
Amazon EC2 Container Service
Developer Guide

API Version 2014-11-13

Amazon EC2 Container Service: Developer Guide
Copyright © 2015 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
AWS CloudTrail, AWS CodeDeploy, Amazon Cognito, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic
Compute Cloud, Amazon Glacier, Amazon Kinesis, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift,
Amazon Route 53, Amazon S3, Amazon VPC, and Amazon WorkDocs. In addition, Amazon.com graphics, logos, page headers,
button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon's
trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Amazon EC2 Container Service Developer Guide

Table of Contents
What is Amazon ECS? ... 1

Components of Amazon ECS .. 1
How to Get Started with Amazon ECS .. 2

Setting Up .. 3
Sign Up for AWS ... 3
Create an IAM User ... 4
Create an IAM Role for your Container Instances and Services ... 5
Create a Key Pair .. 5
Create a Virtual Private Cloud .. 7
Create a Security Group ... 8
Install the AWS CLI .. 9

Docker Basics ... 10
Installing Docker .. 10
(Optional) Sign up for a Docker Hub Account .. 11
Create a Docker Image and Upload it to Docker Hub .. 12
Next Steps ... 14

Getting Started .. 17
Cleaning Up .. 20

Scale Down Services ... 20
Delete Services ... 21
Deregister Container Instances .. 21
Delete a Cluster .. 21
Delete the AWS CloudFormation Stack .. 22

Container Instances ... 23
Container Instance Concepts ... 23
Container Instance Life Cycle .. 24
Check the Instance Role for your Account .. 24
Launch a Container Instance ... 25
Starting a Task at Container Instance Launch Time .. 27
Deregister Container Instance .. 30

Container Agent .. 32
Installing the Amazon ECS Container Agent ... 32
Container Agent Versions .. 34

Amazon ECS-optimized AMI Container Agent Versions .. 35
Updating the Amazon ECS Container Agent ... 35

Checking your Amazon ECS Container Agent Version .. 36
Updating the Amazon ECS Container Agent on the Amazon ECS-optimized AMI 37
Manually Updating the Amazon ECS Container Agent (for Non-Amazon ECS-optimized
AMIs) .. 38

Amazon ECS Container Agent Configuration .. 40
Available Parameters .. 40
Storing Container Instance Configuration in Amazon S3 ... 42

Private Registry Authentication .. 44
Authentication Formats ... 44
Enabling Private Registries .. 45

Amazon ECS Container Agent Introspection ... 46
Task Definitions ... 48

Application Architecture .. 48
Creating a Task Definition .. 50

Task Definition Template ... 50
Task Definition Parameters .. 52

Family .. 52
Container Definitions .. 52
Volumes ... 57

Using Data Volumes in Tasks ... 58

API Version 2014-11-13
iii

Amazon EC2 Container Service Developer Guide

Example Task Definitions .. 63
Deregistering Task Definitions .. 64

Scheduling Tasks ... 65
Services ... 66

Service Concepts .. 66
Service Definition Parameters .. 66
Service Load Balancing .. 67
Creating a Service ... 72
Updating a Service .. 73
Deleting a Service ... 74

Running Tasks .. 74
Task Life Cycle .. 75

CloudWatch Metrics ... 77
Enabling CloudWatch Metrics .. 77
Available Metrics and Dimensions ... 78

Amazon ECS Metrics ... 78
Dimensions for Amazon ECS Metrics .. 78

Cluster Utilization ... 79
Service Utilization .. 79
Service RUNNING Task Count ... 80
Viewing Amazon ECS Metrics .. 80

Viewing Cluster Metrics in the Amazon ECS Console ... 81
Viewing Service Metrics in the Amazon ECS Console .. 82
Viewing Amazon ECS Metrics in the CloudWatch Console .. 82

Tutorial: Scaling with CloudWatch Alarms ... 83
Prerequisites .. 83
Step 1: Create a CloudWatch Alarm for a Metric .. 84
Step 2: Create a Launch Configuration for an Auto Scaling Group .. 85
Step 3: Create an Auto Scaling Group for your Cluster ... 86
Step 4: Verify and Test your Auto Scaling Group .. 87
Step 5: Cleaning Up ... 87

IAM Policies and Roles ... 88
Policy Structure ... 89

Policy Syntax .. 89
Actions for Amazon ECS ... 90
Amazon Resource Names for Amazon ECS ... 90
Condition Keys for Amazon ECS .. 91
Testing Permissions ... 92

Supported Resource-Level Permissions .. 93
Amazon ECS Container Instance IAM Role .. 94

Adding Amazon S3 Read-only Access to your Container Instance Role 96
Amazon ECS Service Scheduler IAM Role ... 96
Creating IAM Policies ... 97
Amazon ECS IAM Policy Examples ... 98

Clusters ... 98
Run Tasks ... 100
Start Tasks .. 100
Container Instances ... 101
Task Definitions ... 102
Tasks ... 102

Using the AWS CLI .. 105
Step 1: (Optional) Create a Cluster .. 105
Step 2: Launch an Instance with the Amazon ECS AMI ... 106
Step 3: List Container Instances ... 106
Step 4: Describe your Container Instance ... 107
Step 5: Register a Task Definition .. 108
Step 6: List Task Definitions ... 109
Step 7: Run a Task ... 110

API Version 2014-11-13
iv

Amazon EC2 Container Service Developer Guide

Step 8: List Tasks ... 111
Step 9: Describe the Running Task .. 111

Service Limits .. 112
CloudTrail Logging ... 113

Amazon ECS Information in CloudTrail .. 113
Understanding Amazon ECS Log File Entries ... 114

Troubleshooting ... 115
Checking Stopped Tasks for Errors .. 115
Service Event Messages ... 116
Connect to your Container Instance ... 118
Amazon ECS Log File Locations ... 119

Amazon ECS Container Agent Log ... 119
Amazon ECS ecs-init Log ... 119

Agent Introspection Diagnostics .. 120
Docker Diagnostics .. 121

List Docker Containers .. 121
View Docker Logs .. 122
Inspect Docker Containers ... 122

API failures Error Messages .. 123
AWS Glossary ... 125

API Version 2014-11-13
v

Amazon EC2 Container Service Developer Guide

What is Amazon EC2 Container
Service?

Amazon EC2 Container Service (Amazon ECS) is a highly scalable, fast, container management service
that makes it easy to run, stop, and manage Docker containers on a cluster of Amazon EC2 instances.
Amazon ECS lets you launch and stop container-enabled applications with simple API calls, allows you
to get the state of your cluster from a centralized service, and gives you access to many familiar Amazon
EC2 features.

You can use Amazon ECS to schedule the placement of containers across your cluster based on your
resource needs, isolation policies, and availability requirements. Amazon ECS eliminates the need for
you to operate your own cluster management and configuration management systems or worry about
scaling your management infrastructure.

Components of Amazon ECS
Amazon ECS contains the following components:

Cluster
A logical grouping of container instances that you can place tasks on.

Container instance
An Amazon EC2 instance that is running the Amazon ECS agent and has been registered into a
cluster. For more information, see Amazon ECS Container Instances (p. 23).

Task definition
A description of an application that contains one or more container definitions. For more information,
see Amazon ECS Task Definitions (p. 48).

Scheduler
The method used for placing tasks on container instances. For more information about the different
scheduling options available in Amazon ECS, see Scheduling Amazon ECS Tasks (p. 65).

Service
An Amazon ECS service allows you to run and maintain a specified number of instances of a task
definition simultaneously. For more information, see Services (p. 66).

Task
An instantiation of a task definition that is running on a container instance.

API Version 2014-11-13
1

Amazon EC2 Container Service Developer Guide
Components of Amazon ECS

Container
A Linux container that was created as part of a task.

How to Get Started with Amazon ECS
To use Amazon ECS, you need to be set up to launch Amazon EC2 instances into your clusters.You
can also optionally install the AWS Command Line Interface to use Amazon ECS. For more information,
see Setting Up with Amazon ECS (p. 3).

After you are set up, you are ready to complete the Getting Started with Amazon ECS (p. 17) tutorial.

API Version 2014-11-13
2

Amazon EC2 Container Service Developer Guide
How to Get Started with Amazon ECS

Setting Up with Amazon ECS

If you've already signed up for Amazon Web Services (AWS) and have been using Amazon Elastic
Compute Cloud (Amazon EC2), you are close to being able to use Amazon ECS. The set up process for
the two services is very similar, as Amazon ECS uses EC2 instances in the clusters. To use the AWS
CLI with Amazon ECS , you must use a version of the AWS CLI that supports the latest Amazon ECS
features (version 1.7.21 or greater).

Note
Because Amazon ECS uses many components of Amazon EC2, you use the Amazon EC2
console for many of these steps.

Complete the following tasks to get set up for Amazon ECS. If you have already completed any of these
steps, you may skip them and move on to installing the custom AWS CLI.

1. Sign Up for AWS (p. 3)

2. Create an IAM User (p. 4)

3. Create an IAM Role for your Container Instances and Services (p. 5)

4. Create a Key Pair (p. 5)

5. Create a Virtual Private Cloud (p. 7)

6. Create a Security Group (p. 8)

7. Install the AWS CLI (p. 9)

Sign Up for AWS
When you sign up for AWS, your AWS account is automatically signed up for all services, including
Amazon EC2 and Amazon ECS.You are charged only for the services that you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open http://aws.amazon.com/, and then click Sign Up.

2. Follow the on-screen instructions.

API Version 2014-11-13
3

Amazon EC2 Container Service Developer Guide
Sign Up for AWS

http://aws.amazon.com/

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Note your AWS account number, because you'll need it for the next task.

Create an IAM User
Services in AWS, such as Amazon EC2 and Amazon ECS, require that you provide credentials when
you access them, so that the service can determine whether you have permission to access its resources.
The console requires your password.You can create access keys for your AWS account to access the
command line interface or API. However, we don't recommend that you access AWS using the credentials
for your AWS account; we recommend that you use AWS Identity and Access Management (IAM) instead.
Create an IAM user, and then add the user to an IAM group with administrative permissions or and grant
this user administrative permissions.You can then access AWS using a special URL and the credentials
for the IAM user.

If you signed up for AWS but have not created an IAM user for yourself, you can create one using the
IAM console.

To create the Administrators group

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, click Groups, and then click Create New Group.

3. In the Group Name box, type Administrators, and then click Next Step.

4. In the list of policies, select the check box next to the AdministratorAccess policy.You can use the
Filter menu and the Search box to filter the list of policies.

5. Click Next Step, and then click Create Group.

Your new group is listed under Group Name.

To create an IAM user for yourself, add the user to the Administrators group, and create
a password for the user

1. In the navigation pane, click Users, and then click Create New Users.

2. In box 1, type a user name. Clear the check box next to Generate an access key for each user.
Then click Create.

3. In the list of users, click the name (not the check box) of the user you just created.You can use the
Search box to search for the user name.

4. In the Groups section, click Add User to Groups.

5. Select the check box next to the Administrators group. Then click Add to Groups.

6. Scroll down to the Security Credentials section. Under Sign-In Credentials, click Manage Password.

7. Select Assign a custom password.Then type a password in the Password and Confirm Password
boxes. When you are finished, click Apply.

To sign in as this new IAM user, sign out of the AWS console, then use the following URL, where
your_aws_account_id is your AWS account number without the hyphens (for example, if your AWS
account number is 1234-5678-9012, your AWS account ID is 123456789012):

https://your_aws_account_id.signin.aws.amazon.com/console/

API Version 2014-11-13
4

Amazon EC2 Container Service Developer Guide
Create an IAM User

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Enter the IAM user name and password that you just created. When you're signed in, the navigation bar
displays "your_user_name @ your_aws_account_id".

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an account
alias. From the IAM dashboard, choose Create Account Alias and enter an alias, such as your company
name. To sign in after you create an account alias, use the following URL:

https://your_account_alias.signin.aws.amazon.com/console/

To verify the sign-in link for IAM users for your account, open the IAM console and check under IAM
users sign-in link on the dashboard.

For more information about IAM, see the AWS Identity and Access Management User Guide.

Create an IAM Role for your Container Instances
and Services

Before the Amazon ECS agent can register container instance into a cluster, the agent must know which
account credentials to use.You can create an IAM role that allows the agent to know which account it
should register the container instance with.When you launch an instance with the Amazon ECS-optimized
AMI provided by Amazon using this role, the agent automatically registers the container instance into
your default cluster.

The Amazon ECS container agent also makes calls to the Amazon EC2 and Elastic Load Balancing APIs
on your behalf, so container instances can be registered and deregistered with load balancers. Before
you can attach a load balancer to an Amazon ECS service, you must create an IAM role for your services
to use before you start them. This requirement applies to any Amazon ECS service that you plan to use
with a load balancer.

Note
The Amazon ECS instance and service roles are automatically created for you in the console
first run experience, so if you intend to use the Amazon ECS console, you can move ahead to
the next section. If you do not intend to use the Amazon ECS console, and instead plan to use
the AWS CLI, complete the procedures in Amazon ECS Container Instance IAM Role (p. 94)
and Amazon ECS Service Scheduler IAM Role (p. 96) before launching container instances or
using Elastic Load Balancing load balancers with services.

Create a Key Pair
AWS uses public-key cryptography to secure the login information for your instance. A Linux instance,
such as an Amazon ECS container instance, has no password to use for SSH access; you use a key pair
to log in to your instance securely.You specify the name of the key pair when you launch your container
instance, then provide the private key when you log in using SSH.

If you haven't created a key pair already, you can create one using the Amazon EC2 console. Note that
if you plan to launch instances in multiple regions, you'll need to create a key pair in each region. For
more information about regions, see Regions and Availability Zones in the Amazon EC2 User Guide for
Linux Instances.

To create a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

API Version 2014-11-13
5

Amazon EC2 Container Service Developer Guide
Create an IAM Role for your Container Instances and

Services

http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://console.aws.amazon.com/ec2/

2. From the navigation bar, select a region for the key pair.You can select any region that's available
to you, regardless of your location: however, key pairs are specific to a region. For example, if you
plan to launch an instance in the US East (N. Virginia) region, you must create a key pair for the
instance in the same region.

Note
Amazon ECS is available in the following regions:

RegionRegion Name

us-east-1US East (N. Virginia)

us-west-1US West (N. Califor-
nia)

us-west-2US West (Oregon)

eu-west-1EU (Ireland)

ap-northeast-1Asia Pacific (Tokyo)

ap-southeast-2Asia Pacific (Sydney)

3. Choose Key Pairs in the navigation pane.

4. Choose Create Key Pair.

5. Enter a name for the new key pair in the Key pair name field of the Create Key Pair dialog box, and
then choose Create. Choose a name that is easy for you to remember, such as your IAM user name,
followed by -key-pair, plus the region name. For example, me-key-pair-useast1.

6. The private key file is automatically downloaded by your browser. The base file name is the name
you specified as the name of your key pair, and the file name extension is .pem. Save the private
key file in a safe place.

Important
This is the only chance for you to save the private key file.You'll need to provide the name
of your key pair when you launch an instance and the corresponding private key each time
you connect to the instance.

7. If you will use an SSH client on a Mac or Linux computer to connect to your Linux instance, use the
following command to set the permissions of your private key file so that only you can read it.

$ chmod 400 your_user_name-key-pair-region_name.pem

For more information, see Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances.

To connect to your instance using your key pair

To connect to your Linux instance from a computer running Mac or Linux, specify the .pem file to your
SSH client with the -i option and the path to your private key. To connect to your Linux instance from a
computer running Windows, you can use either MindTerm or PuTTY. If you plan to use PuTTY, you'll
need to install it and use the following procedure to convert the .pem file to a .ppk file.

(Optional) To prepare to connect to a Linux instance from Windows using PuTTY

1. Download and install PuTTY from http://www.chiark.greenend.org.uk/~sgtatham/putty/. Be sure to
install the entire suite.

2. Start PuTTYgen (for example, from the Start menu, choose All Programs, PuTTY, and PuTTYgen).

API Version 2014-11-13
6

Amazon EC2 Container Service Developer Guide
Create a Key Pair

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/

3. Under Type of key to generate, choose SSH-2 RSA.

4. Choose Load. By default, PuTTYgen displays only files with the extension .ppk. To locate your
.pem file, choose the option to display files of all types.

5. Select the private key file that you created in the previous procedure and choose Open. Choose OK
to dismiss the confirmation dialog box.

6. Choose Save private key. PuTTYgen displays a warning about saving the key without a passphrase.
Choose Yes.

7. Specify the same name for the key that you used for the key pair. PuTTY automatically adds the
.ppk file extension.

Create a Virtual Private Cloud
Amazon Virtual Private Cloud (Amazon VPC) enables you to launch AWS resources into a virtual network
that you've defined. We strongly suggest that you launch your container instances in a VPC.

Note
The Amazon ECS console first run experience creates a VPC for your cluster, so if you intend
to use the Amazon ECS console, you can move ahead to the next section.

If you have a default VPC, you also can skip this section and move to the next task, Create a Security
Group (p. 8). To determine whether you have a default VPC, see Supported Platforms in the Amazon
EC2 Console in the Amazon EC2 User Guide for Linux Instances. Otherwise, you can create a nondefault
VPC in your account using the steps below.

Important
If your account supports EC2-Classic in a region, then you do not have a default VPC in that
region.

To create a nondefault VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. From the navigation bar, select a region for the VPC. VPCs are specific to a region, so you should
select the same region in which you created your key pair.

3. On the VPC dashboard, choose Start VPC Wizard.

4. On the Step 1: Select a VPC Configuration page, ensure that VPC with a Single Public Subnet
is selected, and choose Select.

5. On the Step 2: VPC with a Single Public Subnet page, enter a friendly name for your VPC in the
VPC name field. Leave the other default configuration settings, and choose Create VPC. On the
confirmation page, choose OK.

For more information about Amazon VPC, see What is Amazon VPC? in the Amazon VPC User Guide.

API Version 2014-11-13
7

Amazon EC2 Container Service Developer Guide
Create a Virtual Private Cloud

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html#console-updates
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html#console-updates
https://console.aws.amazon.com/vpc/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/

Create a Security Group
Security groups act as a firewall for associated container instances, controlling both inbound and outbound
traffic at the container instance level.You can add rules to a security group that enable you to connect
to your container instance from your IP address using SSH.You can also add rules that allow inbound
and outbound HTTP and HTTPS access from anywhere. Add any rules to open ports that are required
by your tasks.

Note
The Amazon ECS console first run experience creates a security group for your instances and
load balancer based on the task definition you use, so if you intend to use the Amazon ECS
console, you can move ahead to the next section.

Note that if you plan to launch container instances in multiple regions, you need to create a security group
in each region. For more information about regions, see Regions and Availability Zones in the Amazon
EC2 User Guide for Linux Instances.

Tip
You need the public IP address of your local computer, which you can get using a service. For
example, we provide the following service: http://checkip.amazonaws.com/. To locate another
service that provides your IP address, use the search phrase "what is my IP address." If you are
connecting through an Internet service provider (ISP) or from behind a firewall without a static
IP address, you need to find out the range of IP addresses used by client computers.

To create a security group with least privilege

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select a region for the security group. Security groups are specific to a
region, so you should select the same region in which you created your key pair.

Note
Amazon ECS is available in the following regions:

RegionRegion Name

us-east-1US East (N. Virginia)

us-west-1US West (N. Califor-
nia)

us-west-2US West (Oregon)

eu-west-1EU (Ireland)

ap-northeast-1Asia Pacific (Tokyo)

ap-southeast-2Asia Pacific (Sydney)

3. Choose Security Groups in the navigation pane.

4. Choose Create Security Group.

5. Enter a name for the new security group and a description. Choose a name that is easy for you to
remember, such as your IAM user name, followed by _SG_, plus the region name. For example,
me_SG_useast1.

6. In the VPC list, ensure that your default VPC is selected; it's marked with an asterisk (*).

Note
If your account supports EC2-Classic, select the VPC that you created in the previous task.

API Version 2014-11-13
8

Amazon EC2 Container Service Developer Guide
Create a Security Group

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://checkip.amazonaws.com/
https://console.aws.amazon.com/ec2/

7. Amazon ECS container instances do not require any inbound ports to be open. However, you might
want to add an SSH rule so you can log into the container instance and examine the tasks with
Docker commands.You can also add rules for HTTP and HTTPS if you want your container instance
to host a task that runs a web server. Complete the following steps to add these optional security
group rules.

On the Inbound tab, create the following rules (choose Add Rule for each new rule), and then choose
Create:

• Choose HTTP from the Type list, and make sure that Source is set to Anywhere (0.0.0.0/0).

• Choose HTTPS from the Type list, and make sure that Source is set to Anywhere (0.0.0.0/0).

• Choose SSH from the Type list. In the Source field, ensure that Custom IP is selected, and specify
the public IP address of your computer or network in CIDR notation. To specify an individual IP
address in CIDR notation, add the routing prefix /32. For example, if your IP address is
203.0.113.25, specify 203.0.113.25/32. If your company allocates addresses from a range,
specify the entire range, such as 203.0.113.0/24.

Caution
For security reasons, we don't recommend that you allow SSH access from all IP addresses
(0.0.0.0/0) to your instance, except for testing purposes and only for a short time.

Install the AWS CLI
To use the AWS CLI with Amazon ECS, install the AWS CLI, version 1.7.21 or greater. If the AWS CLI
is installed on your system, you can check the version with the following command:

$ aws --version
aws-cli/1.7.21 Python/2.7.8 Darwin/14.0.0

For information about installing the AWS CLI or upgrading it to the latest version, see Installing the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

API Version 2014-11-13
9

Amazon EC2 Container Service Developer Guide
Install the AWS CLI

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html

Docker Basics

Docker is a technology that allows you to build, run, test, and deploy distributed applications that are
based on Linux containers. For more information, see Docker Containers on AWS. Amazon ECS uses
Docker images in task definitions to launch containers on EC2 instances in your clusters. For Amazon
ECS product details, featured customer case studies, and FAQs, see the Amazon EC2 Container Service
product detail pages.

The documentation in this guide assumes that readers possess a basic understanding of what Docker
is and how it works. For more information about Docker, see What is Docker? and the Docker User Guide.

If you'd like to try out Docker before you install it, go to the interactive tutorial on the Docker website.

Topics

• Installing Docker (p. 10)

• (Optional) Sign up for a Docker Hub Account (p. 11)

• Create a Docker Image and Upload it to Docker Hub (p. 12)

• Next Steps (p. 14)

Installing Docker
Docker is available on many different operating systems, including most modern Linux distributions, like
Ubuntu, and even Mac OSX and Windows (by using boot2docker). For more information about how to
install Docker on your particular operating system, go to the Docker installation guide.

You don't even need a local development system to use Docker. If you are using Amazon EC2 already,
you can launch an Amazon Linux instance and install Docker to get started.

To install Docker on an Amazon Linux instance

1. Launch an instance with the Amazon Linux AMI. For more information, see Launching an Instance
in the Amazon EC2 User Guide for Linux Instances.

2. Connect to your instance. For more information, see Connect to Your Linux Instance in the Amazon
EC2 User Guide for Linux Instances.

3. Update the installed packages and package cache on your instance.

[ec2-user ~]$ sudo yum update -y

API Version 2014-11-13
10

Amazon EC2 Container Service Developer Guide
Installing Docker

http://aws.amazon.com/containers
http://aws.amazon.com/ecs
http://aws.amazon.com/ecs
https://www.docker.com/whatisdocker/
https://docs.docker.com/userguide/
https://www.docker.com/tryit/
https://docs.docker.com/installation/#installation
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

4. Install Docker. Amazon ECS requires a minimum Docker version of 1.5.0 (version 1.6.2 is
recommended), and the default Docker versions in many system package managers, such as yum
or apt-get do not meet this minimum requirement. For information about installing the latest Docker
version on your particular Linux distribution, go to https://docs.docker.com/installation/.

[ec2-user ~]$ sudo yum install -y docker

5. Start the Docker service.

[ec2-user ~]$ sudo service docker start
Starting cgconfig service: [OK]
Starting docker: [OK]

6. Add the ec2-user to the docker group so you can execute Docker commands without using sudo.

[ec2-user ~]$ sudo usermod -a -G docker ec2-user

7. Log out and log back in again to pick up the new docker group permissions.

8. Verify that the ec2-user can run Docker commands without sudo.

[ec2-user ~]$ docker info
Containers: 2
Images: 24
Storage Driver: devicemapper
 Pool Name: docker-202:1-263460-pool
 Pool Blocksize: 65.54 kB
 Data file: /var/lib/docker/devicemapper/devicemapper/data
 Metadata file: /var/lib/docker/devicemapper/devicemapper/metadata
 Data Space Used: 702.3 MB
 Data Space Total: 107.4 GB
 Metadata Space Used: 1.864 MB
 Metadata Space Total: 2.147 GB
 Library Version: 1.02.89-RHEL6 (2014-09-01)
Execution Driver: native-0.2
Kernel Version: 3.14.27-25.47.amzn1.x86_64
Operating System: Amazon Linux AMI 2014.09

(Optional) Sign up for a Docker Hub Account
Docker uses images that are stored in repositories to launch containers with. The most common Docker
image repository (and the default repository for the Docker daemon) is Docker Hub. Although you don't
need a Docker Hub account to use Amazon ECS or Docker, having a Docker Hub account gives you the
freedom to store your modified Docker images so you can use them in your ECS task definitions.

For more information about Docker Hub, and to sign up for an account, go to https://hub.docker.com.

Docker Hub offers public and private registries.You can create a private registry on Docker Hub and
configure Private Registry Authentication (p. 44) on your ECS container instances to use your private
images in task definitions.

API Version 2014-11-13
11

Amazon EC2 Container Service Developer Guide
(Optional) Sign up for a Docker Hub Account

https://docs.docker.com/installation/
https://hub.docker.com

Create a Docker Image and Upload it to Docker
Hub

Amazon ECS task definitions use Docker images to launch containers on the container instances in your
clusters. In this section, you create a Docker image of a simple PHP web application, test it on your local
system or EC2 instance, and then push the image to your Docker Hub registry so you can use it in an
ECS task definition.

To create a Docker image of a PHP web application

1. Install git and use it to clone the simple PHP application from our GitHub repository onto your system.

a. Install git.

[ec2-user ~]$ sudo yum install -y git

b. Clone the simple PHP application onto your system.

[ec2-user ~]$ git clone https://github.com/awslabs/ecs-demo-php-simple-
app

2. Change directories to the ecs-demo-php-simple-app folder.

[ec2-user ~]$ cd ecs-demo-php-simple-app

3. Examine the Dockerfile in this folder. A Dockerfile is a manifest that describes what image you want
for your image and what you want installed and running on it. For more information about Dockerfiles,
go to the Dockerfile Reference.

[ec2-user ecs-demo-php-simple-app]$ cat Dockerfile
FROM ubuntu:12.04

Install dependencies
RUN apt-get update -y
RUN apt-get install -y git curl apache2 php5 libapache2-mod-php5 php5-mcrypt
 php5-mysql

Install app
RUN rm -rf /var/www/*
ADD src /var/www

Configure apache
RUN a2enmod rewrite
RUN chown -R www-data:www-data /var/www
ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2

EXPOSE 80

API Version 2014-11-13
12

Amazon EC2 Container Service Developer Guide
Create a Docker Image and Upload it to Docker Hub

https://docs.docker.com/reference/builder/

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

This Dockerfile uses the Ubuntu 12.04 image. The RUN instructions update the package caches,
install some software packages for the web server and PHP support, and then add our PHP application
to the web server's document root. The EXPOSE instruction exposes port 80 on the container, and
the CMD instruction starts the web server.

