
Amazon Elastic MapReduce
Amazon EMR Release Guide

API Version 2009-03-31

Amazon Elastic MapReduce: Amazon EMR Release Guide
Copyright © 2015 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
AWS CloudTrail, AWS CodeDeploy, Amazon Cognito, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic
Compute Cloud, Amazon Glacier, Amazon Kinesis, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift,
Amazon Route 53, Amazon S3, Amazon VPC, and Amazon WorkDocs. In addition, Amazon.com graphics, logos, page headers,
button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon's
trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Amazon Elastic MapReduce Amazon EMR Release Guide

Table of Contents
About Amazon EMR Releases ... 1

Applications .. 1
Components ... 2
Learn More .. 3

Differences Introduced in 4.x ... 4
AMI Version vs. Release Label ... 4
Installing Applications on the Cluster ... 5
Configurations Replace Predefined Bootstrap Actions .. 6

Install Steps Are Deprecated ... 7
Application Environment ... 7
Service Ports .. 8
Users .. 9
Installation Sequence, Installed Artifact, and Log File Locations ... 10
Command Runner ... 11

Configuring Applications ... 12
Apache Hadoop .. 17

Create or Run a Hadoop Application ... 17
Build Binaries Using Amazon EMR ... 18
Run a Script in a Cluster ... 20
Process Data with Streaming .. 20
Process Data with a Custom JAR .. 24

Configure Hadoop ... 25
Hadoop Daemon Settings ... 25
HDFS Configuration ... 35
Task Configuration ... 36

Apache Hive ... 48
How Amazon EMR Hive Differs from Apache Hive ... 49

Combine Splits Input Format .. 49
Hive Authorization .. 49
Hive File Merge Behavior with Amazon S3 ... 49
ACID Transactions and Amazon S3 ... 49
Additional Features of Hive in Amazon EMR ... 49

Use the Hive JDBC Driver ... 55
Apache Pig ... 57

Submit Pig Work .. 57
Submit Pig Work Using the Amazon EMR Console .. 58
Submit Pig Work Using the AWS CLI ... 58

Call User Defined Functions from Pig .. 59
Call JAR files from Pig .. 59
Call Python/Jython Scripts from Pig .. 59

Apache Spark ... 61
Create a Cluster With Spark .. 62
Configure Spark .. 63

Manually adjusting executor settings ... 63
Automatically configure executors with maximum resource allocation 64
Enabling Dynamic Allocation of Executors .. 65

Access the Spark Shell ... 65
Write a Spark Application .. 67

Scala ... 67
Java .. 68
Python ... 69

Adding a Spark Step .. 69
Overriding Spark Default Configuration Settings .. 71

Apache Mahout ... 73
Amazon EMR Connectors and Utilities .. 74

API Version 2009-03-31
iii

Amazon Elastic MapReduce Amazon EMR Release Guide

EMR File System (EMRFS) (Optional) ... 74
Consistent View ... 75
Creating an AWSCredentialsProvider for EMRFS .. 89
Encryption in EMRFS ... 90

Export, Query, and Join Tables in DynamoDB ... 97
Set Up a Hive Table to Run Hive Commands .. 98
Hive Command Examples for Exporting, Importing, and Querying Data 102
Optimizing Performance .. 109

Amazon Kinesis ... 111
What Can I Do With Amazon EMR and Amazon Kinesis Integration? 111
Checkpointed Analysis of Amazon Kinesis Streams .. 112
Performance Considerations .. 113
Schedule Amazon Kinesis Analysis with Amazon EMR ... 113

Distributed Copy Using S3DistCp .. 113
S3DistCp Options .. 114
Adding S3DistCp as a Step in a Cluster ... 118

Document History .. 120

API Version 2009-03-31
iv

Amazon Elastic MapReduce Amazon EMR Release Guide

About Amazon EMR Releases

This document provides information about Amazon EMR software releases 4.0.0 or greater. A release
is a set of software applications and components which can be installed and configured on an Amazon
EMR cluster. Amazon EMR releases are packaged using a system based on Apache BigTop, which is
an open source project associated with the Hadoop ecosystem. In addition to Hadoop and Spark ecosystem
projects, each Amazon EMR release provides components which enable cluster and resource management,
interoperability with other AWS services, and additional configuration optimizations for installed software.

Topics

• Applications (p. 1)

• Components (p. 2)

• Learn More (p. 3)

Applications
Each Amazon EMR release contains several distributed applications available for installation on your
cluster. Amazon EMR defines each application as not only the set of the components which comprise
that open source project but also a set of associated components which are required for that the application
to function.When you choose to install an application using the console, API, or CLI, Amazon EMR installs
and configures this set of components across nodes in your cluster.The following applications are currently
supported for this release: Hadoop, Hive, Mahout, Pig, and Spark.

For information about applications and their associated components, see the following sections:

• Apache Hadoop (p. 17)

• Apache Hive (p. 48)

• Apache Mahout (p. 73)

• Apache Pig (p. 57)

• Apache Spark (p. 61)

Applications are essentially bundles of components.

API Version 2009-03-31
1

Amazon Elastic MapReduce Amazon EMR Release Guide
Applications

http://bigtop.apache.org/
http://hadoop.apache.org/docs/current/
http://hive.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
https://spark.apache.org/docs/latest/

Components
The Amazon EMR releases include various components that can be installed by specifying an application
which uses them. The versions of these components are typically those found in the community. Amazon
EMR makes an effort to make community releases available in a timely fashion. However, there may be
a need to make changes to specific components. If those components are modified, they will have a
release version like the following:

communityVersion-amzn-emrReleaseVersion

As an example, assume that a component that has not been modified by Amazon EMR is Apache Mahout
and the version is 0.10.0, which is the community version. However, another component, hive-client, is
modified and its Amazon EMR release version is 1.0.0-amzn-0. Amazon components will just have one
version number. For example, a emr-ddb version is 2.1.0.

There are also components provided exclusively by Amazon EMR. For example, the DynamoDB connector
component, emr-ddb, is provided by Amazon EMR for use with applications running on Amazon EMR
clusters. For an example of using Hive to query DynamoDB, see Amazon EMR Hive queries to
accommodate partial DynamoDB schemas (p. 53).

The following components are included with Amazon EMR:

• emr-ddb—DynamoDB connector for Hadoop ecosystem applications.

Version: 3.0.0

• emr-goodies—Extra convenience libraries for the Hadoop ecosystem.

Version: 2.0.0

• emr-kinesis—Amazon Kinesis connector for Hadoop ecosystem applications.

Version: 3.0.0

• emr-s3-dist-cp—Distributed copy application optimized for Amazon S3.

Version: 2.0.0

• emrfs—Amazon S3 connector for Hadoop ecosystem applications.

Version: 2.0.0

• hadoop-client—Hadoop command-line clients such as 'hdfs', 'hadoop', or 'yarn'.

Version: 2.6.0-amzn-0

• hadoop-hdfs-datanode—HDFS node-level service for storing blocks.

Version: 2.6.0-amzn-0

• hadoop-hdfs-namenode—HDFS service for tracking file names and block locations.

Version: 2.6.0-amzn-0

• hadoop-httpfs-server—HTTP endpoint for HDFS operations.

Version: 2.6.0-amzn-0

• hadoop-mapred—MapReduce execution engine libraries for running a MapReduce application.

Version: 2.6.0-amzn-0

• hadoop-yarn-nodemanager—YARN service for managing containers on an individual node.

Version: 2.6.0-amzn-0

API Version 2009-03-31
2

Amazon Elastic MapReduce Amazon EMR Release Guide
Components

• hadoop-yarn-resourcemanager—YARN service for allocating and managing cluster resources and
distributed applications.

Version: 2.6.0-amzn-0

• hive-client—Hive command line client.

Version: 1.0.0-amzn-0

• hive-metastore-server—Service for accessing the Hive metastore, a semantic repository storing metadata
for SQL on Hadoop operations.

Version: 1.0.0-amzn-0

• hive-server—Service for accepting Hive queries as web requests.

Version: 1.0.0-amzn-0

• mahout-client—Library for machine learning.

Version: 0.10.0

• mysql-server—MySQL database server.

Version: 5.5

• pig-client—Pig command-line client.

Version: 0.14.0-amzn-0

• spark-client—Spark command-line clients.

Version: 1.4.1

• spark-history-server—Web UI for viewing logged events for the lifetime of a completed Spark application.

Version: 1.4.1

• spark-on-yarn—In-memory execution engine for YARN.

Version: 1.4.1

• spark-yarn-slave—Apache Spark libraries needed by YARN slaves.

Version: 1.4.1

Learn More
If you are looking for additional information, we recommend the following guides and sites:

• Information about the Amazon EMR service, getting started, and how to launch or manage clusters,
specifically for emr-4.0.0 or greater — Amazon EMR Management Guide

• Amazon Elastic MapReduce API Reference

• AWS SDKs and other tools

• AWS Command Line Interface Reference

• Information about Amazon EMR AMI versions 2.x and 3.x — Amazon Elastic MapReduce Developer
Guide

API Version 2009-03-31
3

Amazon Elastic MapReduce Amazon EMR Release Guide
Learn More

http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/cli/latest/reference/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/

Differences Introduced in 4.x

We have made a series of changes to Amazon EMR releases that introduce differences between previous
versions and the 4.0.0 release. The scope of changes range from how you create and configure your
cluster to the ports and directory structure of applications on your cluster. The following sections detail
these changes.

Topics

• AMI Version vs. Release Label (p. 4)

• Installing Applications on the Cluster (p. 5)

• Configurations Replace Predefined Bootstrap Actions (p. 6)

• Application Environment (p. 7)

• Service Ports (p. 8)

• Users (p. 9)

• Installation Sequence, Installed Artifact, and Log File Locations (p. 10)

• Command Runner (p. 11)

AMI Version vs. Release Label
Before Amazon EMR release 4.0.0, Amazon EMR software was referenced by its AMI versions. With
Amazon EMR release 4.0.0 and later, releases are now referenced by their release label.

The following are ways of specifying release:

Console

Previously, in Version you chose the AMI Version and still do for 2.x and 3.x releases.

Choose EMR release for 4.x or later releases.

CLI

For AMI version releases 2.x and 3.x, specify --ami-version 3.x.x.

For EMR releases emr-4.0.0 or later, use --release-label emr-4.x.x.

API and SDK

API Version 2009-03-31
4

Amazon Elastic MapReduce Amazon EMR Release Guide
AMI Version vs. Release Label

In the API you provide either AmiVersion or ReleaseLabel depending on the respective releases.

In the Java SDK, the following RunJobFlowRequest call specifies an AMI version:

RunJobFlowRequest request = new RunJobFlowRequest()
 .withName("AmiVersion Cluster")
 .withAmiVersion("3.8.0")
 .withInstances(new JobFlowInstancesConfig()
 .withEc2KeyName("myKeyPair")
 .withInstanceCount(1)
 .withKeepJobFlowAliveWhenNoSteps(true)
 .withMasterInstanceType("m3.xlarge")
 .withSlaveInstanceType("m3.xlarge");

The following RunJobFlowRequest call uses a release label instead:

RunJobFlowRequest request = new RunJobFlowRequest()
 .withName("ReleaseLabel Cluster")
 .withReleaseLabel("emr-4.0.0")
 .withInstances(new JobFlowInstancesConfig()
 .withEc2KeyName("myKeyPair")
 .withInstanceCount(1)
 .withKeepJobFlowAliveWhenNoSteps(true)
 .withMasterInstanceType("m3.xlarge")
 .withSlaveInstanceType("m3.xlarge");

Installing Applications on the Cluster
In AMI versions 2.x and 3.x, applications were installed in any number of ways including: the
NewSupportedProducts parameter for the RunJobFlow action, using bootstrap actions, and the Step
action. With Amazon EMR release 4.x, there is a new, simpler way to install applications on your cluster:

Console

On the Quick Create page, applications are grouped in bundles. In emr-4.0.0 you can choose from All
Applications (Hadoop, Spark, Pig, Hive, and Mahout), Core Hadoop (Hadoop, Hive, and Pig), and Spark
(Spark and Hadoop-YARN). On the Advanced cluster configuration page, you can select the exact
applications you want to install, and optionally edit the default configuration for each application. For more
information about editing application configuration, see Configuring Applications (p. 12).

CLI

Installing applications is not changed using the CLI although you no longer provide application configuration
with the Args parameter.You instead use the Configurations parameter to provide the path to a
JSON-formatted file containing a set of configuration objects.You can store the file locally or in Amazon
S3. For more information, see Configuring Applications (p. 12).

Java SDK

With emr-4.0.0, the preferred way to install applications using Java is to supply a list of Applications to
RunJobFlowRequest. Using the AWS SDK for Java, this looks like:

List<Application> myApps = new ArrayList<Application>();

API Version 2009-03-31
5

Amazon Elastic MapReduce Amazon EMR Release Guide
Installing Applications on the Cluster

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticmapreduce/model/RunJobFlowRequest.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_RunJobFlow.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_Step.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticmapreduce/model/RunJobFlowRequest.html

myApps.add("Spark","Hive","Mahout");

RunJobFlowRequest request = new RunJobFlowRequest()
 .withName("My EMR Cluster")
 .withReleaseLabel("emr-4.0.0")
 .withApplications(myApps)
 .withInstances(new JobFlowInstancesConfig()
 .withEc2KeyName("myKeyName")
 .withInstanceCount(1)
 .withKeepJobFlowAliveWhenNoSteps(true)
 .withMasterInstanceType("m3.xlarge")
 .withSlaveInstanceType("m3.xlarge");
);

Configurations Replace Predefined Bootstrap
Actions

Application configuration is simplified with emr-4.0.0. Every application that you are able to specify in the
Applications parameter supplied to the RunJobFlow action can be configured using a Configuration object.
Furthermore, native applications are no longer configured by bootstrap actions. For example, this method
replaces the configure-hadoop and configure-daemons bootstrap actions, which were used to configure
certain applications.Those bootstrap actions are replaced by configurations. Configuration objects consist
of a classification, properties, and optional nested configurations. A classification refers to an
application-specific configuration file. Properties are the settings you want to change in that file.You
typically supply configurations in a list, allowing you to edit multiple configuration files in one JSON object.

Important
If you try to use one of the previous bootstrap actions supported by Amazon EMR this causes
a webservice error when attempting to launch with releases greater than emr-4.0.0. Custom
bootstrap actions that do not attempt to configure native applications continue to work. The
following bootstrap actions are no longer supported: configure-daemons, configure-hadoop, and
s3Get.

Instead of using the s3get bootstrap action to copy objects to each node, use a custom bootstrap action
which will run AWS CLI on each node. The syntax would look like:

aws s3 cp s3://mybucket/myfolder/myobject myFolder/

In the AWS SDK for Java, you do this with a ScriptBootstrapActionConfig:

ScriptBootstrapActionConfig s3Config = new ScriptBootstrapActionConfig()
 .withPath("file:///usr/bin/aws")
 .withArgs("s3", "cp","s3://mybucket/myfolder/myobject","myFolder/");

With the AWS CLI, you can launch the cluster with the bootstrap action using the following command:

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge --
instance-count 1 --bootstrap-actions Path=file:///usr/bin/aws,Name="copy
ToAll",Args="s3","cp","s3://mybucket/myfolder/myobject","myFolder/" --use-de
fault-roles

For more information, see Configuring Applications (p. 12)

API Version 2009-03-31
6

Amazon Elastic MapReduce Amazon EMR Release Guide
Configurations Replace Predefined Bootstrap Actions

http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_Configuration.html

Install Steps Are Deprecated
Certain predefined steps, such as those used to install Hive and Pig, are deprecated. Please use the
configuration interface instead.

Application Environment
In Amazon EMR AMI versions 2.x and 3.x, there was a hadoop-user-env.sh script which was not part
of standard Hadoop and was used along with the configure-daemons bootstrap action to configure Hadoop
environment. The script did the following:

#!/bin/bash
export HADOOP_USER_CLASSPATH_FIRST=true;
echo "HADOOP_CLASSPATH=/path/to/my.jar" >> /home/hadoop/conf/hadoop-user-env.sh

In Amazon EMR release 4.0.0 and later, you can do the same now with the hadoop-env configurations:

[
 {
 "Classification":"hadoop-env",
 "Properties":{

 },
 "Configurations":[
 {
 "Classification":"export",
 "Properties":{
 "HADOOP_USER_CLASSPATH_FIRST":"true",
 "HADOOP_CLASSPATH":"/path/to/my.jar"
 }
 }
]
 }
]

You may have previously used a bootstrap action configure-daemons to pass environment. For
example, if you set --namenode-heap-size=2048 and --namenode-opts=-XX:GCTimeRatio=19
with configure-daemons, the equivalent JSON would look like:

[
 {
 "Classification":"hadoop-env",
 "Properties":{

 },
 "Configurations":[
 {
 "Classification":"export",
 "Properties":{
 "HADOOP_DATANODE_HEAPSIZE": "2048",
 "HADOOP_NAMENODE_OPTS": "-XX:GCTimeRatio=19"
 }
 }

API Version 2009-03-31
7

Amazon Elastic MapReduce Amazon EMR Release Guide
Install Steps Are Deprecated

]
 }
]

Other application environment variables are no longer defined in /home/hadoop/.bashrc. Instead,
they are primarily set in /etc/default files per component or application e.g./etc/default/hadoop.
Wrapper scripts in /usr/bin/ installed by application RPMs may also set additional environment variables
before involving the actual bin script.

Service Ports
In Amazon EMR AMI versions 2.x and 3.x, some services used custom ports. emr-4.0.0 hosts these
services on open source community defaults in most cases.

Changes in Port Settings

Release Label emr-4.xAMI Version 3.xSetting

default (hdfs://emrDetermi-
nedIP:8020)

hdfs://emrDeterminedIP:9000fs.default.name

default (0.0.0.0:50010)0.0.0.0:9200dfs.datanode.address

default (0.0.0.0:50075)0.0.0.0:9102dfs.datanode.http.address

default (0.0.0.0:50475)0.0.0.0:9402dfs.datanode.https.address

default (0.0.0.0:50020)0.0.0.0:9201dfs.datanode.ipc.address

default (0.0.0.0:50070)0.0.0.0:9101dfs.http.address

default (0.0.0.0:50470)0.0.0.0:9202dfs.https.address

default (0.0.0.0:50090)0.0.0.0:9104dfs.secondary.http.address

default (${yarn.nodemanager.host-
name}:0)

0.0.0.0:9103yarn.nodemanager.address

default (${yarn.nodemanager.host-
name}:8040)

0.0.0.0:9033yarn.nodemanager.localizer.ad-
dress

default (${yarn.nodemanager.host-
name}:8042)

0.0.0.0:9035yarn.nodemanager.webapp.ad-
dress

default (${yarn.resourceman-
ager.hostname}:8032)

emrDeterminedIP:9022yarn.resourcemanager.address

default (${yarn.resourceman-
ager.hostname}:8033)

emrDeterminedIP:9025yarn.resourcemanager.admin.ad-
dress

default (${yarn.resourceman-
ager.hostname}:8031)

emrDeterminedIP:9023yarn.resourcemanager.resource-
tracker.address

default (${yarn.resourceman-
ager.hostname}:8030)

emrDeterminedIP:9024yarn.resourcemanager.sched-
uler.address

default (${yarn.resourceman-
ager.hostname}:8088)

0.0.0.0:9026yarn.resourceman-
ager.webapp.address

API Version 2009-03-31
8

Amazon Elastic MapReduce Amazon EMR Release Guide
Service Ports

Release Label emr-4.xAMI Version 3.xSetting

default (no-value)emrDeterminedIP:9046yarn.web-proxy.address

emrDeterminedIP0.0.0.0 (default)yarn.resourcemanager.hostname

Note
The term emrDeterminedIP is an IP address that is generated by the Amazon EMR control
plane. In the newer version, this convention has been eliminated except for the
yarn.resourcemanager.hostname and fs.default.name settings.

Users
In AMI versions 2.x and 3.x, the user hadoop ran all processes and owned all files. In Amazon EMR
release 4.x, users exist at the application and component level. For example, here is a process status
that demonstrates this user ownership model:

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
hive 6452 0.2 0.7 853684 218520 ? Sl 16:32 0:13
/usr/lib/jvm/java-openjdk/bin/java -Xmx256m -Dhive.log.dir=/var/log/hive -
Dhive.log.file=hive-metastore.log -Dhive.log.threshold=INFO -Dha
doop.log.dir=/usr/lib/hadoop
hive 6557 0.2 0.6 849508 202396 ? Sl 16:32 0:09
/usr/lib/jvm/java-openjdk/bin/java -Xmx256m -Dhive.log.dir=/var/log/hive -
Dhive.log.file=hive-server2.log -Dhive.log.threshold=INFO -Dha
doop.log.dir=/usr/lib/hadoop/l
hbase 6716 0.1 1.0 1755516 336600 ? Sl Jun21 2:20
/usr/lib/jvm/java-openjdk/bin/java -Dproc_master -XX:OnOutOfMemoryError=kill -
9 %p -Xmx1024m -ea -XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode -Dh
base.log.dir=/var/
hbase 6871 0.0 0.7 1672196 237648 ? Sl Jun21 0:46
/usr/lib/jvm/java-openjdk/bin/java -Dproc_thrift -XX:OnOutOfMemoryError=kill -
9 %p -Xmx1024m -ea -XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode -Dh
base.log.dir=/var/
hdfs 7491 0.4 1.0 1719476 309820 ? Sl 16:32 0:22
/usr/lib/jvm/java-openjdk/bin/java -Dproc_namenode -Xmx1000m -Dha
doop.log.dir=/var/log/hadoop-hdfs -Dhadoop.log.file=hadoop-hdfs-namenode-ip-10-
71-203-213.log -Dhadoo
yarn 8524 0.1 0.6 1626164 211300 ? Sl 16:33 0:05
/usr/lib/jvm/java-openjdk/bin/java -Dproc_proxyserver -Xmx1000m -Dha
doop.log.dir=/var/log/hadoop-yarn -Dyarn.log.dir=/var/log/hadoop-yarn -Dha
doop.log.file=yarn-yarn-
yarn 8646 1.0 1.2 1876916 385308 ? Sl 16:33 0:46
/usr/lib/jvm/java-openjdk/bin/java -Dproc_resourcemanager -Xmx1000m -Dha
doop.log.dir=/var/log/hadoop-yarn -Dyarn.log.dir=/var/log/hadoop-yarn -Dha
doop.log.file=yarn-y
mapred 9265 0.2 0.8 1666628 260484 ? Sl 16:33 0:12
/usr/lib/jvm/java-openjdk/bin/java -Dproc_historyserver -Xmx1000m -Dha
doop.log.dir=/usr/lib/hadoop/logs -Dhadoop.log.file=hadoop.log -Dha
doop.home.dir=/usr/lib/hadoop

API Version 2009-03-31
9

Amazon Elastic MapReduce Amazon EMR Release Guide
Users

Installation Sequence, Installed Artifact, and Log
File Locations

In AMI versions 2.x and 3.x, application artifacts and their configuration directories were previously installed
to /home/hadoop/application. For example, if you installed Hive the directory would be
/home/hadoop/hive. In EMR release 4.0.0 and later, application artifacts are installed in
/usr/lib/application, so Hive would be located in /usr/lib/hive. Most configuration files are stored
in /etc/application/conf, so hive-site, Hive’s configuration file, would be located at /etc/hive/conf.

Previously, log files were found in various places. In Amazon EMR 4.x and later, they are now all located
under /var/log/component.

Locations for log files pushed to Amazon S3 have changed as follows:

Changes in Log Locations on Amazon S3

emr-4.0.0AMI 3.xDaemon or Application

node/instance-id/instance-
state/

node/instance-id/instance-
state/

instance-state

node/instance-id/applica-
tions/hadoop-hdfs/hadoop-hdfs-
namenode-ip-ipAddress.log

daemons/instance-id/hadoop-
hadoop-namenode.log

hadoop-hdfs-namenode

node/instance-id/applica-
tions/hadoop-hdfs/hadoop-hdfs-
datanode-ip-ipAddress.log

daemons/instance-id/hadoop-
hadoop-datanode.log

hadoop-hdfs-datanode

node/instance-id/applica-
tions/hadoop-yarn/yarn-yarn-re-
sourcemanager-ip-ipAddress.log

daemons/instance-id/yarn-
hadoop-resourcemanager

hadoop-yarn (ResourceManager)

node/instance-id/applica-
tions/hadoop-yarn/yarn-yarn-
proxyserver-ip-ipAddress.log

daemons/instance-id/yarn-
hadoop-proxyserver

hadoop-yarn (Proxy Server)

node/instance-id/applica-
tions/hadoop-mapreduce/mapred-
mapred-historyserver-ip-ipAd-
dress.log

daemons/instance-id/mapred-historyserver

node/instance-id/applica-
tions/hadoop-httpfs/httpfs.log

daemons/instance-id/ht-
tpfs.log

httpfs

node/instance-id/applica-
tions/hive/hive-server.log

node/instance-id/hive-serv-
er/hive-server.log

hive-server

node/instance-id/applica-
tions/hive/hive-metastore.log

node/instance-
id/apps/hive.log

hive-metastore

node/instance-id/applica-
tions/hive/tmp/$username/hive.log

node/instance-
id/apps/hive.log

Hive CLI

containers/task-attempts/YARN applications user logs and
container logs

API Version 2009-03-31
10

Amazon Elastic MapReduce Amazon EMR Release Guide
Installation Sequence, Installed Artifact, and Log File

Locations

emr-4.0.0AMI 3.xDaemon or Application

node/instance-id/applica-
tions/mahout

N/AMahout

node/instance-id/applica-
tions/pig/pig.log

N/APig

node/instance-id/applica-
tions/spark/spark-historyserver.log

N/Aspark-historyserver

hadoop-mapred/history/jobs/mapreduce job history files

Command Runner
Many scripts or programs, like /home/hadoop/contrib/streaming/hadoop-streaming.jar, are
now placed on the shell login path environment so you do not need to specify the full path when executing
them when using command-runner.jar.You also do not have to know the full path to
command-runner.jar. command-runner.jar is also located on the AMI so there is no need to know
a full URI as was the case with script-runner.jar.

The following is a list of scripts that can be executed with command-runner.jar:

hadoop-streaming
Submit a Hadoop streaming program. In the console and some SDKs, this is a streaming step.

hive-script
Run a Hive script. In the console and SDKs, this is a Hive step.

pig-script
Run a Pig script. In the console and SDKs, this is a Pig step.

spark-submit
Run a Spark application. In the console, this is a Spark step.

s3-dist-cp
Distributed copy large amounts of data from Amazon S3 into HDFS.

hadoop-lzo
Run the Hadoop LZO indexer on a directory.

The following is an example usage of command-runner.jar using the AWS CLI:

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF --steps Name="Command Run
ner",Jar="command-runner.jar",Args=["spark-submit","Args..."]

API Version 2009-03-31
11

Amazon Elastic MapReduce Amazon EMR Release Guide
Command Runner

Configuring Applications

You can override the default configurations for applications you install by supplying a configuration object
when specifying applications you want installed at cluster creation time. Configuration objects consist of
a classification, properties, and optional nested configurations. A classification refers to an
application-specific configuration file. Properties are the settings you want to change in that file.You
typically supply configurations in a list, allowing you to edit multiple configuration files in one JSON list.

Example JSON for a list of configurations is provided below:

[
 {
 "Classification": "core-site",
 "Properties": {
 "hadoop.security.groups.cache.secs": "250"
 }
 },
 {
 "Classification": "mapred-site",
 "Properties": {
 "mapred.tasktracker.map.tasks.maximum": "2",
 "mapreduce.map.sort.spill.percent": "90",
 "mapreduce.tasktracker.reduce.tasks.maximum": "5"
 }
 }
]

The classification usually specifies the file name that you want modified. An exception to this is the
deprecated bootstrap action configure-daemons, which is used to set environment parameters such
as --namenode-heap-size. Now, options like this are subsumed into the hadoop-env and yarn-env
classifications with their own nested export classifications. Another exception is s3get, which was used
to place a customer EncryptionMaterialsProvider object on each node in a cluster for use in
client-side encryption. An option was added to the emrfs-site classification for this purpose.

An example of the hadoop-env classification is provided below:

[
 {
 "Classification": "hadoop-env",
 "Properties": {

API Version 2009-03-31
12

Amazon Elastic MapReduce Amazon EMR Release Guide

 },
 "Configurations": [
 {
 "Classification": "export",
 "Properties": {
 "HADOOP_DATANODE_HEAPSIZE": "2048",
 "HADOOP_NAMENODE_OPTS": "-XX:GCTimeRatio=19"
 },
 "Configurations": [

]
 }
]
 }
]

An example of the yarn-env classification is provided below:

[
 {
 "Classification": "yarn-env",
 "Properties": {

 },
 "Configurations": [
 {
 "Classification": "export",
 "Properties": {
 "YARN_RESOURCEMANAGER_OPTS": "-Xdebug -Xrunjdwp:transport=dt_socket"

 },
 "Configurations": [

]
 }
]
 }
]

Bootstrap actions that were previously used to configure Hadoop and other applications are replaced by
configurations. The following tables give classifications for components and applications and corollary
bootstrap actions for each. If the classification matches a file documented in the application project, see
that respective project documentation for more details.

