the total derivative is now:

= go’)xn °

d u v D
— =0 + Jd _+—d,, = — 1.1.8
d ' acos® ¢ a ' ( Dt) ( )
For the mass equation,
1
d,u+ de(vcosO)+d w=0
acost acost

n
vertical integration ( f dz) leads to:

1 1
(M-2z,)l du+ dy(veosO)]+w(n)-w(zy) =0
acos6 acosf
/\T/\ 77
] TR - Z
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The kinematic boundary condition on the surface is:

wi =21 = (3, +u sV
where u=(u,v). The kinematic boundary condition on the bottom, for a fixed bottom
topography dizz=0, is

w(hy) =d;—:= (d,+u*V)z, =u*Vz,,

Therefore, the continuity equation becomes:

h v en =0 or I ivetm)=0 (1.1.9)
dt ot

where h =mn -z, is the total depth of the water column.

With all the approximations above, we have a simpler set of equations: the shallow water
equations :

Ju+(m*Vu+ fkxu=-gVn+F
d,h+Ve(hu)=0. (1.1.10)
In the spherical coordinate, the shallow water equations can be written as :

D u . 8

—u-02Q + vsinf = — on+F

Dt ( acosH) acosg 1T

D

=+ 2Q+ ——using = Lo+ F, (1.1.11)
Dt acosf a

£h+ [0 u+d,(vcosO)]=0

Dt acosO ¢ o

For most purposes, the curvature term is much smaller than the Coriolis term, and

acosf
therefore can also be neglected (except in the polar region and global scale flows, see
next).

2. Local Cartesian Coordinate (3-plane)
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60

>

Unless one studies global scale (in 6 ) circulation, most of the time, we can simplify the
equations further by using the local Cartesians coordinate:

x=acost,(@p-q@,), y=al-0,)
This gives:

dx = acosb,dp

dy = adl
The shallow water equations (1.1.11) can be written as:

0 : 4
0+ 2 ud u+v9 u - (2Q +— ysing = -g~—2g 1 +F,
cosO acosf cosf
6 .
10,9+ "22009 vevd v+ (2Q+——Jusin = -gd 0 + F (1.1.12)
cost acosf g ’
0 0
0+ 2252005 havd hr 29 uvd v-"1g0]=0
cosO cosO a

Furthermore, we can use the beta-plane approximation for motions of meridional scales

L, 0-6
less than the radius of the earth, — =~ a6 - 6,)
a a

can have the first order approximations as:
cos @ = cos B, — (6 —6,)sin6, + O[(6 - 6,)’]

<< 1. Indeed, now with 0 -0, << 1, we

sin@ = sin 6, + (0 — 6,)cosB, + O[(6 - 6,)°]

tg0 =1g0, +0[0 - 0,]
The curvature terms become negligible even compared with the advection term (since

<< 2Q is easily satisfied). In the u-equation, we have
acost

. . JU .
(except for the polar region with 6, — > 1. In the mass equation, we have
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th@
a o« —= <<1.
Jd.v a

y

Define
2Q
fo =2Qsin6,, B = —cos0,
a
we can approximate the Coriolis parameter as
f=r+PBy.
Therefore, equations (1.1.11) can be approximated as
du+ud u+vd u- fv=-gd n+F,
dv+ud v+vd v+ fu=-gd n+F, (1.1.13)
dh+ud h+vd h+h(du+d v)=0.

where h=n-zp is the layer thickness. This is the typical form of shallow water equations
to be used.

3. 1.5-layer model

Much of the shallow water equation results can be applied to a very (seemingly) different
fluid. (example, stratosphere, oceanic thermocline etc.)

pp U
\\/‘ N
U, 0

Consider a general 2-layer fluid with the two layers of fluid of densities p, and p, . In
general, the upper layer fluid still satisfies the shallow water equations (1.1.13), except
now the bottom depth of the upper layer fluid zg also varies with time z,; = z,(x,y,#) and
is an unknown variable to be determined. For a general 2-layer fluid, therefore, the
problem is not closed, because we have three equations but four unknowns u,v,n,z,.
Now, consider a special type of 2-layer fluid, in which the upper layer flow is much faster
than the lower layer flow. In this case, the bottom layer can be treated approximated as
motionless, in which the horizontal pressure gradient vanishes. It is this vanishing
pressure gradient in the lower layer provides the addition relation needed to close the
upper layer problem. This is the so called 1.5-layer fluid system. In the lower layer, the
total pressure at a depth z can be derived from the hydrostatic balance as
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n n Zp
P, = f pgdz = f pgdz + f pgdz = g —z,)p, + g(z, - 2)p,

The condition of zero pressure gradient in layer 2 is
0=Vp, =gp,Vn-(p, - p,)V(-z;)
Thus, the surface elevation can be represented as

8P, Vn =(p, - p)V(-2;) (1.1.14)

The pressure gradient in the surface layer can therefore be represented in terms of the
layer interface as
Py — P,

1

gVn =( 18V(-25) =8'V(-z,)

where

g =l
1
(g’ << g in the ocean) is called the reduced gravity. It is seen that the vanishing of the
lower layer pressure gradient is now possible because the pressure gradient at the upper
layer is completely compensated by that associated with the layer interface. This leads to

the opposite slopes of the surface elevation and the layer interface.
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Assuming the average surface is at z=0, we have the thickness of the upper layer as

h=n-z,=-z,
where we have used g’ << g, so that [Vn| << VA from (1.1.14). Thus, the equations for
the upper layer, according to (1.1.13), can be written as:

du+ud u+vd u-fv=-g'd h+F,
dv+ud v+vd v+ fu=-g'd h+F,, (1.1.15)
dh+ud h+vd h+h(du+d v)=0.