4. Build the Docker image from our Dockerfile. Substitute my-dockerhub-username with your Docker
Hub user name.

[ec2-user ecs-demo-php-simple-app]$ docker build -t my-dockerhub-user
name/amazon-ecs-sample .

5. Run docker images to verify that the image was created correctly and that the image name contains
a repository that you can push to (in this example, your Docker Hub user name).

[ec2-user ecs-demo-php-simple-app]$ docker images
REPOSITORY TAG IMAGE ID
 CREATED VIRTUAL SIZE
my-dockerhub-username/amazon-ecs-sample latest 43c52559a0a1
 12 minutes ago 258.1 MB
ubuntu 12.04 78cef618c77e
 3 weeks ago 133.7 MB

6. Run the newly built image. The -p 80:80 option maps the exposed port 80 on the container to port
80 on the host system. For more information about docker run, go to the Docker run reference.

[ec2-user ecs-demo-php-simple-app]$ docker run -p 80:80 my-dockerhub-user
name/amazon-ecs-sample

7. Open a browser and point to the server that is running Docker and hosting your container.

• If you are using an EC2 instance, this is the Public DNS value for the server, which is the same
address you use to connect to the instance with SSH. Make sure that the security group for your
instance allows inbound traffic on port 80.

• If you are running Docker locally on a Linux computer, point your browser to http://localhost/.

• If you are using boot2docker on a Windows or Mac computer, find the IP address of the
VirtualBox VM that is hosting Docker with the boot2docker ip command.

$ boot2docker ip
192.168.59.103

You should see a web page running the simple PHP app.

API Version 2014-11-13
13

Amazon EC2 Container Service Developer Guide
Create a Docker Image and Upload it to Docker Hub

https://docs.docker.com/reference/run/
http://localhost/

8. Stop the Docker container by typing Ctrl+c.

9. (Optional) Upload the Docker image to your Docker Hub account.

a. Log in to your Docker Hub account.

[ec2-user ecs-demo-php-simple-app]$ docker login

b. Verify that you have logged in correctly.

[ec2-user ecs-demo-php-simple-app]$ docker info

You should see "Username: my-dockerhub-username" in the output. If not, verify your
Docker Hub login information and try to log in again.

c. Push the image.

[ec2-user ecs-demo-php-simple-app]$ docker push my-dockerhub-user
name/amazon-ecs-sample

Note
If you receive an error stating "FATA[0012] Error pushing to registry:
Authentication is required", verify that you are using a repository that you have
permission to push to. The docker images command lists which images are available
locally; you should see an image that begins with your Docker Hub user name. If not,
return to Step 4 (p. 13) to rebuild the image with the proper repository name and then
retry the docker push command.

Next Steps
After the image push is finished, you can use the my-dockerhub-username/amazon-ecs-sample
image in your Amazon ECS task definitions, which you can use to run tasks with.

API Version 2014-11-13
14

Amazon EC2 Container Service Developer Guide
Next Steps

To register a task definition with the amazon-ecs-sample image

1. Examine the simple-app-task-def.json file in the ecs-demo-php-simple-app folder.

{
 "family": "console-sample-app",
 "volumes": [
 {
 "name": "my-vol",
 "host": {}
 }
],
 "containerDefinitions": [
 {
 "environment": [],
 "name": "simple-app",
 "image": "amazon/amazon-ecs-sample",
 "cpu": 10,
 "memory": 500,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "mountPoints": [
 {
 "sourceVolume": "my-vol",
 "containerPath": "/var/www/my-vol"
 }
],
 "entryPoint": [
 "/usr/sbin/apache2",
 "-D",
 "FOREGROUND"
],
 "essential": true
 },
 {
 "name": "busybox",
 "image": "busybox",
 "cpu": 10,
 "memory": 500,
 "volumesFrom": [
 {
 "sourceContainer": "simple-app"
 }
],
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "/bin/sh -c \"while true; do /bin/date > /var/www/my-vol/date;
 sleep 1; done\""
],
 "essential": false
 }

API Version 2014-11-13
15

Amazon EC2 Container Service Developer Guide
Next Steps

]
}

This task definition JSON file specifies two containers, one of which uses the amazon-ecs-sample
image. By default, this image is pulled from the Amazon Docker Hub repository, but you can change
the amazon repository defined above to your own repository if you want to use the
my-dockerhub-username/amazon-ecs-sample image you pushed earlier.

2. Register a task definition with the simple-app-task-def.json file.

[ec2-user ecs-demo-php-simple-app]$ aws ecs register-task-definition --cli-
input-json file://simple-app-task-def.json

The task definition is registered in the console-sample-app family as defined in the JSON file.

To run a task with the console-sample-app task definition

Important
Before you can run tasks in Amazon ECS, you need to launch container instances into your
cluster. For more information about how to set up and launch container instances, see Setting
Up with Amazon ECS (p. 3) and Getting Started with Amazon ECS (p. 17).

• Use the following AWS CLI command to run a task with the console-sample-app task definition.

[ec2-user ecs-demo-php-simple-app]$ aws ecs run-task --task-definition con
sole-sample-app

API Version 2014-11-13
16

Amazon EC2 Container Service Developer Guide
Next Steps

Getting Started with Amazon ECS

Let's get started with Amazon EC2 Container Service (Amazon ECS) by creating a task definition,
scheduling tasks, configuring a cluster in the Amazon ECS console.

Important
Before you begin be sure that you've completed the steps in Setting Up with Amazon ECS (p. 3).

Step 1: Welcome to Amazon ECS

The Amazon ECS first run wizard will guide you through the process to get started with Amazon ECS.
The wizard gives you the option of creating a cluster and launching our sample web application, or if you
already have a Docker image you would like to launch in Amazon ECS, you can create a task definition
with that image and use that for your cluster instead.

1. Open the Amazon ECS console first run wizard at https://console.aws.amazon.com/ecs/home#/
firstRun.

2. Choose whether you would like to use the Amazon ECS sample task definition or a Custom task
definition that you create yourself and choose Next Step. If you don't have a specific Docker image
you want to launch into a cluster, you should pick the sample task definition to see what one looks
like.

Step 2: Create a task definition

A task definition is like a blue print for your application. Every time you launch a task in Amazon ECS,
you specify a task definition so the service knows which Docker image to use for containers, how many
containers to use in the task, and the resource allocation for each container.

1. Configure your task definition parameters.

API Version 2014-11-13
17

Amazon EC2 Container Service Developer Guide

https://console.aws.amazon.com/ecs/home#/firstRun
https://console.aws.amazon.com/ecs/home#/firstRun

If you chose to use the Amazon ECS sample task definition, you can see the containers defined,
simple-app, and busybox.You can optionally rename the task definition or review and edit the
resources used by each container (such as CPU units and memory) by clicking the container name
and editing the values shown. For more information on what each of these task definition parameters
does, see Task Definition Parameters (p. 52).

2. (Optional) You can also add containers to your task definition. Click Add Container Definition, fill
out the required parameters, and click Add.

3. When you are finished examining and editing the task definition, click Next Step.

Step 3: Schedule tasks

In this section of the wizard, you select how you would like to schedule the tasks from your task definition.
You can choose to Run Tasks Once, which is ideal for batch jobs that perform work and then stop, or
you can choose to Create a service to launch and maintain a specified number of copies of the task
definition in your cluster. The Amazon ECS sample application is a web-based "Hello World" style
application that is meant to run indefinitely, so we should run this as a service so it will restart if the task
becomes unhealthy or unexpectedly stops.

1. Choose Create a Service to launch and maintain your task.

2. In the Desired number of tasks field, enter the number of tasks you would like to launch with your
specified task definition.

Note
If your task definition contains static port mappings, the number of container instances you
launch in the next section of the wizard must be greater than or equal to the number of tasks
specified here.

3. In the Service Name field, select a name for your service.

4. (Optional) You can choose to use an Elastic Load Balancing load balancer with your service. When
a task is launched from a service that is configured to use a load balancer, the container instance
that the task is launched on is registered with the load balancer and traffic from the load balancer is
distributed across the instances in the load balancer.

Important
Elastic Load Balancing load balancers do incur cost while they exist in your AWS resources.
For more information on Elastic Load Balancing pricing, see Elastic Load Balancing Pricing.

Complete the following steps to use a load balancer with your service.

API Version 2014-11-13
18

Amazon EC2 Container Service Developer Guide

http://aws.amazon.com/elasticloadbalancing/pricing/

a. Click the Container: Port menu and select simple-app:80. The default values here are set up
for the sample application, but you can configure different listener options for the load balancer.
For more information, see Service Load Balancing (p. 67).

b. Review your load balancer settings and click Next Step.

Step 4: Configure Cluster

In this section of the wizard, you configure the container instances that your tasks can be placed on, the
address range that you can reach your instances and load balancer from, and the IAM roles to use with
your container instances that let Amazon ECS take care of this configuration for you.

1. In the Number of Instances field, type the number of Amazon EC2 instances you want to launch
into your cluster for tasks to be placed on. The more instances you have in your cluster, the more
tasks you can place on them. Amazon EC2 instances incur costs while they exist in your AWS
resources. For more information, see Amazon EC2 Pricing.

Note
If you created a service with more than one task in it that exposes container ports on to
container instance ports, such as the Amazon ECS sample application, you need to select
at least that many instances here.

2. Select the instance type to use for your container instances. Instance types with more CPU and
memory resources can handle more tasks. For more information on the different instance types, see
Amazon EC2 Instances.

3. Select a key pair name to use with your container instances. This is required for you to log into your
instances with SSH. If you do not have a key pair, you can create one in the Amazon EC2 console
at https://console.aws.amazon.com/ec2/.

4. (Optional) In the Security Group section, you can choose a CIDR block that restricts access to your
instances. The default value allows access from the entire Internet.

5. In the IAM Role Information section, choose an existing Amazon ECS container instance
(ecsInstanceRole) and service (ecsServiceRole) role that you have already created, or click
Create IAM Roles to create the required IAM roles for your container instances and services.

6. Click Allow in the authorization window to allow Amazon ECS to make calls on your behalf.

7. Click Review and Launch to proceed.

Step 5: Review

• Review your task definition, task configuration, and cluster configurations and click Launch Instance
& Run Service to finish.

API Version 2014-11-13
19

Amazon EC2 Container Service Developer Guide

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/instance-types/
https://console.aws.amazon.com/ec2/

Cleaning Up your Amazon ECS
Resources

When you are finished experiment with or using a particular Amazon ECS cluster, you should clean up
the resources associated with it to avoid incurring charges for resources that you are not using.

Some Amazon ECS resources, such as tasks, services, clusters, and container instances, are cleaned
up using the Amazon ECS console. Other resources, such as Amazon EC2 instances, Elastic Load
Balancing load balancers, and Auto Scaling groups, must be cleaned up manually in the Amazon EC2
console or by deleting the AWS CloudFormation stack that created them.

Topics

• Scale Down Services (p. 20)

• Delete Services (p. 21)

• Deregister Container Instances (p. 21)

• Delete a Cluster (p. 21)

• Delete the AWS CloudFormation Stack (p. 22)

Scale Down Services
If your cluster contains any services, you should first scale down the desired count of tasks in these
services to 0 so that Amazon ECS does not try to start new tasks on your container instances while you
are cleaning up. Follow the procedure in Updating a Service (p. 73) and enter 0 in the Number of tasks
field.

Alternatively, you can use the following AWS CLI command to scale down your service. Be sure to
substitute the region name, cluster name, and service name for each service that you are scaling down.

$ aws --region us-west-2 ecs update-service --cluster default --service ser
vice_name --desired-count 0

API Version 2014-11-13
20

Amazon EC2 Container Service Developer Guide
Scale Down Services

Delete Services
Before you can delete a cluster, you must delete the services inside that cluster. After your service has
scaled down to 0 tasks, you can delete it. For each service inside your cluster, follow the procedures in
Deleting a Service (p. 74) to delete it.

Alternatively, you can use the following AWS CLI command to delete your services. Be sure to substitute
the region name, cluster name, and service name for each service that you are deleting.

$ aws --region us-west-2 ecs delete-service --cluster default --service ser
vice_name

Deregister Container Instances
Before you can delete a cluster, you must deregister the container instances inside that cluster. For each
container instance inside your cluster, follow the procedures in Deregister a Container Instance (p. 30)
to deregister it.

Alternatively, you can use the following AWS CLI command to deregister your container instances. Be
sure to substitute the region name, cluster name, and container instance ID for each container instance
that you are deregistering.

$ aws --region us-west-2 ecs deregister-container-instance --cluster default -
-container-instance container_instance_id --force

Delete a Cluster
After you have removed the active resources from your Amazon ECS cluster, you can delete it. Use the
following procedure to delete your cluster.

To delete a cluster

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, select the region that your cluster is in.

3. In the navigation pane, select Clusters.

4. On the Clusters page, click the x in the upper-right-hand corner of the cluster you want to delete.

API Version 2014-11-13
21

Amazon EC2 Container Service Developer Guide
Delete Services

https://console.aws.amazon.com/ecs/

5. Choose Yes, Delete to delete the cluster.

Alternatively, you can use the following AWS CLI command to delete your cluster. Be sure to substitute
the region name and cluster name for each cluster that you are deleting.

$ aws --region us-west-2 ecs delete-cluster --cluster default

Delete the AWS CloudFormation Stack
If you created your Amazon ECS resources by following the console first-run wizard, then your resources
are contained in a AWS CloudFormation stack.You can completely clean up all of your remaining AWS
resources that are associated with this stack by deleting it. Deleting the CloudFormation stack terminates
the EC2 instances, removes the Auto Scaling group, deletes any Elastic Load Balancing load balancers,
and removes the Amazon VPC subnets and Internet gateway associated with the cluster.

To delete the AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

2. From the navigation bar, select the region that your cluster was created in.

3. Select the stack that is associated with your Amazon ECS resources. The Stack Name value starts
with EC2ContainerService-default.

4. Choose Delete Stack and then choose Yes, Delete to delete your stack resources.

API Version 2014-11-13
22

Amazon EC2 Container Service Developer Guide
Delete the AWS CloudFormation Stack

https://console.aws.amazon.com/cloudformation/

Amazon ECS Container Instances

An Amazon EC2 Container Service (Amazon ECS) container instance is an Amazon EC2 instance that
is running the Amazon ECS container agent and has been registered into a cluster. When you run tasks
with Amazon ECS, your tasks are placed on your active container instances.

Topics

• Container Instance Concepts (p. 23)

• Container Instance Life Cycle (p. 24)

• Check the Instance Role for your Account (p. 24)

• Launching an Amazon ECS Container Instance (p. 25)

• Starting a Task at Container Instance Launch Time (p. 27)

• Deregister a Container Instance (p. 30)

Container Instance Concepts
• Your container instance must be running the Amazon ECS container agent to register into one of your

clusters. If you are using the Amazon ECS-optimized AMI, the agent is already installed. If you want
to use a different operating system, you need to install the agent. For more information, see Amazon
ECS Container Agent (p. 32).

• Because the Amazon ECS container agent makes calls to Amazon ECS on your behalf, you need to
launch container instances with an IAM role that authenticates to your account and provides the required
resource permissions. For more information, see Amazon ECS Container Instance IAM Role (p. 94).

• Containers associated with your tasks can map their network ports to ports on the host Amazon ECS
container instance so they are reachable from the Internet. If your container has external connectivity,
then your container instance security group must allow inbound access to the ports you want to expose.
For more information, see Create a Security Group (p. 8).

• Amazon ECS strongly recommends launching your container instances inside a VPC, because Amazon
VPC delivers more control over your network and offers more extensive configuration capabilities. For
more information, see Amazon EC2 and Amazon Virtual Private Cloud in the Amazon EC2 User Guide
for Linux Instances.

• Container instances need external network access to communicate with the Amazon ECS service
endpoint, so if your container instances are running in a private VPC, they need a network address
translation (NAT) instance to provide this access. For more information, see NAT Instances in the
Amazon VPC User Guide.

API Version 2014-11-13
23

Amazon EC2 Container Service Developer Guide
Container Instance Concepts

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html

• The type of EC2 instance that you choose for your container instances determines the resources
available in your cluster. Amazon EC2 provides different instance types, each with different CPU,
memory, storage, and networking capacity that you can use to run your tasks. For more information,
see Amazon EC2 Instances.

Container Instance Life Cycle
When the Amazon ECS container agent registers an instance into your cluster, the container instance
reports its status as ACTIVE and its agent connection status as TRUE.This container instance can accept
run task requests.

If you stop (not terminate) an Amazon ECS container instance, the status remains ACTIVE, but the agent
connection status transitions to FALSE within a few minutes. Any tasks that were running on the container
instance stop. If you start the container instance again, the container agent reconnects with the Amazon
ECS service, and you are able to run tasks on the instance again.

Important
If you stop and start a container instance, or reboot that instance, some older versions of the
Amazon ECS container agent register the instance again without deregistering the original
container instance ID, so Amazon ECS will list more container instances in your cluster than you
actually have. (If you have duplicate container instance IDs for the same Amazon EC2 instance
ID, you can safely deregister the duplicates that are listed as ACTIVE with an agent connection
status of FALSE.) This issue is fixed in the current version of the Amazon ECS container agent.
To update to the current version, see Updating the Amazon ECS Container Agent (p. 35).

If you deregister or terminate a container instance, the container instance status changes to INACTIVE
immediately, and the container instance is no longer reported when you list your container instances.
However, you can still describe the container instance for one hour following termination. After one hour,
the instance description is no longer available.

Check the Instance Role for your Account
The Amazon ECS container agent makes calls to the Amazon ECS APIs on your behalf, so container
instances that run the agent require an IAM policy and role for the service to know that the agent belongs
to you.

In most cases, the Amazon ECS instance role is automatically created for you in the console first-run
experience.You can use the following procedure to check and see if your account already has an Amazon
ECS service role.

To check for the ecsInstanceRole in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsInstanceRole. If the role exists, you do not need to create it. If the
role does not exist, follow the procedures in Amazon ECS Container Instance IAM Role (p. 94) to
create the role.

API Version 2014-11-13
24

Amazon EC2 Container Service Developer Guide
Container Instance Life Cycle

http://aws.amazon.com/ec2/instance-types/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Launching an Amazon ECS Container Instance
You can launch an Amazon ECS container instance using the AWS Management Console, as described
in this topic. Before you begin, be sure that you've completed the steps in Setting Up with Amazon
ECS (p. 3). After you've launched your instance, you can use it to run tasks.

To launch a container instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select the region to use.

Note
Amazon ECS is available in the following regions:

RegionRegion Name

us-east-1US East (N. Virginia)

us-west-1US West (N. Califor-
nia)

us-west-2US West (Oregon)

eu-west-1EU (Ireland)

ap-northeast-1Asia Pacific (Tokyo)

ap-southeast-2Asia Pacific (Sydney)

3. From the console dashboard, choose Launch Instance.

4. On the Choose an Amazon Machine Image (AMI) page, choose Community AMIs.

5. Choose an AMI for your container instance.You can choose the Amazon ECS-optimized AMI, or
another operating system, such as CoreOS or Ubuntu. If you do not choose the Amazon
ECS-optimized AMI, you need to follow the procedures in Installing the Amazon ECS Container
Agent (p. 32).

Note
For Amazon ECS-specific CoreOS installation instructions, see https://coreos.com/docs/
running-coreos/cloud-providers/ecs/.

To use the Amazon ECS-optimized AMI, type amazon-ecs-optimized in the Search community
AMIs field and press the Enter key. Choose Select next to the
amzn-ami-2015.03.f-amazon-ecs-optimized AMI. The current Amazon ECS-optimized AMI IDs by
region are listed below for reference.

AMI IDAMI NameRegion

ami-b540eadeamzn-ami-2015.03.f-amazon-
ecs-optimized

us-east-1

ami-5721df13amzn-ami-2015.03.f-amazon-
ecs-optimized

us-west-1

ami-cb584dfbamzn-ami-2015.03.f-amazon-
ecs-optimized

us-west-2

API Version 2014-11-13
25

Amazon EC2 Container Service Developer Guide
Launch a Container Instance

https://console.aws.amazon.com/ec2/
https://coreos.com/docs/running-coreos/cloud-providers/ecs/
https://coreos.com/docs/running-coreos/cloud-providers/ecs/

AMI IDAMI NameRegion

ami-2aaef35damzn-ami-2015.03.f-amazon-
ecs-optimized

eu-west-1

ami-8aa61c8aamzn-ami-2015.03.f-amazon-
ecs-optimized

ap-northeast-1

ami-5ddc9f67amzn-ami-2015.03.f-amazon-
ecs-optimized

ap-southeast-2

6. On the Choose an Instance Type page, you can select the hardware configuration of your instance.
The t2.micro instance type is selected by default. The instance type that you select determines
the resources available for your tasks to run on.

7. Choose Next: Configure Instance Details.

8. On the Configure Instance Details page, verify that your Auto-assign Public IP field is set to
Enable so that your instance is accessible from the Internet.

9. On the Configure Instance Details page, select the ecsInstanceRole IAM role value that you
created for your container instances in Setting Up with Amazon ECS (p. 3).

Important
If you do not launch your container instance with the proper IAM permissions, your Amazon
ECS agent will not connect to your cluster. For more information, see Amazon ECS Container
Instance IAM Role (p. 94).

10. (Optional) Configure your Amazon ECS container instance with user data, such as the agent
environment variables from Amazon ECS Container Agent Configuration (p. 40).

By default, your container instance launches into your default cluster. If you want to launch into your
own cluster instead of the default, choose the Advanced Details list and paste the following script
into the User data field, replacing your_cluster_name with the name of your cluster.

#!/bin/bash
echo ECS_CLUSTER=your_cluster_name >> /etc/ecs/ecs.config

Or, if you have an ecs.config file in Amazon S3 and have enabled read-only access to your
container instance role, choose the Advanced Details list and paste the following script into the
User data field, replacing your_bucket_name with the name of your bucket to install the AWS CLI
and write your configuration file at launch time.

Note
For more information about this configuration, see Storing Container Instance Configuration
in Amazon S3 (p. 42).

#!/bin/bash
yum install -y aws-cli
aws s3 cp s3://your_bucket_name/ecs.config /etc/ecs/ecs.config

11. Choose Review and Launch.

12. On the Review Instance Launch page, under Security Groups, you'll see that the wizard created
and selected a security group for you. Instead, select the security group that you created in Setting
Up with Amazon ECS (p. 3) using the following steps:

a. Choose Edit security groups.

API Version 2014-11-13
26

Amazon EC2 Container Service Developer Guide
Launch a Container Instance

b. On the Configure Security Group page, ensure that the Select an existing security group
option is selected.

c. Select the security group you created for your container instance from the list of existing security
groups, and choose Review and Launch.

13. On the Review Instance Launch page, choose Launch.

14. In the Select an existing key pair or create a new key pair dialog box, choose Choose an existing
key pair, then select the key pair that you created when getting set up.

When you are ready, select the acknowledgment field, and then choose Launch Instances.

15. A confirmation page lets you know that your instance is launching. Choose View Instances to close
the confirmation page and return to the console.

16. On the Instances screen, you can view the status of your instance. It takes a short time for an
instance to launch. When you launch an instance, its initial state is pending. After the instance
starts, its state changes to running, and it receives a public DNS name. (If the Public DNS column
is hidden, choose the Show/Hide icon and select Public DNS.)

Starting a Task at Container Instance Launch
Time

Depending on your application architecture design, you may need to run a specific container on every
container instance to deal with operations or security concerns such as monitoring, security, metrics,
service discovery, or logging.

One method you can use to accomplish this goal is to configure your container instances to call the
docker run command with the user data script at launch or in some init system such as Upstart or
systemd. While this works, it has some disadvantages because Amazon ECS has no knowledge of the
container and cannot monitor the CPU, memory, ports, or any other resources used. To ensure that
Amazon ECS can properly account for all task resources, you should create a task definition for the
container you want to run on your container instances, and use Amazon ECS to place the task at launch
time with EC2 user data.

The EC2 user data script in the following procedure uses the Amazon ECS introspection API to identify
the container instance and then it uses the AWS CLI and the start-task command to run a specified task
on itself during start up.

To start a task at container instance launch time

1. If you have not done so already, create a task definition with the container you want to run on your
container instance at launch by following the procedures in Creating a Task Definition (p. 50).

2. Modify your ecsInstanceRole IAM role to add permissions for the StartTask API operation. For
more information, see Amazon ECS Container Instance IAM Role (p. 94).

a. Open the IAM console at https://console.aws.amazon.com/iam/.

b. In the navigation pane, choose Roles.

c. Choose the ecsInstanceRole. If the role does not exist, use the procedure in Amazon ECS
Container Instance IAM Role (p. 94) to create the role and return to this procedure. If the role
does exist, select the role to view the attached policies.

d. In the Inline Policies section, choose Create Role Policy.

e. On the Set Permissions page, choose Custom Policy and then choose Select.

f. In the Policy Name field, enter StartTask.

API Version 2014-11-13
27

Amazon EC2 Container Service Developer Guide
Starting a Task at Container Instance Launch Time

https://console.aws.amazon.com/iam/

g. In the Policy Document field, copy and paste the following policy and choose Apply Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StartTask"
],
 "Resource": "*"
 }
]
}

3. Launch one or more container instances by following the procedure in Launching an Amazon ECS
Container Instance (p. 25), but in Step 10 (p. 26), copy and paste the MIME multipart user data script
below into the User data field, substituting your_cluster_name with the cluster you want the
container instance to register into and my_task_def and the task definition you want to run on the
instance at launch.

Note
The MIME multipart content below uses a shell script to set configuration values and install
packages, and an Upstart job to start the task after the ecs service is running and the
introspection API is available.