Hadoop

Release Label ClassificationAMI Version Bootstrap ActionFilename

core-siteconfigure-hadoop -ccore-site.xml

hadoop-log4jconfigure-hadoop -llog4j.properties

hdfs-siteconfigure-hadoop -shdfs-site.xml

mapred-siteconfigure-hadoop -mmapred-site.xml

API Version 2009-03-31
13

Amazon Elastic MapReduce Amazon EMR Release Guide

Release Label ClassificationAMI Version Bootstrap ActionFilename

yarn-siteconfigure-hadoop -yyarn-site.xml

httpfs-siteconfigure-hadoop -thttpfs-site.xml

capacity-schedulerconfigure-hadoop -zcapacity-scheduler.xml

hadoop-envconfigure-daemons --cli-
ent-opts

hadoop-env.sh

httpfs-envn/ahttpfs-env.sh

mapred-envn/amapred-env.sh

yarn-envconfigure-daemons --re-
sourcemanager-opts

yarn-env.sh

Spark

Release Label ClassificationAMI Version Bootstrap ActionFilename

spark-defaultsn/aspark-defaults.conf

spark-envn/aspark-env.sh

spark-log4jn/alog4j.properties

Hive

Release Label ClassificationAMI Version Bootstrap ActionFilename

hive-envn/ahive-env.sh

hive-sitehive-script --install-
hive-site
${MY_HIVE_SITE_FILE}

hive-site.xml

hive-exec-log4jn/ahive-exec-log4j.proper-
ties

hive-log4jn/ahive-log4j.properties

Pig

Release Label ClassificationAMI Version Bootstrap ActionFilename

pig-propertiesn/apig.properties

pig-log4jn/alog4j.properties

EMRFS

Release Label ClassificationAMI Version Bootstrap ActionFilename

emrfs-siteconfigure-hadoop -eemrfs-site.xml

API Version 2009-03-31
14

Amazon Elastic MapReduce Amazon EMR Release Guide

Release Label ClassificationAMI Version Bootstrap ActionFilename

emrfs-site (with new setting
fs.s3.cse.encryptionMateri-
alsProvider.uri)

s3get -s s3://custom-pro-
vider.jar -d
/usr/share/aws/emr/auxlib/

n/a

The following settings do not belong to a configuration file but are used by Amazon EMR to potentially
set multiple settings on your behalf.

Amazon EMR-curated Settings

When To UseValid PropertiesRelease Label Classi-
fication

Application

Configure executors to
utilize maximum re-
sources of each node

maximizeResourceAl-
location

sparkSpark

Example Supplying a Configuration in the Console

To supply a configuration, you navigate to the Create cluster page and choose Edit software settings.
You can then enter the configuration directly (in JSON or using shorthand syntax demonstrated in shadow
text) in the console or provide a Amazon S3 URI for a file with JSON Configurations object.

Example Supplying a Configuration Using the CLI

You can provide a configuration to create-cluster by supplying a path to a JSON file stored locally or in
Amazon S3:

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge --
instance-count 2 --applications Name=Hive --configurations https://s3.amazon
aws.com/mybucket/myfolder/myConfig.json

API Version 2009-03-31
15

Amazon Elastic MapReduce Amazon EMR Release Guide

Example Supplying a Configuration Using the Java SDK

The following program excerpt shows how to supply a configuration using the AWS SDK for Java:

 Application hive = new Application();
 hive.withName("Hive");

 Map<String,String> hiveProperties = new HashMap<String,String>();
 hiveProperties.put("hive.join.emit.interval","1000");
 hiveProperties.put("hive.merge.mapfiles","true");

 Configuration myHiveConfig = new Configuration()
 .withClassification("hive-site")
 .withProperties(hiveProperties);

 RunJobFlowRequest request = new RunJobFlowRequest()
 .withName("Create cluster with ReleaseLabel")
 .withReleaseLabel("emr-4.0.0")
 .withApplications(hive)
 .withConfigurations(myHiveConfig)
 .withServiceRole("EMR_DefaultRole")
 .withJobFlowRole("EMR_EC2_DefaultRole")
 .withInstances(new JobFlowInstancesConfig()
 .withEc2KeyName("myKey")
 .withInstanceCount(1)
 .withKeepJobFlowAliveWhenNoSteps(true)
 .withMasterInstanceType("m3.xlarge")
 .withSlaveInstanceType("m3.xlarge")
);

API Version 2009-03-31
16

Amazon Elastic MapReduce Amazon EMR Release Guide

Apache Hadoop

Apache Hadoop is an open-source Java software framework that supports massive data processing
across a cluster of instances. It can run on a single instance, or thousands of instances. Hadoop uses a
programming model called MapReduce to distribute processing across multiple instances. It also
implements a distributed file system called HDFS that stores data across multiple instances. Hadoop
monitors the health of instances in the cluster, and can recover from the failure of one or more nodes. In
this way, Hadoop provides not only increased processing and storage capacity, but also high availability.

For more information about Apache Hadoop, see http://hadoop.apache.org.

Note
Hadoop Key Management Server (KMS) and the YARN Timeline Server are not supported in
this release.

Release Information

Apache Hadoop 2.6.0-amzn-0

Amazon EMR Release Label: emr-4.0.0

Components Installed with Apache Hadoop

If you install Hive as an application in Amazon EMR, the following components will be installed:

emrfs, emr-ddb, emr-goodies, emr-kinesis, emr-s3-dist-cp, hadoop-client, hadoop-mapred,
hadoop-hdfs-datanode, hadoop-hdfs-namenode, hadoop-httpfs-server, hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager

Topics

• Create or Run a Hadoop Application (p. 17)

• Configure Hadoop (p. 25)

Create or Run a Hadoop Application
Topics

• Build Binaries Using Amazon EMR (p. 18)

• Run a Script in a Cluster (p. 20)

• Process Data with Streaming (p. 20)

API Version 2009-03-31
17

Amazon Elastic MapReduce Amazon EMR Release Guide
Create or Run a Hadoop Application

http://hadoop.apache.org

• Process Data with a Custom JAR (p. 24)

Build Binaries Using Amazon EMR
You can use Amazon Elastic MapReduce (Amazon EMR) as a build environment to compile programs
for use in your cluster. Programs that you use with Amazon EMR must be compiled on a system running
the same version of Linux used by Amazon EMR. For a 32-bit version, you should have compiled on a
32-bit machine or with 32-bit cross compilation options turned on. For a 64-bit version, you need to have
compiled on a 64-bit machine or with 64-bit cross compilation options turned. For more information about
EC2 instance versions, go to http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/
emr-plan-ec2-instances.html. Supported programming languages include C++, Cython, and C#.

The following table outlines the steps involved to build and test your application using Amazon EMR.

Process for Building a Module

Connect to the master node of your cluster.1

Copy source files to the master node.2

Build binaries with any necessary optimizations.3

Copy binaries from the master node to Amazon S3.4

The details for each of these steps are covered in the sections that follow.

To connect to the master node of the cluster

• Follow these instructions to connect to the master node: Connect to the Master Node Using SSH in
the Amazon EMR Management Guide .

To copy source files to the master node

1. Put your source files in an Amazon S3 bucket. To learn how to create buckets and how to move data
into Amazon S3, go to the Amazon Simple Storage Service Getting Started Guide.

2. Create a folder on your Hadoop cluster for your source files by entering a command similar to the
following:

mkdir SourceFiles

3. Copy your source files from Amazon S3 to the master node by typing a command similar to the
following:

hadoop fs -get s3://mybucket/SourceFiles SourceFiles

Build binaries with any necessary optimizations

How you build your binaries depends on many factors. Follow the instructions for your specific build tools
to setup and configure your environment.You can use Hadoop system specification commands to obtain
cluster information to determine how to install your build environment.

API Version 2009-03-31
18

Amazon Elastic MapReduce Amazon EMR Release Guide
Build Binaries Using Amazon EMR

http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-plan-ec2-instances.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-plan-ec2-instances.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-connect-master-node-ssh.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/

To identify system specifications

• Use the following commands to verify the architecture you are using to build your binaries.

a. To view the version of Debian, enter the following command:

master$ cat /etc/issue

The output looks similar to the following.

Debian GNU/Linux 5.0

b. To view the public DNS name and processor size, enter the following command:

master$ uname -a

The output looks similar to the following.

Linux domU-12-31-39-17-29-39.compute-1.internal 2.6.21.7-2.fc8xen #1 SMP
 Fri Feb 15 12:34:28 EST 2008 x86_64 GNU/Linux

c. To view the processor speed, enter the following command:

master$ cat /proc/cpuinfo

The output looks similar to the following.

processor : 0
vendor_id : GenuineIntel
model name : Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
flags : fpu tsc msr pae mce cx8 apic mca cmov pat pse36 clflush dts acpi
 mmx fxsr sse sse2 ss ht tm syscall nx lm constant_tsc pni monitor ds_cpl
 vmx est tm2 ssse3 cx16 xtpr cda lahf_lm
...

Once your binaries are built, you can copy the files to Amazon S3.

To copy binaries from the master node to Amazon S3

• Type the following command to copy the binaries to your Amazon S3 bucket:

hadoop fs -put BinaryFiles s3://mybucket/BinaryDestination

API Version 2009-03-31
19

Amazon Elastic MapReduce Amazon EMR Release Guide
Build Binaries Using Amazon EMR

Run a Script in a Cluster
Amazon Elastic MapReduce (Amazon EMR) enables you to run a script at any time during step processing
in your cluster.You specify a step that runs a script either when you create your cluster or you can add
a step if your cluster is in the WAITING state. For more information about adding steps, go to Submit
Work to a Cluster.

If you want to run a script before step processing begins, use a bootstrap action. For more information
on bootstrap actions, go to (Optional) Create Bootstrap Actions to Install Additional Software.

Submitting a Custom JAR Step Using the AWS CLI
This section describes how to add a step to run a script. The script-runner.jar takes arguments to
the path to a script and any additional arguments for the script.The JAR file runs the script with the passed
arguments. Script-runner.jar is located at
s3://elasticmapreduce/libs/script-runner/script-runner.jar.

The cluster containing a step that runs a script looks similar to the following examples.

To add a step to run a script using the AWS CLI

• To run a script using the AWS CLI, type the following command, replace myKey with the name of
your EC2 key pair and replace mybucket with your Amazon S3 bucket. This cluster runs the script
my_script.sh on the master node when the step is processed.

aws emr create-cluster --name "Test cluster" –-release-label emr-4.0.0 -
-applications Name=Hive Name=Pig --use-default-roles --ec2-attributes Key
Name=myKey --instance-type m3.xlarge --instance-count 3 --steps Type=CUS
TOM_JAR,Name=CustomJAR,ActionOnFailure=CONTINUE,Jar=s3://elasticmapre
duce/libs/script-runner/script-runner.jar,Args=["s3://mybucket/script-
path/my_script.sh"]

When you specify the instance count without using the --instance-groups parameter, a single
Master node is launched, and the remaining instances are launched as core nodes. All nodes will
use the instance type specified in the command.

Note
If you have not previously created the default EMR service role and EC2 instance profile,
type aws emr create-default-roles to create them before typing the create-cluster
subcommand.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

Process Data with Streaming
Hadoop Streaming is a utility that comes with Hadoop that enables you to develop MapReduce executables
in languages other than Java. Streaming is implemented in the form of a JAR file, so you can run it from
the Amazon Elastic MapReduce (Amazon EMR) API or command line just like a standard JAR file.

This section describes how to use Streaming with Amazon EMR.

Note
Apache Hadoop Streaming is an independent tool. As such, all of its functions and parameters
are not described here. For a complete description of Hadoop Streaming, go to http://
hadoop.apache.org/docs/stable/hadoop-streaming/HadoopStreaming.html.

API Version 2009-03-31
20

Amazon Elastic MapReduce Amazon EMR Release Guide
Run a Script in a Cluster

http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/AddingStepstoaJobFlow
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/AddingStepstoaJobFlow
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-plan-bootstrap.html
http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr
http://hadoop.apache.org/docs/stable/hadoop-streaming/HadoopStreaming.html
http://hadoop.apache.org/docs/stable/hadoop-streaming/HadoopStreaming.html

Using the Hadoop Streaming Utility
This section describes how use to Hadoop's Streaming utility.

Hadoop Process

Write your mapper and reducer executable in the programming language of your choice.
Follow the directions in Hadoop's documentation to write your streaming executables. The
programs should read their input from standard input and output data through standard output.
By default, each line of input/output represents a record and the first tab on each line is used
as a separator between the key and value.

1

Test your executables locally and upload them to Amazon S3.2

Use the Amazon EMR command line interface or Amazon EMR console to run your application.3

Each mapper script launches as a separate process in the cluster. Each reducer executable turns the
output of the mapper executable into the data output by the job flow.

The input, output, mapper, and reducer parameters are required by most Streaming applications.
The following table describes these and other, optional parameters.

RequiredDescriptionParameter

YesLocation on Amazon S3 of the input data.
Type: String

Default: None

Constraint: URI. If no protocol is specified then it uses the cluster's
default file system.

-input

YesLocation on Amazon S3 where Amazon EMR uploads the processed
data.
Type: String

Default: None

Constraint: URI

Default: If a location is not specified, Amazon EMR uploads the data
to the location specified by input.

-output

YesName of the mapper executable.
Type: String

Default: None

-mapper

YesName of the reducer executable.
Type: String

Default: None

-reducer

NoAn Amazon S3 location containing files for Hadoop to copy into your
local working directory (primarily to improve performance).
Type: String

Default: None

Constraints: [URI]#[symlink name to create in working directory]

-cacheFile

API Version 2009-03-31
21

Amazon Elastic MapReduce Amazon EMR Release Guide
Process Data with Streaming

RequiredDescriptionParameter

NoJAR file to extract into the working directory
Type: String

Default: None

Constraints: [URI]#[symlink directory name to create in working dir-
ectory

-cacheArchive

NoCombines results
Type: String

Default: None

Constraints: Java class name

-combiner

The following code sample is a mapper executable written in Python. This script is part of the WordCount
sample application.

#!/usr/bin/python
import sys

def main(argv):
 line = sys.stdin.readline()
 try:
 while line:
 line = line.rstrip()
 words = line.split()
 for word in words:
 print "LongValueSum:" + word + "\t" + "1"
 line = sys.stdin.readline()
 except "end of file":
 return None
if __name__ == "__main__":
 main(sys.argv)

Submit a Streaming Step
This section covers the basics of submitting a Streaming step to a cluster. A Streaming application reads
input from standard input and then runs a script or executable (called a mapper) against each input. The
result from each of the inputs is saved locally, typically on a Hadoop Distributed File System (HDFS)
partition. Once all the input is processed by the mapper, a second script or executable (called a reducer)
processes the mapper results. The results from the reducer are sent to standard output.You can chain
together a series of Streaming steps, where the output of one step becomes the input of another step.

The mapper and the reducer can each be referenced as a file or you can supply a Java class.You can
implement the mapper and reducer in any of the supported languages, including Ruby, Perl, Python,
PHP, or Bash.

Submit a Streaming Step Using the Console

This example describes how to use the Amazon EMR console to submit a Streaming step to a running
cluster.

To submit a Streaming step

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

API Version 2009-03-31
22

Amazon Elastic MapReduce Amazon EMR Release Guide
Process Data with Streaming

https://console.aws.amazon.com/elasticmapreduce/

2. In the Cluster List, click the name of your cluster.

3. Scroll to the Steps section and expand it, then click Add step.

4. In the Add Step dialog:

• For Step type, choose Streaming program.

• For Name, accept the default name (Streaming program) or type a new name.

• For Mapper, type or browse to the location of your mapper class in Hadoop, or an Amazon S3
bucket where the mapper executable, such as a Python program, resides. The path value must
be in the form BucketName/path/MapperExecutable.

• For Reducer, type or browse to the location of your reducer class in Hadoop, or an Amazon S3
bucket where the reducer executable, such as a Python program, resides. The path value must
be in the form BucketName/path/MapperExecutable. Amazon EMR supports the special
aggregate keyword. For more information, go to the Aggregate library supplied by Hadoop.

• For Input S3 location, type or browse to the location of your input data.

• For Output S3 location, type or browse to the name of your Amazon S3 output bucket.

• For Arguments, leave the field blank.

• For Action on failure, accept the default option (Continue).

5. Click Add. The step appears in the console with a status of Pending.

6. The status of the step changes from Pending to Running to Completed as the step runs. To update
the status, click the Refresh icon above the Actions column.

AWS CLI

These examples demonstrate how to use the AWS CLI to create a cluster and submit a Streaming step.

To create a cluster and submit a Streaming step using the AWS CLI

• To create a cluster and submit a Streaming step using the AWS CLI, type the following command
and replace myKey with the name of your EC2 key pair.

aws emr create-cluster --name "Test cluster" --release-label emr-4.0.0 -
-applications Name=Hue Name=Hive Name=Pig --use-default-roles --ec2-attributes
 KeyName=myKey --instance-type m3.xlarge --instance-count 3 --steps
Type=STREAMING,Name="Streaming Program",ActionOnFailure=CONTINUE,Args=[--
files,pathtoscripts,-mapper,mapperscript,-reducer,reducerscript,aggregate,-in
put,pathtoinputdata,-output,pathtooutputbucket]

When you specify the instance count without using the --instance-groups parameter, a single
Master node is launched, and the remaining instances are launched as core nodes. All nodes will
use the instance type specified in the command.

Note
If you have not previously created the default EMR service role and EC2 instance profile,
type aws emr create-default-roles to create them before typing the create-cluster
subcommand.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

API Version 2009-03-31
23

Amazon Elastic MapReduce Amazon EMR Release Guide
Process Data with Streaming

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr

Process Data with a Custom JAR
A custom JAR runs a compiled Java program that you upload to Amazon S3. Compile the program against
the version of Hadoop you want to launch and submit a CUSTOM_JAR step to your Amazon EMR cluster.
For more information on compiling a JAR file, see Build Binaries Using Amazon EMR (p. 18).

For more information about building a Hadoop MapReduce application, go to http://hadoop.apache.org/
docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html.

Submit a Custom JAR Step
This section covers the basics of submitting a custom JAR step in Amazon EMR. Submitting a custom
JAR step enables you to write a script to process your data using the Java programming language.

Submit a Custom JAR Step Using the Console

This example describes how to use the Amazon EMR console to submit a custom JAR step to a running
cluster.

To submit a custom JAR step using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. In the Cluster List, click the name of your cluster.

3. Scroll to the Steps section and expand it, then click Add step.

4. In the Add Step dialog:

• For Step type, choose Custom JAR.

• For Name, accept the default name (Custom JAR) or type a new name.

• For JAR S3 location, type or browse to the location of your JAR file. The value must be in the
form s3://BucketName/path/JARfile.

• For Arguments, type any required arguments as space-separated strings or leave the field blank.

• For Action on failure, accept the default option (Continue).

5. Click Add. The step appears in the console with a status of Pending.

6. The status of the step changes from Pending to Running to Completed as the step runs. To update
the status, click the Refresh icon above the Actions column.

Launching a cluster and submitting a custom JAR step using the AWS CLI

To launch a cluster and submit a custom JAR step using the AWS CLI

To launch a cluster and submit a custom JAR step using the AWS CLI, type the create-cluster
subcommand with the --steps parameter.

• To launch a cluster and submit a custom JAR step, type the following command, replace myKey with
the name of your EC2 key pair, and replace mybucket with your bucket name.

aws emr create-cluster --name "Test cluster" --release-label emr-4.0.0 -
-applications Name=Hue Name=Hive Name=Pig --use-default-roles --ec2-attributes
 KeyName=myKey --instance-type m3.xlarge --instance-count 3 --steps
Type=CUSTOM_JAR,Name="Custom JAR Step",ActionOnFailure=CONTINUE,Jar=pathto
jarfile,Args=["pathtoinputdata","pathtooutputbucket","arg1","arg2"]

API Version 2009-03-31
24

Amazon Elastic MapReduce Amazon EMR Release Guide
Process Data with a Custom JAR

http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://console.aws.amazon.com/elasticmapreduce/

When you specify the instance count without using the --instance-groups parameter, a single
Master node is launched, and the remaining instances are launched as core nodes. All nodes will
use the instance type specified in the command.

Note
If you have not previously created the default EMR service role and EC2 instance profile,
type aws emr create-default-roles to create them before typing the create-cluster
subcommand.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

Configure Hadoop
The following sections give default configuration settings for Hadoop daemons, tasks, and HDFS.

Topics

• Hadoop Daemon Settings (p. 25)

• HDFS Configuration (p. 35)

• Task Configuration (p. 36)

Hadoop Daemon Settings
The following tables list the default configuration settings for each EC2 instance type in clusters launched
with Amazon EMR.

m1.medium

ValueParameter

384YARN_RESOURCEMAN-
AGER_HEAPSIZE

192YARN_PROXYSERVER_HEAPSIZE

256YARN_NODEMANAGER_HEAPSIZE

256HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

384HADOOP_NAMENODE_HEAPSIZE

192HADOOP_DATANODE_HEAPSIZE

m1.large

ValueParameter

768YARN_RESOURCEMAN-
AGER_HEAPSIZE

384YARN_PROXYSERVER_HEAPSIZE

512YARN_NODEMANAGER_HEAPSIZE

API Version 2009-03-31
25

Amazon Elastic MapReduce Amazon EMR Release Guide
Configure Hadoop

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr

ValueParameter

512HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

768HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

m1.xlarge

ValueParameter

1024YARN_RESOURCEMAN-
AGER_HEAPSIZE

512YARN_PROXYSERVER_HEAPSIZE

768YARN_NODEMANAGER_HEAPSIZE

1024HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

2304HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

m2.xlarge

ValueParameter

1536YARN_RESOURCEMAN-
AGER_HEAPSIZE

1024YARN_PROXYSERVER_HEAPSIZE

1024YARN_NODEMANAGER_HEAPSIZE

1024HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

3072HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

m2.2xlarge

ValueParameter

1536YARN_RESOURCEMAN-
AGER_HEAPSIZE

1024YARN_PROXYSERVER_HEAPSIZE

1024YARN_NODEMANAGER_HEAPSIZE

1536HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

API Version 2009-03-31
26

Amazon Elastic MapReduce Amazon EMR Release Guide
Hadoop Daemon Settings

ValueParameter

6144HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

m2.4xlarge

ValueParameter

2048YARN_RESOURCEMAN-
AGER_HEAPSIZE

1024YARN_PROXYSERVER_HEAPSIZE

1536YARN_NODEMANAGER_HEAPSIZE

1536HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

12288HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

m3.xlarge

ValueParameter

2396YARN_RESOURCEMAN-
AGER_HEAPSIZE

2396YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

2396HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

1740HADOOP_NAMENODE_HEAPSIZE

757HADOOP_DATANODE_HEAPSIZE

m3.2xlarge

ValueParameter

2703YARN_RESOURCEMAN-
AGER_HEAPSIZE

2703YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

2703HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

3276HADOOP_NAMENODE_HEAPSIZE

1064HADOOP_DATANODE_HEAPSIZE

API Version 2009-03-31
27

Amazon Elastic MapReduce Amazon EMR Release Guide
Hadoop Daemon Settings

c1.medium

ValueParameter

192YARN_RESOURCEMAN-
AGER_HEAPSIZE

96YARN_PROXYSERVER_HEAPSIZE

128YARN_NODEMANAGER_HEAPSIZE

128HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

192HADOOP_NAMENODE_HEAPSIZE

96HADOOP_DATANODE_HEAPSIZE

c1.xlarge

ValueParameter

768YARN_RESOURCEMAN-
AGER_HEAPSIZE

384YARN_PROXYSERVER_HEAPSIZE

512YARN_NODEMANAGER_HEAPSIZE

512HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

768HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

c3.xlarge

ValueParameter

2124YARN_RESOURCEMAN-
AGER_HEAPSIZE

2124YARN_PROXYSERVER_HEAPSIZE

2124YARN_NODEMANAGER_HEAPSIZE

2124HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

972HADOOP_NAMENODE_HEAPSIZE

588HADOOP_DATANODE_HEAPSIZE

API Version 2009-03-31
28

Amazon Elastic MapReduce Amazon EMR Release Guide
Hadoop Daemon Settings

c3.2xlarge

ValueParameter

2396YARN_RESOURCEMAN-
AGER_HEAPSIZE

2396YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

2396HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

1740HADOOP_NAMENODE_HEAPSIZE

757HADOOP_DATANODE_HEAPSIZE

c3.4xlarge

ValueParameter

2703YARN_RESOURCEMAN-
AGER_HEAPSIZE

2703YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

2703HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

3276HADOOP_NAMENODE_HEAPSIZE

1064HADOOP_DATANODE_HEAPSIZE

c3.8xlarge

ValueParameter

3317YARN_RESOURCEMAN-
AGER_HEAPSIZE

3317YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

3317HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

6348HADOOP_NAMENODE_HEAPSIZE

1679HADOOP_DATANODE_HEAPSIZE

API Version 2009-03-31
29

Amazon Elastic MapReduce Amazon EMR Release Guide
Hadoop Daemon Settings

cc2.8xlarge

ValueParameter

2048YARN_RESOURCEMAN-
AGER_HEAPSIZE

1024YARN_PROXYSERVER_HEAPSIZE

1536YARN_NODEMANAGER_HEAPSIZE

1536HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

12288HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

cg1.4xlarge

ValueParameter

2048YARN_RESOURCEMAN-
AGER_HEAPSIZE

1024YARN_PROXYSERVER_HEAPSIZE

1536YARN_NODEMANAGER_HEAPSIZE

1536HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

3840HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

cr1.8xlarge

ValueParameter

7086YARN_RESOURCEMAN-
AGER_HEAPSIZE

7086YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

7086HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

25190HADOOP_NAMENODE_HEAPSIZE

4096HADOOP_DATANODE_HEAPSIZE

API Version 2009-03-31
30

Amazon Elastic MapReduce Amazon EMR Release Guide
Hadoop Daemon Settings

d2.xlarge

ValueParameter

2713YARN_RESOURCEMAN-
AGER_HEAPSIZE

2713YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

2713HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

3328HADOOP_NAMENODE_HEAPSIZE

1075HADOOP_DATANODE_HEAPSIZE

d2.2xlarge

ValueParameter

3338YARN_RESOURCEMAN-
AGER_HEAPSIZE

3338YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

3338HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

6451HADOOP_NAMENODE_HEAPSIZE

1699HADOOP_DATANODE_HEAPSIZE

d2.4xlarge

ValueParameter

4587YARN_RESOURCEMAN-
AGER_HEAPSIZE

4587YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

4587HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

12697HADOOP_NAMENODE_HEAPSIZE

2949HADOOP_DATANODE_HEAPSIZE

API Version 2009-03-31
31

Amazon Elastic MapReduce Amazon EMR Release Guide
Hadoop Daemon Settings

d2.8xlarge

ValueParameter

7089YARN_RESOURCEMAN-
AGER_HEAPSIZE

7086YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

7086HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

25190HADOOP_NAMENODE_HEAPSIZE

4096HADOOP_DATANODE_HEAPSIZE

hi1.4xlarge

ValueParameter

3328YARN_RESOURCEMAN-
AGER_HEAPSIZE

3328YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

3328HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

6400HADOOP_NAMENODE_HEAPSIZE

1689HADOOP_DATANODE_HEAPSIZE

hs1.8xlarge

ValueParameter

2048YARN_RESOURCEMAN-
AGER_HEAPSIZE

1024YARN_PROXYSERVER_HEAPSIZE

1536YARN_NODEMANAGER_HEAPSIZE

1536HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

12288HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

API Version 2009-03-31
32

Amazon Elastic MapReduce Amazon EMR Release Guide
Hadoop Daemon Settings

i2.xlarge

ValueParameter

2713YARN_RESOURCEMAN-
AGER_HEAPSIZE

2713YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

2713HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

3328HADOOP_NAMENODE_HEAPSIZE

1075HADOOP_DATANODE_HEAPSIZE

i2.2xlarge

ValueParameter

3338YARN_RESOURCEMAN-
AGER_HEAPSIZE

3338YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

3338HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

6451HADOOP_NAMENODE_HEAPSIZE

1699HADOOP_DATANODE_HEAPSIZE

i2.4xlarge

ValueParameter

4587YARN_RESOURCEMAN-
AGER_HEAPSIZE

4587YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

4587HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

12697HADOOP_NAMENODE_HEAPSIZE

2949HADOOP_DATANODE_HEAPSIZE

API Version 2009-03-31
33

Amazon Elastic MapReduce Amazon EMR Release Guide
Hadoop Daemon Settings

i2.8xlarge

ValueParameter

7086YARN_RESOURCEMAN-
AGER_HEAPSIZE

7086YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

7086HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

25190HADOOP_NAMENODE_HEAPSIZE

4096HADOOP_DATANODE_HEAPSIZE

g2.2xlarge

ValueParameter

1536YARN_RESOURCEMAN-
AGER_HEAPSIZE

1024YARN_PROXYSERVER_HEAPSIZE

1024YARN_NODEMANAGER_HEAPSIZE

1024HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

2304HADOOP_NAMENODE_HEAPSIZE

384HADOOP_DATANODE_HEAPSIZE

r3.xlarge

ValueParameter

2713YARN_RESOURCEMAN-
AGER_HEAPSIZE

2713YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

2713HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

3328HADOOP_NAMENODE_HEAPSIZE

1075HADOOP_DATANODE_HEAPSIZE

API Version 2009-03-31
34

Amazon Elastic MapReduce Amazon EMR Release Guide
Hadoop Daemon Settings

r3.2xlarge

ValueParameter

3338YARN_RESOURCEMAN-
AGER_HEAPSIZE

3338YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

3338HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

6451HADOOP_NAMENODE_HEAPSIZE

1699HADOOP_DATANODE_HEAPSIZE

r3.4xlarge

ValueParameter

4587YARN_RESOURCEMAN-
AGER_HEAPSIZE

4587YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

4587HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

12697HADOOP_NAMENODE_HEAPSIZE

2949HADOOP_DATANODE_HEAPSIZE

r3.8xlarge

ValueParameter

7086YARN_RESOURCEMAN-
AGER_HEAPSIZE

7086YARN_PROXYSERVER_HEAPSIZE

2048YARN_NODEMANAGER_HEAPSIZE

7086HADOOP_JOB_HISTORYSERV-
ER_HEAPSIZE

25190HADOOP_NAMENODE_HEAPSIZE

4096HADOOP_DATANODE_HEAPSIZE

HDFS Configuration
The following table describes the default Hadoop Distributed File System (HDFS) parameters and their
settings.

