
Amazon Simple Queue Service
Developer Guide

API Version 2012-11-05

Amazon Simple Queue Service: Developer Guide
Copyright © 2015 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
AWS CloudTrail, AWS CodeDeploy, Amazon Cognito, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic
Compute Cloud, Amazon Glacier, Amazon Kinesis, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift,
Amazon Route 53, Amazon S3, Amazon VPC, and Amazon WorkDocs. In addition, Amazon.com graphics, logos, page headers,
button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon's
trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Amazon Simple Queue Service Developer Guide

Table of Contents
What is Amazon Simple Queue Service? ... 1

Architectural Overview ... 1
Amazon SQS Features ... 2

How Amazon SQS Queues Work ... 3
Properties of Distributed Queues ... 4

Message Order ... 4
At-Least-Once Delivery .. 4
Message Sample .. 4

Queue and Message Identifiers ... 5
Queue URLs .. 5
Message IDs .. 5
Receipt Handles .. 6

Resources Required to Process Messages .. 6
Visibility Timeout ... 6

General Recommendations for Visibility Timeout ... 7
Extending a Message's Visibility Timeout ... 7
Terminating a Message's Visibility Timeout ... 8
API Actions Related to Visibility Timeout .. 8

Message Lifecycle ... 8
Amazon SQS and JMS ... 10

Amazon SQS and JMS Prerequisites .. 10
Getting Started with the Amazon SQS Java Messaging Library .. 11

Creating a JMS Connection ... 11
Creating an Amazon SQS Queue ... 12
Sending Messages Synchronously ... 12
Receiving Messages Synchronously ... 13

Receiving Messages Asynchronously .. 13
Client Acknowledge Mode ... 14
Unordered Acknowledge Mode .. 15
Code Samples .. 16

ExampleConfiguration.java .. 16
TextMessageSender.java .. 18
AsyncMessageReceiver.java ... 19
SyncMessageReceiver.java ... 20
SyncMessageReceiverClientAcknowledge.java ... 21
SyncMessageReceiverUnorderedAcknowledge.java .. 24
SpringExampleConfig.xml ... 26
SpringExample.java ... 27
ExampleCommon.java .. 29

Reference/Appendix ... 30
Supported JMS 1.1 Common Interfaces: .. 30
Supported Message Types .. 30
Supported Message Acknowledgment Modes ... 30
JMS Defined Headers and Reserved Properties ... 30

Message Attributes .. 32
Message Attribute Items and Validation ... 32
Data Types ... 33
Using Message Attributes with the AWS Management Console .. 33
Using Message Attributes with the AWS SDKs .. 36
Using Message Attributes with the Amazon SQS Query API .. 38
MD5 Message-Digest Calculation ... 39

Long Polling .. 41
Enabling Long Polling with the AWS Management Console ... 42
Enabling Long Polling with the Query API .. 44

Delay Queues ... 46

API Version 2012-11-05
iii

Amazon Simple Queue Service Developer Guide

Creating Delay Queues with the AWS Management Console ... 47
Creating Delay Queues with the Query API .. 49

Message Timers .. 50
Creating Message Timers Using the Console .. 50
Creating Message Timers Using the Query API ... 52

Batch API Actions .. 54
Maximum Message Size for SendMessageBatch .. 54

Making API Requests ... 55
Endpoints ... 56
Making Query Requests ... 57

Structure of a GET Request .. 57
Structure of a POST Request .. 58
Related Topics .. 59

Making SOAP Requests ... 59
Request Authentication ... 60

What Is Authentication? .. 60
Your AWS Account ... 62
Your Access Keys .. 62
HMAC-SHA Signatures ... 62
Query Request Authentication ... 67

Responses ... 68
Structure of a Successful Response .. 68
Structure of an Error Response .. 68
Related Topics .. 69

Shared Queues ... 70
Simple API for Shared Queues ... 70
Advanced API for Shared Queues .. 70
Understanding Permissions ... 70
Granting Anonymous Access to a Queue ... 71

Programming Languages .. 72
Dead Letter Queues ... 73

Setting up Dead Letter Queue with the AWS Management Console .. 73
Using Dead Letter Queue with the Amazon SQS API ... 75

Using The Access Policy Language .. 77
Overview .. 78

When to Use Access Control ... 78
Key Concepts ... 78
Architectural Overview .. 81
Using the Access Policy Language ... 83
Evaluation Logic .. 84
Basic Use Cases for Access Control ... 88

Amazon SQS Policy Examples ... 91
Special Information for Amazon SQS Policies ... 95

Access Control .. 96
IAM-Related Features of Amazon SQS Policies .. 96
IAM and Amazon SQS Policies Together .. 98
Amazon SQS ARNs ... 100
Amazon SQS Actions ... 101
Amazon SQS Keys ... 101
Example IAM Policies for Amazon SQS ... 102
Using Temporary Security Credentials ... 103

Monitoring Amazon SQS with CloudWatch ... 106
Access CloudWatch Metrics for Amazon SQS ... 106
Set CloudWatch Alarms for Amazon SQS Metrics .. 107
Amazon SQS Metrics ... 107

Logging Amazon SQS API Calls By Using CloudTrail ... 109
Amazon SQS Information in CloudTrail .. 109
Understanding Amazon SQS Log File Entries ... 110

API Version 2012-11-05
iv

Amazon Simple Queue Service Developer Guide

AddPermission .. 110
CreateQueue .. 111
DeleteQueue ... 111
RemovePermission .. 112
SetQueueAttributes .. 112

Appendix A: Increasing Throughput with Horizontal Scaling and Batching .. 114
Horizontal Scaling .. 114
Batching ... 115
Example ... 116
Running the Example ... 117

Monitoring Volume Metrics from Example Run .. 119
Appendix B: Client-Side Buffering and Request Batching .. 120

Getting Started with AmazonSQSBufferedAsyncClient ... 120
Advanced Configuration .. 121

Appendix C: Subscribe Queue to Amazon SNS Topic ... 123
Subscribe Queue to Amazon SNS Topic with the AWS Management Console 123

Resources .. 125
Document History .. 126

API Version 2012-11-05
v

Amazon Simple Queue Service Developer Guide

What is Amazon Simple Queue
Service?

