
1

A Novel Methodology Based on Formal Methods
for Analysis and Verification of Wikis

Giuseppe De Ruvo, Antonella Santone
Department of Engineering, University of Sannio, Benevento, Italy

e-mail: {gderuvo@unisannio.it, santone@unisannio.it}

Abstract—A wiki is a collaborative Web site whose content
can be edited by anyone who has access to it. Wikis are
becoming a new work tool in enterprises and are widely spreading
everywhere. In fact, they are often used as internal documentation
for various in-house systems and applications. Understanding and
maintaining the structure of a wiki may be a crucial aspect. As
well as software grows, decays and needs refactoring, the organic
growth of a wiki inevitably leads to its degradation.

We propose a novel methodology based on formal methods to
analyse and verify the architecture of wikis. Formal verification
helps to perform refactoring. Each wiki category, a set of wiki
pages, is modelled using the Calculus of Communicating Systems
(CCS) process algebra in order to verify specific properties. First
experiments conducted on a adequate number of categories of
Wikipedia, assess the validity of our methodology revealing new
directions for future research.

Index Terms—Wiki, Temporal Logic, CCS Process Algebra,
Refactoring.

I. INTRODUCTION AND RELATED WORK

The first wiki was created in 1995 by Ward Cunningham.
In the following years the wiki idea was widely adopted and
today there are hundreds of wiki engines available1 which
provide a plethora of features. Thus, as occurs in large software
systems understanding and maintaining their structure is not
a negligible element to consider. Not only software evolves,
the content stored in a wiki evolve as well. When articles
grow beyond a certain size, it is better to split them into
smaller ones. There are many cases in which modifying the
structure of a wiki becomes necessary. On huge wikis the
continuous degradation of content structure causes substantial
maintenance work. Programs are not yet capable to solve
above issues automatically. Whether and how to split a wiki
page or a wiki category can only be decided by a human.

The benefit of wikis to develop user and software doc-
umentation of Free Libre Open Source Software (FLOSS)
projects extends when reusing software modules: it is possible
to reuse software documentation too with the same advantages
i.e. saving time and effort with reduction of costs. Almost
all FLOSS projects do not simply add links to the existing
modules’ wiki documentation. Sometimes it is proper to add
one or two sections of text to better explain the concepts.
This especially occurs when dealing with commercial/enter-
prise software projects which reuse FLOSS modules. In fact,
commercial projects do not prefer wikis as a form of docu-

1http://www.wikimatrix.org

mentation. In order to reuse wiki documentation in disparate
ways we need an adequate set of methodologies and tools.

We propose a novel methodology based on formal methods
for refactoring the architecture of wikis. In particular, we use
model checking which is a formal technique for proving the
correctness of a system with respect to a desired behavior. This
is accomplished by checking whether a structure representing
the system (typically a labelled transition system) satisfies
a temporal logic formula describing the expected behavior.
In this paper we will show how to use model checking to
analyse and verify wikis transforming them into Calculus
of Communicating Systems (CCS) [1] processes and then
checking if they satisfy suitably-defined properties. One of the
advantages of this procedure based on formal methods is that
once the CCS model is generated, formal verification tools
such as [2] can be also used for verifying many properties.
Properties are expressed using the selective-µ-calculus logic
[3]. We exploited the capabilities of model checking in a
previously unexplored area with encouraging results. Our
methodology has been tested on three categories of Wikipedia.
We chose Wikipedia because it has plenty of content.

As far as we know nobody addressed the analysis and ver-
ification of wikis using formal methods and model checking.
However, there are some works regarding wiki refactoring fo-
cused on either methodological or technological point of view.
On the other hand, there are some papers which employed
formal methods to face issues in Web Application Engineering.

Rosenfeld et al. [4] proposed an approach to detect quality
problems in semantic wikis inspired by the bad smell problems
in software engineering. The approach mostly focus on anno-
tations in order to incrementally create a structured ontology,
while we work on links to maintain the architecture.

Alluvatti et al. [5] also investigated on the quality and
evolution of wikis. They proposed to evaluate the quality of
wikis basing on the number of edits and contributors per
page. Aversano et al. [6] presented a preliminary work for
refactoring wiki content. The method is built upon a software
refactoring method which exploits the dominance relations on
the analysed software system call graph. Due to its preliminary
fashion, the authors did not present significant results to
quantify the effectiveness of the approach.