API Version 2009-03-31
35

Amazon Elastic MapReduce Amazon EMR Release Guide
HDFS Configuration

Default ValueDefinitionParameter

134217728 (128 MB)The size of HDFS blocks. When operating on data stored in
HDFS, the split size is generally the size of an HDFS block.
Larger numbers provide less task granularity, but also put less
strain on the cluster NameNode.

dfs.block.size

1 for clusters < four
nodes

2 for clusters < ten
nodes

3 for all other clusters

This determines how many copies of each block to store for
durability. For small clusters, we set this to 2 because the cluster
is small and easy to restart in case of data loss.You can change
the setting to 1, 2, or 3 as your needs dictate. Amazon EMR
automatically calculates the replication factor based on cluster
size. To overwrite the default value, use a configure-hadoop
bootstrap action.

dfs.replication

Task Configuration
Topics

• Task JVM Memory Settings (p. 36)

There are a number of configuration variables for tuning the performance of your MapReduce jobs. This
section describes some of the important task-related settings.

Task JVM Memory Settings
Hadoop uses two parameters to configure memory for map and reduce: mapreduce.map.java.opts and
mapreduce.reduce.java.opts, respectively. These replace the single configuration option from previous
Hadoop versions: mapreduce.map.java.opts.

The defaults for these settings per instance type are shown in the following tables.

m1.medium

Default ValueConfiguration Option

-Xmx512mmapreduce.map.java.opts

-Xmx768mmapreduce.reduce.java.opts

768mapreduce.map.memory.mb

1024mapreduce.reduce.memory.mb

1024yarn.app.mapreduce.am.resource.mb

256yarn.scheduler.minimum-allocation-mb

2048yarn.scheduler.maximum-allocation-mb

2048yarn.nodemanager.resource.memory-mb

m1.large

Default ValueConfiguration Option

-Xmx512mmapreduce.map.java.opts

API Version 2009-03-31
36

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

Default ValueConfiguration Option

-Xmx1024mmapreduce.reduce.java.opts

768mapreduce.map.memory.mb

1536mapreduce.reduce.memory.mb

1536yarn.app.mapreduce.am.resource.mb

256yarn.scheduler.minimum-allocation-mb

3072yarn.scheduler.maximum-allocation-mb

5120yarn.nodemanager.resource.memory-mb

m1.xlarge

Default ValueConfiguration Option

-Xmx512mmapreduce.map.java.opts

-Xmx1536mmapreduce.reduce.java.opts

768mapreduce.map.memory.mb

2048mapreduce.reduce.memory.mb

2048yarn.app.mapreduce.am.resource.mb

256yarn.scheduler.minimum-allocation-mb

8192yarn.scheduler.maximum-allocation-mb

12288yarn.nodemanager.resource.memory-mb

m2.xlarge

Default ValueConfiguration Option

-Xmx864mmapreduce.map.java.opts

-Xmx1536mmapreduce.reduce.java.opts

1024mapreduce.map.memory.mb

2048mapreduce.reduce.memory.mb

2048yarn.app.mapreduce.am.resource.mb

256yarn.scheduler.minimum-allocation-mb

7168yarn.scheduler.maximum-allocation-mb

14336yarn.nodemanager.resource.memory-mb

API Version 2009-03-31
37

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

m2.2xlarge

Default ValueConfiguration Option

-Xmx1280mmapreduce.map.java.opts

-Xmx2304mmapreduce.reduce.java.opts

1536mapreduce.map.memory.mb

2560mapreduce.reduce.memory.mb

2560yarn.app.mapreduce.am.resource.mb

256yarn.scheduler.minimum-allocation-mb

8192yarn.scheduler.maximum-allocation-mb

30720yarn.nodemanager.resource.memory-mb

m3.xlarge

Default ValueConfiguration Option

-Xmx1152mmapreduce.map.java.opts

-Xmx2304mmapreduce.reduce.java.opts

1440mapreduce.map.memory.mb

2880mapreduce.reduce.memory.mb

1440yarn.scheduler.minimum-allocation-mb

11520yarn.scheduler.maximum-allocation-mb

11520yarn.nodemanager.resource.memory-mb

m3.2xlarge

Default ValueConfiguration Option

-Xmx1152mmapreduce.map.java.opts

-Xmx2304mmapreduce.reduce.java.opts

1440mapreduce.map.memory.mb

2880mapreduce.reduce.memory.mb

1440yarn.scheduler.minimum-allocation-mb

23040yarn.scheduler.maximum-allocation-mb

23040yarn.nodemanager.resource.memory-mb

API Version 2009-03-31
38

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

m2.4xlarge

Default ValueConfiguration Option

-Xmx1280mmapreduce.map.java.opts

-Xmx2304mmapreduce.reduce.java.opts

1536mapreduce.map.memory.mb

2560mapreduce.reduce.memory.mb

256yarn.scheduler.minimum-allocation-mb

8192yarn.scheduler.maximum-allocation-mb

61440yarn.nodemanager.resource.memory-mb

c1.medium

Default ValueConfiguration Option

100io.sort.mb

-Xmx288mmapreduce.map.java.opts

-Xmx288mmapreduce.reduce.java.opts

512mapreduce.map.memory.mb

512mapreduce.reduce.memory.mb

256yarn.scheduler.minimum-allocation-mb

512yarn.scheduler.maximum-allocation-mb

1024yarn.nodemanager.resource.memory-mb

c1.xlarge

Default ValueConfiguration Option

150io.sort.mb

-Xmx864mmapreduce.map.java.opts

-Xmx1536mmapreduce.reduce.java.opts

1024mapreduce.map.memory.mb

2048mapreduce.reduce.memory.mb

256yarn.scheduler.minimum-allocation-mb

2048yarn.scheduler.maximum-allocation-mb

5120yarn.nodemanager.resource.memory-mb

API Version 2009-03-31
39

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

c3.xlarge

Default ValueConfiguration Option

-Xmx1126mmapreduce.map.java.opts

-Xmx2252mmapreduce.reduce.java.opts

1408mapreduce.map.memory.mb

2816mapreduce.reduce.memory.mb

1408yarn.scheduler.minimum-allocation-mb

5632yarn.scheduler.maximum-allocation-mb

5632yarn.nodemanager.resource.memory-mb

c3.2xlarge

Default ValueConfiguration Option

-Xmx1152mmapreduce.map.java.opts

-Xmx2304mmapreduce.reduce.java.opts

1440mapreduce.map.memory.mb

2880mapreduce.reduce.memory.mb

1440yarn.scheduler.minimum-allocation-mb

11520yarn.scheduler.maximum-allocation-mb

11520yarn.nodemanager.resource.memory-mb

c3.4xlarge

Default ValueConfiguration Option

-Xmx1152mmapreduce.map.java.opts

-Xmx2304mmapreduce.reduce.java.opts

1440mapreduce.map.memory.mb

2880mapreduce.reduce.memory.mb

1440yarn.scheduler.minimum-allocation-mb

23040yarn.scheduler.maximum-allocation-mb

23040yarn.nodemanager.resource.memory-mb

c3.8xlarge

Default ValueConfiguration Option

-Xmx1331mmapreduce.map.java.opts

API Version 2009-03-31
40

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

Default ValueConfiguration Option

-Xmx2662mmapreduce.reduce.java.opts

1664mapreduce.map.memory.mb

3328mapreduce.reduce.memory.mb

1664yarn.scheduler.minimum-allocation-mb

53248yarn.scheduler.maximum-allocation-mb

53248yarn.nodemanager.resource.memory-mb

cg1.4xlarge

Default ValueConfiguration Option

-Xmx1280mmapreduce.map.java.opts

-Xmx2304mmapreduce.reduce.java.opts

1536mapreduce.map.memory.mb

2560mapreduce.reduce.memory.mb

2560yarn.app.mapreduce.am.resource.mb

256yarn.scheduler.minimum-allocation-mb

5120yarn.scheduler.maximum-allocation-mb

20480yarn.nodemanager.resource.memory-mb

cc2.8xlarge

Default ValueConfiguration Option

-Xmx1280mmapreduce.map.java.opts

-Xmx2304mmapreduce.reduce.java.opts

1536mapreduce.map.memory.mb

2560mapreduce.reduce.memory.mb

2560yarn.app.mapreduce.am.resource.mb

256yarn.scheduler.minimum-allocation-mb

8192yarn.scheduler.maximum-allocation-mb

56320yarn.nodemanager.resource.memory-mb

cr1.8xlarge

Default ValueConfiguration Option

-Xmx6042mmapreduce.map.java.opts

API Version 2009-03-31
41

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

Default ValueConfiguration Option

-Xmx12084mmapreduce.reduce.java.opts

7552mapreduce.map.memory.mb

15104mapreduce.reduce.memory.mb

7552yarn.scheduler.minimum-allocation-mb

241664yarn.scheduler.maximum-allocation-mb

241664yarn.nodemanager.resource.memory-mb

d2.xlarge

Default ValueConfiguration Option

-Xmx2342mmapreduce.map.java.opts

-Xmx4684mmapreduce.reduce.java.opts

2928mapreduce.map.memory.mb

5856mapreduce.reduce.memory.mb

256yarn.scheduler.minimum-allocation-mb

23424yarn.scheduler.maximum-allocation-mb

23424yarn.nodemanager.resource.memory-mb

d2.2xlarge

Default ValueConfiguration Option

-Xmx2714mmapreduce.map.java.opts

-Xmx5428mmapreduce.reduce.java.opts

3392mapreduce.map.memory.mb

6784mapreduce.reduce.memory.mb

256yarn.scheduler.minimum-allocation-mb

54272yarn.scheduler.maximum-allocation-mb

54272yarn.nodemanager.resource.memory-mb

d2.4xlarge

Default ValueConfiguration Option

-Xmx2918mmapreduce.map.java.opts

-Xmx5836mmapreduce.reduce.java.opts

3648mapreduce.map.memory.mb

API Version 2009-03-31
42

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

Default ValueConfiguration Option

7296mapreduce.reduce.memory.mb

256yarn.scheduler.minimum-allocation-mb

116736yarn.scheduler.maximum-allocation-mb

116736yarn.nodemanager.resource.memory-mb

d2.8xlarge

Default ValueConfiguration Option

-Xmx2685mmapreduce.map.java.opts

-Xmx5370mmapreduce.reduce.java.opts

3356mapreduce.map.memory.mb

6712mapreduce.reduce.memory.mb

256yarn.scheduler.minimum-allocation-mb

241664yarn.scheduler.maximum-allocation-mb

241664yarn.nodemanager.resource.memory-mb

g2.2xlarge

Default ValueConfiguration Option

-Xmx512mmapreduce.map.java.opts

-Xmx1536mmapreduce.reduce.java.opts

768mapreduce.map.memory.mb

2048mapreduce.reduce.memory.mb

2048yarn.app.mapreduce.am.resource.mb

256yarn.scheduler.minimum-allocation-mb

8192yarn.scheduler.maximum-allocation-mb

12288yarn.nodemanager.resource.memory-mb

hi1.4xlarge

Default ValueConfiguration Option

-Xmx2688mmapreduce.map.java.opts

-Xmx5376mmapreduce.reduce.java.opts

3360mapreduce.map.memory.mb

6720mapreduce.reduce.memory.mb

API Version 2009-03-31
43

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

Default ValueConfiguration Option

3360yarn.scheduler.minimum-allocation-mb

53760yarn.scheduler.maximum-allocation-mb

53760yarn.nodemanager.resource.memory-mb

hs1.8xlarge

Default ValueConfiguration Option

-Xmx1280mmapreduce.map.java.opts

-Xmx2304mmapreduce.reduce.java.opts

1536mapreduce.map.memory.mb

2560mapreduce.reduce.memory.mb

2560yarn.app.mapreduce.am.resource.mb

256yarn.scheduler.minimum-allocation-mb

8192yarn.scheduler.maximum-allocation-mb

56320yarn.nodemanager.resource.memory-mb

i2.xlarge

Default ValueConfiguration Option

-Xmx2342mmapreduce.map.java.opts

-Xmx4684mmapreduce.reduce.java.opts

2928mapreduce.map.memory.mb

5856mapreduce.reduce.memory.mb

2928yarn.scheduler.minimum-allocation-mb

23424yarn.scheduler.maximum-allocation-mb

23424yarn.nodemanager.resource.memory-mb

i2.2xlarge

Default ValueConfiguration Option

-Xmx2714mmapreduce.map.java.opts

-Xmx5428mmapreduce.reduce.java.opts

3392mapreduce.map.memory.mb

6784mapreduce.reduce.memory.mb

3392yarn.scheduler.minimum-allocation-mb

API Version 2009-03-31
44

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

Default ValueConfiguration Option

54272yarn.scheduler.maximum-allocation-mb

54272yarn.nodemanager.resource.memory-mb

i2.4xlarge

Default ValueConfiguration Option

-Xmx2918mmapreduce.map.java.opts

-Xmx5836mmapreduce.reduce.java.opts

3648mapreduce.map.memory.mb

7296mapreduce.reduce.memory.mb

3648yarn.scheduler.minimum-allocation-mb

116736yarn.scheduler.maximum-allocation-mb

116736yarn.nodemanager.resource.memory-mb

i2.8xlarge

Default ValueConfiguration Option

-Xmx3021mmapreduce.map.java.opts

-Xmx6042mmapreduce.reduce.java.opts

15974mapreduce.map.memory.mb

16220mapreduce.reduce.memory.mb

3776yarn.scheduler.minimum-allocation-mb

241664yarn.scheduler.maximum-allocation-mb

241664yarn.nodemanager.resource.memory-mb

r3.xlarge

Default ValueConfiguration Option

-Xmx2342mmapreduce.map.java.opts

-Xmx4684mmapreduce.reduce.java.opts

2982mapreduce.map.memory.mb

5856mapreduce.reduce.memory.mb

2928yarn.scheduler.minimum-allocation-mb

23424yarn.scheduler.maximum-allocation-mb

23424yarn.nodemanager.resource.memory-mb

API Version 2009-03-31
45

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

r3.2xlarge

Default ValueConfiguration Option

-Xmx2714mmapreduce.map.java.opts

-Xmx5428mmapreduce.reduce.java.opts

3392mapreduce.map.memory.mb

6784mapreduce.reduce.memory.mb

3392yarn.scheduler.minimum-allocation-mb

54272yarn.scheduler.maximum-allocation-mb

54272yarn.nodemanager.resource.memory-mb

r3.4xlarge

Default ValueConfiguration Option

-Xmx5837mmapreduce.map.java.opts

-Xmx11674mmapreduce.reduce.java.opts

7296mapreduce.map.memory.mb

14592mapreduce.reduce.memory.mb

7296yarn.scheduler.minimum-allocation-mb

116736yarn.scheduler.maximum-allocation-mb

116736yarn.nodemanager.resource.memory-mb

r3.8xlarge

Default ValueConfiguration Option

-Xmx6042mmapreduce.map.java.opts

-Xmx12084mmapreduce.reduce.java.opts

7552mapreduce.map.memory.mb

15104mapreduce.reduce.memory.mb

7552yarn.scheduler.minimum-allocation-mb

241664yarn.scheduler.maximum-allocation-mb

241664yarn.nodemanager.resource.memory-mb

You can start a new JVM for every task, which provides better task isolation, or you can share JVMs
between tasks, providing lower framework overhead. If you are processing many small files, it makes
sense to reuse the JVM many times to amortize the cost of start-up. However, if each task takes a long
time or processes a large amount of data, then you might choose to not reuse the JVM to ensure that all
memory is freed for subsequent tasks.

API Version 2009-03-31
46

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

Use the mapred.job.reuse.jvm.num.tasks option to configure the JVM reuse settings.

To modify JVM settings using the AWS CLI

To modify JVM settings using the AWS CLI, type the --bootstrap-action parameter and specify the
settings in the arguments list.

• To configure infinite JVM reuse, type the following command and replace myKey with the name of
your EC2 key pair.

aws emr create-cluster --name "Test cluster" --release-label emr-4.0.0 -
-use-default-roles --ec2-attributes KeyName=myKey --instance-count 3 --ap
plications Name=Hadoop --configurations Classification=mapred-site,Proper
ties=["mapred.job.reuse.jvm.num.tasks"="-1"]

If you have not previously created the default EMR service role and EC2 instance profile, type aws emr
create-default-roles to create them before typing the create-cluster subcommand.

Note
Amazon EMR sets the value of mapred.job.reuse.jvm.num.tasks to 20, but you can
override it with a bootstrap action. A value of -1 means infinite reuse within a single job, and 1
means do not reuse tasks.

For more information about using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

API Version 2009-03-31
47

Amazon Elastic MapReduce Amazon EMR Release Guide
Task Configuration

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr

Apache Hive

Hive is an open-source, data warehouse and analytic package that runs on top of Hadoop. Hive scripts
use an SQL-like language called Hive QL (query language) that abstracts the MapReduce programming
model and supports typical data warehouse interactions. Hive enables you to avoid the complexities of
writing MapReduce programs in a lower level computer language, such as Java.

Hive extends the SQL paradigm by including serialization formats and the ability to invoke mapper and
reducer scripts. In contrast to SQL, which only supports primitive value types (such as dates, numbers,
and strings), values in Hive tables are structured elements, such as JSON objects, any user-defined data
type, or any function written in Java.

For a more information on Hive, go to http://hive.apache.org/.

Release Information

Apache Hive 1.0.0-amzn-0

Amazon EMR Release Label: emr-4.0.0

Components Installed with Hive

If you install Hive as an application in Amazon EMR, the following components will be installed:

emrfs, emr-ddb, emr-goodies, emr-kinesis, emr-s3-dist-cp, hadoop-client, hadoop-mapred,
hadoop-hdfs-datanode, hadoop-hdfs-namenode, hadoop-httpfs-server, hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager, hive-client, hive-metastore-server, hive-server, mysql-server

Samples

Amazon EMR sample applications are included with each release.You can view these samples by logging
into the master node of your cluster at /usr/share/aws/emr/samples.

Topics

• How Amazon EMR Hive Differs from Apache Hive (p. 49)

• Use the Hive JDBC Driver (p. 55)

API Version 2009-03-31
48

Amazon Elastic MapReduce Amazon EMR Release Guide

http://hive.apache.org/

How Amazon EMR Hive Differs from Apache
Hive

Topics

• Combine Splits Input Format (p. 49)

• Hive Authorization (p. 49)

• Hive File Merge Behavior with Amazon S3 (p. 49)

• ACID Transactions and Amazon S3 (p. 49)

• Additional Features of Hive in Amazon EMR (p. 49)

This section describes the differences between Amazon EMR Hive installations and the default versions
of Hive available at http://svn.apache.org/viewvc/hive/branches/.

Combine Splits Input Format
If you have many GZip files in your Hive cluster, you can optimize performance by passing multiple files
to each mapper. This reduces the number of mappers needed in your cluster and can help your clusters
complete faster.You do this by specifying that Hive use the HiveCombineSplitsInputFormat input
format and setting the split size, in bytes. This is shown in the following example

set hive.hadoop.supports.splittable.combineinputformat=true;

Hive Authorization
Amazon EMR supports Hive Authorization for HDFS but not for EMRFS and Amazon S3. Amazon EMR
clusters run with authorization disabled by default.

Hive File Merge Behavior with Amazon S3
Apache Hive merges small files at the end of a map-only job if hive.merge.mapfiles is true and the
merge is triggered only if the average output size of the job is less than the
hive.merge.smallfiles.avgsize setting. Amazon EMR Hive has exactly the same behavior if the
final output path is in HDFS; however, if the output path is in Amazon S3, the
hive.merge.smallfiles.avgsize parameter is ignored. In that situation, the merge task is always
triggered if hive.merge.mapfiles is set to true.

ACID Transactions and Amazon S3
ACID (Atomicity, Consistency, Isolation, Durability) transactions are not supported with Hive data stored
in Amazon S3. If you attempt to create a transactional table in Amazon S3, this will cause an exception.

Additional Features of Hive in Amazon EMR
Amazon EMR extends Hive with new features that support Hive integration with other AWS services,
such as the ability to read from and write to Amazon Simple Storage Service (Amazon S3) and DynamoDB.
For information about which versions of Hive support these additional features, see Hive Patches (p. 54).

Topics

• Write Data Directly to Amazon S3 (p. 50)

API Version 2009-03-31
49

Amazon Elastic MapReduce Amazon EMR Release Guide
How Amazon EMR Hive Differs from Apache Hive

http://svn.apache.org/viewvc/hive/branches/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Authorization

• Use Hive to Access Resources in Amazon S3 (p. 50)

• Variables in Hive (p. 51)

• Amazon EMR Hive queries to accommodate partial DynamoDB schemas (p. 53)

• Copy data between DynamoDB tables in different AWS regions (p. 54)

• Set DynamoDB throughput values per table (p. 54)

• Hive Patches (p. 54)

Write Data Directly to Amazon S3
The Hadoop Distributed File System (HDFS) and Amazon S3 are handled differently within Amazon EMR
and Hive. The version of Hive installed with Amazon EMR is extended with the ability to write directly to
Amazon S3 without the use of temporary files. This produces a significant performance improvement but
it means that HDFS and Amazon S3 behave differently within Hive.

A consequence of Hive writing directly to Amazon S3 is that you cannot read and write to the same table
within the same Hive statement if that table is located in Amazon S3. The following example shows how
to use multiple Hive statements to update a table in Amazon S3.

To update a table in Amazon S3 using Hive

1. From a Hive prompt or script, create a temporary table in the cluster's local HDFS filesystem.

2. Write the results of a Hive query to the temporary table.

3. Copy the contents of the temporary table to Amazon S3. This is shown in the following example.

CREATE TEMPORARY TABLE tmp LIKE my_s3_table;
INSERT OVERWRITE TABLE tmp SELECT;
INSERT OVERWRITE TABLE my_s3_table SELECT * FROM tmp;

Use Hive to Access Resources in Amazon S3
The version of Hive installed in Amazon EMR enables you to reference resources, such as JAR files,
located in Amazon S3.

add jar s3://elasticmapreduce/samples/hive-ads/libs/jsonserde.jar

You can also reference scripts located in Amazon S3 to execute custom map and reduce operations.
This is shown in the following example.

from logs select transform (line)
using 's3://mybucket/scripts/parse-logs.pl' as
(time string, exception_type string, exception_details string)

API Version 2009-03-31
50

Amazon Elastic MapReduce Amazon EMR Release Guide
Additional Features of Hive in Amazon EMR

Variables in Hive
You can include variables in your scripts by using the dollar sign and curly braces.

add jar ${LIB}/jsonserde.jar

You pass the values of these variables to Hive on the command line using the -d parameter, as in the
following example:

-d LIB=s3://elasticmapreduce/samples/hive-ads/lib

You can also pass the values into steps that execute Hive scripts.

To pass variable values into Hive steps using the console

1. Open the Amazon Elastic MapReduce console at https://console.aws.amazon.com/elasticmapreduce/.

2. Click Create cluster.

3. In the Steps section, for Add Step, choose Hive Program from the list and click Configure and
add.

4. In the Add Step dialog, specify the parameters using the following table as a guide, and then click
Add.

ActionField

Specify the URI where your script resides in Amazon S3. The value must be in
the form BucketName/path/ScriptName. For example:s3://elasticmapre-
duce/samples/hive-ads/libs/response-time-stats.q.

Script S3 loca-
tion*

Optionally, specify the URI where your input files reside in Amazon S3. The
value must be in the form BucketName/path/. If specified, this will be passed
to the Hive script as a parameter named INPUT. For example: s3://elast-
icmapreduce/samples/hive-ads/tables/.

Input S3 location

Optionally, specify the URI where you want the output stored in Amazon S3.
The value must be in the form BucketName/path. If specified, this will be passed
to the Hive script as a parameter named OUTPUT. For example:s3://mybuck-
et/hive-ads/output/.

Output S3 loca-
tion

Optionally, enter a list of arguments (space-separated strings) to pass to Hive.
If you defined a path variable in your Hive script named ${SAMPLE}, for example:

CREATE EXTERNAL TABLE logs (requestBeginTime STRING, re
questEndTime STRING, hostname STRING) PARTITIONED BY (dt
STRING) \
ROW FORMAT serde 'com.amazon.elasticmapreduce.JsonSerde'
WITH SERDEPROPERTIES ('paths'='requestBeginTime, requestEnd
Time, hostname') LOCATION '${SAMPLE}/tables/impressions';

To pass a value for the variable, type the following in the Arguments window:

-d SAMPLE=s3://elasticmapreduce/samples/hive-ads/.

Arguments

API Version 2009-03-31
51

Amazon Elastic MapReduce Amazon EMR Release Guide
Additional Features of Hive in Amazon EMR

https://console.aws.amazon.com/elasticmapreduce/

ActionField

This determines what the cluster does in response to any errors. The possible
values for this setting are:

• Terminate cluster: If the step fails, terminate the cluster. If the cluster has
termination protection enabled AND keep alive enabled, it will not terminate.

• Cancel and wait: If the step fails, cancel the remaining steps. If the cluster
has keep alive enabled, the cluster will not terminate.

• Continue: If the step fails, continue to the next step.

Action on Failure

5. Select values as necessary and choose Create cluster.

To pass variable values into Hive steps using the AWS CLI

To pass variable values into Hive steps using the AWS CLI, use the --steps parameter and include an
arguments list.

• To pass a variable into a Hive step using the AWS CLI, type the following command, replace myKey
with the name of your EC2 key pair, and replace mybucket with your bucket name. In this example,
SAMPLE is a variable value preceded by the -d switch. This variable is defined in the Hive script as:
${SAMPLE}.

•

aws emr create-cluster --name "Test cluster" --release-label emr-4.0.0 -
-applications Name=Hive Name=Pig --use-default-roles --ec2-attributes Key
Name=myKey --instance-type m3.xlarge --instance-count 3 --steps
Type=Hive,Name="Hive Program",ActionOnFailure=CONTINUE,Args=[-f,s3://elast
icmapreduce/samples/hive-ads/libs/response-time-stats.q,-d,INPUT=s3://elast
icmapreduce/samples/hive-ads/tables,-d,OUTPUT=s3://mybucket/hive-ads/out
put/,-d,SAMPLE=s3://elasticmapreduce/samples/hive-ads/]

When you specify the instance count without using the --instance-groups parameter, a single
Master node is launched, and the remaining instances are launched as core nodes. All nodes will
use the instance type specified in the command.