Amazon Simple Queue Service (Amazon SQS) offers reliable and scalable hosted queues for storing
messages as they travel between computers. By using Amazon SQS, you can move data between
distributed components of your applications that perform different tasks without losing messages or
requiring each component to be always available.

Amazon SQS is a distributed queue system that enables web service applications to quickly and reliably
queue messages that one component in the application generates to be consumed by another component.
A queue is a temporary repository for messages that are awaiting processing.

Using Amazon SQS, you can decouple the components of an application so they run independently, with
Amazon SQS easing message management between components. Any component of a distributed
application can store messages in a fail-safe queue. Messages can contain up to 256 KB of text in any
format. Any component can later retrieve the messages programmatically using the Amazon SQS API.

The queue acts as a buffer between the component producing and saving data, and the component
receiving the data for processing. This means the queue resolves issues that arise if the producer is
producing work faster than the consumer can process it, or if the producer or consumer are only
intermittently connected to the network.

Amazon SQS ensures delivery of each message at least once, and supports multiple readers and writers
interacting with the same queue. A single queue can be used simultaneously by many distributed application
components, with no need for those components to coordinate with each other to share the queue.

Amazon SQS is engineered to always be available and deliver messages. One of the resulting tradeoffs
is that SQS does not guarantee first in, first out delivery of messages. For many distributed applications,
each message can stand on its own, and as long as all messages are delivered, the order is not important.
If your system requires that order be preserved, you can place sequencing information in each message,
so that you can reorder the messages when the queue returns them.

Be sure to read about distributed queues, which will help you understand how to design an application
that works correctly with Amazon SQS. For more information, see Properties of Distributed Queues (p. 4).

Architectural Overview
There are three main actors in the overall system:

API Version 2012-11-05
1

Amazon Simple Queue Service Developer Guide
Architectural Overview

• The components of your distributed system

• Queues

• Messages in the queues

In the following diagram, your system has several components that send messages to the queue and
receive messages from the queue. The diagram shows that a single queue, which has its messages
(labeled A-E), is redundantly saved across multiple Amazon SQS servers.

Amazon SQS Features
Amazon SQS provides the following major features:

• Redundant infrastructure – Guarantees delivery of your messages at least once, highly concurrent
access to messages, and high availability for sending and retrieving messages

• Multiple writers and readers – Multiple parts of your system can send or receive messages at the
same time
Amazon SQS locks the message during processing, keeping other parts of your system from processing
the message simultaneously.

• Configurable settings per queue – All of your queues don't have to be exactly alike
For example, one queue can be optimized for messages that require a longer processing time than
others.

• Variable message size – Your messages can be up to 262,144 bytes (256 KB) in size
For even larger messages, you can store the contents of the message using the Amazon Simple
Storage Service (Amazon S3) or Amazon SimpleDB, and use Amazon SQS to hold a pointer to the
Amazon S3 or Amazon SimpleDB object. Alternately, you can split the larger message into smaller
ones.

For more information about the services, go to the Amazon S3 detail page and the Amazon SimpleDB
detail page.

• Access control – You can control who can send messages to a queue, and who can receive messages
from a queue

• Delay Queues – A delay queue is one which the user sets a default delay on a queue such that delivery
of all messages enqueued will be postponed for that duration of time.You can set the delay value when
you create a queue with CreateQueue, and you can update the value with SetQueueAttributes.
If you update the value, the new value affects only messages enqueued after the update.

API Version 2012-11-05
2

Amazon Simple Queue Service Developer Guide
Amazon SQS Features

http://aws.amazon.com/s3
http://aws.amazon.com/sdb
http://aws.amazon.com/sdb

How Amazon SQS Queues Work

Topics

• Properties of Distributed Queues (p. 4)

• Queue and Message Identifiers (p. 5)

• Resources Required to Process Messages (p. 6)

• Visibility Timeout (p. 6)

• Message Lifecycle (p. 8)

This section describes the basic properties of Amazon SQS queues, identifiers for queues and messages,
how you determine the general size of the queue, and how you manage the messages in a queue.

A queue can be empty if you haven't sent any messages to it or if you have deleted all the messages
from it.

You must assign a name to each of your queues (for more information, see Queue URLs (p. 5)).You
can get a list of all your queues or a subset of your queues that share the same initial characters in their
names (for example, you could get a list of all your queues whose names start with "T3").

You can delete a queue at any time, whether it is empty or not. Be aware, however, that queues retain
messages for a set period of time. By default, a queue retains messages for four days. However, you
can configure a queue to retain messages for up to 14 days after the message has been sent.

Amazon SQS can delete your queue without notification if one of the following actions hasn't been
performed on it for 30 consecutive days: SendMessage, ReceiveMessage, DeleteMessage,
GetQueueAttributes, SetQueueAttributes, AddPermission, and RemovePermission.

Important
It is a violation of the intended use of Amazon SQS if you repeatedly create queues and then
leave them inactive, or if you store excessive amounts of data in your queue.

The following table lists the API actions to use.

Use this actionTo do this...

CreateQueueCreate a queue

GetQueueUrlGet the URL of an existing queue

ListQueuesList your queues

API Version 2012-11-05
3

Amazon Simple Queue Service Developer Guide

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html

Use this actionTo do this...

DeleteQueueDelete a queue

Properties of Distributed Queues
The following information can help you design your application to work with Amazon SQS correctly.

Message Order
Amazon SQS makes a best effort to preserve order in messages, but due to the distributed nature of the
queue, we cannot guarantee you will receive messages in the exact order you sent them. If your system
requires that order be preserved, we recommend you place sequencing information in each message so
you can reorder the messages upon receipt.