Content-Type: multipart/mixed; boundary="==BOUNDARY=="
MIME-Version: 1.0

--==BOUNDARY==
MIME-Version: 1.0
Content-Type: text/text/x-shellscript; charset="us-ascii"

#!/bin/bash
Specify the cluster that the container instance should register into
cluster=your_cluster_name

Write the cluster configuration variable to the ecs.config file
(add any other configuration variables here also)
echo ECS_CLUSTER=$cluster >> /etc/ecs/ecs.config

Install the AWS CLI and the jq JSON parser
yum install -y aws-cli jq
--==BOUNDARY==
MIME-Version: 1.0
Content-Type: text/text/upstart-job; charset="us-ascii"

#upstart-job
description "Amazon EC2 Container Service (start task on instance boot)"
author "Amazon Web Services"
start on started ecs

script
 exec 2>>/var/log/ecs/ecs-start-task.log
 set -x

API Version 2014-11-13
28

Amazon EC2 Container Service Developer Guide
Starting a Task at Container Instance Launch Time

 until curl -s http://localhost:51678/v1/metadata
 do
 sleep 1
 done

 # Grab the container instance ARN and AWS region from instance metadata
 instance_arn=$(curl -s http://localhost:51678/v1/metadata | jq -r '. |
.ContainerInstanceArn' | awk -F/ '{print $NF}')
 cluster=$(curl -s http://localhost:51678/v1/metadata | jq -r '. | .Cluster'
 | awk -F/ '{print $NF}')
 region=$(curl -s http://localhost:51678/v1/metadata | jq -r '. | .Contain
erInstanceArn' | awk -F: '{print $4}')

 # Specify the task definition to run at launch
 task_definition=my_task_def

 # Run the AWS CLI start-task command to start your task on this container
 instance
 aws ecs start-task --cluster $cluster --task-definition $task_definition
--container-instances $instance_arn --started-by $instance_arn --region
$region
end script
--==BOUNDARY==--

4. Verify that your container instances launch into the correct cluster and that your tasks have started.

a. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

b. From the navigation bar, choose the region that your cluster is in.

c. In the navigation pane, choose Clusters.

d. Choose the cluster that hosts your container instances.

e. On the Cluster page, choose the Tasks tab.

API Version 2014-11-13
29

Amazon EC2 Container Service Developer Guide
Starting a Task at Container Instance Launch Time

https://console.aws.amazon.com/ecs/

Each container instance you launched should have your task running on it, and the container
instance ARN should be in the Started By column.

If you do not see your tasks, you can log into your container instances with SSH and check the
/var/log/ecs/ecs-start-task.log file for debugging information.

Deregister a Container Instance
When you are finished with a container instance, you can deregister it from your cluster. Following
deregistration, the container instance is no longer able to accept new tasks. If you have tasks running on
the container instance when you deregister it, these tasks remain running and they will continue to pass
Elastic Load Balancing load balancer health checks until you terminate the instance or the tasks stop
through some other means, but they are orphaned (no longer monitored or accounted for by Amazon
ECS). If an orphaned task on your container instance is part of an Amazon ECS service, then the service
scheduler will start another copy of that task on a different container instance if possible.

If you intend to use the container instance for some other purpose after deregistration, you should stop
all of the tasks running on the container instance before deregistration to avoid any orphaned tasks from
consuming resources.

Deregistering a container instance removes the instance from a cluster, but it does not terminate the EC2
instance; if you are finished using the instance, be sure to terminate it in the Amazon EC2 console to stop
billing. For more information, see Terminate Your Instance in the Amazon EC2 User Guide for Linux
Instances.

Note
When you terminate a container instance, it is automatically deregistered from your cluster.

API Version 2014-11-13
30

Amazon EC2 Container Service Developer Guide
Deregister Container Instance

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

To deregister a container instance

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region that your container instance is registered in.

3. In the navigation pane, choose Clusters.

4. Choose the cluster that hosts your container instance.

5. On the Cluster : name page, choose the ECS Instances tab.

6. Choose the container instance ID that you want to deregister.

7. On the Container Instance : id page, choose Deregister.

8. Review the deregistration message, and choose Yes, Deregister to deregister the container instance.

9. If you are finished with the container instance, you should terminate the underlying Amazon EC2
instance. For more information, see Terminate Your Instance in the Amazon EC2 User Guide for
Linux Instances.

Note
If your instance is maintained by an Auto Scaling group or AWS CloudFormation stack,
terminate the instance by updating the Auto Scaling group or AWS CloudFormation stack;
otherwise, the Auto Scaling group will recreate the instance after you terminate it.

API Version 2014-11-13
31

Amazon EC2 Container Service Developer Guide
Deregister Container Instance

https://console.aws.amazon.com/ecs/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html

Amazon ECS Container Agent

The Amazon ECS container agent allows container instances to connect to your cluster. The Amazon
ECS container agent is included in the Amazon ECS-optimized AMI, but you can also install it on any
EC2 instance that supports the Amazon ECS specification. The Amazon ECS container agent is only
supported on EC2 instances.

Note
The source code for the Amazon ECS container agent is available on GitHub. We encourage
you to submit pull requests for changes that you would like to have included. However, Amazon
Web Services does not currently provide support for running modified copies of this software.

Topics

• Installing the Amazon ECS Container Agent (p. 32)

• Amazon ECS Container Agent Versions (p. 34)

• Updating the Amazon ECS Container Agent (p. 35)

• Amazon ECS Container Agent Configuration (p. 40)

• Private Registry Authentication (p. 44)

• Amazon ECS Container Agent Introspection (p. 46)

Installing the Amazon ECS Container Agent
If your container instance was not launched from an AMI that includes the Amazon ECS container agent,
you can install it using the following procedure.

Note
The Amazon ECS container agent is included in the Amazon ECS-optimized AMI and does not
require installation.

To install the Amazon ECS container agent on an Amazon Linux EC2 Instance

1. Launch an Amazon Linux instance with an IAM role that allows access to Amazon ECS. For more
information, see Amazon ECS Container Instance IAM Role (p. 94).

2. Connect to your instance.

3. Install the ecs-init package. For more information on ecs-init, you can view the source code
on GitHub.

API Version 2014-11-13
32

Amazon EC2 Container Service Developer Guide
Installing the Amazon ECS Container Agent

https://github.com/aws/amazon-ecs-agent
https://github.com/aws/amazon-ecs-init
https://github.com/aws/amazon-ecs-init

[ec2-user ~]$ sudo yum install -y ecs-init

4. Start the Docker daemon.

[ec2-user ~]$ sudo service docker start
Starting cgconfig service: [OK]
Starting docker: [OK]

5. Start the ecs-init upstart job.

[ec2-user ~]$ sudo start ecs
ecs start/running, process 2804

6. (Optional) You can verify that the agent is running and see some information on your new container
instance with the agent introspection API. For more information, see the section called “Amazon
ECS Container Agent Introspection” (p. 46).

[ec2-user ~]$ curl http://localhost:51678/v1/metadata
{
 "Cluster": "default",
 "ContainerInstanceArn": "<container_instance_ARN>",
 "Version": "Amazon ECS Agent - v1.3.0 (097e4af)"
}

To install the Amazon ECS container agent on a non-Amazon Linux EC2 instance

1. Launch an EC2 instance with an IAM role that allows access to Amazon ECS. For more information,
see Amazon ECS Container Instance IAM Role (p. 94).

2. Connect to your instance.

3. Install Docker on your instance. Amazon ECS requires a minimum Docker version of 1.5.0 (version
1.6.2 is recommended), and the default Docker versions in many system package managers, such
as yum or apt-get do not meet this minimum requirement. For information about installing the latest
Docker version on your particular Linux distribution, go to https://docs.docker.com/installation/.

Note
The Amazon Linux AMI always includes the recommended version of Docker for use with
Amazon ECS.You can install Docker on Amazon Linux with the sudo yum install docker
-y command.

4. Check your Docker version to verify that your system meets the minimum version requirement.

ubuntu:~$ sudo docker version
Client version: 1.4.1
Client API version: 1.16
Go version (client): go1.3.3
Git commit (client): 5bc2ff8
OS/Arch (client): linux/amd64
Server version: 1.4.1
Server API version: 1.16
Go version (server): go1.3.3
Git commit (server): 5bc2ff8

API Version 2014-11-13
33

Amazon EC2 Container Service Developer Guide
Installing the Amazon ECS Container Agent

https://docs.docker.com/installation/

In this example, the Docker version is 1.4.1, which is below the minimum version of 1.5.0. This
instance needs to upgrade its Docker version before proceeding. For information about installing the
latest Docker version on your particular Linux distribution, go to https://docs.docker.com/installation/.

5. Pull and run the latest Amazon ECS container agent on your container instance. The following
example agent run command is broken into separate lines to show each option.

• The --env=ECS_CLUSTER=cluster_name option is not required if you want to register into your
default cluster.

• The cgroup volume mount should use the path to the cgroup virtual file system for the host and
container paths. For Amazon Linux, this path is /cgroup; for many other operating systems, this
path is /sys/fs/cgroup, but you should verify the path in your specific OS documentation.

• The execdriver volume mount host path should use your container instance's OS-specific
execdriver path. For most operating systems, this path is
/var/run/docker/execdriver/native, but you should verify the path in your specific OS
documentation.

For more information on these and other agent runtime options, see Amazon ECS Container Agent
Configuration (p. 40).

ubuntu:~$ sudo docker run --name ecs-agent \
--detach=true \
--restart=on-failure:10 \
--volume=/var/run/docker.sock:/var/run/docker.sock \
--volume=/var/log/ecs/:/log \
--volume=/var/lib/ecs/data:/data \
--volume=/sys/fs/cgroup:/sys/fs/cgroup:ro \
--volume=/var/run/docker/execdriver/native:/var/lib/docker/execdriver/nat
ive:ro \
--publish=127.0.0.1:51678:51678 \
--env=ECS_LOGFILE=/log/ecs-agent.log \
--env=ECS_LOGLEVEL=info \
--env=ECS_DATADIR=/data \
--env=ECS_CLUSTER=cluster_name \
amazon/amazon-ecs-agent:latest

Note
If you receive an Error response from daemon: Cannot start container message,
you can delete the failed container with the sudo docker rm ecs-agent command and try
running the agent again.

Amazon ECS Container Agent Versions
Each Amazon ECS container agent version has a minimum Docker version requirement, and each version
supports a different feature set and provides bug fixes from previous versions. When possible, we always
recommend using the latest version of the Amazon ECS container agent.To update your container agent
to the latest version, see Updating the Amazon ECS Container Agent (p. 35).

Launching your container instances from the most recent Amazon ECS-optimized AMI ensures that you
receive the current container agent version. To launch a container instance with the latest Amazon
ECS-optimized AMI, see Launching an Amazon ECS Container Instance (p. 25).

API Version 2014-11-13
34

Amazon EC2 Container Service Developer Guide
Container Agent Versions

https://docs.docker.com/installation/

SupportedMinimum Docker versionAmazon ECS container agent
version

Yes1.5.01.4.0

Yes1.5.01.3.1

Yes1.5.01.3.0

Yes1.5.01.2.1

Yes1.5.01.2.0

Yes1.5.01.1.0

Yes1.3.31.0.0

No1.3.30.0.3

To see which features and enhancements are included with each agent release, see https://github.com/
aws/amazon-ecs-agent/releases.

Amazon ECS-optimized AMI Container Agent
Versions
The Amazon ECS-optimized AMI comes prepackaged with the Amazon ECS container agent, Docker,
and the ecs-init service that controls the starting and stopping of the agent at boot and shutdown.The
following table lists the container agent version, the ecs-init version, and the Docker version that is
packaged with each Amazon ECS-optimized AMI.

Supportedecs-init versionDocker versionAmazon ECS
container agent
version

Amazon ECS-op-
timized AMI

Yes1.4.01.6.21.4.02015.03.f

Yes1.3.1-11.6.21.3.12015.03.e

Yes1.2.0-21.6.21.2.12015.03.d

Yes1.2.0-11.6.21.2.02015.03.c

Yes1.0-31.6.01.1.02015.03.b

Yes1.0-11.5.01.0.02015.03.a

No0.3-01.3.30.0.3preview3

Updating the Amazon ECS Container Agent
Occasionally, you may need to update the Amazon ECS container agent to pick up bug fixes and new
features. Updating the Amazon ECS container agent does not interrupt running tasks or services on the
container instance. The process for updating the agent differs depending on whether your container
instance was launched with the Amazon ECS-optimized AMI or another operating system.

Topics

API Version 2014-11-13
35

Amazon EC2 Container Service Developer Guide
Amazon ECS-optimized AMI Container Agent Versions

https://github.com/aws/amazon-ecs-agent/releases
https://github.com/aws/amazon-ecs-agent/releases

• Checking your Amazon ECS Container Agent Version (p. 36)

• Updating the Amazon ECS Container Agent on the Amazon ECS-optimized AMI (p. 37)

• Manually Updating the Amazon ECS Container Agent (for Non-Amazon ECS-optimized AMIs) (p. 38)

Checking your Amazon ECS Container Agent
Version
You can check the version of the container agent that is running on your container instances to see if you
need to update it. The container instance view in the Amazon ECS console provides the agent version.
Use the following procedure to check your agent version.

To check if your Amazon ECS container agent is running the latest version in the console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the Clusters page, choose the cluster that hosts the container instance or instances you would
like to check.

3. On the Cluster : cluster_name page, choose the ECS Instances tab.

4. Note the Agent version column for your container instances.

If your agent version is 1.4.0, you are running the latest container agent. If your agent version is
below 1.4.0, you can update your container agent with the following procedures.

Important
To update the Amazon ECS agent version from versions prior to v1.0.0 on your Amazon
ECS-optimized AMI it is recommended that you terminate your current container instance
and launch a new instance with the most recent Amazon ECS-Optimized AMI. Any container
instances that use a preview version of the Amazon ECS-optimized AMI should be retired
and replaced with the most recent AMI. For more information, see Launching an Amazon
ECS Container Instance (p. 25).

You can also use the Amazon ECS container agent introspection API to check the agent version from
the container instance itself. For more information, see Amazon ECS Container Agent Introspection (p. 46).

To check if your Amazon ECS container agent is running the latest version with the
introspection API

1. Log into your container instance via SSH.

2. Query the introspection API.

[ec2-user ~]$ curl -s 127.0.0.1:51678/v1/metadata | python -mjson.tool
{
 "Cluster": "default",
 "ContainerInstanceArn": "arn:aws:ecs:us-west-2:<aws_account_id>:container-
instance/4d3910c1-27c8-410c-b1df-f5d06fab4305",
 "Version": "Amazon ECS Agent - v1.4.0 (4ab1051)"
}

Note
The introspection API added Version information in the version v1.0.0 of the Amazon ECS
container agent. If Version is not present when querying the introspection API, or the
introspection API is not present in your agent at all, then the version you are running is
v0.0.3 or earlier, and you should update it.

API Version 2014-11-13
36

Amazon EC2 Container Service Developer Guide
Checking your Amazon ECS Container Agent Version

https://console.aws.amazon.com/ecs/

Updating the Amazon ECS Container Agent on the
Amazon ECS-optimized AMI
If you are using the Amazon ECS-optimized AMI, you can update the container agent with a one-click
operation in the Amazon ECS console or a simple AWS CLI command.You can also update the agent
by updating the ecs-init package on the container instance. For more information, see To update the
ecs-init package on the Amazon ECS-optimized AMI (p. 38).

Important
This update process is only supported on the Amazon ECS-optimized AMI. For container instances
that are running other operating systems, see Manually Updating the Amazon ECS Container
Agent (for Non-Amazon ECS-optimized AMIs) (p. 38).
To update the Amazon ECS agent version from versions prior to v1.0.0 on your Amazon
ECS-optimized AMI it is recommended that you terminate your current container instance and
launch a new instance with the most recent Amazon ECS-Optimized AMI. Any container instances
that use a preview version of the Amazon ECS-optimized AMI should be retired and replaced
with the most recent AMI. For more information, see Launching an Amazon ECS Container
Instance (p. 25).

The update process begins when you request an agent update. Amazon ECS checks your current agent
version against the latest available agent version, and if an update is possible, the update process
progresses as shown in the flow chart below. If an update is not available, for example, if the agent is
already running the most recent version, then a NoUpdateAvailableException is returned.

The stages in the update process shown above are as follows:

PENDING
An agent update is available, and the update process has started.

STAGING
The agent has begun downloading the agent update. If the agent cannot download the update, or if
the contents of the update are incorrect or corrupted, then the agent sends a notification of the failure
and the update transitions to the FAILED state.

API Version 2014-11-13
37

Amazon EC2 Container Service Developer Guide
Updating the Amazon ECS Container Agent on the

Amazon ECS-optimized AMI

STAGED
The agent download has completed and the agent contents have been verified.

UPDATING
The ecs-init service is restarted and it picks up the new agent version. If the agent is for some
reason unable to restart, the update transitions to the FAILED state; otherwise, the agent signals
Amazon ECS that the update is complete.

To update the Amazon ECS container agent on the Amazon ECS-optimized AMI in the
console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the Clusters page, choose the cluster that hosts the container instance or instances you would
like to check.

3. On the Cluster : cluster_name page, choose the ECS Instances tab.

4. Choose the container instance you want to update by clicking its ID.

5. On the Container Instance page, choose the Update agent button to update the container agent on
the instance.

To update the Amazon ECS container agent on the Amazon ECS-optimized AMI with the
AWS CLI

• Use the following command to update the Amazon ECS container agent on your container instance:

$ aws ecs update-container-agent --cluster cluster_name --container-instance
container_instance_id

To update the ecs-init package on the Amazon ECS-optimized AMI

1. Log into your container instance via SSH.

2. Update the ecs-init package with the following command.

[ec2-user ~]$ sudo yum update -y ecs-init

Manually Updating the Amazon ECS Container
Agent (for Non-Amazon ECS-optimized AMIs)
To manually update the Amazon ECS container agent (for non-Amazon ECS-optimized
AMIs)

1. Log into your container instance via SSH.

2. Check to see if your agent uses the ECS_DATADIR environment variable to save its state.

[ec2-user ~]$ docker inspect ecs-agent | grep ECS_DATADIR
 "ECS_DATADIR=/data",

API Version 2014-11-13
38

Amazon EC2 Container Service Developer Guide
Manually Updating the Amazon ECS Container Agent

(for Non-Amazon ECS-optimized AMIs)

https://console.aws.amazon.com/ecs/

Important
If the previous command does not return the ECS_DATADIR environment variable, you must
stop any tasks running on this container instance before updating your agent. Newer agents
with the ECS_DATADIR environment variable save their state and you can update them
while tasks are running without issues.

3. Stop the Amazon ECS container agent.

[ec2-user ~]$ docker stop ecs-agent
ecs-agent

4. Delete the agent container.

[ec2-user ~]$ docker rm ecs-agent
ecs-agent

5. Pull the latest Amazon ECS container agent image from Docker Hub.

[ec2-user ~]$ docker pull amazon/amazon-ecs-agent:latest
Pulling repository amazon/amazon-ecs-agent
a5a56a5e13dc: Download complete
511136ea3c5a: Download complete
9950b5d678a1: Download complete
c48ddcf21b63: Download complete
Status: Image is up to date for amazon/amazon-ecs-agent:latest

6. Run the latest Amazon ECS container agent on your container instance. The following example
agent run command is broken into separate lines to show each option.

• The --env=ECS_CLUSTER=cluster_name option is not required if you want to register into your
default cluster.

• The cgroup volume mount should use the path to the cgroup virtual file system for the host and
container paths. For Amazon Linux, this path is /cgroup; for many other operating systems, this
path is /sys/fs/cgroup, but you should verify the path in your specific OS documentation.

• The execdriver volume mount host path should use your container instance's OS-specific
execdriver path. For most operating systems, this path is
/var/run/docker/execdriver/native, but you should verify the path in your specific OS
documentation.

For more information on these and other agent runtime options, see Amazon ECS Container Agent
Configuration (p. 40).

ubuntu:~$ sudo docker run --name ecs-agent \
--detach=true \
--restart=on-failure:10 \
--volume=/var/run/docker.sock:/var/run/docker.sock \
--volume=/var/log/ecs/:/log \
--volume=/var/lib/ecs/data:/data \
--volume=/sys/fs/cgroup:/sys/fs/cgroup:ro \
--volume=/var/run/docker/execdriver/native:/var/lib/docker/execdriver/nat
ive:ro \
--publish=127.0.0.1:51678:51678 \
--env=ECS_LOGFILE=/log/ecs-agent.log \

API Version 2014-11-13
39

Amazon EC2 Container Service Developer Guide
Manually Updating the Amazon ECS Container Agent

(for Non-Amazon ECS-optimized AMIs)

--env=ECS_LOGLEVEL=info \
--env=ECS_DATADIR=/data \
--env=ECS_CLUSTER=cluster_name \
amazon/amazon-ecs-agent:latest

Note
If you receive an Error response from daemon: Cannot start container message,
you can delete the failed container with the sudo docker rm ecs-agent command and try
running the agent again.

Amazon ECS Container Agent Configuration
The Amazon ECS container agent supports a number of configuration options, most of which should be
set through environment variables. The following environment variables are available, and all of them are
optional.

If your container instance was launched with the Amazon ECS-optimized AMI, you can set these
environment variables in the /etc/ecs/ecs.config file and the restart the agent.

If you are manually starting the Amazon ECS container agent (for non-Amazon ECS-optimized AMIs,
you can use these environment variables in the docker run command that you use to start the agent
with the syntax --env=VARIABLE_NAME=VARIABLE_VALUE.

Topics

• Available Parameters (p. 40)

• Storing Container Instance Configuration in Amazon S3 (p. 42)

Available Parameters

Default
Value

DescriptionExample ValuesEnviron-
ment Key

defaultThe cluster that this agent should
check into.

MyClusterECS_CLUSTER

[22,
2375,
2376,
51678]

An array of ports that should be
marked as unavailable for schedul-
ing on this container instance.

[22, 80, 5000, 8080]ECS_RE-
SERVED_PORTS

[]An array of UDP ports that should
be marked as unavailable for
scheduling on this container in-
stance.

[53, 123]ECS_RE-
SERVED_PORTS_UDP

NullRequired for private registry authen-
tication.This is the type of authentic-
ation data in ECS_ENGINE_AU-
TH_DATA. For more information, see
Authentication Formats (p. 44).

dockercfg | dockerECS_EN-
GINE_AU-
TH_TYPE

API Version 2014-11-13
40

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Agent Configuration

Default
Value

DescriptionExample ValuesEnviron-
ment Key

NullRequired for private registry authen-
tication. If ECS_ENGINE_AU-
TH_TYPE=dockercfg, then the
ECS_ENGINE_AUTH_DATA value
should be the contents of a
.dockercfg file created by running
docker login. If ECS_ENGINE_AU-
TH_TYPE=docker, then the
ECS_ENGINE_AUTH_DATA value
should be a JSON representation of
the registry server to authenticate
against, as well as the authentica-
tion parameters required by that re-
gistry (such as user name, pass-
word, and email address for that
account).

Example (ECS_ENGINE_AU-
TH_TYPE=dockercfg):

{"https://index.dock-
er.io/v1/":{"au-
th":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@ex-
ample.com"}}

Example (ECS_ENGINE_AU-
TH_TYPE=docker):

{"https://index.dock-
er.io/v1/":{"user-
name":"my_name","pass-
word":"my_pass-
word","email":"email@ex-
ample.com"}}

ECS_EN-
GINE_AU-
TH_DATA

Taken from
EC2 in-
stance
metadata.

The region to be used in API re-
quests as well as to infer the correct
back-end host.

us-east-1AWS_DE-
FAULT_RE-
GION

Taken from
EC2 in-
stance
metadata.

The access key used by the agent
for all calls.

AKIAIOSFODNN7EXAMPLEAWS_AC-
CESS_KEY_ID

Taken from
EC2 in-
stance
metadata.

The secret key used by the agent
for all calls.

wJalrXUtnFEMI/K7MDENG/bPxRfi-
CYEXAMPLEKEY

AWS_SECRET_AC-
CESS_KEY

unix:///var/run/dock-
er.sock

Used to create a connection to the
Docker daemon; behaves similarly
to the environment variable as used
by the Docker client.

unix:///var/run/docker.sockDOCK-
ER_HOST

warnThe level to log at on stdout.crit | error | warn | info
| debug

ECS_LOG-
LEVEL

NullThe path to output full debugging
information to. If blank, no logs are
recorded. If this value is set, logs at
the debug level (regardless of
ECS_LOGLEVEL) are written to that
file.

/ecs-agent.logECS_LOG-
FILE

API Version 2014-11-13
41

Amazon EC2 Container Service Developer Guide
Available Parameters

http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

Default
Value

DescriptionExample ValuesEnviron-
ment Key

If
ECS_DATADIR
is explicitly
set to a non-
empty value,
then
ECS_CHECK-
POINT is set
to true; oth-
erwise, it is
set to
false.

Whether or not to save the check-
point state to the location specified
with ECS_DATADIR.

true | falseECS_CHECK-
POINT

NullThe name of the persistent data dir-
ectory on the container that is run-
ning the Amazon ECS container
agent.The directory is used to save
information about the cluster and the
agent state.

/dataECS_DATADIR

falseWhether to exit for ECS agent up-
dates when they are requested.

true | falseECS_UP-
DATES_EN-
ABLED

The filesystem location to place up-
date tarballs within the container
when they are downloaded.

/cacheECS_UP-
DATE_DOWN-
LOAD_DIR

falseWhether to disable CloudWatch
metrics for Amazon ECS. If this
value is set to true, CloudWatch
metrics are not collected.

true | falseECS_DIS-
ABLE_MET-
RICS

/var/lib/dock-
er

Used to create the path to the state
file of launched containers. The
state file is used to read utilization
metrics of containers.

/var/lib/dockerECS_DOCK-
ER_GRAPH-
PATH

Taken from
EC2 in-
stance
metadata.

The session token used for tempor-
ary credentials.

AWS_SES-
SION_TOKEN

0The amount of memory, in MiB, to
reserve for processes that are not
managed by ECS.

32ECS_RE-
SERVED_MEMORY

Storing Container Instance Configuration in
Amazon S3
Amazon ECS container agent configuration is controlled with the environment variables described above.
The Amazon ECS-optimized AMI checks for these variables in /etc/ecs/ecs.config when the
container agent starts and configures the agent accordingly. Certain innocuous environment variables,

API Version 2014-11-13
42

Amazon EC2 Container Service Developer Guide
Storing Container Instance Configuration in Amazon S3

http://docs.aws.amazon.com/STS/latest/UsingSTS/Welcome.html

such as ECS_CLUSTER, can be passed to the container instance at launch time through Amazon EC2
user data and written to this file without consequence. However, other sensitive information, such as your
AWS credentials or the ECS_ENGINE_AUTH_DATA variable, should never be passed to an instance in
user data or written to /etc/ecs/ecs.config in a way that they would show up in a .bash_history
file.

Storing configuration information in a private bucket in Amazon S3 and granting read-only access to your
container instance IAM role is a secure and convenient way to allow container instance configuration at
launch time.You can store a copy of your ecs.config file in a private bucket, and then use Amazon
EC2 user data to install the AWS CLI and copy your configuration information to /etc/ecs/ecs.config
when the instance launches.

To allow Amazon S3 read-only access for your container instance role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose the IAM role you use for your container instances (this role is likely titled ecsInstanceRole).
For more information, see Amazon ECS Container Instance IAM Role (p. 94).

4. Under Managed Policies, choose Attach Policy.

5. On the Attach Policy page, type S3 into the Filter field to narrow the policy results.

6. Check the box to the left of the AmazonS3ReadOnlyAccess policy and click Attach Policy.

To store an ecs.config file in Amazon S3

1. Create an ecs.config file with valid environment variables and values from Amazon ECS Container
Agent Configuration (p. 40) using the following format. This example configures private registry
authentication. For more information, see Private Registry Authentication (p. 44).

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":{"au
th":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

2. Create a private bucket in Amazon S3 to store your configuration file. For more information, see
Create a Bucket in the Amazon Simple Storage Service Getting Started Guide.