Note
If you have not previously created the default EMR service role and EC2 instance profile,
type aws emr create-default-roles to create them before typing the create-cluster
subcommand.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

To pass variable values into Hive steps using the Java SDK

• The following example demonstrates how to pass variables into steps using the SDK. For more
information, see Class StepFactory in the AWS SDK for Java API Reference.

API Version 2009-03-31
52

Amazon Elastic MapReduce Amazon EMR Release Guide
Additional Features of Hive in Amazon EMR

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticmapreduce/util/StepFactory.html

StepFactory stepFactory = new StepFactory();

 StepConfig runHive = new StepConfig()
 .withName("Run Hive Script")
 .withActionOnFailure("TERMINATE_JOB_FLOW")
 .withHadoopJarStep(stepFactory.newRunHiveScriptStep(“s3://mybuck
et/script.q”,
 Lists.newArrayList(“-d”,”LIB= s3://elasticmapreduce/samples/hive-
ads/lib”));

Amazon EMR Hive queries to accommodate partial
DynamoDB schemas
Amazon EMR Hive provides maximum flexibility when querying DynamoDB tables by allowing you to
specify a subset of columns on which you can filter data, rather than requiring your query to include all
columns. This partial schema query technique is effective when you have a sparse database schema
and want to filter records based on a few columns, such as filtering on time stamps.

The following example shows how to use a Hive query to:

• Create a DynamoDB table.

• Select a subset of items (rows) in DynamoDB and further narrow the data to certain columns.

• Copy the resulting data to Amazon S3.

DROP TABLE dynamodb;
DROP TABLE s3;

CREATE EXTERNAL TABLE dynamodb(hashKey STRING, recordTimeStamp BIGINT, fullColumn
 map<String, String>)
 STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
 TBLPROPERTIES (
 "dynamodb.table.name" = "myTable",
 "dynamodb.throughput.read.percent" = ".1000",
 "dynamodb.column.mapping" = "hashKey:HashKey,recordTimeStamp:RangeKey");

CREATE EXTERNAL TABLE s3(map<String, String>)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
 LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3 SELECT item fullColumn FROM dynamodb WHERE record
TimeStamp < "2012-01-01";

The following table shows the query syntax for selecting any combination of items from DynamoDB.

Result DescriptionQuery Example

Selects all items (rows) from a given table and includes
data from all columns available for those items.

SELECT * FROM table_name;

Selects some items (rows) from a given table and in-
cludes data from all columns available for those items.

SELECT * FROM table_name WHERE
field_name =value;

API Version 2009-03-31
53

Amazon Elastic MapReduce Amazon EMR Release Guide
Additional Features of Hive in Amazon EMR

Result DescriptionQuery Example

Selects all items (rows) from a given table and includes
data from some columns available for those items.

SELECT column1_name, column2_name,
column3_name FROM table_name;

Selects some items (rows) from a given table and in-
cludes data from some columns available for those
items.

SELECT column1_name, column2_name,
column3_name FROM table_nameWHERE
field_name =value;

Copy data between DynamoDB tables in different AWS
regions
Amazon EMR Hive provides a dynamodb.region property you can set per DynamoDB table. When
dynamodb.region is set differently on two tables, any data you copy between the tables automatically
occurs between the specified regions.

The following example shows you how to create a DynamoDB table with a Hive script that sets the
dynamodb.region property:

Note
Per-table region properties override the global Hive properties.

CREATE EXTERNAL TABLE dynamodb(hashKey STRING, recordTimeStamp BIGINT,
map<String, String> fullColumn)
 STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
 TBLPROPERTIES (
 "dynamodb.table.name" = "myTable",
 "dynamodb.region" = "eu-west-1",
 "dynamodb.throughput.read.percent" = ".1000",
 "dynamodb.column.mapping" = "hashKey:HashKey,recordTimeStamp:RangeKey");

Set DynamoDB throughput values per table
Amazon EMR Hive enables you to set the DynamoDB readThroughputPercent and writeThroughputPercent
settings on a per table basis in the table definition. The following Amazon EMR Hive script shows how
to set the throughput values. For more information about DynamoDB throughput values, see Specifying
Read and Write Requirements for Tables.

CREATE EXTERNAL TABLE dynamodb(hashKey STRING, recordTimeStamp BIGINT,
map<String, String> fullColumn)
 STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
 TBLPROPERTIES (
 "dynamodb.table.name" = "myTable",
 "dynamodb.throughput.read.percent" = ".4",
 "dynamodb.throughput.write.percent" = "1.0",
 "dynamodb.column.mapping" = "hashKey:HashKey,recordTimeStamp:RangeKey");

Hive Patches
The Amazon EMR team has created the following patches for Hive.

The following patches were applied to Hive 1.0 for the EMR 4.0 release:

API Version 2009-03-31
54

Amazon Elastic MapReduce Amazon EMR Release Guide
Additional Features of Hive in Amazon EMR

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithDDTables.html#ProvisionedThroughput
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithDDTables.html#ProvisionedThroughput

HIVE-10319
This patch provides a performance improvement to Hive CLI startup when the Hive metastore has
a large amount of databases.

HIVE-2777
This patch provides the ability to atomically add and drop partitions.

Use the Hive JDBC Driver
You can use popular business intelligence tools like Microsoft Excel, MicroStrategy, QlikView, and Tableau
with Amazon EMR to explore and visualize your data. Many of these tools require an ODBC (Open
Database Connectivity) or JDBC (Java Database Connectivity) driver. Amazon EMR supports both JDBC
and ODBC connectivity.

To connect to Hive via JDBC requires you to download the JDBC driver and install a SQL client. The
following example demonstrates using SQL Workbench/J to connect to Hive using JDBC.

To download JDBC drivers

Download and extract the drivers for Amazon EMR 4.x releases at the following location:

• Hive 1.0 JDBC drivers: http://amazon-odbc-jdbc-drivers.s3.amazonaws.com/public/HiveJDBC.zip

To install and configure SQL Workbench

1. Download the SQL Workbench/J client for your operating system from http://www.sql-workbench.net/
downloads.html.

2. Go to the Installing and starting SQL Workbench/J page and follow the instructions for installing SQL
Workbench/J on your system.

3. Linux, Unix, Mac OS X users: In a terminal session, create an SSH tunnel to the master node of
your cluster using the following command. Replace master-public-dns-name with the public

•

DNS name of the master node and path-to-key-file with the location and file name of your
Amazon EC2 private key (.pem) file.

CommandHive ver-
sion

ssh -o ServerAliveInterval=10 -i path-to-key-file -N -L
10000:localhost:10000 hadoop@master-public-dns-name

1.0

• Windows users: In a PuTTY session, create an SSH tunnel to the master node of your cluster
(using local port forwarding) with the following settings. Replace master-public-dns-name with
the public DNS name of the master node. For more information about creating an SSH tunnel to
the master node, see Option 1: Set Up an SSH Tunnel to the Master Node Using Local Port
Forwarding in the Amazon EMR Management Guide.

Tunnel settingsHive ver-
sion

Source port: 10000 Destination: master-public-dns-name:100001.0

4. Add the JDBC driver to SQL Workbench/J.

API Version 2009-03-31
55

Amazon Elastic MapReduce Amazon EMR Release Guide
Use the Hive JDBC Driver

https://issues.apache.org/jira/browse/HIVE-10319
https://issues.apache.org/jira/browse/HIVE-2777
http://amazon-odbc-jdbc-drivers.s3.amazonaws.com/public/HiveJDBC.zip
http://www.sql-workbench.net/downloads.html
http://www.sql-workbench.net/downloads.html
http://www.sql-workbench.net/manual/install.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-ssh-tunnel-local.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-ssh-tunnel-local.html

a. In the Select Connection Profile dialog box, click Manage Drivers.

b. Click the Create a new entry (blank page) icon.

c. In the Name field, type Hive JDBC.

d. For Library, click the Select the JAR file(s) icon.

e. Browse to the location containing the extracted drivers, select the following JAR files and click
Open.

hive_metastore.jar
hive_service.jar
libfb303-0.9.0.jar
libthrift-0.9.0.jar
log4j-1.2.14.jar
ql.jar
slf4j-api-1.5.11.jar
slf4j-log4j12-1.5.11.jar
TCLIServiceClient.jar

f. In the Please select one driver dialog box, select the following driver and click OK.

com.amazon.hive.jdbc4.HS2Driver

5. When you return to the Manage Drivers dialog box, verify that the Classname field is populated
and click OK.

6. When you return to the Select Connection Profile dialog box, verify that the Driver field is set to
Hive JDBC and provide the JDBC connection string in the URL field.

jdbc:hive2://localhost:10000/default

7. Click OK to connect. After the connection is complete, connection details appear at the top of the
SQL Workbench/J window.

For more information about using Hive and the JDBC interface, go to http://wiki.apache.org/hadoop/Hive/
HiveClient and http://wiki.apache.org/hadoop/Hive/HiveJDBCInterface.

API Version 2009-03-31
56

Amazon Elastic MapReduce Amazon EMR Release Guide
Use the Hive JDBC Driver

http://wiki.apache.org/hadoop/Hive/HiveClient
http://wiki.apache.org/hadoop/Hive/HiveClient
http://wiki.apache.org/hadoop/Hive/HiveJDBCInterface

Apache Pig

Amazon Elastic MapReduce (Amazon EMR) supports Apache Pig, a programming framework you can
use to analyze and transform large data sets. For more information about Pig, go to http://pig.apache.org/.
Amazon EMR supports several versions of Pig.

Pig is an open-source, Apache library that runs on top of Hadoop. The library takes SQL-like commands
written in a language called Pig Latin and converts those commands into MapReduce jobs.You do not
have to write complex MapReduce code using a lower level computer language, such as Java.

You can execute Pig commands interactively or in batch mode. To use Pig interactively, create an SSH
connection to the master node and submit commands using the Grunt shell. To use Pig in batch mode,
write your Pig scripts, upload them to Amazon S3, and submit them as cluster steps. For more information
on submitting work to a cluster, see Submit Work to a Cluster in the Amazon EMR Management Guide.

Release Information

Apache Pig 0.14.0

Amazon EMR Release Label: emr-4.0.0

Components Installed with Apache Pig

If you install Apache Pig as an application in Amazon EMR, the following components will be installed:

emrfs, emr-ddb, emr-goodies, emr-kinesis, emr-s3-dist-cp, hadoop-client, hadoop-mapred,
hadoop-hdfs-datanode, hadoop-hdfs-namenode, hadoop-httpfs-server, hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager, pig-client

Topics

• Submit Pig Work (p. 57)

• Call User Defined Functions from Pig (p. 59)

Submit Pig Work
This section demonstrates submitting Pig work to an Amazon EMR cluster. The examples that follow are
based on the Amazon EMR sample: Apache Log Analysis using Pig. The sample evaluates Apache log
files and then generates a report containing the total bytes transferred, a list of the top 50 IP addresses,
a list of the top 50 external referrers, and the top 50 search terms using Bing and Google. The Pig script
is located in the Amazon S3 bucket

API Version 2009-03-31
57

Amazon Elastic MapReduce Amazon EMR Release Guide
Submit Pig Work

http://pig.apache.org/
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/AddingStepstoaJobFlow.html
http://aws.amazon.com/jobflows/2728

s3://elasticmapreduce/samples/pig-apache/do-reports2.pig. Input data is located in the
Amazon S3 bucket s3://elasticmapreduce/samples/pig-apache/input. The output is saved to
an Amazon S3 bucket.

Submit Pig Work Using the Amazon EMR Console
This example describes how to use the Amazon EMR console to add a Pig step to a cluster.

To submit a Pig step

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. In the Cluster List, select the name of your cluster.

3. Scroll to the Steps section and expand it, then choose Add step.

4. In the Add Step dialog:

• For Step type, choose Pig program.

• For Name, accept the default name (Pig program) or type a new name.

• For Script S3 location, type the location of the Pig script. For example:
s3://elasticmapreduce/samples/pig-apache/do-reports2.pig.

• For Input S3 location, type the location of the input data. For example:
s3://elasticmapreduce/samples/pig-apache/input.

• For Output S3 location, type or browse to the name of your Amazon S3 output bucket.

• For Arguments, leave the field blank.

• For Action on failure, accept the default option (Continue).

5. Choose Add. The step appears in the console with a status of Pending.

6. The status of the step changes from Pending to Running to Completed as the step runs. To update
the status, choose the Refresh icon above the Actions column.

Submit Pig Work Using the AWS CLI
To submit a Pig step using the AWS CLI

When you launch a cluster using the AWS CLI, use the --applications parameter to install Pig. To
submit a Pig step, use the --steps parameter.

• To launch a cluster with Pig installed and to submit a Pig step, type the following command, replace
myKey with the name of your EC2 key pair, and replace mybucket with the name of your Amazon
S3 bucket.

•
aws emr create-cluster --name "Test cluster" --release-label emr-4.0.0 -
-applications Name=Pig --use-default-roles --ec2-attributes KeyName=myKey
 --instance-type m3.xlarge --instance-count 3 --steps Type=PIG,Name="Pig
Program",ActionOnFailure=CONTINUE,Args=[-f,s3://elasticmapre
duce/samples/pig-apache/do-reports2.pig,-p,INPUT=s3://elasticmapre
duce/samples/pig-apache/input,-p,OUTPUT=s3://mybucket/pig-apache/output]

When you specify the instance count without using the --instance-groups parameter, a single
master node is launched, and the remaining instances are launched as core nodes. All nodes use
the instance type specified in the command.

API Version 2009-03-31
58

Amazon Elastic MapReduce Amazon EMR Release Guide
Submit Pig Work Using the Amazon EMR Console

https://console.aws.amazon.com/elasticmapreduce/

Note
If you have not previously created the default EMR service role and EC2 instance profile,
type aws emr create-default-roles to create them before typing the create-cluster
subcommand.

For more information on using Amazon EMR commands in the AWS CLI, see http://
docs.aws.amazon.com/cli/latest/reference/emr.

Call User Defined Functions from Pig
Pig provides the ability to call user defined functions (UDFs) from within Pig scripts.You can do this to
implement custom processing to use in your Pig scripts. The languages currently supported are Java,
Python/Jython, and JavaScript (though JavaScript support is still experimental.)

The following sections describe how to register your functions with Pig so you can call them either from
the Pig shell or from within Pig scripts. For more information about using UDFs with Pig, go to http://
pig.apache.org/docs/r0.14.0/udf.html.

Call JAR files from Pig
You can use custom JAR files with Pig using the REGISTER command in your Pig script. The JAR file is
local or a remote file system such as Amazon S3. When the Pig script runs, Amazon EMR downloads
the JAR file automatically to the master node and then uploads the JAR file to the Hadoop distributed
cache. In this way, the JAR file is automatically used as necessary by all instances in the cluster.

To use JAR files with Pig

1. Upload your custom JAR file into Amazon S3.

2. Use the REGISTER command in your Pig script to specify the bucket on Amazon S3 of the custom
JAR file.

REGISTER s3://mybucket/path/mycustomjar.jar;

Call Python/Jython Scripts from Pig
You can register Python scripts with Pig and then call functions in those scripts from the Pig shell or in a
Pig script.You do this by specifying the location of the script with the register keyword.

Because Pig in written in Java, it uses the Jython script engine to parse Python scripts. For more information
about Jython, go to http://www.jython.org/.

To call a Python/Jython script from Pig

1. Write a Python script and upload the script to a location in Amazon S3. This should be a bucket
owned by the same account that creates the Pig cluster, or that has permissions set so the account
that created the cluster can access it. In this example, the script is uploaded to
s3://mybucket/pig/python.

2. Start a Pig cluster. If you are accessing Pig from the Grunt shell, run an interactive cluster. If you are
running Pig commands from a script, start a scripted Pig cluster. This example starts an interactive
cluster. For more information about how to create a Pig cluster, see Submit Pig Work (p. 57).

3. For an interactive cluster, use SSH to connect into the master node and run the Grunt shell. For
more information, see SSH into the Master Node.

API Version 2009-03-31
59

Amazon Elastic MapReduce Amazon EMR Release Guide
Call User Defined Functions from Pig

http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr
http://pig.apache.org/docs/r0.14.0/udf.html
http://pig.apache.org/docs/r0.14.0/udf.html
http://www.jython.org/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/EMR_SetUp_SSH.html

4. Run the Grunt shell for Pig by typing pig at the command line.

pig

5. Register the Jython library and your Python script with Pig using the register keyword at the Grunt
command prompt, as shown in the following, where you would specify the location of your script in
Amazon S3.

grunt> register 'lib/jython.jar';
grunt> register 's3://mybucket/pig/python/myscript.py' using jython as my
functions;

6. Load the input data. The following example loads input from an Amazon S3 location.

grunt> input = load 's3://mybucket/input/data.txt' using TextLoader as
(line:chararray);

7. You can now call functions in your script from within Pig by referencing them using myfunctions.

grunt> output=foreach input generate myfunctions.myfunction($1);

API Version 2009-03-31
60

Amazon Elastic MapReduce Amazon EMR Release Guide
Call Python/Jython Scripts from Pig

Apache Spark

Apache Spark is a cluster framework and programming model that helps you process data. Similar to
Apache Hadoop, Spark is an open-source, distributed processing system commonly used for big data
workloads. However, Spark has several notable differences from Hadoop MapReduce. Spark has an
optimized directed acyclic graph (DAG) execution engine and actively caches data in-memory, which can
boost performance especially for certain algorithms and interactive queries.

Spark natively supports applications written in Scala, Python, and Java and includes several tightly
integrated libraries for SQL (Spark SQL), machine learning (MLlib), stream processing (Spark Streaming),
and graph processing (GraphX). These tools make it easier to leverage the Spark framework for a wide
variety of use cases.

Spark can be installed alongside the other Hadoop applications available in Amazon EMR, and it can
also leverage the EMR file system (EMRFS) to directly access data in Amazon S3. Hive is also integrated
with Spark. So you can use a HiveContext object to run Hive scripts using Spark. A Hive context is included
in the spark-shell as sqlContext.

To view an end-to-end example using Spark on Amazon EMR, see the New — Apache Spark on Amazon
EMR post on the AWS Official Blog.

To view a machine learning example using Spark on Amazon EMR, see the Large-Scale Machine Learning
with Spark on Amazon EMR post on the AWS Big Data blog.

Release Information

Apache Spark 1.4.1

Amazon EMR Release Label: emr-4.0.0

Components Installed with Apache Spark

If you install Apache Spark as an application in Amazon EMR, the following components will be installed:

emrfs, emr-goodies, emr-s3-dist-cp, hadoop-client, hadoop-hdfs-datanode, hadoop-hdfs-namenode,
hadoop-httpfs-server, hadoop-yarn-nodemanager, hadoop-yarn-resourcemanager, spark-client,
spark-history-server, spark-on-yarn, spark-yarn-shuffle

Topics

• Create a Cluster With Spark (p. 62)

• Configure Spark (p. 63)

• Access the Spark Shell (p. 65)

API Version 2009-03-31
61

Amazon Elastic MapReduce Amazon EMR Release Guide

http://spark.apache.org/
https://spark.apache.org/sql/
https://spark.apache.org/mllib/
https://spark.apache.org/streaming/
https://spark.apache.org/graphx/
https://aws.amazon.com/blogs/aws/new-apache-spark-on-amazon-emr/
https://aws.amazon.com/blogs/aws/new-apache-spark-on-amazon-emr/
http://blogs.aws.amazon.com/bigdata/post/Tx21LOP0UQ2ZA9N/Large-Scale-Machine-Learning-with-Spark-on-Amazon-EMR
http://blogs.aws.amazon.com/bigdata/post/Tx21LOP0UQ2ZA9N/Large-Scale-Machine-Learning-with-Spark-on-Amazon-EMR

• Write a Spark Application (p. 67)

• Adding a Spark Step (p. 69)

Create a Cluster With Spark
To launch a cluster with Spark installed using the console

The following procedure creates a cluster with Spark installed. For more information about launching
clusters with the console, see Step 3: Launch an Amazon EMR Cluster in the Amazon EMR Management
Guide;

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster to use Quick Create.

3. For the Software Configuration field, choose Amazon Release Version emr-4.0.0 or later.

4. In the Select Applications field, choose either All Applications or Spark.

5. Select other options as necessary and then choose Create cluster.

Note
To configure Spark when you are creating the cluster, see Configure Spark (p. 63).

To launch a cluster with Spark installed using the AWS CLI

• Create the cluster with the following command:

aws emr create-cluster --name "Spark cluster" --release-label emr-4.0.0 --
applications Name=Spark --ec2-attributes KeyName=myKey --instance-type
m3.xlarge --instance-count 3 --use-default-roles

To launch a cluster with Spark installed using the AWS SDK for Java

Specify Spark as an application with SupportedProductConfig used in RunJobFlowRequest.

• The following Java program excerpt shows how to create a cluster with Spark:

AmazonElasticMapReduceClient emr = new AmazonElasticMapReduceClient(creden
tials);

Application sparkApp = new Application()
 .withName("Spark");
Applications myApps = new Applications();
myApps.add(sparkApp);

RunJobFlowRequest request = new RunJobFlowRequest()
 .withName("Spark Cluster")
 .withApplications(myApps)
 .withReleaseLabel("emr-4.0.0")
 .withInstances(new JobFlowInstancesConfig()
 .withEc2KeyName("myKeyName")
 .withInstanceCount(1)
 .withKeepJobFlowAliveWhenNoSteps(true)
 .withMasterInstanceType("m3.xlarge")

API Version 2009-03-31
62

Amazon Elastic MapReduce Amazon EMR Release Guide
Create a Cluster With Spark

http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/gsg-launch-cluster.html
https://console.aws.amazon.com/elasticmapreduce/

 .withSlaveInstanceType("m3.xlarge")
);
RunJobFlowResult result = emr.runJobFlow(request);

Configure Spark
You can configure any of the options listed in the Spark Configuration topic in the Apache Spark
documentation using the spark-defaults file. These settings reflect the community defaults. It is also
possible to configure Spark dynamically at the time of each application submission. Additionally, we have
introduced a new setting to automatically maximize the resource allocation for an executor, and it is
available using the spark configuration file introduced by Amazon EMR. For more information, see the
section called “Overriding Spark Default Configuration Settings” (p. 71).

Topics

• Manually adjusting executor settings (p. 63)

• Automatically configure executors with maximum resource allocation (p. 64)

• Enabling Dynamic Allocation of Executors (p. 65)

Manually adjusting executor settings
The following procedures show how to set executor settings using the CLI or console.

To create a cluster with spark.executor.memory set to 2G using the CLI

• Create a cluster with Spark installed and spark.executor.memory set to 1024m, using the following:

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge
 --instance-count 2 --applications Name=Spark --configurations ht
tps://s3.amazonaws.com/mybucket/myfolder/myConfig.json

myConfig.json:

[
 {
 "Classification": "spark-defaults",
 "Properties": {
 "spark.executor.memory": "2G"
 }
 }
]

Note
If you plan to store your configuration in Amazon S3, you must specify the URL location of
the object. For example:

aws emr create-cluster --release-label emr-4.0.0 --instance-type
m3.xlarge --instance-count 3 --applications Name=Spark --configurations
 https://s3.amazonaws.com/mybucket/myfolder/myConfig.json

API Version 2009-03-31
63

Amazon Elastic MapReduce Amazon EMR Release Guide
Configure Spark

http://spark.apache.org/docs/1.4.1/configuration.html

To create a cluster with spark.executor.memory set to 2G using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. Choose Create cluster.

3. Choose Go to advanced options

4. For the Software Configuration field, choose Release emr-4.0.0 or later.

5. Choose either Spark or All Applications from the list, then choose Configure and add.

6. Choose Edit software settings and enter the following configuration:

classification=spark-defaults,properties=[spark.executor.memory=2G]

7. Select other options as necessary and then choose Create cluster.

Automatically configure executors with maximum
resource allocation
You can configure your executors to utilize the maximum resources possible on each node in your cluster
by enabling the maximizeResourceAllocation option when creating your cluster. This option calculates
the maximum compute and memory resources available for an executor on a node in the core node group
and sets the corresponding spark-defaults settings with this information. It also sets the number of
executors—by setting a value for spark.executor.instances—to the initial core nodes specified
when creating your cluster.

To set maximizeResourceAllocation

• Create a cluster with Spark installed and maximizeResourceAllocation set to true using the
AWS CLI:

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge
 --instance-count 2 --applications Name=Spark --configurations file://./my
Config.json

Or using Amazon S3:

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge
 --instance-count 2 --applications Name=Spark --configurations ht
tps://s3.amazonaws.com/mybucket/myfolder/myConfig.json

myConfig.json:

[
 {
 "Classification": "spark",
 "Properties": {
 "maximizeResourceAllocation": "true"
 }
 }
]

API Version 2009-03-31
64

Amazon Elastic MapReduce Amazon EMR Release Guide
Automatically configure executors with maximum

resource allocation

https://console.aws.amazon.com/elasticmapreduce/

Enabling Dynamic Allocation of Executors
Spark on YARN has the ability to dynamically scale the number of executors used for a Spark application.
You still need to set the memory and cores used for an executor but YARN will automatically allocate
executors to the Spark application as needed. To enable dynamic allocation of executors, set
spark.dynamicAllocation.enabled to true in the spark-defaults configuration file.

The setting spark.shuffle.service.enabled is automatically set to true by default, which is required
by the dynamic allocation feature. If you enable dynamic allocation when you create your cluster, you
must then disable it if you also pass a value for spark.executor.instances with a spark-submit
command. Conversely, you cannot enable dynamic allocation if you set a value for
spark.executor.instances in spark-defaults when you create your cluster. To learn more about
dynamic allocation, see the Dynamically Loading Spark Properties topic in the Apache Spark
documentation.

To create a cluster with dynamic allocation of executors

• Create a cluster with Spark installed and spark.dynamicAllocation.enabled set to true,
spark.executor.memory set to 2G, and spark.executor.cores set to 2 using the following:

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge
 --instance-count 3 --applications Name=Spark --configurations file://./my
Config.json

myConfig.json:

[
 {
 "Classification": "spark-defaults",
 "Properties": {
 "spark.dynamicAllocation.enabled": "true",
 "spark.executor.memory": "2G",
 "spark.executor.cores": "2"
 }
 }
]

Note
If you plan to store your configuration in Amazon S3, you must specify the URL location of
the object. For example:

aws emr create-cluster --release-label emr-4.0.0 --instance-type
m3.xlarge --instance-count 3 --applications Name=Spark --configurations
 https://s3.amazonaws.com/mybucket/myfolder/myConfig.json

Access the Spark Shell
The Spark shell is based on the Scala REPL (Read-Eval-Print-Loop). It allows you to create Spark
programs interactively and submit work to the framework.You can access the Spark shell by connecting
to the master node with SSH and invoking spark-shell. For more information about connecting to the
master node, see Connect to the Master Node Using SSH in the Amazon EMR Management Guide .The
following examples use Apache HTTP Server access logs stored in Amazon S3.

API Version 2009-03-31
65

Amazon Elastic MapReduce Amazon EMR Release Guide
Enabling Dynamic Allocation of Executors

https://spark.apache.org/docs/1.4.1/configuration.html#dynamically-loading-spark-properties
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-connect-master-node-ssh.html

Note
The bucket used in these examples is available to clients that can access US East (N. Virginia).

By default, the Spark shell creates its own SparkContext object called sc.You can use this context if it
is required within the REPL. sqlContext is also available in the shell and it is a HiveContext.

Example Using the Spark shell to count the occurrences of a string in a file stored in
Amazon S3

This example uses sc to read a textFile in Amazon S3.

scala> sc
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@404721db

scala> val textFile = sc.textFile("s3://elasticmapreduce/samples/hive-
ads/tables/impressions/dt=2009-04-13-08-05/ec2-0-51-75-39.amazon.com-2009-04-
13-08-05.log")

Spark creates the textFile and associated data structure. Next, the example counts the number of lines
in the log file with the string "cartoonnetwork.com":

scala> val linesWithCartoonNetwork = textFile.filter(line => line.contains("car
toonnetwork.com")).count()
linesWithCartoonNetwork: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2]
 at filter at <console>:23
<snip>
<Spark program runs>
scala> linesWithCartoonNetwork
res2: Long = 9

API Version 2009-03-31
66

Amazon Elastic MapReduce Amazon EMR Release Guide
Access the Spark Shell

https://spark.apache.org/docs/1.3.1/api/scala/index.html#org.apache.spark.SparkContext
https://spark.apache.org/docs/1.4.1/api/scala/index.html#org.apache.spark.sql.hive.HiveContext
https://spark.apache.org/docs/1.4.1/programming-guide.html#resilient-distributed-datasets-rdds

Example Using the Python-based Spark shell to count the occurrences of a string in a file
stored in Amazon S3

Spark also includes a Python-based shell, pyspark, that you can use to prototype Spark programs written
in Python. Just as with spark-shell, invoke pyspark on the master node; it also has the same
SparkContext object.