This set of equations for the 1.5-layer model therefore looks exactly the same as the one-
layer system equations for layer 1 in (1.1.13), except to replace g and 1 by g’ and 4.

The 1.5-layer approximate is usually very good for the oceanic thermocline, because the
upper ocean circulation is much faster than the abyssal flow. Indeed, the slope of the
oceanic thermocline is usually opposite to that of the surface elevation (Fig.1.1) with a
much smaller magnitude of the former than the latter.
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Descriptive Physical Oceanography
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F1G. 7.33.  Mean distributions of surface dynamic height (AD dyn. cms.) refative to

1000 db (dyn. cm.) and vertical meridional sections of zonal geostrophic flow (U cmy/s), Fig.

temperature (t°C) and salinity (S) between Hawaii and Tahiti, for 12 months from April phosg
1979. (Wyrtki and Kilonsky, 1984.)

Fig.1.1
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Section 1.2: Conservation Laws

We first consider some fundamental conservation laws that should be satisfied by a
general fluid system. This is also a check for the consistency of the approximations that
we made to our shallow water equations.

1. Energy Conservation.

To derive the energy equation, we first put the total derivative of any variable A into its
mass conservation form.

hDA = hdA+hud A+hvd,A+A[ Gh+d(uh)+d,(hv)]
= 3(hA)+dx(hud)+d,(hvA) (1.2.1)

where we have used the mass equation d:4+dx(uh)+d,(vh)=0. The kinetic energy equation
can be derived by first multiplying u and v onto the u- and v- equations, respectively and
then sum them up as

D[(’+v)/2] = -g[udn+ vin]+uF,+vF,

work by pressure grad. Work by source/sink

Multiplied by 4, and with (1), we have the mass conservation form of the kinetic energy
of the water column per unit area K= h(u’+v°)/2 as:

0K+ d.(uK)+d,(vK)= -g[hudn+ hvon]+huF+hvF, (1.2.2)

The potential energy in each column of water per unit area is P=g( n+zg)h/2 =g(n’*-z5>)/2
(prove it, notice zg is independent of time now). The potential energy equation can be
derived by multiplying the mass equation by gn) as:

iP+gn[dv(uh)+d,(vh)]=0 (1.2.3)

Therefore, the equation for total energy E=K+P is derived by adding (1.2.2) and (1.2.3)
as:

IE+0(uK)+d,(vK)= -9, (hugn)+ 0, (hvgn)+huF+hvF,

Integrating within a domain A with a solid or periodic boundary, we have the
conservation of the total energy (in the absence of external source/sink) as:

O JAiEdA=0, [{(K+P)dA = [4 hu*FdA (1.2.4)
where we have used the divergence theorem: /f; Ve(uS)dA=/ ,4 Su*ndl with S being any
variable, dA4 the boundary of the domain 4, n the unit vector outwards, and d/ the line
element around the boundary.
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dl

0A

2. Available Potential Energy (APE)

How much of the potential energy can be changed to the kinetic energy ? Not all of them
for sure. There is a basic part of the potential energy that can’t be converted to the kinetic
energy. This is the minimum potential energy. (see figure, the leveled surface state is the
minimum potential energy state). (Indeed, the absolute value of potential energy has no
meaning, because one can choose the reference height arbitrarily.)

Therefore, we define the part of P that can be converted to K as the APE, or
APE=P-P

In the shallow water system, define 1,,=/ndA/A, we have

dn,/dt=0 (1.2.5)
(total mass conservation). Thus, the APE is APE=g(n-n,)°/2. Since
dAPE/dt=0,[1g[ 1 -200m+ N "JAA=0,L3g1" - 280w J:fan =3, fagny’ =dP/dt, (see (1.2.5)),
the total energy conservation equation (1.2.4) can be written as:

3, Ji(K+APE)dA = [; hu*FdA
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3. Bernoulli Equation

In the absence of source and sink, the kinetic energy equation is:
D[(w’+v*)/2] = -g[udn+ véyn].

The mass equation d.+d.(uH)+d,(Hv)=0 can be rewritten as
D, (gn)+gh(du+d,v) - g[udzs+ va,zg]=0,

we have

D[’ +V)/2+gn] = -g[udn+ voyn]+ gludizgt voyzg] -gh(du+d,v)
= -g[udx (M-zp)+ vdy(M-zp)]-gh(dxu+dyv)= -g[ dx (uh)+ dy(vh)]=gdin

Thus, for steady flow, d;, n=0, and therefore we have the Bernoulli equation in the
shallow water as:

DB= D(ketpe)=D,[ (1’ +v)/2+gn]=0.

This states that the Bernoulli function B, which is the sum of the kinetic energy of a
water parcel k,=(1’+v°)/2 and the potential energy p.=gn, is conserved. following the
motion of a steady circulation. (Note: this is the conservation of a particle, while total
energy conservation is in a fixed domain).

4. Angular Momentum Conservation:

In the spherical coordinate, we can also show that the angular momentum of a particle
M=Qa’cos@ +u a cos6 is conserved. Multiply the u-eq. in (1.1.3) by cos6, we can show
that:

DM= -gdn+Fa cosO

Thus, if there is no source/sink in zonal momentum, the zonally integrated angular
momentum is conserved.