3. Upload the ecs.config file to your Amazon S3 bucket. For more information, see Add an Object
to a Bucket in the Amazon Simple Storage Service Getting Started Guide.

To load an ecs.config file from Amazon S3 at launch

1. Complete the above procedures in this section to allow read-only Amazon S3 access to your container
instances and store an ecs.config file in a private Amazon S3 bucket.

2. Launch new container instances by following the steps in Launching an Amazon ECS Container
Instance (p. 25). In Step 10 (p. 26), use the following example script that installs the AWS CLI and
copies your configuration file to /etc/ecs/ecs.config.

#!/bin/bash
yum install -y aws-cli
aws s3 cp s3://your_bucket_name/ecs.config /etc/ecs/ecs.config

API Version 2014-11-13
43

Amazon EC2 Container Service Developer Guide
Storing Container Instance Configuration in Amazon S3

https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/PuttingAnObjectInABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/UG/PuttingAnObjectInABucket.html

Private Registry Authentication
The Amazon ECS container agent can authenticate with private registries, including Docker Hub, using
basic authentication.When you enable private registry authentication, you can use private Docker images
in your task definitions.

The agent looks for two environment variables when it launches: ECS_ENGINE_AUTH_TYPE, which
specifies the type of authentication data that is being sent, and ECS_ENGINE_AUTH_DATA, which contains
the actual authentication credentials.

The Amazon ECS-optimized AMI scans the /etc/ecs/ecs.config file for these variables when the
container instance launches, and each time the service is started (with the sudo start ecs command).
AMIs that are not Amazon ECS-optimized must receive these environment variables as options to the
docker run command that starts the container agent, with the syntax -e
VARIABLE_NAME=VARIABLE_VALUE.

Important
Do not inject these authentication environment variables at instance launch time with Amazon
EC2 user data. This method is not appropriate for sensitive data like authentication credentials.
To safely add authentication credentials to your container instances, see Storing Container
Instance Configuration in Amazon S3 (p. 42).

Authentication Formats
There are two available formats for private registry authentication, dockercfg and docker.

dockercfg Authentication Format

The dockercfg format uses the authentication information stored in the configuration file that is created
when you run the docker login command.You can create this file by running docker login on your local
system (or by logging into a container instance and running the command there) and entering your registry
user name, password, and email address. After you create the file, you can get the authentication
information with the following command.

$ cat ~/.dockercfg
{"https://index.docker.io/v1/":{"au
th":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

In this example, the following environment variables should be set for the Amazon ECS container agent.

ECS_ENGINE_AUTH_TYPE=dockercfg
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":{"au
th":"zq212MzEXAMPLE7o6T25Dk0i","email":"email@example.com"}}

docker Authentication Format

The docker format uses a JSON representation of the registry server that the agent should authenticate
with, as well as the authentication parameters required by that registry (such as user name, password,
and the email address for that account). For a Docker Hub account, the JSON representation looks like
this:

{
 "https://index.docker.io/v1/": {
 "username": "my_name",
 "password": "my_password",

API Version 2014-11-13
44

Amazon EC2 Container Service Developer Guide
Private Registry Authentication

 "email": "email@example.com"
 }
}

In this example, the following environment variables should be set for the Amazon ECS container agent.

ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":{"username":"my_name","pass
word":"my_password","email":"email@example.com"}}

Enabling Private Registries
Use the following procedure to enable private registries for your container instances.

To enable private registries in the Amazon ECS-optimized AMI

1. Log into your container instance via SSH.

2. Open the /etc/ecs/ecs.config file and add the ECS_ENGINE_AUTH_TYPE and
ECS_ENGINE_AUTH_DATA values for your registry and account.

[ec2-user ~]$ vi /etc/ecs/ecs.config

This example authenticates a Docker Hub user account.

ECS_ENGINE_AUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/v1/":{"user
name":"my_name","password":"my_password","email":"email@example.com"}}

3. Check to see if your agent uses the ECS_DATADIR environment variable to save its state.

[ec2-user ~]$ docker inspect ecs-agent | grep ECS_DATADIR
 "ECS_DATADIR=/data",

Important
If the previous command does not return the ECS_DATADIR environment variable, you must
stop any tasks running on this container instance before stopping the agent. Newer agents
with the ECS_DATADIR environment variable save their state and you can stop and start
them while tasks are running without issues. For more information, see Updating the Amazon
ECS Container Agent (p. 35).

4. Stop the ecs service.

[ec2-user ~]$ sudo stop ecs
ecs stop/waiting

5. Restart the ecs service.

[ec2-user ~]$ sudo start ecs
ecs start/running, process 2959

API Version 2014-11-13
45

Amazon EC2 Container Service Developer Guide
Enabling Private Registries

6. (Optional) You can verify that the agent is running and see some information about your new container
instance by querying the agent introspection API. For more information, see the section called
“Amazon ECS Container Agent Introspection” (p. 46).

[ec2-user ~]$ curl http://localhost:51678/v1/metadata
{
 "Cluster": "default",
 "ContainerInstanceArn": "<container_instance_ARN>",
 "Version": "Amazon ECS Agent - v1.3.0 (097e4af)"
}

Amazon ECS Container Agent Introspection
The Amazon ECS container agent provides an API for gathering details about the container instance that
the agent is running on and the associated tasks that are running on that instance.You can use the curl
command from within the container instance to query the Amazon ECS container agent (port 51678) and
return container instance metadata or task information.

To view container instance metadata, such as the container instance ID, the Amazon ECS cluster the
container instance is registered into, and the Amazon ECS container agent version info, log into your
container instance via SSH and run the following command:

[ec2-user ~]$ curl http://localhost:51678/v1/metadata
{
 "Cluster": "default",
 "ContainerInstanceArn": "arn:aws:ecs:us-east-1:<aws_account_id>:container-
instance/example5-58ff-46c9-ae05-543f8example","Version":"Amazon ECS Agent -
v1.0.0 (4023248)"
}

To view information on all of the tasks that are running on a container instance, log into your container
instance via SSH and run the following command:

[ec2-user ~]$ curl http://localhost:51678/v1/tasks
{
 "Tasks": [
 {
 "Arn": "arn:aws:ecs:us-east-1:<aws_account_id>:task/example5-58ff-46c9-
ae05-543f8example",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Family": "hello_world",
 "Version": "8",
 "Containers": [
 {
 "DockerId": "9581a69a761a557fb
fce1d0f6745e4af5b9dbfb86b6b2c5c4df156f1a5932ff1",
 "DockerName": "ecs-hello_world-8-mysql-fcae8ac8f9f1d89d8301",
 "Name": "mysql"
 },
 {
 "DockerId":
"bf25c5c5b2d4dba68846c7236e75b6915e1e778d31611e3c6a06831e39814a15",

API Version 2014-11-13
46

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Agent Introspection

 "DockerName": "ecs-hello_world-8-wordpress-e8bfddf9b488dff36c00",
 "Name": "wordpress"
 }
]
 }
]
}

You can view information for a particular task that is running on a container instance by specifying a task
ARN (append ?taskarn=task_arn to the request) or the Docker ID (append ?dockerid=docker_id
to the request) for an individual container inside a task. To get task information with a Docker ID, log into
your container instance via SSH and run the following command:

Note
The Amazon ECS container agent introspection API requires full Docker IDs, not the short version
that is shown with docker ps.You can get the full Docker ID for a container by running the
docker ps -notrunc command on the container instance.

[ec2-user ~]$ curl http://localhost:51678/v1/tasks?dockerid=9581a69a761a557fb
fce1d0f6745e4af5b9dbfb86b6b2c5c4df156f1a5932ff1
{
 "Arn": "arn:aws:ecs:us-east-1:<aws_account_id>:task/example5-58ff-46c9-ae05-
543f8example",
 "DesiredStatus": "RUNNING",
 "KnownStatus": "RUNNING",
 "Family": "hello_world",
 "Version": "8",
 "Containers": [
 {
 "DockerId": "9581a69a761a557fb
fce1d0f6745e4af5b9dbfb86b6b2c5c4df156f1a5932ff1",
 "DockerName": "ecs-hello_world-8-mysql-fcae8ac8f9f1d89d8301",
 "Name": "mysql"
 },
 {
 "DockerId":
"bf25c5c5b2d4dba68846c7236e75b6915e1e778d31611e3c6a06831e39814a15",
 "DockerName": "ecs-hello_world-8-wordpress-e8bfddf9b488dff36c00",
 "Name": "wordpress"
 }
]
}

API Version 2014-11-13
47

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Agent Introspection

Amazon ECS Task Definitions

A task definition is required to run Docker containers in Amazon ECS. Some of the parameters you can
specify in a task definition include:

• Which Docker images to use with the containers in your task

• How much CPU and memory to use with each container

• Whether containers are linked together in a task

• What (if any) ports from the container are mapped to the host container instance

• Whether the task should continue to run if the container finishes or fails

• The command the container should run when it is started

• What (if any) environment variables should be passed to the container when it starts

• Any data volumes that should be used with the containers in the task

You can define multiple containers and data volumes in a task definition. For a complete description of
the parameters available in a task definition, see Task Definition Parameters (p. 52).

Your entire application stack does not need to exist on a single task definition, and in most cases it should
not.Your application can span multiple task definitions by combining related containers into their own
task definitions, each representing a single component. For more information, see Application
Architecture (p. 48).

Topics

• Application Architecture (p. 48)

• Creating a Task Definition (p. 50)

• Task Definition Parameters (p. 52)

• Using Data Volumes in Tasks (p. 58)

• Example Task Definitions (p. 63)

• Deregistering Task Definitions (p. 64)

Application Architecture
When you’re considering how to model task definitions and services, it helps to think about what processes
need to run together on the same instance and how you will scale each component. As an example,
imagine an application that consists of the following components:

API Version 2014-11-13
48

Amazon EC2 Container Service Developer Guide
Application Architecture

• A front-end service that displays information on a web page

• A back-end service that provides APIs for the front-end service

• A data store

In your development environment, you probably run all three containers together on your Docker host.
You might be tempted to use the same approach for your production environment, but this approach has
several drawbacks:

• Changes to one component can impact all three components, which may be a larger scope for the
change than you want

• Each component is more difficult to scale because you have to scale every container proportionally

• Task definitions can only have 10 container definitions and your application stack might require more,
either now or in the future

• Every container in a task definition must land on the same container instance, which may limit your
instance choices to the largest sizes

Instead, you should create task definitions that group the containers that are used for a common purpose,
and separate the different components into multiple task definitions. In this example, three task definitions
each specify one container. The example cluster below has three container instances registered with
three front-end service containers, two back-end service containers, and one data store service container.

You can group related containers in a task definition, such as linked containers that must be run together.
For example, you could add a log streaming container to your front-end service and include that in the
same task definition.

After you have your task definitions, you can create services from them to maintain the availability of your
desired tasks. For more information, see Creating a Service (p. 72). In your services, you can associate
containers with Elastic Load Balancing load balancers. For more information, see Service Load
Balancing (p. 67). When your application requirements change, you can update your services to scale

API Version 2014-11-13
49

Amazon EC2 Container Service Developer Guide
Application Architecture

the number of desired tasks up or down, or to deploy newer versions of the containers in your tasks. For
more information, see Updating a Service (p. 73).

Creating a Task Definition
Before you can run Docker containers on Amazon ECS, you need to create a task definition.

To create a new task definition

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region to register your task definition in.

3. In the navigation pane, choose Task Definitions.

4. On the Task Definitions page, select Create new task definition.

5. (Optional) If you have a JSON representation of your task definition that you would like to use,
complete the following steps:

a. On the Create a task definition page, choose the JSON tab and paste your task definition
JSON into the text area.

b. Choose the Builder tab.

c. Verify your information and select Create.

6. On the Create a task definition page, choose the Builder tab.

7. In the Task definition name field, enter a name for your task definition.

8. For each container in your task definition, complete the following steps.

a. Choose Add container definition.

b. Fill out each required field and any optional fields to use in your container definitions. For more
information, see Task Definition Parameters (p. 52).

c. Select Add to add your container to the task definition.

9. (Optional) To define data volumes for your task, select the JSON tab and paste the volume definitions
into the volumes section of the task definition JSON object. For more information, see Using Data
Volumes in Tasks (p. 58).

10. Choose Create to finish.

Task Definition Template
An empty task definition template is shown below.You can use this template to create your task definition
which can then be pasted into the console JSON input area or saved to a file and used with the AWS CLI
--cli-input-json option. For more information about these parameters, see Task Definition
Parameters (p. 52).

{
 "family": "",
 "containerDefinitions": [
 {
 "name": "",
 "image": "",
 "cpu": 0,

API Version 2014-11-13
50

Amazon EC2 Container Service Developer Guide
Creating a Task Definition

https://console.aws.amazon.com/ecs/

 "memory": 0,
 "links": [
 ""
],
 "portMappings": [
 {
 "containerPort": 0,
 "hostPort": 0,
 "protocol": ""
 }
],
 "essential": true,
 "entryPoint": [
 ""
],
 "command": [
 ""
],
 "environment": [
 {
 "name": "",
 "value": ""
 }
],
 "mountPoints": [
 {
 "sourceVolume": "",
 "containerPath": "",
 "readOnly": true
 }
],
 "volumesFrom": [
 {
 "sourceContainer": "",
 "readOnly": true
 }
]
 }
],
 "volumes": [
 {
 "name": "",
 "host": {
 "sourcePath": ""
 }
 }
]
}

Note
You can generate the above task definition template with the following AWS CLI command.

$ aws ecs register-task-definition --generate-cli-skeleton

API Version 2014-11-13
51

Amazon EC2 Container Service Developer Guide
Task Definition Template

Task Definition Parameters
Task definitions are split into three basic parts: the task family, container definitions, and volumes. The
family is the name of the task, and each family can have multiple revisions. Container definitions specify
which image to use, how much CPU and memory the container are allocated, and many more options.
Volumes allow you to share data between containers and even persist the data on the container instance
when the containers are no longer running. The family and container definitions are required in a task
definition, while volumes are optional.

Family
When you register a task definition, you give it a family, which is similar to a name for multiple versions
of the task definition, specified with a revision number. The first task definition that is registered into a
particular family is given a revision of 1, and any task definitions registered after that are given a later
sequential revision number.

Container Definitions
When you register a task definition, you must specify a list of container definitions that are passed to the
Docker daemon on a container instance. The following parameters are allowed in a container definition:

name
Type: string

Required: yes

The name of a container. If you are linking multiple containers together in a task definition, the name
of one container can be entered in the links of another container to connect the containers.

image
Type: string

Required: yes

The image to use for a container. This string is passed directly to the Docker daemon. Images in the
Docker Hub registry are available by default.You can also specify other repositories with
repository-url/image:tag.

cpu
Type: integer

Required: no

The number of cpu units to reserve for the container. A container instance has 1,024 cpu units for
every CPU core. This parameter specifies the minimum amount of CPU to reserve for a container,
and containers share unallocated CPU units with other containers on the instance with the same
ratio as their allocated amount.

Note
You can determine the number of CPU units that are available per Amazon EC2 instance
type by multiplying the vCPUs listed for that instance type on the Amazon EC2 Instances
detail page by 1,024.

For example, if you run a single-container task on a single-core instance type with 512 CPU units
specified for that container, and that is the only task running on the container instance, that container
could use the full 1,024 CPU unit share at any given time. However, if you launched another copy
of the same task on that container instance, each task would be guaranteed a minimum of 512 CPU

API Version 2014-11-13
52

Amazon EC2 Container Service Developer Guide
Task Definition Parameters

http://aws.amazon.com/ec2/instance-types/

units when needed, and each container could float to higher CPU usage if the other container was
not using it, but if both tasks were 100% active all of the time, they would be limited to 512 CPU units.

The Docker daemon on the container instance uses the CPU value to calculate the relative CPU
share ratios for running containers. For more information, see CPU share constraint in the Docker
documentation. The minimum valid CPU share value that the Linux kernel will allow is 2; however,
the CPU parameter is not required, and you can use CPU values below 2 in your container definitions.
For CPU values below 2 (including null), the behavior varies based on your Amazon ECS container
agent version:

• Agent versions <= 1.1.0: Null and zero CPU values are passed to Docker as 0, which Docker
then converts to 1,024 CPU shares. CPU values of 1 are passed to Docker as 1, which the Linux
kernel converts to 2 CPU shares.

• Agent versions >= 1.2.0: Null, zero, and CPU values of 1 are passed to Docker as 2.

memory
Type: integer

Required: yes

The number of MiB of memory to reserve for the container. If your container attempts to exceed the
memory allocated here, the container is killed.

links
Type: string array

Required: no

The link parameter allows containers to communicate with each other without the need for port
mappings. The name:internalName construct is analogous to name:alias in Docker links. For
more information about linking Docker containers, go to https://docs.docker.com/userguide/dockerlinks/.

Important
Containers that are collocated on a single container instance may be able to communicate
with each other without requiring links or host port mappings. Network isolation is achieved
on the container instance using security groups and VPC settings.

"links": ["name:internalName", ...]

portMappings
Type: object array

Required: no

Port mappings allow containers to access ports on the host container instance to send or receive
traffic.

hostPort
Type: integer

Required: no

The port number on the container instance to reserve for your container.You can specify a
non-reserved host port for your container port mapping, or you can omit the hostPort (or set
it to 0) while specifying a containerPort and your container will automatically receive a port
in the ephemeral port range for your container instance operating system and Docker version.

The default ephemeral port range is 49153 to 65535, and this range is used for Docker versions
prior to 1.6.0. For Docker version 1.6.0 and later, the Docker daemon tries to read the ephemeral
port range from /proc/sys/net/ipv4/ip_local_port_range (which is 32768 to 61000 on
the latest Amazon ECS-optimized AMI); if this kernel parameter is unavailable, the default
ephemeral port range is used.You should not attempt to specify a host port in the ephemeral

API Version 2014-11-13
53

Amazon EC2 Container Service Developer Guide
Container Definitions

https://docs.docker.com/reference/run/#cpu-share-constraint
https://docs.docker.com/userguide/dockerlinks/

port range, since these are reserved for automatic assignment. In general, ports below 32768
are outside of the ephemeral port range.

The default reserved ports are 22 for SSH, the Docker ports 2375 and 2376, and the Amazon
ECS container agent port 51678. Any host port that was previously user-specified for a running
task is also reserved while the task is running (after a task stops, the host port is released). The
current reserved ports are displayed in the remainingResources of
describe-container-instances output, and a container instance may have up to 50 reserved
ports at a time, including the default reserved ports (automatically assigned ports do not count
toward this limit).

containerPort
Type: integer

Required: yes, when portMappings are used

The port number on the container that is bound to the user-specified or automatically assigned
host port. If you specify a container port and not a host port, your container automatically receives
a host port in the ephemeral port range (for more information, see hostPort).

protocol
Type: string

Required: no

The protocol used for the port mapping. Valid values are tcp and udp. The default is tcp.

Important
UDP support is only available on container instances that were launched with version
1.2.0 of the Amazon ECS container agent (such as the
amzn-ami-2015.03.c-amazon-ecs-optimized AMI) or later, or with container
agents that have been updated to version 1.3.0 or later.To update your container agent
to the latest version, see Updating the Amazon ECS Container Agent (p. 35).

If you are specifying a host port, use the following syntax:

"portMappings": [
 {
 "containerPort": integer,
 "hostPort": integer
 }
 ...
]

If you want an automatically assigned host port, use the following syntax:

"portMappings": [
 {
 "containerPort": integer
 }
 ...
]

essential
Type: Boolean

Required: no

API Version 2014-11-13
54

Amazon EC2 Container Service Developer Guide
Container Definitions

If the essential parameter of a container is marked as true, the failure of that container stops the
task. If the essential parameter of a container is marked as false, then its failure does not affect
the rest of the containers in a task. If this parameter is omitted, a container is assumed to be essential.

Note
All tasks must have at least one essential container.

"essential": true|false

entryPoint

Important
Early versions of the Amazon ECS container agent do not properly handle entryPoint
parameters. If you have problems using entryPoint , update your container agent or enter
your commands and arguments as command array items instead.

Type: string array

Required: no

The ENTRYPOINT that is passed to the container. For more information about the Docker ENTRYPOINT
parameter, go to https://docs.docker.com/reference/builder/#entrypoint.

"entryPoint": ["string", ...]

command
Type: string array

Required: no

The CMD that is passed to the container. For more information about the Docker CMD parameter, go
to https://docs.docker.com/reference/builder/#cmd.

"command": ["string", ...]

environment
Type: object array

Required: no

The environment variables to pass to a container.

name
Type: string

Required: yes, when environment is used

The name of the environment variable.

value
Type: string

Required: yes, when environment is used

The value of the environment variable.

"environment" : [
 { "name" : "string", "value" : "string" },

API Version 2014-11-13
55

Amazon EC2 Container Service Developer Guide
Container Definitions

https://docs.docker.com/reference/builder/#entrypoint
https://docs.docker.com/reference/builder/#cmd

 { "name" : "string", "value" : "string" }
]

mountPoints
Type: object array

Required: no

The mount points for data volumes in your container.

sourceVolume
Type: string

Required: yes, when mountPoints are used

The name of the volume to mount.

containerPath
Type: string

Required: yes, when mountPoints are used

The path on the container to mount the host volume at.

readOnly
Type: boolean

Required: no

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

"mountPoints": [
 {
 "sourceVolume": "string",
 "containerPath": "string",
 "readOnly": true|false
 }
]

volumesFrom
Type: object array

Required: no

Data volumes to mount from another container.

sourceContainer
Type: string

Required: yes, when volumesFrom is used

The name of the container to mount volumes from.

readOnly
Type: Boolean

Required: no

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume. The default value is false.

API Version 2014-11-13
56

Amazon EC2 Container Service Developer Guide
Container Definitions

"volumesFrom": [
 {
 "sourceContainer": "string",
 "readOnly": true|false
 }
]

Volumes
When you register a task definition, you can optionally specify a list of volumes that will be passed to the
Docker daemon on a container instance and become available for other containers on the same container
instance to access. The following parameters are allowed in a container definition:

name
Type: string

Required: yes

The name of the volume. This name is referenced in the sourceVolume parameter of container
definition mountPoints.

host
Type: string

Required: no

The contents of the host parameter determine whether your data volume persists on the host
container instance and where it is stored. If the host parameter is empty, then the Docker daemon
assigns a host path for your data volume, but the data is not guaranteed to persist after the containers
associated with it stop running.

By default, Docker-managed volumes are created in /var/lib/docker/vfs/dir/.You can change
this default location by writing OPTIONS="-g=/my/path/for/docker/volumes" to
/etc/sysconfig/docker on the container instance.

sourcePath
Type: string

Required: no

The path on the host container instance that is presented to the container. If this parameter is
empty, then the Docker daemon assigns a host path for you.

If the host parameter contains a sourcePath file location, then the data volume persists at the
specified location on the host container instance until you delete it manually. If the sourcePath
value does not exist on the host container instance, the Docker daemon creates it. If the location
does exist, the contents of the source path folder are exported.

[
 {
 "name": "string",
 "host": {
 "sourcePath": "string"
 }
 }
]

API Version 2014-11-13
57

Amazon EC2 Container Service Developer Guide
Volumes

Using Data Volumes in Tasks
There are several use cases for using data volumes in Amazon ECS task definitions. Some common
examples are to provide persistent data volumes for use with containers, to define an empty, nonpersistent
data volume and mount it on multiple containers on the same container instance, and to share defined
data volumes at different locations on different containers on the same container instance.

To provide persistent data volumes for containers

When a volume is defined with a sourcePath value, the data volume persists even after all containers
that referenced it have stopped. Any files that exist in the at the sourcePath are presented to the
containers at the containerPathvalue, and any files that are written to the containerPath value by
running containers that mount the data volume are written to the sourcePath value on the container
instance.

Important
Amazon ECS does not sync your data volumes across container instances. Tasks that use
persistent data volumes can be placed on any container instance in your cluster that has available
capacity. If your tasks require persistent data volumes after stopping and restarting, you should
always specify the same container instance at task launch time with the AWS CLI start-task
command.

1. In the task definition volumes section, define a data volume with name and sourcePath values.

 "volumes": [
 {
 "name": "webdata",
 "host": {
 "sourcePath": "/ecs/webdata"
 }
 }
]

2. In the containerDefinitions section, define a container with mountPoints that reference the
name of the defined volume and the containerPath value to mount the volume at on the container.

 "containerDefinitions": [
 {
 "name": "web",
 "image": "nginx",
 "cpu": 99,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webdata",
 "containerPath": "/usr/share/nginx/html"
 }
]

API Version 2014-11-13
58

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

http://docs.aws.amazon.com/cli/latest/reference/ecs/start-task.html

 }
]

To provide nonpersistent empty data volumes for containers

In some cases, you want containers to share the same empty data volume, but you aren't interested in
keeping the data after the task has finished. For example, you may have two database containers that
need to access the same scratch file storage location during a task.

1. In the task definition volumes section, define a data volume with the name database_scratch.

Note
Because the database_scratch volume does not specify a source path, the Docker
daemon manages the volume for you.When no containers reference this volume, the Docker
garbage collection service eventually deletes it. If you need this data to persist, specify a
sourcePath value for the volume.

 "volumes": [
 {
 "name": "database_scratch",
 "host": {}
 }
]

2. In the containerDefinitions section, create the database container definitions so they mount
the nonpersistent data volumes.

 "containerDefinitions": [
 {
 "name": "database1",
 "image": "my-repo/database",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "database_scratch",
 "containerPath": "/var/scratch"
 }
]
 },
 {
 "name": "database2",
 "image": "my-repo/database",
 "cpu": 100,
 "memory": 100,
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "database_scratch",
 "containerPath": "/var/scratch"
 }
]

API Version 2014-11-13
59

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

 }
]

To mount a defined volume on multiple containers

You can define a data volume in a task definition and mount that volume at different locations on different
containers. For example, your host container has a website data folder at /data/webroot, and you may
want to mount that data volume as read-only on two different web servers that have different document
roots.

1. In the task definition volumes section, define a data volume with the name webroot and the source
path /data/webroot.

 "volumes": [
 {
 "name": "webroot",
 "host": {
 "sourcePath": "/data/webroot"
 }
 }
]

2. In the containerDefinitions section, define a container for each web server with mountPoints
values that associate the webroot volume with the containerPath value pointing to the document
root for that container.

 "containerDefinitions": [
 {
 "name": "web-server-1",
 "image": "my-repo/ubuntu-apache",
 "cpu": 100,
 "memory": 100,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webroot",
 "containerPath": "/var/www/html",
 "readOnly": true
 }
]
 },
 {
 "name": "web-server-2",
 "image": "my-repo/sles11-apache",
 "cpu": 100,
 "memory": 100,
 "portMappings": [
 {

API Version 2014-11-13
60

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

 "containerPort": 8080,
 "hostPort": 8080
 }
],
 "essential": true,
 "mountPoints": [
 {
 "sourceVolume": "webroot",
 "containerPath": "/srv/www/htdocs",
 "readOnly": true
 }
]
 }
]

To mount volumes from another container using volumesFrom

You can define one or more volumes on a container, and then use the volumesFrom parameter in a
different container definition (within the same task) to mount all of the volumes from the sourceContainer
at their originally defined mount points. The volumesFrom parameter applies to volumes defined in the
task definition, and those that are built into the image with a Dockerfile.