>>> sc
<pyspark.context.SparkContext object at 0x7fe7e659fa50>
>>> textfile = sc.textFile("s3://elasticmapreduce/samples/hive-ads/tables/im
pressions/dt=2009-04-13-08-05/ec2-0-51-75-39.amazon.com-2009-04-13-08-05.log")

Spark creates the textFile and associated data structure. Next, the examplecounts the number of lines
in the log file with the string "cartoonnetwork.com".

>>> linesWithCartoonNetwork = textfile.filter(lambda line: "cartoonnetwork.com"
 in line).count()
15/06/04 17:12:22 INFO lzo.GPLNativeCodeLoader: Loaded native gpl library from
 the embedded binaries
15/06/04 17:12:22 INFO lzo.LzoCodec: Successfully loaded & initialized native-
lzo library [hadoop-lzo rev EXAMPLE]
15/06/04 17:12:23 INFO fs.EmrFileSystem: Consistency disabled, using
com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem as filesystem implementation
<snip>
<Spark program continues>
>>> linesWithCartoonNetwork
9

Write a Spark Application
Spark applications can be written in Scala, Java, or Python.The are several examples of Spark applications
located on Spark Examples topic in the Apache Spark documentation. The Estimating Pi example is
shown below in the three natively supported applications.You can also view complete examples in
$SPARK_HOME/examples and at GitHub. For more information about how to build JARs for Spark, see
the Quick Start topic in the Apache Spark documentation.

Scala

package org.apache.spark.examples
import scala.math.random
import org.apache.spark._

/** Computes an approximation to pi */
object SparkPi {
 def main(args: Array[String]) {
 val conf = new SparkConf().setAppName("Spark Pi")
 val spark = new SparkContext(conf)
 val slices = if (args.length > 0) args(0).toInt else 2
 val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow
 val count = spark.parallelize(1 until n, slices).map { i =>
 val x = random * 2 - 1
 val y = random * 2 - 1
 if (x*x + y*y < 1) 1 else 0

API Version 2009-03-31
67

Amazon Elastic MapReduce Amazon EMR Release Guide
Write a Spark Application

https://spark.apache.org/docs/1.4.1/api/python/pyspark.html#pyspark.SparkContext
https://spark.apache.org/docs/1.4.1/programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/examples.html
https://github.com/apache/spark/tree/master/examples/src/main
https://spark.apache.org/docs/1.4.1/quick-start.html

 }.reduce(_ + _)
 println("Pi is roughly " + 4.0 * count / n)
 spark.stop()
 }
}

Java

package org.apache.spark.examples;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;

import java.util.ArrayList;
import java.util.List;

/**
 * Computes an approximation to pi
 * Usage: JavaSparkPi [slices]
 */
public final class JavaSparkPi {

 public static void main(String[] args) throws Exception {
 SparkConf sparkConf = new SparkConf().setAppName("JavaSparkPi");
 JavaSparkContext jsc = new JavaSparkContext(sparkConf);

 int slices = (args.length == 1) ? Integer.parseInt(args[0]) : 2;
 int n = 100000 * slices;
 List<Integer> l = new ArrayList<Integer>(n);
 for (int i = 0; i < n; i++) {
 l.add(i);
 }

 JavaRDD<Integer> dataSet = jsc.parallelize(l, slices);

 int count = dataSet.map(new Function<Integer, Integer>() {
 @Override
 public Integer call(Integer integer) {
 double x = Math.random() * 2 - 1;
 double y = Math.random() * 2 - 1;
 return (x * x + y * y < 1) ? 1 : 0;
 }
 }).reduce(new Function2<Integer, Integer, Integer>() {
 @Override
 public Integer call(Integer integer, Integer integer2) {
 return integer + integer2;
 }
 });

 System.out.println("Pi is roughly " + 4.0 * count / n);

 jsc.stop();

API Version 2009-03-31
68

Amazon Elastic MapReduce Amazon EMR Release Guide
Java

 }
}

Python

import sys
from random import random
from operator import add

from pyspark import SparkContext

if __name__ == "__main__":
 """
 Usage: pi [partitions]
 """
 sc = SparkContext(appName="PythonPi")
 partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
 n = 100000 * partitions

 def f(_):
 x = random() * 2 - 1
 y = random() * 2 - 1
 return 1 if x ** 2 + y ** 2 < 1 else 0

 count = sc.parallelize(xrange(1, n + 1), partitions).map(f).reduce(add)
 print "Pi is roughly %f" % (4.0 * count / n)

 sc.stop()

Adding a Spark Step
You can use Amazon EMR Steps in the Amazon EMR Management Guide to submit work to the Spark
framework installed on an EMR cluster. In the console and CLI, you do this using a Spark application
step, which will run the spark-submit script as a step on your behalf. With the API, you use a step to
invoke spark-submit using script-runner.jar.

For more information about submitting applications to Spark, see the Submitting Applications topic in the
Apache Spark documentation.

Note
If you choose to deploy work to Spark using the client deploy mode, your application files must
be in a local path on the EMR cluster.You cannot currently use S3 URIs for this location in client
mode. However, you can use S3 URIs with cluster deploy mode.

To submit a Spark step using the console

1. Open the Amazon EMR console at https://console.aws.amazon.com/elasticmapreduce/.

2. In the Cluster List, choose the name of your cluster.

3. Scroll to the Steps section and expand it, then choose Add step.

4. In the Add Step dialog box:

• For Step type, choose Spark application.

API Version 2009-03-31
69

Amazon Elastic MapReduce Amazon EMR Release Guide
Python

http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-steps.html
https://spark.apache.org/docs/1.4.1/submitting-applications.html
https://console.aws.amazon.com/elasticmapreduce/

• For Name, accept the default name (Spark application) or type a new name.

• For Deploy mode, choose Cluster or Client mode. Cluster mode launches your driver program
on the cluster (for JVM-based programs, this is main()), while client mode launches the driver
program locally. For more information, see Cluster Mode Overview in the Apache Spark
documentation.

Note
Cluster mode allows you to submit work using S3 URIs. Client mode requires that you
put the application in the local file system on the cluster master node.

• Specify the desired Spark-submit options. For more information about spark-submit options,
see Launching Applications with spark-submit.

• For Application location, specify the local or S3 URI path of the application.

• For Arguments, leave the field blank.

• For Action on failure, accept the default option (Continue).

5. Choose Add. The step appears in the console with a status of Pending.

6. The status of the step changes from Pending to Running to Completed as the step runs.To update
the status, choose the Refresh icon above the Actions column.

To submit work to Spark using the AWS CLI

Submit a step when you create the cluster or use the aws emr add-steps subcommand in an existing
cluster.

1. Use create-cluster.

aws emr create-cluster --name "Add Spark Step Cluster" --release-label emr-
4.0.0 --applications Name=Spark --ec2-attributes KeyName=myKey --instance-
type m3.xlarge --instance-count 3 --steps Type=Spark,Name="Spark Program",Ac
tionOnFailure=CONTINUE,Args=[--class,org.apache.spark.ex
amples.SparkPi,/usr/lib/spark/lib/spark-examples-*.jar,10] --use-default-
roles

An alternative using command-runner.jar:

aws emr create-cluster --name "Add Spark Step Cluster" --release-label emr-
4.0.0 --applications Name=Spark --ec2-attributes KeyName=myKey --instance-
type m3.xlarge --instance-count 3 --steps Type=CUSTOM_JAR,Name="Spark Pro
gram",Jar="command-runner.jar",ActionOnFailure=CONTIN
UE,Args=[/usr/lib/spark/bin/run-example,SparkPi,10] --use-default-roles

2. Alternatively, add steps to a cluster already running. Use add-steps.

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF --steps Type=Spark,Name="Spark
 Program",ActionOnFailure=CONTINUE,Args=[--class,org.apache.spark.ex
amples.SparkPi,/usr/lib/spark/lib/spark-examples-*.jar,10] --use-default-
roles

An alternative using command-runner.jar:

API Version 2009-03-31
70

Amazon Elastic MapReduce Amazon EMR Release Guide
Adding a Spark Step

https://spark.apache.org/docs/1.4.1/cluster-overview.html
https://spark.apache.org/docs/1.4.1/submitting-applications.html#launching-applications-with-spark-submit

aws emr add-steps --cluster-id j-2AXXXXXXGAPLF --steps Type=CUS
TOM_JAR,Name="Spark Program",Jar="command-runner.jar",ActionOnFailure=CON
TINUE,Args=[/usr/lib/spark/bin/run-example,SparkPi,10

To submit work to Spark using the AWS SDK for Java

• To submit work to a cluster, use a step to run the spark-submit script on your EMR cluster.You
add the step using the addJobFlowSteps method in AmazonElasticMapReduceClient:

AWSCredentials credentials = new BasicAWSCredentials(accessKey, secretKey);
AmazonElasticMapReduce emr = new AmazonElasticMapReduceClient(credentials);

StepFactory stepFactory = new StepFactory();
AmazonElasticMapReduceClient emr = new AmazonElasticMapReduceClient(creden
tials);
AddJobFlowStepsRequest req = new AddJobFlowStepsRequest();
req.withJobFlowId("j-1K48XXXXXXHCB");

List<StepConfig> stepConfigs = new ArrayList<StepConfig>();

HadoopJarStepConfig sparkStepConf = new HadoopJarStepConfig()
 .withJar("command-runner.jar")
 .withArgs("spark-submit","--executor-memory","1g","--
class","org.apache.spark.examples.SparkPi","/usr/lib/spark/lib/spark-ex
amples.jar","10");

StepConfig sparkStep = new StepConfig()
 .withName("Spark Step")
 .withActionOnFailure("CONTINUE")
 .withHadoopJarStep(sparkStepConf);

stepConfigs.add(sparkStep);
req.withSteps(stepConfigs);
AddJobFlowStepsResult result = emr.addJobFlowSteps(req);

Overriding Spark Default Configuration Settings
It is probable that you will want to override Spark default configuration values on a per-application basis.
You can do this when you submit applications using a step, which is essentially passes options to
spark-submit. For example, you may wish to change the memory allocated to an executor process by
changing spark.executor.memory.You would supply the --executor-memory switch with an
argument like the following:

/home/hadoop/spark/bin/spark-submit --executor-memory 1g --class
org.apache.spark.examples.SparkPi /home/hadoop/spark/lib/spark-examples*.jar
10

Similarly, you can tune --executor-cores and --driver-memory. In a step, you would provide the
following arguments to the step:

API Version 2009-03-31
71

Amazon Elastic MapReduce Amazon EMR Release Guide
Overriding Spark Default Configuration Settings

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticmapreduce/AmazonElasticMapReduceClient.html

--executor-memory 1g --class org.apache.spark.examples.SparkPi /home/ha
doop/spark/lib/spark-examples*.jar 10

You can also tune settings that may not have a built-in switch using the --conf option. For more
information about other settings that are tunable, see the Dynamically Loading Spark Properties topic in
the Apache Spark documentation.

API Version 2009-03-31
72

Amazon Elastic MapReduce Amazon EMR Release Guide
Overriding Spark Default Configuration Settings

https://spark.apache.org/docs/1.4.1/configuration.html#dynamically-loading-spark-properties

Apache Mahout

Amazon Elastic MapReduce (Amazon EMR) supports Apache Mahout, a machine learning framework
for Hadoop. For more information about Mahout, go to http://mahout.apache.org/.

Mahout is a machine learning library with tools for clustering, classification, and several types of
recommenders, including tools to calculate most-similar items or build item recommendations for users.
Mahout employs the Hadoop framework to distribute calculations across a cluster, and now includes
additional work distribution methods, including Spark.

For an example of how to use Mahout with Amazon EMR, see the Building a Recommender with Apache
Mahout on Amazon EMR post on the AWS Big Data blog.

Release Information

Apache Mahout 0.10.0

Amazon EMR Release Label: emr-4.0.0

Components Installed with Apache Mahout

If you install Apache Mahout as an application in Amazon EMR, the following components will be installed:

emrfs, emr-ddb, emr-goodies, emr-kinesis, emr-s3-dist-cp, hadoop-client, hadoop-mapred,
hadoop-hdfs-datanode, hadoop-hdfs-namenode, hadoop-httpfs-server, hadoop-yarn-nodemanager,
hadoop-yarn-resourcemanager, mahout-client

API Version 2009-03-31
73

Amazon Elastic MapReduce Amazon EMR Release Guide

http://mahout.apache.org/
https://blogs.aws.amazon.com/bigdata/post/Tx1TDK3HHBD4EZL/Building-a-Recommender-with-Apache-Mahout-on-Amazon-Elastic-MapReduce-EMR
https://blogs.aws.amazon.com/bigdata/post/Tx1TDK3HHBD4EZL/Building-a-Recommender-with-Apache-Mahout-on-Amazon-Elastic-MapReduce-EMR

Amazon EMR Connectors and
Utilities

Amazon EMR provides several connectors and utilities to access other AWS services as data sources.
You can usually access data in these services within a program. For example, you can specify an Amazon
Kinesis stream in a Hive query, Pig script, or MapReduce application and then operate on that data.

Topics

• EMR File System (EMRFS) (Optional) (p. 74)

• Export, Import, Query, and Join Tables in DynamoDB Using Amazon EMR (p. 97)

• Amazon Kinesis (p. 111)

• Distributed Copy Using S3DistCp (p. 113)

EMR File System (EMRFS) (Optional)
The EMR File System (EMRFS) and the Hadoop Distributed File System (HDFS) are both installed as
components in the release. EMRFS is an implementation of HDFS which allows clusters to store data on
Amazon S3.You can enable Amazon S3 server-side and client-side encryption as well as consistent
view for EMRFS using the AWS Management Console, AWS CLI, or you can use a bootstrap action (with
CLI or SDK) to configure additional settings for EMRFS.

Enabling Amazon S3 server-side encryption allows you to encrypt objects written to Amazon S3 by
EMRFS. EMRFS support for Amazon S3 client-side encryption allows your cluster to work with S3 objects
that were previously encrypted using an Amazon S3 encryption client. Consistent view provides consistency
checking for list and read-after-write (for new put requests) for objects in Amazon S3. Enabling consistent
view requires you to store EMRFS metadata in Amazon DynamoDB. If the metadata is not present, it is
created for you.

Release Information

EMR File System (EMRFS) 2.0.0

Amazon EMR Release Label: emr-4.0.0

Topics

• Consistent View (p. 75)

API Version 2009-03-31
74

Amazon Elastic MapReduce Amazon EMR Release Guide
EMR File System (EMRFS) (Optional)

• Creating an AWSCredentialsProvider for EMRFS (p. 89)

• Encryption in EMRFS (p. 90)

Consistent View
EMRFS consistent view monitors Amazon S3 list consistency for objects written by or synced with EMRFS,
delete consistency for objects deleted by EMRFS, and read-after-write consistency for new objects written
by EMRFS.

Amazon S3 is designed for eventual consistency. For instance, buckets in the US East (N. Virginia)
provide eventual consistency on read-after-write and read-after-overwrite requests. Amazon S3 buckets
in the US West (Oregon), US West (N. California), EU (Ireland), EU (Frankfurt), Asia Pacific (Singapore),
Asia Pacific (Tokyo), Asia Pacific (Sydney), and South America (Sao Paulo)regions provide read-after-write
consistency for put requests of new objects and eventual consistency for overwrite put and delete requests.
Therefore, if you are listing objects in an Amazon S3 bucket quickly after putting new objects, Amazon
S3 does not provide a guarantee to return a consistent listing and it may be incomplete. This is more
common in quick sequential MapReduce jobs which use Amazon S3 as a data store.

EMRFS includes a command line utility on the master node, emrfs, which allows administrator to perform
operations on metadata such as import, delete, and sync. For more information about the EMRFS CLI,
see the section called “EMRFS CLI Reference” (p. 83).

For a given path, EMRFS returns the set of objects listed in the EMRFS metadata and those returned
directly by Amazon S3. Because Amazon S3 is still the “source of truth” for the objects in a path, EMRFS
ensures that everything in a specified Amazon S3 path is being processed regardless of whether it is
tracked in the metadata. However, EMRFS consistent view only ensures that the objects in the folders
which you are tracking are being checked for consistency. The following topics give further details about
how to enable and use consistent view.

Note
If you directly delete objects from Amazon S3 that are being tracked in the EMRFS metadata,
EMRFS sees an entry for that object in the metadata but not the object in a Amazon S3 list or
get request. Therefore, EMRFS treats the object as inconsistent and throws an exception after
it has exhausted retries.You should use EMRFS to delete objects in Amazon S3 that are being
tracked in the consistent view, purge the entries in the metadata for objects directly deleted in
Amazon S3, or sync the consistent view with Amazon S3 immediately after you delete objects
directly from Amazon S3.

To read an article about EMRFS consistency, see the Ensuring Consistency When Using Amazon S3
and Amazon Elastic MapReduce for ETL Workflows post on the AWS Big Data blog.

Topics

• How to Enable Consistent View (p. 76)

• Objects Tracked By EMRFS (p. 76)

• Retry Logic (p. 77)

• EMRFS Metadata (p. 77)

• Configuring Consistency Notifications for CloudWatch and Amazon SQS (p. 79)

• Configuring Consistent View (p. 81)

• EMRFS CLI Reference (p. 83)

API Version 2009-03-31
75

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

https://blogs.aws.amazon.com/bigdata/post/Tx1WL4KR7SE37YY/Ensuring-Consistency-When-Using-Amazon-S3-and-Amazon-Elastic-MapReduce-for-ETL-W
https://blogs.aws.amazon.com/bigdata/post/Tx1WL4KR7SE37YY/Ensuring-Consistency-When-Using-Amazon-S3-and-Amazon-Elastic-MapReduce-for-ETL-W

How to Enable Consistent View
You can enable Amazon S3 server-side encryption or consistent view for EMRFS using the AWS
Management Console, AWS CLI, or you can use a bootstrap action to configure additional settings for
EMRFS.

To configure consistent view using the console

1. Choose Create Cluster.

2. Navigate to the File System Configuration section.

3. To enable Consistent view, choose Enabled.

4. For EMRFS Metadata store, type the name of your metadata store. The default value is
EmrFSMetadata. If the EmrFSMetadata table does not exist, it is created for you in DynamoDB.

Note
Amazon EMR does not automatically remove the EMRFS metadata from DynamoDB when
the cluster is terminated.

5. For Number of retries, type an integer value. This value represents the number of times EMRFS
retries calling Amazon S3 if an inconsistency is detected. The default value is 5.

6. For Retry period (in seconds), type an integer value. This value represents the amount of time that
lapses before EMRFS retries calling Amazon S3. The default value is 10.

Note
Subsequent retries use an exponential backoff.

To launch a cluster with consistent view enabled using the AWS CLI

Note
You will need to install the current version of AWS CLI. To download the latest release, see
http://aws.amazon.com/cli/.

Type the following command to launch an Amazon EMR cluster with consistent view enabled.

aws emr create-cluster --instance-type m1.large --instance-count 3 --emrfs
Consistent=true --release-label=emr-4.0.0 --ec2-attributes KeyName=myKey

To check if consistent view is enabled using the AWS Management Console

To check whether consistent view is enabled in the console, navigate to the Cluster List and select your
cluster name to view Cluster Details. The "EMRFS consistent view" field has a value of Enabled or
Disabled.

To check if consistent view is enabled by examining the emrfs-site.xml file

You can check if consistency is enabled by inspecting the emrfs-site.xml configuration file on the
master node of the cluster. If the Boolean value for fs.s3.consistent is set to true then consistent
view is enabled for file system operations involving Amazon S3.

Objects Tracked By EMRFS
EMRFS creates a consistent view of objects in Amazon S3 by adding information about those objects to
the EMRFS metadata. EMRFS adds these listings to its metadata when:

• An object written by EMRFS during the course of an Amazon EMR job.

• An object is synced with or imported to EMRFS metadata by using the EMRFS CLI.

API Version 2009-03-31
76

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

http://aws.amazon.com/cli/

Objects read by EMRFS are not automatically added to the metadata.When a object is deleted by EMRFS,
a listing still remains in the metadata with a deleted state until that listing is purged using the EMRFS CLI.
To learn more about the CLI, see the section called “EMRFS CLI Reference” (p. 83). For more information
about purging listings in the EMRFS metadata, see the section called “EMRFS Metadata” (p. 77).

For every Amazon S3 operation, EMRFS checks the metadata for information about the set of objects in
consistent view. If EMRFS finds that Amazon S3 is inconsistent during one of these operations, it will
retry the operation according to parameters defined in emrfs-site.xml. After retries are exhausted, it
will either throw a ConsistencyException or log the exception and continue the workflow. For more
information about this retry logic, see the section called “Retry Logic” (p. ?).You can find
ConsistencyExceptions in your logs, for example:

• listStatus: No s3 object for metadata item /S3_bucket/dir/object

• getFileStatus: Key dir/file is present in metadata but not s3

If you delete an object that is being tracked in the EMRFS consistent view directly from Amazon S3,
EMRFS will treat that object as inconsistent because it will still be listed in the metadata as present in
Amazon S3. If your metadata becomes out of sync with the objects it is tracking in Amazon S3, you can
use the sync subcommand on the EMRFS CLI to reset the listings in the metadata to reflect what is
currently in Amazon S3. To find if there is a discrepancy between the metadata and Amazon S3, you can
use the diff subcommand on the EMRFS CLI to compare them. Finally, EMRFS only has a consistent
view of the objects referenced in the metadata; there can be other objects in the same Amazon S3 path
that are not being tracked.When EMRFS lists the objects in an Amazon S3 path, it will return the superset
of the objects being tracked in the metadata and those in that Amazon S3 path.

Retry Logic
EMRFS will try to verify list consistency for objects tracked in its metadata for a specific number of retries.
The default is 5. In the case where the number of retries is exceeded the originating job returns a failure
unless fs.s3.consistent.throwExceptionOnInconsistency is set to false, where it will only
log the objects tracked as inconsistent. EMRFS uses an exponential backoff retry policy by default but
you can also set it to a fixed policy. Users may also want to retry for a certain period of time before
proceeding with the rest of their job without throwing an exception. They can achieve this by setting
fs.s3.consistent.throwExceptionOnInconsistency to false,
fs.s3.consistent.retryPolicyType to fixed, and fs.s3.consistent.retryPeriodSeconds
for the desired value. The following example will create a cluster with consistency enabled, which will log
inconsistencies and set a fixed retry interval of 10 seconds:

Setting retry period to a fixed amount

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge -
-instance-count 1 --emrfs Consistent=true,Args=[fs.s3.consistent.throwExcep
tionOnInconsistency=false, fs.s3.consistent.retryPolicyType=fixed,fs.s3.consist
ent.retryPeriodSeconds=10] --ec2-attributes KeyName=myKey

For more information, see the section called “Configuring Consistent View” (p. ?).

EMRFS Metadata
Note
In order to use consistent view, your data is tracked in a DynamoDB database. Therefore, you
will incur the cost of using that database while it exists.

Amazon EMR tracks consistency using a DynamoDB table to store object state. EMRFS consistent view
creates and uses EMRFS metadata stored in a DynamoDB table to maintain a consistent view of Amazon
S3 and this consistent view can be shared by multiple clusters. EMRFS creates and uses this metadata

API Version 2009-03-31
77

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

to track objects in Amazon S3 folders which have been synced with or created by EMRFS. The metadata
is used to track all operations (read, write, update, and copy), and no actual content is stored in it. This
metadata is used to validate whether the objects or metadata received from Amazon S3 matches what
is expected. This confirmation gives EMRFS the ability to check list consistency and read-after-write
consistency for new objects EMRFS writes to Amazon S3 or objects synced with EMRFS.

How to add entries to metadata

You can use the sync or import subcommands to add entries to metadata. sync will simply reflect the
state of the Amazon S3 objects in a path while import is used strictly to add new entries to the metadata.
For more information, see the section called “EMRFS CLI Reference” (p. 83).

How to check differences between metadata and objects in Amazon S3

To check for differences between the metadata and Amazon S3, use the diff subcommand of the
EMRFS CLI. For more information, see the section called “EMRFS CLI Reference” (p. 83).

How to know if metadata operations are being throttled

EMRFS sets default throughput capacity limits on the metadata for its read and write operations at 500
and 100 units, respectively. Large numbers of objects or buckets may cause operations to exceed this
capacity, at which point they will be throttled by DynamoDB. For example, an application may cause
EMRFS to throw a ProvisionedThroughputExceededException if you are performing an operation
that exceeds these capacity limits. Upon throttling the EMRFS CLI tool will attempt to retry writing to the
DynamoDB table using exponential backoff until the operation finishes or when it reaches the maximum
retry value for writing objects from EMR to Amazon S3.

You can also view Amazon CloudWatch metrics for your EMRFS metadata in the DynamoDB console
where you can see the number of throttled read and/or write requests. If you do have a non-zero value
for throttled requests, your application may potentially benefit from increasing allocated throughput capacity
for read or write operations.You may also realize a performance benefit if you see that your operations
are approaching the maximum allocated throughput capacity in reads or writes for an extended period
of time.

Throughput characteristics for notable EMRFS operations

The default for read and write operations is 500 and 100 throughput capacity units, respectively. The
following performance characteristics will give you an idea of what throughput is required for certain
operations.These tests were performed using a single-node m3.large cluster. All operations were single
threaded. Performance will differ greatly based on particular application characteristics and it may take
experimentation to optimize file system operations.

Average write-per-secondAverage read-per-
second

Operation

6.7026.79create (object)

10.7910.79delete (object)

338.4021.79delete (directory containing 1000
objects)

034.70getFileStatus (object)

019.96getFileStatus (directory)

043.31listStatus (directory containing 1
object)

API Version 2009-03-31
78

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

http://docs.aws.amazon.com/general/latest/gr/api-retries.html

Average write-per-secondAverage read-per-
second

Operation

044.34listStatus (directory containing 10
objects)

084.44listStatus (directory containing 100
objects)

0308.81listStatus (directory containing
1,000 objects)

0416.05listStatus (directory containing
10,000 objects)

0823.56listStatus (directory containing
100,000 objects)

0882.36listStatus (directory containing 1M
objects)

4.0324.18mkdir (continuous for 120 seconds)

012.59mkdir

4.8819.53rename (object)

339.3423.22rename (directory containing 1000
objects)

To submit a step that purges old data from your metadata store

Users may wish to remove particular entries in the DynamoDB-based metadata. This can help reduce
storage costs associated with the table. Users have the ability to manually or programmatically purge
particular entries by using the EMRFS CLI delete subcommand. However, if you delete entries from
the metadata, EMRFS no longer makes any checks for consistency.

Programmatically purging after the completion of a job can be done by submitting a final step to your
cluster which executes a command on the EMRFS CLI. For instance, type the following command to
submit a step to your cluster to delete all entries older than two days.

aws emr add-steps --cluster-id j-2AL4XXXXXX5T9 --steps Name="emrfsCLI",Jar="com
mand-runner.jar",Args=["emrfs","delete","--time","2","time-unit","days"]
{
 "StepIds": [
 "s-B12345678902"
]
}

Use the StepId value returned to check the logs for the result of the operation.

Configuring Consistency Notifications for CloudWatch and
Amazon SQS
You can enable CloudWatch metrics and Amazon SQS messages in EMRFS for Amazon S3 eventual
consistency issues.

CloudWatch

API Version 2009-03-31
79

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

When CloudWatch metrics are enabled, a metric named Inconsistency is pushed each time a
FileSystem API call fails due to Amazon S3 eventual consistency.

To view CloudWatch metrics for Amazon S3 eventual consistency issues

To view the Inconsistency metric in the CloudWatch console, select the EMRFS metrics and then select
a JobFlowId/Metric Name pair. For example: j-162XXXXXXM2CU ListStatus, j-162XXXXXXM2CU
GetFileStatus, and so on.

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the Dashboard, in the Metrics section, choose EMRFS.

3. In the Job Flow Metrics pane, select one or more JobFlowId/Metric Name pairs. A graphical
representation of the metrics appears in the window below.

Amazon SQS

When Amazon SQS notifications are enabled, an Amazon SQS queue with the name
EMRFS-Inconsistency-<jobFlowId> is created when EMRFS is initialized. Amazon SQS messages
are pushed into the queue when a FileSystem API call fails due to Amazon S3 eventual consistency.
The message contains information such as JobFlowId, API, a list of inconsistent paths, a stack trace, and
so on. Messages can be read using the Amazon SQS console or using the EMRFS read-sqs command.

To manage Amazon SQS messages for Amazon S3 eventual consistency issues

Amazon SQS messages for Amazon S3 eventual consistency issues can be read using the EMRFS CLI.
To read messages from an EMRFS Amazon SQS queue, type the read-sqs command and specify an
output location on the master node's local file system for the resulting output file.