Donini et al. [7] applied model checking techniques to
perform automated verification of the UML design of web
applications. Haydar et al. [8] presented an approach that use
execution traces of a web application to automatically generate
a communicating automata model to model checking the

2

application against predefined properties. Unlike other works,
in our opinion, our approach is valuable also in different
contexts, apart from refactoring, in that the CCS translation of
wikis can be exploited to develop other types of wiki analyzers
or for reusing issues.

The remainder of this paper is organized as follows. First, in
the next Section we give basic definitions of wikis, CCS and
selective-µ-calculus. Section III deals with our methodology
for analysis and verification of wikis. In Section IV we discuss
achieved results and how to reach particular goals. Finally, in
Section V we conclude and we provide new inputs for further
research.

II. PRELIMINARIES

In this section, after introducing the basic definitions of
wikis, we present the Calculus of Communicating Systems
(CCS) [1], the process algebra we have adopted for analysing
and verifying wikis, and selective-µ-calculus.

A. Wikis

A wiki (from the Hawaiian wiki, to hurry, swift, quick) is a
collaborative Web site whose content can be edited by anyone
who has access to it. Ward Cunningham’s “WikiWikiWeb”2

lets software developers create a library of software patterns.
A wiki is generally divided in categories. Each category

may be split into subcategories. Categories contain pages and
each page belong to different categories. Pages are divided into
sections and each section may be divided into subsections.
Each page has links to other pages or categories and have
external links (i.e. links to web pages). Since wikis are easy
to edit, they changed how we construct knowledge repositories
on the Web. Wikis allow groups to form around specific topics
and they are a great way for a group of people to coordinate
and create content, even though that group counts thousands
of people in different places [9]. Here are some typical things
we can do on a wiki: create an article on a specific topic;
make changes to other people’s articles, without requiring their
permission; create links between articles; group similar articles
together into convenient categories; view the history of an
article to see all the changes, who made them, and when;
see interesting statistics about the articles e.g. which ones are
most popular and/or need updating.

There are disparate types of wikis:
• Wiki Mapia, combines Google Maps with a wiki system

supporting over 35 languages.
• WikiTravel, a travel guide and LyricWiki, a listing of

lyrics by album.
• Flu Wiki intends to help local public health communities

coping with a possible (avian) influenza pandemic, and
Ganfyd is an online collaborative medical reference that is
edited by medical professionals and invited non-medical
experts.

• Diplopedia, billed as the Encyclopedia of the USA De-
partment of State. It houses a unique collection of infor-
mation pertaining to diplomacy, international relations,
and Department of State tradecraft.

2http://c2.com/cgi-bin/wiki?WikiWikiWeb

• IkeWiki [10], a semantic Wiki developed at Salzburg
research for collaborative knowledge engineering. While
it has been developed primarily as a tool for ontology
engineering, it can be used in a variety of application
scenarios.

A recent study pointed out the benefits of using wikis in en-
terprises for knowledge sharing [11]. Moreover, many FLOSS
projects use wikis for technical and user documentation, e.g.
Eclipse and its Eclipsepedia.

In Section IV we will analyse an adequate set of categories
of Wikipedia.

B. Process algebra: CCS

Historically, process algebras have developed as formal
descriptions of complex computer systems, and in particular
of those involving communicating, concurrently executing
components. There are many examples of process algebras.
In this paper we use Milner’s Calculus of Communicating
Systems (CCS) [1]. Readers unfamiliar with CCS are referred
to [1] for further details. The syntax of processes is the
following: p ::= nil | x | α.p | p+p | p|p | p\L | p[f], where
α ranges over a finite set of actions A = {τ, a, a, b, b, ...}. The
action τ ∈ A is called the internal action. The set of visible
actions, V , ranged over by l, l′ . . ., is defined as A−{τ}. Each
action l ∈ V (resp. l ∈ V) has a complementary action l (resp.
l). The restriction set L, in the processes of the form p\L, is
a set of actions such that L ⊆ V . The relabeling function f ,
in processes of the form p[f], is a total function, f : A → A,
such that the constraint f(τ) = τ is respected. The constant x
ranges over a set of constant names: each constant x is defined
by a constant definition x def

= p, where p is called the body of x.
We denote the set of processes by P . The standard operational
semantics [1] is given by a relation −→ ⊆ P × A × P . −→
is the least relation defined by the rules in Table I.

