AWS Key Management Service

Developer Guide

amazon
webservices™

AWS Key Management Service Developer Guide

AWS Key Management Service: Developer Guide
Copyright © 2015 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
AWS CloudTrail, AWS CodeDeploy, Amazon Cognito, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic
Compute Cloud, Amazon Glacier, Amazon Kinesis, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift,
Amazon Route 53, Amazon S3, Amazon VPC, and Amazon WorkDocs. In addition, Amazon.com graphics, logos, page headers,
button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon's
trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

AWS Key Management Service Developer Guide

Table of Contents

What is the AWS Key ManagemeEnt SEIVICE?iuiuiuiiiiee ittt 1
(7o) 107 o T PP PR 2
CUSTOMET MASTEI KBYS ...ttt ettt ettt et e e aens 2

DA K Y S ..t 2
ENVEIOPE ENCIYPLON ...eeiti et et eneens 2
ENCIYPLON CONIEXE ... enieeiei ettt e e et e e et et et e e e e et e e eenees 3
PEIMISSIONS ON KBYS ...ttt e et e e e e eaas 3
AUAITING KBY USAGE ..uiitiiitiii ittt et ettt e e e e e anas 3

Key Management INfTASITUCIUNEc.iuiiuieii e 3
LT g | TP 3

(€1 =101 B 1] =] o PP 3

AWS Services Integrated With AWS KIMS ... 4
L 1o oo [P P PR 5
(Tt 1110 To JS] ¥= 1 (Yo [T 7
CrBALING KBY S ..ttt e et 7
VIBWING KBS ettt ittt ettt ettt e 11
EIING KOS ettt 12
Enabling and Disabling KEYS 13
Controlling ACCESS 10 YOUE KBYSiiiitiiitiie ittt ettt ettt e e ees 15
KBY POIICIES ..ttt e 15
DEFAUIL POIICY ...ttt e e e e e e 16
Console Key Management PONCYocuiiuiiii e 17
INClUdiNg EXErNaAl ACCOUNESttt ettt e e 18
POICY EVAIUGLIONttt ettt e e 20
(T2 1 | T PP 21
[RY01 = 11 [0 T =)V T TP 22
HOW AWS SErviCeS USE AWS KIMS ..ttt ettt ettt eaees 23
AWS KMS Workflow with SUPpOrted AWS SEIVICEScuuiiuiiiiiieii e 23
ENVEIOPE ENCIYPLION ..oiiiiiiti et 23
ENCIYPUNG USEI DALAueuiiitiiiiie ettt ettt ea e eens 24
DECTYPUNG USEE DALAeuieiiiiiiee et e e e e et e et et eaeanas 24
Managed Keys in AWS Services and in Custom AppliCatioNScvvviiiiiiiiiiniineneas 25
AMIBZON S L.ttt 25
Server-Side Encryption: UsiNg SSE-KIMSo 26
Using the Amazon S3 ENCryption ClENtouiuiiiii e 26

= oo Y] o1 io] g I O] 1] (=) TP 27
AMAZON EB S .. s 27
AMAzoN EBS ENCIYPLONuui e e e e e e e anas 27

= oo Y] o1 io] g I O] 1] (=) TP 28
Using AWS CloudFormation To Create Encrypted Amazon EBS Volumesc.cccoeeeennnee. 28
AMAZON REUASKITL ... ettt e e et 28
Amazon Redshift ENCIYPLON 28

= oo Y] o1 io] g I O] 1] (=) TP 29
AMAZON RS .o enas 29
AMAzoN RDS ENCIYPHON ...ttt ettt e eneens 30
AmMazon RDS ENCryption CONEXEuieuieiiiiiiei e 30

= TS (o 1= T Rl olo Lo (=] S TR 30
Encrypting the iNPUL file ... 31
Decrypting the INPUL fIle ... e 31
Encrypting the OUIPUL fileouie 32

[| @fe]0] (=] | B o (o) (=T 1o o TP 33

= oo Y] o1 io] I O] 1] (=) TR 34
AMAZON WOTKIMAIL ettt et e e e ees 34
AMAazoN WOTKMAI OVEIVIEWcuiiiiiie ettt e 37
AmMazon WOrkMail ENCIYPLONt e e e ens 35

AWS Key Management Service Developer Guide

Amazon WorkMail ENCryption CONEEXLuiueie et 36
AMAZON EMR oo 37
AMAZON EMR OVEIVIEW ...ttt 37
Amazon EMR Support for Encrypted Objects in Amazon S3ccoviiiiiiiiiiiiieeineieen 37
Amazon EMR Use of the AWS KMS ENncryption CONtEXtocvuiiiiiiiiiiiiiiieeieeiee e 37
LOgQINg AWS KIMS APT CallS ..ot ettt ettt e e eees 39
CrEALEAIIAS ... vt 40
(O (=T (=T] = o | PP 41
(01T 112110 A PP 42
(DT o Y/ o A TP PPPPUPIN 43
DBIBTEAIIAS ...t 44
1o 101 ()Y 45
DISADIEK Y ... et e 47
ENADIEKBY .. .eiie i e e 47
o] Y/ o | PP 48
GENEIALEDALAKEY ...t 49
GenerateDataKeyWIithOULPIAINTEXE e 50
GENEIAERANUOM ... ittt 51
L= 1SV 0 o3 51
LISTALIBSES ...ttt ettt 52
[(] = | £ P T P T P U PP TPPPI 53
L] =1 Tl V] o | PP PPP 54
AMAzZON EC2 EXAMPIE ONE ..eiiiii ittt 55
AMAazon EC2 EXAMPIE TWO ...uiiii e e et 56
Programming the AWS KIMS APl ... et e e e 63
L@ =71 11T = T O 11T o | 63
WOTKING With Y S .o ettt ettt et e e e aaenas 64
Creating a CUStOMEr MASIEN KBYttt e e e ae e 64
Generating @ Data KEYiuiiiiiiii e s 65

[T ox o1 = T =) 66
ISy] o =3 66
ENADING KOY S .t 67
DISADIING KBYS ...ttt e 68
Encrypting and DeCrypting Datac.ocuiuiiiuiii et 68
T o] (] g T 0 68

(1= Tod Y/ 1] o I = L= 69
Re-Encrypting Data Under a Different KeYoouiuiiiiiii e 69
WOrking With KEY POLICIES ... euie i e et e e 70
ISy o = Y o o = 70
REtrieViNg @ KEY POIICYt 70
SettiNg @ KEY POIICY ...t e 71
WOTKING WILh GIants oo ettt et e e e e e e e aaenas 72
(O =71 11T T T] - o 72
= 1] o = N 1= L | Pt 72
LYY 0] (] T 1=] 73
[y] o 1= 1 1 73
WOTKING WIth AlIBSES ...t e et e e e e e e 74
Creating AN AlIAS ...uiii e 74
DeletiNng AN AlIAS ..eei e 75
ISy] o AN 1= T 75
UPAtING 8N ALIBS ... et 76
Cryptographiy BaSICSiuiiiiii it e 78
How Symmetric Key Cryptography WOTKS ..o e 79
ENCryption and DECIYPLONcuieii e 79
Authenticated ENCIYPHONui e et ettt e e e e e aenes 79
o o] 110 o TR0 g1 (=)« 80
Reference: AWS KMS and Cryptography Terminologycceeiiiiiiiiiiiiie e 81
[0 o8] 0 =Y o1 TS (] 82

AWS Key Management Service Developer Guide

AWS Key Management Service Developer Guide

What is the AWS Key Management
Service?

The AWS Key Management Service (AWS KMS) is a managed service that makes it easy for you to
create and control the encryption keys used to encrypt your data. AWS KMS is integrated with other AWS
services including Amazon Elastic Block Store (Amazon EBS), Amazon Simple Storage Service (Amazon
S3), Amazon Redshift, Amazon Elastic Transcoder, Amazon WorkMail, and Amazon Relational Database
Service (Amazon RDS) to make it simple to encrypt your data with encryption keys that you manage.
AWS KMS is also integrated with AWS CloudTrail to provide you with key usage logs to help meet your
regulatory and compliance needs.

AWS KMS lets you create keys that can never be exported from the service and which can be used to
encrypt and decrypt data based on policies you define.

You can perform the following management actions on keys by using AWS KMS:

¢ Create, describe, and list keys

« Enable and disable keys

¢ Set and retrieve key usage policies

¢ Create, delete, list, and update key aliases

With AWS KMS you can also perform the following cryptographic functions using keys:

¢ Encrypt, decrypt, and re-encrypt data

¢ Generate data keys that can be exported from the service in plaintext or which can be encrypted under
a key that doesn't leave the service

« Generate random numbers suitable for cryptographic applications

By using AWS KMS, you gain more control over access to data you encrypt. You can use the key
management and cryptographic features directly in your applications or through AWS services that are
integrated with AWS KMS. Whether you are writing applications for AWS or using AWS services, AWS
KMS enables you to maintain control over who can use your keys and gain access to your encrypted
data.

AWS KMS is integrated with AWS CloudTrail, a service that delivers log files to an Amazon S3 bucket
that you designate. By using CloudTrail you can monitor and investigate how and when your keys have
been used and by whom.

AWS Key Management Service Developer Guide
Concepts

To learn more about how the AWS Key Management Service uses cryptography and secures keys, see
the AWS Key Management Service Cryptographic Details whitepaper.

Topics
¢ Concepts (p. 2)
¢ AWS Services Integrated with AWS KMS (p. 4)
¢ Pricing for AWS Key Management Service (p. 5)

Concepts

This section introduces the basic terms and concepts in the AWS Key Management Service and how
they work together to help protect customer data.

Customer Master Keys

AWS KMS uses a type of key called a customer master key (CMK) to encrypt and decrypt data. CMKs
are the fundamental resources that AWS KMS manages. CMKs can be either customer-managed keys
or AWS-managed keys. They can be used inside of AWS KMS to encrypt or decrypt up to 4 kilobytes of
data directly. They can also be used to encrypt generated data keys which are then used to encrypt or
decrypt larger amounts of data outside of the service. CMKs can never leave AWS KMS unencrypted
but data keys can.

There is one AWS-managed key for each account for each service that is integrated with AWS KMS.
This key is referred to as the default key for the service under your account. This key is used to encrypt
data keys used by AWS services to protect data when you don't specify a CMK while creating the encrypted
resource. If you need more granular control, you can specify a customer-managed key. For example, if
you choose to encrypt an Amazon EBS volume, you can specify the AWS-managed default EBS key for
the account or a CMK you created within AWS KMS. The key you selected is then used to protect the
data key used to encrypt the volume.

You can only create CMKs if you have the appropriate permissions. You can provide an alias (display
name) and a description for the key and define which IAM users or roles within an account can manage
and use the key. You can also choose to allow AWS accounts other than your own to use the key.

Data Keys

You use data keys to encrypt large data objects within your own application outside AWS KMS. When
you call Gener at eDat aKey, AWS KMS returns a plaintext version of the key and ciphertext that contains
the key encrypted under the specified CMK. AWS KMS tracks which CMK was used to encrypt the data
key. You use the plaintext data key in your application to encrypt data, and you typically store the encrypted
key alongside your encrypted data. Security best practices suggest that you should remove the plaintext
key from memory as soon as is practical after use. To decrypt data in your application, pass the encrypted
data key to the Decr ypt function. AWS KMS uses the associated CMK to decrypt and retrieve your
plaintext data key. Use the plaintext key to decrypt your data and then remove the key from memory.

Envelope Encryption

AWS KMS uses envelope encryption to protect data. AWS KMS creates a data key, encrypts it under a
customer master key, and returns plaintext and encrypted versions of the data key to you. You use the
plaintext key to encrypt data and store the encrypted key alongside the encrypted data. The key should
be removed from memory as soon as is practical after use. You can retrieve a plaintext data key only if
you have the encrypted data key and you have permission to use the corresponding master key.

https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

AWS Key Management Service Developer Guide
Encryption Context

Encryption Context

All AWS KMS cryptographic operations accept an optional key/value map of additional contextual
information called an encryption context. The specified context must be the same for both the encrypt
and decrypt operations or decryption will not succeed. The encryption context is logged, can be used for
additional auditing, and is available as context in the AWS policy language for fine-grained policy-based
authorization. For more information, see Encryption Context (p. 80).

Permissions on Keys

When you create a master key, you can define a resource-based policy for it. If you do not define a policy,
AWS KMS creates a default one for you that delegates permissions to your account. The permissions
on default keys for a service under your account are created automatically by AWS KMS and cannot be
changed. After you create a key, you can use the AWS KMS API or the AWS ldentity and Access
Management console to edit the key policy, defining the users and accounts that can use the key and
specifying who can manage the key. For more information, see Creating Keys (p. 7).

Auditing Key Usage

You can use AWS CloudTrail to audit key usage. CloudTrail creates log files that contain a history of
AWS API calls and related events for your account. The log file includes calls made by using the AWS
Management Console, AWS SDKs, command line tools, and higher-level AWS services. It also includes
actions requested by users on keys. For an AWS-managed key and customer-managed keys, you can
get log information about when the key was used, get information about when the key was used, the
action that was called, the name of the user, the IP address from which the action request originated,
and so on. For more information about CloudTrail, see the CloudTrail User Guide.

Key Management Infrastructure

Common practice in cryptography requires that encryption and decryption use a publicly available and
peer-reviewed algorithm such as AES (Advanced Encryption Standard) and a secret key. One of the
main problems with cryptography is that it's very hard to keep a key secret. This is typically the job of a
key management infrastructure (KMI). AWS KMS operates the KMI for you. AWS KMS creates and
securely stores the master keys. AWS KMS also creates data keys and encrypts them by using master
keys.

Grants

A grant is a delegation mechanism that you can use to provide other AWS principals long-term permissions
to use master keys. Grants are intended to allow asynchronous use of customer master keys when the
duration of usage is not known up-front but is expected to be long term. The permissions associated with
a grant are described when the grant is created. You can create a grant that allows a subset of permitted
actions or that supports further delegation. Grants are properties of a master key. They require an explicit
AWS principal and a list of the permitted actions. Grants are valid until revoked.

Grant Tokens

There may a slight delay for a grant created in AWS KMS to take effect throughout a region. If you need
to mitigate this delay, a grant token is a type of identifier that is designed to let the permissions in the
grant take effect immediately when passed with any of the following APIs:

e CreateGrant

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html

AWS Key Management Service Developer Guide
AWS Services Integrated with AWS KMS

e Decrypt

* Encrypt

¢ GenerateDataKey

¢ GenerateDataKeyWithoutPlaintext
* ReEncrypt

A grant token is not considered a secret. The grant token contains information about who it's for and
therefore who can use it to cause a grant to take effect more quickly.

AWS Services Integrated with AWS KMS

This topic lists the services that that are currently integrated with the AWS Key Management Service.

Service Name

Default Key Alias

Encryption Con-
text Syntax

Support Date

More Information

Storage and Con-
tent Delivery

Amazon S3 aws/s3 ‘anss3ar aranss3iuck- | November 12, How Amazon
et_naneffil e_nane" | 2014 Simple Storage
Service Uses AWS
KMS (p. 25)
Amazon EBS aws/ebs "aws:ebs:id": November 12, How Amazon
"vol-2cf b133e" 2014 Elastic Block Store
(Amazon EBS)
Uses AWS
KMS (p. 27)
Database
Amazon RDS aws/rds "aws:rds:db- January 06, 2015 | How Amazon Rela-
id":"db-CQYSNDP- tional Database
BZ7BPNHY3RTDGSQY Service Uses AWS
KMS (p. 29)
"ansesd \db7d21d70"
Amazon Redshift | aws/redshift "aws:redshift:arn": | November 12, How Amazon Red-

"arn:aws:red-
shift:r egi on:ac-
oot |Dised ser rend,

"aws:redshift:creat-
etime":
"20150206T18322"

2014

shift Uses AWS
KMS (p. 28)

Analytics

http://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
http://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
http://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
http://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
http://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Key Management Service Developer Guide
Pricing

Service Name Default Key Alias | Encryption Con- | Support Date More Information
text Syntax

Amazon EMR aws/s3 ‘anssBan'amnss3uck- | March 25, 2015 How Amazon EMR

et_nanefil e_nane" Uses AWS KMS
(p.37)

Application Ser-

vices

Elastic Transcoder | aws/s3 * "service" : "elastic- | November 24, How Elastic
transcoder.amazon- | 2014 Transcoder Uses
aws.com", AWS KMS (p. 30)

"Keyld" : "ARN of
the key associ -
ated with your
pi pel i ne",

"Plaintext" : "BLOB
that contains
your AES key"

Enterprise Applic-

ations

Amazon WorkMail | aws/workmail "aws:work- January 28, 2015 | How Amazon
maiam™ 'am:awswork- WorkMail Uses
mail:r egi on:ac- AWS KMS (p. 34)

count | D:organiz-
ation/or gani za-
tion I D

*When you choose server-side encryption, Amazon S3 performs all file encryption and decryption on
your behalf. For more information, see How Elastic Transcoder Uses AWS KMS (p. 30).

Pricing for AWS Key Management Service

You incur charges from AWS KMS when you create and store enabled keys in AWS KMS, and when you
make AWS KMS API requests. For the exact charges, go to the AWS Key Management Service Pricing
page on the AWS website.

Charges for Key Storage

You are charged for all customer master keys (CMKSs) that you create and that are enabled. To avoid
storage charges for a CMK, disable the key (p. 13). You are not charged for the storage of default CMKs
that are created automatically by an AWS service integrated with AWS KMS such as Amazon Elastic
Block Store (Amazon EBS), Amazon Relational Database Service (Amazon RDS), and others.

Charges for APl Requests

You are charged for all AWS KMS API requests. Common requests include the usage of CMKs for
encryption and decryption, but you are also charged for all management API requests such as CreateKey,
ListKeys, GetKeyPolicy, etc.

http://aws.amazon.com/kms/pricing/
http://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
http://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeys.html
http://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html

AWS Key Management Service Developer Guide
Pricing

In addition to direct API requests, you are also charged when any AWS service that is integrated with
AWS KMS makes a request on your behalf. For example, you may use server-side encryption with AWS
KMS (SEE-KMS) to upload data to Amazon S3. When you do, each PUT request results in a
GenerateDataKey API request from Amazon S3 to AWS KMS on your behalf to create an object key that
is used to encrypt the Amazon S3 object. In this case, you would be charged for each API request that
Amazon S3 makes on your behalf.

The first 20,000 API requests of each calendar month fall into the free tier which means you are not
charged for them. To avoid charges for AWS KMS API requests you can limit your total number of requests
to 20,000 or fewer in a calendar month, or stop making API requests to the service and stop using AWS
KMS-backed encryption with the AWS services that are integrated with AWS KMS.

http://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html

AWS Key Management Service Developer Guide
Creating Keys

Getting Started

The following topics discuss how to use AWS Key Management Service in the IAM console to create,
view, edit, and enable customer master keys. You enable keys to make them usable. Keys are enabled
by default when first created.