Dy(/M de)=0.

Here, we have used the condition that the pressure is continuous around the globle and
therefore the integrated derivative along the latitudinal circle is zero. One should notice
that if one neglects the curvature term u/cos0 in the term of (2€2 +u/ cos6)vsinO in the u-
equation, the angular momentum is no longer conserved. For example, in the beta-plane
model, /M de is not conserved.
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Section 1.3: Circulation, Vorticity and Kelvin’s Theorem.
(ref. Pedloksy, section 2.2, and Holton section 4.1).
1. Vorticity and Circulation:
How to measure the rotation rate of a fluid parcel? Unlike a solid body, different parts of
the fluid usually does not rotate at the same rate, because of the velocity shears. One way
is to calculate the integrated circulation of the velocity around the boundary of the surface
domain A4 of a fluid parcel:

I'=/ usdr =/ Vxu*ndA=[; w*n dA, (1.3.1)
where u is the 3-D velocity field in a non-rotating frame, and

w=Vxu (1.3.2)

is the vorticity of this velocity field.

In comparison, for a solid body, we have u = Qxr valid at any point. Notice the vector
multiplication

i

L

AxB =

k
Ax y Az
Bx Bz

y

oo

one can prove that vorticity is twice the rotation rate
w=Vxu=2Q (1.3.3)

For a fluid parcel, each point rotates at different rate. Therefore, vorticity is
approximately the averaged circulation (or averaged rotation). This can also be seen
clearly if one allows the domain of circulation to shrink to a point. Then, from (1.3.1), the
area averaged circulation becomes

wen =/, u *dr/4 for A—=0

Thus, vorticity can be thought as the area-averaged circulation.
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2. Kelvin Theorem.

Kelvin theorem predicts the change of the circulation and is a fundamental theory in fluid
dynamics. Let’s study how the circulation on a material surface varies with time. (denote
d; =d /dt )

dI' = [, d;,uedr+/, ue* d, (dr).
Notice that [, u * d, (dr)=/,4 u® du =/, du’/2 =0, where we have used
d; (dr)=d (d, r)=du, we have:
dI'= [ d;uedr=-/[, Vp/pedr + [, F dr (1.3.4)

pressure grad
where we have used the momentum equation

d,ll == Vp/p + F.
For a homogeneous fluid, the averaged pressure gradient vanishes,

S Vo/pedr=1/p [4 Vp edr=1/p [4dp = 0.
If, furthermore, there is no source and sink (F=0), circulation is conserved following the
water parcel:

ar =0 or I'= const (1.3.5)
This is the Kelvin’s theorem.

3. Kelvin’s theorem in a rotating frame

In a rotating frame, the absolute velocity in the non-rotating frame is u,= u + Qxr
(prove it !), where u is the relative velocity in the rotating frame now. The absolute
circulation is then (see Pedlosky, also Question Q1.3):

I,=/f4u,*dr =/ uedr+ [, (Qxr)edr =TI+2Q4, . (1.3.6)
where A, is the area projected by the surface 4 onto a plane normal to the rotation vector
Q.. Here, we have used (1.3.3) and the Stokes’ theorem such that:

Joa (Rxr )edr=[;Vx(Qxr)*ndA=//;2Q*n dA=2QA4,
Thus, the absolute circulation consists of a relative circulation and a planetary circulation.
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A 9
S
n
A
A,
The Kelvin’s theorem becomes:
dI,=d (I't2Q4,) =0 (1.3.7)
Or
I'+2QA4,= const. (1.3.8)

Eqn. (1.3.7) can also be proven directly in the rotating frame, if the Coriolis force is
included in the momentum equation.

4. Examples:

The Kelvin theorem is very powerful. It states that if there is a circulation, it will be there
by itself forever (in the absence of dissipation). Below are some examples of application.

Example 1: Contraction spin-up: When the fluid converges towards the sink, the
circulation will accelerate because of the decrease of the area 4,,.

>

Example 2: Tilting: When the surface of circulation tilts away from the plane of rotation,
circulation increases because of the decrease of 4,,.
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Example 3: Rossby wave

On a sphere, we have the area of a latitudinal belt of air as 4,=A4sin6 . Now,
Kelvin’s theorem gives the so called Rossby wave (see Section 2.2).

Q A

v

Since d, (I'+2L24,) = 0, we have d,I'=-2Q2d, A, = - 2Q2 Acos 0d, 0= - AB v, where
p= 282 cos 0/a and v=a d, 0. Since relative vorticity is the averaged circulation
C=I7/4, we have:

d.c+ pv=0.
This will be seen later as the equation for the Rossby wave.
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Sec. 1.4: Potential Vorticity Conservation

1. Vorticity Equation

Vorticity equation governs the local change of fluid rotation from an Eularea view and is
therefore practical. From the momentum equations

du+ud u+vd u- fv=-gd n+F,
d,v+ud v+vd v+ fu=-gd n+F,

we apply the vorticity operation J (d,v eq)-d ,(d,u eq) to eliminate the pressure
gradient term. This gives the equation for the relative vorticity T=4d,v - d u. First, notice
that

2 2 2 2
ud u+vd u=-v(d,v-a u)+ 0x(u? +v7) =-v{ + &x(u il )
2 2 2 2
u- v u +v
ud v+vd,v=+u(d,v-9d,u)+ 07y(7+?) =uf +d ( 5 )
we can rewrite the u, v equations as
du-(f+8)yv=-9d B+F,
dv+(f+8u=-d B+F,
where
u +v’
B= > +8n is the Bernoulli function.
Now, d.(v eq)-d,(u eq) = eliminate B, we have the vorticity equation
(@, +ud, +vd )f+8&)=~(f+E)d,u+3d ,v)+curl F (1.4.1)
where curl F = d.F - dF.
Or
D e eV euscurlF (1.4.2)
—g, =- ® u+ cur 4.
Dt a a

where C, = C + f is the absolute vorticity. Again, we see that a divergent flow, in the

presence of background vorticity field, can generate vorticity. This is similar to the
Kelvin’s theorem.