You can also delete an EMRFS Amazon SQS queue using the delete-sqs command.

1. To read messages from an Amazon SQS queue, type the following command. Replace queuename
with the name of the Amazon SQS queue that you configured and replace /path/filename with
the path to the output file:

emrfs read-sqs -queue-name queuename -output-file /path/filename

For example, to read and output Amazon SQS messages from the default queue, type:

emrfs read-sqs -queue-name EMRFS-Inconsistency-j-162XXXXXXM2CU -output-file
/path/filename

Note
You can also use the -q and -o shortcuts instead of -queue-name and -output-file
respectively.

2. To delete an Amazon SQS queue, type the following command:

emrfs delete-sqs -queue-name queuename

For example, to delete the default queue, type:

emrfs delete-sqs -queue-name EMRFS-Inconsistency-j-162XXXXXXM2CU

API Version 2009-03-31
80

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

https://console.aws.amazon.com/cloudwatch/

Note
You can also use the -q shortcut instead of -queue-name.

Configuring Consistent View
You can configure additional settings for consistent view by providing them for the
/home/hadoop/conf/emrfs-site.xml file by either using AWS CLI or a bootstrap action. For example,
you can choose a different default DynamoDB throughput by supplying the following arguments to the
CLI --emrfs option or bootstrap action:

Changing default metadata read and write values at cluster launch

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge \
--emrfs Consistent=true,Args=[fs.s3.consistent.metadata.read.capacity=600,\
fs.s3.consistent.metadata.write.capacity=300] --ec2-attributes KeyName=myKey

Alternatively, use the following configuration file and save it locally or in Amazon S3:

[
 {
 "Classification": "emrfs-site",
 "Properties": {
 "fs.s3.consistent.metadata.read.capacity": "600",
 "fs.s3.consistent.metadata.write.capacity": "300"
 }
 }
]

Use the configuration you created with the following syntax:

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge --
instance-count 2 --applications Name=Hive --configurations file://./myConfig.json

The following options can be set using configurations or AWS CLI --emrfs arguments. For information
about those arguments, see the AWS Command Line Interface Reference.

emrfs-site.xml properties for consistent view

DescriptionDefault valueProperty

When set to true, this property
configures EMRFS to use Dy-
namoDB to provide consistency.

falsefs.s3.consistent

This property identifies the policy to
use when retrying for consistency
issues. Options include: exponential,
fixed, or none.

exponentialfs.s3.consistent.retryPolicyType

This property sets the length of time
to wait between consistency retry
attempts.

10fs.s3.consistent.retryPeriodSeconds

API Version 2009-03-31
81

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

http://docs.aws.amazon.com/cli/latest/reference/

DescriptionDefault valueProperty

This property sets the maximum
number of retries when inconsist-
ency is detected.

5fs.s3.consistent.retryCount

This property determines whether
to throw or log a consistency excep-
tion.When set to true, a Consist-
encyException is thrown.

truefs.s3.consistent.throwExceptionOnIn-
consistency

When set to true, this property en-
ables automatic creation of
metadata tables.

truefs.s3.consistent.metadata.autoCreate

This property specifies the name of
the metadata table in DynamoDB.

EmrFS-
Metadata

fs.s3.consistent.metadata.tableName

This property specifies the Dy-
namoDB read capacity to provision
when the metadata table is created.

500fs.s3.consistent.metadata.read.capa-
city

This property specifies the Dy-
namoDB write capacity to provision
when the metadata table is created.

250fs.s3.consistent.metadata.write.capa-
city

When set to true, this property
uses multiple threads to list a direct-
ory (when necessary). Consistency
must be enabled in order to use this
property.

truefs.s3.consistent.fastList

When set to true, this property en-
ables metadata prefetching for direct-
ories containing more than 20,000
items.

falsefs.s3.consistent.fastList.prefetch-
Metadata

When set to true, CloudWatch
metrics are enabled for FileSystem
API calls that fail due to Amazon S3
eventual consistency issues.

falsefs.s3.consistent.notification.Cloud-
Watch

When set to true, eventual consist-
ency notifications are pushed to an
Amazon SQS queue.

falsefs.s3.consistent.notification.SQS

Changing this property allows you
to specify your own SQS queue
name for messages regarding
Amazon S3 eventual consistency
issues.

EMRFS-Incon-
sistency-
<jobFlowId>

fs.s3.consistent.notifica-
tion.SQS.queueName

This property allows you to specify
custom information included in SQS
messages regarding Amazon S3
eventual consistency issues. If a
value is not specified for this prop-
erty, the corresponding field in the
message is empty.

nonefs.s3.consistent.notification.SQS.cus-
tomMsg

API Version 2009-03-31
82

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

EMRFS CLI Reference
The EMRFS CLI is installed by default on all cluster master nodes created using AMI 3.2.1 or greater.
You use the EMRFS CLI to manage the metadata, which tracks when objects have a consistent view.

Note
The emrfs command is only supported with VT100 terminal emulation. However, it may work
with other terminal emulator modes.

The emrfs top-level command supports the following structure.

emrfs [[describe-metadata | set-metadata-capacity | delete-metadata | create-
metadata | \
list-metadata-stores | diff | delete | sync | import]] [[options]] [[arguments]]

emrfs command

The emrfs command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

NoThe AWS access key you use to write objects to
Amazon S3 and to create or access a metadata store
in DynamoDB. By default, AWS_ACCESS_KEY_ID is set
to the access key used to create the cluster.

-a AWS_ACCESS_KEY_ID | -
-access-key AWS_AC-
CESS_KEY_ID

NoThe AWS secret key associated with the access key
you use to write objects to Amazon S3 and to create
or access a metadata store in DynamoDB. By default,
AWS_SECRET_ACCESS_KEY is set to the secret key
associated with the access key used to create the
cluster.

-s AWS_SECRET_ACCESS_KEY |
--secret-key AWS_SECRET_AC-
CESS_KEY

NoMakes output verbose.-v | --verbose

NoDisplays the help message for the emrfs command
with a usage statement.

-h | --help

describe-metadata sub-command

The describe-metadata sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

NoMETADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

-m METADATA_NAME | -
-metadata-name
METADATA_NAME

describe-metadata example

The following example describes the default metadata table.

API Version 2009-03-31
83

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

$ emrfs describe-metadata
EmrFSMetadata
 read-capacity: 500
 write-capacity: 100
 status: ACTIVE
 approximate-item-count (6 hour delay): 12

set-metadata-capacity sub-command

The set-metadata-capacity sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

NoMETADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

-m METADATA_NAME | -
-metadata-name
METADATA_NAME

NoThe requested read throughput capacity for the
metadata table. If the READ_CAPACITY argument is
not supplied, the default value is 500.

-r READ_CAPACITY | --read-
capacity READ_CAPACITY

NoThe requested write throughput capacity for the
metadata table. If the WRITE_CAPACITY argument is
not supplied, the default value is 100.

-w WRITE_CAPACITY | -
-write-capacity WRITE_CAPA-
CITY

set-metadata-capacity example

The following example sets the read throughput capacity to 600 and the write capacity to 150 for a
metadata table named EmrMetadataAlt.

$ emrfs set-metadata-capacity --metadata-name EmrMetadataAlt --read-capacity
600 --write-capacity 150
 read-capacity: 500
 write-capacity: 100
 status: UPDATING
 approximate-item-count (6 hour delay): 0

delete-metadata sub-command

The delete-metadata sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

NoMETADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

-m METADATA_NAME | -
-metadata-name
METADATA_NAME

delete-metadata example

The following example deletes the default metadata table.

API Version 2009-03-31
84

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

$ emrfs delete-metadata
 [no output]

create-metadata sub-command

The create-metadata sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

NoMETADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

-m METADATA_NAME | -
-metadata-name
METADATA_NAME

NoThe requested read throughput capacity for the
metadata table. If the READ_CAPACITY argument is
not supplied, the default value is 500.

-r READ_CAPACITY | --read-
capacity READ_CAPACITY

NoThe requested write throughput capacity for the
metadata table. If the WRITE_CAPACITY argument is
not supplied, the default value is 100.

-w WRITE_CAPACITY | -
-write-capacity WRITE_CAPA-
CITY

create-metadata example

The following example creates a metadata table named EmrFSMetadataAlt.

$ emrfs create-metadata -m EmrFSMetadataAlt
Creating metadata: EmrFSMetadataAlt
EmrFSMetadataAlt
 read-capacity: 500
 write-capacity: 100
 status: ACTIVE
 approximate-item-count (6 hour delay): 0

list-metadata-stores sub-command

The list-metadata-stores sub-command has no [[options]].

list-metadata-stores example

The following example lists your metadata tables.

$ emrfs list--metadata-stores
 EmrFSMetadata

diff sub-command

The diff sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

NoMETADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

-m METADATA_NAME | -
-metadata-name
METADATA_NAME

API Version 2009-03-31
85

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

Re-
quired

DescriptionOption

YesThe path to the Amazon S3 bucket you are tracking for
consistent view that you wish to compare to the
metadata table. Buckets sync recursively.

[s3://s3Path]

diff example

The following example compares the default metadata table to an Amazon S3 bucket.

$ emrfs diff s3://elasticmapreduce/samples/cloudfront
BOTH | MANIFEST ONLY | S3 ONLY
DIR elasticmapreduce/samples/cloudfront
DIR elasticmapreduce/samples/cloudfront/code/
DIR elasticmapreduce/samples/cloudfront/input/
DIR elasticmapreduce/samples/cloudfront/logprocessor.jar
DIR elasticmapreduce/samples/cloudfront/input/XABCD12345678.2009-05-05-
14.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/XABCD12345678.2009-05-05-
15.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/XABCD12345678.2009-05-05-
16.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/XABCD12345678.2009-05-05-
17.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/XABCD12345678.2009-05-05-
18.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/XABCD12345678.2009-05-05-
19.WxYz1234
DIR elasticmapreduce/samples/cloudfront/input/XABCD12345678.2009-05-05-
20.WxYz1234
DIR elasticmapreduce/samples/cloudfront/code/cloudfront-loganalyzer.tgz

delete sub-command

The delete sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

NoMETADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

-m METADATA_NAME | -
-metadata-name
METADATA_NAME

YesThe path to the Amazon S3 bucket you are tracking for
consistent view. Buckets sync recursively.

[s3://s3Path]

The expiration time (interpreted using the time unit ar-
gument). All metadata entries older than the TIME ar-
gument are deleted for the specified bucket.

-t TIME | --time TIME

The measure used to interpret the time argument
(nanoseconds, microseconds, milliseconds, seconds,
minutes, hours, or days). If no argument is specified,
the default value is days.

-u UNIT | --time-unit UNIT

API Version 2009-03-31
86

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

Re-
quired

DescriptionOption

NoThe requested amount of available read throughput
used for the delete operation. If the READ_CONSUMP-
TION argument is not specified, the default value is
500.

--read-consumption
READ_CONSUMPTION

NoThe requested amount of available write throughput
used for the delete operation. If the WRITE_CONSUMP-
TION argument is not specified, the default value is
100.

--write-consumption
WRITE_CONSUMPTION

delete example

The following example removes all objects in an Amazon S3 bucket from the tracking metadata for
consistent view.

$ emrfs delete s3://elasticmapreduce/samples/cloudfront
entries deleted: 11

import sub-command

The import sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

NoMETADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

-m METADATA_NAME | -
-metadata-name
METADATA_NAME

YesThe path to the Amazon S3 bucket you are tracking for
consistent view. Buckets sync recursively.

[s3://s3Path]

NoThe requested amount of available read throughput
used for the delete operation. If the READ_CONSUMP-
TION argument is not specified, the default value is
500.

--read-consumption
READ_CONSUMPTION

NoThe requested amount of available write throughput
used for the delete operation. If the WRITE_CONSUMP-
TION argument is not specified, the default value is
100.

--write-consumption
WRITE_CONSUMPTION

import example

The following example imports all objects in an Amazon S3 bucket with the tracking metadata for consistent
view. All unknown keys are ignored.

$ emrfs import s3://elasticmapreduce/samples/cloudfront

sync sub-command

API Version 2009-03-31
87

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

The sync sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

NoMETADATA_NAME is the name of the DynamoDB
metadata table. If the METADATA_NAME argument is
not supplied, the default value is EmrFSMetadata.

-m METADATA_NAME | -
-metadata-name
METADATA_NAME

YesThe path to the Amazon S3 bucket you are tracking for
consistent view. Buckets sync recursively.

[s3://s3Path]

NoThe requested amount of available read throughput
used for the delete operation. If the READ_CONSUMP-
TION argument is not specified, the default value is
500.

--read-consumption
READ_CONSUMPTION

NoThe requested amount of available write throughput
used for the delete operation. If the WRITE_CONSUMP-
TION argument is not specified, the default value is
100.

--write-consumption
WRITE_CONSUMPTION

sync example

The following example imports all objects in an Amazon S3 bucket with the tracking metadata for consistent
view. All unknown keys are deleted.

$ emrfs sync s3://elasticmapreduce/samples/cloudfront
Synching samples/cloudfront 0 added | 0
updated | 0 removed | 0 unchanged
Synching samples/cloudfront/code/ 1 added | 0
updated | 0 removed | 0 unchanged
Synching samples/cloudfront/ 2 added | 0
updated | 0 removed | 0 unchanged
Synching samples/cloudfront/input/ 9 added | 0
updated | 0 removed | 0 unchanged
Done synching s3://elasticmapreduce/samples/cloudfront 9 added | 0
updated | 1 removed | 0 unchanged
creating 3 folder key(s)
folders written: 3

read-sqs sub-command

The read-sqs sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

YesQUEUE_NAME is the name of the Amazon SQS queue
configured in emrfs-site.xml. The default value is
EMRFS-Inconsistency-<jobFlowId>.

-q QUEUE_NAME | --queue-
name QUEUE_NAME

YesOUTPUT_FILE is the path to the output file on the
master node's local file system. Messages read from
the queue are written to this file.

-o OUTPUT_FILE | --output-
file OUTPUT_FILE

API Version 2009-03-31
88

Amazon Elastic MapReduce Amazon EMR Release Guide
Consistent View

delete-sqs sub-command

The delete-sqs sub-command accepts the following [[options]] (with or without arguments).

Re-
quired

DescriptionOption

YesQUEUE_NAME is the name of the Amazon SQS queue
configured in emrfs-site.xml. The default value is
EMRFS-Inconsistency-<jobFlowId>.

-q QUEUE_NAME | --queue-
name QUEUE_NAME

Submitting EMRFS CLI Commands as Steps

To add an Amazon S3 bucket to the tracking metadata for consistent view (AWS SDK for Python)

The following example shows how to use the emrfs utility on the master node by leveraging the AWS
CLI or API and the script-runner.jar to run the emrfs command as a step. The example uses the
AWS SDK for Python (Boto) to add a step to a cluster which adds objects in an Amazon S3 bucket to the
default EMRFS metadata table.

from boto.emr import EmrConnection,connect_to_region,JarStep

emr=EmrConnection()
connect_to_region("us-east-1")

myStep = JarStep(name='Boto EMRFS Sync',
 jar='s3://elasticmapreduce/libs/script-runner/script-runner.jar',

 action_on_failure="CONTINUE",
 step_args=['/home/hadoop/bin/emrfs',
 'sync',
 's3://elasticmapreduce/samples/cloudfront'])

stepId = emr.add_jobflow_steps("j-2AL4XXXXXX5T9",
 steps=[myStep]).stepids[0].value

You can use the stepId value returned to check the logs for the result of the operation.

Creating an AWSCredentialsProvider for EMRFS
You can create a custom credentials provider which implements both the AWSCredentialsProvider and
the Hadoop Configurable classes for use with EMRFS when it makes calls to Amazon S3.You must
specify the full class name of the provider by setting fs.s3.customAWSCredentialsProvider in
/home/hadoop/conf/emrfs-site.xml.You set this property at cluster creation time using the AWS
CLI. For example, the following code sets fs.s3.customAWSCredentialsProvider to
MyAWSCredentialsProvider.

Use the following configuration file and save it locally or in Amazon S3:

[
 {
 "Classification": "emrfs-site",
 "Properties": {

API Version 2009-03-31
89

Amazon Elastic MapReduce Amazon EMR Release Guide
Creating an AWSCredentialsProvider for EMRFS

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/conf/Configurable.html

 "fs.s3.customAWSCredentialsProvider":"MyAWSCredentialsProvider"
 }
 }
]

Use the configuration you created with the following syntax:

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge --
instance-count 2 --applications Name=Hive --configurations file://./myConfig.json

Additionally, you will need to place the JAR file of the AWSCredentialsProvider class in
/usr/share/aws/emr/auxlib. An example implementation follows:

public class MyAWSCredentialsProvider implements AWSCredentialsProvider, Config
urable {
 private Configuration conf;
 private String accessKey;
 private String secretKey;

 private void init() {
 accessKey = conf.get("my.accessKey");
 secretKey = conf.get("my.secretKey");
 }

 @Override
 public AWSCredentials getCredentials() {
 return new BasicAWSCredentials(accessKey, secretKey);
 }

 @Override
 public void refresh() {

 }

 @Override
 public void setConf(Configuration configuration) {
 this.conf = configuration;
 init();
 }

 @Override
 public Configuration getConf() {
 return this.conf;
 }
 }

Encryption in EMRFS
You can use either server-side or client-side encryption to protect the data you store in Amazon S3. With
server-side encryption, Amazon S3 encrypts your data after you upload it. With client-side encryption,
you manage the encryption and keys.You can use AWS Key Management Service (AWS KMS) to manage
your keys used for encryption.You enable both of these options at cluster creation time.

API Version 2009-03-31
90

Amazon Elastic MapReduce Amazon EMR Release Guide
Encryption in EMRFS

Note
Client-side encryption and server-side encryption are mutually exclusive global settings. When
either option is enabled, all Amazon S3 write actions that happen through EMRFS use the form
of encryption chosen.
EMRFS implements Amazon S3 encryption. If you write files locally on your cluster (in HDFS or
local file systems volumes), those files are not encrypted.

Create a Cluster With Amazon S3 Server-Side Encryption
Enabled
Amazon S3 server-side encryption (SSE) is supported with Amazon EMR on AMIs 3.2.1 or later. To
launch a cluster with server-side encryption, you can use the AWS Management Console, AWS CLI, or
the configure-hadoop bootstrap action to set fs.s3.enableServerSideEncryption to "true".You
can specify the encryption key and/or algorithm used. However, if you provide your own key, you must
have access to that same key to later access objects stored and encrypted.

To configure server-side encryption using the console

1. Choose Create Cluster.

2. Navigate to the File System Configuration section.

3. To use Server-side encryption, choose Enabled.

4. Choose Create cluster.

To launch a cluster with Amazon S3 server-side encryption enabled

Type the following command to launch an Amazon EMR cluster with Amazon S3 server-side encryption
enabled.

aws emr create-cluster --release-label emr-4.0.0 --instance-count 3 --instance-
type m1.large --emrfs Encryption=ServerSide

To launch a cluster with Amazon S3 server side encryption enabled that specifies an encryption
algorithm

Type the following command to launch an Amazon EMR cluster with Amazon S3 server-side encryption
enabled that specifies AES256 as the encryption algorithm.

aws emr create-cluster --instance-type m3.xlarge --release-label emr-4.0.0 --
emrfs Encryption=ServerSide,Args=[fs.s3.serverSideEncryptionAlgorithm=AES256]

emrfs-site.xml properties for server-side encryption

DescriptionDefault valueProperty

When set to true, objects stored in
Amazon S3 are encrypted using
server-side encryption.

falsefs.s3.enableServerSideEncryption

When using server-side encryption,
this property determines the al-
gorithm used to encrypt data.

AES256fs.s3.serverSideEncryptionAlgorithm

API Version 2009-03-31
91

Amazon Elastic MapReduce Amazon EMR Release Guide
Encryption in EMRFS

Using Amazon S3 Client-Side Encryption in EMRFS
EMRFS support for Amazon S3 client-side encryption enables your EMR cluster to work with S3 objects
that were previously encrypted using an Amazon S3 encryption client. When Amazon S3 client-side
encryption is enabled, EMRFS supports the decryption of objects encrypted using keys in AWS KMS or
from your own key management system. Amazon S3 client-side encryption in EMRFS also supports
re-encrypting the output from your EMR cluster using keys from either AWS KMS or your own key
management system.

Note
EMRFS client-side encryption only ensures that output written from an enabled cluster to Amazon
S3 will be encrypted. Data written to the local file systems and HDFS on the cluster are not
encrypted. Furthermore, because Hue does not use EMRFS, objects written to Amazon S3 using
the Hue S3 File Browser are not encrypted. For more information about security controls available
for applications running on EC2 instances, see the “Overview of Security Processes” whitepaper.

EMRFS support for Amazon S3 client-side encryption uses a process called envelope encryption, with
keys stored in a location of your choosing, to encrypt and decrypt data stored in Amazon S3. In contrast
to Amazon S3 server-side encryption, the decryption and encryption actions in Amazon S3 client-side
encryption take place in the EMRFS client on your EMR cluster; the encrypted object streams from
Amazon S3 to your EMR cluster in an encrypted form to be decrypted by the client on the cluster. Output
from the cluster is then encrypted by the client before being written to Amazon S3.

The envelope encryption process uses a one-time symmetric data key generated by the encryption client,
unique to each object, to encrypt data.The data key is then encrypted by your master key (stored in AWS
KMS or your custom provider) and stored with the associated object in Amazon S3. When decrypting
data on the client (e.g., an EMRFS client or your own Amazon S3 encryption client retrieving data for
post-processing), the reverse process occurs: the encrypted data key is retrieved from the metadata of
the object in Amazon S3. It is decrypted using the master key and then the client uses the data key to
decrypt the object data. When Amazon S3 client-side encryption is enabled, the EMRFS client on the
cluster can read either encrypted or unencrypted objects in Amazon S3.

When Amazon S3 client-side encryption in EMRFS is enabled, the behavior of the encryption client
depends on the provider specified and the metadata of the object being decrypted or encrypted. When
EMRFS encrypts an object before writing it to Amazon S3, the provider (e.g., AWS KMS or your custom
provider) that you specified at cluster creation time is always used to supply the encryption key. When
EMRFS reads an object from Amazon S3, it checks the object metadata for information about the master
key used to encrypt the data key. If there is an AWS KMS key ID, EMRFS attempts to decrypt the object
using AWS KMS. If there is metadata containing an EncryptionMaterialsDescription instance, EMRFS
tries to fetch the key using the EncryptionMaterialsProvider instance. The provider uses this description
to determine which key should be used and to retrieve it. If you do not have access to the required key,
this raises an exception and causes an error. If there is no EncryptionMaterialsDescription instance in
the Amazon S3 object metadata, EMRFS assumes that the object is unencrypted.

Amazon S3 client-side encryption in EMRFS provides two methods to supply the master keys for decryption
when reading from Amazon S3 and encryption when writing to Amazon S3:

1. With a built-in AWS KMS provider, which can use a master key stored in AWS KMS.You specify the
key to use for encryption, but EMRFS can use any AWS KMS key for decryption, assuming your cluster
has permission to access it. AWS KMS charges apply for the storage and use of encryption keys.

2. With a custom Java class implementing both the Amazon S3 EncryptionMaterialsProvider and Hadoop
Configurable classes.The EncryptionMaterialsProvider class is used to provide the materials description,
detailing how and where to get the master keys.

For more information about Amazon S3 client-side encryption see, Protecting Data Using Client-Side
Encryption. For more information about how to use the AWS SDK for Java with Amazon S3 client-side
encryption, see the article Client-Side Data Encryption with the AWS SDK for Java and Amazon S3.

API Version 2009-03-31
92

Amazon Elastic MapReduce Amazon EMR Release Guide
Encryption in EMRFS

http://d0.awsstatic.com/whitepapers/Security/AWS%20Security%20Whitepaper.pdf
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/model/EncryptionMaterialsProvider.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/conf/Configurable.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://aws.amazon.com/articles/2850096021478074

For information about how to create and manage keys in AWS KMS and associated pricing, see AWS
KMS Frequently Asked Questions and the AWS Key Management Service Developer Guide.

Topics

• Enabling Amazon S3 Client-Side Encryption in the Console (p. 93)

• Selecting a Master Key Stored in AWS KMS using an SDK or CLI (p. 93)

• Configuring Amazon S3 Client-side Encryption Using a Custom Provider (p. 94)

• emrfs-site.xml Properties for Amazon S3 Client-side Encryption (p. 96)

Enabling Amazon S3 Client-Side Encryption in the Console

To configure client-side encryption using the console

1. Choose Create Cluster.

2. Fill in the fields as appropriate for Cluster Configuration and Tags.

3. For the Software Configuration field, choose AMI 3.6.0 or later.

4. In the File System Configuration section, select a one of the following client-side encryption types
for the Encryption field: S3 client-side encryption with AWS Key Management Service (KMS)
or S3 client-side encryption with custom encryption materials provider.

a. If you chose S3 client-side encryption with AWS Key Management Service (KMS), select
the master key alias from the list of master keys that you have previously configured. Alternately,
you can choose Enter a Key ARN and enter the ARN of a AWS KMS master key that belongs
to a different account, provided that you have permissions to use that key. If you have assigned
an instance profile to your EMR cluster, make sure that the role in that profile has permissions
to use the key.

b. If you chose S3 client-side encryption with custom encryption materials provider, provide
the full class name and Amazon S3 location of your EncryptionMaterialsProvider class. Amazon
EMR automatically downloads your provider to each node in your cluster when it is created.

5. Fill in the fields as appropriate for Hardware Configuration, Security and Access, Bootstrap
Actions, and Steps.

6. Choose Create cluster.

Selecting a Master Key Stored in AWS KMS using an SDK or CLI

When you enable Amazon S3 client-side encryption in EMRFS and specify keys stored in AWS KMS,
you provide the KeyId value, key alias, or ARN of the key that Amazon EMR will use to encrypt objects
written to Amazon S3. For decryption, EMRFS tries to access whichever key encrypted the object.You
create the key using the IAM console, AWS CLI, or the AWS SDKs.

If you have assigned an instance profile to your EMR cluster, make sure that the role in that profile has
permission to use the key. AWS KMS charges apply for API calls during each encryption or decryption
activity and for storing your key. For more information, see the AWS KMS pricing page.

To use an AWS KMS master key for encryption with EMRFS, provide the master key by reference using
any of three possible identifiers:

• KeyId (a 32-character GUID)

• Alias mapped to the KeyId value (you must include the alias/ prefix in this value)

• Full ARN of the key, which includes the region, account ID, and KeyId value

API Version 2009-03-31
93

Amazon Elastic MapReduce Amazon EMR Release Guide
Encryption in EMRFS

http://aws.amazon.com/kms/faqs
http://aws.amazon.com/kms/faqs
http://docs.aws.amazon.com/kms/latest/developerguide/
http://aws.amazon.com/kms/pricing/

MyKMSKeyId in the example below can be any of the three values:

aws emr create-cluster --release-label emr-4.0.0 --emrfs Encryption=Client
Side,ProviderType=KMS,KMSKeyId=MyKMSKeyId

Note
Note:You must use the ARN of the AWS KMS master key if you want to use a key owned by
an account different than the one you are using to configure Amazon EMR.

Configuring Amazon S3 Client-side Encryption Using a Custom Provider

To use the AWS CLI, pass the Encryption, ProviderType, CustomProviderClass, and
CustomProviderLocation arguments to the emrfs option.

aws emr create-cluster --instance-type m3.xlarge --release-label emr-4.0.0 --
emrfs Encryption=ClientSide,ProviderType=Custom,CustomProviderLocation=s3://my
bucket/myfolder/provider.jar,CustomProviderClass=classname

Setting Encryption to ClientSide enables client-side encryption, CustomProviderClass is the
name of your EncryptionMaterialsProvider object, and CustomProviderLocation is the local or Amazon
S3 location from which Amazon EMR copies CustomProviderClass to each node in the cluster and
places it in the classpath.

Custom EncryptionMaterialsProvider with Arguments

You may need to pass arguments directly to the provider, so you can use a configuration to supply
arguments using emrfs-site.xml. Here is the configuration:

[
 {
 "Classification": "emrfs-site",
 "Properties": {
 "myProvider.arg1":"value1",
 "myProvider.arg2":"value2"
 }
 }
]

Then use the configuration with the CLI:

aws emr create-cluster --release-label emr-4.0.0 --instance-type m3.xlarge --
instance-count 2 --configurations file://./myConfig.json --emrfs Encryption=Cli
entSide,CustomProviderLocation=s3://mybucket/myfolder/myprovider.jar,CustomPro
viderClass=classname

To use an SDK, you can set the property fs.s3.cse.encryptionMaterialsProvider.uri to
download the custom EncryptionMaterialsProvider class you store in Amazon S3 to each node in your
cluster.You configure this in emrfs-site.xml file along with CSE enabled and the proper location of
the custom provider.