Topics
e Creating Keys (p. 7)
¢ Viewing Keys (p. 11)
e Editing Keys (p. 12)
¢ Enabling and Disabling Keys (p. 13)

Creating Keys

The following procedure describes how to use the IAM console to create a customer master key in your
account. The console shows all of the customer master keys that have been created.

Sign into IAM

1. Signin to the AWS Management Console and open the IAM console at
https://console.aws.amazon.com/iam/. You will see a screen similar to the following.

https://console.aws.amazon.com/iam/

AWS Key Management Service Developer Guide
Creating Keys

2.
3.

i'i Services v
Dashboard Create Key Key Actions ~
4
Details i RS A
Filter: US East (N. Virginia) ~ @ Q

Groups
Users (] Alias # Key ID 1
Roles I:I HighlyConfidentialData dacef 28!
Identity Providers |':'| CriticalData dcelfber
Password Policy () ApplicationXyZz db67340,
Credential Report aws/redshift Sbfces3

aws/ebs af363T7ds
Encryption Keys aws/s3 e56013d

-—_‘MMWW

In the navigation pane, click Encryption Keys.
Select a region from the region list.

AWS Key Management Service Developer Guide
Creating Keys

4.

i'i Services ~

Dashboard

4

Details

Groups

Users

Roles

Identity Providers
Password Policy

Credential Report

Encryption Keys

Click Create Key.

Create Key Key Actions ~

Filter: US East (N. Virginia) ~ @ Q

US East (N. Virginia)
U US West (Oregon)

) US West (N. California)
[EU (Ireland)

[] EU (Frankiurt)

Asia Pacific (Singapore)

Asia Pacific (Tokyo)

Asia Pacific (Sydney)

South America (Sao Paulo)

Access to the AWS KMS section of the IAM console

Access to use the management console for AWS KMS requires appropriate permissions. Note that users
with only IAM permissions will not have access to use the AWS KMS section of the IAM console. Users
must have KMS permissions. The policy document below shows the permissions needed to use all

features of AWS KMS in the IAM console:

"Version": "2012-10-17",
"Statement": [

{

"Effect": "Allow',

"Action": |
"kns: Cr eat eKey",
"knms: Creat eAl i as",
"knms: Del et eAl i as",
"knms: Gener at eRandont',
"knms: Descri be*",
"kns: Get *",

"Sid": "Consol e Access",

Key ID 3

dacer 28!
dce1fBef-
dbET340;
Shbfces31
afab37da

e56013d

AWS Key Management Service Developer Guide
Creating Keys

"kns: Li st*",
"iam Li st Groups”,
"iam Li st Rol es",
"iam Li st Users"
|
"Resource": [

"wxn

]

Important
You cannot delete a key after you create it. You can only disable a key.

Enter an alias and a description

In this step you'll enter an alias and a description for the key. The alias is a display name that can be
used to easily identify the key. We recommend, therefore, that you choose an alias that indicates the type
of data the key will be used to encrypt or the application in which the key will be used. The alias must be
between 1 and 32 characters long inclusive and must be an alphanumeric character, a dash, a forward
slash (/), or an underscore. An alias must not begin with "aws". Aliases that begin with "aws" are reserved
by Amazon Web Services to represent AWS-managed keys in your account.

The description can be up to 256 characters long and should tell users what the key will be used to
encrypt.

1. Enter an alias for the key.
2. Enter a description for the key.
3. Click Next Step.

Specify who can manage the key

1. Define which IAM users or roles can administer the key via the AWS KMS API by placing a check
beside the appropriate name. Additional IAM permissions may be needed for the user or role to
manage the key from the console. See Access to the AWS KMS section of the IAM console above
for information on which 1AM permissions are needed.

Important

Note that the root user for the account has permissions by default and that any users or
roles that have appropriate AWS KMS management permissions attached to them can also
manage the key.

2. Click Next Step.

Specify who can encrypt and decrypt

In this step you determine who can use the key to encrypt and decrypt data by identifying the users and
roles to whom you want to grant this permission. Keep in mind, however, that any user or role that has
appropriate AWS KMS permissions attached to them as resource -level policies for the key can also use
the key to encrypt or decrypt data.

1. Forthe current account, place a check beside the appropriate names to define which IAM users and
roles can use the key to encrypt and decrypt.

10

AWS Key Management Service Developer Guide
Viewing Keys

2. At the bottom of the page, you can also identify other accounts that can use this key to encrypt and
decrypt data. Click Add an External Account and enter the IDs of the accounts that you want to be
able to use this key. Note that the administrators of those accounts can further restrict access to the
key by creating the necessary resource-level IAM policies for their users by including the ARN of the
key. For more information, see Including External Accounts (p. 18).

3. Click Finish to create the key. A page similar to the following appears where you can preview the
policy you just created.

I*l Services

(]
D
T
D
.
D
3
[#p]
m
Ul
(73]

Preview Key Policy

Ve
o

This is a preview of your key policy
Step 1: Create Alias and Description

Step 2: Define Key Administrators {

"Id": "key-consolepolicy-2",
Step 3: Define Key Usage ™ersion™ "2012-10-17",
Permissions "Statement™ [

Step 4 : Preview Key Policy {
"Sid™: "Enable 1AM User Permissions”,

"Effect™: "Allow",
"Principal”: {
"AWS" [
"am:aws:iam:: -root”
]
1.
"Action"™ "kms:*",
"Resource": "

Viewing Keys
The following procedure describes how to use the IAM console to view master keys, including keys

managed by customers and those managed by AWS.

1. Sign in to the AWS Management Console and open the IAM console at
https://console.aws.amazon.com/iam/.

11

https://console.aws.amazon.com/iam/

AWS Key Management Service Developer Guide
Editing Keys

2.

3.

In the navigation pane, click Encryption Keys. The console shows all of the keys that have been
created, including customer-managed and AWS-managed keys. The page lists an alias, description,
and key ID for each key. AWS-managed keys, denoted by the orange AWS icon before the alias, are
permanently enabled for use by services that support check box encryption. You cannot disable, edit,
or delete them. You also cannot delete customer-managed keys you create.

Select the region by clicking the list shown in the following screenshot.

ﬁ Services v
Dashboard Key Actions ~
1
Details Filter: US East (N. Viiginia)» @ | q
Groups US East (N. Vinginia)
Users D US West (Oregon)
Roles B US West (N. California)
Identity Providers (] EU (Ireland)
Password Policy (] EU (Frankfurt)
Credential Report Asia Pacific (Singapore)
Asia Pacific (Tokyo)
Encryption Keys Asia Pacific (Sydney)
South America (Sao Paulo)

Editing Keys

The following procedure describes how to use the IAM console to edit customer master keys.

1.

Sign in to the AWS Management Console and open the IAM console at
https://console.aws.amazon.com/iam/.

. In the navigation pane, click Encryption Keys. The console shows all of the keys that have been

created, including customer-managed and AWS-managed keys. The page lists an alias, description,
and key ID for each key. AWS-managed keys, denoted by the orange AWS icon before the alias, are
permanently enabled for use by services that support check box encryption. You cannot disable, edit,
or delete them. AWS will keep policies on AWS-managed keys updated for new service features as
necessary.You also cannot delete customer-managed keys you create.

. Select the region by clicking the drop down shown in the following screenshot.

12

Key D =

dacei285-
dcelfbef-8
db&7340a-
abfces3 1
af3637da-«

e56013dc-

https://console.aws.amazon.com/iam/

AWS Key Management Service Developer Guide
Enabling and Disabling Keys

i'i Services v
Dashboard Key Actions ~
4
Details Filter: US East (N. Virginia) ~ @ Q
Groups US East (N. Virginia)
Users O US West (Oregon) Koy DS
Roles (] US West (N. California) 4ace7285-
Identity Providers (] EU (Ireland) 4celf8ef-8
Password Policy B EU (Frankfurt) db67340a-
Credential Report Asia Pacific (Singapore) 8bfce531f
Asia Pacific (Tokyo) af3g3rda-
Encryption Keys Asia Pacific (Sydney) e56013dc-
South America (Sao Paulo)

4. To view the key details, click the row for a key. The page following shows properties for the key,
including the region, the Amazon Resource Name (ARN), the alias, and a description. The page also
displays the 1AM users and roles within your account and the specified region that can manage and
use the key. You can use this page to edit the properties of the key.

5. You can add or remove key administrators. Clicking the Add button takes you to a new page that
allows you to specify users or roles that can administer the key. To remove an administrator, place a
check beside the appropriate name and click the Remove button.

6. You can specify the users or roles that can use the key for encryption and decryption. Clicking the Add
button takes you to a new page that allows you to specify who can use the key. To remove a user or
role, place a check beside the appropriate name and click the Remove button.

7. You can specify yearly key rotation by placing a check in the appropriate box.

8. Click Save Changes for each item for which you want to save changes. Click Back to Encryption
Keys at the top of the page to return to the Encryption Keys summary page.

Enabling and Disabling Keys

The following procedure describes how to use the IAM console to enable and disable customer master
keys. When you create a key, it is enabled by default. If you disable a key, nobody can use it. Therefore,
disabling is a quick way to block access to a key. You cannot delete a key. Note that AWS-managed keys
are permanently enabled for use by services that support check box encryption. You cannot disable them.

13

AWS Key Management Service Developer Guide
Enabling and Disabling Keys

1. Sign in to the AWS Management Console and open the IAM console at
https://console.aws.amazon.com/iam/.

2. In the navigation pane, click Encryption Keys. The console shows all of the keys that have been

created, including customer-managed and AWS-managed keys. AWS-managed keys are permanently

enabled for use by services that support check box encryption. You cannot disable them.
3. Select the region by clicking the list shown in the following screenshot.

T Services v
Dashboard Key Actions ~
1
Details Filter: US East (N. Viginia)~ @ | o
Groups US East (M. Viginia)
Users D US West (Oregon)
Roles (] US West (N. California)
Identity Providers B EU (Ireland)
Password Palicy (] EU (Frankfurt)
Credential Report Asia Pacific (Singapore)
Asia Pacific (Tokyo)
Encryption Keys Asia Pacific (Sydney)
South America (Sao Paulo)

4. Place a check beside the name of the key or keys you want to enable or disable. Note that the status
column indicates whether a key is enabled or disabled.

5. Click Key Actions.
6. Choose Enable or Disable from the list.

14

KeyID =

4acer7285-
dcelfBef-o
db67340a-
Bbfce5314f
af3b37da-

e56013dc-

https://console.aws.amazon.com/iam/

AWS Key Management Service Developer Guide
Key Policies

Controlling Access to Your Keys

AWS Key Management Service provides two security mechanisms that you can use to protect your keys.
Key policies are JSON documents that specify who can use a key, the operations the person can perform,
and the conditions that govern use of the key. Grants are long-term alternate mechanisms to key policies
that can also be used to grant permissions to keys.

In addition to these mechanisms, you can also use IAM user-based permissions as described in Overview
of AWS IAM Permissions.

Topics
¢ Key Policies (p. 15)
¢ Grants (p. 21)

Key Policies

In order to define resource-based permissions, you need to attach policies to the keys. The policies let
you specify who has access to the key and what actions they can perform. Best practice dictates that
you define the users or roles that can use it when you create the key.

A key policy specifies who can manage a key and which user or role can encrypt or decrypt by using the
key. Typically, most users set key policies by using the Encryption Keys section of the IAM console.
You can also programmatically set a key policy by calling Put KeyPol i cy and retrieve it by calling

Get KeyPol i cy. Key policies share a common syntax with the IAM policy specification. Conceptually,
you can think of a policy as having the following JSON format:

"Version": "2012-10-17",
"Statenment": [{

"Effect": "effect",
"Principal": "principal",
"Action": "action",
"Resource": "arn",

"Condition": {
"condition": {
"key" : "val ue"

}

15

http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_permissions.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_permissions.html

AWS Key Management Service Developer Guide
Default Policy

There can be multiple policy statements in a single document, and each statement can consist of up to
five elements:

e Effect: This can be Allow or Deny.

e Principal : The AWS entity that is allowed or denied access to the key. This value is represented
by the ARN of the principal.

¢ Acti on: Identifies the operations that can be performed by using the key. You can also use Not Act i on
to specify an exception to a list of actions. This can often result in shorter policies than denying multiple
actions.

* Resour ce: The key the action applies to. You can also specify Not Resour ce. Note that you must
use the full 32 character key ID when specifying the key as in the following example. Key aliases are
not supported in policies either alone or as part of the ARN in the resource section of key policies when
defining permissions on the key.

"Resource": [
"arn: aws: knms: us- east-1: 0123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012"

]

e Condi ti on: One or more conditions that must be met before a permitted action can be performed.
With conditions you can use data coming in through the request context as additional criteria to evaluate
the policy.

For more information about policy structure, see the AWS IAM Policy Reference.

Default Policy

If you do not specify a policy when you create a key, AWS Key Management Service creates the following
default policy, which grants the AWS root account full access to all AWS KMS actions for the key the
policy is attached to. This policy is also necessary so that you can create IAM user policies that give IAM
users permission to use the key.

{
"1d": "key-default",
"Version": "2012-10-17",
"Statenent": [
{
"Sid": "Enable | AM User Pernissions",
"Effect": "Allow',
"Principal": {"AWS":"arn:aws:iam:012345678901: root"},
"Action": ["kns:*"],
"Resource": "*"
}
]
}

16

http://docs.aws.amazon.com/IAM/latest/UserGuide/policy-reference.html

AWS Key Management Service Developer Guide
Console Key Management Policy

Console Key Management Policy

The IAM management console allows you to define more granular management permissions by creating
the following policy that enables you to separate the principals that can manage the key from those that
can use it. The first statement matches the default AWS KMS key policy. The second and third statements
define which AWS principals can manage and use the key respectively. The fourth statement enables

AWS Services that are integrated with AWS KMS to use the key on behalf of the specified principal. This
statement permits AWS services to create and manage grants. The condition uses a context key that is

set only for KMS calls made by AWS services on behalf of the customers.

{

"1d": "key-consol epolicy-1",

"Version": "2012-10-17",

"Statenent": [

{

"Sid": "Enable | AM User Pernissions",
"Effect": "Alow',
"Principal": {"AWS": "arn:aws:iam:012345678901:root"},
"Action": "kms:*",
"Resource": "*"

"Sid"': "Alow access for Key Adm nistrators",
"Effect": "Alow',

"Principal": {"AWS": "arn:aws:iam:012345678901: user/Alice"},

"Action": [
"kns: Create*",
"kns: Descri be*",
"kns: Enabl e*",
"kms: List*",
"kms: Put *",
"kns: Updat e*",
"kms: Revoke*",
"kns: Di sabl e*",
"knms: Get *",
"kmns: Del et e*"

I,

"Resource": "*"

"Sid"': "A'l ow use of the key",
"Effect": "Alow',

"Principal": {"AWS": "arn:aws:iam:012345678901: user/Alice"},

"Action": [
"kms: Encrypt"”,
"kns: Decrypt",
"kms: ReEncrypt ",
"kns: Gener at eDat aKey* ",
"kns: Descri beKey"
1,

"Resource": "*"

"Sid"': "Alow attachnent of persistent resources"”,
"Effect": "Alow',

"Principal": {"AWS": "arn:aws:iam:012345678901: user/Alice"},

17

AWS Key Management Service Developer Guide
Including External Accounts

"Action": [
"knms: CreateGrant ™",
"kns: Li st Grant s",
"kms: RevokeG ant "

1.

"Resource": "*",
"Condition": {"Bool": {"kns: G antl|sFor AWBResource": "true"}}
}
]
}
Including External Accounts

When you use the console to give external accounts the ability to use a key, the account number is added
to the policy in the following manner.

¢ The third statement in the following policy defines which AWS principals can use the key. Note that
account number 123456789012 is the account that created the key and account number 109876543210
is an external account that you enabled to use the key during creation. For more information, see
Creating Keys (p. 7)

¢ The fourth statement enables AWS Services that are integrated with AWS KMS to use the key on
behalf of the specified principals. Two principals are specified —a user in the account that created the
key and the root of an external account specified when the key was created.

"Id": "key-consol epolicy-1",
"Version": "2012-10-17",
"Statenment": [

{

b

"Sid": "Enable | AM User Perni ssions",
"Effect": "All ow',
"Principal": {"AWS": "012345678901"},

"Action": "kms:*",
"Resource": "*"
"Sid': "Alow access for Key Adm nistrators”,

"Effect": "Allow',

"Principal": {"AWS": "arn:aws:iam:012345678901: user/Alice"},

"Action": [
"kns: Create*",
"kns: Descri be*",
"kns: Enabl e*",
"kns: Li st*",
"kns: Put *",
"kns: Updat e*",
"kns: Revoke*",
"kns: Di sabl e*",

"kms: Get *",
"kns: Del et e*"
1,
"Resource": "*"

18

AWS Key Management Service Developer Guide
Including External Accounts

{
"Sid': "A'low use of the key",
"Effect": "Allow',
"Principal": {"AW":
"arn: aws:iam :012345678901: user/ Alice","arn: aws: i am : 109876543210: root "},
"Action": [
"kms: Encrypt"”,
"kns: Decrypt",
"kms: ReEncrypt ",
"kns: Gener at eDat aKey* ",
"kns: Descri beKey"
1,
"Resource": "*"
1
{
"Sid"': "Alow attachnent of persistent resources"”,
"Effect": "Allow',
"Principal": {"AWS": "arn:aws:iam:012345678901: user/Alice",
"arn: aws:iam:109876543210: root "},
"Action": [
"kms: CreateG ant ",
"kms: Li st Grant s",
"kms: RevokeG ant "
1,
"Resource": "*",
"Condition": {"Bool": {"kms: G ant|sFor AWSResource": "true"}}

Administrators of an external account that have usage permissions to a key can further restrict access
to that key by creating a resource-level IAM policy. The third statement in the above policy adds external
account number 109876543210 to the list of principals that can use the key. However, IAM users in
account 109876543210 can use the key only if that account's administrator creates and attaches a
resource-level policy that specifies the key ARN and permitted actions. For example, assume that users
need to be able to create encrypted AWS resources in any service that integrates with AWS KMS using
key 12345678- 1234- 1234- 1234- 123456789012. The administrator must attach a policy similar to
the following to grant the users the appropriate permissions. This policy was created by using the IAM
policy generator. For more information about creating IAM policies, see Managing IAM Policies. Note that
key 12345678-1234-1234-1234-123456789012 will not appear in the AWS console for administrators to
directly manage or select when creating encrypted resources. The key's ARN can only be referenced in
a policy document associated with IAM users under the target account (109876543210 in this example).