2. Potential Vorticity Equation
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From the continuity equation, we have
Dh
h

_V.u

Notice the vorticity equation (1.4.1) or (1.4.2), we have

Py
Dt-“ D N curlF
g, h &,

curlF

D D
E(lné’g) = E(lnh)+ 3

curlF

7,

D 1n(c_a
Dt h

Or, finally

D _£(§+f)_curlF
ol "Dt h

where
_&+f
=

19

(1.4.3)

is the potential vorticity. Thus, in the absence of source and sink terms, we have

D
—4=0
Di !

The PV is conserved along a particle trajectory. This is a very strong constrain on fluid

motion. (Rossby, 2-D, 1940; later, Ertel, 3-D, 1942).

3. P.V. Conservation and Kelvin's Theorem

The conservation of PV can be derived directly from the Kelvin’s theorem.

D
—(T+2QA ) =0
Dt

Now A, = Asinf, andI'=CA.
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A
—_
A,sin0
0 >
For a small area element 4, we have
d d
—(EA+2QsinfA) = —[(E + f)A]=0.
dt dt
The total mass conservation can be written as
hA = const .
Therefore, we have the PV conservation
dETy g
dt  h
H
—» A |<—

Thus, PV conservation, in principle, is the same as the Kelvin’s theorem. They represent
two different views of the fluid rotation: the PV provides a microscopic view, while the
circulation (and Kelvin theorem) the macroscopic view. This law on PV is of
fundamental importance to GFD.

4. Angular momentum conservation and PV conservation:

The PV conservation can also be understood intuitively from the angular momentum
conservation
wr’=const.
For a water column of a fixed volume (or mass),
errZH =M= mass = const.
Thus,

2 t
— = cons
H

This recovers PV conservation. Thus, PV conservation is simply angular momentum
conservation in the case of a solid body.

5. Applications
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(1) Stretching—Contraction:
Stretching of a water column generates positive vorticity, while compressing of a water
column generates negative vorticity, according to PV conservation.

. +&>0 T £<0
H T y
stretching H compressing
l
|
| i
| 0 -
A — C > * - C < 0
convergence
divergence

On, say, a f-plane, f = f, = const , we therefore have
H? = c1h

H| = T}

Application: intensification of the center of a storm, figure skating.

(i1) Abyssal circulation (Stommal-Arons model).

The thermohaline circulation at the abyss is forced by sinking water at polar region. For a
deep water column, this means that the water column will be stretched H 1 because of the
accumulation of waters. Thus, f 1 (£ << f), or and the water moves northward. This is
rather surprising because the interior flow goes towards the source water, opposite to the
non-rotating case.
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source water
source water

f=0 f=0,8=0

source water

-y

— N

— N

However, the source water at the pole has to get to the lower latitude to satisfy the mass
conservation. The equatorward transport is carried in a narrow western boundary current.
This flow pattern is confirmed in lab rotating tank experiment (Fig.1.2).
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3 7- Photographs at 20, 8o, and 220 minutes after the

urce water (Sy=50 cc./min.) in flowing from a slot in the castern wall near the apex to the sink (S;=35/6 S;)

mtroducdon of dye, showing the path followed by the

in the same wall near the rim (corresponding to Fig. z2).

Fig. $ illustrates the circulation with the
wrce at the apex of the sector and with no
wernal sink, i.e., with a uniform rise of the
ater level in the tank (a uniformly distributed
k). (Compare with Fig. 3 and Case 1. of the
athematical analysis.) In accord with the
ieory, the interior of the basin filled from the
m and contnuity wis maintained by an m-
s stern current S, from the source, which
‘as .- zmented by a recirculation (theoretically
Estrength S, for /=1) from the interior water.
vidence for this recirculation is the clearstreak -
« Figs. 8b, ¢ which penetrates toward the rim
ito the dyed fluid near the western wall. By
7aluating the volume of fluid-containing dye,
e transport of the total western boundary

ic. B. Phorographs at 20, 60, and 80 minutes with

current has been determined for comparison
with the source strength. The data of Table I
show that: a) at 20 mmutes the dyed fluid was
composed almost entirely of source water, b) at
60 minutes the dyed fluid occupied twice the
total volume of the input, which implies mix-
ing with an equal volume of clear water (pre-
Sumabl}' t]lat {IOHI thf: reCirCUlited COmPOnent
of the boundary current), and ¢) at 12§ minutes
the dyed volume was less than twice that of
the source input, a fact which is consistent
with the decrease in the factor ! as the mean

depth of the fluid () gradually increased. These
results are in rough agreement with the quanti-
tative predictions of the theory. :

U IS '