At-Least-Once Delivery
Amazon SQS stores copies of your messages on multiple servers for redundancy and high availability.
On rare occasions, one of the servers storing a copy of a message might be unavailable when you receive
or delete the message. If that occurs, the copy of the message will not be deleted on that unavailable
server, and you might get that message copy again when you receive messages. Because of this, you
must design your application to be idempotent (i.e., it must not be adversely affected if it processes the
same message more than once).

Message Sample
The behavior of retrieving messages from the queue depends whether you are using short (standard)
polling, the default behavior, or long polling. For more information about long polling, see Amazon SQS
Long Polling (p. 41).

With short polling, when you retrieve messages from the queue, Amazon SQS samples a subset of the
servers (based on a weighted random distribution) and returns messages from just those servers. This
means that a particular receive request might not return all your messages. Or, if you have a small number
of messages in your queue (less than 1000), it means a particular request might not return any of your
messages, whereas a subsequent request will. If you keep retrieving from your queues, Amazon SQS
will sample all of the servers, and you will receive all of your messages.

The following figure shows short polling behavior of messages being returned after one of your system
components makes a receive request. Amazon SQS samples several of the servers (in gray) and returns
the messages from those servers (Message A, C, D, and B). Message E is not returned to this particular
request, but it would be returned to a subsequent request.

API Version 2012-11-05
4

Amazon Simple Queue Service Developer Guide
Properties of Distributed Queues

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html

Queue and Message Identifiers
Amazon SQS uses the following three identifiers that you need to be familiar with:

• Queue URL

• Message ID

• Receipt handle

Queue URLs
When creating a new queue, you must provide a queue name that is unique within the scope of all your
queues. If you create queues using both the latest WSDL and a previous version, you still have a single
namespace for all your queues. Amazon SQS assigns each queue you create an identifier called a queue
URL, which includes the queue name and other components that Amazon SQS determines. Whenever
you want to perform an action on a queue, you provide its queue URL.

The following is the queue URL for a queue named "queue2" owned by a person with the AWS account
number "123456789012".

http://sqs.us-east-1.amazonaws.com/123456789012/queue2

Important
In your system, always store the entire queue URL as Amazon SQS returned it to you when you
created the queue (for example,
http://sqs.us-east-1.amazonaws.com/123456789012/queue2). Don't build the queue
URL from its separate components each time you need to specify the queue URL in a request
because Amazon SQS could change the components that make up the queue URL.

You can also get the queue URL for a queue by listing your queues. Even though you have a single
namespace for all your queues, the list of queues returned depends on the WSDL you use for the request.
For more information, see ListQueues.

Message IDs
Each message receives a system-assigned message ID that Amazon SQS returns to you in the
SendMessage response. This identifier is useful for identifying messages, but to delete a message, you

API Version 2012-11-05
5

Amazon Simple Queue Service Developer Guide
Queue and Message Identifiers

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

need the message's receipt handle instead of the message ID. The maximum length of a message ID is
100 characters.

Receipt Handles
Each time you receive a message from a queue, you receive a receipt handle for that message. The
handle is associated with the act of receiving the message, not with the message itself. To delete the
message or to change the message visibility, you must provide the receipt handle and not the message
ID. This means you must always receive a message before you can delete it (you can't put a message
into the queue and then recall it). The maximum length of a receipt handle is 1024 characters.

Important
If you receive a message more than once, each time you receive it, you get a different receipt
handle.You must provide the most recently received receipt handle when you request to delete
the message or the message might not be deleted.

Following is an example of a receipt handle.

MbZj6wDWli+JvwwJaBV+3dcjk2YW2vA3+STFFljTM8tJJg6HRG6PYSasuWXPJB+Cw
Lj1FjgXUv1uSj1gUPAWV66FU/WeR4mq2OKpEGYWbnLmpRCJVAyeMjeU5ZBdtcQ+QE
auMZc8ZRv37sIW2iJKq3M9MFx1YvV11A2x/KSbkJ0=

Resources Required to Process Messages
To help you estimate the resources needed to process your queued messages, Amazon SQS can provide
you with an approximate number of messages in a queue.You can view the number of messages that
are visible or you can view the number of messages that are not visible. For more information about
visibility, see Visibility Timeout (p. 6).

Important
Because of the distributed architecture of Amazon SQS, the result is not an exact count of the
number of messages in a queue. In most cases it should be close to the actual number of
messages in the queue, but you should not rely on the count being precise.

The following table lists the API action to use.

With AttributeName set toUse this actionTo do this...

ApproximateNumberOfMessagesGetQueueAttrib-
utes

Get the approximate number of mes-
sages in the queue

ApproximateNumberOfMessages-
NotVisible

GetQueueAttrib-
utes

Get the approximate number of mes-
sages in the queue that are not visible

Visibility Timeout
Topics

• General Recommendations for Visibility Timeout (p. 7)

• Extending a Message's Visibility Timeout (p. 7)

• Terminating a Message's Visibility Timeout (p. 8)

• API Actions Related to Visibility Timeout (p. 8)

API Version 2012-11-05
6

Amazon Simple Queue Service Developer Guide
Receipt Handles

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

When a consuming component in your system receives and processes a message from the queue, the
message remains in the queue. Why doesn't Amazon SQS automatically delete it?

Because your system is distributed, there's no guarantee that the component will actually receive the
message (it's possible the connection could break or the component could fail before receiving the
message).Therefore, Amazon SQS does not delete the message, and instead, your consuming component
must delete the message from the queue after receiving and processing it.

Immediately after the component receives the message, the message is still in the queue. However, you
don't want other components in the system receiving and processing the message again. Therefore,
Amazon SQS blocks them with a visibility timeout, which is a period of time during which Amazon SQS
prevents other consuming components from receiving and processing that message.The following figure
and discussion illustrate the concept.

Note
There is a 120,000 limit for the number of inflight messages per queue. Messages are inflight
after they have been received from the queue by a consuming component, but have not yet
been deleted from the queue. If you reach the 120,000 limit, you will receive an OverLimit error
message from Amazon SQS. To help avoid reaching the limit, you should delete the messages
from the queue after they have been processed.You can also increase the number of queues
you use to process the messages.