1. (Optional) To share a volume that is built into an image, you need to build the image with the volume
declared in a VOLUME instruction. The following example Dockerfile uses an httpd image and then
adds a volume and mounts it at dockerfile_volume in the Apache document root (which is the
folder used by the httpd web server):

FROM httpd
VOLUME ["/usr/local/apache2/htdocs/dockerfile_volume"]

You can build an image with this Dockerfile and push it to a repository, such as Docker Hub, and
use it in your task definition. The example my-repo/httpd_dockerfile_volume image used in
the following steps was built with the above Dockerfile.

2. Create a task definition that defines your other volumes and mount points for the containers. In this
example volumes section, you create an empty volume called empty, which the Docker daemon
will manage. There is also a host volume defined called host_etc, which exports the /etc folder
on the host container instance.

{
 "family": "test-volumes-from",
 "volumes": [
 {
 "name": "empty",
 "host": {}
 },
 {
 "name": "host_etc",
 "host": {
 "sourcePath": "/etc"
 }
 }
],

API Version 2014-11-13
61

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

In the container definitions section, create a container that mounts the volumes defined earlier. In
this example, the web container (which uses the image built with a volume in the Dockerfile) mounts
the empty and host_etc volumes.

 "containerDefinitions": [
 {
 "name": "web",
 "image": "my-repo/httpd_dockerfile_volume",
 "cpu": 100,
 "memory": 500,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "mountPoints": [
 {
 "sourceVolume": "empty",
 "containerPath": "/usr/local/apache2/htdocs/empty_volume"
 },
 {
 "sourceVolume": "host_etc",
 "containerPath": "/usr/local/apache2/htdocs/host_etc"
 }
],
 "essential": true
 },

Create another container that uses volumesFrom to mount all of the volumes that are associated
with the web container. All of the volumes on the web container will likewise be mounted on the
busybox container (including the volume specified in the Dockerfile that was used to build the
my-repo/httpd_dockerfile_volume image).

 {
 "name": "busybox",
 "image": "busybox",
 "volumesFrom": [
 {
 "sourceContainer": "web"
 }
],
 "cpu": 100,
 "memory": 500,
 "entryPoint": [
 "sh",
 "-c"
],
 "command": [
 "echo $(date) > /usr/local/apache2/htdocs/empty_volume/date && echo
 $(date) > /usr/local/apache2/htdocs/host_etc/date && echo $(date) >
/usr/local/apache2/htdocs/dockerfile_volume/date"
],
 "essential": false
 }
]
}

API Version 2014-11-13
62

Amazon EC2 Container Service Developer Guide
Using Data Volumes in Tasks

When this task is run, the two containers mount the volumes, and the command in the busybox
container writes the date and time to a file called date in each of the volume folders, which are then
visible at the web site displayed by the web container.

Note
Because the busybox container runs a quick command and then exits, it needs to be set
as "essential": false in the container definition to prevent it from stopping the entire
task when it exits.

Example Task Definitions
The following task definition specifies a WordPress container and a MySQL container that are linked
together. These WordPress container exposes the container port 80 on the host port 80. The security
group on the container instance would need to open port 80 in order for this WordPress installation to be
accessible from a web browser.

For more information about the WordPress container, go to the official WordPress Docker Hub repository
at https://registry.hub.docker.com/_/wordpress/. For more information about the MySQL container, go to
the official MySQL Docker Hub repository at https://registry.hub.docker.com/_/mysql/.

{
 "containerDefinitions": [
 {
 "name": "wordpress",
 "links": [
 "mysql"
],
 "image": "wordpress",
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "memory": 500,
 "cpu": 10
 },
 {
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "password"
 }
],
 "name": "mysql",
 "image": "mysql",
 "cpu": 10,
 "memory": 500,
 "essential": true
 }
],
 "family": "hello_world"
}

API Version 2014-11-13
63

Amazon EC2 Container Service Developer Guide
Example Task Definitions

https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/mysql/

Deregistering Task Definitions
If you decide that you no longer need a task definition in Amazon ECS, you can deregister the task
definition so that it no longer displays in your ListTaskDefinition API calls or in the console when
you want to run a task or update a service.

When you deregister a task definition, it is immediately marked as INACTIVE. Existing tasks and services
that reference an INACTIVE task definition continue to run without disruption, and existing services that
reference an INACTIVE task definition can still scale up or down by modifying the service's desired count.

You cannot use an INACTIVE task definition to run new tasks or create new services, and you cannot
update an existing service to reference an INACTIVE task definition (although there may be up to a 10
minute window following deregistration where these restrictions have not yet taken effect).

Use the following procedure to deregister a task definition.

To deregister a task definition

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region that contains your task definition.

3. In the navigation pane, choose Task Definitions.

4. On the Task Definitions page, choose the task definition name that contains one or more revisions
that you want to deregister.

5. On the Task Definition name page, select the box to the left of each task definition revision you
want to deregister.

6. Choose Actions, and then choose Deregister.

7. Verify the information in the Deregister Task Definition window, and choose Deregister to finish.

API Version 2014-11-13
64

Amazon EC2 Container Service Developer Guide
Deregistering Task Definitions

https://console.aws.amazon.com/ecs/

Scheduling Amazon ECS Tasks

Amazon EC2 Container Service (Amazon ECS) is a shared state, optimistic concurrency system that
provides flexible scheduling capabilities for your tasks and containers. The Amazon ECS schedulers
leverage cluster state information provided by the Amazon ECS API to make an appropriate placement
decision. Amazon ECS provides the service scheduler (for long-running tasks and applications), and the
RunTask action (for batch jobs or single run tasks), which place tasks on your cluster for you, as well as
the StartTask action, which allows you to specify a container instance for the task, so you can integrate
with custom, third-party schedulers or use to place a task manually on a specific container instance.

Services

The service scheduler is ideally suited for long running stateless services and applications. The service
scheduler ensures that the specified number of tasks are constantly running and reschedules tasks when
a task fails (for example, if the underlying container instance fails for some reason).The service scheduler
optionally also makes sure that tasks are registered against an Elastic Load Balancing load balancer.
You can update your services that are maintained by the service scheduler, such as deploying a new
task definition, or changing the running number of desired tasks. For more information, see Services (p. 66).

Running Tasks

The RunTask action is ideally suited for processes such as batch jobs that perform work and then stop.
RunTask randomly distributes tasks across your cluster and tries to minimize the chances that a single
instance on your cluster will get a disproportionate number of tasks. For example, you could have a
process that calls RunTask when work comes into a queue.The task pulls work from the queue, performs
the work such as a data transformation, and then exits. For more information, see Running Tasks (p. 74).

The StartTask API

In addition to providing a set of default schedulers, Amazon ECS also allows you to write your own
schedulers that meet the needs of your business, or leverage third party schedulers. The
ECSSchedulerDriver is an open source proof of concept that shows you how can integrate Amazon ECS
with third-party schedulers; in this case, with the open source Apache Mesos framework. To write your
own scheduler, you can use the Amazon ECS List and Describe actions to get the state of your cluster
and then use the StartTask action to place your tasks on the appropriate container instance based on
your business and application requirements. The StartTask action is available in the AWS CLI, the
AWS SDKs, or the Amazon ECS API. For more information, see StartTask in the Amazon EC2 Container
Service API Reference.

Topics

• Services (p. 66)

API Version 2014-11-13
65

Amazon EC2 Container Service Developer Guide

https://github.com/awslabs/ecs-mesos-scheduler-driver
http://mesos.apache.org/
http://docs.aws.amazon.com/AmazonECS/latest/APIReference//API_StartTask.html
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/

• Running Tasks (p. 74)

• Task Life Cycle (p. 75)

Services
Amazon ECS allows you to run and maintain a specified number of instances of a task definition
simultaneously. This is called a service.You can optionally run your service behind a load balancer. If
any of your tasks should fail or stop, or if your underlying container instance becomes unhealthy, Amazon
ECS launches another instance of your task definition to replace it.

Service Concepts
• If a task in a service becomes unhealthy or unresponsive, the task is killed and restarted. This process

continues until your service reaches the number of desired running tasks.

• You can optionally run your service behind a load balancer. For more information, see Service Load
Balancing (p. 67).

Topics

• Service Definition Parameters (p. 66)

• Service Load Balancing (p. 67)

• Creating a Service (p. 72)

• Updating a Service (p. 73)

• Deleting a Service (p. 74)

Service Definition Parameters
A service definition defines which task definition to use with your service, how many instantiations of that
task to run, and which load balancers (if any) to associate with your tasks.

{
 "cluster": "",
 "serviceName": "",
 "taskDefinition": "",
 "loadBalancers": [
 {
 "loadBalancerName": "",
 "containerName": "",
 "containerPort": 0
 }
],
 "desiredCount": 0,
 "clientToken": "",
 "role": ""
}

Note
You can create the above service definition template with the following AWS CLI command.

$ aws ecs create-service --generate-cli-skeleton

API Version 2014-11-13
66

Amazon EC2 Container Service Developer Guide
Services

You can specify the following parameters in a service definition.

cluster
The short name or full Amazon Resource Name (ARN) of the cluster on which to run your service
on. If you do not specify a cluster, the default cluster is assumed.

serviceName
The name of your service. Up to 255 letters (uppercase and lowercase), numbers, hyphens, and
underscores are allowed. Service names must be unique within a cluster, but you can have similarly
named services in multiple clusters within a region or across multiple regions.

taskDefinition
The family and revision (family:revision) or full Amazon Resource Name (ARN) of the task
definition that you want to run in your service.

loadBalancers
A list of load balancer objects to use with your service. Currently you are limited to one load balancer
per service.

loadBalancerName
The name of the load balancer.

containerName
The name of the container (as it appears in a container definition) to associate with the load
balancer.

containerPort
The port on the container to associate with the load balancer.

desiredCount
The number of instantiations of the specified task definition to place and keep running on your cluster.

clientToken
Unique, case-sensitive identifier you provide to ensure the idempotency of the request. Up to 32
ASCII characters are allowed.

role
The name or full Amazon Resource Name (ARN) of the IAM role that allows your Amazon ECS
container agent to make calls to your load balancer on your behalf. This parameter is only required
if you are using a load balancer with your service.

Service Load Balancing
Your Amazon ECS service can optionally be configured to use Elastic Load Balancing to manage traffic.

API Version 2014-11-13
67

Amazon EC2 Container Service Developer Guide
Service Load Balancing

Load Balancing Concepts
• Elastic Load Balancing currently supports a fixed relationship between the load balancer port and the

container instance port. For example, it is possible to map the load balancer port 80 to the container
instance port 3030 and the load balancer port 4040 to the container instance port 4040. However, it is
not possible to map the load balancer port 80 to port 3030 on one container instance and port 4040 on
another container instance.

• All of the containers that are launched in a single task definition are always placed on the same container
instance.You may choose to put two different containers behind the same load balancer by defining
multiple host ports in the service definition and adding those listener ports to the load balancer. For
example, if a task definition consists of Elasticsearch using port 3030 on the container instance, with
Logstash and Kibana using port 4040 on the container instance, the same load balancer can route
traffic to Elasticsearch and Kibana through two listeners. For more information, see Listener
Configurations in the Elastic Load Balancing Developer Guide.

• There is a limit of one load balancer per service.

• If a service's task fails the load balancer health check criteria, the task is killed and restarted. This
process continues until your service reaches the number of desired running tasks.

API Version 2014-11-13
68

Amazon EC2 Container Service Developer Guide
Service Load Balancing

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-listener-config.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-listener-config.html

Check the Service Role for your Account
Amazon ECS needs permission to register and deregister container instances with your load balancer
when tasks are created and stopped.

In most cases, the Amazon ECS service role is automatically created for you in the console first run
experience.You can use the following procedure to check and see if your account already has an Amazon
ECS service role.

To check for the ecsServiceRole in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsServiceRole. If the role does not exist, see Amazon ECS Service
Scheduler IAM Role (p. 96) to create the role. If the role does exist, select the role to view the attached
policies.

4. In the Managed Policies section, ensure that the AmazonEC2ContainerServiceRole managed
policy is attached to the role. If the policy is attached, your Amazon ECS service role is properly
configured. If not, follow the substeps below to attach the policy.

a. Choose Attach Policy.

b. In the Filter box, type AmazonEC2ContainerServiceRole to narrow the available policies to
attach.

c. Check the box to the left of the AmazonEC2ContainerServiceRole policy and choose Attach
Policy.

Creating a Load Balancer
This section provides a hands-on introduction to using Elastic Load Balancing through the AWS
Management Console to use with your Amazon ECS services. In this section, you create an external load
balancer that receives public HTTP traffic and routes it to your Amazon ECSinstances.

Note that you can create your load balancer for use with EC2-Classic or a VPC. Some of the tasks
described in these procedures apply only to load balancers in a VPC.

Define Your Load Balancer

First, provide some basic configuration information for your load balancer, such as a name, a network,
and a listener.

A listener is a process that checks for connection requests. It is configured with a protocol and a port for
front-end (client to load balancer) connections and a protocol, and protocol and a port for back-end (load
balancer to back-end instance) connections. In this example, you configure a listener that accepts HTTP
requests on port 80 and sends them to the back-end instances on port 80 using HTTP.

To define your load balancer

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select a region for your load balancer. Be sure to select the same region
that you selected for your Amazon ECS container instances.

3. In the navigation pane, under NETWORK & SECURITY, choose Load Balancers.

4. Choose Create Load Balancer.

5. In Load Balancer name, enter a unique name for your load balancer.

API Version 2014-11-13
69

Amazon EC2 Container Service Developer Guide
Service Load Balancing

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/ec2/

The load balancer name you choose must be unique within your set of load balancers, must have a
maximum of 32 characters, and must only contain alphanumeric characters or hyphens.

6. From Create LB inside, select the same network that your container instances are located in:
EC2-Classic or a specific VPC.

7. The default values configure an HTTP load balancer that forwards traffic from port 80 at the load
balancer to port 80 of your container instances, but you can modify these values for your application.
For more information, see Listener Configurations in the Elastic Load Balancing Developer Guide.

8. [EC2-VPC] To improve the availability of your load balancer, select at least two subnets in different
Availability Zones.Your selected subnets must at least include any subnet that your container
instances reside in. In the Select Subnets section, under Available Subnets, select the subnets.
The subnets that you select are moved under Selected Subnets.

Note
If you selected EC2-Classic as your network, or you have a default VPC but did not select
Enable advanced VPC configuration, you do not see Select Subnets.

9. Choose Next: Assign Security Groups to go to the next page in the wizard.

Assign a Security Group to Your Load Balancer in a VPC

If you created your load balancer in a VPC, you must assign it a security group that allows inbound traffic
to the ports that you specified for your load balancer and the health checks for your load balancer.

Note
If you selected EC2-Classic as your network, you do not see this page in the wizard and you
can go to the next step. Elastic Load Balancing provides a security group that is assigned to
your load balancer for EC2-Classic automatically.

To assign a security group to your load balancer

1. On the Assign Security Groups page, choose Create a new security group.

2. Enter a name and description for your security group, or leave the default name and description.
This new security group contains a rule that allows traffic to the port that you configured your load
balancer to use. If you specified a different port for the health checks, you must choose Add Rule
to add a rule that allows inbound traffic to that port as well.

Note
You should also assign this security group to container instances in your service, or another
security group with the same rules.

API Version 2014-11-13
70

Amazon EC2 Container Service Developer Guide
Service Load Balancing

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-listener-config.html

3. Choose Next: Configure Security Settings to go to the next page in the wizard.

Configure Health Checks for Your EC2 Instances

Elastic Load Balancing automatically checks the health of the tasks in your service. If Elastic Load
Balancing finds an unhealthy task, it stops sending traffic to the instance and reroutes traffic to healthy
instances. Amazon ECS stops your unhealthy task and starts another instance of that task.

Note
The following procedure configures an HTTP (port 80) load balancer, but you can modify these
values for your application.

To configure a health check for your instances

1. On the Configure Health Check page, do the following:

a. Leave Ping Protocol set to its default value of HTTP.

b. Leave Ping Port set to its default value of 80.

c. In the Ping Path field, replace the default value with a single forward slash ("/").This tells Elastic
Load Balancing to send health check queries to the default home page for your web server,
such as index.html or default.html.

d. Leave the other fields at their default values.

2. Choose Next: Add EC2 Instances to go to the next page in the wizard.

Load Balancer Instance Registration

Your load balancer distributes traffic between the instances that are registered to it. When you assign
your load balancer to an Amazon ECS service, Amazon ECS automatically registers and deregisters
container instances when tasks from your service are running on them. Because Amazon ECS handles
container instance registration, you do not add container instances to your load balancer at this time.

API Version 2014-11-13
71

Amazon EC2 Container Service Developer Guide
Service Load Balancing

To skip instance registration and tag the load balancer

1. On the Add EC2 Instances page, under Add Instances to Load Balancer, ensure that no instances
are selected for registration.

2. Leave the other fields at their default values.

3. Choose Next: Add Tags to go to the next page in the wizard.

Tag Your Load Balancer (Optional)

You can tag your load balancer, or continue to the next step. Note that you can tag your load balancer
later on; for more information, see Tag Your Load Balancer in the Elastic Load Balancing Developer
Guide.

To add tags to your load balancer

1. On the Add Tags page, specify a key and a value for the tag.

2. To add another tag, click Create Tag and specify a key and a value for the tag.

3. After you are finished adding tags, click Review and Create.

Create and Verify Your Load Balancer

Before you create the load balancer, review the settings that you selected. After creating the load balancer,
you can create a service that uses it to verify that it's sending traffic to your container instances.

To finish creating your load balancer

1. On the Review page, check your settings. If you need to make changes to the initial settings, choose
the corresponding edit link.

2. Choose Create to create your load balancer.

3. After you are notified that your load balancer was created, choose Close. After your load balancer
is created, you can specify it in a service definition when you create a service. For more information,
see Creating a Service (p. 72).

Creating a Service
When you create an Amazon ECS service, you specify several parameters that define what makes up
your service and how it should behave. These parameters create a service definition. Use the following
procedure to create a service.

To create a service

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, select the region that your cluster is in.

3. In the navigation pane, select Task Definitions.

4. On the Task Definitions page, choose the name of the task definition you would like to create your
service from.

5. On the Task Definition name page, choose the revision of the task definition you would like to create
your service from.

6. Review the task definition, and choose Create Service.

7. On the Create Service page, enter a unique name for your service in the Service name field.

8. In the Number of tasks field, enter the number of tasks you would like to launch and maintain on
your cluster.

API Version 2014-11-13
72

Amazon EC2 Container Service Developer Guide
Creating a Service

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/add-remove-tags.html
https://console.aws.amazon.com/ecs/

Note
If your tasks expose specified ports on container instances, then you need at least one
container instance with the specified port available in your cluster for each task in your
service.

9. (Optional) If you have an available Elastic Load Balancing load balancer configured, you can attach
it to your service with the following steps. If you want to configure a new load balancer, see Creating
a Load Balancer (p. 69).

a. choose Add ELB.

b. In the Add a load balancer window, configure the following settings as necessary and choose
Add.

• Load Balancer: Select the load balancer to use with your service.

• Container Name: Select the name of the container to use with the load balancer.

• Container Port: Select the port on the container to direct load balancer traffic to. This port
must correspond to a containerPort in the service's task definition.Your container instances
must allow ingress traffic on the hostPort of the port mapping.

10. On the Create Service page, in the Service Role section, choose Manage IAM Role to allow Amazon
ECS to register and deregister container instances from the load balancer as tasks are placed on
them.

11. Choose Allow to authorize the service role for your load balancer.

12. Review your information and choose Create Service.

Updating a Service
You can update a running service to change the number of tasks that are maintained by a service or
which task definition is used by the tasks. If you have an application that needs more capacity, you can
scale up you service to use more of your container instances (as long as they are available). If you have
unused capacity that you would like to scale down, you can reduce the number of desired tasks in your
service and free up resources.

If you have updated the Docker image of your application, you can create a new task definition with that
image and deploy it to your service, one task at a time. The service scheduler creates a task with the
new task definition (provided there is an available container instance to place it on), and after it reaches
the RUNNING state, a task that is using the old task definition is drained and stopped. This process
continues until all of the desired tasks in your service are using the new task definition.

When the service scheduler replaces a task during an update, the equivalent of docker stop is issued
to the containers running in the task. This results in a SIGTERM and a 30-second timeout, after which
SIGKILL is sent and the containers are forcibly stopped. If the container handles the SIGTERM gracefully
and exits within 30 seconds from receiving it, no SIGKILL is sent.

To update a running service

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, select the region that your cluster is in.

3. In the navigation pane, select Clusters.

4. On the Clusters page, choose the name of the cluster that your service resides in.

5. On the Cluster : name page, choose the Services tab.

6. Check the box to the left of the service you want to update and choose Update.

API Version 2014-11-13
73

Amazon EC2 Container Service Developer Guide
Updating a Service

https://console.aws.amazon.com/ecs/

7. On the Update Service page, your service information is pre-populated. Change the task definition
or number of desired tasks (or both) and choose Update Service.

Deleting a Service
You can delete a service if you have no running tasks in it and the desired task count is zero. If the service
is actively maintaining tasks, you cannot delete it, and you must update the service to a desired task
count of zero. For more information, see Updating a Service (p. 73).

Use the following procedure to delete an empty service.

To delete an empty service

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, select the region that your cluster is in.

3. In the navigation pane, select Clusters.

4. On the Clusters page, choose the name of the cluster that your service resides in.

5. On the Cluster : name page, choose the Services tab.

6. Check the box to the left of the service you want to update and choose Delete.

Note
Your service must have zero desired or running tasks to delete it.

7. Choose Yes, Delete to confirm your service deletion.

Running Tasks
Running tasks manually is ideal in certain situations. Perhaps you are developing a task and you are not
ready to deploy this task with the service scheduler, or perhaps your task is a one-time or periodic batch
job that does not make sense to keep running or restart if it finishes. Use the following procedure to use
the default Amazon ECS scheduler to randomly place your task within your cluster.

Note
If you want a specified number of tasks to always remain running or if you want to place your
tasks behind a load balancer, you should use the Amazon ECS service scheduler. For more
information, see Services (p. 66).

To run a task

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, select the region that your cluster is in.

3. In the navigation pane, select Task Definitions.

4. On the Task Definitions page, choose the task definition that you want to run.

• To run the latest revision of a task definition shown here, check the box to the left of the name
of the task definition that you want to run.

• To run an earlier revision of a task definition shown here, choose the task definition to view all
active revisions, then select the revision to run.

5. Choose Actions, and then choose Run Task.

6. On the Run Task page, select the cluster you would like to use.

7. Enter the number of tasks to launch with this task definition in the Number of tasks field.

8. (Optional) To send command or environment variable overrides to one or more containers in your
task definition, complete the following steps:

API Version 2014-11-13
74

Amazon EC2 Container Service Developer Guide
Deleting a Service

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

a. Choose the Advanced Options menu.

b. On the Container Overrides menu, select a container to which to send a command or
environment variable override.

• For a command override: In the Command override field, type the command override
to send. If your container definition does not specify an ENTRYPOINT, the format should be
a comma-separated list of non-quoted strings. For example:

/bin/sh,-c,echo,$DATE

If your container definition does specify an ENTRYPOINT (such as sh,-c), the format should
be an unquoted string, which is surrounded with double quotes and passed as an argument
to the ENTRYPOINT command. For example:

while true; do echo $DATE > /var/www/html/index.html; sleep 1; done

• For environment variable overrides: Choose Add Environment Variable. In the Key
field, enter the name of your environment variable. In the Value field, enter the string your
environment value should be set to (without surrounding quotes).

The above environment variable override is sent to the container as:

MY_ENV_VAR="This variable contains a string."

9. Review your task information and choose Run Task.

Note
If your task moves from PENDING to STOPPED, or if it displays a PENDING status and then
disappears from the listed tasks, your task may be stopping due to an error. For more
information, see Checking Stopped Tasks for Errors (p. 115) in the troubleshooting section.

Task Life Cycle
When a task is started on a container instance, either manually or as part of a service, it can pass through
several states before it finishes on its own or is stopped manually. Some tasks are meant to run as batch
jobs that naturally progress through from PENDING to RUNNING to STOPPED. Other tasks, which can be
part of a service, are meant to continue running indefinitely, or to be scaled up and down as needed.

When task status changes are requested, such as stopping a task or updating the desired count of a
service to scale it up or down, the Amazon ECS container agent tracks these changes as the last known

API Version 2014-11-13
75

Amazon EC2 Container Service Developer Guide
Task Life Cycle

status of the task and the desired status of the task. The flow chart below shows the different paths that
task status can take, based on the action that causes the status change.

The center path shows the natural progression of a batch job that stops on its own. A persistent task that
is not meant to finish would also be on the center path, but it would stop at the RUNNING:RUNNING stage.
The paths to the right show what happens at a given state if an API call reaches the agent to stop the
task or a container instance. The paths to the left show what happens if the container instance a task is
running on is removed, whether by forcefully deregistering it or by terminating the instance.

API Version 2014-11-13
76

Amazon EC2 Container Service Developer Guide
Task Life Cycle

Amazon ECS CloudWatch Metrics

You can monitor your Amazon ECS resources using Amazon CloudWatch, which collects and processes
raw data from Amazon ECS into readable, near real-time metrics. These statistics are recorded for a
period of two weeks, so that you can access historical information and gain a better perspective on how
your clusters or services are performing. Amazon ECS metric data is automatically sent to CloudWatch
in 1-minute periods. For more information about CloudWatch, see the Amazon CloudWatch Developer
Guide.

Topics

• Enabling CloudWatch Metrics (p. 77)

• Available Metrics and Dimensions (p. 78)

• Cluster Utilization (p. 79)

• Service Utilization (p. 79)

• Service RUNNING Task Count (p. 80)

• Viewing Amazon ECS Metrics (p. 80)

• Tutorial: Scaling Container Instances with CloudWatch Alarms (p. 83)

Enabling CloudWatch Metrics
Your Amazon ECS container instances require at least version 1.4.0 of the container agent to enable
CloudWatch metrics. For information on checking your agent version and updating to the latest version,
see Updating the Amazon ECS Container Agent (p. 35).

If you are starting your agent manually (for example, if you are not using the Amazon ECS-optimized AMI
for your container instances), be sure to add volume mounts for the cgroup virtual file system and the
execdriver path. For an example run command with these volume mounts, see Manually Updating the
Amazon ECS Container Agent (for Non-Amazon ECS-optimized AMIs) (p. 38).

Your Amazon ECS container instances also require ecs:StartTelemetrySession permission on the
IAM role that you launch your container instances with. If you created your Amazon ECS container instance
role before CloudWatch metrics were available for Amazon ECS, then you might need to add this
permission. For information on checking your Amazon ECS container instance role and attaching the
managed IAM policy for container instances, see To check for the ecsInstanceRole in the IAM
console (p. 95).

API Version 2014-11-13
77

Amazon EC2 Container Service Developer Guide
Enabling CloudWatch Metrics

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

Note
You can disable CloudWatch metrics collection by setting ECS_DISABLE_METRICS=true in
your Amazon ECS container agent configuration. For more information, see Amazon ECS
Container Agent Configuration (p. 40).