So=120 cc./min. The source was at the apex and there

was no external sink (corresponding to Fig. 3).

ellus X (1958), 11

23
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Sec.1.5 Shallow Water Waves on a f-Plane

Consider small amplitude motions on an f-plane with a flat bottom zz=0 and in turn a
constant depth H. The basic state is motionless U =V =0, H = const. The perturbed
variables are therefore:
n=H+n', u=u, v=v, n'<<H

Linearizing the shallow water equations (1.1.13), we have:

du' - fv' =-gdn

IV + fou' =-gd n'

Im'+H@u +d v)=0

The vorticity and divergence equations can be derived from d (v eq) -d,(u eq) and
d(u eq)+d,(v eq) as
3, (' =du)+ fy(du'+dy')=0,
and
d,(3u' + ) = f,(dy - du) = -gV'ny
respectively. Note that vorticity can generate divergence, and vise versa.

Using the divergence and vorticity equations d,(div  eq) + f(vort eq), we have

0, + £,7)0.u +dv) =-gV’in'
tt 0 X y t

Substitute in the continuity equation to eliminate divergence, we have finally,

I,00, + £,")=c,'’V’In'=0

where ¢, = 4/gH is the gravity wave speed.

i(kx+ ly—
e by “)},wehave

Assuming free waves of the form 1 « Re{noe

olff —0’+cK*In, =0
where the total wave number is K* = k” +[*. For nontrivial solution 17, = 0, so we have
the dispersion relationship

olfi —0* +c;K*1=0 (1.5.1)
There are three roots:

w, =0

W= 4K

They represent two very different types of waves.

(1.5.2a,b)
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Dispersion diagram
for a given /. 4

w=-Ck w=Ck

v

1) The geostrophic mode.

The first group is the low frequency mode: w, = 0. The eigenfunction for this mode can
be derived from (1.5.1) by settingd, = 0 as

[—fV’ = -gd.n
1 fu =-gdn’
[o”xu' +d V' =0

This mode is in geostrophic balance and is therefore a low frequency geostrophic mode.
If the Coriolis parameter varies with latitude (the so called beta-effect df /dy = =0),

or a varying bottom topography z,, = 0, this mode will be modified and will be called

the Rossby wave. (see later).

2). The Inertial-Gravity wave

The second group are w, ;. For these waves, o’ > f*. So these are high frequency
modes (faster than about the rotation period). These are the gravity waves modified by
the rotation. They are called the Inertial-Gravity waves (also Poincare wave in
oceanography).

: 1 :
For short waves with K> >> (ﬁ)2 = (or L>>Lp), we have approximately

€y D
w’ =c; K’ . The inertial gravity wave reduces to the shallow water gravity wave and

does not feel much of the rotation. On the other limit, for very long inertial-gravity
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waves, K° << (ﬁ)2 -,

1 . D L
-z we have approximately w” = f~. This is simply the inertial
€y D

oscillation.

Here we see an important scale

L, =c—°=‘/g_H, (1.5.3)
fo S
the so called Rossby deformation radius. This scale separates the motions that are
affected by the rotation. Large scale motions with L >> L feel rotation, while small

scale waves with L << L, do not feel rotation.

Typical values for the deformation radius can be calculated as follows. For shallow water
system (they resemble the so called barotropic mode), we have g=10m s, fo = 107*s™
So,

H

atmosphere

= 10km — L, =3000km

H,.=4m — L, =2000km

ocean

For the 1.5 layer system (they resemble the so called 1* baroclinic mode), we have the so
called internal deformation radius

I _ ¢ Ve'H
D

-0 1.5.4
fo S (29

_Aog 8

gc;tmosphere 0 10 ’ H IOkm, - LD ~ 1000 km

Apg g
' -2 -1
gncean = = = 10 m-s -, chermncline

- ~lkm, — L, ~50km
1Y ocean

Thus, rotation is important for baroclinic oceanic processes even at very small scales (L
~10 km), while it is important only for those atmospheric processes of L= 1000 km.
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Sec.1.6: Geostrophic Adjustment

One general question is why the observed large scale atmosphere and oceanic flows are
always close to geostrophic balance? From the last section, we have seen that, on an f-
plane, there is a low frequency free mode that is in geostrophic balance. If there is an
initial imbalance of geostrophy (or ageostrophic disturbance) forced by external forcing
or some other processes, how can the system always recovers back to the observed
geostrophic balance? This is the geostrophic adjustment problem that was first studied by
Rossby on the Gulf Stream problem in the late 1930s.

1. Equilibrium State

Let’s consider the simplest case, small amplitude flow on an f-plane, with a constant
depth:

du—fv=-gdn
dv+ fu=-gdn
In+H@u+dyv)=0
If the system eventually reaches steady state, we have a flat surface equilibrium for
f=0:
VTIoox =0
Moo, =0 (1.6.1)
Uoo, + Voo, =0
and the geostroﬁhic balance for f = 0,
[~ fro = —8Noo,
I foo =—gNco, (1.6.2)

axuoo +&yVoo =0

In the latter case of f = 0, the first two equations satisfy the last equation automatidcally.

Therefore, the final equilibrium is degenerated (geostrophic degeneracy) in the sense that
there are 3 unknowns but only 2 equations. In addition, it is possible now to have
N, = 0,7, =0, so the final state has a finite available potential energy (APE). But how

much? Some information is missing! This will be seen is the potential vorticity (PV).