General Recommendations for Visibility Timeout
The visibility timeout clock starts ticking once Amazon SQS returns the message. During that time, the
component processes and deletes the message. But what happens if the component fails before deleting
the message? If your system doesn't call DeleteMessage for that message before the visibility timeout
expires, the message again becomes visible to the ReceiveMessage calls placed by the components in
your system and it will be received again. If a message should only be received once, your system should
delete it within the duration of the visibility timeout.

Each queue starts with a default setting of 30 seconds for the visibility timeout.You can change that
setting for the entire queue.Typically, you'll set the visibility timeout to the average time it takes to process
and delete a message from the queue. When receiving messages, you can also set a special visibility
timeout for the returned messages without changing the overall queue timeout.

We recommend that if you have a system that produces messages that require varying amounts of time
to process and delete, you create multiple queues, each with a different visibility timeout setting.Your
system can then send all messages to a single queue that forwards each message to another queue with
the appropriate visibility timeout based on the expected processing and deletion time for that message.

Extending a Message's Visibility Timeout
When you receive a message from a queue and begin processing it, you may find the visibility timeout
for the queue is insufficient to fully process and delete that message.To give yourself more time to process

API Version 2012-11-05
7

Amazon Simple Queue Service Developer Guide
General Recommendations for Visibility Timeout

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

the message, you can extend its visibility timeout by using the ChangeMessageVisibility action to
specify a new timeout value. Amazon SQS restarts the timeout period using the new value.

For example, let's say the timeout for the queue is 30 seconds, and you receive a message from that
queue. When you're 20 seconds into the timeout for that message (i.e., you have 10 seconds left), you
want to give yourself 60 more seconds, so you immediately call ChangeMessageVisibility for the
message with VisibilityTimeout set to 60 seconds. This means that you extended the message's
visibility timeout from 30 seconds to 80 seconds: 20 seconds from the initial timeout setting plus 60
seconds from when you changed the timeout.

When you extend a message's visibility timeout, the new timeout applies only to that particular receipt of
the message. ChangeMessageVisibility does not affect the timeout for the queue or later receipts
of the message. If for some reason you don't delete the message and receive it again, its visibility timeout
is the original value set for the queue.

Terminating a Message's Visibility Timeout
When you receive a message from the queue, you might find that you actually don't want to process and
delete that message. Amazon SQS allows you to terminate the visibility timeout for a specific message,
which immediately makes the message visible to other components in the system to process. To do this,
you call ChangeMessageVisibility with VisibilityTimeout=0 seconds.

API Actions Related to Visibility Timeout
The following table lists the API actions to use to manipulate the visibility timeout. Use each action's
VisibilityTimeout parameter to set or get the value.

Use this actionTo do this...

SetQueueAttributesSet the visibility timeout for a queue

GetQueueAttributesGet the visibility timeout for a queue

ReceiveMessageSet the visibility timeout for the received messages without
affecting the queue's visibility timeout

ChangeMessageVisibilityExtending or terminating a message's visibility timeout

ChangeMessageVisibilityBatchExtending or terminating the visibility timeout for up to ten
messages.

Message Lifecycle
The following diagram and process describe the lifecycle of an Amazon SQS message, called Message
A, from creation to deletion. Assume that a queue already exists.

API Version 2012-11-05
8

Amazon Simple Queue Service Developer Guide
Terminating a Message's Visibility Timeout

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html

Message Lifecycle

Component 1 sends Message A to a queue, and the message is redundantly distributed
across the SQS servers.

1

When Component 2 is ready to process a message, it retrieves messages from the queue,
and Message A is returned. While Message A is being processed, it remains in the queue
and is not returned to subsequent receive requests for the duration of the visibility timeout.

2

Component 2 deletes Message A from the queue to avoid the message being received and
processed again once the visibility timeout expires.

3

Note
SQS automatically deletes messages that have been in a queue for more than maximum message
retention period. The default message retention period is 4 days. However, you can set the
message retention period to a value from 60 seconds to 1209600 seconds (14 days) with
SetQueueAttributes.

API Version 2012-11-05
9

Amazon Simple Queue Service Developer Guide
Message Lifecycle

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QuerySetQueueAttributes.html

Using JMS with Amazon SQS

The Amazon SQS Java Messaging Library is a JMS interface to Amazon SQS that enables you to leverage
Amazon SQS in your applications that already use JMS. The interface enables you to use Amazon SQS
as the JMS provider with minimal code changes. Along with the AWS SDK for Java, the Amazon SQS
Java Messaging Library enables you to create JMS connections, sessions, producers, and consumers
to send and receive messages to and from Amazon SQS queues.

The Amazon SQS Java Messaging Library supports sending and receiving messages to a queue (the
JMS point-to-point model), as specified in the JMS 1.1 specification. More specifically, the Amazon SQS
Java Messaging Library supports synchronously sending text, byte, or object messages to Amazon SQS
queues, as well as receiving them synchronously or asynchronously. For more information about the
supported features of the JMS 1.1 specification in the Amazon SQS Java Messaging Library, see
Reference/Appendix (p. 30) and the Amazon SQS FAQs.

You must create an Amazon SQS queue to use with JMS. To create an Amazon SQS queue, you can
use the AWS Management Console for Amazon SQS, the CreateQueue API, or the wrapped Amazon
SQS client included in the Amazon SQS Java Messaging Library. For information about creating a queue
with Amazon SQS using either the AWS Management Console or the CreateQueue API, go to Creating
a Queue. For information about using the Amazon SQS Java Messaging Library, go to Getting Started
with the Amazon SQS Java Messaging Library (p. 11).