We now informally explain the semantics for CCS by induc-
tion over the structure of processes. nil represents a process
that can do nothing. There is no rule for nil since it cannot
evolve. The process α.p can perform the action α and thereby
become the process p (rule Act). The process p+q is a process
that non-deterministically behaves either as p or as q (rule Sum
and symmetric). The operator | expresses parallel composition.
p and q may act independently: if the process p can perform α
and become p′, then p|q can perform α and become p′|q, and
similarly for q (rule Par and symmetric). Furthermore, p and q
may also together engage in a communication whenever they
are able to perform complementary actions. That is, if p can
perform a visible action l and become p′, and q can perform l
and become q′, then p|q can perform τ and become p′|q′ (rule
Com). If L is a set of visible actions, p\L is a process that
behaves as p except that it cannot perform any of the actions
(as well as the corresponding complementary actions) lying
in L externally, although each pair of these complementary
actions can be performed for communication internally (rule
Res). The operator [f] expresses the relabeling of actions. If
p can perform α and become p′, then p[f] can perform f(α)
and become p′[f] (rule Rel). The behavior of the process x
(x def

= p) is that of its definition p (rule Con).

3

TABLE I: Standard operational semantics of CCS

Act
α.p

α−→ p
Sum p

α−→ p′

p+ q
α−→ p′

Rel
p

α−→ p′

p[f]
f(α)
−→ p′[f]

Par p
α−→ p′

p|q α−→ p′|q

Con p
α−→ p′

x
α−→ p′

x
def
= p Com p

l−→ p′, q
l−→ q′

p|q τ−→ p′|q′
Res p

α−→ p′

p\L α−→ p′\L
α, α 6∈ L

C. Selective-µ-calculus

The selective-µ-calculus, introduced by the author and oth-
ers in [3], is a branching temporal logic to express behavioral
properties of systems. It is equi-expressive to µ-calculus [12],
but it differs from it in the definition of the modal operators.

Given a set A of actions and a set Var of variables, the
selective-µ-calculus logic is the set of formulae given by the
following inductive definition:
• tt and ff are selective-µ-calculus formulae;
• Y , for all Y ∈ Var, is a selective-µ-calculus formula;
• if ϕ1 and ϕ2 are selective-µ-calculus formulae then ϕ1∧
ϕ2 or ϕ1 ∨ ϕ2 are selective-µ-calculus formulae;

• if ϕ is a selective-µ-calculus formula then 〈K〉R ϕ and
[K]R ϕ are selective-µ-calculus formulae, where K,R ⊆
A;

• if ϕ is a selective-µ-calculus formula then µX.ϕ and
νX.ϕ are selective-µ-calculus formulae, where X ∈ Var.

The satisfaction of a formula ϕ by a state s of a transition
system, written s |= ϕ, is defined as follows:

each state satisfies tt and no state satisfies ff; a state
satisfies ϕ1∨ϕ2 (ϕ1∧ϕ2) if it satisfies ϕ1 or (and) ϕ2. [K]R ϕ
and 〈K〉R ϕ are the selective modal operators:
[K]R ϕ is satisfied by a state which, for every performance

of a sequence of actions not belonging to R ∪ K,
followed by an action in K, evolves to a state
obeying ϕ.

〈K〉R ϕ is satisfied by a state which can evolve to a state
obeying ϕ by performing a sequence of actions not
belonging to R ∪K, followed by an action in K.

The selective modal operators 〈K〉R ϕ and [K]R ϕ substi-
tute the standard modal operators 〈K〉 ϕ and [K] ϕ. The
basic characteristic of the selective-µ-calculus is that each
formula allows us to immediately point out the parts of the
transition system that do not alter the truth value of the
formula itself. More precisely, the only actions relevant for
checking a formula are the ones explicitly mentioned by the
selective modal operators used in the formula itself. Thus, the
result of checking the formula is independent from all other
actions. This information can be exploited to obtain reduced
transition systems on which the formula can be equivalently
checked (see, for example, [13]). The precise definition of the
satisfaction of a closed formula ϕ by a state of a transition
system can be found in [3].

III. THE METHODOLOGY

In this section we present our methodology to analyse and
verify wikis. The main distinctive feature of this methodology
is the use of formal methods (to the Authors’ knowledge,

never used before). In practice, from the wikis we derive
CCS processes, which are successively used to perform model
checking. The goal of our methodology is to aid software
engineers and domain experts during maintenance tasks. Our
approach requires a four-step process. The four steps are:

1) CCS model creation
2) Formal verification process (model checking)
3) Synthesis generation
4) Maintenance

In the following subsections the four steps are discussed in
detail.