2. =0 adjustment
First, we study the cases without rotation. We will study the simpler case with 4, = 0.

Case 1: An “jump” initial condition: n,=nysign(x), w; =v; =0.
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% X
o t=0
N
L -
<« (it —> u=(g/H)" "
No=0
[c?,u = -8n,
{dv=0
[&,n =-Hou

Since 1, = 0 = n,, the initial state is not in equilibrium. The final state can be obtained
asn, =const=0,v, =0, wu,_ =const,where the final velocity will be derived from

the energy conservation below.

The KE and APE equations can be derived as:
2 2
&,H% = —gHun_, and g&r% =-gHnu,.

The total energy equation is therefore
Hu’ grf
+=>=—)=-d_(gHu
> 5 = ~d.(gHum)
Before wave front, u=0, n=0, after wave front, u=0, n=0. Thus, the energy flux un =0
anywhere any time. Within each section, the total energy is conserved locally

Xy

d,(KE + APE) = d,(

d,f(KE+ APE)x = -gHun|[ =0

Thus at final equilibrium which has no APE (5, =0 ), all the initial APE is converted to

KE. This gives the final velocity as u, =1,+4/g/H . (One should notice that this local

total energy conservation is usually not true, as will be seen in the next case. It occurs
here because of the initial condition of an anti-symmetric elevation of infinite length.)

Case 2: An initial condition with a finite “bump”.
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One can speculate that the finite initial disturbance will eventually radiates away through
gravity waves, leaving neither KE nor APE.

X
No
t=0
t=t;
t=t,
u,.=0, 1,,=0 A
i wave wave
wake front

We can estimate the adjustment time as follows. From the equation d,n —c’n_, =0,

where ¢ = ,/gH is the gravity wave speed, the final equilibrium is reached
2
. . . c .
whend, << c’d . . Thus, the adjustment time T satisfies Tz << A and in turn

L L . .
T >>—=T,, where Ty is time for gravity wave to arrive.
c

At a fixed position of, say, x > 0, the velocity experiences 5 stages and reaches the
equilibrium after the passing of four wave fronts (fronts and wakes).

3. f=0 adjustment

With d,=0, the final equilibrium is
- fvoc = _ganocx

uoo
u, =0



AOS611Chapterl,1/3/05,Z.Liu 30

This state is undetermined. Rossby (1940) found the solution from the piece of missing
information — the PV conservatoin.

The linearized vorticity equation can be derived fromd (v eq) -d, (u eq)as
9,8 =~f(du+dyv).

Substitute in the continuity equation, we have the linearized version of PV conservation.

N
dE-Ff—)=0
. fH)
Thus
N Ne . .. n,(x)
dv, —f—==C, - f—==initial PV =0- f——=
Voo fH g o f -
Since
8
vOO:_noox
f
we have
on n._ n®

H . . . o
where L) = 8}_2 is the deformation radius. The general solution is therefore:

X X

Ly Ly
N = -n,+A,e” +B.e ™, for x>0
oo_ X X .

—n0+A_eZ+B_e_Z, for x<0

The coefficients will be determined by boundary conditions as follows.
* Radiation condition means that perturbation energy should propagate away from the
source region (x=0 here), or the response has to be finite at infinity,

N, <% at x—> =0 Thisrequires4, = B_=0.The solution is therefore

X

. = —nO+B+e_T”, for x>0

-1, +A_eg, for x<0

* The continuity condition requires the continuity of 1 and v across x = O (therefore n,
and v, are finite).
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Thus, we have the final solution as

[ N

|170(1—e ”), x<0
N, = i

l—no(l—e LD), x>0

Final solution after adjustment

The velocity field is in geostrophic balance as:

g h =—8M 1y

v~ B,

f fLy
where + and — are for x<0 and x>0, respectively.
v

2

Voo(X)

«— Ip EEE—

Several points are noteworthy here.

-gno/folp

31

* Deformation radius L,,: we have seen in secl.5 that large scale motions with L > L,

is affected by rotation. Here, we further see that L, also determines the influence

distance of an ageostrophic anomaly.
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* Adjustment time: From (d, + f *)n-c;d_n =0, we see that d, << f~ gives the final
1 : : :
steady state. Thus, when ¢ > — = 1 day, the adjustment is completed and the final state is

in geostrophic balance, independent of the spatial scale. Therefore, independent of spatial
scales, geostrophic adjustment is very fast (within about a day). This is the fundamental
reason why the observed flow are always in geostrophic balance. Simply put it, any
imbalance from geostrophy will be adjusted quickly to a new balance within about a day
or so.

* Energetics: Since d 1, =0, APE exists in the final state ! (different from the non-
rotating case). But, not all the lost APE are converted to KE. Indeed, the initial energy is:

1 1
| apE, - S8 midx =2 [nidx = gnil
4 -L 2 -L

|KE, = 0

In the final state:

1 - 1 0 X L X
APE, = —g[midx ==gni[ [(1—e™ )’ dx+[(-e ") dx
R I

L X

= g [(1=e ™) dx
0
L 2L

— — L —
= gng{L— 2L,(1-e L”)+7D(1—e o )}
Let L —o (or L>>L,), wehave

3
APE, = gny(L= = Ly) >0
Thus the change of APE is:
3
A(APE) = APE, - APE, = EgnOzLD, (L — )

Total loss of APE is finite even through the initial APE is infinite. In addition, the final
state also has KE.