Topics

• Amazon SQS and JMS Prerequisites (p. 10)

• Getting Started with the Amazon SQS Java Messaging Library (p. 11)

• Receiving Messages Asynchronously (p. 13)

• Client Acknowledge Mode (p. 14)

• Unordered Acknowledge Mode (p. 15)

• Code Samples (p. 16)

• Reference/Appendix (p. 30)

Amazon SQS and JMS Prerequisites
To use Amazon SQS with JMS, you must have the following:

• SDK for Java – There are two different ways for including the SDK for Java in your project.You can
either download and install the SDK for Java, or if you use Maven to obtain the Amazon SQS Java
Messaging Library, then the SDK for Java is included as a dependency.The SDK for Java and Amazon

API Version 2012-11-05
10

Amazon Simple Queue Service Developer Guide
Amazon SQS and JMS Prerequisites

http://docs.oracle.com/javaee/6/api/javax/jms/package-summary.html
http://aws.amazon.com/sqs/faqs/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html

SQS Java Messaging Library require J2SE Development Kit 6.0 or later. For information about
downloading the SDK for Java, go to SDK for Java. For more information about using Maven see the
note below.

• Amazon SQS Java Messaging Library – If you do not use Maven, then you must add the package
file, amazon-sqs-java-messaging-lib.jar, to the Java build class path. For information about
downloading, go to Amazon SQS Java Messaging Library.

Note
The Amazon SQS Java Messaging Library includes support for Maven and the Spring Framework.
For code samples that use Maven, the Spring Framework, and the Amazon SQS Java Messaging
Library, see Code Samples (p. 16).

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>amazon-sqs-java-messaging-lib</artifactId>
 <version>1.0.0</version>
 <type>jar</type>
</dependency>

Getting Started with the Amazon SQS Java
Messaging Library

After you have met the prerequisites, you can then use the following code examples to get started using
Amazon SQS with JMS.

This example creates a JMS connection and session, and then sends and receives a message. The
wrapped Amazon SQS client, which is included in the Amazon SQS Java Messaging Library, also checks
if the Amazon SQS queue exists. It also uses the wrapped Amazon SQS client to check if the Amazon
SQS queue exists. If it does not exist then the queue is created.

Creating a JMS Connection
In order to create a JMS connection, you must first create a connection factory and call the
createConnection method against the factory:

// Create the connection factory using the environment variable credential
provider.
// Connections this factory creates can talk to the queues in us-east-1 region.

SQSConnectionFactory connectionFactory =
 SQSConnectionFactory.builder()
 .withRegion(Region.getRegion(Regions.US_EAST_1))
 .withAWSCredentialsProvider(new EnvironmentVariableCredentialsProvider())

 .build();

// Create the connection.
SQSConnection connection = connectionFactory.createConnection();

API Version 2012-11-05
11

Amazon Simple Queue Service Developer Guide
Getting Started with the Amazon SQS Java Messaging

Library

http://aws.amazon.com/sdkforjava/
https://github.com/awslabs/amazon-sqs-java-messaging-lib
http://maven.apache.org/
http://projects.spring.io/spring-framework/

Note
The EnvironmentVariableCredentialsProvider class in this example assumes that the
AWS_ACCESS_KEY_ID (or AWS_ACCESS_KEY) and AWS_SECRET_KEY (or
AWS_SECRET_ACCESS_KEY) environment variables are set. For more information, including
other options for providing the required credentials to the factory, go to AWSCredentialsProvider.

The SQSConnection class extends javax.jms.Connection. Along with the JMS standard connection
methods, SQSConnection offers additional methods, such as getAmazonSQSClient and
getWrappedAmazonSQSClient. The returned client objects from getAmazonSQSClient and
getWrappedAmazonSQSClient can be used to perform administrative operations that are not included
in the JMS specification – for example, creating an Amazon SQS queue.

If you use getWrappedAmazonSQSClient, then the returned client object will transform all exceptions
into JMS exceptions. On the other hand, if you use getAmazonSQSClient, then the exceptions will be
Amazon SQS exceptions. Therefore, if you have existing code that is expecting JMS exceptions, then
you should use getWrappedAmazonSQSClient.

Creating an Amazon SQS Queue
This example checks if an Amazon SQS queue exists, and if not then it creates one. Next, the wrapped
client object is used to check if the Amazon SQS queue exists, and if not a new one is created:

// Get the wrapped client
AmazonSQSMessagingClientWrapper client = connection.getWrappedAmazonSQSClient();

// Create an SQS queue named 'TestQueue' – if it does not already exist.
if (!client.queueExists("TestQueue")) {
 client.createQueue("TestQueue");
}

Sending Messages Synchronously
With the connection and underlying Amazon SQS queue ready, a non-transacted JMS session with
AUTO_ACKNOWLEDGE mode is created:

// Create the non-transacted session with AUTO_ACKNOWLEDGE mode
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Next, in order to send a text message to the queue, a JMS queue identity and message producer are
created:

// Create a queue identity with name 'TestQueue' in the session
Queue queue = session.createQueue("TestQueue");

// Create a producer for the 'TestQueue'.
MessageProducer producer = session.createProducer(queue);

A text message is created and sent to the queue:

// Create the text message.
TextMessage message = session.createTextMessage("Hello World!");

API Version 2012-11-05
12

Amazon Simple Queue Service Developer Guide
Creating an Amazon SQS Queue

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html

// Send the message.
producer.send(message);
System.out.println("JMS Message " + message.getJMSMessageID());

Receiving Messages Synchronously
To receive messages, a consumer is created on the same queue and the start method is invoked. The
start method on the connection can be called anytime; however, the consumer will not start receiving
messages until after it has been called.

// Create a consumer for the 'TestQueue'.
MessageConsumer consumer = session.createConsumer(queue);

// Start receiving incoming messages.
connection.start();

The receive method is called on the consumer with a time-out set to 1 second and the content of the
received message is printed:

// Receive a message from 'TestQueue' and wait up to 1 second
Message receivedMessage = consumer.receive(1000);

// Cast the received message as TextMessage and print the text to screen.
if (receivedMessage != null) {
 System.out.println("Received: " + ((TextMessage) receivedMessage).getText());
}

Finally, the connection is closed, which also closes the session:

// Close the connection (and the session).
connection.close();

The output will look similar to the following:

JMS Message ID:8example-588b-44e5-bbcf-d816example2
Received: Hello World!