{
"Id": "key-consol epolicy-1",
"Version": "2012-10-17",
"Statenment”: [

{
"Sid': "AlowlseO TheKey",
"Effect": "All ow',
"Action": [
"kns: Encrypt”,
"kns: Decrypt”,
"kns: ReEncrypt *",

19

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

AWS Key Management Service Developer Guide
Policy Evaluation

"kns: Gener at eDat akKey* ",
"kns: Descri beKey"
1.
"Resource": |
"arn: aws: kms: us- east-1: 0123456789012 key/ 12345678- 1234- 1234- 1234-
123456789012"

]

}s

{
"Sid": "All owAttachnment O Persi st ent Resources”,
"Effect": "Allow',
"Action": [

"knms: CreateGrant™”,
"kns: Li st Grant s",
"kns: RevokeG ant "
1,
"Resource": |
"arn:aws: kns: us- east - 1: 0123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012"
]
"Condition": {"Bool": {"kns: G antl|sFor AWSResource": true}}
}

Policy Evaluation

When authorizing access to a key, AWS KMS evaluates both the resource-based permissions as well
as any relevant user-based permissions attached to the key as well as any resource level permissions
attached to the user. The default policy on the key enables * access for the owner account and that, in
turn, enables IAM users permissions defined in the account to be applied. AWS KMS uses the algorithm
described in the IAM Policy Evaluation Logic to authorize access to the key. In particular, Deny statements
take precedence wherever they occur.

For example, assume that there are two keys and three users. The keys and users have the following
policies:

» Key 1 allows the account principal to use the key.

* Key 2 allows users A and C to use the key.

» User A has no attached policy.

¢ User B's attached policy allows B to perform all AWS KMS actions on all keys.
» User C's attached policy denies all AWS KMS actions on all keys.

User C cannot access either key 1 or key 2 because all AWS KMS actions are denied for user C via Deny
statements in the respective IAM policy. User B can access key 1 but not key 2 because the key policy
for key 2 does not grant the account principal use of the key and, therefore, the IAM policy defined in the
account is not evaluated. User A is not allowed to access key 1 because user A has no AWS KMS rights
in the 1AM policy, but user A can access key 2 because the key policy grants explicit access to user A.

When managing key policies, be careful to not lock yourself out of a key and make the key unmanageable.
For example, in the example above, if someone accidentally removes the account principal access from
key 1, or if users A and C are removed from the account, the respective keys cannot be managed or used
by anyone.

20

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_EvaluationLogic.html

AWS Key Management Service Developer Guide
Grants

AWS KMS supports two resourced-based access control mechanisms — key policies and grants. Grants
enable customers to programmatically delegate programmatic use of KMS keys to other AWS principals.
Key policies can also be used to enable access to other principals, but they work best for relatively static
assignments of rules for key use. Key policy changes follow the same permissions model used for policy
editing elsewhere in AWS. That is, users either have permissions to manage the policy or they do not.
Those users with Put Pol i cy access for a key can completely replace the policy on a key with the policy
of their choice. To enable more granular permissions around permissions management, use grants.

When creating a grant, you specify the principal, the set of operations that can be performed on a particular
key, and optional constraints based on the encryption context. Once the grant has been created, the
principal identified in the grant can execute the permitted operations subject to the defined constraints
for as long as the grant is active. Grants must be explicitly revoked by a user with RevokeGr ant access
on the key or may be retired by the principal designated as the Ret i ri ngPri nci pal for the grant.

You call the Cr eat eGr ant API to create a grant. Pass both an identifier of the key for which the grant is
to be created, the grantee principal being given permission to use the key, and a list of operations to be
permitted. Cr eat eGr ant returns a grant ID that you can use to identify the grant in subsequent operations.
To further customize the grant permissions, you can also pass optional parameters that define grant
constraints.

There are two supported grant constraints - Encr ypt i onCont ext Equal s and

Encrypt i onCont ext Subset . Encr ypt i onCont ext Equal s specifies that the grant applies only when
the exact specified Encr ypt i onCont ext is present in the request (for example, Encrypt, Decrypt etc).
Encr ypt i onCont ext Subset specifies that the grant applies as long as all the entries in the encryption
context subset constraint are matched by the request. The request may contain additional encryption
context entries. For example, a grant for operations Encr ypt and Decr ypt with

Encrypti onCont ext Subset constraint {“ Depart nment”: " Fi nance”,

“Cl assification”:"Public”} will allow encryption and decryption of either:
{“Departnent”:”Finance”, “dassification”:"Public”} or{“Departnment”:”Fi nance”,
“Classification”:"Public”, “Custoner”:”12345"} but will not apply to
{“Departnent”:”Fi nance"}.

When the grantincludes Cr eat eG ant as a G ant Oper at i on, the grant only allows creation of equally
or more restrictive grants. That is, the grant operations may be any subset of the grant operations and
the Grant Const r ai nt can be the same or more restrictive (fields can be added to an

Encr ypt i onCont ext Subset constraint, or an Encr ypt i onCont ext Subset constraint can be turned
into an Encr ypt i onCont ext Equal s constraint).

21

AWS Key Management Service Developer Guide

Rotating Keys

When you request AWS KMS to create a customer master key (CMK), the service creates a key ID for
the CMK and key material referred to as a backing key that is tied to the key ID of the CMK. If you choose
to enable key rotation for a given CMK, AWS KMS will create a new version of the backing key for each
rotation. It is the backing key that is used to perform cryptographic operations such as encryption and
decryption. When you choose a CMK to encrypt new data, AWS KMS automatically uses the latest version
of the backing key to perform the encryption. When you want to decrypt data, AWS KMS automatically
determines the correct version of the backing key to use. From your point of view, your CMK is simply a
logical resource that does not change regardless of whether or of how many times the underlying backing
keys have been rotated.

Automated key rotation currently retains all prior backing keys so that decryption of encrypted data can
take place transparently. If you want to prevent decryption of old ciphertexts, you can create a new CMK
and change your alias to point to the new key. You can then control when you choose to disable the old
key. Disabling a CMK prevents the backing keys tied to it from being used to encrypt or to decrypt.

For more detailed information about backing keys and rotation, see the KMS Cryptographic Details
whitepaper.

22

https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

AWS Key Management Service Developer Guide
AWS KMS Workflow with Supported AWS Services

How AWS Services use AWS KMS

AWS KMS is integrated with multiple AWS services. The following topics discuss how these services use
AWS KMS to provide encryption of customer data. The first topic in the list describes how envelope
encryption works in the context of the supported services.

Topics
¢ AWS KMS Workflow with Supported AWS Services (p. 23)
¢ How Amazon Simple Storage Service Uses AWS KMS (p. 25)
¢ How Amazon Elastic Block Store (Amazon EBS) Uses AWS KMS (p. 27)
¢ How Amazon Redshift Uses AWS KMS (p. 28)
¢ How Amazon Relational Database Service Uses AWS KMS (p. 29)
¢ How Elastic Transcoder Uses AWS KMS (p. 30)
¢ How Amazon WorkMail Uses AWS KMS (p. 34)
¢ How Amazon EMR Uses AWS KMS (p. 37)

AWS KMS Workflow with Supported AWS
Services

This topic describes how and when AWS KMS generates, encrypts, and decrypts keys that can be used
to encrypt your data in a supported AWS service.

Envelope Encryption

AWS KMS supports two kinds of keys — master keys and data keys. Master keys can be used to directly
encrypt and decrypt up to 4 kilobytes of data and can also be used to protect data keys. The data keys
are then used to encrypt and decrypt customer data.

Customer master keys are stored securely in AWS KMS. They can never be exported from AWS KMS.
Data keys created inside of AWS KMS can be exported and are protected for export by being encrypted
under a master key. The data key encryption process is illustrated by the following diagram:

23

AWS Key Management Service Developer Guide
Encrypting User Data

P

Customer Master Key

|
R o=

Key

@;

Encry pted Data
Key

Encrypting User Data

When a data key is requested, AWS KMS returns both the encrypted and plaintext key back to the service
or application that requested it. The plaintext data key is used to encrypt the user's data in memory. This
key should never be written to disk and should be deleted from memory as soon as practical. The encrypted
copy of the data key should be written to disk alongside of the encrypted data. This is acceptable and

simplifies management of the encrypted data key.

Plaintext Daa Key

1
o h% > &

Plantext Daa . Ciphertext
Encry ption Algorichm

Decrypting User Data

Decryption reverses the encryption process. When a service or application needs to decrypt data, it sends
AWS KMS the encrypted data key. AWS KMS decrypts the data key by automatically using the correct
customer master key and then sends the plaintext key back to the service or application that requested
it. The plaintext key is used to decrypt the data. This key should never be written to disk and should be
deleted as soon as is practical. The following illustration shows the customer master key used with the

symmetric decryption algorithm to decrypt the data key.

24

AWS Key Management Service Developer Guide
Managed Keys in AWS Services and in Custom
Applications

=

Customer Master Key

!

'ﬁg -_— i:,%_h F‘ata

Encrypted Data
Kl
Key =
Decryption Algorithm

The next illustration shows the plaintext data key and symmetric algorithm used together to decrypt the
user's encrypted data. The plaintext data key should be removed from memory as soon as is practical.

Plaintext Data Key

el
s

Ciphertext i) Plaintext
Decry ption Algorithm

N

Managed Keys in AWS Services and in Custom
Applications

You can choose to encrypt data in one of the services integrated with AWS KMS by using the
AWS-managed key for that service under your account. In this case, all users who have access to that
service can use the key. For more granular control, you can choose to create a customer-managed key
and set policies that define who can use the key and what actions the users can perform.

How Amazon Simple Storage Service Uses AWS
KMS

This topic discusses how to protect data at rest within Amazon S3 data centers by using AWS KMS.
There are two ways to use AWS KMS with Amazon S3. You can use server-side encryption to protect
your data with a customer master key or you can use a AWS KMS customer master key with the Amazon

S3 encryption client to protect your data on the client side.

Topics
e Server-Side Encryption: Using SSE-KMS (p. 26)
¢ Using the Amazon S3 Encryption Client (p. 26)

25

AWS Key Management Service Developer Guide
Server-Side Encryption: Using SSE-KMS

¢ Encryption Context (p. 27)

Server-Side Encryption: Using SSE-KMS

You can protect data at rest in Amazon S3 by using three different modes of server-side encryption:
SSE-S3, SSE-C, or SSE-KMS.

SSE-S3 requires that Amazon S3 manage the data and master encryption keys. For more information
about SSE-S3, see Protecting Data Using Server-Side Encryption with AWS-Managed Encryption
Keys.

SSE-C requires that you manage the encryption key. For more information about SSE-C, see Protecting
Data Using Server-Side Encryption with Customer-Provided Encryption Keys (SSE-C).

SSE-KMS requires that AWS manage the data key but you manage the master key in AWS KMS. The
remainder of this topic discusses how to protect data by using server-side encryption with AWS
KMS-managed keys (SSE-KMS).

You can request encryption and the master key you want by using the Amazon S3 console or API. In the
console, check the appropriate box to perform encryption and select your key from the list. For the Amazon
S3 API, specify encryption and choose your key by setting the appropriate headers in a GET or PUT
request. For more information, see Protecting Data Using Server-Side Encryption with AWS KMS-Managed
Keys (SSE-KMS).

You can choose a specific customer-managed master key or accept the AWS-managed key for Amazon
S3 under your account. If you choose to encrypt your data, AWS KMS and Amazon S3 perform the
following actions:

Amazon S3 requests a plaintext data key and a copy of the key encrypted by using the specified
customer-managed master key or the AWS-managed master key.

AWS KMS creates a data key, encrypts it by using the master key, and sends both the plaintext data
key and the encrypted data key to Amazon S3.

Amazon S3 encrypts the data using the data key and removes the plaintext key from memory as soon
as possible after use.

Amazon S3 stores the encrypted data key as metadata with the encrypted data.

Amazon S3 and AWS KMS perform the following actions when you request that your data be decrypted.

Amazon S3 sends the encrypted data key to AWS KMS.

AWS KMS decrypts the key by using the appropriate master key and sends the plaintext key back to
Amazon S3.

Amazon S3 decrypts the ciphertext and removes the plaintext data key from memory as soon as
possible.

Using the Amazon S3 Encryption Client

You can use the Amazon S3 encryption client in the AWS SDK from your own application to encrypt
objects and upload them to Amazon S3. This method allows you to encrypt your data locally to ensure
its security as it passes to the Amazon S3 service. The S3 service receives your encrypted data and does
not play a role in encrypting or decrypting it.

The Amazon S3 encryption client encrypts the object by using envelope encryption. The client calls AWS
KMS as a part of the encryption call you make when you pass your data to the client. AWS KMS verifies
that you are authorized to use the customer master key and, if so, returns a new plaintext data key and

26

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

AWS Key Management Service Developer Guide
Encryption Context

the data key encrypted under the customer master key. The encryption client encrypts the data by using
the plaintext key and then deletes the key from memory. The encrypted data key is sent to Amazon S3
to store alongside your encrypted data.

Encryption Context

Each service that is integrated with AWS KMS specifies an encryption context when requesting data
keys, encrypting, and decrypting. The encryption context is additional authenticated information that AWS
KMS uses to check for data integrity. That is, when an encryption context is specified for an encryption
operation, the service also specifies it for the decryption operation or decryption will not succeed. If you
are using SSE-KMS or the Amazon S3 encryption client to perform encryption, Amazon S3 uses the
bucket path as the encryption context. In the r equest Par anet er s field of a CloudTrail log file, the
encryption context will look similar to this.

"encryptionContext": ({
"aws:s3:arn": "arn:aws:s3:::bucket nane/file_name"

b

For more information, see Encryption Context (p. 80).

How Amazon Elastic Block Store (Amazon EBS)
Uses AWS KMS

This topic discusses how Amazon EBS uses AWS KMS to encrypt volumes.

Topics
* Amazon EBS Encryption (p. 27)
¢ Encryption Context (p. 28)
¢ Using AWS CloudFormation To Create Encrypted Amazon EBS Volumes (p. 28)

Amazon EBS Encryption

When you create an encrypted Amazon EBS volume and attach it to a supported Amazon EC2 instance
type, data stored at rest on the volume, disk 1/0, and snapshots created from the volume are all encrypted.
The encryption occurs on the servers that host Amazon EC2 instances.

This feature is supported on all Amazon EBS volume types: General Purpose (SSD), Provisioned IOPS
(SSD), and Magnetic. You access encrypted volumes the same way you access existing volumes;
encryption and decryption are handled transparently and they require no additional action from you, your
Amazon EC2 instance, or your application. Snapshots of encrypted volumes are automatically encrypted,
and volumes that are created from encrypted snapshots are also automatically encrypted.

To create an encrypted Amazon EBS volume, you select the appropriate box in the Amazon EBS section
of the Amazon EC2 console. You can use a custom customer master key (CMK) by choosing one from
the list that appears below the encryption box. If you do not specify a custom CMK, Amazon EBS uses
the default CMK in your account. If there is no default CMK in your account, Amazon EBS creates one.

When you create and use an encrypted volume, AWS KMS and Amazon EBS perform the following
actions:

1. AWS KMS determines whether you have permission to use the specified customer master key (CMK).

27

AWS Key Management Service Developer Guide
Encryption Context

2. If you have permission to use the key, AWS KMS generates a data key and encrypts it using the CMK.
3. AWS KMS sends the encrypted data key to Amazon EBS.

4. When you attach the encrypted volume to an Amazon EC2 instance, Amazon EC2 sends your encrypted
data key to AWS KMS to decrypt it.

5. Amazon EC2 encrypts all data going to and from the Amazon EBS volume by using the plaintext data
key returned from AWS KMS. The plaintext data key is kept in memory for as long as your volume is
attached.

6. Amazon EBS stores the encrypted data key with the volume metadata for future use if you need to
re-attach the same encrypted volume to an instance.

Encryption Context

Each service that is integrated with AWS KMS specifies an encryption context when requesting data
keys, encrypting, and decrypting. The encryption context is additional authenticated information that AWS
KMS uses to check for data integrity. That is, when an encryption context is specified for an encryption
operation, the same encryption context must be specified for the decryption operation or decryption will
not succeed. Amazon EBS uses the volume ID for the encryption context. In the r equest Par anet er s
field of a CloudTrail log entry, the encryption context will look similar to the following:

"encryptionContext": ({
"aws: ebs:id": "vol -2cfbl33e"

}

You can search for the volume ID in your CloudTrail logs to understand what operations were performed
using a customer master key. The operations include encryption, decryption, and generating data keys.

For more information, see Encryption Context (p. 80).

Using AWS CloudFormation To Create Encrypted
Amazon EBS Volumes

You can use AWS CloudFormation to create encrypted Amazon EBS volumes. For more information, go
to AWS::EC2::Volume in the Template Reference chapter of the AWS CloudFormation User Guide.

How Amazon Redshift Uses AWS KMS

This topic discusses how Amazon Redshift uses AWS KMS to encrypt data.

Topics
¢ Amazon Redshift Encryption (p. 28)
¢ Encryption Context (p. 29)

Amazon Redshift Encryption

An Amazon Redshift data warehouse is a collection of computing resources called nodes, which are
organized into a group called a cluster. Each cluster runs an Amazon Redshift engine and contains one
or more databases.

28

http://aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-ebs-volume.html

AWS Key Management Service Developer Guide
Encryption Context

Amazon Redshift uses a four-tier, key-based architecture for encryption. The architecture consists of data
encryption keys, a database key, a cluster key, and a master key.

Data encryption keys encrypt data blocks in the cluster. Each data block is assigned a randomly-generated
AES-256 key. These keys are encrypted by using the database key for the cluster.

The database key encrypts data encryption keys in the cluster. The database key is a randomly-generated
AES-256 key. It is stored on disk in a separate network from the Amazon Redshift cluster and passed to
the cluster across a secure channel.

The cluster key encrypts the database key for the Amazon Redshift cluster. You can use AWS KMS,
AWS CloudHSM, or an external hardware security module (HSM) to manage the cluster key. See the
Amazon Redshift Database Encryption documentation for more details.

If the master key resides in AWS KMS, it encrypts the cluster key. You can request encryption by checking
the appropriate box in the Amazon Redshift console. You can specify a customer-managed master key
to use by choosing one from the list that appears below the encryption box. If you do not specify a
customer-managed key, the AWS-managed key for Amazon Redshift under your account will be used.

Encryption Context

Each service that is integrated with AWS KMS specifies an encryption context when requesting data
keys, encrypting, and decrypting. The encryption context is additional authenticated information that AWS
KMS uses to check for data integrity. That is, when an encryption context is specified for an encryption
operation, the service also specifies it for the decryption operation or decryption will not succeed. Amazon
Redshift uses the cluster ID and the creation time for the encryption context. In the r equest Par anet er s
field of a CloudTrail log file, the encryption context will look similar to this.

"encryptionContext": ({

"aws:redshift:arn": "arn:aws:redshift:region:ac
count I D:cluster:cluster_nane",

"aws: redshift:createtime": "20150206T18322"

b

You can search on the cluster name in your CloudTrail logs to understand what operations were performed
by using a customer master key. The operations include cluster encryption, cluster decryption, and
generating data keys.

For more information, see Encryption Context (p. 80).

How Amazon Relational Database Service Uses
AWS KMS

This topic discusses how Amazon RDS uses Amazon EBS encryption to provide full disk encryption for
database volumes, and how to encrypt Amazon RDS databases using AWS KMS. It also describes the
Amazon RDS encryption context.