A. CCS model creation

We use as internal representation the CCS language. Thus,
CCS specifications are generated from wikis. This is obtained
by defining a wiki-to-CCS transform operator T . The func-
tion T directly applies to wikis and translates them into
CCS process specifications. The aim of T is to avoid the
construction of “expensive” data structures such as Program
Dependence Graphs while retaining their accuracy for formal
verification. The exploitation of process algebra-based formal
methods for analysing and verifying wikis may seem overkill,
but we think that it is a viable solution due to the availability
of formal verification tools. Furthermore, it opens a wide field
of opportunities to researchers for wikis understanding and
documentation purposes. The function T is defined for each
object of wikis. All wiki objects have been translated in CCS.

First of all, when analysing a category C, we have to
distinguish between different pages belonging to C. A page
can belong to the same category C, to a different category or
can be an external web page. Thus, in our model we divide
pages into:
• INT inP : the internal page P belongs to the analysed

category C;
• INT outP : the internal page P belongs to a different

category;
• EXTP : the page P is an external web page.

Wiki category
The wiki category C containing k pages is translated into the
following CCS process CATEGORY :

T (C) = CATEGORY
def
= INT inP1 + · · ·+ INT inPk

The CCS process CATEGORY represents the possibility of
reaching one of the k internal pages.

Wiki page
The i-th internal wiki page Pi (either INT inPi or

4

INT outPi) with n sections SPi1 , . . . , SPin is translated into
the following CCS process Pi:

T (Pi) = Pi
def
= inPi.(SPi1 + · · ·+ SPin)

The CCS process Pi performs the action inPi, meaning
that page Pi has been reached, followed by the summation
SPi1+ · · ·+SPin . This summation means that each section of
the page can be non-deterministically reached. Each constant
process SPik , with k ∈ [1..n], represents the CCS translation
of the ik-th section of the page Pi.

Wiki section
Let SPij be the j-th wiki section of page Pi with k1 internal
pages belonging to the analysed category; k2 internal pages
belonging to a different category and k3 web page links. SPij

is translated into the following CCS process SPij :

T (SPij) = SPij
def
= INT inP1 + · · ·+ INT inPk1+

INT outP1 + · · ·+ INT outPk2+
EXTP11 + · · ·+ EXTPk3

The CCS process SPij represents the possibility of reaching
one of the k1 + k2 + k3 pages.

To evaluate the effectiveness of our transformation function
T , we have to consider both complexity and automation. From
the complexity point of view, it is easy to show that the
complexity of the extraction of the CCS model from wikis
is linear in the length of the pages. From the automation point
of view, it is worth noting that the function T is syntactically
defined and it is completely automatic, thus it does not require
user intervention and manual efforts.

B. Formal verification process (model checking)

In our approach, we use model checking to verify wikis.
Once we have the CCS processes of wikis, we can use
selective-µ-calculus logic to specify desired properties. We
consider the following properties.
Island Property: [K]∅ [inX]∅ ff
where K = {inPi | i is a page of the analysed category}
The property states that page X is a island, i.e. page X (action
inX) cannot be reached starting from any page (set of actions
K) of the analysed category.
Loop Property: νZ. 〈inX〉∅ Z
The property states that page X belongs to a loop, i.e. page
X (action inX) belongs to an infinite path starting from the
initial state.
Strong Core Property: [inP]∅ 〈inX〉A tt

The property states that page X is a strong core page for page
P , i.e. page X (action inX) can immediately be reached from
page P (action inP).
Weak Core Property: [inP]∅ 〈inX〉∅ tt
The property states that page X is a weak core page for page
P , i.e. page X (action inX) can be reached from page P
(action inP), even after having crossed other pages.
Other properties
Unlike other bespoke wiki analysis techniques, methods and
tools, we can easily add new properties and proceed with

new analyses thanks to the power of model checking. In fact,
it is sufficient to express the new meaningful properties of
interest in the selective-µ-calculus logic. For example, we can
add a “dead-link/missing page” property - i.e. articles which
do not exist with that exact name, exploiting the popular
“safety” property. Although property “missing page” may be
easily verified in other ways, we argue that since we have a
formal model it is smarter to integrate everything in a unique
framework and even pursue other goals.