Note
You can also use Spring to initialize these objects. For additional information, see
SpringExampleConfig.xml, SpringExample.java, and other helper classes in
ExampleConfiguration.java and ExampleCommon.java, located in Code Samples (p. 16).

For complete examples of send and receive, see TextMessageSender.java and
SyncMessageReceiver.java.

Receiving Messages Asynchronously
In the example provided in Getting Started with the Amazon SQS Java Messaging Library (p. 11), a
message is sent to TestQueue and received synchronously. This example shows how to receive the
messages asynchronously through a listener.

API Version 2012-11-05
13

Amazon Simple Queue Service Developer Guide
Receiving Messages Synchronously

First, the MessageListener interface is implemented:

class MyListener implements MessageListener {

 @Override
 public void onMessage(Message message) {
 try {
 // Cast the received message as TextMessage and print the text to
screen.
 if (message != null) {
 System.out.println("Received: " + ((TextMessage) message).get
Text());
 }
 } catch (JMSException e) {
 e.printStackTrace();
 }
 }
}

The onMessage method of the MessageListener interface is called when a message is received. In
this listener implementation, the text stored in the message is printed.

Next, instead of explicitly calling the receive method on the consumer, the message listener of the
consumer to an instance of the MyListener implementation is set. And, the main thread sleeps for a
second:

// Create a consumer for the 'TestQueue'.
MessageConsumer consumer = session.createConsumer(queue);

// Instantiate and set the message listener for the consumer.
consumer.setMessageListener(new MyListener());

// Start receiving incoming messages.
connection.start();

// Wait for 1 second. The listener onMessage() method will be invoked when a
message is received.
Thread.sleep(1000);

The rest of the steps are identical to the ones provided in the example in Getting Started with the Amazon
SQS Java Messaging Library (p. 11). For a complete example of an asynchronous receiver, see
AsyncMessageReceiver.java in Code Samples (p. 16).

The output for this example will look similar to the following:

JMS Message ID:8example-588b-44e5-bbcf-d816example2
Received: Hello World!

Client Acknowledge Mode
In the example provided in Getting Started with the Amazon SQS Java Messaging Library (p. 11),
AUTO_ACKNOWLEDGE mode is used, where every received message is automatically acknowledged –
and therefore deleted from the underlying Amazon SQS queue. If you want to explicitly acknowledge the

API Version 2012-11-05
14

Amazon Simple Queue Service Developer Guide
Client Acknowledge Mode

messages after they are done being processed, then you must create the session with
CLIENT_ACKNOWLEDGE mode:

// Create the non-transacted session with CLIENT_ACKNOWLEDGE mode.
Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);

Next, when the message is received, it is both displayed and explicitly acknowledged:

// Cast the received message as TextMessage and print the text to screen. Also
 acknowledge the message.
if (receivedMessage != null) {
 System.out.println("Received: " + ((TextMessage) receivedMessage).getText());

 receivedMessage.acknowledge();
 System.out.println("Acknowledged: " + message.getJMSMessageID());
}

Note
In this mode, when a message is acknowledged, then all the messages received prior are
implicitly acknowledged as well. For example, if 10 messages are received, and only the 10th
message (in the order they are received) is acknowledged, then all the previous 9 messages
are also acknowledged.

The rest of the steps are identical to the ones provided in the example in Getting Started with the Amazon
SQS Java Messaging Library (p. 11). For a complete example of a synchronous receiver with client
acknowledge mode, see SyncMessageReceiverClientAcknowledge.java in Code Samples (p.16).

The output for this example will look similar to the following:

JMS Message ID:4example-aa0e-403f-b6df-5e02example5
Received: Hello World!
Acknowledged: ID:4example-aa0e-403f-b6df-5e02example5

Unordered Acknowledge Mode
In the previous example shown in Client Acknowledge Mode (p. 14), (when using CLIENT_ACKNOWLEDGE
mode) all the messages received prior to an explicitly acknowledged message are automatically
acknowledged. In the JMS 1.1 specification this is referred to as the ACK-RANGE. The Amazon SQS Java
Messaging Library provides another acknowledgement mode, UNORDERED_ACKNOWLEDGE, where all
received messages must be explicitly acknowledged by the client – regardless of the order they are
received. In other words, when using UNORDERED_ACKNOWLEDGE mode and a message is acknowledged,
then only that specific message is acknowledged.

In this example, a session is created with UNORDERED_ACKNOWLEDGE mode:

// Create the non-transacted session with UNORDERED_ACKNOWLEDGE mode.
Session session = connection.createSession(false, SQSSession.UNORDERED_ACKNOW
LEDGE);

The rest of the steps are identical to the ones provided in the example in Client Acknowledge Mode (p. 14).
For a complete example of a synchronous receiver with unordered acknowledge mode, see
SyncMessageReceiverUnorderedAcknowledge.java in Code Samples (p. 16).

API Version 2012-11-05
15

Amazon Simple Queue Service Developer Guide
Unordered Acknowledge Mode

The output for this example will look similar to the following:

JMS Message ID:dexample-73ad-4adb-bc6c-4357example7
Received: Hello World!
Acknowledged: ID:dexample-73ad-4adb-bc6c-4357example7

Code Samples
The following code samples show how to use JMS with Amazon SQS.