Topics
¢ Amazon RDS Encryption (p. 30)
¢ Amazon RDS Encryption Context (p. 30)

29

http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
http://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html

AWS Key Management Service Developer Guide
Amazon RDS Encryption

How

Amazon RDS Encryption

Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up,
operate, and scale a relational database in the cloud. It provides cost-efficient, resizable capacity for an
industry-standard relational database and manages common database administration tasks.

The basic building block of Amazon RDS is the DB instance. A DB instance is an isolated database
environment in the cloud. A DB instance can contain multiple user-created databases, and you can access
it by using the same tools and applications that you use with a stand-alone database instance. Each DB
instance runs a DB engine. Amazon RDS currently supports the MySQL, PostgreSQL, Oracle, Microsoft
SQL Server, and Aurora DB engines. Amazon RDS encryption with AWS KMS is currently available for
all except the Aurora DB engine.

To enable Amazon RDS encryption, select the Enable encryption option in the Amazon RDS console.
If you are using the r ds- cr eat e- db- i nst ance CLI command to create an encrypted RDS DB instance,
set the - - st or age- encr ypt ed parameter to t r ue and the - - kns- key- i d parameter to the Amazon
Resource Name (ARN) for the customer master key. If you are using the Cr eat eDBI nst ance APl action,
set the St or ageEncr ypt ed parameter to t r ue and the KnsKey| d parameter to the ARN for your
customer master key.

For more information about Amazon RDS encryption, see Encrypting Amazon RDS Resources.

Amazon RDS uses Amazon EBS encryption to provide full disk encryption for database volumes. When
you create an encrypted Amazon RDS database, an encrypted Amazon EBS volume is created on your
behalf to store the database. Data stored at rest on the volume, input and output to and from the database
instance, and database snapshots are all encrypted using the AWS KMS key you specify. For more
information about how encryption of EBS volumes works, see How Amazon Elastic Block Store (Amazon
EBS) Uses AWS KMS (p. 27).

Amazon RDS Encryption Context

Each service that is integrated with AWS KMS specifies an encryption context when requesting data
keys, encrypting, and decrypting. The encryption context is additional authenticated information that AWS
KMS uses to ensure data integrity. That is, when an encryption context is specified for an encryption
operation, the service also specifies it for the decryption operation or decryption will not succeed. The
encryption context is also written to your CloudTrail logs to help you understand why a given AWS KMS
key was used. Amazon RDS uses the volume ID and the database instance ID for the encryption context.
In the r equest Par anet er s field of a CloudTrail log file, the encryption context will look similar to this.

"encryptionContext": ({
"aws: rds: db-id": " db- CQYSVDPBRZ7BPNH7 Y3RTDGEQY" ,
"aws: ebs:id":"vol -57d21d70"

For more information about the encryption context, see Encryption Context (p. 80).

Elastic Transcoder Uses AWS KMS

You can use Elastic Transcoder to convert media files stored in an Amazon S3 bucket into formats required
by consumer playback devices. Both input and output files can be encrypted and decrypted. The following
sections discuss how AWS KMS is used for both processes.

30

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html

AWS Key Management Service Developer Guide
Encrypting the input file

Encrypting the input file

Before you can use Elastic Transcoder, you must create an Amazon S3 bucket and upload your media
file into it. You can encrypt the file before uploading by using Amazon S3 server-side encryption or AES
client-side encryption.

If you choose client-side encryption using AES, you are responsible for encrypting the file before uploading
it to Amazon S3, and you must provide Elastic Transcoder access to the encryption key. You do this by
using an AWS KMS customer master key to protect the AES encryption key you used to encrypt the
media file.

If you choose server-side encryption, you are allowing Amazon S3 to perform all encryption and decryption
of files on your behalf. You can configure Amazon S3 to use one of three different master keys to protect
the unique data key used to encrypt your file:

¢ The Amazon S3 master key, a key that is owned and managed by AWS
» The default key for Amazon S3, a key that is owned by your account but managed by AWS
¢ Any of the customer-managed keys you create by using AWS KMS

You can request encryption and the master key you want by using the Amazon S3 console or the
appropriate Amazon S3 APIs. For more information about how Amazon S3 performs encryption, see
Protecting Data Using Encryption in the Amazon Simple Storage Service Developer Guide.

When you specify that the AWS-managed key for Amazon S3 under your account or a customer-managed
key be used to encrypt the input file, Amazon S3 and AWS KMS interact in the following manner:

¢ Amazon S3 requests a plaintext data key and a copy of the key encrypted by using the specified
customer-managed key or the AWS-managed key.

« AWS KMS creates a data key, encrypts it by using the customer master key, and sends both the
plaintext data key and the encrypted data key to Amazon S3.

¢ Amazon S3 encrypts the media file using the plaintext data key and stores the file in the specified
Amazon S3 bucket.

¢ Amazon S3 stores the encrypted data key alongside of the encrypted media file.

Decrypting the input file

If you choose Amazon S3 server-side encryption to encrypt the input file before uploading it, Elastic
Transcoder does not decrypt the file. Instead, Elastic Transcoder relies on Amazon S3 to perform decryption
depending on the settings you specify when you create a job and a pipeline. The following combination
of settings are available.

Encryption mode AWS KMS key Meaning

S3 Default Amazon S3 creates and manages
the keys used to encrypt and de-
crypt the media file. The process
is opaque to the user.

S3-AWS-KMS Default Amazon S3 uses a data key en-
crypted by the default AWS-man-
aged key for S3 under your ac-
count to encrypt the media file.

31

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html

AWS Key Management Service Developer Guide
Encrypting the output file

Encryption mode AWS KMS key Meaning

S3-AWS-KMS Custom (with ARN) Amazon S3 uses a data key en-
crypted by the specified customer-
managed key to encrypt the media
file.

When S3-AWS-KMS is specified, Amazon S3 and AWS KMS work together in the following manner to
perform the decryption.

* Amazon S3 sends the encrypted data key to AWS KMS.

* AWS KMS decrypts the key by using the appropriate customer master key and sends the plaintext key
back to Amazon S3.

* Amazon S3 uses the plaintext key to decrypt the ciphertext.

If you choose client-side encryption using an AES key, then Elastic Transcoder retrieves the encrypted
file from the Amazon S3 bucket and decrypts it. Elastic Transcoder uses the customer master key you
specify when creating the pipeline to decrypt the AES key and then uses the AES key to decrypt the
media file.

Encrypting the output file

Elastic Transcoder encrypts the output file depending on how you specify the encryption settings when
you create a job and a pipeline. The following options are available.

Encryption mode AWS KMS key Meaning

S3 Default Amazon S3 creates and manages
the keys used to encrypt the out-
put file.

S3-AWS-KMS Default Amazon S3 uses a data key cre-

ated by AWS KMS and encrypted
by the AWS-managed key for
Amazon S3 under your account.

S3-AWS-KMS Custom (with ARN) Amazon S3 uses a data key en-
crypted by using the customer-
managed key specified by the
ARN to encrypt the media file.

AES- Default Elastic Transcoder uses the AWS-
managed key for Amazon S3 un-
der your account to decrypt the
specified AES key you provide
and uses that key to encrypt the
output file.

AES- Custom (with ARN) Elastic Transcoder uses the cus-
tomer-managed key specified by
the ARN to decrypt the specified
AES key you provide and uses
that key to encrypt the output file.

32

AWS Key Management Service Developer Guide
HLS Content Protection

When you specify that the AWS-managed key for Amazon S3 under your account or a customer-managed
key be used to encrypt the output file, Amazon S3 and AWS KMS interact in the following manner:

¢« Amazon S3 requests a plaintext data key and a copy of the key encrypted by using the specified
customer-managed key or the AWS-managed key.

* AWS KMS creates a data key, encrypts it by using the master key, and sends both the plaintext data
key and the encrypted data key to Amazon S3.

* Amazon S3 encrypts the media using the data key and stores it in the specified Amazon S3 bucket.
* Amazon S3 stores the encrypted data key alongside the encrypted media file.

When you specify that an AES key you provide must be used to encrypt the output file, the AES key must
be encrypted by using a master key in AWS KMS. Elastic Transcoder, AWS KMS and you interact in the
following manner:

* You encrypt your AES key by calling the AWS KMS Encr ypt APIl. AWS KMS encrypts the key by
using the specified AWS-managed key for Amazon S3 under your account or a customer-managed
key you have previously created. You specify which key to use when you are creating the pipeline.

 You specify the file containing the encrypted AES key when you create the Elastic Transcoder job.

« Elastic Transcoder decrypts the key by calling the AWS KMS Decr ypt API, passing the encrypted key
as ciphertext.

¢ Elastic Transcoder uses the decrypted AES key to encrypt the output media file and then deletes the
decrypted AES key from memory. Only the encrypted copy you originally defined in the job is saved
to disk.

* You can download the encrypted output file and decrypt it locally by using the original AES key that
you defined.

Important
Your private encryption keys are never stored by AWS. Therefore, it is important that you safely
and securely manage your keys. If you lose them, you won't be able to decrypt your data.

HLS Content Protection

HTTP Live Streaming (HLS) is an adaptive streaming protocol created by Apple. Elastic Transcoder
supports HLS by breaking your input file into smaller individual files, called media segments. A set of
corresponding individual media segments contain the same material encoded at different bit rates, thereby
enabling the player to select the stream that best fits the available bandwidth. Elastic Transcoder also
creates playlists that contain metadata for the various segments that are available to be streamed.

You can use AES-128 encryption to protect the transcoded media segments. When you enable HLS
content protection, each media segment is encrypted using an AES-128 encryption key. When the content
is viewed, the player downloads the key and decrypts the media segments during the playback process.

Two types of keys are used - a customer master key (CMK) and a data key. You must create a CMK that
can be used to encrypt and decrypt the data key. The data key is used by Elastic Transcoder to encrypt
and decrypt media segments. The data key must be AES-128. All variations and segments of the same
content are encrypted using the same key. You can provide a data key or have Elastic Transcoder create
it for you.

The CMK can be used to encrypt the data key at the following points:

1. If you provide your own data key, you must encrypt it before passing it to Elastic Transcoder.

2. If you request that Elastic Transcoder generate the data key, then Elastic Transcoder encrypts the key
for you.

33

AWS Key Management Service Developer Guide
Encryption Context

The CMK can be used to decrypt the data key at the following points:

1. Elastic Transcoder decrypts a data key that you provide when it needs to use the key to encrypt the
output file or decrypt the input file.

2. You decrypt a data key generated by Elastic Transcoder and use it to decrypt output files.

For more information, see HLS Content Protection in the Amazon Elastic Transcoder Developer Guide.

Encryption Context

Each service that is integrated with AWS KMS specifies an encryption context when requesting data
keys, encrypting, and decrypting. The encryption context is additional authenticated information that AWS
KMS uses to ensure data integrity. That is, when an encryption context is specified for an encryption
operation, the service also specifies it for the decryption operation or decryption will not succeed. The
encryption context is written to CloudTrail logs to help you understand why a given AWS KMS key was
used. Elastic Transcoder uses the key ID and your AES key as the encryption context. In the

request Par anet er s field of a CloudTralil log file, the encryption context will look similar to this.

"EncryptionContext": {

"service" : "elastictranscoder.anazonaws. coni',
"Keyld" : "ARN of the key associated with your pipeline",
"Plaintext" : "BLOB that contains your AES key"

For more information, see Encryption Context (p. 80). For more information about how to configure Elastic
Transcoder jobs to use one of the supported encryption options, see Data Encryption Options in the
Amazon Elastic Transcoder Developer Guide.

How Amazon WorkMail Uses AWS KMS

This topic discusses how Amazon WorkMail uses AWS KMS to encrypt email messages.

Topics
¢ Amazon WorkMail Overview (p. 37)
¢ Amazon WorkMail Encryption (p. 35)
¢ Amazon WorkMail Encryption Context (p. 36)

Amazon WorkMail Overview

Amazon WorkMail is an email service in the cloud that provides a cost-effective way for your organization
to receive and send email and use calendars. Amazon WorkMail supports existing desktop and mobile
clients and integrates with your existing corporate directory. Users can leverage their existing credentials
to sign on to their email by using Microsoft Outlook, a mobile device, or a browser.

Using the Amazon WorkMail console, you can create an Amazon WorkMail organization and optionally
assign to it one or more email domains that you own. Then you can create new email users and email
distribution groups. Users can then send and receive messages. The messages are encrypted and stored
until ready to be viewed.

34

http://docs.aws.amazon.com/elastictranscoder/latest/developerguide/content-protection.html
http://docs.aws.amazon.com/elastictranscoder/latest/developerguide/encryption.html

AWS Key Management Service Developer Guide
Amazon WorkMail Encryption

Amazon WorkMail Encryption

Each end user you create is associated with one mailbox. Amazon WorkMail creates an asymmetric key
pair for each mailbox and sends the private key portion of the key pair to AWS KMS to be encrypted
under a customer master key (CMK). The CMK can be a custom key that you choose for your organization
or the default Amazon WorkMail service CMK. The encrypted private key and unencrypted public key is
then saved for later use.

Mailbax
Storage

Workhd ail KM5

|.__-

-

-+ Generste asymmetric mailbo:x key pzllir
£=="]

Encrypt private key

Encrypted private key

Mailbox public key + encrypted private key

.
1
1
]

Each message received is encrypted by using a symmetric key dynamically generated by Amazon
WorkMail. The symmetric key is then encrypted by using the public key associated with the user's mailbox.
The encrypted symmetric key and the encrypted message and attachments are then stored.

. Mailbox

T
I
|
-

::) Genemte symmetric key
-
4 _‘::J' Encrypt message with symmetric key

4=

encrypted symmetric k

e

|
|
I
|
|
1
|
|
|
|
I
|
|
1
|
|
- |
__:J' Encrypt symmetric key with public key I
|
|
i
=
AL
I
I

encrypted message and attaclhm ents

-

L
I
|
|

In asymmetric cryptography, data that is encrypted by using the public key can be decrypted only by
using the corresponding private key. As mentioned above, however, Amazon WorkMail encrypts the

35

AWS Key Management Service Developer Guide
Amazon WorkMail Encryption Context

private key by using an AWS KMS CMK. To make the private key ready to use, it must therefore be
decrypted by using the same CMK used to encrypt it. Thus, when a user is ready to retrieve emalil
messages, Amazon WorkMail sends the private key to AWS KMS for decryption and uses the plaintext
private key returned by AWS KMS to decrypt the symmetric key that was used to encrypt the email
message. Amazon WorkMail then uses the symmetric key to decrypt the message before presenting it
to the user.

. Mailbox

T
1
|
i

I
!
|
Retrieve encrypted symmetric key + encrypted private key
L]
I
|

Retrieve encrypted message + attachments
|

Decrypt private key

Decrypted private key

|
|
|
|
|
o
™
|
|
1
!
I

-
-‘-:J Decrypt the symmetric key by usingtll'le private key

&= !
S I
": Decrypt the messaze :
=" :
l
|

L
I
|
|

Amazon WorkMail Encryption Context

Each service that is integrated with AWS KMS specifies an encryption context when requesting data
keys, encrypting, and decrypting. The encryption context is additional authenticated information that AWS
KMS uses to check for data integrity. That is, when an encryption context is specified for an encryption
operation, the service also specifies it for the decryption operation or decryption will not succeed. The
encryption context is written to your CloudTrail logs to help you understand why a given AWS KMS key
was used. Amazon WorkMail uses the organization ID for the encryption context. In the

request Par anet er s field of a CloudTrail log file, the encryption context will look similar to this.

"encryptionContext": ({
"aws: wor kmai | :arn":"arn: aws: worknai | : regi on: account | D: organi zati on/ or gan
ization I D'

}

The organization ID is a unique identifier that Amazon WorkMail generates when an organization is
created. A customer can have multiple organizations in an AWS account. The following example shows
an organization ID in the us-east-1 region.

"aws: wor kmai | carn":"arn: aws: wor knai | : us- east - 1: 123456789012: or gani zati on/ m
68755160c4ch4e29a2b2f 8f b58f 359d7"

For more information about the encryption context, see Encryption Context (p. 80).

36

AWS Key Management Service Developer Guide
Amazon EMR

How Amazon EMR Uses AWS KMS

This topic discusses how the EMR File System (EMRFS) uses AWS KMS to decrypt and encrypt input
and output stored in Amazon S3 for Amazon EMR workloads.

Topics
¢ Amazon EMR Overview (p. 37)
¢« Amazon EMR Support for Encrypted Objects in Amazon S3 (p. 37)
¢« Amazon EMR Use of the AWS KMS Encryption Context (p. 37)

Amazon EMR Overview

Amazon Elastic MapReduce (Amazon EMR) is a web service that makes it easy to process vast amounts
of data quickly and cost-effectively. Amazon EMR uses Hadoop, an open source framework, to distribute
your data and processing across a resizeable cluster of Amazon EC2 instances. It can also run other
distributed frameworks such as Spark and Presto and can process data stored in other services such as
Amazon S3, DynamoDB, and Amazon Kinesis.

For more information about Amazon EMR and Hadoop, see What is Amazon EMR?.

Amazon EMR Support for Encrypted Objects in
Amazon S3

Amazon EMR can store data directly on a cluster by using the Hadoop distributed file system (HDFS) or
in Amazon S3 by using the EMR File System (EMRFS). The input and output for your Amazon EMR
workloads is commonly stored in Amazon S3. EMRFS supports Amazon S3 server-side or client-side
encryption when downloading encrypted objects from Amazon S3 and when uploading encrypted objects
to Amazon S3. The server-side encryption option uses the Amazon S3 system master key and does not
currently support the use of customer master keys (CMK) in AWS KMS. However, the client-side option
does support the use of CMKs in AWS KMS. Note that data stored on the HDFS cluster and any data in
transit between HDFS nodes is not encrypted at this time.

When encrypting Amazon EMR output to send to Amazon S3, the EMRFS client calls AWS KMS as part
of the encryption routine that you execute when you pass in your data. The plaintext data key that the
Amazon S3 encryption client generates is then sent to AWS KMS to be encrypted under the specified
CMK. AWS KMS verifies that you are authorized to use the specified CMK. The encryption client uses
the plaintext key to encrypt the data and sends the encrypted data key to Amazon S3 to store alongside
your encrypted data.

You can enable Amazon S3 server-side or client-side encryption in the Amazon EMR console, CLI, or
SDK when creating your cluster. For more information, see Create a Cluster With Amazon S3 Client-Side
Encryption.