C. Synthesis generation

The IIT Delhi Concurrency Workbench [2] is one of
the most popular environments for verifying concurrent sys-
tems which supports several different specification languages,
among which CCS. The model checker of the IIT Delhi
Concurrency Workbench is applied to the products coming
from the previous stage. Its outputs are employed by a software
module that writes a Comma Separated Values (CSV) file,
one per category. Rows represent the wiki pages, whilst
columns “Weak Core Property” and “Strong Core Property”
contains respectively the number of times each aforementioned
properties are satisfied; instead, “Island Property” and “Loop
Property” can be TRUE or FALSE. Except for the “Island
Property” and “Loop Property” that work using a target page
only, the remaining two properties have been applied to all
the pages, i.e. to check that X is a weak/strong core page we
have to verify the formula for each page P of the category.

D. Maintenance

The final stage deals with maintenance tasks. After model
creation, automatic model checking and synthesis generation
stages, we have all the necessary products to reach our goals,
i.e. simplify maintenance tasks of a wiki. We employ the
results of the previous formal verification process.

An “Island Property” allows to check whether a page is an
“island”. The latter does not communicate with any other page:
it is an isolated page. This means in term of refactoring that
we detected a problem on the category and the page should
be moved elsewhere.

A “Loop Property” proves that the page is involved in
a loop. The pages composing the loop behave as concepts
that span across multiple pages. Thus, when adding a new
page that may affect the ones of a loop, we need to split
it keeping up the original structure and avoiding new links
which would make future additions and modifications harder.
Creating unnecessary links may also bewilder the reader.

When a page is referred by another page, it is a candidate
to be elected as a “Core” page. A “Weak Core Property”
demonstrates that a page is referred by another page of the
category a certain amount of times directly or indirectly. A
“Strong Core Property” means that a page is directly linked to
the one whose property is verified. To elect a page as “Strong
Core” (resp. “Weak Core”) we have to established a threshold
n (resp. m). Thus, we call “Strong Core” (resp. “Weak Core”)
a page to which are connected at least n% (resp. m%) pages
belonging to the inspected category. As occurs with software
modules, it is crucial identifying a core page during refactoring

5

Fig. 1: Wiki Page Markup Snippet of “Edmund M. Clarke” -
english Wikipedia

tasks because a core module has a lot of responsibilities: it is
like all the involved pages (modules) need it to work.

The properties are flexible and may be adapted to vari-
ous domains. For example, one may change aforementioned
thresholds or add new domain oriented properties.

IV. EXPERIMENTAL RESULTS

A. Parsing Wikipedia

Wikipedia is powered by Mediawiki3, a popular free web-
based wiki software application, developed by the Wikimedia
Foundation.

It is the main engine of most wikis all over the world. It
is written in the PHP programming language and it uses a
back-end database. Indeed, all the wiki pages are stored in a
MySQL database. The Wiki Markup Language is adopted for
both pages and relationships (i.e. links). An example of a wiki
page markup snippet regarding Edmund M. Clarke is shown
in Figure 1. The figure shows sections starting with a double
“=“ and internal links surrounded by double square braces (i.e.
“[[FORE Systems]]”).

The database dumps of Wikipedia are freely available. They
can be downloaded from Wikimedia4 or using Special:Export
function to select one or more categories5. The latter is usually
available in most wikis even the smaller ones.

Dump data must be parsed in order to start the analysis.
“Wiki Dumps” contains pages in wiki markup language, while
“MediaWiki Parsing” provide facilities to fetch them and
proceed with next “Model Creation”. A MediaWiki parser is
capable of locating categories, pages, sections and links.

Wiki categories, wiki pages, wiki sections and links are
transformed into CSS processes to realize a suitable model.
Aforementioned selective-µ-calculus properties are automati-
cally generated in this stage. Thus, “CCS Model Creation”
yields two files - .ccs and .mu files.

Experiments were conducted on three categories of
Wikipedia:
• “Fungi found in fairy rings”(Fungi) (composed of 22

pages);
• “Computer science conferences”(CS) (composed of 79

pages); and
• “Naval battles involving Great Britain”(Battles) (com-

posed of 161 pages).