ExampleConfiguration.java
The following Java code is a configuration example that can be used for all subsequent Java examples.
For example, this code sets the default queue name, region, and credentials to be used with the other
java examples.

public class ExampleConfiguration {
 public static final String DEFAULT_QUEUE_NAME = "SQSJMSClientExampleQueue";

 public static final Region DEFAULT_REGION = Region.getRegion(Re
gions.US_EAST_1);

 private static String getParameter(String args[], int i) {
 if(i + 1 >= args.length) {
 throw new IllegalArgumentException("Missing parameter for " +
args[i]);
 }
 return args[i+1];
 }

 /**
 * Parse the command line and return the resulting config. If the config
parsing fails
 * print the error and the usage message and then call System.exit
 *
 * @param app the app to use when printing the usage string
 * @param args the command line arguments
 * @return the parsed config
 */
 public static ExampleConfiguration parseConfig(String app, String args[])
{
 try {
 return new ExampleConfiguration(args);
 } catch (IllegalArgumentException e) {
 System.err.println("ERROR: " + e.getMessage());
 System.err.println();
 System.err.println("Usage: " + app + " [--queue <queue>] [--region
 <region>] [--credentials <credentials>] ");
 System.err.println(" or");
 System.err.println(" " + app + " <spring.xml>");
 System.exit(-1);
 return null;
 }

API Version 2012-11-05
16

Amazon Simple Queue Service Developer Guide
Code Samples

 }

 private ExampleConfiguration(String args[]) {
 for(int i = 0; i < args.length; ++i) {
 String arg = args[i];
 if(arg.equals("--queue")) {
 setQueueName(getParameter(args, i));
 i++;
 } else if(arg.equals("--region")) {
 String regionName = getParameter(args, i);
 try {
 setRegion(Region.getRegion(Regions.fromName(regionName)));

 } catch(IllegalArgumentException e) {
 throw new IllegalArgumentException("Unrecognized region "
 + regionName);
 }
 i++;
 } else if(arg.equals("--credentials")) {
 String credsFile = getParameter(args, i);
 try {
 setCredentialsProvider(new PropertiesFileCredentialsPro
vider(credsFile));
 } catch (AmazonClientException e) {
 throw new IllegalArgumentException("Error reading credentials
 from " + credsFile, e);
 }
 i++;
 } else {
 throw new IllegalArgumentException("Unrecognized option " +
arg);
 }
 }
 }

 private String queueName = DEFAULT_QUEUE_NAME;
 private Region region = DEFAULT_REGION;
 private AWSCredentialsProvider credentialsProvider = new DefaultAWSCreden
tialsProviderChain();

 public String getQueueName() {
 return queueName;
 }

 public void setQueueName(String queueName) {
 this.queueName = queueName;
 }

 public Region getRegion() {
 return region;
 }

 public void setRegion(Region region) {
 this.region = region;
 }

 public AWSCredentialsProvider getCredentialsProvider() {
 return credentialsProvider;

API Version 2012-11-05
17

Amazon Simple Queue Service Developer Guide
ExampleConfiguration.java

 }

 public void setCredentialsProvider(AWSCredentialsProvider credentialsPro
vider) {
 // Make sure they're usable first
 credentialsProvider.getCredentials();
 this.credentialsProvider = credentialsProvider;
 }
}

TextMessageSender.java
The following Java code shows how to create a text message sender.

public class TextMessageSender {
 public static void main(String args[]) throws JMSException {
 ExampleConfiguration config = ExampleConfiguration.parseConfig("TextMes
sageSender", args);

 ExampleCommon.setupLogging();

 // Create the connection factory based on the config
 SQSConnectionFactory connectionFactory =
 SQSConnectionFactory.builder()
 .withRegion(config.getRegion())
 .withAWSCredentialsProvider(config.getCredentialsProvider())

 .build();

 // Create the connection
 SQSConnection connection = connectionFactory.createConnection();

 // Create the queue if needed
 ExampleCommon.ensureQueueExists(connection, config.getQueueName());

 // Create the session
 Session session = connection.createSession(false, Session.AUTO_ACKNOW
LEDGE);
 MessageProducer producer = session.createProducer(session.createQueue(
 config.getQueueName()));

 sendMessages(session, producer);

 // Close the connection. This will close the session automatically
 connection.close();
 System.out.println("Connection closed");
 }

 private static void sendMessages(Session session, MessageProducer producer
) {
 BufferedReader inputReader = new BufferedReader(
 new InputStreamReader(System.in, Charset.defaultCharset())
);

 try {
 String input;

API Version 2012-11-05
18

Amazon Simple Queue Service Developer Guide
TextMessageSender.java

 while(true) {
 System.out.print("Enter message to send (leave empty to exit):
 ");
 input = inputReader.readLine();
 if(input == null || input.equals("")) break;

 TextMessage message = session.createTextMessage(input);
 producer.send(message);
 System.out.println("Send message " + message.getJMSMessageID()
);
 }
 } catch (EOFException e) {
 // Just return on EOF
 } catch (IOException e) {
 System.err.println("Failed reading input: " + e.getMessage());
 } catch (JMSException e) {
 System.err.println("Failed sending message: " + e.getMessage());

 e.printStackTrace();
 }
 }
}

AsyncMessageReceiver.java
The following Java code shows how to create an asynchronous message receiver.

public class AsyncMessageReceiver {
 public static void main(String args[]) throws JMSException, InterruptedEx
ception {
 ExampleConfiguration config = ExampleConfiguration.parseConfig("Asyn
cMessageReceiver", args);

 ExampleCommon.setupLogging();

 // Create the session
 Session session = connection.createSession(false, Session.CLIENT_AC
KNOWLEDGE);
 MessageConsumer consumer = session.createConsumer(session.createQueue(
 config.getQueueName()));

 ReceiverCallback callback = new ReceiverCallback();
 consumer.setMessageListener(callback);

 // No messages will be processed until this is called
 connection.start();

 callback.waitForOneMinuteOfSilence();
 System.out.println("Returning after one minute of silence");

 // Close the connection. This will close the session automatically
 connection.close();
 System.out.println("Connection closed");
 }