Available Metrics and Dimensions
The metrics and dimensions that Amazon ECS sends to Amazon CloudWatch are listed below.

Amazon ECS Metrics
Amazon ECS provides metrics for you to monitor your CPU and memory utilization across your cluster
as a whole, and across the services in your clusters.

DescriptionMetric

The percentage of CPU units that are used in the cluster or service.

Cluster CPU utilization (metrics that are filtered by ClusterName without
ServiceName) is measured as the total CPU units in use by Amazon ECS
tasks on the cluster, divided by the total CPU units that were registered for
all of the container instances in the cluster.

Service CPU utilization (metrics that are filtered by ClusterName and Ser-
viceName) is measured as the total CPU units in use by the tasks that belong
to the service, divided by the total number of CPU units that are reserved for
the tasks that belong to the service.

Units: Percent

CPUUtilization

The percentage of memory that is used in the cluster or service.

Cluster memory utilization (metrics that are filtered by ClusterName without
ServiceName) is measured as the total memory in use by Amazon ECS
tasks on the cluster, divided by the total amount of memory that was registered
for all of the container instances in the cluster.

Service memory utilization (metrics that are filtered by ClusterName and
ServiceName) is measured as the total memory in use by the tasks that
belong to the service, divided by the total memory that is reserved for the
tasks that belong to the service.

Units: Percent

MemoryUtilization

Dimensions for Amazon ECS Metrics
You can use the dimensions in the following table to refine the metrics returned for your Amazon ECS
resources.

DescriptionDimension

This dimension filters the data you request for all resources in a specified
cluster. All Amazon ECS metrics are filtered by ClusterName.

ClusterName

API Version 2014-11-13
78

Amazon EC2 Container Service Developer Guide
Available Metrics and Dimensions

DescriptionDimension

This dimension filters the data you request for all resources in a specified
service within a specified cluster.

ServiceName

Cluster Utilization
Cluster utilization is measured as the percentage of CPU and memory that is used by all Amazon ECS
tasks on a cluster when compared to the aggregate CPU and memory that was registered for each active
container instance in the cluster.

 (Total CPU units used by tasks in cluster) x
 100
Cluster CPU utilization = ---

 (Total CPU units registered by container instances
in cluster)

 (Total MiB of memory used by tasks in
cluster x 100)
Cluster memory utilization = --

 (Total MiB of memory registered by container in
stances in cluster)

Each minute, the Amazon ECS container agent on each container instance calculates the number of
CPU units and MiB of memory that are currently being used for each task that is running on that container
instance, and this information is reported back to Amazon ECS. The total amount of CPU and memory
used for all tasks running on the cluster is calculated, and those numbers are reported to CloudWatch
as a percentage of the total registered resources for the cluster.

For example, a cluster has two active container instances registered, a c4.4xlarge instance and a
c4.large instance. The c4.4xlarge instance registers into the cluster with 16,384 CPU units and
30,158 MiB of memory.The c4.large instance registers with 2,048 CPU units and 3,768 MiB of memory.
The aggregate resources of this cluster are 18,432 CPU units and 33,926 MiB of memory.

If ten tasks are running on this cluster that each consume 1,024 CPU units and 2,048 MiB of memory, a
total of 10,240 CPU units and 20,480 MiB of memory are utilized on the cluster, which is reported to
CloudWatch as 55% CPU utilization and 60% memory utilization for the cluster.

Service Utilization
Service utilization is measured as the percentage of CPU and memory that is used by the Amazon ECS
tasks that belong to a service on a cluster when compared to the CPU and memory that is defined in the
service's task definition.

 (Total CPU units used by tasks in service)
 x 100
Service CPU utilization = ---

API Version 2014-11-13
79

Amazon EC2 Container Service Developer Guide
Cluster Utilization

 (Total CPU units reserved in task definition) x
(number of tasks in service)

 (Total MiB of memory used by tasks in
 service) x 100
Service memory utilization = --

 (Total MiB of memory reserved in task definition)
 x (number of tasks in service)

Each minute, the Amazon ECS container agent on each container instance calculates the number of
CPU units and MiB of memory that are currently being used for each task owned by the service that is
running on that container instance, and this information is reported back to Amazon ECS.The total amount
of CPU and memory used for all tasks owned by the service that are running on the cluster is calculated,
and those numbers are reported to CloudWatch as a percentage of the total resources that are reserved
for the service in the service's task definition.

For example, the task definition for a service reserves a total of 512 CPU units and 1,024 MiB of memory
for all of its containers. The service has a desired count of 1 running task, the service is running on a
cluster with 1 c4.large container instance (with 2,048 CPU units and 3,768 MiB of memory), and there
are no other tasks running on the cluster. Although the task has 512 CPU units reserved, because it is
the only running task on a container instance with 2,048 CPU units, it has the ability to use up to four
times the reserved amount (2,048 / 512); however, the memory reservation of 1,024 MiB is a hard limit
and it cannot be exceeded, so service memory utilization can not exceed 100%.

If this task is performing CPU-intensive work during a period and using all 2,048 of the available CPU
units and 512 MiB of memory, then the service reports 400% CPU utilization and 50% memory utilization.
If the task is idle and using 128 CPU units and 128 MiB of memory, then the service reports 25% CPU
utilization and 12.5% memory utilization.

Service RUNNING Task Count
You can use CloudWatch metrics to view the number of tasks in your services that are in the RUNNING
state. For example, you can set a CloudWatch alarm for this metric to alert you if the number of running
tasks in your service falls below a specified value.

To view the number of running tasks in a service

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the ECS > ClusterName,ServiceName section, choose the service you would like to view running
tasks in.

3. Change the period to 1 Minute.

4. Change the statistic to Data Samples. The value displayed indicates the number of RUNNING tasks
in the service.

Viewing Amazon ECS Metrics
Once you have enabled CloudWatch metrics for Amazon ECS, you can view those metrics in both the
Amazon ECS and CloudWatch consoles. The Amazon ECS console provides a 24-hour maximum,
minimum, and average view of your cluster and service CPU and memory utilization, while the CloudWatch

API Version 2014-11-13
80

Amazon EC2 Container Service Developer Guide
Service RUNNINGTask Count

https://console.aws.amazon.com/cloudwatch/

console provides a fine-grained and customizable display of your resources, as well as the number of
running tasks in a service.

Topics

• Viewing Cluster Metrics in the Amazon ECS Console (p. 81)

• Viewing Service Metrics in the Amazon ECS Console (p. 82)

• Viewing Amazon ECS Metrics in the CloudWatch Console (p. 82)

Viewing Cluster Metrics in the Amazon ECS
Console
Cluster CPU and memory utilization metrics are available in the Amazon ECS console.The view provided
for cluster metrics shows the average, minimum, and maximum values for the previous 24-hour period,
with data points available in 5-minute intervals. For more information on cluster utilization metrics, see
Cluster Utilization (p. 79).

To view cluster metrics in the Amazon ECS console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. Choose the cluster that you would like to view metrics with.

3. On the Cluster: cluster-name page, choose the Metrics tab to view cluster metrics.

API Version 2014-11-13
81

Amazon EC2 Container Service Developer Guide
Viewing Cluster Metrics in the Amazon ECS Console

https://console.aws.amazon.com/ecs/

Viewing Service Metrics in the Amazon ECS
Console
Service CPU and memory utilization metrics are available in the Amazon ECS console.The view provided
for service metrics shows the average, minimum, and maximum values for the previous 24-hour period,
with data points available in 5-minute intervals. For more information on service utilization metrics, see
Service Utilization (p. 79).

To view service metrics in the Amazon ECS console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. Choose the cluster that contains the service that you would like to view metrics with.

3. On the Cluster: cluster-name page, choose the Services tab to view the services in that cluster.

4. Choose the service that you would like to view metrics with.

5. On the Service: service-name page, choose the Metrics tab to view service metrics.

Viewing Amazon ECS Metrics in the CloudWatch
Console
Amazon ECS cluster and service metrics can also be viewed in the CloudWatch console.The CloudWatch
console provides the most detailed view of Amazon ECS metrics, and you can tailor the views to suit
your needs.You can view Cluster Utilization (p. 79), Service Utilization (p. 79), and the Service RUNNING
Task Count (p. 80). For more information on CloudWatch, see the Amazon CloudWatch Developer Guide.

API Version 2014-11-13
82

Amazon EC2 Container Service Developer Guide
Viewing Service Metrics in the Amazon ECS Console

https://console.aws.amazon.com/ecs/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

To view cluster metrics in the Amazon ECS console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the Metrics section in the left navigation, choose ECS.

3. Choose the metrics that you would like to view. Cluster utilization metrics are scoped as ECS >
ClusterName and service utilization metrics are scoped as ECS > ClusterName,ServiceName.
The example below shows cluster CPU and memory utilization.

Tutorial: Scaling Container Instances with
CloudWatch Alarms

The following procedures help you to create an Auto Scaling group for an Amazon ECS cluster that you
can scale up (and down) using CloudWatch alarms.

Depending on the Amazon EC2 instance types you use in your clusters, and quantity of container instances
you have in a cluster, your tasks have a limited amount of resources that they can use when they are
run. ECS monitors the resources available in the cluster to work with the schedulers to place tasks. If
your cluster runs low on any of these resources, such as memory, you will eventually be unable to launch
more tasks until you add more container instances, reduce the number of desired tasks in a service, or
stop some of the running tasks in your cluster to free up the constrained resource.

In this tutorial, you create a CloudWatch alarm using the MemoryUtilization metric for your cluster.
When the memory utilization of your cluster rises above 75%, the alarm triggers the Auto Scaling group
to add another instance and provide more resources for your tasks and services.

Prerequisites
This tutorial assumes that you have enabled CloudWatch metrics for your clusters and services. Metrics
are not available until the clusters and services send the metrics to CloudWatch, and you cannot create
CloudWatch alarms for metrics that do not exist yet.

Your Amazon ECS container instances require at least version 1.4.0 of the container agent to enable
CloudWatch metrics. For information about checking your agent version and updating to the latest version,
see Updating the Amazon ECS Container Agent (p. 35).

Your Amazon ECS container instances also require ecs:StartTelemetrySession permission on the
IAM role that you launch your container instances with. If you created your Amazon ECS container instance
role before CloudWatch metrics were available for Amazon ECS, then you might need to add this
permission. For information about checking your Amazon ECS container instance role and attaching the

API Version 2014-11-13
83

Amazon EC2 Container Service Developer Guide
Tutorial: Scaling with CloudWatch Alarms

https://console.aws.amazon.com/cloudwatch/

managed IAM policy for container instances, see To check for the ecsInstanceRole in the IAM
console (p. 95).

Step 1: Create a CloudWatch Alarm for a Metric
After you have enabled CloudWatch metrics for your clusters and services, and the metrics for your cluster
are visible in the CloudWatch console, you can set alarms on the metrics. For more information, see
Creating Amazon CloudWatch Alarms in the Amazon CloudWatch Developer Guide.

For this tutorial, you create an alarm on the cluster MemoryUtilization metric to alert when the cluster's
memory utilization is above 75%.

To create a CloudWatch alarm on a metric

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the left navigation, choose Alarms.

3. Choose Create Alarm.

4. In the CloudWatch Metrics by Category section, choose ECS > ClusterName.

5. On the Modify Alarm page, choose the MemoryUtilization metric for the default cluster and
choose Next.

6. In the Alarm Threshold section, enter a name and description for your alarm.

• Name: memory-above-75-pct

• Description: Cluster memory utilization above 75%

7. Set the threshold and time period requirement to MemoryUtilization greater than 75% for 1
period.

8. (Optional) Configure a notification to send when the alarm is triggered.You can also choose to delete
the notification if you don't want to configure one now.

9. Choose Create Alarm. Now you can use this alarm to trigger your Auto Scaling group to add a
container instance when the memory utilization is above 75%.

10. (Optional) You can also create another alarm that triggers when the memory is below 25%, which
you can use to remove a container instance from your Auto Scaling group.

API Version 2014-11-13
84

Amazon EC2 Container Service Developer Guide
Step 1: Create a CloudWatch Alarm for a Metric

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
https://console.aws.amazon.com/cloudwatch/

Step 2: Create a Launch Configuration for an Auto
Scaling Group
Now that you have enabled CloudWatch metrics and created an alarm based on one of those metrics,
you can create a launch configuration and an Auto Scaling group for your cluster. For more information
and other configuration options, see the Auto Scaling Developer Guide.

To create an Auto Scaling launch configuration

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the left navigation, choose Auto Scaling Groups.

3. On the Welcome to Auto Scaling page, choose Create Auto Scaling Group.

4. On the Create Auto Scaling Group page, choose Create launch configuration.

5. On the Choose AMI step of the Create Auto Scaling Group wizard, choose Community AMIs.

6. Choose the ECS-optimized AMI for your Auto Scaling group.

To use the Amazon ECS-optimized AMI, type amazon-ecs-optimized in the Search community
AMIs field and press the Enter key. Choose Select next to the
amzn-ami-2015.03.f-amazon-ecs-optimized AMI. The current Amazon ECS-optimized AMI IDs by
region are listed below for reference.

AMI IDAMI NameRegion

ami-b540eadeamzn-ami-2015.03.f-amazon-
ecs-optimized

us-east-1

ami-5721df13amzn-ami-2015.03.f-amazon-
ecs-optimized

us-west-1

ami-cb584dfbamzn-ami-2015.03.f-amazon-
ecs-optimized

us-west-2

ami-2aaef35damzn-ami-2015.03.f-amazon-
ecs-optimized

eu-west-1

ami-8aa61c8aamzn-ami-2015.03.f-amazon-
ecs-optimized

ap-northeast-1

ami-5ddc9f67amzn-ami-2015.03.f-amazon-
ecs-optimized

ap-southeast-2

7. On the Choose Instance Type step of the Create Auto Scaling Group wizard, choose an instance
type for your Auto Scaling group and choose Next: Configure details.

8. On the Configure details step of the Create Auto Scaling Group wizard, enter the following
information.The other fields are optional. For more information, see Creating Launch Configurations
in the Auto Scaling Developer Guide.

• Name: Enter a name for your launch configuration.

• IAM role: Select the ecsInstanceRole for your container instances. If you do not have this role
configured, see Amazon ECS Container Instance IAM Role (p. 94).

9. (Optional) If you have configuration information that you want to pass to your container instances
with EC2 user data, choose Advanced Details and enter your user data in the User data field. For
more information, see Amazon ECS Container Agent Configuration (p. 40).

API Version 2014-11-13
85

Amazon EC2 Container Service Developer Guide
Step 2: Create a Launch Configuration for an Auto

Scaling Group

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/
https://console.aws.amazon.com/ec2/
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WorkingWithLaunchConfig.html

10. Choose Next: Add Storage.

11. On the Add Storage step of the Create Auto Scaling Group wizard, make any storage configuration
changes you need for your instances and choose Next: Configure Security Group.

12. On the Configure Security Group step of the Create Auto Scaling Group wizard, select an existing
security group that meets the needs of your containers, or create a new security group and choose
Review.

13. Review your launch configuration and choose Create launch configuration.

14. Select a private key to use for connecting to your instances with SSH and choose Create launch
configuration to finish and move on to creating an Auto Scaling group with your new launch
configuration.

Step 3: Create an Auto Scaling Group for your
Cluster
After the launch configuration is complete, continue with the following procedure to create an Auto Scaling
group that uses your launch configuration.

To create an Auto Scaling group

1. On the Configure Auto Scaling group details step of the Create Auto Scaling Group wizard,
enter the following information and choose Next: Configure scaling policies.

• Group name: Enter a name for your Auto Scaling group.

• Group size: Specify the number of container instances your Auto Scaling group should start with.

• Network: Choose a VPC to launch your container instances into.

• Subnet: Choose the subnets you would like to launch your container instances into.

2. On the Configure scaling policies step of the Create Auto Scaling Group wizard, choose Use
scaling policies to adjust the capacity of this group.

3. Enter the minimum and maximum number of container instances for your Auto Scaling group.

4. In the Increase Group Size section, enter the following information.

• Execute policy when: Choose the memory-above-75-pct CloudWatch alarm you configured
earlier.

• Take the action: Enter the number of instances you would like to add to your cluster when the
alarm is triggered.

5. If you configured an alarm to trigger a group size reduction, set that alarm in the Decrease Group
Size section and specify how many instances to remove if that alarm is triggered. Otherwise, collapse
the Decrease Group Size section by clicking the X in the upper-right-hand corner of the section.

Note
If you configure your Auto Scaling group to remove container instances, any tasks running
on the removed container instances are killed. If your tasks are running as part of a service,
Amazon ECS restarts those tasks on another instance if the required resources are available
(CPU, memory, ports); however, tasks that were started manually will are not restarted
automatically.

6. Choose Review to review your Auto Scaling group and then choose Create Auto Scaling Group
to finish.

API Version 2014-11-13
86

Amazon EC2 Container Service Developer Guide
Step 3: Create an Auto Scaling Group for your Cluster

Step 4: Verify and Test your Auto Scaling Group
Now that you've created your Auto Scaling group, you should be able to see your instances launching in
the Amazon EC2 console Instances page.These instances should register into your Amazon ECS cluster
as well after they launch.

To test that your Auto Scaling group is configured properly, you can create some tasks that consume a
considerable amount of memory and start launching them into your cluster. After your cluster exceeds
the 75% memory utilization from the CloudWatch alarm for the specified number of periods, you should
see a new instance launch in the EC2 console.

Step 5: Cleaning Up
When you have completed this tutorial, you may choose to keep your Auto Scaling group and Amazon
EC2 instances in service for your cluster. However, if you are not actively using these resources, you
should consider cleaning them up so your account does not incur unnecessary charges.You can delete
your Auto Scaling group to terminate the Amazon EC2 instances within it, but your launch configuration
remains intact and you can create a new Auto Scaling group with it later if you choose.

To delete your Auto Scaling group

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the left navigation, choose Auto Scaling Groups.

3. Choose the Auto Scaling group you created for this tutorial.

4. Choose Actions and then choose Delete.

5. Choose Yes, Delete to delete your Auto Scaling group.

API Version 2014-11-13
87

Amazon EC2 Container Service Developer Guide
Step 4: Verify and Test your Auto Scaling Group

https://console.aws.amazon.com/ec2/

Amazon ECS IAM Policies and
Roles

By default, IAM users don't have permission to create or modify Amazon ECS resources, or perform tasks
using the Amazon ECS API. (This means that they also can't do so using the Amazon ECS console or
the AWS CLI.) To allow IAM users to create or modify resources and perform tasks, you must create IAM
policies that grant IAM users permission to use the specific resources and API actions they'll need, and
then attach those policies to the IAM users or groups that require those permissions.

When you attach a policy to a user or group of users, it allows or denies the users permission to perform
the specified tasks on the specified resources. For more general information about IAM policies, see
Permissions and Policies in the IAM User Guide guide. For more information about managing and creating
custom IAM policies, see Managing IAM Policies.

Likewise, Amazon ECS container instances make calls to the Amazon ECS and Amazon EC2 APIs on
your behalf, so they need to authenticate with your credentials. This authentication is accomplished by
creating an IAM role for your container instances and associating that role with your container instances
when you launch them. For more information, see Amazon ECS Container Instance IAM Role (p. 94). If
you use an Elastic Load Balancing load balancer with your Amazon ECS services, calls to the Amazon
EC2 and Elastic Load Balancing APIs are made on your behalf to register and deregister container
instances with your load balancers. For more information, see Amazon ECS Service Scheduler IAM
Role (p. 96). For more general information about IAM roles, see IAM Roles in the IAM User Guide guide.

Getting Started

An IAM policy must grant or deny permission to use one or more Amazon ECS actions. It must also
specify the resources that can be used with the action, which can be all resources, or in some cases,
specific resources. The policy can also include conditions that you apply to the resource.

Amazon ECS partially supports resource-level permissions. This means that for some Amazon ECS API
actions, you cannot specify which resource a user is allowed to work with for that action; instead, you
have to allow users to work with all resources for that action.

Topics

• Policy Structure (p. 89)

• Supported Resource-Level Permissions for Amazon ECS API Actions (p. 93)

• Amazon ECS Container Instance IAM Role (p. 94)

• Amazon ECS Service Scheduler IAM Role (p. 96)

API Version 2014-11-13
88

Amazon EC2 Container Service Developer Guide

http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html

• Creating Amazon ECS IAM Policies (p. 97)

• Amazon ECS IAM Policy Examples (p. 98)

Policy Structure
The following topics explain the structure of an IAM policy.

Topics

• Policy Syntax (p. 89)

• Actions for Amazon ECS (p. 90)

• Amazon Resource Names for Amazon ECS (p. 90)

• Condition Keys for Amazon ECS (p. 91)

• Checking that Users Have the Required Permissions (p. 92)

Policy Syntax
An IAM policy is a JSON document that consists of one of more statements. Each statement is structured
as follows:

{
 "Statement":[{
 "Effect":"effect",
 "Action":"action",
 "Resource":"arn",
 "Condition":{
 "condition":{
 "key":"value"
 }
 }
 }
]
}

There are various elements that make up a statement:

• Effect: The effect can be Allow or Deny. By default, IAM users don't have permission to use resources
and API actions, so all requests are denied. An explicit allow overrides the default. An explicit deny
overrides any allows.

• Action: The action is the specific API action for which you are granting or denying permission.To learn
about specifying action, see Actions for Amazon ECS (p. 90).

• Resource: The resource that's affected by the action. Some Amazon ECS API actions allow you to
include specific resources in your policy that can be created or modified by the action. To specify a
resource in the statement, you need to use its Amazon Resource Name (ARN). For more information
about specifying the arn value, see Amazon Resource Names for Amazon ECS (p. 90). For more
information about which API actions support which ARNs, see Supported Resource-Level Permissions
for Amazon ECS API Actions (p. 93). If the API action does not support ARNs, use the * wildcard to
specify that all resources can be affected by the action.

• Condition: Conditions are optional. They can be used to control when your policy will be in effect. For
more information about specifying conditions for Amazon ECS, see Condition Keys for Amazon
ECS (p. 91).

API Version 2014-11-13
89

Amazon EC2 Container Service Developer Guide
Policy Structure

For more information about example IAM policy statements for Amazon ECS, see Creating Amazon ECS
IAM Policies (p. 97).

Actions for Amazon ECS
In an IAM policy statement, you can specify any API action from any service that supports IAM. For
Amazon ECS, use the following prefix with the name of the API action:ecs:. For example:ecs:RunTask
and ecs:CreateCluster.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": ["ecs:action1", "ecs:action2"]

You can also specify multiple actions using wildcards. For example, you can specify all actions whose
name begins with the word "Describe" as follows:

"Action": "ecs:Describe*"

To specify all Amazon ECS API actions, use the * wildcard as follows:

"Action": "ecs:*"

For a list of Amazon ECS actions, see Actions in the Amazon EC2 Container Service API Reference.

Amazon Resource Names for Amazon ECS
Each IAM policy statement applies to the resources that you specify using their ARNs.

Important
Currently, not all API actions support individual ARNs; we'll add support for additional API actions
and ARNs for additional Amazon ECS resources later. For information about which ARNs you
can use with which Amazon ECS API actions, as well as supported condition keys for each ARN,
see Supported Resource-Level Permissions for Amazon ECS API Actions (p. 93).

An ARN has the following general syntax:

arn:aws:[service]:[region]:[account]:resourceType/resourcePath

service
The service (for example, ecs).

region
The region for the resource (for example, us-east-1).

account
The AWS account ID, with no hyphens (for example, 123456789012).

resourceType
The type of resource (for example, instance).

resourcePath
A path that identifies the resource.You can use the * wildcard in your paths.

For example, you can indicate a specific cluster (default) in your statement using its ARN as follows:

API Version 2014-11-13
90

Amazon EC2 Container Service Developer Guide
Actions for Amazon ECS

http://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Operations.html

"Resource": "arn:aws:ecs:us-east-1:123456789012:cluster/default"

You can also specify all clusters that belong to a specific account by using the * wildcard as follows:

"Resource": "arn:aws:ecs:us-east-1:123456789012:cluster/*"

To specify all resources, or if a specific API action does not support ARNs, use the * wildcard in the
Resource element as follows:

"Resource": "*"

The following table describes the ARNs for each type of resource used by the Amazon ECS API actions.

ARNResource Type

arn:aws:ecs:*All Amazon ECS resources

arn:aws:ecs:region:account:*All Amazon ECS resources
owned by the specified account
in the specified region

arn:aws:ecs:region:account:cluster/cluster-nameCluster

arn:aws:ecs:region:account:container-instance/container-instance-
id

Container instance

arn:aws:ecs:region:account:task-definition-family-name:task-definition-
revision-number

Task definition

arn:aws:ecs:region:account:service/service-nameService

arn:aws:ecs:region:account:task/task-idTask

arn:aws:ecs:region:account:container/container-idContainer

Many Amazon ECS API actions accept multiple resources. To specify multiple resources in a single
statement, separate their ARNs with commas, as follows:

"Resource": ["arn1", "arn2"]

For more general information about ARNs, see Amazon Resource Names (ARN) and AWS Service
Namespaces in the Amazon Web Services General Reference.

Condition Keys for Amazon ECS
In a policy statement, you can optionally specify conditions that control when it is in effect. Each condition
contains one or more key-value pairs. Condition keys are not case-sensitive. We've defined AWS-wide
condition keys, plus additional service-specific condition keys.

If you specify multiple conditions, or multiple keys in a single condition, we evaluate them using a logical
AND operation. If you specify a single condition with multiple values for one key, we evaluate the condition
using a logical OR operation. For permission to be granted, all conditions must be met.

You can also use placeholders when you specify conditions. For more information, see Policy Variables
in the IAM User Guide guide.

API Version 2014-11-13
91

Amazon EC2 Container Service Developer Guide
Condition Keys for Amazon ECS

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html

Amazon ECS implements the AWS-wide condition keys (see Available Keys), plus the following
service-specific condition keys. (We'll add support for additional service-specific condition keys for Amazon
ECS later.)

Evaluation TypesKey/Value PairCondition Key

ARN, Null"ecs:cluster":"cluster-arn"

Where cluster-arn is the ARN for the Amazon ECS cluster

ecs:cluster

ARN, Null"ecs:container-instances":"container-instance-arns"

Where container-instance-arns is one or more container in-
stance ARNs.

ecs:container-in-
stances

For information about which condition keys you can use with which Amazon ECS resources, on an
action-by-action basis, see Supported Resource-Level Permissions for Amazon ECS API Actions (p. 93).
For example policy statements for Amazon ECS, see Creating Amazon ECS IAM Policies (p. 97).

Checking that Users Have the Required
Permissions
After you've created an IAM policy, we recommend that you check whether it grants users the permissions
to use the particular API actions and resources they need before you put the policy into production.

First, create an IAM user for testing purposes, and then attach the IAM policy that you created to the test
user. Then, make a request as the test user.You can make test requests in the console or with the AWS
CLI.

Note
You can also test your policies with the IAM Policy Simulator. For more information on the policy
simulator, see Working with the IAM Policy Simulator in the IAM User Guide guide.