3http://www.mediawiki.org/wiki/MediaWiki
4http://dumps.wikimedia.org
5http://en.wikipedia.org/wiki/Special:Export

TABLE II: Number of Islands and Loops per Category

Category Total pages Islands Loops
Fungi 22 13 0

CS 79 24 9
Battles 161 120 5

As can be noted, the chosen categories are different for size
(increasing) and topic.

The execution time was maximum 30 minutes. This is quite
high, considering the small scale of the projects: anyway,
we found that it is mostly due to the overhead needed to
invoke the external command-line IIT Delhi Concurrency
Workbench from the Java prototype. We plan to integrate a
CCS equivalence checker in the architecture, removing this
overhead. Nevertheless, the objective of our work is to focus
on the methodology rather that on the efficiency of the tool.
In fact, the prototype has been shown to yield good results,
even though it takes a long time.

A synthesis of the collected results is shown in Table II. The
latter shows only the results obtained by verifying properties
“Island“ and “Loop”. “Fungi” is a really small category and it
does not contain core pages. We grouped pages in (weak and
strong) groups, depending on the number of references per
page, as shown in Figures 2a and 2b for the “CS” category. In
Figure 2a, “SRefN” indicates a group whose pages are directly
referred N times. On the one hand, we set the threshold
for “Strong Core” to 10%. Hence, in category CS the group
“SRef10” contains all strong core pages. One of them is “List
of computer science conferences”. In fact, different pages
refer to the “List of computer science conferences”. Similarly,
in Figure 2b, “WRefN” indicates a group whose pages are
indirectly referred N times. On the other hand, we set the
threshold for “Weak Core” to 25%. Thus, in category CS only
group “WRef21” contains weak core pages. One of them is
“Symposium on Applied Computing”. Indeed, many pages of
the category cross through it.

Moreover, in Battles we found 20 core page candidates,
respectively 12 “Weak Core” and 8 “Strong Core” pages.

0
5

10
15

20
25

30

#W
ik

i P
ag

es

Strong Ref Groups
WRef17 WRef18 WRef19 WRef21

(b)

Fig. 2: Number of pages per Strong Ref groups (a) and Weak
Ref groups (b) - CS category of English Wikipedia

Note that we applied our methodology on Wikipedia be-

6

cause it has a big architecture with many links and pages.
Wikipedia is a case study only and our main purpose is not
focus on the free encyclopedia. We want to aim attention at the
emerging trend of enterprise wikis [11] exploited as powerful
knowledge sharing tools in enterprises.

We work offline and avoid parsing wikis on the fly or do
web-crawling. Our methodology can be easily integrated as a
part of existing processes because of its simplicity. Refactoring
operations can be done on the dump. The latter may be
replaced/updated during idle times (e.g. during the night).

Refactoring also assume another fashion if employed to
warn the user while editing the wiki. In this meaning we deal
with “gardening”, but it is just a set of warnings and should
not affect the user i.e. he can freely edit and add content for
knowledge sharing.

V. CONCLUSION AND FUTURE WORK

In this paper we have investigated a novel methodology
based on formal methods for analysis and verification of wikis.
Starting from a wiki dump, after parsing wiki markup using a
MediaWiki parser, we generate a process model for each wiki
category employing the Milner’s process algebra Calculus of
Communicating Systems [1] and a set of specific properties
expressed using the selective-µ-calculus [3]. We verified these
properties against the model in order to simplify maintenance
tasks.

Encouraging results obtained from three categories of
Wikipedia motivate us to prosecute our research. Future work
will focus on improving and extending the methods outlined
in this article. In fact, there still is much work to do. First,
our method must be integrated in the wiki design process to
provide real benefits. We want to model check a large amount
of wiki pages and category and focus on enterprise wikis.
Weak and strong equivalence [1] may be applied to compare
similar structures of categories of wikis and help a user to
add/edit new wiki pages (i.e. “gardening” operations). Equiv-
alence powered methods [14] will also check and improve
the quality of a wiki e.g. avoiding to add useless content or
helping the user proposing an architecture. Natural Language
Processing techniques may be useful tools to add semantics
to the methodology improving the accuracy of results. Yet,
new properties derived from software bad smells and Opdyke’s
individual refactoring operations [15] will be verified.

Furthermore, we want to design and develop user-friendly
tools to add new properties without knowing the selective-
µ-calculus logic and to help both experts and non-experts to
set the thresholds, as done in [16]. We even plan to show our
results to Wikipedia’s maintainers and engineers since we used
the free encyclopedia as a first case study.