2x
H +00 +00 +o0
KE, = = [Vidx = H [Vidx = HELY [e " ax
2 Zoo 0 fLD 0
o 2x
2 LD ' _L_ 2)C g”lg l
= L e 2d(—) = L, =—A(AP
8"~ { ( LD) 5 Lo =3 (APE)

Thus, only 1/3 of the lost APE is converted to KE. Where does the rest of APE go? They
are radiated away to x — +o (or dissipated elsewhere in a finite domain) by transient
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inertial-gravity waves. This loss of initial energy by wave radiation is similar to the /=0
case that has a finite initial disturbance (case 2).

* Transients: The transients are the [-G waves, which have the dispersion relation:
0)2 — fZ + C2K2
The group velocity is:

2022 _ 0k
0] é’k = ZLC
do c’k 'k

We see that

1) I-G waves radiate in (all the ) both directions !

min

—=(0 for k—0; |cg

max

—c for k—

1) |cg

Thus, shortwaves disperse fast, long wave slow.

A Cg -

v
>

b

k—00
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? @)

» 7.3 Transient profiles for {a) n, 16t v, and {c} v for adjustment under gravity of a fiuid with an initial in-
itesimal discontinuity in level of 24, at x = 0. The sclution is shown in the region x > G, where the surface was
depressed, at time intervals of 2/~ where [ is twice the rate of rotation of the system about a vertical axis,
The marks on the x axis are at intervals of a Rossby radius, gH)' %11, where g is the acceleration due to gravity
and H is the depth of fluid. The solutions retain their initial values until the armival oi a wave front that travels out
from the position of the initial discontinuity at speed (gH™2, When the front arrives, the surface elevation rises by
4, and the v component of velogity rises by ig:H) iy just as in the nonrotating case depicted in Fig. 5.9a. This ts
because the first waves Lo arrive are the very short waves, which are unariected by rotation, Behind the frant,
however, is a “wake” o waves produced by dispersion, which in the case of u, have the slope given by the Beysel
function {7.3.14). This is the point impulse solution to the Klein—Gordon equation. The “width™ of the front narrows
in inverse propertion with time. Well behind the front, the solution adjusts to the geostrophic equilibrium solution
depicted in Fig. 7.1

Rochester distance [km]
a 0 20 ao 40 50 60
o ! :

depth [m]

{a)

Fig. 7.5. (@) An (internal) Poincaré wave front observed in Lake Ontario fo Owing a storrm on 9 August 1972,
Lines show the thermocline depth as measured by the 10° isotherm. Times of the beginning and end of each transect
are shown. The first transect shows the large downwe ing produced by the passage of the storm, and subseguent
sections show the geostrophic adjustment process involving radiation of Poincaré waves. {b) Results of a (nonlinear
two-layert model simulation of this event by Simons {1978). The diagrams are from Simons (1978, 1980} and may
be compared with the solution shown in Fig. 7.3 for a very simple initial condition,
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In summary, rotation produces the following effects:

* releases less APE  (hold it to build geostrophic balance)

* final state has (geostrophic) motion

* fast adjustment (t = Iday)

* spatial scale about L, (can be very small for the ocean)

* final state depends on initial condition (usually varies for different I.C.)

4. Applications

¢ Coastal jet: Initial wind piles up water against the coast with downstream surface
currents. Later (after a day or so), the geostrophic adjustment leaves an along
shelf geostrophic current.

<¢—— wind onset (> 0)

\n(t - 0)

Land @ N..

1%

)

. . : 1 .
* Atmospheric convection will eventually (after 7 = 7) produces a cyclonic

circulation.

p(t =0)
p(t =0)
pt=0)

convection onset
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Questions for Chapter 1

Q1.1: If we only retain the curvature term in the u-equation of the shallow water system
(1.1.15), is the total energy still conserved as shown in (1.2.4)? Suppose this term is small

compared with other terms, should we still keep this term? Why?

01.2: A more general way of solving the eigenvalue (dispersion relationship) is to solve
the free modes directly from the linear shallow water equations. Plug (u’,v’, ’)=(
U, vo,_o)eiﬂmly - directly into the f-plane shallow water equations

du' = fov' =-gd.n

IV + fou' =-gd n'

Im'+H@u +dv)=0

Show that the eigenvalues are the same as in (1.5.1).

Q1.3. In a homogeneous fluid,
a) For any two vectors A and B, prove the identity:
Vx(AxB) = AVeB+ (B® V)A -BV°A - (A*V)B .
b) In a rotating frame, the momentum equation is:
diU =-2QxU-Vp/p + F.
Using the identity derived from a) and the Stokes’ theorem to prove directly the Kelvin’s

theorem: d; (I'+2Q2A,) = 0. (All vectors are three-dimensional vectors).
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Exercises for Chapter 1

E1.1. (Hydrostatic approximation in a rotating fluid) On a f-plane (in eqn. (1.1.13)),
consider a strong rotation fluid in which the pressure gradient force is balanced mainly by
the Coriolis force, fv ~-dp/p (as opposed to by the inertial acceleration ud,u ~-dyp/p as
in the handout),

a). Using scaling analysis, find the condition under which the hydrostatic approximation
is valid in the primitive equation.

b). Compare with the weak rotation system that was discussed in Sec. 1.1 (the equation

after (1.5)), which system is easier to reach hydrostatic balance?