If the action that you are testing creates or modifies a resource, you should make the request using the
DryRun parameter (or run the AWS CLI command with the --dry-run option). In this case, the call
completes the authorization check, but does not complete the operation. For example, you can check
whether the user can terminate a particular instance without actually terminating it. If the test user has
the required permissions, the request returns DryRunOperation; otherwise, it returns
UnauthorizedOperation.

If the policy doesn't grant the user the permissions that you expected, or is overly permissive, you can
adjust the policy as needed and retest until you get the desired results.

Important
It can take several minutes for policy changes to propagate before they take effect. Therefore,
we recommend that you allow five minutes to pass before you test your policy updates.

If an authorization check fails, the request returns an encoded message with diagnostic information.You
can decode the message using the DecodeAuthorizationMessage action. For more information, see
DecodeAuthorizationMessage in the AWS Security Token Service API Reference, and
decode-authorization-message in the AWS Command Line Interface Reference.

API Version 2014-11-13
92

Amazon EC2 Container Service Developer Guide
Testing Permissions

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#AvailableKeys
https://policysim.aws.amazon.com/home/index.jsp?#
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_testing-policies.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_DecodeAuthorizationMessage.html
http://docs.aws.amazon.com/cli/latest/reference/sts/decode-authorization-message.html

Supported Resource-Level Permissions for
Amazon ECS API Actions

Resource-level permissions refers to the ability to specify which resources users are allowed to perform
actions on. Amazon ECS has partial support for resource-level permissions. This means that for certain
Amazon ECS actions, you can control when users are allowed to use those actions based on conditions
that have to be fulfilled, or specific resources that users are allowed to use. For example, you can grant
users permission to launch instances, but only of a specific type, and only using a specific AMI.

The following table describes the Amazon ECS API actions that currently support resource-level
permissions, as well as the supported resources, resource ARNs, and condition keys for each action.

Important
If an Amazon ECS API action is not listed in this table, then it does not support resource-level
permissions. If an Amazon ECS API action does not support resource-level permissions, you
can grant users permission to use the action, but you have to specify a * for the resource element
of your policy statement.

Condition keysResourceAPI action

N/ACluster

arn:aws:ecs:region:account:cluster/my-
cluster

DeleteCluster

N/ACluster

arn:aws:ecs:region:account:cluster/my-
cluster

DeregisterContainer-
Instance

N/ACluster

arn:aws:ecs:region:account:cluster/my-
cluster1, arn:aws:ecs:region:ac-
count:cluster/my-cluster2

DescribeClusters

ecs:clusterContainer instance

arn:aws:ecs:region:account:container-in-
stance/container-instance-id1,
arn:aws:ecs:region:account:container-in-
stance/container-instance-id2

DescribeContainer-
Instances

ecs:clusterTask

arn:aws:ecs:region:ac-
count:task/1abf0f6d-a411-4033-b8eb-
a4eed3ad252a, arn:aws:ecs:region:ac-
count:task/1abf0f6d-a411-4033-b8eb-
a4eed3ad252b

DescribeTasks

N/ACluster

arn:aws:ecs:region:account:cluster/my-
cluster

ListContainerInstances

API Version 2014-11-13
93

Amazon EC2 Container Service Developer Guide
Supported Resource-Level Permissions

Condition keysResourceAPI action

ecs:clusterContainer instance

arn:aws:ecs:region:account:container-in-
stance/container-instance-id

ListTasks

N/ACluster

arn:aws:ecs:region:account:cluster/my-
cluster

RegisterContainer-
Instance

ecs:clusterTask definition

arn:aws:ecs:region:account:task-defini-
tion/hello_world:8

RunTask

ecs:cluster

ecs:container-instances

Task definition

arn:aws:ecs:region:account:task-defini-
tion/hello_world:8

StartTask

ecs:clusterTask

arn:aws:ecs:region:ac-
count:task/1abf0f6d-a411-4033-b8eb-
a4eed3ad252a

StopTask

N/ACluster

arn:aws:ecs:region:account:cluster/my-
cluster

SubmitContainerState-
Change

N/ACluster

arn:aws:ecs:region:account:cluster/my-
cluster

SubmitTaskState-
Change

ecs:clusterContainer instance

arn:aws:ecs:region:account:container-in-
stance/container-instance-id

UpdateContainerAgent

Amazon ECS Container Instance IAM Role
The Amazon ECS container agent makes calls to the Amazon ECS API actions on your behalf, so container
instances that run the agent require an IAM policy and role for the service to know that the agent belongs
to you. Before you can launch container instances and register them into a cluster, you must create an
IAM role for those container instances to use when they are launched.This requirement applies to container
instances launched with the Amazon ECS-optimized AMI provided by Amazon, or with any other instances
that you intend to run the agent on.

The AmazonEC2ContainerServiceforEC2Role policy is shown below.

{
 "Version": "2012-10-17",
 "Statement": [

API Version 2014-11-13
94

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Instance IAM Role

 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:DiscoverPollEndpoint",
 "ecs:Poll",
 "ecs:RegisterContainerInstance",
 "ecs:StartTelemetrySession",
 "ecs:Submit*"
],
 "Resource": "*"
 }
]
}

Note
The ecs:CreateCluster line in the above policy is optional, provided that the cluster you
intend to register your container instance into already exists. If the cluster does not already exist,
the agent must have permission to create it, or you can create the cluster with the create-cluster
command prior to launching your container instance.
If you omit the ecs:CreateCluster line, the Amazon ECS container agent will not be able to
create clusters, including the default cluster.

The ecs:Poll line in the above policy is used to grant the agent permission to connect with the Amazon
ECS service to report status and get commands.

The Amazon ECS instance role is automatically created for you in the console first-run experience;
however, you should manually attach the managed IAM policy for container instances to allow Amazon
ECS to add permissions for future features and enhancements as they are introduced.You can use the
following procedure to check and see if your account already has the Amazon ECS instance role and to
attach the managed IAM policy if needed.

To check for the ecsInstanceRole in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsInstanceRole. If the role does not exist, use the procedure below
to create the role. If the role does exist, select the role to view the attached policies.

4. In the Managed Policies section, ensure that the AmazonEC2ContainerServiceforEC2Role
managed policy is attached to the role. If the policy is attached, your Amazon ECS instance role is
properly configured. If not, follow the substeps below to attach the policy.

a. Choose Attach Policy.

b. In the Filter box, type AmazonEC2ContainerServiceforEC2Role to narrow the available policies
to attach.

c. Check the box to the left of the AmazonEC2ContainerServiceforEC2Role policy and choose
Attach Policy.

To create the ecsInstanceRole IAM role for your container instances

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and then choose Create New Role.

API Version 2014-11-13
95

Amazon EC2 Container Service Developer Guide
Amazon ECS Container Instance IAM Role

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

3. In the Role Name field, type ecsInstanceRole to name the role, and then choose Next Step.

4. In the Select Role Type section, choose Select next to the Amazon EC2 Role for EC2 Container
Service role.

5. In the Attach Policy section, select the AmazonEC2ContainerServiceforEC2Role policy and then
choose Next Step.

6. Review your role information and then choose Create Role to finish.

Adding Amazon S3 Read-only Access to your
Container Instance Role
Storing configuration information in a private bucket in Amazon S3 and granting read-only access to your
container instance IAM role is a secure and convenient way to allow container instance configuration at
launch time.You can store a copy of your ecs.config file in a private bucket, use Amazon EC2 user
data to install the AWS CLI and then copy your configuration information to /etc/ecs/ecs.config
when the instance launches.

For more information about creating an ecs.config file, storing it in Amazon S3, and launching instances
with this configuration, see Storing Container Instance Configuration in Amazon S3 (p. 42).

To allow Amazon S3 read-only access for your container instance role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose the IAM role you use for your container instances (this role is likely titled ecsInstanceRole).
For more information, see Amazon ECS Container Instance IAM Role (p. 94).

4. Under Managed Policies, choose Attach Policy.

5. On the Attach Policy page, type S3 into the Filter field to narrow the policy results.

6. Check the box to the left of the AmazonS3ReadOnlyAccess policy and click Attach Policy.

Note
This policy allows read-only access to all Amazon S3 resources. For more restrictive bucket
policy examples, see Bucket Policy Examples in the Amazon Simple Storage Service
Developer Guide.

Amazon ECS Service Scheduler IAM Role
The Amazon ECS service scheduler makes calls to the Amazon EC2 and Elastic Load Balancing APIs
on your behalf to register and deregister container instances with your load balancers. Before you can
attach a load balancer to an Amazon ECS service, you must create an IAM role for your services to use
before you start them. This requirement applies to any Amazon ECS service that you plan to use with a
load balancer.

In most cases, the Amazon ECS service role is created for you automatically in the console first-run
experience.You can use the following procedure to check if your account already has the Amazon ECS
service role.

The AmazonEC2ContainerServiceRole policy is shown below.

{
 "Version": "2012-10-17",
 "Statement": [

API Version 2014-11-13
96

Amazon EC2 Container Service Developer Guide
Adding Amazon S3 Read-only Access to your Container

Instance Role

https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:Describe*",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:Describe*",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer"
],
 "Resource": "*"
 }
]
}

To check for the ecsServiceRole in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsServiceRole. If the role does not exist, use the procedure below to
create the role. If the role does exist, select the role to view the attached policies.

4. In the Managed Policies section, ensure that the AmazonEC2ContainerServiceRole managed
policy is attached to the role. If the policy is attached, your Amazon ECS service role is properly
configured. If not, follow the substeps below to attach the policy.

a. Choose Attach Policy.

b. In the Filter box, type AmazonEC2ContainerServiceRole to narrow the available policies to
attach.

c. Check the box to the left of the AmazonEC2ContainerServiceRole policy and choose Attach
Policy.

To create an IAM role for your service scheduler load balancers

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and then choose Create New Role.

3. In the Role Name field, type ecsServiceRole to name the role, and then choose Next Step.

4. In the Select Role Type section, scroll down and choose Select next to the Amazon EC2 Container
Service Role service role.

5. In the Attach Policy section, select the AmazonEC2ContainerServiceRole policy and then choose
Next Step.

6. Review your role information and then choose Create Role to finish.

Creating Amazon ECS IAM Policies
You can create specific IAM policies to restrict the calls and resources that users in your account have
access to, and then attach those policies to IAM users.

When you attach a policy to a user or group of users, it allows or denies the users permission to perform
the specified tasks on the specified resources. For more general information about IAM policies, see
Permissions and Policies in the IAM User Guide guide. For more information about managing and creating
custom IAM policies, see Managing IAM Policies.

API Version 2014-11-13
97

Amazon EC2 Container Service Developer Guide
Creating IAM Policies

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

To create an IAM policy for a user

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies and then choose Create Policy.

3. In the Create Policy section, choose Select next to Create Your Own Policy.

4. In the Policy Name field, type your own unique name, such as AmazonECSUserPolicy.

5. In the Policy Document field, paste the policy to apply to the user. Examples are provided in the
sections below.

6. Choose Create Policy to finish.

To attach an IAM policy to a user

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users and then choose the user you would like to attach the policy
to.

3. In the Permissions section, choose Attach User Policy.

4. In the Attach Policy section, select the custom policy you created in the previous procedure and
then choose Attach Policy.

Amazon ECS IAM Policy Examples
The following examples show policy statements that you could use to control the permissions that IAM
users have to Amazon ECS.

Topics

• Clusters (p. 98)

• Run Tasks (p. 100)

• Start Tasks (p. 100)

• Container Instances (p. 101)

• Task Definitions (p. 102)

• Tasks (p. 102)

Clusters
The following IAM policy allows permission to create and list clusters. The CreateCluster and
ListClusters actions do not accept any resources, so the resource definition is set to * for all resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:ListClusters"
],
 "Resource": [
 "*"
]

API Version 2014-11-13
98

Amazon EC2 Container Service Developer Guide
Amazon ECS IAM Policy Examples

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

 }
]
}

The following IAM policy allows permission to describe and delete a specific cluster. The
DescribeCluster and DeleteCluster actions accept cluster ARNs as resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeCluster",
 "ecs:DeleteCluster"
],
 "Resource": [
 "arn:aws:ecs:us-east-1:<aws_account_id>:cluster/<cluster_name>"
]
 }
]
}

The following IAM policy can be attached to a user or group that would only allow that user or group to
perform operations on a specific cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecs:Describe*",
 "ecs:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "ecs:DeleteCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:ListContainerInstances",
 "ecs:RegisterContainerInstance",
 "ecs:SubmitContainerStateChange",
 "ecs:SubmitTaskStateChange"
],
 "Effect": "Allow",
 "Resource": "arn:aws:ecs:us-east-1:<aws_account_id>:cluster/default"
 },
 {
 "Action": [
 "ecs:DescribeContainerInstances",
 "ecs:DescribeTasks",
 "ecs:ListTasks",
 "ecs:UpdateContainerAgent",
 "ecs:StartTask",

API Version 2014-11-13
99

Amazon EC2 Container Service Developer Guide
Clusters

 "ecs:StopTask",
 "ecs:RunTask"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:us-east-1:<aws_account_id>:cluster/default"

 }
 }
 }
]
}

Run Tasks
The resources for RunTask are task definitions. To limit which clusters a user can run task definitions
on, you can specify them in the Condition block. The advantage is that you don't have to list both task
definitions and clusters in your resources to allow appropriate access.You can apply one, the other, or
both.

The following IAM policy allows permission to run any revision of a specific task definition on a specific
cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_ac
count_id>:cluster/<cluster_name>"
 }
 },
 "Resource": [
 "arn:aws:ecs::<region>:<aws_account_id>:task-definition/<task_family>:*"

]
 }
]
}

Start Tasks
The resources for StartTask are task definitions. To limit which clusters and container instances a user
can start task definitions on, you can specify them in the Condition block. The advantage is that you
don't have to list both task definitions and clusters in your resources to allow appropriate access.You
can apply one, the other, or both.

API Version 2014-11-13
100

Amazon EC2 Container Service Developer Guide
Run Tasks

The following IAM policy allows permission to start any revision of a specific task definition on a specific
cluster and specific container instance:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StartTask"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_ac
count_id>:cluster/<cluster_name>",
 "ecs:container-instances" : [
 "arn:aws:ecs:<region>:<aws_account_id>:container-instance/<contain
er_instance_UUID>"
]
 }
 },
 "Resource": [
 "arn:aws:ecs::<region>:<aws_account_id>:task-definition/<task_family>:*"

]
 }
]
}

Container Instances
Container instance registration is handled by the Amazon ECS agent, but there may be times where you
want to allow a user to deregister an instance manually from a cluster. Perhaps the container instance
was accidentally registered to the wrong cluster, or the instance was terminated with tasks still running
on it.

The following IAM policy allows a user to list and deregister container instances in a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DeregisterContainerInstance",
 "ecs:ListContainerInstances"
],
 "Resource": [
 "arn:aws:ecs:<region>:<aws_account_id>:cluster/<cluster_name>"
]
 }
]
}

API Version 2014-11-13
101

Amazon EC2 Container Service Developer Guide
Container Instances

The following IAM policy allows a user to describe a specified container instance in a specified cluster.
To open this permission up to all container instances in a cluster, you can replace the container instance
UUID with *.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeContainerInstance"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_ac
count_id>:cluster/<cluster_name>"
 }
 },
 "Resource": [
 "arn:aws:ecs:<region>:<aws_account_id>:container-instance/<container_in
stance_UUID>"
]
 }
]
}

Task Definitions
Task definition IAM policies do not support resource-level permissions, but the following IAM policy allows
a user to register, list, and describe task definitions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RegisterTaskDefinition",
 "ecs:ListTaskDefinitions",
 "ecs:DescribeTaskDefinition"
],
 "Resource": [
 "*"
]
 }
]
}

Tasks
The following IAM policy allows a user to list tasks for a specified cluster:

{
 "Version": "2012-10-17",

API Version 2014-11-13
102

Amazon EC2 Container Service Developer Guide
Task Definitions

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:ListTasks"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_ac
count_id>:cluster/<cluster_name>"
 }
 },
 "Resource": [
 "*"
]
 }
]
}

The following IAM policy allows a user to stop a specified task in a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StopTask"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_ac
count_id>:cluster/<cluster_name>"
 }
 },
 "Resource": [
 "arn:aws:ecs:<region>:<aws_account_id>:task/<task_UUID>"
]
 }
]
}

The following IAM policy allows a user to describe a specified task in a specified cluster:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeTask"
],
 "Condition": {
 "ArnEquals": {
 "ecs:cluster": "arn:aws:ecs:<region>:<aws_ac
count_id>:cluster/<cluster_name>"

API Version 2014-11-13
103

Amazon EC2 Container Service Developer Guide
Tasks

 }
 },
 "Resource": [
 "arn:aws:ecs:<region>:<aws_account_id>:task/<task_UUID>"
]
 }
]
}

API Version 2014-11-13
104

Amazon EC2 Container Service Developer Guide
Tasks

Using the AWS CLI with Amazon
ECS

The following steps will help you set up a cluster, register a task definition, run a task, and perform other
common scenarios in Amazon ECS with the AWS CLI.

The AWS Command Line Interface (CLI) is a unified tool to manage your AWS services. With just one
tool to download and configure, you can control multiple AWS services from the command line and
automate them through scripts. For more information on the AWS CLI, see http://aws.amazon.com/cli/.

For more information on the other tools available for managing your AWS resources, including the different
AWS SDKs, IDE toolkits, and the Windows PowerShell command line tools, see http://aws.amazon.com/
tools/.

1. Step 1: (Optional) Create a Cluster (p. 105)

2. Step 2: Launch an Instance with the Amazon ECS AMI (p. 106)

3. Step 3: List Container Instances (p. 106)

4. Step 4: Describe your Container Instance (p. 107)

5. Step 5: Register a Task Definition (p. 108)

6. Step 6: List Task Definitions (p. 109)

7. Step 7: Run a Task (p. 110)

8. Step 8: List Tasks (p. 111)

9. Step 9: Describe the Running Task (p. 111)

Step 1: (Optional) Create a Cluster
By default, your account receives a default cluster when you launch your first container instance.

Note
The benefit of using the default cluster that is provided for you is that you don't have to specify
the --cluster cluster_name option in the following commands. If you do create your own
non-default cluster, you need to specify --cluster cluster_name for each command that
you intend to use with that cluster.

API Version 2014-11-13
105

Amazon EC2 Container Service Developer Guide
Step 1: (Optional) Create a Cluster

http://aws.amazon.com/cli/
http://aws.amazon.com/tools/
http://aws.amazon.com/tools/

However, you can create your own cluster with a unique name with the following command.

$ aws ecs create-cluster --cluster-name MyCluster
{
 "cluster": {
 "clusterName": "MyCluster",
 "status": "ACTIVE",
 "clusterArn": "arn:aws:ecs:region:aws_account_id:cluster/MyCluster"
 }
}

Step 2: Launch an Instance with the Amazon
ECS AMI

You must have an ECS container instance in your cluster before you can run tasks on it. If you do not
already have any container instances in your cluster, see Launching an Amazon ECS Container
Instance (p. 25) for more information. The current Amazon ECS-optimized AMI IDs by region are listed
below for reference.

AMI IDAMI NameRegion

ami-b540eadeamzn-ami-2015.03.f-amazon-
ecs-optimized

us-east-1

ami-5721df13amzn-ami-2015.03.f-amazon-
ecs-optimized

us-west-1

ami-cb584dfbamzn-ami-2015.03.f-amazon-
ecs-optimized

us-west-2

ami-2aaef35damzn-ami-2015.03.f-amazon-
ecs-optimized

eu-west-1

ami-8aa61c8aamzn-ami-2015.03.f-amazon-
ecs-optimized

ap-northeast-1

ami-5ddc9f67amzn-ami-2015.03.f-amazon-
ecs-optimized

ap-southeast-2

Step 3: List Container Instances
Within a few minutes of launching your container instance, the Amazon ECS agent registers the instance
with your default cluster.You can list the container instances in a cluster by running the following command:

$ aws ecs list-container-instances --cluster default
{
 "containerInstanceArns": [
 "arn:aws:ecs:us-east-1:aws_account_id:container-instance/container_in
stance_UUID"
]
}

API Version 2014-11-13
106

Amazon EC2 Container Service Developer Guide
Step 2: Launch an Instance with the Amazon ECS AMI

Step 4: Describe your Container Instance
After you have the ARN or UUID of a container instance, you can use the describe-container-instances
command to get valuable information on the instance, such as remaining and registered CPU and memory
resources.

$ aws ecs describe-container-instances --cluster default --container-instances
container_instance_UUID

{
 "failures": [],
 "containerInstances": [
 {
 "status": "ACTIVE",
 "registeredResources": [
 {
 "integerValue": 2048,
 "longValue": 0,
 "type": "INTEGER",
 "name": "CPU",
 "doubleValue": 0.0
 },
 {
 "integerValue": 3955,
 "longValue": 0,
 "type": "INTEGER",
 "name": "MEMORY",
 "doubleValue": 0.0
 },
 {
 "name": "PORTS",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [
 "2376",
 "22",
 "51678",
 "2375"
],
 "type": "STRINGSET",
 "integerValue": 0
 }
],
 "ec2InstanceId": "instance_id",
 "agentConnected": false,
 "containerInstanceArn": "arn:aws:ecs:us-east-1:aws_account_id:con
tainer-instance/container_instance_UUID",
 "remainingResources": [
 {
 "integerValue": 2048,
 "longValue": 0,
 "type": "INTEGER",
 "name": "CPU",
 "doubleValue": 0.0
 },
 {
 "integerValue": 3955,
 "longValue": 0,

API Version 2014-11-13
107

Amazon EC2 Container Service Developer Guide
Step 4: Describe your Container Instance

 "type": "INTEGER",
 "name": "MEMORY",
 "doubleValue": 0.0
 },
 {
 "name": "PORTS",
 "longValue": 0,
 "doubleValue": 0.0,
 "stringSetValue": [
 "2376",
 "22",
 "51678",
 "2375"
],
 "type": "STRINGSET",
 "integerValue": 0
 }
]
 }
]
}

You can also find the EC2 instance ID that you can use to monitor the instance in the Amazon EC2
console or with the aws ec2 describe-instances --instance-id instance_id command.

Step 5: Register a Task Definition
Before you can run a task on your ECS cluster, you must register a task definition. Task definitions are
lists of containers grouped together.The following example is a simple task definition that uses a busybox
image from Docker Hub and simply sleeps for 360 seconds. For more information about the available
task definition parameters, see Amazon ECS Task Definitions (p. 48).

{
 "containerDefinitions": [
 {
 "name": "sleep",
 "image": "busybox",
 "cpu": 10,
 "command": [
 "sleep",
 "360"
],
 "memory": 10,
 "essential": true
 }
],
 "family": "sleep360"
}

The above example JSON can be passed to the AWS CLI in two ways: you can save the task definition
JSON as a file and pass it with the --cli-input-json file://path_to_file.json option, or you
can escape the quotation marks in the JSON and pass the JSON container definitions on the command
line as in the below example. If you choose to pass the container definitions on the command line, your

API Version 2014-11-13
108

Amazon EC2 Container Service Developer Guide
Step 5: Register a Task Definition

command additionally requires a --family parameter that is used to keep multiple versions of your task
definition associated with each other.

To use a JSON file for container definitions:

$ aws ecs register-task-definition --cli-input-json
file://$HOME/tasks/sleep360.json

To use a JSON string for container definitions:

$ aws ecs register-task-definition --family sleep360 --container-definitions
"[{\"name\":\"sleep\",\"image\":\"busybox\",\"cpu\":10,\"com
mand\":[\"sleep\",\"360\"],\"memory\":10,\"essential\":true}]"

The register-task-definition returns a description of the task definition after it completes its registration.

{
 "taskDefinition": {
 "volumes": [],
 "taskDefinitionArn": "arn:aws:ec2:us-east-1:aws_account_id:task-defini
tion/sleep360:1",
 "containerDefinitions": [
 {
 "environment": [],
 "name": "sleep",
 "mountPoints": [],
 "image": "busybox",
 "cpu": 10,
 "portMappings": [],
 "command": [
 "sleep",
 "360"
],
 "memory": 10,
 "essential": true,
 "volumesFrom": []
 }
],
 "family": "sleep360",
 "revision": 1
 }
}

Step 6: List Task Definitions
You can list the task definitions for your account at any time with the list-task-definitions command.The
output of this command shows the family and revision values that you can use together when calling
run-task or start-task.

$ aws ecs list-task-definitions
{
 "taskDefinitionArns": [
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep300:1",

API Version 2014-11-13
109

Amazon EC2 Container Service Developer Guide
Step 6: List Task Definitions

 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep300:2",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/sleep360:1",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:3",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:4",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:5",
 "arn:aws:ec2:us-east-1:aws_account_id:task-definition/wordpress:6"
]
}

Step 7: Run a Task
After you have registered a task for your account and have launched a container instance that is registered
to your cluster, you can run the registered task in your cluster. For this example, you place a single
instance of the sleep360:1 task definition in your default cluster.

$ aws ecs run-task --cluster default --task-definition sleep360:1 --count 1
{
 "tasks": [
 {
 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/task_UUID",
 "overrides": {
 "containerOverrides": [
 {
 "name": "sleep"
 }
]
 },
 "lastStatus": "PENDING",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:aws_account_id:con
tainer-instance/container_instance_UUID",
 "clusterArn": "arn:aws:ecs:us-east-1:aws_account_id:cluster/default",

 "desiredStatus": "RUNNING",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:aws_account_id:task-
definition/sleep360:1",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-east-1:aws_account_id:con
tainer/container_UUID",
 "taskArn": "arn:aws:ecs:us-east-1:aws_ac
count_id:task/task_UUID",
 "lastStatus": "PENDING",
 "name": "sleep"
 }
]
 }
]
}

API Version 2014-11-13
110

Amazon EC2 Container Service Developer Guide
Step 7: Run a Task

Step 8: List Tasks
List the tasks for your cluster.You should see the task that you ran in the previous section.You can take
the task UUID or the full ARN that is returned from this command and use it to describe the task later.

$ aws ecs list-tasks --cluster default
{
 "taskArns": [
 "arn:aws:ecs:us-east-1:aws_account_id:task/task_UUID"
]
}

Step 9: Describe the Running Task
Describe the task using the task UUID retrieved earlier to get more information about the task.

$ aws ecs describe-tasks --cluster default --task task_UUID
{
 "failures": [],
 "tasks": [
 {
 "taskArn": "arn:aws:ecs:us-east-1:aws_account_id:task/task_UUID",
 "overrides": {
 "containerOverrides": [
 {
 "name": "sleep"
 }
]
 },
 "lastStatus": "RUNNING",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:aws_account_id:con
tainer-instance/container_instance_UUID",
 "clusterArn": "arn:aws:ecs:us-east-1:aws_account_id:cluster/default",

 "desiredStatus": "RUNNING",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:aws_account_id:task-
definition/sleep360:1",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-east-1:aws_account_id:con
tainer/container_UUID",
 "taskArn": "arn:aws:ecs:us-east-1:aws_ac
count_id:task/task_UUID",
 "lastStatus": "RUNNING",
 "name": "sleep",
 "networkBindings": []
 }
]
 }
]
}

API Version 2014-11-13
111

Amazon EC2 Container Service Developer Guide
Step 8: List Tasks

Amazon ECS Default Service Limits

The following table provides the default limits for Amazon ECS for an AWS account.