Each step of our methodology has been translated in a Java
prototype to fulfil all the stages except the last. “Maintenance”
stage still needs the participation of a domain expert, as occurs
in other contexts [17]. We will also going to automate this step

and integrate our software in a wiki engine i.e. MediaWiki,
demonstrating the powerful of formal methods even in this
area. We intend to redesign the tool to face two fundamental
challenges: performance, the speed at which the tool can return
its results, and scalability, the extent to which the tool can
manage increasingly large categories.

Finally, nothing prevents to apply our methodology to other
kind of text like DocBook, LateX, even web content e.g.
property “Island” may be exploited to improve the security.

REFERENCES

[1] R. Milner, Communication and concurrency, ser. PHI Series in computer
science. Prentice Hall, 1989.

[2] R. Cleaveland and S. Sims, “The ncsu concurrency workbench,” in CAV,
ser. Lecture Notes in Computer Science, R. Alur and T. A. Henzinger,
Eds., vol. 1102. Springer, 1996, pp. 394–397.

[3] R. Barbuti, N. De Francesco, A. Santone, and G. Vaglini, “Selective
mu-calculus and formula-based equivalence of transition systems,” J.
Comput. Syst. Sci., vol. 59, no. 3, pp. 537–556, 1999.

[4] M. Rosenfeld, A. Fernández, and A. Dı́az, “Semantic wiki refactoring.
a strategy to assist semantic wiki evolution,” in Proceedings of the
Fifth Workshop on Semantic Wikis (SemWiki 2010), co-located with 7th
European Semantic Web Conference, ESWC, 2010.

[5] G. M. Alluvatti, A. Capiluppi, G. De Ruvo, and M. Molfetta, “User
generated (web) content: Trash or treasure,” in Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution, ser. IWPSE-EVOL’11.
New York, NY, USA: ACM, 2011, pp. 81–90.

[6] L. Aversano, G. Canfora, G. De Ruvo, and M. Tortorella, “An approach
for restructuring text content,” in ICSE, 2013, pp. 1225–1228.

[7] F. M. Donini, M. Mongiello, M. Ruta, and R. Totaro, “A model
checking-based method for verifying web application design,” Electronic
Notes in Theoretical Computer Science, vol. 151, no. 2, pp. 19–32, 2006.

[8] M. Haydar, A. Petrenko, S. Boroday, and H. Sahraoui, “A formal
approach for run-time verification of web applications using scope-
extended ltl,” Information and Software Technology, vol. 55, no. 12,
pp. 2191–2208, 2013.

[9] R. Chebil, W. Chaari, S. Cerri, and K. Ghedira, “A causal graph based
method to evaluate e-collaboration scenarios,” in Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 2013 IEEE 22nd
International Workshop on, June 2013, pp. 225–230.

[10] S. Schaffert, “Ikewiki: A semantic wiki for collaborative knowledge
management,” in Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, 2006. WETICE ’06. 15th IEEE International Workshops
on, June 2006, pp. 388–396.

[11] A. Stocker, A. Richter, P. Hoefler, and K. Tochtermann, “Exploring
appropriation of enterprise wikis,” Computer Supported Cooperative
Work (CSCW), vol. 21, no. 2-3, pp. 317–356, 2012.

[12] C. Stirling, “An introduction to modal and temporal logics for ccs,” in
Concurrency: Theory, Language, And Architecture, 1989, pp. 2–20.

[13] R. Barbuti, N. De Francesco, A. Santone, and G. Vaglini, “Reduced
models for efficient ccs verification,” Formal Methods in System Design,
vol. 26, no. 3, pp. 319–350, 2005.

[14] N. De Francesco, G. Lettieri, A. Santone, and G. Vaglini, “Grease: a
tool for efficient “non-equivalence checking,” ACM Trans. Softw. Eng.
Methodol., to appear.

[15] W. F. Opdyke, “Refactoring: A program restructuring aid in designing
object-oriented application frameworks,” Ph.D. dissertation, University
of Illinois at Urbana-Champaign, 1992.

[16] G. De Ruvo and A. Santone, “An eclipse-based editor to support lotos
newcomers,” in Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), 2014 IEEE 23nd International Workshop on,
June 2014.

[17] M. L. Bernardi, M. Cimitile, and D. Distante, “Web applications design
recovery and evolution with re-uwa,” Journal of Software: Evolution and
Process, vol. 25, no. 8, pp. 789–814, 2013.