E1.2. (Local plane equation) (a) What are the major approximations under which the
shallow water equations on a sphere (1.1.11) (the Laplacian tidal equation) can be
reduced to the Cartesian coordinate equations (1.1.13)? (b) What is the latitude region
where you expect the Cartesian coordinate equation (1.1.13) to perform the poorest? (c)
For a typical wind speed of 10 m/s and an ocean current of 1 cm/s, use scaling analysis to
estimate the latitude region where the Cartesian coordinate equation may have serious

problem.

E1.3. (Surface pressure effect) In the presence of an atmospheric sea level pressure
gradient, derive the oceanic equations as in (a) a shallow water model, (b) a 1.5-layer

model.

E1.4. (2.5-layer model) A 2.5-layer fluid is a special 3-layer fluid in which there is no
motion (no pressure gradient) in layer 3 (see the figure). In a shallow water system where

the hydrostatic approximation is valid, show that

nx,y,t ~ @ @O

h; up vy, P, pi
zi(x,y,t) /\/
h;
Uz, v, P2, p2

Z(x, ).t /\/
2( Y ) Uuz= 0, V3=0, P3, Vp3=0
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a) the pressure in each layer can be represented as
Pi(x.y,zt) = patgpPi(M-z), pa(x.y.z0) =pi1(z)+8P2(z1-2), p3(X.y,2,1) = p2(22) +gP2(22-2)
b) the condition of no-motion in layer 3 leads to the pressure gradients in layer 1 and 2 as
V1= -g(p2-p1) Vz1-g(ps-p2) Vz:
V2= -g(ps-p2) Vz:
c) the continuity equations for layer 1 and 2 can be derived from the incompressible
equations dyu;+d,v; +d.w; = 0 and daur+3d, vy +3d-wr = 0 as dhi+de (uphy)+0, (vihy) =0
and dihr+0dx (uz h)+0, (v2 hy) = 0, respectively.
d) finally, the 2.5-layer system is governed by

Dtul _ﬁ}I = _g{dxhl _g;axh Dlu2 _fvz = _g;é,xh
Dy, + fu, = —gl’o’?yh1 —ggayh and Dy, + fu, = —g;&yh
D.h +h(d u, + o7yv1) =0 D.hy, + h,(d u, + o7yv2) =0

where h=h;+h,, hj=n-z;=-z; and h,=z,-z, are layer thickness, and

g 1=(P2-P1)/Po= (P2-P1)/P1 > & 2=(P3-P2)/Po= (p3-p2)/p1= (P3-p2)/p: are interface reduced

gravities.

EL5. (Vorticity of a solid body) For a solid rotating body, we have U = Qxr, where
Q=(Qy, Qy, ,) is the angular velocity and r=(x, y, z) is the position vector. Prove that

the vorticty is twice its angular veolocity, i.e. w = VxU = 2€.

E1.6. (Divergence equation):
a) Derive the divergence equation from the shallow water system (1.1.13a,b) as
0, (A u+dyv) = (F+OE - [uxV(f+8]k -V [gn+(’+v')/2]+ VeF
b) Discuss the differences between the divergence equation and the vorticity equation

(1.4.1).

E1.7. (Adjustment process of non-rotating fluid) A linear non-rotating fluid satisfies the
equations: du = -gdm, dm + H du = 0. For an initial disturbance of the form u =0,

N=N,(X), study the solutions for 2 initial conditions below.
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Case 1: The initial condition is

39

¥ 4
- : X > 0 n *
n,(x) = { ! A )
n x<0 A
Z
0 X

-n Ct<x

a) Prove that the evolution solution is n(x,?) = 0 -Ct<x<C(t.
n x<-Ct

and draw the schematic figures of the evolution at different stages.

b) What is the final equilibrium state?

¢) Discuss the physics.

d) What is the ratio of the kinetic energy to available potential energy at each location at

different time? (optional)

Case 2: The initial condition is
0 |x|>1

m(X)={n* o

a) Prove the solution is

() forO0<Ct<1

n(xa 1) =1

1 0 I;X
0 I+Ct<x
-n /2 1-Ct<x<1+Ct
n -1+Ct<x<1-Ct
n /2 -1-Ct<x<-1+Ct
0 x<-1-Ct
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i1) for Ct >=1

0 1+Ct<x
-n'/2 —1+Ct<x<1+Ct
n(x,t)=4 0 I-Ct<x<-1+Ct
n/2 ~1-Ct<x<1-Ct
0 x<-1-Ct

Repeat b) c) d) the same as in case 1
{Hint: for a general initial condition n(x, t=0)= ny(x), and M (x, t=0)= n;(x), the

eneral solution of a wave equation d,1 - ¢ d.n = 0 is:
g q n n

n(xat)={[Tlo(x_Ct)+770(x+01)]+xj:;71(5)d5}/2 }

E1.8: (Energy partitioning of waves). The linear perturbation equation on a f-plane is:

ou - fv=-gdm, ov + fu=-gdn dn+H(u+dv)=0.
This set of equations contain two sets of modes: the inertial-gravity wave and the
geostrophic mode (see Sec.1.5).
a) Find the ratio of the kinetic energy and available potential energy (averaged over one
wave length) for an inertial-gravity wave. What are the energy ratios at the long and short
wave limits? What happens for non-rotating fluid?
b) Find the energy ratio for the geostrophic mode. What are the energy ratios at the long
and short wave limits?

c) Compare and discuss the energy ratios of the two modes.