Amazon EMR Use of the AWS KMS Encryption
Context

Each service that is integrated with AWS KMS specifies an encryption context when requesting data
keys, encrypting, and decrypting. The encryption context is additional authenticated information that AWS
KMS uses to check for data integrity. That is, when a service specifies an encryption context for an
encryption operation, the service must also specify it for the decryption operation; otherwise, the decryption
will not succeed. Amazon EMR uses the bucket path as the encryption context. In the

request Par anet er s field of a CloudTrail log file, the encryption context looks similar to this:

37

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-what-is-emr.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-cse.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-cse.html

AWS Key Management Service Developer Guide
Amazon EMR Use of the AWS KMS Encryption Context

"encryptionContext": {
"aws: s3:arn":"arn:aws: s3::: bucket _nane/fil e_nane"

}

For more information about the encryption context, see Encryption Context (p. 80).

38

AWS Key Management Service Developer Guide

Logging AWS KMS API Calls Using
AWS CloudTrall

AWS KMS is integrated with CloudTrail, a service that captures API calls made by or on behalf of AWS
KMS in your AWS account and delivers the log files to an Amazon S3 bucket that you specify. CloudTrall
captures API calls from the AWS KMS console or from the AWS KMS API. Using the information collected
by CloudTrail, you can determine what request was made, the source IP address from which the request
was made, who made the request, when it was made, and so on. To learn more about CloudTrail, including
how to configure and enable it, see the AWS CloudTrail User Guide.

When you enable CloudTrail logging in your AWS account, API calls made to AWS KMS actions are
tracked in log files. AWS KMS records are written together with other AWS service records in a log file.
CloudTrail determines when to create and write to a new log file based on a time period and file size.

CloudTrail logs all of the AWS KMS actions. For example, calls to the Cr eat eKey, Encr ypt , and Decr ypt
actions generate entries in the CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see userldentity Element in the CloudTrail Event Reference chapter in the AWS CloudTrail
User Guide.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE) with a key managed by the Amazon S3 service.

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications in the AWS CloudTrail User Guide.

You can also aggregate AWS KMS log files from multiple AWS regions and multiple AWS accounts into
a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket in the AWS CloudTrail User Guide.

CloudTrail log files can contain one or more log entries where each entry is made up of multiple

JSON-formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public

39

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_user_identity.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

AWS Key Management Service Developer Guide
CreateAlias

API calls. For more information about the fields that make up a log entry, see the CloudTrail Event
Reference in the AWS CloudTrail User Guide.

The following topics show log examples for selected AWS KMS actions.

Topics

¢ CreateAlias (p. 40)

e CreateGrant (p. 41)

¢ CreateKey (p. 42)

¢ Decrypt (p. 43)

¢ DeleteAlias (p. 44)

¢ DescribeKey (p. 45)

¢ DisableKey (p. 47)

¢ EnableKey (p. 47)

¢ Encrypt (p. 48)

¢ GenerateDataKey (p. 49)

¢ GenerateDataKeyWithoutPlaintext (p. 50)
¢ GenerateRandom (p. 51)

¢ GetKeyPolicy (p. 51)

¢ ListAliases (p. 52)

¢ ListGrants (p. 53)

¢ ReEncrypt (p. 54)

¢« Amazon EC2 Example One (p. 55)
¢« Amazon EC2 Example Two (p. 56)

CreateAlias

The following example shows a log file generated by calling Cr eat eAl i as.

{
"Records": [
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

"principalld': "EX PRI NC PAL_I D',

"arn": "arn:aws:iam:123456789012: user/ Alice",

"accountld": "123456789012",

"accessKeyl d": "EXAMPLE KEY_I D',

"user Nane": "Alice",

"sessionContext": {

"attributes": {

"nf aAut henti cated": "fal se",
"creationDate": "2014-11-04T00: 52: 272"

}
}
s
"event Time": "2014-11-04T00:52: 272",
"event Sour ce": "kns.amazonaws. coni',
"event Name": "CreateAlias",

40

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html

AWS Key Management Service Developer Guide
CreateGrant

"awsRegi on": "us-east-1",

"sour cel PAddress": "192.0.2.0",

"user Agent": "AWS Internal",

"request Paraneters": {
"aliasName": "alias/ny_alias",

2489- 4d04- bf df - 41723ad130bd"
H
"responseEl ements": null,
"request| D': "d9472f 40- 63bc- 11e4- bc2b-4198b6150d5c",
"event| D': "f72d3993-864f - 48d6- 8f 16- e26elae8df f 0",
"readOnl y": fal se,
"resources": [{

bf df - 41723ad130bd",
"account | d": "123456789012"

3

{
"ARN': "arn:aws: kns: us- east-1:123456789012: al i as/ ny_al i as",
"account|d": "123456789012"

H,

"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

"target Keyld": "arn:aws: kns: us-east-1:123456789012: key/ 64e07f 97-

"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ 64e07f 97- 2489- 4d04-

CreateGrant

The following example shows a log file generated by calling Cr eat eGr ant .

{
"Records": [
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",

"accessKeyl d": "EXAMPLE _KEY_I D',

"user Nane": "Alice"
}s
"event Ti me": "2014-11-04T00:53:12Z2",
"event Source": "kns.amazonaws. cont',
"event Nane": "CreateGrant",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",

"request Paraneters": {

90c9- 179982e9b716",
"constraints": {

"keyld": "arn:aws: kms: us-east-1: 123456789012: key/ 65f 61d18- c45c- 41ca-

41

AWS Key Management Service Developer Guide
CreateKey

"encryptionCont ext Subset": {
"Cont ext Keyl1": "Val uel"
}

}s
"operations": ["Encrypt",
"RetireGant"],

"granteePrincipal": "EX_PRI NCl PAL_I| D'
s
"responseEl enents": {
"grant|ld":
"f020f e75197b93991dc8491d6f 19dd3cebb24ee62277a05914386724f 3d48758"

H
"request| D': "f3c08808-63bc-1le4-bc2b-4198b6150d5c",
"event| D': "5d529779-2d27-42b5-92da- 91aaealf c4b5",
"readOnl y": fal se,
"resources": [{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ 65f 61d18- c45c-41ca-
90c9- 179982e9b716",
"account|d": "123456789012"
H,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

CreateKey

The following example shows a log file generated by calling Cr eat eKey.

{
"Records": [
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",

"accessKeyl d": "EXAMPLE _KEY_I D',

"user Name": "Alice"
H
"event Ti me": "2014-11-04T00: 52: 592",
"event Source": "kms.amazonaws. cont',
"event Nane": "CreateKey",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",

"request Paraneters": {
"policy": "{\n \"Version\":1"2012-10-17\",\n \"Statenment\":[{\n
\"Effect\":\"Allom",\n \"Princip
al\": {\"AWA\ ":\"arn: aws: i am :123456789012: user/Alice\"},\n \"Ac

42

AWS Key Management Service Developer Guide
Decrypt

tion\":\"kns:*\",\n \"Resource\":\"*\"\n }, {\n \"Effect\":\"Allom",\n
\"Principal\":{\"AWB\ ":\"arn: aws: i am : 012345678901: user/ Bob\"},\n \"Ac
tion\":\"kns: CreateG ant\",\n \"Resource\":\"*\"\n }, {\n \"Effect\":\"A
lom",\'n \"Principal\":{\"AWB\":\"arn: aws: i am : 012345678901: user/ Charlie\"},\n
\"Action\":\"kns: Encrypt\",\n \"Resource\":\"*\"\n}]\n}",
"description": "",
"keyUsage": "ENCRYPT DECRYPT"
H
"responseEl enents": {
"keyMet adata": {
"aWBAccount | d":
"enabl ed": true,
"creationDate": "Nov 4, 2014 12:52:59 AM',
"keyl d": "06dc80ca- 1bdc- 4d0b- be5b- b7009cd14f 13",
"keyUsage": "ENCRYPT_ DECRYPT",
"description": "",
"arn": "arn:aws: kns: us- east-1: 123456789012: key/ 06dc80ca- 1bdc-
4d0b- be5b- b7009cd14f 13"
}
H
"request| D': "ebeB8ee68-63bc-1le4-bc2b-4198b6150d5¢c",

"123456789012",

"reci pi ent Account 1 d":

"event| D': "ball6326-1792-4784-87dd-a688dlch42ec"”,
"readOnl y": fal se,
"resources": [{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ 06dc80ca- 1bdc- 4d0b-
be5b- b7009cd14f 13",
"account|d": "123456789012"
H,
"event Type": "AwsApi Call",

"123456789012"

Decrypt

The following example shows a log file generated by calling Decr ypt .

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",
“principalld": "EX_ PRI NCIPAL_I D",
"arn": "arn:aws:iam:123456789012: user/ Alice",
"account | d": "123456789012",
"accessKeyl d": "EXAMPLE_KEY_I D',
"user Nane": "Alice"

3
"event Ti me": "2014-11-04T00: 52: 202",

"event Source": "kms. amazonaws. cont,
"event Nane": "Decrypt",

43

AWS Key Management Service Developer Guide

DeleteAlias
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",
"errorCode": "lnvalidC phertextException",

"request Paraneters": null,
"responseEl ements": null,
"request| D': "d5239dea- 63bc- 11e4- bc2b-4198b6150d5c",
"event| D': "954983cf - 7da9- 4adf - aesaa- 261al1292c0Oaa",
"readOnl y": true,
"resources": [{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ el7cebae- e7a6- 4864-
b92f - 0365f 2f ef f 38",
"account|d": "123456789012"
H,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

DeleteAlias

The following example shows a log file generated by calling Del et eAl i as.

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",

"accountld": "123456789012",

"accessKeyl d": "EXAMPLE_KEY_I D',

"user Nane": "Alice",

"sessionContext": {

"attributes": {

"nfaAut henticated": "false",
"creationDate": "2014-11-04TO00: 52: 272"

}

}
H
"event Ti me": "2014-11-04T00: 52: 272",
"event Source": "kms.amazonaws. cont',
"event Name": "Del eteAlias",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",
"request Paraneters": {

"aliasName": "alias/ny_alias"
H

"responseEl ements": null,

44

AWS Key Management Service Developer Guide
DescribeKey

"request| D': "d9542792-63bc- 11e4- bc2b-4198b6150d5c",

"event| D': "12f48554-bb04-4991- 9cf c- e7e85f 68edal"”,

"readOnl y": fal se,

"resources": [{
"ARN': "arn:aws: kns: us- east-1: 123456789012: al i as/ ny_al i as",
"account|d": "123456789012"

3

{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ 64e07f 97- 2489- 4d04-
bf df - 41723ad130bd",
"account|d": "123456789012"
H
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

DescribeKey

The following example shows a log file generated by multiple calls to Descr i beKey in response to viewing
keys in the IAM management console.

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX PRI NCIPAL_I D',

"arn": "arn:aws:iam:123456789012: user/ Alice",

"accountld": "123456789012",

"accessKeyl d": "EXAMPLE _KEY_I D',

"user Nane": "Alice",

"sessionContext": {

"attributes": {

"nfaAut henticated": "false",
"creationDate": "2014-11-05T20:51: 212"

}

H

"invokedBy": "signin.amzonaws. cont
H
"event Ti me": "2014-11-05T20:51: 342",
"event Source": "kns.amazonaws. cont,
"event Name": "Descri beKey",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "signin.amazonaws. cont',

"request Paraneters": {
"keyl d": "30a9ale7-2a84-459d-9c61- 04cbeaebab95"
}s
"responseEl ements": null,
"request| D': "874d4823-652d- 11e4-9a87- 0laf 2alddech",

45

AWS Key Management Service Developer Guide
DescribeKey

"event| D': "f715da9b-c52c-4824- 99ae- 88aalbb58ae4",
"readOnl y": true,
"resources": |

{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ 30a9ale7- 2a84- 459d-
9c61- 04cbeaebah95",
"account|d": "123456789012"
}
1,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

}s
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX_ PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",

"accountld": "123456789012",

"accessKeyl d": "EXAMPLE_KEY_I D',

"user Nane": "Alice",

"sessionContext": {

"attributes": {

"nfaAut henticated": "false",
"creationDate": "2014-11-05T20:51: 212"

}

H

"invokedBy": "signin.amzonaws. conf
H
"event Ti me": "2014-11-05T20:51: 552",
"event Source": "kns.amazonaws. cont,
"event Nanme": "Descri beKey",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "signin.amazonaws. cont',

"request Paraneters": {
"keyl d": "e7b6d35a- b551-4c8f-b51la- 0460ebc04565"
H
"responseEl ements": null,
"request| D': "9400c720-652d- 11e4-9a87- 0laf 2alddech",
"event| D': "939f cefb-dcl4-4a52-b918-73045f e97af 3",
"readOnl y": true,
"resources": |

{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ e7b6d35a- b551- 4¢8f -
b51a- 0460ebc04565",
"account|d": "123456789012"
}
1,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"
8

addi tional entries ...

46

AWS Key Management Service Developer Guide
DisableKey

DisableKey

The following example shows a log file generated by calling Di sabl eKey.

{
"Records": [
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

"principalld": "EX_PRINCIPAL_I D',

"arn": "arn:aws:iam :123456789012: user/Alice",
"account | d": "123456789012",

"accessKeyl d": "EXAMPLE KEY_I D',

"user Nane": "Alice"
}
"event Ti ne": "2014-11-04T00:52: 437",
"event Source": "kns.amazonaws. cont',
"event Name": "Di sabl eKey",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"userAgent": "AWS Internal",

"request Paraneters": {
"keyl d": "262d9f cb-f1a0-4447- af 16- 3714cff6lecl”

responseEl ements": nul |,
"request| D': "e26552bc-63bc-11le4-bc2b-4198b6150d5c",
"event| D': "995c4653- 3c53-4a06- a0f 0- f 5531997b741",
"readOnly": false,
"resources": [{
"ARN': "arn:aws: knms: us-east-1:123456789012: key/ 262d9f cb- f 1a0- 4447-
af 16-3714cff6lecl”,
"account|d": "123456789012"
.
"event Type": "AwsApi Call",
"recipientAccountld": "123456789012"
I8
]
}

EnableKey

The following example shows a log file generated by calling Enabl eKey.

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

47

AWS Key Management Service Developer Guide
Encrypt

“principalld": "EX_ PRI NCIPAL_I D',

"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",

"accessKeyl d": "EXAMPLE_KEY_I D',

"user Nane": "Alice"
}s
"event Ti ne": "2014-11-04T00:52: 202",
"event Source": "kns.amazonaws. cont',
"event Nanme": "Enabl eKey",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",

"request Paraneters": {
"keyl d": "el7cebae-e7a6-4864- b92f - 0365f 2f ef f 38"
H
"responseEl ements": null,
"request| D': "d528a6fb-63bc-11le4-bc2b-4198b6150d5c",
"event| D': "be393928-3629-4370-9634-567f 9274d52e",
"readOnl y": fal se,
"resources": [{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ el7cebae- e7a6- 4864-
b92f - 0365f 2f ef f 38",
"account | d": "123456789012"
H,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

Encrypt

The following example shows a log file generated by calling Encr ypt .

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX_ PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",

"accessKeyl d": "EXAMPLE _KEY_I D',

"user Name": "Alice"
H
"event Ti me": "2014-11-04T00:53: 112",
"event Source": "kns.amazonaws. coni',
"event Nane": "Encrypt",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",

"request Paraneters": {

48

AWS Key Management Service Developer Guide
GenerateDataKey

"encryptionContext": ({
" Cont ext Keyl1": "Val uel"
}
"keyld": "arn:aws: kms: us-east-1: 012345678901: key/ 8d3acf 57- 6bba- 480a-
9459- ed1b8e79d3d0"
1
"responseEl ements": null,
"request| D': "f3423043-63bc-1le4-bc2b-4198b6150d5¢c",
"event| D': "91235988-eb87-476a-ac2c-0cdc244e6dca",
"readOnl y": true,
"resources": [{
"ARN': "arn:aws: kns: us- east-1: 012345678901: key/ 8d3acf 57- 6bba- 480a-
9459- ed1b8e79d3d0",
"account|d": "012345678901"

H
"event Type": "AwsServiceEvent",
"reci pi ent Account1d": "012345678901"
}
]
}
GenerateDataKey

The following example shows a log file created by calling Gener at eDat aKey.

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/Alice"",
"accountld": "123456789012",

"accessKeyl d": "EXAMPLE_KEY_I D',

"user Name": "Alice"
H
"event Ti me": "2014-11-04TO00: 52: 402",
"event Source": "kms.amazonaws. cont',
"event Nanme": "Gener at eDat aKey",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",

"request Paraneters": {
"keyld": "637e8678-3d08-4922-a650-e77eb1591db5",
"nunber O Byt es": 32

responseEl enments": null,
"request| D': "e0eb83e3-63bc-1le4-bc2b-4198b6150d5¢c",
"event| D': "a9dea4f 9-8395-46c0-942c-f509c02c2b71",
"readOnl y": true,
"resources": [{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ 637e8678- 3d08- 4922-

49

AWS Key Management Service Developer Guide
GenerateDataKeyWithoutPlaintext

a650- e77eb1591db5",
"account|d": "123456789012"
H
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

GenerateDataKeyWithoutPlaintext

The following example shows a log file created by calling Gener at eDat aKeyW t hout Pl ai nt ext .

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

"principalld": "EX PRI NC PAL_I D',

"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",

"accessKeyl d": "EXAMPLE_KEY_I D',

"user Name": "Alice"
H
"event Ti ne": "2014-11-04T00: 52: 232",
"event Source": "kms. amazonaws. cont',
"event Nanme": "Gener at eDat aKeyW t hout Pl ai nt ext",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",
"errorCode": "lnvali dKeyUsageException",

"request Paraneters": {
"keyl d": "d4f 2a88d-5f9c-4807-b71d- 4d0ee5225156",
"nunber O Bytes": 16

responseEl enments": null,
"request| D': "d6b8e4ll-63bc-1le4-bc2b-4198b6150d5c",
"event| D': "f7734272-9ec5-4c80- 9f 36- 528ebbe35e4a",
"readOnl y": true,
"resources": [{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ d4f 2a88d- 5f 9c- 4807-
b71d- 4d0ee5225156",
"account|d": "123456789012"
.
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

50

AWS Key Management Service Developer Guide
GenerateRandom

GenerateRandom

The following example shows a log file created by calling Gener at eRandom

"Records": [
{
"event Version": "1.02",
"userldentity": {
"type": "Il AMJser",
"principalld": "EX_PRINCIPAL_I D',
"arn": "arn:aws:iam :123456789012: user/Alice",
"account | d": "123456789012",
"accessKeyl d": "EXAMPLE KEY_I D',
"user Nane": "Alice"

event Time": "2014-11-04T00: 52: 372",

"event Sour ce": "kns.amazonaws. cont',

"event Nane": " Gener at eRandont',

"awsRegi on": "us-east-1",

"sour cel PAddress": "192.0.2.0",

"userAgent": "AWS Internal",

"request Paraneters”": null,

"responseEl enents": nul |,

"request| D': "df 1e3de6- 63bc- 11le4- bc2b-4198b6150d5c",
"event| D': "239cb9f 7- ae05- 4c94- 9221- 6ea30eef 0442",
"readOnly": true,

"resources": [],

"event Type": "AwsApi Call",

"recipient Accountld": "123456789012"

GetKeyPolicy

The following example shows a log file generated by calling Get KeyPol i cy.