For example, in the AWS SDK for Java using RunJobFlowRequest, your code might look like the following:

<snip>
 Map<String,String> emrfsProperties = new HashMap<String,String>();

API Version 2009-03-31
94

Amazon Elastic MapReduce Amazon EMR Release Guide
Encryption in EMRFS

 emrfsProperties.put("fs.s3.cse.encryptionMaterialsProvider.uri","s3://my
bucket/MyCustomEncryptionMaterialsProvider.jar");
 emrfsProperties.put("fs.s3.cse.enabled","true");
 emrfsProperties.put("fs.s3.consistent","true");
 emrfsProperties.put("fs.s3.cse.encryptionMaterialsPro
vider","full.class.name.of.EncryptionMaterialsProvider");

 Configuration myEmrfsConfig = new Configuration()
 .withClassification("emrfs-site")
 .withProperties(emrfsProperties);

 RunJobFlowRequest request = new RunJobFlowRequest()
 .withName("Custom EncryptionMaterialsProvider")
 .withReleaseLabel("emr-4.0.0")
 .withApplications(myApp)
 .withConfigurations(myEmrfsConfig)
 .withServiceRole("EMR_DefaultRole")
 .withJobFlowRole("EMR_EC2_DefaultRole")
 .withLogUri("s3://myLogUri/")
 .withInstances(new JobFlowInstancesConfig()
 .withEc2KeyName("myEc2Key")
 .withInstanceCount(2)
 .withKeepJobFlowAliveWhenNoSteps(true)
 .withMasterInstanceType("m3.xlarge")
 .withSlaveInstanceType("m3.xlarge")
);

 RunJobFlowResult result = emr.runJobFlow(request);
</snip>

For more information about a list of configuration key values to use to configure emrfs-site.xml, see
the section called “emrfs-site.xml Properties for Amazon S3 Client-side Encryption” (p. ?).

Reference Implementation of Amazon S3 EncryptionMaterialsProvider

When fetching the encryption materials from the EncryptionMaterialsProvider class to perform encryption,
EMRFS optionally populates the materialsDescription argument with two fields: the Amazon S3 URI for
the object and the JobFlowId of the cluster, which can be used by the EncryptionMaterialsProvider class
to return encryption materials selectively.You can enable this behavior by setting
fs.s3.cse.materialsDescription.enabled to true in emrfs-site.xml. For example, the
provider may return different keys for different Amazon S3 URI prefixes. Note that it is the description of
the returned encryption materials that is eventually stored with the Amazon S3 object rather than the
materialsDescription value that is generated by EMRFS and passed to the provider. While decrypting an
Amazon S3 object, the encryption materials description is passed to the EncryptionMaterialsProvider
class, so that it can, again, selectively return the matching key to decrypt the object.

The following EncryptionMaterialsProvider reference implementation is provided below. Another custom
provider, EMRFSRSAEncryptionMaterialsProvider, is available from GitHub.

import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.EncryptionMaterialsProvider;
import com.amazonaws.services.s3.model.KMSEncryptionMaterials;
import org.apache.hadoop.conf.Configurable;
import org.apache.hadoop.conf.Configuration;

import java.util.Map;

API Version 2009-03-31
95

Amazon Elastic MapReduce Amazon EMR Release Guide
Encryption in EMRFS

https://github.com/awslabs/emr-sample-apps/tree/master/emrfs-plugins/EMRFSRSAEncryptionMaterialsProvider

/**
 * Provides KMSEncryptionMaterials according to Configuration
 */
public class MyEncryptionMaterialsProviders implements EncryptionMaterialsPro
vider, Configurable{
 private Configuration conf;
 private String kmsKeyId;
 private EncryptionMaterials encryptionMaterials;

 private void init() {
 this.kmsKeyId = conf.get("my.kms.key.id");
 this.encryptionMaterials = new KMSEncryptionMaterials(kmsKeyId);
 }

 @Override
 public void setConf(Configuration conf) {
 this.conf = conf;
 init();
 }

 @Override
 public Configuration getConf() {
 return this.conf;
 }

 @Override
 public void refresh() {

 }

 @Override
 public EncryptionMaterials getEncryptionMaterials(Map<String, String> materi
alsDescription) {
 return this.encryptionMaterials;
 }

 @Override
 public EncryptionMaterials getEncryptionMaterials() {
 return this.encryptionMaterials;
 }
}

emrfs-site.xml Properties for Amazon S3 Client-side Encryption

DescriptionDefault valueProperty

When set to true, objects stored in
Amazon S3 are encrypted using cli-
ent-side encryption.

falsefs.s3.cse.enabled

The EncryptionMaterialsProvider
class path used with client-side en-
cryption.

N/Afs.s3.cse.encryptionMaterialsProvider

API Version 2009-03-31
96

Amazon Elastic MapReduce Amazon EMR Release Guide
Encryption in EMRFS

DescriptionDefault valueProperty

Enabling will populate the materials-
Description of encrypted objects with
the Amazon S3 URI for the object
and the JobFlowId.

falsefs.s3.cse.materialsDescription.enabled

The value of the KeyId field for the
AWS KMS encryption key that you
are using with EMRFS encryption.

Note
This property also accepts
the ARN and key alias as-
sociated with the key.

N/Afs.s3.cse.kms.keyId

The Amazon S3 storage mode. By
default, the description of the encryp-
tion information is stored in the ob-
ject metadata.You can also store
the description in an instruction file.
Valid values are ObjectMetadata
and InstructionFile. For more inform-
ation, see Client-Side Data Encryp-
tion with the AWS SDK for Java and
Amazon S3.

Object-
Metadata

fs.s3.cse.cryptoStorageMode

Export, Import, Query, and Join Tables in
DynamoDB Using Amazon EMR

DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance
with seamless scalability. Developers can create a database table and grow its request traffic or storage
without limit. DynamoDB automatically spreads the data and traffic for the table over a sufficient number
of servers to handle the request capacity specified by the customer and the amount of data stored, while
maintaining consistent, fast performance. Using Amazon EMR and Hive you can quickly and efficiently
process large amounts of data, such as data stored in DynamoDB. For more information about DynamoDB
go to the DynamoDB Developer Guide.

Apache Hive is a software layer that you can use to query map reduce clusters using a simplified, SQL-like
query language called HiveQL. It runs on top of the Hadoop architecture. For more information about
Hive and HiveQL, go to the HiveQL Language Manual. For more information about Hive and Amazon
EMR, see Apache Hive (p. 48)

You can use Amazon EMR with a customized version of Hive that includes connectivity to DynamoDB
to perform operations on data stored in DynamoDB:

• Loading DynamoDB data into the Hadoop Distributed File System (HDFS) and using it as input into an
Amazon EMR cluster.

• Querying live DynamoDB data using SQL-like statements (HiveQL).

• Joining data stored in DynamoDB and exporting it or querying against the joined data.

• Exporting data stored in DynamoDB to Amazon S3.

• Importing data stored in Amazon S3 to DynamoDB.

API Version 2009-03-31
97

Amazon Elastic MapReduce Amazon EMR Release Guide
Export, Query, and Join Tables in DynamoDB

https://aws.amazon.com/articles/2850096021478074
https://aws.amazon.com/articles/2850096021478074
https://aws.amazon.com/articles/2850096021478074
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual

To perform each of the following tasks, you'll launch an Amazon EMR cluster, specify the location of the
data in DynamoDB, and issue Hive commands to manipulate the data in DynamoDB.

There are several ways to launch an Amazon EMR cluster: you can use the Amazon EMR console, the
command line interface (CLI), or you can program your cluster using an AWS SDK or the Amazon EMR
API.You can also choose whether to run a Hive cluster interactively or from a script. In this section, we
will show you how to launch an interactive Hive cluster from the Amazon EMR console and the CLI.

Using Hive interactively is a great way to test query performance and tune your application. After you
have established a set of Hive commands that will run on a regular basis, consider creating a Hive script
that Amazon EMR can run for you.

Warning
Amazon EMR read or write operations on an DynamoDB table count against your established
provisioned throughput, potentially increasing the frequency of provisioned throughput exceptions.
For large requests, Amazon EMR implements retries with exponential backoff to manage the
request load on the DynamoDB table. Running Amazon EMR jobs concurrently with other traffic
may cause you to exceed the allocated provisioned throughput level.You can monitor this by
checking the ThrottleRequests metric in Amazon CloudWatch. If the request load is too high,
you can relaunch the cluster and set the Read Percent Setting (p. 110) or Write Percent
Setting (p. 110) to a lower value to throttle the Amazon EMR operations. For information about
DynamoDB throughput settings, see Provisioned Throughput.

Topics

• Set Up a Hive Table to Run Hive Commands (p. 98)

• Hive Command Examples for Exporting, Importing, and Querying Data in DynamoDB (p. 102)

• Optimizing Performance for Amazon EMR Operations in DynamoDB (p. 109)

Set Up a Hive Table to Run Hive Commands
Apache Hive is a data warehouse application you can use to query data contained in Amazon EMR
clusters using a SQL-like language. For more information about Hive, go to http://hive.apache.org/.

The following procedure assumes you have already created a cluster and specified an Amazon EC2 key
pair. To learn how to get started creating clusters, see Step 3: Launch an Amazon EMR Cluster in the
Amazon EMR Management Guide.

To run Hive commands interactively

1. Connect to the master node. For more information, see Connect to the Master Node Using SSH in
the Amazon EMR Management Guide.

2. At the command prompt for the current master node, type hive.

You should see a hive prompt: hive>

3. Enter a Hive command that maps a table in the Hive application to the data in DynamoDB.This table
acts as a reference to the data stored in Amazon DynamoDB; the data is not stored locally in Hive
and any queries using this table run against the live data in DynamoDB, consuming the table’s read
or write capacity every time a command is run. If you expect to run multiple Hive commands against
the same dataset, consider exporting it first.

The following shows the syntax for mapping a Hive table to a DynamoDB table.

CREATE EXTERNAL TABLE hive_tablename (hive_column1_name column1_datatype,
hive_column2_name column2_datatype...)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

API Version 2009-03-31
98

Amazon Elastic MapReduce Amazon EMR Release Guide
Set Up a Hive Table to Run Hive Commands

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithDDTables.html#ProvisionedThroughput
http://hive.apache.org/
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/gsg-launch-cluster.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-connect-master-node-ssh.html

TBLPROPERTIES ("dynamodb.table.name" = "dynamodb_tablename",
"dynamodb.column.mapping" = "hive_column1_name:dynamodb_attrib
ute1_name,hive_column2_name:dynamodb_attribute2_name...");

When you create a table in Hive from DynamoDB, you must create it as an external table using the
keyword EXTERNAL. The difference between external and internal tables is that the data in internal
tables is deleted when an internal table is dropped. This is not the desired behavior when connected
to Amazon DynamoDB, and thus only external tables are supported.

For example, the following Hive command creates a table named hivetable1 in Hive that references
the DynamoDB table named dynamodbtable1. The DynamoDB table dynamodbtable1 has a
hash-and-range primary key schema. The hash key element is name (string type), the range key
element is year (numeric type), and each item has an attribute value for holidays (string set type).

CREATE EXTERNAL TABLE hivetable1 (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

Line 1 uses the HiveQL CREATE EXTERNAL TABLE statement. For hivetable1, you need to establish
a column for each attribute name-value pair in the DynamoDB table, and provide the data type.These
values are not case-sensitive, and you can give the columns any name (except reserved words).

Line 2 uses the STORED BY statement.The value of STORED BY is the name of the class that handles
the connection between Hive and DynamoDB. It should be set to
'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'.

Line 3 uses the TBLPROPERTIES statement to associate "hivetable1" with the correct table and
schema in DynamoDB. Provide TBLPROPERTIES with values for the dynamodb.table.name
parameter and dynamodb.column.mapping parameter. These values are case-sensitive.

Note
All DynamoDB attribute names for the table must have corresponding columns in the Hive
table; otherwise, the Hive table won't contain the name-value pair from DynamoDB. If you
do not map the DynamoDB primary key attributes, Hive generates an error. If you do not
map a non-primary key attribute, no error is generated, but you won't see the data in the
Hive table. If the data types do not match, the value is null.

Then you can start running Hive operations on hivetable1. Queries run against hivetable1 are internally
run against the DynamoDB table dynamodbtable1 of your DynamoDB account, consuming read or write
units with each execution.

When you run Hive queries against a DynamoDB table, you need to ensure that you have provisioned a
sufficient amount of read capacity units.

For example, suppose that you have provisioned 100 units of read capacity for your DynamoDB table.
This will let you perform 100 reads, or 409,600 bytes, per second. If that table contains 20GB of data
(21,474,836,480 bytes), and your Hive query performs a full table scan, you can estimate how long the
query will take to run:

21,474,836,480 / 409,600 = 52,429 seconds = 14.56 hours

API Version 2009-03-31
99

Amazon Elastic MapReduce Amazon EMR Release Guide
Set Up a Hive Table to Run Hive Commands

The only way to decrease the time required would be to adjust the read capacity units on the source
DynamoDB table. Adding more Amazon EMR nodes will not help.

In the Hive output, the completion percentage is updated when one or more mapper processes are
finished. For a large DynamoDB table with a low provisioned read capacity setting, the completion
percentage output might not be updated for a long time; in the case above, the job will appear to be 0%
complete for several hours. For more detailed status on your job's progress, go to the Amazon EMR
console; you will be able to view the individual mapper task status, and statistics for data reads.You can
also log on to Hadoop interface on the master node and see the Hadoop statistics. This will show you
the individual map task status and some data read statistics. For more information, see the following
topics:

• Web Interfaces Hosted on the Master Node

• View the Hadoop Web Interfaces

For more information about sample HiveQL statements to perform tasks such as exporting or importing
data from DynamoDB and joining tables, see Hive Command Examples for Exporting, Importing, and
Querying Data in DynamoDB (p. 102).

To cancel a Hive request

When you execute a Hive query, the initial response from the server includes the command to cancel the
request.To cancel the request at any time in the process, use the Kill Command from the server response.

1. Enter Ctrl+C to exit the command line client.

2. At the shell prompt, enter the Kill Command from the initial server response to your request.

Alternatively, you can run the following command from the command line of the master node to kill
the Hadoop job, where job-id is the identifier of the Hadoop job and can be retrieved from the
Hadoop user interface. For more information about the Hadoop user interface, see How to Use the
Hadoop User Interface in the Amazon EMR Developer Guide.

hadoop job -kill job-id

Data Types for Hive and DynamoDB
The following table shows the available Hive data types and how they map to the corresponding DynamoDB
data types.

DynamoDB typeHive type

string (S)string

number (N)bigint or double

binary (B)binary

number set (NS), string set (SS), or binary set (BS)array

The bigint type in Hive is the same as the Java long type, and the Hive double type is the same as the
Java double type in terms of precision. This means that if you have numeric data stored in DynamoDB

API Version 2009-03-31
100

Amazon Elastic MapReduce Amazon EMR Release Guide
Set Up a Hive Table to Run Hive Commands

http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-web-interfaces.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/UsingtheHadoopUserInterface.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html

that has precision higher than is available in the Hive datatypes, using Hive to export, import, or reference
the DynamoDB data could lead to a loss in precision or a failure of the Hive query.

Exports of the binary type from DynamoDB to Amazon Simple Storage Service (Amazon S3) or HDFS
are stored as a Base64-encoded string. If you are importing data from Amazon S3 or HDFS into the
DynamoDB binary type, it should be encoded as a Base64 string.

Hive Options
You can set the following Hive options to manage the transfer of data out of Amazon DynamoDB. These
options only persist for the current Hive session. If you close the Hive command prompt and reopen it
later on the cluster, these settings will have returned to the default values.

DescriptionHive Options

Set the rate of read operations to keep your DynamoDB
provisioned throughput rate in the allocated range for your
table. The value is between 0.1 and 1.5, inclusively.

The value of 0.5 is the default read rate, which means that
Hive will attempt to consume half of the read provisioned
throughout resources in the table. Increasing this value
above 0.5 increases the read request rate. Decreasing it
below 0.5 decreases the read request rate. This read rate
is approximate. The actual read rate will depend on factors
such as whether there is a uniform distribution of keys in
DynamoDB.

If you find your provisioned throughput is frequently ex-
ceeded by the Hive operation, or if live read traffic is being
throttled too much, then reduce this value below 0.5. If you
have enough capacity and want a faster Hive operation,
set this value above 0.5.You can also oversubscribe by
setting it up to 1.5 if you believe there are unused input/out-
put operations available.

dynamodb.throughput.read.percent

Set the rate of write operations to keep your DynamoDB
provisioned throughput rate in the allocated range for your
table. The value is between 0.1 and 1.5, inclusively.

The value of 0.5 is the default write rate, which means that
Hive will attempt to consume half of the write provisioned
throughout resources in the table. Increasing this value
above 0.5 increases the write request rate. Decreasing it
below 0.5 decreases the write request rate. This write rate
is approximate.The actual write rate will depend on factors
such as whether there is a uniform distribution of keys in
DynamoDB

If you find your provisioned throughput is frequently ex-
ceeded by the Hive operation, or if live write traffic is being
throttled too much, then reduce this value below 0.5. If you
have enough capacity and want a faster Hive operation,
set this value above 0.5.You can also oversubscribe by
setting it up to 1.5 if you believe there are unused input/out-
put operations available or this is the initial data upload to
the table and there is no live traffic yet.

dynamodb.throughput.write.per-
cent

API Version 2009-03-31
101

Amazon Elastic MapReduce Amazon EMR Release Guide
Set Up a Hive Table to Run Hive Commands

DescriptionHive Options

Specify the endpoint in case you have tables in different
regions. For more information about the available Dy-
namoDB endpoints, see Regions and Endpoints.

dynamodb.endpoint

Specify the maximum number of map tasks when reading
data from DynamoDB. This value must be equal to or
greater than 1.

dynamodb.max.map.tasks

Specify the number of minutes to use as the timeout dura-
tion for retrying Hive commands. This value must be an in-
teger equal to or greater than 0.The default timeout duration
is two minutes.

dynamodb.retry.duration

These options are set using the SET command as shown in the following example.

SET dynamodb.throughput.read.percent=1.0;

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

Hive Command Examples for Exporting, Importing,
and Querying Data in DynamoDB
The following examples use Hive commands to perform operations such as exporting data to Amazon
S3 or HDFS, importing data to DynamoDB, joining tables, querying tables, and more.

Operations on a Hive table reference data stored in DynamoDB. Hive commands are subject to the
DynamoDB table's provisioned throughput settings, and the data retrieved includes the data written to
the DynamoDB table at the time the Hive operation request is processed by DynamoDB. If the data
retrieval process takes a long time, some data returned by the Hive command may have been updated
in DynamoDB since the Hive command began.

Hive commands DROP TABLE and CREATE TABLE only act on the local tables in Hive and do not create
or drop tables in DynamoDB. If your Hive query references a table in DynamoDB, that table must already
exist before you run the query. For more information on creating and deleting tables in DynamoDB, go
to Working with Tables in DynamoDB.

Note
When you map a Hive table to a location in Amazon S3, do not map it to the root path of the
bucket, s3://mybucket, as this may cause errors when Hive writes the data to Amazon S3. Instead
map the table to a subpath of the bucket, s3://mybucket/mypath.

Exporting Data from DynamoDB
You can use Hive to export data from DynamoDB.

To export a DynamoDB table to an Amazon S3 bucket

• Create a Hive table that references data stored in DynamoDB. Then you can call the INSERT
OVERWRITE command to write the data to an external directory. In the following example,

API Version 2009-03-31
102

Amazon Elastic MapReduce Amazon EMR Release Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

http://docs.aws.amazon.com/general/latest/gr/rande.html#ddb_region
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html

s3://bucketname/path/subpath/ is a valid path in Amazon S3. Adjust the columns and datatypes
in the CREATE command to match the values in your DynamoDB.You can use this to create an
archive of your DynamoDB data in Amazon S3.

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

INSERT OVERWRITE DIRECTORY 's3://bucketname/path/subpath/' SELECT *
FROM hiveTableName;

To export a DynamoDB table to an Amazon S3 bucket using formatting

• Create an external table that references a location in Amazon S3.This is shown below as s3_export.
During the CREATE call, specify row formatting for the table. Then, when you use INSERT
OVERWRITE to export data from DynamoDB to s3_export, the data is written out in the specified
format. In the following example, the data is written out as comma-separated values (CSV).

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

CREATE EXTERNAL TABLE s3_export(a_col string, b_col bigint, c_col ar
ray<string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

To export a DynamoDB table to an Amazon S3 bucket without specifying a column mapping

• Create a Hive table that references data stored in DynamoDB.This is similar to the preceding example,
except that you are not specifying a column mapping. The table must have exactly one column of
type map<string, string>. If you then create an EXTERNAL table in Amazon S3 you can call the
INSERT OVERWRITE command to write the data from DynamoDB to Amazon S3.You can use this
to create an archive of your DynamoDB data in Amazon S3. Because there is no column mapping,
you cannot query tables that are exported this way. Exporting data without specifying a column
mapping is available in Hive 0.8.1.5 or later, which is supported on Amazon EMR AMI 2.2.x and later.

CREATE EXTERNAL TABLE hiveTableName (item map<string,string>)

API Version 2009-03-31
103

Amazon Elastic MapReduce Amazon EMR Release Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1");

CREATE EXTERNAL TABLE s3TableName (item map<string, string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3TableName SELECT *
FROM hiveTableName;

To export a DynamoDB table to an Amazon S3 bucket using data compression

• Hive provides several compression codecs you can set during your Hive session. Doing so causes
the exported data to be compressed in the specified format. The following example compresses the
exported files using the Lempel-Ziv-Oberhumer (LZO) algorithm.

SET hive.exec.compress.output=true;
SET io.seqfile.compression.type=BLOCK;
SET mapred.output.compression.codec = com.hadoop.compression.lzo.LzopCodec;

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

CREATE EXTERNAL TABLE lzo_compression_table (line STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE lzo_compression_table SELECT *
FROM hiveTableName;

The available compression codecs are:

• org.apache.hadoop.io.compress.GzipCodec

• org.apache.hadoop.io.compress.DefaultCodec

• com.hadoop.compression.lzo.LzoCodec

• com.hadoop.compression.lzo.LzopCodec

• org.apache.hadoop.io.compress.BZip2Codec

• org.apache.hadoop.io.compress.SnappyCodec

To export a DynamoDB table to HDFS

• Use the following Hive command, where hdfs:///directoryName is a valid HDFS path and
hiveTableName is a table in Hive that references DynamoDB. This export operation is faster than

API Version 2009-03-31
104

Amazon Elastic MapReduce Amazon EMR Release Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

exporting a DynamoDB table to Amazon S3 because Hive 0.7.1.1 uses HDFS as an intermediate
step when exporting data to Amazon S3. The following example also shows how to set
dynamodb.throughput.read.percent to 1.0 in order to increase the read request rate.

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

SET dynamodb.throughput.read.percent=1.0;

INSERT OVERWRITE DIRECTORY 'hdfs:///directoryName' SELECT * FROM hiveTable
Name;

You can also export data to HDFS using formatting and compression as shown above for the export
to Amazon S3. To do so, simply replace the Amazon S3 directory in the examples above with an
HDFS directory.

To read non-printable UTF-8 character data in Hive

• You can read and write non-printable UTF-8 character data with Hive by using the STORED AS
SEQUENCEFILE clause when you create the table. A SequenceFile is Hadoop binary file format; you
need to use Hadoop to read this file.The following example shows how to export data from DynamoDB
into Amazon S3.You can use this functionality to handle non-printable UTF-8 encoded characters.

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

CREATE EXTERNAL TABLE s3_export(a_col string, b_col bigint, c_col ar
ray<string>)
STORED AS SEQUENCEFILE
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

Importing Data to DynamoDB
When you write data to DynamoDB using Hive you should ensure that the number of write capacity units
is greater than the number of mappers in the cluster. For example, clusters that run on m1.xlarge EC2
instances produce 8 mappers per instance. In the case of a cluster that has 10 instances, that would
mean a total of 80 mappers. If your write capacity units are not greater than the number of mappers in
the cluster, the Hive write operation may consume all of the write throughput, or attempt to consume more
throughput than is provisioned. For more information about the number of mappers produced by each

API Version 2009-03-31
105

Amazon Elastic MapReduce Amazon EMR Release Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

EC2 instance type, go to Configure Hadoop (p. 25). There, you will find a "Task Configuration" section
for each of the supported configurations.

The number of mappers in Hadoop are controlled by the input splits. If there are too few splits, your write
command might not be able to consume all the write throughput available.

If an item with the same key exists in the target DynamoDB table, it will be overwritten. If no item with the
key exists in the target DynamoDB table, the item is inserted.

To import a table from Amazon S3 to DynamoDB

• You can use Amazon EMR (Amazon EMR) and Hive to write data from Amazon S3 to DynamoDB.

CREATE EXTERNAL TABLE s3_import(a_col string, b_col bigint, c_col ar
ray<string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

INSERT OVERWRITE TABLE hiveTableName SELECT * FROM s3_import;

To import a table from an Amazon S3 bucket to DynamoDB without specifying a column
mapping

• Create an EXTERNAL table that references data stored in Amazon S3 that was previously exported
from DynamoDB. Before importing, ensure that the table exists in DynamoDB and that it has the
same key schema as the previously exported DynamoDB table. In addition, the table must have
exactly one column of type map<string, string>. If you then create a Hive table that is linked to
DynamoDB, you can call the INSERT OVERWRITE command to write the data from Amazon S3 to
DynamoDB. Because there is no column mapping, you cannot query tables that are imported this
way. Importing data without specifying a column mapping is available in Hive 0.8.1.5 or later, which
is supported on Amazon EMR AMI 2.2.3 and later.

CREATE EXTERNAL TABLE s3TableName (item map<string, string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

CREATE EXTERNAL TABLE hiveTableName (item map<string,string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1");

INSERT OVERWRITE TABLE hiveTableName SELECT *
FROM s3TableName;

API Version 2009-03-31
106

Amazon Elastic MapReduce Amazon EMR Release Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

To import a table from HDFS to DynamoDB

• You can use Amazon EMR and Hive to write data from HDFS to DynamoDB.

CREATE EXTERNAL TABLE hdfs_import(a_col string, b_col bigint, c_col ar
ray<string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 'hdfs:///directoryName';

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

INSERT OVERWRITE TABLE hiveTableName SELECT * FROM hdfs_import;

Querying Data in DynamoDB
The following examples show the various ways you can use Amazon EMR to query data stored in
DynamoDB.

To find the largest value for a mapped column (max)

• Use Hive commands like the following. In the first command, the CREATE statement creates a Hive
table that references data stored in DynamoDB.The SELECT statement then uses that table to query
data stored in DynamoDB.The following example finds the largest order placed by a given customer.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" = "customerId:CustomerId,total_cost:Cost,items_pur
chased:Items");

SELECT max(total_cost) from hive_purchases where customerId = 717;

To aggregate data using the GROUP BY clause

• You can use the GROUP BY clause to collect data across multiple records. This is often used with
an aggregate function such as sum, count, min, or max. The following example returns a list of the
largest orders from customers who have placed more than three orders.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",

API Version 2009-03-31
107

Amazon Elastic MapReduce Amazon EMR Release Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

"dynamodb.column.mapping" = "customerId:CustomerId,total_cost:Cost,items_pur
chased:Items");

SELECT customerId, max(total_cost) from hive_purchases GROUP BY customerId
 HAVING count(*) > 3;

To join two DynamoDB tables

• The following example maps two Hive tables to data stored in DynamoDB. It then calls a join across
those two tables. The join is computed on the cluster and returned. The join does not take place in
DynamoDB. This example returns a list of customers and their purchases for customers that have
placed more than two orders.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" = "customerId:CustomerId,total_cost:Cost,items_pur
chased:Items");

CREATE EXTERNAL TABLE hive_customers(customerId bigint, customerName string,
 customerAddress array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Customers",
"dynamodb.column.mapping" = "customerId:CustomerId,customerName:Name,custom
erAddress:Address");

Select c.customerId, c.customerName, count(*) as count from hive_customers
 c
JOIN hive_purchases p ON c.customerId=p.customerId
GROUP BY c.customerId, c.customerName HAVING count > 2;

To join two tables from different sources

• In the following example, Customer_S3 is a Hive table that loads a CSV file stored in Amazon S3
and hive_purchases is a table that references data in DynamoDB. The following example joins
together customer data stored as a CSV file in Amazon S3 with order data stored in DynamoDB to
return a set of data that represents orders placed by customers who have "Miller" in their name.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" = "customerId:CustomerId,total_cost:Cost,items_pur
chased:Items");

CREATE EXTERNAL TABLE Customer_S3(customerId bigint, customerName string,
customerAddress array<String>)

API Version 2009-03-31
108

Amazon Elastic MapReduce Amazon EMR Release Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

Select c.customerId, c.customerName, c.customerAddress from
Customer_S3 c
JOIN hive_purchases p
ON c.customerid=p.customerid
where c.customerName like '%Miller%';

Note
In the preceding examples, the CREATE TABLE statements were included in each example for
clarity and completeness. When running multiple queries or export operations against a given
Hive table, you only need to create the table one time, at the beginning of the Hive session.