Default LimitResource

1000Number of clusters per region, per account

1000Number of container instances per cluster

1Number of load balancers per service

1000Number of tasks per service

10Number of tasks launched (count) per run-task

10Number of container instances per start-task

5 per clusterThrottle on number of container instances per
second per run-task

1 per second / 60 max per minuteThrottle on container instance registration rate

32 KiBTask definition size limit

10Task definition max containers

1 per second / 60 max per minuteThrottle on task definition registration rate

API Version 2014-11-13
112

Amazon EC2 Container Service Developer Guide

Logging Amazon ECS API Calls By
Using AWS CloudTrail

Amazon ECS is integrated with AWS CloudTrail, a service that captures API calls made by or on behalf
of Amazon ECS in your AWS account and delivers the log files to an Amazon S3 bucket that you specify.
CloudTrail captures API calls from the Amazon ECS console or from the Amazon ECS API. Using the
information collected by CloudTrail, you can determine what request was made to Amazon ECS, the
source IP address from which the request was made, who made the request, when it was made, and so
on. To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon ECS Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to Amazon ECS actions are
tracked in log files. Amazon ECS records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

All of the Amazon ECS actions are logged and are documented in the Amazon EC2 Container Service
API Reference. For example, calls to the CreateService, RunTask, and RegisterContainerInstance
actions generate entries in the CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
life cycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications.

You can also aggregate Amazon ECS log files from multiple AWS regions and multiple AWS accounts
into a single S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single Amazon
S3 Bucket.

API Version 2014-11-13
113

Amazon EC2 Container Service Developer Guide
Amazon ECS Information in CloudTrail

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/
http://docs.aws.amazon.com/AmazonECS/latest/APIReference/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

Understanding Amazon ECS Log File Entries
CloudTrail log files can contain one or more log entries where each entry is made up of multiple
JSON-formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public
API calls.

API Version 2014-11-13
114

Amazon EC2 Container Service Developer Guide
Understanding Amazon ECS Log File Entries

Amazon ECS Troubleshooting

You may need to troubleshoot issues with your tasks, services, or container instances.This chapter helps
you find diagnostic information from the Amazon ECS container agent, the Docker daemon on the container
instance, and the service event log in the Amazon ECS console.

Topics

• Checking Stopped Tasks for Errors (p. 115)

• Service Event Messages (p. 116)

• Connect to your Container Instance (p. 118)

• Amazon ECS Log File Locations (p. 119)

• Agent Introspection Diagnostics (p. 120)

• Docker Diagnostics (p. 121)

• API failures Error Messages (p. 123)

Checking Stopped Tasks for Errors
If you have trouble starting a task (for example, you run the task and the task displays a PENDING status
and then disappears) your task might be stopping because of an error.You can view errors like this in
the Amazon ECS console by displaying the stopped task and inspecting it for error messages.

To check stopped tasks for errors

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the Clusters page, choose the cluster in which your stopped task resides.

3. On the Cluster : clustername page, choose the Tasks tab to view your tasks.

4. In the Desired task status table header, choose Stopped to view stopped tasks, and then choose
the stopped task you want to inspect. The most recent stopped tasks are listed first.

5. Expand the container and inspect the Status reason row to see what caused the task state to change.

API Version 2014-11-13
115

Amazon EC2 Container Service Developer Guide
Checking Stopped Tasks for Errors

https://console.aws.amazon.com/ecs/

In the previous example, the container image name cannot be found.This can happen if you misspell
the image name.

If this inspection does not provide enough information, you can connect to the container instance
with SSH and inspect the Docker container locally. For more information, see Inspect Docker
Containers (p. 122).

Service Event Messages
If you are troubleshooting a problem with a service, the first place you should check for diagnostic
information is the service event log.

To check the service event log in the Amazon ECS console

1. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

2. On the Clusters page, choose the cluster in which your service resides.

3. On the Cluster : clustername page, choose the service that you would like to inspect.

4. On the Service : servicename page, choose the Events tab.

API Version 2014-11-13
116

Amazon EC2 Container Service Developer Guide
Service Event Messages

https://console.aws.amazon.com/ecs/

5. Examine the Message column for errors or other helpful information.

(service service-name) was unable to place a task because the resources could not be found.

In the above image, this service could not find the available resources to add another task. The possible
causes for this are:

Not enough ports
If your task uses fixed host port mapping (for example, your task uses port 80 on the host for a web
server), you must have at least one container instance per task, because only one container can use
a single host port at a time.You should add container instances to your cluster or reduce your number
of desired tasks.

Not enough memory
If your task definition specifies 1000 MiB of memory, and the container instances in your cluster each
have 1024 MiB of memory, you can only run one copy of this task per container instance.You can
experiment with less memory in your task definition so that you could launch more than one task per
container instance, or launch more container instances into your cluster.

Not enough CPU
A container instance has 1,024 CPU units for every CPU core. If your task definition specifies 1,000
CPU units, and the container instances in your cluster each have 1,024 CPU units, you can only run
one copy of this task per container instance.You can experiment with less CPU units in your task
definition so that you could launch more than one task per container instance, or launch more container
instances into your cluster.

API Version 2014-11-13
117

Amazon EC2 Container Service Developer Guide
Service Event Messages

Connect to your Container Instance
Much of the diagnostic information for Amazon ECS is available on the container instances themselves.
To access this information, you need to connect to the container instance using SSH. To connect to your
instance using SSH, your container instances must meet the following prerequisites:

• Your container instances need external network access to connect using SSH, so if your container
instances are running in a private VPC, they need an SSH bastion instance to provide this access. For
more information, see Securely connect to Linux instances running in a private Amazon VPC.

• Your container instances must have been launched with a valid Amazon EC2 key pair. Amazon ECS
container instances have no password, and you use a key pair to log in using SSH. If you did not specify
a key pair when you launched your instance, there is no way to connect to the instance.

• SSH uses port 22 for communication. Port 22 must be open in your container instance security group
for you to connect to your instance using SSH.

Note
The Amazon ECS console first-run experience creates a security group for your container
instances without inbound access on port 22. If your container instances were launched from
the console first-run experience, you need to add inbound access to port 22 on the security
group used for those instances. For more information, see Authorizing Network Access to
Your Instances in the Amazon EC2 User Guide for Linux Instances.

To connect to your container instance

1. Find the public IP or DNS address for your container instance.

a. Open the Amazon ECS console at https://console.aws.amazon.com/ecs/.

b. Choose the cluster that hosts your container instance.

c. On the Cluster page, choose the ECS Instances tab.

d. On the Container Instance column, choose the container instance you wish to connect to.

e. On the Container Instance page, record the Public IP or Public DNS for your instance.

2. Find the default username for your container instance AMI. The user name for instances launched
with the Amazon ECS-optimized AMI is ec2-user. For Ubuntu AMIs, the default user name is
ubuntu. For CoreOS, the default user name is core.

3. If you are using a Mac or Linux computer, connect to your instance with the following command,
substituting the path to your private key and the public address for your instance:

$ ssh -i /path/to/my-key-pair.pem ec2-user@ec2-198-51-100-1.compute-
1.amazonaws.com

If you are using a Windows computer, see Connecting to Your Linux Instance from Windows Using
PuTTY in the Amazon EC2 User Guide for Linux Instances.

Important
If you experience any issues connecting to your instance, see Troubleshooting Connecting
to Your Instance in the Amazon EC2 User Guide for Linux Instances.

API Version 2014-11-13
118

Amazon EC2 Container Service Developer Guide
Connect to your Container Instance

http://blogs.aws.amazon.com/security/post/Tx3N8GFK85UN1G6/Securely-connect-to-Linux-instances-running-in-a-private-Amazon-VPC
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://console.aws.amazon.com/ecs/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/TroubleshootingInstancesConnecting.html

Amazon ECS Log File Locations
Amazon ECS stores logs in the /var/log/ecs folder of your container instances.There are logs available
from the Amazon ECS container agent and the ecs-init service that controls the state of the agent
(start/stop) on the container instance.You can view these log files by connecting to a container instance
using SSH. For more information, see Connect to your Container Instance (p. 118).

Amazon ECS Container Agent Log
The Amazon ECS container agent stores logs at /var/log/ecs/ecs-agent.log.

Note
You can increase the verbosity of the container agent logs by setting ECS_LOGLEVEL=debug
and restarting the container agent. For more information, see Amazon ECS Container Agent
Configuration (p. 40).

[ec2-user ~]$ cat /var/log/ecs/ecs-agent.log
t=2015-04-22T20:51:46+0000 lvl=info msg="Starting Agent" module=main
stack=[agent/agent.go:51]
t=2015-04-22T20:51:46+0000 lvl=info msg="Loading configuration" module=main
stack=[agent/agent.go:53]
t=2015-04-22T20:51:46+0000 lvl=info msg="Loading state!" module=statemanager
stack="[github.com/aws/amazon-ecs-agent/agent/statemanager/state_manager.go:215
 agent/agent.go:80]"
t=2015-04-22T20:51:46+0000 lvl=info msg="Registering Instance with ECS" mod
ule=main stack=[agent/agent.go:131]
t=2015-04-22T20:51:46+0000 lvl=info msg=Registered! module="api client"
stack="[github.com/aws/amazon-ecs-agent/agent/api/api_client.go:254 git
hub.com/aws/amazon-ecs-agent/agent/api/api_client.go:193 agent/agent.go:132]"
t=2015-04-22T20:51:46+0000 lvl=info msg="Registration completed successfully"
module=main containerInstance=arn:aws:ecs:us-west-2:aws_account_id:container-
instance/14e8cce9-0b16-4af4-bfac-a85f7587aa98 cluster=default
stack=[agent/agent.go:140]
t=2015-04-22T20:51:46+0000 lvl=info msg="Saving state!" module=statemanager
stack="[github.com/aws/amazon-ecs-agent/agent/statemanager/state_manager.go:180
 github.com/aws/amazon-ecs-agent/agent/statemanager/state_manager.go:154
agent/agent.go:142]"
t=2015-04-22T20:51:46+0000 lvl=info msg="Beginning Polling for updates" mod
ule=main stack=[agent/agent.go:159]
t=2015-04-22T20:51:46+0000 lvl=dbug msg="Added update handlers" module=updater
 stack="[github.com/aws/amazon-ecs-agent/agent/acs/update_handler/updater.go:85
 github.com/aws/amazon-ecs-agent/agent/acs/handler/acs_handler.go:61 git
hub.com/aws/amazon-ecs-agent/agent/utils/utils.go:106 github.com/aws/amazon-
ecs-agent/agent/acs/handler/acs_handler.go:69 agent/agent.go:160]"
t=2015-04-22T20:51:46+0000 lvl=info msg="Creating poll dialer" module="acs
client" host=ecs-a-1.us-west-2.amazonaws.com stack="[github.com/aws/amazon-ecs-
agent/agent/acs/client/acs_client.go:130 github.com/aws/amazon-ecs-
agent/agent/acs/handler/acs_handler.go:63 github.com/aws/amazon-ecs-
agent/agent/utils/utils.go:106 github.com/aws/amazon-ecs-agent/agent/acs/hand
ler/acs_handler.go:69 agent/agent.go:160]"

Amazon ECS ecs-init Log
The ecs-init process stores logs at /var/log/ecs/ecs-init.log.timestamp.

API Version 2014-11-13
119

Amazon EC2 Container Service Developer Guide
Amazon ECS Log File Locations

[ec2-user ~]$ cat /var/log/ecs/ecs-init.log.2015-04-22-20
2015-04-22T20:51:45Z [INFO] pre-start
2015-04-22T20:51:45Z [INFO] Loading Amazon EC2 Container Service Agent into
Docker
2015-04-22T20:51:46Z [INFO] start
2015-04-22T20:51:46Z [INFO] No existing agent container to remove.
2015-04-22T20:51:46Z [INFO] Starting Amazon EC2 Container Service Agent

Agent Introspection Diagnostics
The Amazon ECS agent introspection API can provide helpful diagnostic information. For example, you
can use the agent introspection API to get the Docker ID for a container in your task.You can use the
agent introspection API by connecting to a container instance using SSH. For more information, see
Connect to your Container Instance (p. 118).

The below example shows two tasks, one that is currently running and one that was stopped.

Note
The command below is piped through the python -mjson.tool for greater readability.

[ec2-user ~]$ curl http://localhost:51678/v1/tasks | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed
100 1095 100 1095 0 0 117k 0 --:--:-- --:--:-- --:--:-- 133k
{
 "Tasks": [
 {
 "Arn": "arn:aws:ecs:us-west-2:aws_account_id:task/090eff9b-1ce3-
4db6-848a-a8d14064fd24",
 "Containers": [
 {
 "DockerId": "189a8ff4b5f04affe40e5160a5ffad
ca395136eb5faf4950c57963c06f82c76d",
 "DockerName": "ecs-console-sample-app-static-6-simple-app-
86caf9bcabe3e9c61600",
 "Name": "simple-app"
 },
 {
 "DockerId":
"f7f1f8a7a245c5da83aa92729bd28c6bcb004d1f6a35409e4207e1d34030e966",
 "DockerName": "ecs-console-sample-app-static-6-busybox-
ce83ce978a87a890ab01",
 "Name": "busybox"
 }
],
 "Family": "console-sample-app-static",
 "KnownStatus": "STOPPED",
 "Version": "6"
 },
 {
 "Arn": "arn:aws:ecs:us-west-2:aws_account_id:task/1810e302-eaea-
4da9-a638-097bea534740",
 "Containers": [
 {

API Version 2014-11-13
120

Amazon EC2 Container Service Developer Guide
Agent Introspection Diagnostics

 "DockerId": "dc7240fe892ab233db
bcee5044d95e1456c120dba9a6b56ec513da45c38e3aeb",
 "DockerName": "ecs-console-sample-app-static-6-simple-app-
f0e5859699a7aecfb101",
 "Name": "simple-app"
 },
 {
 "DockerId":
"096d685fb85a1ff3e021c8254672ab8497e3c13986b9cf005cbae9460b7b901e",
 "DockerName": "ecs-console-sample-app-static-6-busybox-
92e4b8d0ecd0cce69a01",
 "Name": "busybox"
 }
],
 "DesiredStatus": "RUNNING",
 "Family": "console-sample-app-static",
 "KnownStatus": "RUNNING",
 "Version": "6"
 }
]
}

In the above example, the stopped task (090eff9b-1ce3-4db6-848a-a8d14064fd24) has two
containers.You can use docker inspect container-ID to view detailed information on each container.
For more information, see Amazon ECS Container Agent Introspection (p. 46).

Docker Diagnostics
Docker provides several diagnostic tools that can help you troubleshoot problems with your containers
and tasks. For more information about all of the available Docker command line utilities, go to the Docker
Command Line topic in the Docker documentation.You can access the Docker command line utilities by
connecting to a container instance using SSH. For more information, see Connect to your Container
Instance (p. 118).

List Docker Containers
You can use the docker ps command on your container instance to list the running containers. In the
below example, only the Amazon ECS container agent is running. For more information, go to docker ps
in the Docker documentation.

[ec2-user ~]$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
cee0d6986de0 amazon/amazon-ecs-agent:latest "/agent" 22
hours ago Up 22 hours 127.0.0.1:51678->51678/tcp ecs-agent

You can use the docker ps -a command to see all containers (even stopped or killed containers). This
is helpful for listing containers that are unexpectedly stopping. In the following example, container
f7f1f8a7a245 exited 9 seconds ago, so it would not show up in a docker ps output without the -a flag.

[ec2-user ~]$ docker ps -a
CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS

API Version 2014-11-13
121

Amazon EC2 Container Service Developer Guide
Docker Diagnostics

https://docs.docker.com/reference/commandline/cli/
https://docs.docker.com/reference/commandline/cli/
https://docs.docker.com/reference/commandline/cli/#ps

 NAMES
db4d48e411b1 amazon/ecs-emptyvolume-base:autogenerated "not-applicable"
 19 seconds ago
 ecs-console-sample-app-static-6-internalecs-emptyvolume-source-
c09288a6b0cba8a53700
f7f1f8a7a245 busybox:buildroot-2014.02 "\"sh -c '/bin/sh
 -c 22 hours ago Exited (137) 9 seconds ago
 ecs-console-sample-app-static-6-busybox-ce83ce978a87a890ab01
189a8ff4b5f0 httpd:2 "httpd-fore
ground" 22 hours ago Exited (137) 40 seconds ago
 ecs-console-sample-app-static-6-simple-app-86caf9bcabe3e9c61600
0c7dca9321e3 amazon/ecs-emptyvolume-base:autogenerated "not-applicable"
 22 hours ago
 ecs-console-sample-app-static-6-internalecs-emptyvolume-source-90fe
faa68498a8a80700
cee0d6986de0 amazon/amazon-ecs-agent:latest "/agent"
 22 hours ago Up 22 hours 127.0.0.1:51678-
>51678/tcp ecs-agent

View Docker Logs
You can view the STDOUT and STDERR streams for a container with the docker logs command. In this
example, the logs are displayed for the dc7240fe892a container and piped through the head command
for brevity. For more information, go to docker logs in the Docker documentation.

[ec2-user ~]$ docker logs dc7240fe892a | head
AH00558: httpd: Could not reliably determine the server's fully qualified domain
 name, using 172.17.0.11. Set the 'ServerName' directive globally to suppress
this message
AH00558: httpd: Could not reliably determine the server's fully qualified domain
 name, using 172.17.0.11. Set the 'ServerName' directive globally to suppress
this message
[Thu Apr 23 19:48:36.956682 2015] [mpm_event:notice] [pid 1:tid 140327115417472]
 AH00489: Apache/2.4.12 (Unix) configured -- resuming normal operations
[Thu Apr 23 19:48:36.956827 2015] [core:notice] [pid 1:tid 140327115417472]
AH00094: Command line: 'httpd -D FOREGROUND'
10.0.1.86 - - [23/Apr/2015:19:48:59 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:48:59 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:49:28 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:49:29 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:49:50 +0000] "-" 408 -
10.0.0.154 - - [23/Apr/2015:19:49:50 +0000] "-" 408 -
10.0.1.86 - - [23/Apr/2015:19:49:58 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:49:59 +0000] "GET / HTTP/1.1" 200 348
10.0.1.86 - - [23/Apr/2015:19:50:28 +0000] "GET / HTTP/1.1" 200 348
10.0.0.154 - - [23/Apr/2015:19:50:29 +0000] "GET / HTTP/1.1" 200 348
time="2015-04-23T20:11:20Z" level="fatal" msg="write /dev/stdout: broken pipe"

Inspect Docker Containers
If you have the Docker ID of a container, you can inspect it with the docker inspect command. Inspecting
containers provides the most detailed view of the environment in which a container was launched. For
more information, go to docker inspect in the Docker documentation.

API Version 2014-11-13
122

Amazon EC2 Container Service Developer Guide
View Docker Logs

https://docs.docker.com/reference/commandline/cli/#logs
https://docs.docker.com/reference/commandline/cli/#inspect

[ec2-user ~]$ docker inspect dc7240fe892a
[{
 "AppArmorProfile": "",
 "Args": [],
 "Config": {
 "AttachStderr": false,
 "AttachStdin": false,
 "AttachStdout": false,
 "Cmd": [
 "httpd-foreground"
],
 "CpuShares": 10,
 "Cpuset": "",
 "Domainname": "",
 "Entrypoint": null,
 "Env": [
 "PATH=/usr/local/sbin:/usr/loc
al/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/apache2/bin",
 "HTTPD_PREFIX=/usr/local/apache2",
 "HTTPD_VERSION=2.4.12",
 "HTTPD_BZ2_URL=https://www.apache.org/dist/httpd/httpd-
2.4.12.tar.bz2"
],
 "ExposedPorts": {
 "80/tcp": {}
 },
 "Hostname": "dc7240fe892a",
...

API failures Error Messages
In some cases, an API call that you have triggered through the Amazon ECS console or the AWS CLI
exits with a failures error message.The following possible API failures error messages are explained
below for each API call. The failures occur on a particular resource, and the resource in parentheses is
the resource associated with the failure.

Many resources are region-specific, so make sure the console is set to the correct region for your resources,
or that your AWS CLI commands are being sent to the correct region with the --region region option.

• DescribeClusters

MISSING (cluster ID)
Your cluster was not found. The cluster name may not have been spelled correctly or the wrong
region may be specified.

• DescribeInstances

MISSING (container instance ID)
The container instance you are attempting to describe does not exist. Perhaps the wrong cluster
or region has been specified, or the container instance ARN or ID is misspelled.

• DescribeServices

MISSING (service ID)
The service you are attempting to describe does not exist. Perhaps the wrong cluster or region
has been specified, or the container instance ARN or ID is misspelled.

• DescribeTasks

API Version 2014-11-13
123

Amazon EC2 Container Service Developer Guide
API failures Error Messages

MISSING (task ID)
The task you are trying to describe does not exist. Perhaps the wrong cluster or region has been
specified, or the task ARN or ID is misspelled.

• RunTask or StartTask

RESOURCE:* (container instance ID)
The resource or resources requested by the task are unavailable on the given container instance.
If the resource is CPU or memory, you may need to add container instances to your cluster.

AGENT (container instance ID)
The container instance that you attempted to launch a task onto has an agent which is currently
disconnected. In order to prevent extended wait times for task placement, the request was rejected.

• StartTask

MISSING (container instance ID)
The container instance you attempted to launch the task onto does not exist. Perhaps the wrong
cluster or region has been specified, or the container instance ARN or ID is misspelled.

INACTIVE (container instance ID)
The container instance that you attempted to launch a task onto was previously deregistered with
Amazon ECS and cannot be used.

API Version 2014-11-13
124

Amazon EC2 Container Service Developer Guide
API failures Error Messages

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

API Version 2014-11-13
125

Amazon EC2 Container Service Developer Guide

http://docs.aws.amazon.com/general/latest/gr/gloss.html

	Amazon EC2 Container Service
	Table of Contents
	What is Amazon EC2 Container Service?
	Components of Amazon ECS
	How to Get Started with Amazon ECS

	Setting Up with Amazon ECS
	Sign Up for AWS
	Create an IAM User
	Create an IAM Role for your Container Instances and Services
	Create a Key Pair
	Create a Virtual Private Cloud
	Create a Security Group
	Install the AWS CLI

	Docker Basics
	Installing Docker
	(Optional) Sign up for a Docker Hub Account
	Create a Docker Image and Upload it to Docker Hub
	Next Steps

	Getting Started with Amazon ECS
	Cleaning Up your Amazon ECS Resources
	Scale Down Services
	Delete Services
	Deregister Container Instances
	Delete a Cluster
	Delete the AWS CloudFormation Stack

	Amazon ECS Container Instances
	Container Instance Concepts
	Container Instance Life Cycle
	Check the Instance Role for your Account
	Launching an Amazon ECS Container Instance
	Starting a Task at Container Instance Launch Time
	Deregister a Container Instance

	Amazon ECS Container Agent
	Installing the Amazon ECS Container Agent
	Amazon ECS Container Agent Versions
	Amazon ECS-optimized AMI Container Agent Versions

	Updating the Amazon ECS Container Agent
	Checking your Amazon ECS Container Agent Version
	Updating the Amazon ECS Container Agent on the Amazon ECS-optimized AMI
	Manually Updating the Amazon ECS Container Agent (for Non-Amazon ECS-optimized AMIs)

	Amazon ECS Container Agent Configuration
	Available Parameters
	Storing Container Instance Configuration in Amazon S3

	Private Registry Authentication
	Authentication Formats
	Enabling Private Registries

	Amazon ECS Container Agent Introspection

	Amazon ECS Task Definitions
	Application Architecture
	Creating a Task Definition
	Task Definition Template

	Task Definition Parameters
	Family
	Container Definitions
	Volumes

	Using Data Volumes in Tasks
	Example Task Definitions
	Deregistering Task Definitions

	Scheduling Amazon ECS Tasks
	Services
	Service Concepts
	Service Definition Parameters
	Service Load Balancing
	Load Balancing Concepts
	Check the Service Role for your Account
	Creating a Load Balancer
	Define Your Load Balancer
	Assign a Security Group to Your Load Balancer in a VPC
	Configure Health Checks for Your EC2 Instances
	Load Balancer Instance Registration
	Tag Your Load Balancer (Optional)
	Create and Verify Your Load Balancer

	Creating a Service
	Updating a Service
	Deleting a Service

	Running Tasks
	Task Life Cycle

	Amazon ECS CloudWatch Metrics
	Enabling CloudWatch Metrics
	Available Metrics and Dimensions
	Amazon ECS Metrics
	Dimensions for Amazon ECS Metrics

	Cluster Utilization
	Service Utilization
	Service RUNNING Task Count
	Viewing Amazon ECS Metrics
	Viewing Cluster Metrics in the Amazon ECS Console
	Viewing Service Metrics in the Amazon ECS Console
	Viewing Amazon ECS Metrics in the CloudWatch Console

	Tutorial: Scaling Container Instances with CloudWatch Alarms
	Prerequisites
	Step 1: Create a CloudWatch Alarm for a Metric
	Step 2: Create a Launch Configuration for an Auto Scaling Group
	Step 3: Create an Auto Scaling Group for your Cluster
	Step 4: Verify and Test your Auto Scaling Group
	Step 5: Cleaning Up

	Amazon ECS IAM Policies and Roles
	Policy Structure
	Policy Syntax
	Actions for Amazon ECS
	Amazon Resource Names for Amazon ECS
	Condition Keys for Amazon ECS
	Checking that Users Have the Required Permissions

	Supported Resource-Level Permissions for Amazon ECS API Actions
	Amazon ECS Container Instance IAM Role
	Adding Amazon S3 Read-only Access to your Container Instance Role

	Amazon ECS Service Scheduler IAM Role
	Creating Amazon ECS IAM Policies
	Amazon ECS IAM Policy Examples
	Clusters
	Run Tasks
	Start Tasks
	Container Instances
	Task Definitions
	Tasks

	Using the AWS CLI with Amazon ECS
	Step 1: (Optional) Create a Cluster
	Step 2: Launch an Instance with the Amazon ECS AMI
	Step 3: List Container Instances
	Step 4: Describe your Container Instance
	Step 5: Register a Task Definition
	Step 6: List Task Definitions
	Step 7: Run a Task
	Step 8: List Tasks
	Step 9: Describe the Running Task

	Amazon ECS Default Service Limits
	Logging Amazon ECS API Calls By Using AWS CloudTrail
	Amazon ECS Information in CloudTrail
	Understanding Amazon ECS Log File Entries

	Amazon ECS Troubleshooting
	Checking Stopped Tasks for Errors
	Service Event Messages
	Connect to your Container Instance
	Amazon ECS Log File Locations
	Amazon ECS Container Agent Log
	Amazon ECS ecs-init Log

	Agent Introspection Diagnostics
	Docker Diagnostics
	List Docker Containers
	View Docker Logs
	Inspect Docker Containers

	API failures Error Messages

	AWS Glossary