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

"principalld": "EX PRINCI PAL_I D",

"arn": "arn:aws:iam :123456789012: user/ Alice",
"account | d": "123456789012",

"accessKeyld": "EXAMPLE KEY_I D',

"user Nane": "Alice"

}
"event Ti me": "2014-11-04T00: 50: 30Z",

51

AWS Key Management Service Developer Guide
ListAliases

"event Source": "kms.amazonaws. cont',
"event Name": " GetKeyPolicy",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",
"request Paraneters": {
"keyld": "arn:aws: kms: us-east-1:123456789012: key/ e923f e55- d3ef - 4f 9c-
89al- 2752f 98c3a70",

"policyNane": "default"
H
"responseEl ements": null,
"request| D': "93746dd6- 63bc- 11e4- bc2b-4198b6150d5c",
"event| D': "4aa7e4d5-d047-452a- a5a6-2cce282a7e82",
"readOnl y": true,
"resources": [{

"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ €923f e55- d3ef - 4f 9c-

89al- 2752f 98c3a70",

"account|d": "123456789012"
H,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

ListAliases

The following example shows a log file generated by calling Li st Al i ases.

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX_ PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",

"accessKeyl d": "EXAMPLE_KEY_I D',

"user Nane": "Alice"
}s
"event Time": "2014-11-04T00:51: 457",
"event Source": "kns.amazonaws. cont',
"event Nane": "ListAliases",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",
"request Paraneters": {

"limt": 5,

"marker": "eyJiljoi YWKpYXM/ZTUOY2MKOTM YTMMNCOO0Yz EWLTI
i ZW t YTJj Zj A3Nj A20TJhl i wi YSI 61 nFsaWrzL2ULNGN Mrkz LWEz MDQt NGVKMCO5YnVi LWEY Y2 YWN
zYWN kyYSJo"
b,

52

AWS Key Management Service Developer Guide
ListGrants

"responseEl ements": null,

"request| D': "bfeb6cl90-63bc-1le4-bc2b-4198b6150d5¢c",
"event| D': "a27dda7b- 76f 1- 4ac3- 8b40- 42df ba77bcd6",
"readOnl y": true,

"resources": [],

"event Type": "AwsApi Call",

"reci pi ent Account1d": "123456789012"

ListGrants

The following example shows a log file generated by calling Li st Gr ant s.

{
"Records": |
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX_ PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",

"accessKeyl d": "EXAMPLE_KEY_I D',

"user Nane": "Alice"
}s
"event Ti me": "2014-11-04T00:52: 497",
"event Source": "kns.amazonaws. cont',
"event Nane": "ListGants",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",

"request Paraneters": {
"keyld": "arn:aws: kms: us-east-1:123456789012: key/ ea22a751- e707- 40d0-
92ac- 13a28f a%9eb11",
"mar ker": "eyJncnFudEl kl j oi MAYAMRU2ZMVDYTY2NDgx Y] @QYzc4AMIdhM2Y4Ym
QMVDFKZDNi YmQLMGVI YTMY Y2ROWFi NWWLNzc INDNj YNy | s| nt | eUFybi | 61 nfFybj phd3MedHII b
nQ c2FuZGveDplcyll YXNOLTE6NTc4Nzg3N k2NTM
wOnt | eSOl YTI yYTc1MS1l Nz ASLTQwWZDAt OTJhYyOxM2Ey OGZhOW/iI MTEi f Q u003d\ u003d",
"limt": 10
}

"responseEl ements": null,
"request| D': "e5c23960-63bc-11le4-bc2b-4198b6150d5¢c",
"event| D': "d24380f 5- 1b20- 4253- 8e92- dd0492b3bd3d",
"readOnl y": true,
"resources": [{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ ea22a751- e707- 40d0-
92ac- 13a28f a%9eb11",
"account|d": "123456789012"
H,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

53

AWS Key Management Service Developer Guide
ReEncrypt

ReEncrypt

The following example shows a log file generated by calling ReEncr ypt .

{
"Records": [
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",

"accessKeyl d": "EXAMPLE _KEY_I D',

"user Name": "Alice"
H
"event Ti ne": "2014-11-04TO00: 52: 192",
"event Source": "kms.amazonaws. cont',
"event Nane": "ReEncrypt",
"awsRegi on": "us-east-1",
"sour cel PAddress": "192.0.2.0",
"user Agent": "AWS Internal",

"request Paraneters": {
"destinationKeyld": "arn:aws: kns: us-east-1: 123456789012: key/ 116b8956-
a086- 40f 1- 96d6- 4858ef 794ba5"
H
"responseEl ements": null,
"request| D': "d3eeee63-63bc-1le4-bc2b-4198b6150d5¢c",
"event|D': "627c13b4-8791-4983-a80b-4c28807b964c",
"readOnl y": fal se,
"resources": [{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ f f 0cOf c1- cbaa- 41ab-
a267- 69481da8a4c8",
"account|d": "123456789012"

b

{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ 116b8956- a086- 40f 1-
96d6- 4858ef 794ba5",
"account|d": "123456789012"
H
"event Type": "AwsServiceEvent",
"reci pi ent Account1d": "123456789012"

54

AWS Key Management Service Developer Guide
Amazon EC2 Example One

Amazon EC2 Example One

The following example demonstrates an IAM user creating an encrypted volume using the default volume
key in the Amazon EC2 management console. The

The following example shows a CloudTrail log entry that demonstrates the user Alice creating an encrypted
volume using a default volume key in AWS EC2 Management Console. The EC2 log file record includes
a vol unel d field with a value of " vol - 13439757" . The AWS KMS record contains an

encrypti onCont ext field with a value of "aws: ebs: i d": "vol -13439757". Similarly, the

princi pal I d and account | d between the two records match. The records reflect the fact that creating
an encrypted volume generates a data key that is used to encrypt the volume content.

{
"Records": [
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",
"principalld': "EX PRI NC PAL_I D',
"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",
"accessKeyld": "EXAMPLE KEY_I D',
"user Nane": "Alice",
"sessionContext": {
"attributes": {
"nf aAut henti cated": "fal se",
"creationDate": "2014-11-05T20: 40: 44Zz"
}
}
"i nvokedBy": "signin.amazonaws. cont
1
"event Time": "2014-11-05T20:50: 182",
"event Source": "ec2.anazonaws. cont',
"event Nanme": " CreateVol une",
"awsRegi on": "us-east-1",
"sourcel PAddress": "72.72.72.72",
"user Agent": "signin.amazonaws. con',
"request Paranmeters": {
"size": "10",
"zone": "us-east-la",
"vol umeType": "gp2",
"encrypted": true
1
"responseEl ements": {
"vol unel d": "vol -13439757",
"size": "10",
"zone": "us-east-la",
"status": "creating",
"createTinme": 1415220618876,
"vol umeType": "gp2",
"iops": 30,
"encrypted": true
1
"request| D': "1565210e- 73d0- 4912- 854c- b15ed349e526",
"event| D': "a3447186- 135f-4b00- 8424- bc41f 1a93b4f ",
"event Type": "AwsApi Call",

55

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

"reci pi ent Account1d": "123456789012"

}s
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",

"accountld": "123456789012",

"accessKeyl d": "EXAMPLE_KEY_I D',

"user Nane": "Alice",

"sessionContext": {

"attributes": {

"nfaAut henticated": "false",
"creationDate": "2014-11-05T20: 40: 44Z"

}

H

"invokedBy": "AWS Internal"
H
"event Ti ne": "2014-11-05T20:50: 192",
"event Source": "kns.amazonaws. cont,
"event Nanme": " Gener at eDat aKeyW t hout Pl ai nt ext",
"awsRegi on": "us-east-1",
"sour cel PAddress": "AWS Internal",
"user Agent": "AWS Internal",

"request Paraneters": {
"encryptionContext": {
"aws: ebs:id": "vol -13439757"
}

"nunber O Byt es": 64,
"keyld": "alias/aws/ebs"
H
"responseEl ements": null,
"request|I D': "create-123456789012- 758241111-1415220618",
"event| D': "4bd2a696-d833-48cc-b72c-05e61b608399",
"readOnl y": true,
"resources": |

{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ e29ddf d4- 1bf 6- 4elb-
8ech-08216bd70d07",
"account|d": "123456789012"
}
1,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"
8

addi tional entries ...

Amazon EC2 Example Two

The following example shows an IAM user running an Amazon EC2 instance that mounts a data volume
encrypted by using a default volume key. The action taken by the user generates multiple AWS KMS log
records. Creating the encrypted volume generates a datakey, and the Amazon EC2 service generates a

56

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

grant, on behalf of the customer, that enables it to decrypt the data key. The i nst ancel d,"i - 81e2f 56¢",
is referred to in the gr ant eePri nci pal field of the Cr eat eGr ant record as

"123456789012: aws: ec2-i nfrastructure:i-81e2f56c" as well as in the identity of the principal
calling Decrypt,

“arn: aws: sts::123456789012: assuned-rol e/ aws: ec2-infrastructure/i-8le2f56c¢c”.The
key identified by the UUID “ e29ddf d4- 1bf 6- 4elb- 8ecb- 08216bd70d07” is common across all three
KMS calls.

{
"Records": [
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",
"principalld': "EX_PRINCIPAL_I D',
"arn": "arn:aws:iam:123456789012: user/ Alice",
"accountld": "123456789012",
"accessKeyl d": "EXAMPLE_KEY_I D',
"user Nane": "Alice",
"sessionContext": {
"attributes": {
"nf aAut henti cated": "fal se",
"creationDate": "2014-11-05T21: 34: 362"
}
}s
"invokedBy": "signin.amzonaws. cont
}s
"event Time": "2014-11-05T21:35:272",
"event Source": "ec2.amazonaws. cont,
"event Nane": "Runl nstances",
"awsRegi on": "us-east-1",
"sourcel PAddress": "72.72.72.72",
"user Agent": "signin.amazonaws. cont',

"request Paraneters": ({
"instancesSet": {
"items": [
{
"imagel d": "am -b66ed3de",
"m nCount": 1,
"maxCount": 1

}
]
},
"groupSet": {
"items": [
{
"groupld": "sg-98b6e0f 2"
}
]
H

"instanceType": "n8.nediuni,
"bl ockDevi ceMappi ng": {

"items": [
{
"devi ceNane": "/dev/xvda",
"ebs": {

"vol uneSi ze": 8,

57

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

"del eteOnTerm nation": true,
"vol uneType": "gp2"

}
}s
{
"devi ceNane": "/dev/sdb",
"ebs": {
"vol uneSi ze": 8,
"del eteOnTerm nation": fal se,
"vol uneType": "gp2",
"encrypted": true
}
}

]
1
"monitoring": {
"enabl ed": false
1
"di sabl eApi Termi nation": fal se,
"instancel ni ti at edShut downBehavi or": "stop",
"client Token": "XdKUT141516171819",
"ebsOptimzed": false

H
"responseEl enents": {
"reservationld": "r-5ebc9f 74",
"ownerld": "123456789012",
"groupSet": {
"itenms": [
{
"groupld": "sg-98b6e0f 2",
"groupNane": "launch-w zard-2"
}
]
H
"instancesSet": {
"itenms": [
{
"instancel d": "i-81le2f56c¢c",

"imagel d": "am -b66ed3de",
"instanceState": {

"code": O,

"name": "pending"
}
"am Launchl ndex": 0,
"product Codes": {

}s

"instanceType": "nB.nediunt,
"l aunchTi ne": 1415223328000,
"placenent": ({

"avail abilityZone": "us-east-1a",
"tenancy": "default"

b,

"monitoring": {
"state": "disabl ed"

}

"stat eReason": {
"code": "pending",

58

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

"message": "pendi ng"
}s
"architecture": "x86_64",
"root Devi ceType": "ebs",
"root Devi ceNane": "/dev/xvda",
"bl ockDevi ceMappi ng": {

}s
"virtualizationType": "hvni,
"hypervisor": "xen",
"client Token": "XdKUT1415223327917",
"groupSet": {
"items": [
{
"groupld": "sg-98b6e0f 2",
"groupNanme": "l aunch-w zard-2"
}
]
}

"networ kl nterfaceSet": {

}s
"ebsOptimzed": false
}

]
}
H
"request| D': "41c4b4f 7- 8bce- 4773- bf Oe- 5ae3bb5chce2",
"event| D': "cd75a605- 2f ee- 4f da- b847- 9c3d330ebaae”,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

"event Version": "1.02",
"userldentity": {
"type": "I AMJser",
“principalld": "EX PRI NCIPAL_I D",
"arn": "arn:aws:iam:123456789012: user/ Alice",
"account | d": "123456789012",
"accessKeyl d": "EXAMPLE_KEY_I D',
"user Nane": "Alice",
"sessionContext": {
"attributes": {
"nfaAut henticated": "false",
"creationDate": "2014-11-05T21: 34: 362"
}
}s
"invokedBy": "AWS | nternal"
}s

"event Ti me": "2014-11-05T21: 35: 352",
"event Source": "kms.amazonaws. cont',
"event Nane": "CreateG ant",
"awsRegi on": "us-east-1",
"sour cel PAddress": "AWS Internal",
"user Agent": "AWS Internal",
"request Paraneters": {

"constraints": {

"encryptionCont ext Subset": {

59

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

"aws: ebs:id": "vol -f67baf b2"

}
H
"granteePrincipal": "123456789012: aws: ec2-i nfrastructure:i-8le2f56c",
"keyl d": "arn:aws: kms: us-east-1:123456789012: key/ e29ddf d4- 1bf 6- 4elb-
8ech-08216bd70d07"

}s
"responseEl enents": {
"grant|ld":
"6caf 442b4f f 8a27511f b6de3el2cc5342f 5382112adf 75¢c1a91dbd221ec356f e"
}s

"request| D': "41c4b4f 7- 8bce- 4773- bf Oe- 5ae3bb5chce2",
"event| D': "clad79e3-0d3f-402a-b119-d5c31d7c6a6c”,
"readOnl y": fal se,

"resources": |

{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ e29ddf d4- 1bf 6- 4elb-
8ech-08216bd70d07",
"account|d": "123456789012"
}
1,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

b
{
"event Version": "1.02",
"userldentity": {
"type": "I AMJser",

“principalld": "EX PRI NCIPAL_I D",

"arn": "arn:aws:iam:123456789012: user/ Alice",

"accountld": "123456789012",

"accessKeyl d": "EXAMPLE _KEY_I D',

"user Nane": "Alice",

"sessionContext": {

"attributes": {

"nfaAut henticated": "false",
"creationDate": "2014-11-05T21: 34: 362"

}

H

"invokedBy": "AWS Internal"
H
"event Ti ne": "2014-11-05T21: 35: 322",
"event Source": "kns.amazonaws. cont,
"event Nanme": " Gener at eDat aKeyW t hout Pl ai nt ext",
"awsRegi on": "us-east-1",
"sour cel PAddress": "AWS Internal",
"user Agent": "AWS Internal",

"request Paraneters": {
"encryptionContext": {
"aws: ebs:id": "vol -f67baf b2"
}s
"nunber O Byt es": 64,
"keyld": "alias/aws/ebs"
}s
"responseEl ements": null,
"request|I D': "create-123456789012- 758247346- 1415223332",
"event| D': "ac3cabl0-ce93-4953-9d62- 0b6e5cbha651d",
"readOnl y": true,

60

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

"resources": |

{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ e29ddf d4- 1bf 6- 4elb-
8ech-08216bd70d07",
"account|d": "123456789012"
}

1,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

"event Version": "1.02",
"userldentity": {

"type": "AssunedRol e",

"principalld": "123456789012: aws: ec2-i nfrastructure:i-8le2f56c",
"arn": "arn:aws:sts::123456789012: assuned-rol e/ aws: ec2-infrastructure/i -

8le2f 56¢",
"accountld": "123456789012",
"accessKeyld": "

"sessionContext": {
"attributes": {
"nf aAut henti cated": "fal se",
"creationDate": "2014-11-05T21: 35: 382"
H
"sessionl ssuer": {
"type": "Role",
“principalld": "123456789012: aws: ec2-i nfrastructure",
"arn": "arn:aws:iam:123456789012: rol e/ aws: ec2-i nfrastructure",
"account | d": "123456789012",
"user Name": "aws:ec2-infrastructure"
}
}
H
"event Ti me": "2014-11-05T21:35:47Z2",
"event Source": "kms.amazonaws. cont',
"event Nane": "Decrypt",
"awsRegi on": "us-east-1",
"sourcel PAddress": "172.172.172.172",
"request Paraneters": {
"encryptionContext": ({
"aws: ebs:id": "vol -f67baf b2"
}

H

"responseEl ements": null,

"request| D': "b4b27883-6533-11e4-b4d9- 751f 1761e9e5",
"event| D': "edh65380-0a3e-4123- bbc8-3d1lb7cff49b0",
"readOnl y": true,

"resources": |

{
"ARN': "arn:aws: kns: us- east-1: 123456789012: key/ e29ddf d4- 1bf 6- 4elb-
8ech-08216bd70d07",
"account|d": "123456789012"
}

1,
"event Type": "AwsApi Call",
"reci pi ent Account1d": "123456789012"

b

61

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

62

AWS Key Management Service Developer Guide
Creating a Client

Programming the AWS KMS API

You can use the AWS KMS API to perform the following actions:

¢ Create, describe, list, enable, and disable keys.
¢ Create, delete, list, and update aliases.

¢ Encrypt, decrypt, and re-encrypt content.

« Set, list, and retrieve key policies.

¢ Create, retire, revoke, and list grants.

¢ Retrieve key rotation status.

¢ Update key descriptions.

* Generate data keys with or without plaintext.

¢ Generate random data.

Topics
¢ Creating a Client (p. 63)
¢ Working With Keys (p. 64)
¢ Encrypting and Decrypting Data (p. 68)
¢ Working with Key Policies (p. 70)
¢ Working with Grants (p. 72)
¢ Working with Aliases (p. 74)

Creating a Client

Before you can program to the AWS Key Management Service, you must create a client, as shown by
the following example. The client object, kms, is used throughout all of the code in the sections that follow.

package com amazon. kis;

import java.io.File;
import java.io.l|OException;
i mport java. nio.ByteBuffer;

63

AWS Key Management Service Developer Guide
Working With Keys

i mport com anmzonaws. aut h. AWSCr edent i al s;
i mport com anmzonaws. aut h. Properti esCredenti al s;
i mport com anmzonaws. servi ces. kims. AWSKMVS;
i mport com anmzonaws. servi ces. knms. AWSKMSC i ent ;
i mport com amazonaws. servi ces. kns. nodel . *;
public class knsSDKExanpl e {

private final AWBKMSO i ent kns;

publ i c knmsSDKExanpl e() {

kms = getdient();
}

public static void main(String[] args) {
new ks SDKExanpl e() ;
}

private AWSKMS getClient() {
final AWBCredentials creds;

AVWBKMVSC i ent kns = new AWSKMBCO i ent (creds) ;

kms. set Endpoi nt ("https://kms. us-east-1. anmazonaws. con') ;

return kns;

Working With Keys

This topic discusses how to create, describe, list, enable, and disable keys.