Optimizing Performance for Amazon EMR
Operations in DynamoDB
Amazon EMR operations on a DynamoDB table count as read operations, and are subject to the table's
provisioned throughput settings. Amazon EMR implements its own logic to try to balance the load on your
DynamoDB table to minimize the possibility of exceeding your provisioned throughput. At the end of each
Hive query, Amazon EMR returns information about the cluster used to process the query, including how
many times your provisioned throughput was exceeded.You can use this information, as well as
CloudWatch metrics about your DynamoDB throughput, to better manage the load on your DynamoDB
table in subsequent requests.

The following factors influence Hive query performance when working with DynamoDB tables.

Provisioned Read Capacity Units
When you run Hive queries against a DynamoDB table, you need to ensure that you have provisioned a
sufficient amount of read capacity units.

For example, suppose that you have provisioned 100 units of Read Capacity for your DynamoDB table.
This will let you perform 100 reads, or 409,600 bytes, per second. If that table contains 20GB of data
(21,474,836,480 bytes), and your Hive query performs a full table scan, you can estimate how long the
query will take to run:

21,474,836,480 / 409,600 = 52,429 seconds = 14.56 hours

The only way to decrease the time required would be to adjust the read capacity units on the source
DynamoDB table. Adding more nodes to the Amazon EMR cluster will not help.

In the Hive output, the completion percentage is updated when one or more mapper processes are
finished. For a large DynamoDB table with a low provisioned Read Capacity setting, the completion
percentage output might not be updated for a long time; in the case above, the job will appear to be 0%
complete for several hours. For more detailed status on your job's progress, go to the Amazon EMR
console; you will be able to view the individual mapper task status, and statistics for data reads.

You can also log on to Hadoop interface on the master node and see the Hadoop statistics.This will show
you the individual map task status and some data read statistics. For more information, see the following
topics:

• Web Interfaces Hosted on the Master Node

API Version 2009-03-31
109

Amazon Elastic MapReduce Amazon EMR Release Guide
Optimizing Performance

http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-web-interfaces.html

•

Read Percent Setting
By default, Amazon EMR manages the request load against your DynamoDB table according to your
current provisioned throughput. However, when Amazon EMR returns information about your job that
includes a high number of provisioned throughput exceeded responses, you can adjust the default read
rate using the dynamodb.throughput.read.percent parameter when you set up the Hive table. For
more information about setting the read percent parameter, see Hive Options (p. 101).

Write Percent Setting
By default, Amazon EMR manages the request load against your DynamoDB table according to your
current provisioned throughput. However, when Amazon EMR returns information about your job that
includes a high number of provisioned throughput exceeded responses, you can adjust the default write
rate using the dynamodb.throughput.write.percent parameter when you set up the Hive table.
For more information about setting the write percent parameter, see Hive Options (p. 101).

Retry Duration Setting
By default, Amazon EMR re-runs a Hive query if it has not returned a result within two minutes, the default
retry interval.You can adjust this interval by setting the dynamodb.retry.duration parameter when
you run a Hive query. For more information about setting the write percent parameter, seeHive
Options (p. 101).

Number of Map Tasks
The mapper daemons that Hadoop launches to process your requests to export and query data stored
in DynamoDB are capped at a maximum read rate of 1 MiB per second to limit the read capacity used.
If you have additional provisioned throughput available on DynamoDB, you can improve the performance
of Hive export and query operations by increasing the number of mapper daemons. To do this, you can
either increase the number of EC2 instances in your cluster or increase the number of mapper daemons
running on each EC2 instance.

You can increase the number of EC2 instances in a cluster by stopping the current cluster and re-launching
it with a larger number of EC2 instances.You specify the number of EC2 instances in the Configure EC2
Instances dialog box if you're launching the cluster from the Amazon EMR console, or with the
--num-instances option if you're launching the cluster from the CLI.

The number of map tasks run on an instance depends on the EC2 instance type. For more information
about the supported EC2 instance types and the number of mappers each one provides, go to Configure
Hadoop (p. 25).There, you will find a "Task Configuration" section for each of the supported configurations.

{
 "configurations": [
 {
 "classification": "mapred-site",
 "properties": {
 "mapred.tasktracker.map.tasks.maximum": "10"
 }
 }
]
}

API Version 2009-03-31
110

Amazon Elastic MapReduce Amazon EMR Release Guide
Optimizing Performance

Parallel Data Requests
Multiple data requests, either from more than one user or more than one application to a single table may
drain read provisioned throughput and slow performance.

Process Duration
Data consistency in DynamoDB depends on the order of read and write operations on each node. While
a Hive query is in progress, another application might load new data into the DynamoDB table or modify
or delete existing data. In this case, the results of the Hive query might not reflect changes made to the
data while the query was running.

Avoid Exceeding Throughput
When running Hive queries against DynamoDB, take care not to exceed your provisioned throughput,
because this will deplete capacity needed for your application's calls to DynamoDB::Get. To ensure that
this is not occurring, you should regularly monitor the read volume and throttling on application calls to
DynamoDB::Get by checking logs and monitoring metrics in Amazon CloudWatch.

Request Time
Scheduling Hive queries that access a DynamoDB table when there is lower demand on the DynamoDB
table improves performance. For example, if most of your application's users live in San Francisco, you
might choose to export daily data at 4 a.m. PST, when the majority of users are asleep, and not updating
records in your DynamoDB database.

Time-Based Tables
If the data is organized as a series of time-based DynamoDB tables, such as one table per day, you can
export the data when the table becomes no longer active.You can use this technique to back up data to
Amazon S3 on an ongoing fashion.

Archived Data
If you plan to run many Hive queries against the data stored in DynamoDB and your application can
tolerate archived data, you may want to export the data to HDFS or Amazon S3 and run the Hive queries
against a copy of the data instead of DynamoDB. This conserves your read operations and provisioned
throughput.

Amazon Kinesis
Amazon EMR clusters can read and process Amazon Kinesis streams directly, using familiar tools in the
Hadoop ecosystem such as Hive, Pig, MapReduce, the Hadoop Streaming API, and Cascading.You can
also join real-time data from Amazon Kinesis with existing data on Amazon S3, Amazon DynamoDB, and
HDFS in a running cluster.You can directly load the data from Amazon EMR to Amazon S3 or DynamoDB
for post-processing activities. For information about Amazon Kinesis service highlights and pricing, see
Amazon Kinesis.

What Can I Do With Amazon EMR and Amazon
Kinesis Integration?
Integration between Amazon EMR and Amazon Kinesis makes certain scenarios much easier; for example:

API Version 2009-03-31
111

Amazon Elastic MapReduce Amazon EMR Release Guide
Amazon Kinesis

http://aws.amazon.com/kinesis/

• Streaming log analysis–You can analyze streaming web logs to generate a list of top 10 error types
every few minutes by region, browser, and access domain.

• Customer engagement–You can write queries that join clickstream data from Amazon Kinesis with
advertising campaign information stored in a DynamoDB table to identify the most effective categories
of ads that are displayed on particular websites.

• Ad-hoc interactive queries–You can periodically load data from Amazon Kinesis streams into HDFS
and make it available as a local Impala table for fast, interactive, analytic queries.

Checkpointed Analysis of Amazon Kinesis Streams
Users can run periodic, batched analysis of Amazon Kinesis streams in what are called iterations. Because
Amazon Kinesis stream data records are retrieved by using a sequence number, iteration boundaries
are defined by starting and ending sequence numbers that Amazon EMR stores in a DynamoDB table.
For example, when iteration0 ends, it stores the ending sequence number in DynamoDB so that when
the iteration1 job begins, it can retrieve subsequent data from the stream. This mapping of iterations
in stream data is called checkpointing. For more details, see Kinesis Connector.

If an iteration was checkpointed and the job failed processing an iteration, Amazon EMR attempts to
reprocess the records in that iteration, provided that the data records have not reached the 24-hour limit
for Amazon Kinesis streams.

Checkpointing is a feature that allows you to:

• Start data processing after a sequence number processed by a previous query that ran on same stream
and logical name

• Re-process the same batch of data from Amazon Kinesis that was processed by an earlier query

To enable checkpointing, set the kinesis.checkpoint.enabled parameter to true in your scripts.
Also, configure the following parameters:

DescriptionConfiguration Setting

DynamoDB table name where checkpoint information
will be stored

kinesis.checkpoint.metastore.table.name

Hash key name for the DynamoDB tablekinesis.checkpoint.metastore.hash.key.name

Range key name for the DynamoDB tablekinesis.check-
point.metastore.hash.range.name

A logical name for current processingkinesis.checkpoint.logical.name

Iteration number for processing associated with the lo-
gical name

kinesis.checkpoint.iteration.no

Boolean value that indicates if a failed iteration can be
rerun without waiting for timeout; the default is false

kinesis.rerun.iteration.without.wait

Provisioned IOPS Recommendations for Amazon DynamoDB
Tables
The Amazon EMR connector for Amazon Kinesis uses the DynamoDB database as its backing for
checkpointing metadata.You must create a table in DynamoDB before consuming data in an Amazon
Kinesis stream with an Amazon EMR cluster in checkpointed intervals. The table must be in the same

API Version 2009-03-31
112

Amazon Elastic MapReduce Amazon EMR Release Guide
Checkpointed Analysis of Amazon Kinesis Streams

http://aws.amazon.com/elasticmapreduce/faqs/#kinesis-connector

region as your Amazon EMR cluster.The following are general recommendations for the number of IOPS
you should provision for your DynamoDB tables; let j be the maximum number of Hadoop jobs (with
different logical name+iteration number combination) that can run concurrently and s be the maximum
number of shards that any job will process:

For Read Capacity Units: j*s/5

For Write Capacity Units: j*s

Performance Considerations
Amazon Kinesis shard throughput is directly proportional to the instance size of nodes in Amazon EMR
clusters and record size in the stream. We recommend that you use m1.xlarge or larger instances on
master and core nodes for production workloads.

Schedule Amazon Kinesis Analysis with Amazon
EMR
When you are analyzing data on an active Amazon Kinesis stream, limited by timeouts and a maximum
duration for any iteration, it is important that you run the analysis frequently to gather periodic details from
the stream. There are multiple ways to execute such scripts and queries at periodic intervals; we
recommend using AWS Data Pipeline for recurrent tasks like these. For more information, see AWS Data
Pipeline PigActivity and AWS Data Pipeline HiveActivity in the AWS Data Pipeline Developer Guide.

Distributed Copy Using S3DistCp
Topics

• S3DistCp Options (p. 114)

• Adding S3DistCp as a Step in a Cluster (p. 118)

Apache DistCp is an open-source tool you can use to copy large amounts of data. DistCp uses MapReduce
to copy in a distributed manner—sharing the copy, error handling, recovery, and reporting tasks across
several servers. For more information about the Apache DistCp open source project, go to http://
hadoop.apache.org/docs/stable/hadoop-distcp/DistCp.html.

S3DistCp is an extension of DistCp that is optimized to work with AWS, particularly Amazon S3.You use
S3DistCp by adding it as a step in a cluster or at the command line. Using S3DistCp, you can efficiently
copy large amounts of data from Amazon S3 into HDFS where it can be processed by subsequent steps
in your Amazon EMR cluster.You can also use S3DistCp to copy data between Amazon S3 buckets or
from HDFS to Amazon S3. S3DistCp is more scalable and efficient for parallel copying large numbers of
objects across buckets and across AWS accounts.

During a copy operation, S3DistCp stages a temporary copy of the output in HDFS on the cluster. There
must be sufficient free space in HDFS to stage the data, otherwise the copy operation fails. In addition,
if S3DistCp fails, it does not clean the temporary HDFS directory, therefore you must manually purge the
temporary files. For example, if you copy 500 GB of data from HDFS to S3, S3DistCp copies the entire
500 GB into a temporary directory in HDFS, then uploads the data to Amazon S3 from the temporary
directory. When the copy is complete, S3DistCp removes the files from the temporary directory. If you
only have 250 GB of space remaining in HDFS prior to the copy, the copy operation fails.

If S3DistCp is unable to copy some or all of the specified files, the cluster step fails and returns a non-zero
error code. If this occurs, S3DistCp does not clean up partially copied files.

API Version 2009-03-31
113

Amazon Elastic MapReduce Amazon EMR Release Guide
Performance Considerations

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-pigactivity.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-pigactivity.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-hiveactivity.html
http://hadoop.apache.org/docs/stable/hadoop-distcp/DistCp.html
http://hadoop.apache.org/docs/stable/hadoop-distcp/DistCp.html

Important
S3DistCp does not support Amazon S3 bucket names that contain the underscore character.

S3DistCp Options
When you call S3DistCp, you can specify options that change how it copies and compresses data.These
are described in the following table.The options are added to the step using the arguments list. Examples
of the S3DistCp arguments are shown in the following table.

Re-
quired

DescriptionOption

YesLocation of the data to copy. This can be either an
HDFS or Amazon S3 location.

Example: --src,s3://myawsbucket/logs/j-
3GYXXXXXX9IOJ/node

Important
S3DistCp does not support Amazon S3 bucket
names that contain the underscore character.

--src,LOCATION

YesDestination for the data. This can be either an HDFS
or Amazon S3 location.

Example: --dest,hdfs:///output

Important
S3DistCp does not support Amazon S3 bucket
names that contain the underscore character.

--dest,LOCATION

NoA regular expression that filters the copy operation to
a subset of the data at --src. If neither --srcPattern
nor --groupBy is specified, all data at --src is copied
to --dest.

If the regular expression argument contains special
characters, such as an asterisk (*), either the regular
expression or the entire --args string must be en-
closed in single quotes (').

Example:--srcPattern,.*daemons.*-hadoop-.*

--srcPattern,PATTERN

API Version 2009-03-31
114

Amazon Elastic MapReduce Amazon EMR Release Guide
S3DistCp Options

http://en.wikipedia.org/wiki/Regular_expression

Re-
quired

DescriptionOption

NoA regular expression that causes S3DistCp to concat-
enate files that match the expression. For example,
you could use this option to combine all of the log files
written in one hour into a single file. The concatenated
filename is the value matched by the regular expression
for the grouping.

Parentheses indicate how files should be grouped, with
all of the items that match the parenthetical statement
being combined into a single output file. If the regular
expression does not include a parenthetical statement,
the cluster fails on the S3DistCp step and return an
error.

If the regular expression argument contains special
characters, such as an asterisk (*), either the regular
expression or the entire --args string must be en-
closed in single quotes (').

When --groupBy is specified, only files that match
the specified pattern are copied.You do not need to
specify --groupBy and --srcPattern at the same
time.

Example: --groupBy,.*subnetid.*([0-9]+-[0-
9]+-[0-9]+-[0-9]+).*

--groupBy,PATTERN

NoThe size, in mebibytes (MiB), of the files to create based
on the --groupBy option. This value must be an in-
teger.When --targetSize is set, S3DistCp attempts
to match this size; the actual size of the copied files
may be larger or smaller than this value.

If the files concatenated by --groupBy are larger than
the value of --targetSize, they are broken up into
part files, and named sequentially with a numeric value
appended to the end. For example, a file concatenated
into myfile.gz would be broken into parts as: my-
file0.gz, myfile1.gz, etc.

Example: --targetSize,2

--targetSize,SIZE

NoSpecifies the behavior of S3DistCp when copying to
files already present. It appends new file data to existing
files. If you use --appendToLastFile with
--groupBy, new data is appended to files which match
the same groups. This option also respects the
--targetSize behavior when used with --groupBy.

--appendToLastFile

API Version 2009-03-31
115

Amazon Elastic MapReduce Amazon EMR Release Guide
S3DistCp Options

http://en.wikipedia.org/wiki/Regular_expression

Re-
quired

DescriptionOption

NoSpecifies the compression codec to use for the copied
files.This can take the values: gzip, gz, lzo, snappy,
or none.You can use this option, for example, to con-
vert input files compressed with Gzip into output files
with LZO compression, or to uncompress the files as
part of the copy operation. If you choose an output co-
dec, the filename will be appended with the appropriate
extension (e.g. for gz and gzip, the extension is .gz)
If you do not specify a value for --outputCodec, the
files are copied over with no change in their compres-
sion.

Example: --outputCodec lzo

--outputCodec CODEC

NoEnsures that the target data is transferred using SSL
and automatically encrypted in Amazon S3 using an
AWS service-side key. When retrieving data using
S3DistCp, the objects are automatically unencrypted.
If you attempt to copy an unencrypted object to an en-
cryption-required Amazon S3 bucket, the operation
fails. For more information, see Using Data Encryption.

Example: --s3ServerSideEncryption

--s3ServerSideEncryption

NoIf the copy operation is successful, this option causes
S3DistCp to delete the copied files from the source
location. This is useful if you are copying output files,
such as log files, from one location to another as a
scheduled task, and you don't want to copy the same
files twice.

Example: --deleteOnSuccess

--deleteOnSuccess

NoDisables the use of multipart upload.

Example: --disableMultipartUpload

--disableMultipartUpload

NoThe size, in MiB, of the multipart upload part size. By
default, it uses multipart upload when writing to Amazon
S3. The default chunk size is 16 MiB.

Example: --multipartUploadChunkSize,32

--multipartUploadChunkS-
ize,SIZE

NoPrepends output files with sequential numbers. The
count starts at 0 unless a different value is specified by
--startingIndex.

Example: --numberFiles

--numberFiles

NoUsed with --numberFiles to specify the first number
in the sequence.

Example: --startingIndex,1

--startingIndex,INDEX

API Version 2009-03-31
116

Amazon Elastic MapReduce Amazon EMR Release Guide
S3DistCp Options

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html

Re-
quired

DescriptionOption

NoCreates a text file, compressed with Gzip, that contains
a list of all the files copied by S3DistCp.

Example: --outputManifest,manifest-1.gz

--outputManifest,FILENAME

NoReads a manifest file that was created during a previous
call to S3DistCp using the --outputManifest flag.
When the --previousManifest flag is set, S3DistCp
excludes the files listed in the manifest from the copy
operation. If --outputManifest is specified along
with --previousManifest, files listed in the previous
manifest also appear in the new manifest file, although
the files are not copied.

Example: --previousManifest,/usr/bin/mani-
fest-1.gz

--previousManifest,PATH

NoRequires a previous manifest created during a previous
call to S3DistCp. If this is set to false, no error is gener-
ated when a previous manifest is not specified. The
default is true.

--requirePreviousManifest

NoReverses the behavior of --previousManifest to
cause S3DistCp to use the specified manifest file as a
list of files to copy, instead of a list of files to exclude
from copying.

Example:--copyFromManifest --previousMani-
fest,/usr/bin/manifest-1.gz

--copyFromManifest

NoSpecifies the Amazon S3 endpoint to use when upload-
ing a file. This option sets the endpoint for both the
source and destination. If not set, the default endpoint
is s3.amazonaws.com. For a list of the Amazon S3
endpoints, see Regions and Endpoints.

Example: --s3Endpoint,s3-eu-west-1.amazon-
aws.com

--s3Endpoint,ENDPOINT

NoThe storage class to use when the destination is
Amazon S3. Valid values are STANDARD and RE-
DUCED_REDUNDANCY. If this option is not specified,
S3DistCp tries to preserve the storage class.

Example: --storageClass,STANDARD

--storageClass,CLASS

API Version 2009-03-31
117

Amazon Elastic MapReduce Amazon EMR Release Guide
S3DistCp Options

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Re-
quired

DescriptionOption

Noa text file in Amazon S3 (s3://), HDFS (hdfs:///) or local
file system (file:/) that contains a list of src prefixes,
one prefix per line.

If srcPrefixesFile is provided, S3DistCp will not list
the src path. Instead, it generates a source list as the
combined result of listing all prefixes specified in this
file. The relative path as compared to src path, instead
of these prefixes, will be used to generate the destina-
tion paths. If srcPattern is also specified, it will be
applied to the combined list results of the source pre-
fixes to further filter the input. If copyFromManifest
is used, objects in the manifest will be copied and sr-
cPrefixesFile will be ignored.

Example: --srcPrefixesFile,PATH

--srcPrefixesFile,PATH

In addition to the options above, S3DistCp implements the Tool interface which means that it supports
the generic options.

Adding S3DistCp as a Step in a Cluster
You can call S3DistCp by adding it as a step in your cluster. Steps can be added to a cluster at launch
or to a running cluster using the console, CLI, or API. The following examples demonstrate adding an
S3DistCp step to a running cluster. For more information on adding steps to a cluster, see Submit Work
to a Cluster .

To add an S3DistCp step to a running cluster using the AWS CLI

For more information on using Amazon EMR commands in the AWS CLI, see http://docs.aws.amazon.com/
cli/latest/reference/emr.

• To add a step to a cluster that calls S3DistCp, pass the parameters that specify how S3DistCp should
perform the copy operation as arguments.

The following example copies daemon logs from Amazon S3 to hdfs:///output. In the following
command:

• --cluster-id specifies the cluster

• Jar is the location of the S3DistCp JAR file

• Args is a comma-separated list of the option name-value pairs to pass in to S3DistCp. For a
complete list of the available options, see S3DistCp Options (p. 114).

To add an S3DistCp copy step to a running cluster, put the following in a JSON file saved in Amazon
S3 or your local file system as myStep.json for this example. Replace j-3GYXXXXXX9IOK with
your cluster ID and replace mybucket with your Amazon S3 bucket name.

[
 {
 "Name":"S3DistCp step",
 "Args":["s3-dist-cp","--s3Endpoint s3.amazonaws.com","--src
s3://mybucket/logs/j-3GYXXXXXX9IOJ/node/","--dest hdfs:///output","--srcPat

API Version 2009-03-31
118

Amazon Elastic MapReduce Amazon EMR Release Guide
Adding S3DistCp as a Step in a Cluster

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/util/Tool.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/AddingStepstoaJobFlow.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/AddingStepstoaJobFlow.html
http://docs.aws.amazon.com/cli/latest/reference/emr
http://docs.aws.amazon.com/cli/latest/reference/emr

tern .*[a-zA-Z,]+"],
 "ActionOnFailure":"CONTINUE",
 "Type":"CUSTOM_JAR",
 "Jar":"command-runner.jar"
 }
]

aws emr add-steps --cluster-id j-3GYXXXXXX9IOK --steps --steps
file://./myStep.json

Example Copy log files from Amazon S3 to HDFS

This example also illustrates how to copy log files stored in an Amazon S3 bucket into HDFS by adding
a step to a running cluster. In this example the --srcPattern option is used to limit the data copied to
the daemon logs.

To copy log files from Amazon S3 to HDFS using the --srcPattern option, put the following in a JSON
file saved in Amazon S3 or your local file system as myStep.json for this example. Replace
j-3GYXXXXXX9IOK with your cluster ID and replace mybucket with your Amazon S3 bucket name.

[
 {
 "Name":"S3DistCp step",
 "Args":["s3-dist-cp","--s3Endpoint s3.amazonaws.com","--src s3://mybuck
et/logs/j-3GYXXXXXX9IOJ/node/","--dest hdfs:///output","--srcPattern .*daemons.*-
hadoop-.*"],
 "ActionOnFailure":"CONTINUE",
 "Type":"CUSTOM_JAR",
 "Jar":"command-runner.jar"
 }
]

API Version 2009-03-31
119

Amazon Elastic MapReduce Amazon EMR Release Guide
Adding S3DistCp as a Step in a Cluster

Document History

The following table describes the important changes to the documentation since the last release of Amazon
Elastic MapReduce (Amazon EMR).

API version: 2009-03-31

Latest documentation update: July 23, 2015

Release DateDescriptionChange

July 23, 2015Initial release of this guide for the emr-4.0.0 release.Amazon EMR Re-
lease 4.0.0

API Version 2009-03-31
120

Amazon Elastic MapReduce Amazon EMR Release Guide

	Amazon Elastic MapReduce
	Table of Contents
	About Amazon EMR Releases
	Applications
	Components
	Learn More

	Differences Introduced in 4.x
	AMI Version vs. Release Label
	Installing Applications on the Cluster
	Configurations Replace Predefined Bootstrap Actions
	Install Steps Are Deprecated

	Application Environment
	Service Ports
	Users
	Installation Sequence, Installed Artifact, and Log File Locations
	Command Runner

	Configuring Applications
	Apache Hadoop
	Create or Run a Hadoop Application
	Build Binaries Using Amazon EMR
	Run a Script in a Cluster
	Submitting a Custom JAR Step Using the AWS CLI

	Process Data with Streaming
	Using the Hadoop Streaming Utility
	Submit a Streaming Step
	Submit a Streaming Step Using the Console
	AWS CLI

	Process Data with a Custom JAR
	Submit a Custom JAR Step
	Submit a Custom JAR Step Using the Console
	Launching a cluster and submitting a custom JAR step using the AWS CLI

	Configure Hadoop
	Hadoop Daemon Settings
	HDFS Configuration
	Task Configuration
	Task JVM Memory Settings

	Apache Hive
	How Amazon EMR Hive Differs from Apache Hive
	Combine Splits Input Format
	Hive Authorization
	Hive File Merge Behavior with Amazon S3
	ACID Transactions and Amazon S3
	Additional Features of Hive in Amazon EMR
	Write Data Directly to Amazon S3
	Use Hive to Access Resources in Amazon S3
	Variables in Hive
	Amazon EMR Hive queries to accommodate partial DynamoDB schemas
	Copy data between DynamoDB tables in different AWS regions
	Set DynamoDB throughput values per table
	Hive Patches

	Use the Hive JDBC Driver

	Apache Pig
	Submit Pig Work
	Submit Pig Work Using the Amazon EMR Console
	Submit Pig Work Using the AWS CLI

	Call User Defined Functions from Pig
	Call JAR files from Pig
	Call Python/Jython Scripts from Pig

	Apache Spark
	Create a Cluster With Spark
	Configure Spark
	Manually adjusting executor settings
	Automatically configure executors with maximum resource allocation
	Enabling Dynamic Allocation of Executors

	Access the Spark Shell
	Write a Spark Application
	Scala
	Java
	Python

	Adding a Spark Step
	Overriding Spark Default Configuration Settings

	Apache Mahout
	Amazon EMR Connectors and Utilities
	EMR File System (EMRFS) (Optional)
	Consistent View
	How to Enable Consistent View
	Objects Tracked By EMRFS
	Retry Logic
	EMRFS Metadata
	Configuring Consistency Notifications for CloudWatch and Amazon SQS
	Configuring Consistent View
	EMRFS CLI Reference
	Submitting EMRFS CLI Commands as Steps

	Creating an AWSCredentialsProvider for EMRFS
	Encryption in EMRFS
	Create a Cluster With Amazon S3 Server-Side Encryption Enabled
	Using Amazon S3 Client-Side Encryption in EMRFS
	Enabling Amazon S3 Client-Side Encryption in the Console
	Selecting a Master Key Stored in AWS KMS using an SDK or CLI
	Configuring Amazon S3 Client-side Encryption Using a Custom Provider
	Reference Implementation of Amazon S3 EncryptionMaterialsProvider

	emrfs-site.xml Properties for Amazon S3 Client-side Encryption

	Export, Import, Query, and Join Tables in DynamoDB Using Amazon EMR
	Set Up a Hive Table to Run Hive Commands
	Data Types for Hive and DynamoDB
	Hive Options

	Hive Command Examples for Exporting, Importing, and Querying Data in DynamoDB
	Exporting Data from DynamoDB
	Importing Data to DynamoDB
	Querying Data in DynamoDB

	Optimizing Performance for Amazon EMR Operations in DynamoDB
	Provisioned Read Capacity Units
	Read Percent Setting
	Write Percent Setting
	Retry Duration Setting
	Number of Map Tasks
	Parallel Data Requests
	Process Duration
	Avoid Exceeding Throughput
	Request Time
	Time-Based Tables
	Archived Data

	Amazon Kinesis
	What Can I Do With Amazon EMR and Amazon Kinesis Integration?
	Checkpointed Analysis of Amazon Kinesis Streams
	Provisioned IOPS Recommendations for Amazon DynamoDB Tables

	Performance Considerations
	Schedule Amazon Kinesis Analysis with Amazon EMR

	Distributed Copy Using S3DistCp
	S3DistCp Options
	Adding S3DistCp as a Step in a Cluster

	Document History

