AWS is committed to running our business in the most environmentally friendly way possible. In addition to the environmental benefits inherently associated with running applications in the cloud, AWS has a long-term commitment to achieve 100% renewable energy usage for our global infrastructure footprint.

We’ve made a lot of progress on this commitment. As of April 2015, approximately 25% of the power consumed by our global infrastructure comes from renewable energy sources. We have a goal of increasing this to at least 40% by the end of 2016.

In July, AWS announced that it has contracted with Iberdrola Renewables, LLC to construct and operate a 208 megawatt (MW) wind farm in Perquimans and Pasquotank counties, North Carolina, called the Amazon Wind Farm US East. This new wind farm is expected to start generating approximately 670,000 megawatt hours (MWh) of wind energy annually starting December 2016.

The energy generated by Amazon Wind Farm US East, Amazon Solar Farm US East and Amazon Wind Farm (Fowler Ridge) will be delivered into the electrical grids that supply current and future AWS Cloud data centers.

AWS introduced its first carbon-neutral region in 2011. Today, AWS offers customers three AWS Regions that are carbon-neutral:

  • US West (Oregon)
  • EU (Frankfurt)
  • AWS GovCloud (US)

Any analysis on the climate impact of a data center should take into consideration resource utilization and energy efficiency, in addition to power mix. Carbon emissions are a factor of three things: the number of servers running, the total energy required to power each server, and the carbon intensity of energy sources used to power these servers. A recent blog post by Jeff Barr outlines why using fewer servers and powering them more efficiently is at least as important to reducing the carbon impact of a company’s data center as its power mix.

A typical large-scale cloud provider achieves approximately 65% server utilization rates versus 15% on-premises, which means when companies move to the cloud, they typically provision fewer than ¼ of the servers than they would on-premises.1 In addition, a typical on-premises data center is 29% less efficient in their use of power compared to a typical large-scale cloud provider that uses world-class facility designs, cooling systems, and workload-optimized equipment.2 Adding these together (fewer servers used plus more power efficient servers), customers only need 16% of the power as compared to on-premises infrastructure. This represents an 84% reduction in the amount of power required.

This massive improvement in energy efficiency drives a huge reduction in climate impact because less energy consumed means fewer carbon emissions. The climate impact improvements get even better when you factor in that the average corporate data center has a dirtier power mix than the typical large-scale cloud provider. Large-scale cloud providers (AWS included) use a power mix that is 28% less carbon intense than the global average.3

Combining the fraction of energy required with a less carbon-intense power mix, customers can end up with a reduction in carbon emissions of 88% by moving to the cloud and AWS.

Read the details here.

July 2015 – AWS announced that it has contracted with Iberdrola Renewables, LLC to construct and operate a 208 megawatt wind farm in Perquimans and Pasquotank counties, North Carolina, called the Amazon Wind Farm US East. This new wind farm is expected to start generating approximately 670,000 megawatt hours of wind energy annually starting December 2016, or enough to power more than 61,000 US homes4 in a year. When completed, it will be the first utility-scale wind farm in the state of North Carolina. Read the press release here.

June 2015 – AWS announced that it has teamed with Community Energy, Inc. to support the construction and operation of an 80 megawatt solar farm in Accomack County, Virginia, called Amazon Solar Farm US East. This new solar farm is expected to start generating approximately 170,000 megawatt hours of solar power annually as early as October 2016 – or the equivalent of that used by approximately 15,000 US homes4 in a year. Read the press release here.

April 2015 – AWS announced a 4.8 megawatt hour pilot of Tesla’s energy storage batteries in its US West (Northern California) Region. Batteries are important for both data center reliability and as enablers for the efficient application of renewable power. They help bridge the gap between intermittent production, from sources like wind, and the data center’s constant power demands. For more information, please see the Tesla press kit here.

April 2015 – Amazon announced that it has joined the American Council on Renewable Energy (ACORE) and will participate in the U.S. Partnership for Renewable Energy Finance (US PREF) to increase its work with state and federal policymakers and other stakeholders to enable more renewable energy opportunities for cloud providers. For more information, please see the ACORE blog post here.

January 2015 – AWS announced it has teamed with Pattern Development to support the construction and operation of a 150 megawatt (MW) wind farm in Benton County, Indiana, called the Amazon Wind Farm (Fowler Ridge). This new wind farm is expected to start generating approximately 500,000 megawatt hours (MWh) of wind power annually as early as January 2016 – or the equivalent of that used by approximately 46,000 US homes4 in a year. Read the press release here

November 2014 – AWS shared its long-term commitment to achieve 100 percent renewable energy usage for the global AWS infrastructure footprint.

1 Source: NRDC 2014 “Data Center Efficiency Assessment” report.

2 Source: Power Usage Effectiveness (PUE) of on-premises data centers from 2014 Uptime Institute study and PUE of cloud data centers from Google and Facebook public disclosures plus AWS internal data, all of which show PUEs under 1.2.

3 Source: AWS average power mix carbon intensity of 393 grams/kWh for June 2015 and 2014 Global Energy Mix data from the International Energy Agency for on-premises assumptions.

4 In 2012, the average annual electricity consumption for a U.S. residential utility customer was 10,837 kWh, an average of 903 kilowatt hours (kWh) per month.