Creating a Customer Master Key

Call the Cr eat eKey function to create a customer master key. The function takes three optional
parameters, as shown in the following example.

/1 Creating a key.

I

/1 I nput Paraneters:

/1 The function takes three optional parameters.

/1 Description - Contains a string description for the key
/1 KeyUsage - Use the default val ue (ENCRYPT_DECRYPT)

64

AWS Key Management Service Developer Guide
Generating a Data Key

/1 Pol i cy - Use the default policy, which grants rights to all key
actions

I

/! Return Val ues:

/1 The function returns a CreateKeyResult structure that contains the foll ow

ing:

/1 AWBAccountld - Account |ID of the account the key is associated with

/1 ARN - Anmzon Resource Name for the key

/1 CreationDate - Date the key was created in UTC format

/1 Description - Key description

/1 Enabl ed - A Bool ean val ue that specifies whether the key i s enabl ed
/1 Keyl D - A unique value that can be used to identify the key in
ot her operations

/1 KeyUsage - A value that shows what the key can be used for

I

String desc = "Key for protecting critical data";

Cr eat eKeyRequest req = new Creat eKeyRequest (). w t hDescri pti on(desc);
Creat eKeyResult result = kns. createKey(req);

Generating a Data Key

Call the Gener at eDat aKey function to create a data key. The function takes up to five parameters, as
shown in the following example.

/1l Cenerate a data key

I

/1 I nput Paraneters:

/1 The function takes five paraneters.

/1 Keyl d - Unique identifier for the key to be used for encryp
tion

/1 Encrypti onContext - Authenticated data

/1 Number O Byt es - The nunber of bytes of data key being requested

/1 Key Spec - The key specification being requested ("AES_128" or
"AES_256")

/1 Gr ant Tokens - List of grant tokens

I

/1 Return Val ues:

/1 The function returns a byte buffer that contains the encrypted key, a

byte buffer

/1 of the plaintext key, and the Keyl D of the naster key under which the key
is encrypted.

/1

/1

String keyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";

Gener at eDat aKeyRequest dat aKeyRequest = new CGener at eDat aKeyRequest () ;

dat aKeyRequest . set Keyl d(keyl d) ;

dat aKeyRequest . set KeySpec("AES_128");

Gener at eDat aKeyResul t dat akeyResult = knsd i ent. gener at eDat aKey(dat aKeyRequest) ;

Byt eBuf f er pl ai nt ext Key = dat aKeyResult. get Pl ai ntext();

65

AWS Key Management Service Developer Guide
Describing a Key

Byt eBuf f er encrypt edKey = dat aKeyResul t. get G phertext Bl ob();

Describing a Key

Call the Descri beKey function to retrieve detailed information about a customer master key.

/1 Describing a key.

I

/1 I nput Paraneters:

/1 The function takes one required paraneter.

/1 Keyl d - Unique identifier of the key. This can be an ARN, an
alias, or a globally unique

/1 identifier.

I

// Return Val ues:

/1 The function returns a Descri beKeyResult object that contains netadata
about

I t he key.

/1 AWBAccountld - 1D of the account the key is associated with

/1 ARN - Amazon Resource Nane for the key

/1 CreationDate - Date the key was created in UTC format

/1 Description - Key description

/1 Enabl ed - A Bool ean val ue that specifies whether the key is enabl ed
/1 Keyl d - A unique value that can be used to identify the key in
ot her operations

/1 KeyUsage - A value that shows what the key can be used for

I

String keyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";

Descri beKeyRequest
Descri beKeyResul t

req = new Descri beKeyRequest (). w t hKeyl d(keyl d);
result = kmns. describeKey(req);

Listing Keys

Call the Li st Keys function to retrieve a list of the customer master keys.

/1 Listing keys.

I

/1 I nput Paraneters:

/1 The function takes two required paraneters.

/1 Limt - Specify this paraneter only when paginating results to
indicate the

/1 maxi mum nunber of keys you want listed in the response.
If there are

/1 addi ti onal keys beyond the nmaxi mum you specify, the
Truncat ed

/1 response element will be set to true.

/1 Mar ker - Use this paranmeter only when paginating results, and only

66

AWS Key Management Service Developer Guide
Enabling Keys

in a subsequent

/1 request after you've received a response where the results
are truncated.

/1 Set it to the value of the NextMarker in the response you
/1 just received.

I

/1 Return Val ues:
/1 The function returns a ListKeyResult object that contains the follow ng
/1 val ues:

/1 Keys - Alist of keys

/1 Next Marker - |f Truncated is true, this value is present and contains
the val ue

/1 to use for the Marker request parameter in a subsequent
pagi nati on

/1 request.

/1 Truncated - A flag that indicates whether there are nore itens in the
list. If your results

/1 were truncated, you can nake a subsequent pagi nation request
using the

/1 Mar ker request parameter to retrieve nore keys in the list.
/1

Integer limt = 10;

String marker = null;

Li st KeysRequest req = new Li st KeysRequest ().w t hvarker (marker).withLimt(linit);
Li st KeysResult result = kns.listKeys(req);

Enabling Keys

Call the Enabl eKey function to mark a key as enabled.

/1 Enabling a key.

/1

/1 I nput Paraneters:

/1 The function takes one required paraneter.

/1 Keyl d - Unique identifier of the customer naster key to be enabl ed.
This can be an

/1 ARN, an alias, or a globally unique identifier.

/1

/! Return Val ues:

/1 The function does not return a val ue.

/1

String keyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";

Enabl eKeyRequest req = new Enabl eKeyRequest (). wi t hKeyl d(keyl d);
kms. enabl eKey(req);

67

AWS Key Management Service Developer Guide
Disabling Keys

Disabling Keys

Call the Di sabl eKey function to prevent a key from being used.

/1 Disabling a key.

/1

/1 1nput Paraneters:

/1 The function takes one required paraneter.

/1 Keyl d - Unique identifier of the custoner naster key to be disabl ed.
This can be an

/1 ARN, an alias, or a globally unique identifier.

/1

/! Return Val ues:

/1 The function does not return a val ue.

/1

String keyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012"; ;

Di sabl eKeyRequest req = new Di sabl eKeyRequest (). w t hKeyl d(keyl d) ;
kns. di sabl eKey(req);

Encrypting and Decrypting Data

This topic discusses how to encrypt, decrypt, and re-encrypt content.

Encrypting Data

Call the Encrypt function to encrypt plaintext data.

/1 Encrypting content

I

/1 I nput Paraneters:

/1 The function takes four paraneters.

/1 Keyl d - Unique identifier for the key to be used for encryp
tion

/1 Pl ai nt ext - Byte buffer that contains the content to be encrypted
/1 EncryptionContext - Authenticated data

/1 Gr ant Tokens - List of grant tokens

/1

/1 Return Val ues:

/1 The function returns a byte buffer that contains the encrypted content
and the key ID

/1 of the master key used.

/1

String keyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";

Byt eBuf fer plaintext = ByteBuffer.wap(new byte[]{1,2,3,4,5,6,7,8,9,0});

Encrypt Request req = new Encrypt Request (). wi t hKeyl d(keyl d).w t hPl ai ntext (pl ain
text);

68

AWS Key Management Service Developer Guide
Decrypting Data

Byt eBuf fer ci phertext = kns.encrypt(req).getC phertextBl ob();

Decrypting Data

Call the Decr ypt function to decrypt ciphertext. The data to decrypt must be valid ciphertext that you
receive from the Encr ypt function.

/1 Decrypting content

/1

/1 1nput Paraneters:

/1 The function takes three paraneters.

/1 Ci pher Text Bl ob - Ciphertext to be decrypted
/1 EncryptionContext - Authenticated data

/1 Gr ant Tokens - List of grant tokens

/1

/! Return Val ues:

/1 The function returns a byte buffer that contains the decrypted content.
I

Byt eBuf f er ci phertextBlob = ciphertext here;

Decrypt Request req = new Decrypt Request (). wi t hCi phert ext Bl ob(ci phert ext Bl ob);
Byt eBuf f er pl ai nText = kms. decrypt(req). getPlaintext();

Re-Encrypting Data Under a Different Key

Call the ReEncr ypt function to encrypt previously encrypted data by using a new key. This function
decrypts your ciphertext and re-encrypts it by using a different key that you specify. The function never
exposes your plaintext outside of AWS KMS.

/1 ReEncrypt content
/1 I nput paraneters:
/1 The function takes three paraneters.

/1 Ci pher Text Bl ob - G phertext to be re-encrypted

/1 Sour ceEncrypt i onCont ext - Authenticated data used for the original
encryption

/1 Desti nati onKeyl d - Key identifier for the re-encrypted data
/1 Desti nati onEncrypti onContext - encryption context for the re-encrypted
dat a

/1 G ant Tokens - List of grant tokens

/1

/1 Return Val ues:

/1 The function returns a byte buffer that contains the re-encrypted content.
/1

Byt eBuf f er sourceCi phertextBl ob = ci phertext here

String destinati onKeyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234-
1234-1234-123456789012";

ReEncrypt Request req = new ReEncrypt Request () ;
req. set C phert ext Bl ob(sour ceCi phert ext Bl ob) ;
req. set Desti nati onKeyl d(desti nati onKeyl d);

69

AWS Key Management Service Developer Guide
Working with Key Policies

Byt eBuf f er desti nati onCi pher Text Bl ob = kns. reEncrypt (req). get G phertextBl ob();

Working with Key Policies

This topic discusses how to list, retrieve, and set key policies.
Listing Key Policies

Call the Li st KeyPol i ci es function to list key policies for a specified key.

/1 Listing key policies

I

/1 I nput Paraneters:

/1 The function takes three paraneters.

/1 Keyl d - Unique identifier of the key for which the policies are to
be listed.

/1 Limt - Specify this paraneter only when paginating results to indicate
t he

/1 maxi mum nunber of policies you want listed in the response.
If there are

/1 addi tional policies beyond the nmaxi num you specify, the
Truncat ed

/1 response element will be set to true.

/1 Mar ker - Use this paranmeter only when paginating results, and only in
a subsequent

/1 request after you've received a response where the results
are truncated.

/1 Set it to the value of the NextMarker in the response you

/1 just received.

I

/1 Return Val ues:
/1 The function returns a list of key policies.

I

String keyld = "arn: aws: knms: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";

String marker = null;

Integer linmt = 10;

Li st KeyPol i ci esRequest req = new Li st KeyPol i ci esRequest (). wi t hKeyl d(keyld).w th
Mar ker (marker) . withLimt(limt);
Li st KeyPol i ci esResult result = kns.|istKeyPolicies(req);

Retrieving a Key Policy

Call the Get KeyPol i cy function to retrieve a key policy.

/'l Retrieving a key policy

70

AWS Key Management Service Developer Guide
Setting a Key Policy

I
/1 I nput Paraneters:
/1 The function takes two paraneters.

/1 Keyl d - Unique identifier of the key for which the policy wll
be returned.

/1 Pol i cyNane - Nane of the policy to return.

I

/! Return Val ues:

/1 The function returns a key policy.

/1

String keyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";

String policyName = "default";

Get KeyPol i cyRequest req = new Get KeyPol i cyRequest (). wi t hKeyl d(keyl d).w t hPol i
cyNane(pol i cyNane) ;
Get KeyPol i cyResult result = kns. get KeyPolicy(req);

Setting a Key Policy

Call the Put KeyPol i cy function to set a policy on a key.

/1 Setting a policy on a key

I

/1 I nput Paraneters:

/1 The function takes three paraneters.

/1 Keyl d - Unique identifier of the key
/1 Pol i cyNane - Nanme of the policy to set

/1 Pol i cy - Policy to set

I

/1 Return Val ues:
/1 The function does not return a val ue.
/1
String keyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";
String policyName = "default";
String policy = "{ " +

" \"Version\":\"2012-10-17\", " +

" \"Statenent\": ["+

" { "4

" \"Sid\": \"Allow access for Alice\", " +

" \"Effect\": \"Allow", "o+
\"Principal\":
\"arn:aws:iam:123456789012: user/Alice\", " +

" \"Action\": [\"kms: Encrypt\", \"kms: Gener at eDat aKey*\",

\"kms: Decrypt\", \"kns: Descri beKey\", \"kms: ReEncrypt*\"], " +
\"Resource\": \"*\" " +
" e+
" 1"+

"1

Put KeyPol i cyRequest req = new Put KeyPol i cyRequest (). wi t hKeyl d(keyld).with
Pol i cy(policy).w thPolicyName(policyNane);

71

AWS Key Management Service Developer Guide
Working with Grants

kms. put KeyPol i cy(req);

Working with Grants

This topic discusses how to create, retire, revoke, and list grants.

Creating a Grant

Call the Cr eat eGr ant function to create a grant.

/1 Creating a grant

I

/1 I nput Paraneters:

/1 The function takes up to six paraneters.

/1 Keyl d - Unique identifier for the key. This can be an ARN,
an alias, or a globally unique val ue.

/1 Grant eePri nci pal - Principal given perm ssion to use the key identified
by the Keyld paraneter

/1 RetiringPrincipal - Principal given pernmission to retire the grant

/1 Qper ati ons - List of operations pernitted by the grant

/1 Constraints - The conditions under which the actions specified
by the Operations paraneter are all owed

/1 G ant Tokens - List of grant tokens

I

// Return Val ues:
/1 The function returns two val ues.

/1 G ant Token - Signed and encrypted string value that contains all
of the information needed to create the grant

/1 Gantl D - Gobally unique identifier of the grant

I

String keyld = "arn: aws: knms: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";

String granteePrincipal = "arn:aws:iam:123456789012: user/ Al i ce"

String operation = G antOperation. Encrypt;

Creat eGrant Request req = new Creat eG ant Request () ;
req. set Keyl d(keyl d);

req. set Gant eePri nci pal (grant eePrinci pal) ;

req. set Qperation(operation);

CreateGrantResult result = kms.createG ant(req);

Retiring a Grant

Call the Ret i r eGr ant function to retire a grant. You should retire a grant to clean up after you are done
using it.

/1l Retiring a grant

72

AWS Key Management Service Developer Guide
Revoking Grants

/1

/1 I nput Paraneters:

/1 Grant Token - unique grant identifier
/1

/! Return Val ues:

/1 The function does not return a val ue.

String grant Token = grant token here

RetireG ant Request req = new RetireG ant Request (). wi t hG ant Token(grant Token);
kms.retireGant(req);

Revoking Grants

Call the RevokeGr ant function to revoke a grant. You should revoke a grant to deny operations that
depend on it.

/'l Revoking a grant

I

/1 I nput Paraneters:

/1 Keyl d - Unique identifier for the key
/1 Gantld - Unique identifier for the grant
I

/! Return Val ues:

/1 The function does not return a val ue.

I

String keyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";

String grantld = "grantl1";

RevokeG ant Request req = new RevokeG ant Request (). w t hKeyl d(keyl d).wi t hG ant
ld(grantld);
kms. revokeGrant (req);

Listing Grants

Call the Li st Grant function to list all of the grants on a given key.

/1 Listing grants

I

/1 I nput Paraneters:

/1 The function takes three paraneters.

/1 Keyl d - Unique identifier for the key

/1 Limt - Specify this paraneter only when paginating results to indicate
t he

/1 maxi mum nunber of grants you want listed in the response. If
there are

/1 addi tional grants beyond the maxi mumyou specify, the Truncated
/1 response element will be set to true.

73

AWS Key Management Service Developer Guide
Working with Aliases

/1 Mar ker - Use this parameter only when paginating results, and only in
a subsequent

/1 request after you've received a response where the results
are truncated.

/1 Set it to the value of the NextMarker in the response you

/1 just received.

I

/! Return Val ues:
/1 The function returns a list of grants for the key.

/1

String keyld = "arn: aws: kns: us- east - 1: 123456789012: key/ 12345678- 1234- 1234- 1234-
123456789012";

Integer limt = 10;

String marker = null;

Li st G ant sRequest req = new Li st G ant sRequest (). w t hKeyl d(keyl d) . wi t hMar ker (mar k
er).withLimt(limt);
ListGantsResult result = kns.listGants(req);

Working with Aliases

This topic discusses how to create, delete, and update an alias.

An alias is a display name for a key. It can be used to identify a key in the following functions where a
Keyld is required:

« DescribeKey

e Encrypt

¢ GenerateDataKey

¢ GenerateDataKeyWithoutPlaintext
« ListKeyPolicies

¢ ReEncrypt

You can use a full ARN to specify an alias or just the alias name as shown in the following example. If
you use the alias name, be sure to prepend "alias/" to it.

/1 Fully specified ARN
arn: aws: kns: regi on: 123456789012: al i as/ MyAl i asName

/1 Alias nane (prefixed with "alias/")
al i as/ MyAl i asNane

An alias is not a property of a key, and therefore can be associated with and disassociated from an existing
key without changing the properties of the key. Deleting an alias does not delete the underlying key.

Creating an Alias

Call the Cr eat eAl i as function to create an alias. The alias should be unigue.

74

AWS Key Management Service Developer Guide
Deleting an Alias

// Creating an alias

I

/1 I nput Paraneters:

/1 The function takes two paraneters.

/1 Al i asNane - String that contains a display nane for a key. This is
of the fornat

/1 "alias/[a-zA-Z0-9/ _-]1+". That is, the alias nane can be
an al phanuneric

/1 val ue and contain an underscore or a dash. Alias nanmes
that begin with

/1 "alias/aws..." are reserved for AWS use.

/1 Target Keyld - Unique key identifier of the key to which the display
nanme wll

/1 be associ at ed

/1

/1 Return Val ues:

/1 The function does not return a val ue.

I

String aliasName = "alias/privatekeyl";

String targetKeyld = "arn: aws: kns: us-east - 1: 123456789012: key/ 12345678- 1234- 1234-
1234-123456789012";

Creat eAl i asRequest req = new CreateAliasRequest().w thAliasName(ali
asNane) . wi t hTar get Keyl d(t ar get Keyl d) ;
kms. createAlias(req);

Deleting an Alias

Call the Del et eAl i as function to delete an alias.

/1 Deleting an alias

I

/1 I nput Paraneters:

/1 The function takes one paraneter.

/1 AliasName - String that contains a display nanme for a key
I

/1 Return Val ues:

/1 The function does not return a val ue.

I

String aliasNanme = "alias/privatekeyl";

Del et eAl i asRequest req = new Del et eAli asRequest ().w t hAl i asNanme(al i asNane) ;
kms. del eteAl i as(req);

Listing Aliases

Call the Li st Al i ases function to list all of the key aliases for your account.

75

AWS Key Management Service Developer Guide
Updating an Alias

/1 Listing aliases

I

/1 I nput Paraneters:

/1 The function takes three paraneters.

/1 Limt - Specify this paraneter only when paginating results to indicate
t he

/1 maxi mum nunber of aliases you want listed in the response.
If there are

/1 addi tional aliases beyond the nmaxi mum you specify, the Trun
cated

/1 response element will be set to true.

/1 Mar ker - Use this parameter only when paginating results, and only in
a subsequent

/1 request after you've received a response where the results
are truncated.

/1 Set it to the value of the NextMarker in the response you

/1 just received.

/1 Prefix - Prefix of the alias to list. This value can be null.

/1

/! Return Val ues:
/1 The function returns a list of aliases for the keys in your account.
/1

String prefix = null;
String marker = null;
Integer limt = 10;

Li st Ali asesRequest req = new ListAliasesRequest().w thPrefix(prefix).w thMark
er(marker). withLimt(limt);
Li st AliasesResult result = kns.listAliases(req);

Updating an Alias

Call the Updat eAl i as function to associate an alias with a different key.

/1 Updating an alias

I

/1 I nput Paraneters:

/1 The function takes two paraneters.

/1 AliasName - String that contains the nane of the alias to be nodified.
An alias nane can

/1 contain only al phanuneric characters, forward sl ashes,
under scores, and dashes.

/1 An alias nust start with the word "alias" followed by a
forward slash (alias/).

/1 An alias that begins with "aws" after the forward sl ash
is reserved by

/1 Amazon Wb Services (AW).

/1 Target Keyld - Unique identifier of the customer naster key to be associ
ated with the alias.

/1 This value can be a globally unique identifier or the fully
speci fi ed ARN of

/1 a key.

/1

76

AWS Key Management Service Developer Guide
Updating an Alias

/1 Return Val ues:

/1 The function does not return a val ue.

I

String aliasName = "alias/critical _data_protection_key";

String targetKeyld = "arn: aws: kns: us-east - 1: 123456789012: key/ 12345678- 1234- 1234-
1234-123456789012";

Updat eAl i asRequest req = new Updat eAl i asRequest ()
.w t hAl i asNanme(al i asNane)
.wi t hTar get Keyl d(t ar get Keyl d) ;

knms. updat eAl i as(req);

77

AWS Key Management Service Developer Guide

Cryptography Basics

This topic discusses terms and concepts in cryptography that you'll encounter when you work with AWS
KMS.

Plaintext and Ciphertext

Plaintext refers to information or data in an un-encrypted, or unprotected, form. Ciphertext refers to the
output of an encryption algorithm operating on plaintext. AWS KMS uses encryption algorithms. The
ciphertext is unreadable without knowledge of the secret key.

Algorithms and Keys

Encryption algorithms used by AWS KMS require a key. An encryption algorithm is a step-by-step set
of instructions that specify precisely how plaintext is transformed into ciphertext. The Advanced Encryption
Standard (AES) is an example of an algorithm that is used in AWS KMS. A key is a secret value that the
algorithm uses to turn plaintext into ciphertext. Master keys in AWS KMS are 256 bits in length.

Symmetric and Asymmetric Encryption

Encryption can be either symmetric or asymmetric. Symmetric encryption uses the same secret key to
perform both the encryption and decryption processes. Asymmetric encryption uses two keys, a public
key and a private key. The public key and the private key are mathematically related but different. If the
public key is used for encryption, the private key must be used for decryption.

Important
AWS KMS currently supports only symmetric (private) key cryptography.

Cryptography is discussed in more detail in the following topics.

Topics
« How Symmetric Key Cryptography Works (p. 79)
¢ Authenticated Encryption (p. 79)
¢ Encryption Context (p. 80)
¢ Reference: AWS KMS and Cryptography Terminology (p. 81)

78

AWS Key Management Service Developer Guide
How Symmetric Key Cryptography Works

How Symmetric Key Cryptography Works

This topic provides a high-level introduction to how symmetric key cryptography uses algorithms to encrypt
and decrypt data, the difference between block and stream ciphers, and how block ciphers use encryption
modes to expand the effectiveness of the generic encryption schemes.

Encryption and Decryption

AWS KMS uses symmetric key cryptography to perform encryption and decryption. Symmetric key
cryptography uses the same algorithm and key to both encrypt and decrypt digital data. The unencrypted
data is typically called plaintext whether it is text or not. The encrypted data is typically called ciphertext.
The following illustration shows a secret (symmetric) key and a symmetric algorithm being used to turn
plaintext into ciphertext.

Symmetric key

Plaintext

CigherText

|
&1
|

Encryption Algoerithm

The next illustration shows the same secret key and symmetric algorithm being used to turn ciphertext
back into plaintext.

Syrmimetric key

=
-~

CipherText —— ——# PlainText

5

Decrypticn Algorithm

Authenticated Encryption

Authenticated encryption provides confidentiality, data integrity, and authenticity assurances on encrypted
data. The Encr ypt function takes plaintext, a key identifier, and an encryption context and returns
ciphertext. The encryption context represents additional authenticated data (AAD). The encryption process
uses the AAD only to generate an authentication tag. The tag is included with the output ciphertext and
used as input to the decryption process. This means that the encryption context that you supply to the

79

AWS Key Management Service Developer Guide
Encryption Context

Decr ypt function must be the same as the encryption context you supply to the Encr ypt function.
Otherwise, the tag computed during decryption will not equal the tag computed during encryption, and
the decryption process will fail without producing plaintext. Further, if any one of the parameters has been
tampered with—specifically if the ciphertext has been altered—the authentication tag will not compute to
the same value that it did during encryption. The decryption process will fail and the ciphertext will not be
decrypted.

An encryption context is a key/value pair that you can pass to AWS KMS when you call the Encrypt
function. It is integrity checked but not stored as part of the ciphertext that is returned. Although the
encryption context is not literally included in the ciphertext, it is cryptographically bound to the ciphertext
during encryption and must be passed again when you call the Decrypt function. Decryption will only
succeed if the value you pass for decryption is exactly the same as the value you passed during encryption
and the ciphertext has not been tampered with. The encryption context is logged by using CloudTrail.

The encryption context can be any value that you want. However, because it is not encrypted and because
it is logged if CloudTrail logging is turned on, the encryption context should not include sensitive information.
We further recommend that your context describe the data being encrypted or decrypted so that you can
better understand the CloudTrail events produced by AWS KMS. For example, Amazon EBS uses the
ID of the encrypted volume as the encryption context for server-side encryption. If you are encrypting a
file, you might use part of the file path as the encryption context.

Encryption Context in Grants and Key Policies

In addition to using the encryption context to check ciphertext integrity and authenticity, AWS KMS supports
authorization by using grants and key policies that incorporate the encryption context. Authorization that
uses an encryption context more tightly controls access to encrypted resources. When you create a grant,
for example, you can optionally specify an encryption context that unambiguously identifies the resource
to which long term access is being granted. As an example, consider Amazon EBS. When an Amazon
EBS volume is attached to an Amazon EC2 instance, a grant is created that allows only that instance to
decrypt only that volume. This is accomplished by encoding the volume ID in the encryption context
passed to the CreateGrant function. Without the encryption context, the Amazon EC2 instance would
require access to all volumes encrypted under the key before it could decrypt a specific volume.

Logging the Encryption Context

AWS KMS uses AWS CloudTrail to log the encryption context, thereby enabling you to determine which
keys and data have been accessed. That is, the log entry enables you to determine exactly which key
was used to encrypt or decrypt a specific data item referenced by the encryption context.

Important
Because the encryption context value is logged, it must not contain sensitive information.

Storing the Encryption Context

You should store the encryption context alongside the encrypted data to simplify using it when you call
the Decr ypt API. One security enhancement you might consider is to store only enough of the encryption
context that you can create the full context on the fly when needed for encryption or decryption. For
example, if you are encrypting a file and decide that the encryption context should be the full file path,
store only part of that path alongside of the encrypted file contents. Then, when you need the full encryption
context, reconstruct it from the stored fragment. If someone then moves the file to a different location,
when you recreate the encryption context, the context will be different and the decryption process will
fail, thereby informing you that your data has been tampered with.

80

AWS Key Management Service Developer Guide
Reference: AWS KMS and Cryptography Terminology

Reference: AWS KMS and Cryptography
Terminology

This section provides a brief glossary of terms for working with encryption in AWS KMS.

Additional authenticated data (AAD): Offers both data-integrity and authenticity by using additional
authenticated data during the encryption process. The AAD is authenticated but not encrypted. Using
AAD with authenticated encryption enables the decryption process to detect any changes that may
have been made to either the ciphertext or the additional authenticated data after encryption.

Authentication: The process of determining whether an entity is who it claims to be, or that information
has not been manipulated by unauthorized entities.

Authorization: Specifies an entity's legitimate access to a resource.

Block cipher modes: Encrypts plaintext to ciphertext where the plaintext and cipher text are of arbitrary
length. Modes are typically used to encrypt something that is longer than one block.

Block ciphers: An algorithm that operates on blocks of data, one block at a time.

Data key: A symmetric key generated by AWS KMS for your service. Inside of your service or custom
application, the data key is used to encrypt or decrypt data. It can be considered a resource by a service
or application, or it can simply be metadata associated with the encrypted data.

Decryption: The process of turning ciphertext back into the form it had before encryption. A decrypted
message is called plaintext.

Encryption: The process of providing data confidentiality to a plaintext message. An encrypted message
is called ciphertext.

Encryption context: AWS KMS specific AAD in the form of a "key":"value" pair. Although not encrypted,
it is bound to the ciphertext during encryption and must be passed again during decryption. If the
encryption context passed for encryption is not the same as the encryption context passed for decryption
or the ciphertext has been changed, the decryption process will fail.

Master key: A key created by AWS KMS that can only be used within the AWS KMS service. The
master key is commonly used to encrypt data keys so that the encrypted key can be securely stored
by your service. However, AWS KMS master keys can also be used to encrypt or decrypt arbitrary
chunks of data that are no greater than 4 KB. Master keys are categorized as either customer managed
keys or AWS managed keys. Customer managed keys are created by a customer for use by a service
or application. AWS managed keys are the default keys used by AWS services that support encryption.

Symmetric key cryptography: Uses a single secret key to encrypt and decrypt a message.

81

AWS Key Management Service Developer Guide

Document History

The following table describes the important changes to the documentation since the last release of AWS
Key Management Service.

e Current API version: 2014-11-01
« Latest documentation update: August 31, 2015

Change Description Release Date

Update Updated the Limits (p. 83) page to explain the new re- August 31,
quests per second limits. 2015

New content Added information about the charges for using AWS KMS. | August 14,
See Pricing (p. 5). 2015

New content Added requests per second to the Limits (p. 83) topic. June 11,

2015

New content Added a new Java code sample demonstrating use of the | June 1, 2015
UpdateAlias API. See Updating an Alias (p. 76).

Update Moved the AWS Key Management Service regions table | May 29, 2015
to the AWS General Reference.

Added service support Added support for Amazon EMR. See How Amazon EMR | January 28,
Uses AWS KMS (p. 37). 2015

Added service support Added support for Amazon WorkMail. See How Amazon | January 28,
WorkMail Uses AWS KMS (p. 34). 2015

Added service support Added support for Amazon RDS. See How Amazon Rela- | January 6,
tional Database Service Uses AWS KMS (p. 29). 2015

Added service support Added support for Elastic Transcoder. See How Elastic November
Transcoder Uses AWS KMS (p. 30). 24,2014

New Guide Introduced AWS Key Management Service. November

12,2014

82

http://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateAlias.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#kms_region

AWS Key Management Service Developer Guide

Limits

All AWS KMS obijects have limits that apply to each region and each AWS account. If you need to exceed
these limits, please visit the AWS Support Center and create a case.

Keys: 100
You can have up to 100 keys per region. All keys count towards this limit regardless of their status
(enabled or disabled). You can request more keys in a region; however, managing more than 100
keys from the AWS Management Console may be slower than acceptable. If you have more than
100 keys in a region, we recommend managing them programmatically with the AWS SDKs or AWS
Command Line Tools.

Aliases: 200
An alias is an independent display name that you can map to a key. It is not a property of a key. You
can map multiple aliases to a single key, so the limit for aliases is higher than the limit for keys. If
you request an increase in the number of keys, you may also need to request an increase in the
number of aliases.

For more information about aliases, see Working with Aliases (p. 74).

Grants per key: 250
Grants are advanced mechanisms for specifying permissions that you or an AWS service integrated
with AWS KMS can use to limit how and when a key can be used. Grants are attached to a key, and
each grant contains the principal who receives permission to use the key, the ID of the key, and a
list of operations that can be performed. Grants are an alternative to the key policy.

Each key can have up to 250 grants, including the grants created by AWS services that are integrated
with AWS KMS. For a list of these services, see AWS Services Integrated with AWS KMS (p. 4).
One effect of this limit is that you cannot create more than 250 resources that use the same key. For
example, you cannot create more than 250 encrypted Amazon Elastic Block Store (Amazon EBS)
volumes that use the same customer master key.

For more information about grants, see Grants (p. 21).

Grants for a given principal per key: 30
For a given customer master key (CMK), no more than 30 grants may specify the same grantee
principal. For example, assume that you want to encrypt multiple Amazon EBS volumes and attach
them to a single Amazon Elastic Compute Cloud (Amazon EC2) instance. In this case, a unique
grant is created for each encrypted EBS volume, but the EC2 instance is the grantee principal in all
of these grants. Each grant gives permission to the EC2 instance to decrypt the EBS volume key
using a specific CMK. For each CMK, you can have up to 30 grants that name the same EC2 instance
as the grantee principal. This effectively means that there can be no more than 30 encrypted EBS
volumes per EC2 instance for a given CMK.

83

http://aws.amazon.com/support
http://aws.amazon.com/tools
http://aws.amazon.com/tools/#Command_Line_Tools
http://aws.amazon.com/tools/#Command_Line_Tools

AWS Key Management Service Developer Guide

Requests per second: varies
The point at which AWS KMS begins to throttle API requests differs depending on the API operation.
The following table lists each API operation and the point at which AWS KMS begins to throttle API
requests for that operation.

The API operations in the first row share a limit of 100 requests per second. The remaining AWS
KMS APIs each have a unique limit for requests per second, which means the limit is not shared.

For example, when you make 50 GenerateDataKey requests and 30 Decrypt requests per second,
you can make an additional 20 requests per second using any of the APIs in the first row of the
following table before AWS KMS begins to throttle your requests. When you make 70 Encrypt requests
and 40 GenerateRandom requests per second, AWS KMS will throttle your requests because you
are making more than 100 requests per second using APIs in the first row of the following table.

APl operation Requests-per-second limit

Encrypt 100 (shared)
Decrypt

ReEncrypt

GenerateRandom

GenerateDataKey

GenerateDataKeyWithoutPlaintext

CreateAlias 5
CreateGrant 15
CreateKey 5
DeleteAlias 5
DescribeKey 30
DisableKey 5
DisableKeyRotation 5
EnableKey 5
EnableKeyRotation 5
GetKeyPolicy 30
GetKeyRotationStatus 5
ListAliases 5
ListGrants 5
ListKeyPolicies 5
ListKeys 5
PutKeyPolicy 5
RetireGrant 15
RevokeGrant 15
UpdateAlias 5

84

AWS Key Management Service Developer Guide

APl operation Requests-per-second limit

UpdateKeyDescription 5

Note that API requests may be made directly or by an integrated AWS service on your behalf. For example,
you may use server-side encryption with AWS KMS (SSE-KMS) to upload data to Amazon Simple Storage
Service (Amazon S3). When you do, each PUT request to Amazon S3 results in a GenerateDataKey API
request from Amazon S3 to AWS KMS on your behalf to create an object key that is used to encrypt the
Amazon S3 object. In this case, each API request that Amazon S3 makes on your behalf counts towards
your limit, and your requests will be throttled if you exceed 100 Amazon S3 PUT requests per second.

85

	AWS Key Management Service
	Table of Contents
	What is the AWS Key Management Service?
	Concepts
	Customer Master Keys
	Data Keys
	Envelope Encryption
	Encryption Context
	Permissions on Keys
	Auditing Key Usage
	Key Management Infrastructure
	Grants
	Grant Tokens

	AWS Services Integrated with AWS KMS
	Pricing for AWS Key Management Service

	Getting Started
	Creating Keys
	Viewing Keys
	Editing Keys
	Enabling and Disabling Keys

	Controlling Access to Your Keys
	Key Policies
	Default Policy
	Console Key Management Policy
	Including External Accounts
	Policy Evaluation

	Grants

	Rotating Keys
	How AWS Services use AWS KMS
	AWS KMS Workflow with Supported AWS Services
	Envelope Encryption
	Encrypting User Data
	Decrypting User Data
	Managed Keys in AWS Services and in Custom Applications

	How Amazon Simple Storage Service Uses AWS KMS
	Server-Side Encryption: Using SSE-KMS
	Using the Amazon S3 Encryption Client
	Encryption Context

	How Amazon Elastic Block Store (Amazon EBS) Uses AWS KMS
	Amazon EBS Encryption
	Encryption Context
	Using AWS CloudFormation To Create Encrypted Amazon EBS Volumes

	How Amazon Redshift Uses AWS KMS
	Amazon Redshift Encryption
	Encryption Context

	How Amazon Relational Database Service Uses AWS KMS
	Amazon RDS Encryption
	Amazon RDS Encryption Context

	How Elastic Transcoder Uses AWS KMS
	Encrypting the input file
	Decrypting the input file
	Encrypting the output file
	HLS Content Protection
	Encryption Context

	How Amazon WorkMail Uses AWS KMS
	Amazon WorkMail Overview
	Amazon WorkMail Encryption
	Amazon WorkMail Encryption Context

	How Amazon EMR Uses AWS KMS
	Amazon EMR Overview
	Amazon EMR Support for Encrypted Objects in Amazon S3
	Amazon EMR Use of the AWS KMS Encryption Context

	Logging AWS KMS API Calls Using AWS CloudTrail
	CreateAlias
	CreateGrant
	CreateKey
	Decrypt
	DeleteAlias
	DescribeKey
	DisableKey
	EnableKey
	Encrypt
	GenerateDataKey
	GenerateDataKeyWithoutPlaintext
	GenerateRandom
	GetKeyPolicy
	ListAliases
	ListGrants
	ReEncrypt
	Amazon EC2 Example One
	Amazon EC2 Example Two

	Programming the AWS KMS API
	Creating a Client
	Working With Keys
	Creating a Customer Master Key
	Generating a Data Key
	Describing a Key
	Listing Keys
	Enabling Keys
	Disabling Keys

	Encrypting and Decrypting Data
	Encrypting Data
	Decrypting Data
	Re-Encrypting Data Under a Different Key

	Working with Key Policies
	Listing Key Policies
	Retrieving a Key Policy
	Setting a Key Policy

	Working with Grants
	Creating a Grant
	Retiring a Grant
	Revoking Grants
	Listing Grants

	Working with Aliases
	Creating an Alias
	Deleting an Alias
	Listing Aliases
	Updating an Alias

	Cryptography Basics
	How Symmetric Key Cryptography Works
	Encryption and Decryption

	Authenticated Encryption
	Encryption Context
	Reference: AWS KMS and Cryptography Terminology

	Document History
	Limits