API Version 2012-11-05
19

Amazon Simple Queue Service Developer Guide
AsyncMessageReceiver.java

 private static class ReceiverCallback implements MessageListener {
 // Used to listen for message silence
 private volatile long timeOfLastMessage = System.nanoTime();

 public void waitForOneMinuteOfSilence() throws InterruptedException
{
 for(;;) {
 long timeSinceLastMessage = System.nanoTime() - timeOfLast
Message;
 long remainingTillOneMinuteOfSilence =
 TimeUnit.MINUTES.toNanos(1) - timeSinceLastMessage;

 if(remainingTillOneMinuteOfSilence < 0) {
 break;
 }
 TimeUnit.NANOSECONDS.sleep(remainingTillOneMinuteOfSilence);

 }
 }

 @Override
 public void onMessage(Message message) {
 try {
 ExampleCommon.handleMessage(message);
 message.acknowledge();
 System.out.println("Acknowledged message " + mes
sage.getJMSMessageID());
 timeOfLastMessage = System.nanoTime();
 } catch (JMSException e) {
 System.err.println("Error processing message: " + e.getMes
sage());
 e.printStackTrace();
 }
 }
 }
}

SyncMessageReceiver.java
The following Java code shows how to create a synchronous message receiver.

public class SyncMessageReceiver {
 public static void main(String args[]) throws JMSException {
 ExampleConfiguration config = ExampleConfiguration.parseConfig("SyncMes
sageReceiver", args);

 ExampleCommon.setupLogging();

 // Create the connection factory based on the config
 SQSConnectionFactory connectionFactory =
 SQSConnectionFactory.builder()
 .withRegion(config.getRegion())
 .withAWSCredentialsProvider(config.getCredentialsProvider())

 .build();

API Version 2012-11-05
20

Amazon Simple Queue Service Developer Guide
SyncMessageReceiver.java

 // Create the connection
 SQSConnection connection = connectionFactory.createConnection();

 // Create the queue if needed
 ExampleCommon.ensureQueueExists(connection, config.getQueueName());

 // Create the session
 Session session = connection.createSession(false, Session.CLIENT_ACKNOW
LEDGE);
 MessageConsumer consumer = session.createConsumer(session.createQueue(
 config.getQueueName()));

 connection.start();

 receiveMessages(session, consumer);

 // Close the connection. This will close the session automatically
 connection.close();
 System.out.println("Connection closed");
 }

 private static void receiveMessages(Session session, MessageConsumer con
sumer) {
 try {
 while(true) {
 System.out.println("Waiting for messages");
 // Wait 1 minute for a message
 Message message = consumer.receive(TimeUnit.MINUTES.toMillis(1));

 if(message == null) {
 System.out.println("Shutting down after 1 minute of silence"
);
 break;
 }
 ExampleCommon.handleMessage(message);
 message.acknowledge();
 System.out.println("Acknowledged message " + message.getJMSMes
sageID());
 }
 } catch (JMSException e) {
 System.err.println("Error receiving from SQS: " + e.getMessage()
);
 e.printStackTrace();
 }
 }
}

SyncMessageReceiverClientAcknowledge.java
The following Java code shows an example of a synchronous receiver with client acknowledge mode.

/**
 * An example class to demonstrate the behavior of CLIENT_ACKNOWLEDGE mode for
 received messages. This example
 * complements the example given in {@link SyncMessageReceiverUnorderedAcknow

API Version 2012-11-05
21

Amazon Simple Queue Service Developer Guide
SyncMessageReceiverClientAcknowledge.java

ledge} for UNORDERED_ACKNOWLEDGE mode.
 *
 * First, a session, a message producer, and a message consumer are created.
Then, two messages are sent. Next, two messages
 * are received but only the second one is acknowledged. After waiting for the
 visibility time out period, an attempt to
 * receive another message is made. It is shown that no message is returned for
 this attempt since in CLIENT_ACKNOWLEDGE mode,
 * as expected, all the messages prior to the acknowledged messages are also
acknowledged.
 *
 * This is NOT the behavior for UNORDERED_ACKNOWLEDGE mode. Please see {@link
SyncMessageReceiverUnorderedAcknowledge}
 * for an example.
 */
public class SyncMessageReceiverClientAcknowledge {

 // Visibility time-out for the queue. It must match to the one set for the
 queue for this example to work.
 private static final long TIME_OUT_SECONDS = 1;

 public static void main(String args[]) throws JMSException, InterruptedEx
ception {
 // Create the configuration for the example
 ExampleConfiguration config = ExampleConfiguration.parseConfig("SyncMes
sageReceiverClientAcknowledge", args);

 // Setup logging for the example
 ExampleCommon.setupLogging();

 // Create the connection factory based on the config
 SQSConnectionFactory connectionFactory =
 SQSConnectionFactory.builder()
 .withRegion(config.getRegion())
 .withAWSCredentialsProvider(config.getCredentialsPro
vider())
 .build();

 // Create the connection
 SQSConnection connection = connectionFactory.createConnection();

 // Create the queue if needed
 ExampleCommon.ensureQueueExists(connection, config.getQueueName());

 // Create the session with client acknowledge mode
 Session session = connection.createSession(false, Session.CLIENT_ACKNOW
LEDGE);

 // Create the producer and consume
 MessageProducer producer = session.createProducer(session.createQueue(con
fig.getQueueName()));
 MessageConsumer consumer = session.createConsumer(session.createQueue(con
fig.getQueueName()));

 // Open the connection
 connection.start();

 // Send two text messages

API Version 2012-11-05
22

Amazon Simple Queue Service Developer Guide
SyncMessageReceiverClientAcknowledge.java

 sendMessage(producer, session, "Message 1");
 sendMessage(producer, session, "Message 2");

 // Receive a message and don't acknowledge it
 receiveMessage(consumer, false);

 // Receive another message and acknowledge it
 receiveMessage(consumer, true);

 // Wait for the visibility time out, so that unacknowledged messages
reappear in the queue
 System.out.println("Waiting for visibility timeout...");
 Thread.sleep(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS));

 // Attempt to receive another message and acknowledge it. This will
result in receiving no messages since
 // we have acknowledged the second message. Although we did not expli
citly acknowledge the first message,
 // in the CLIENT_ACKNOWLEDGE mode, all the messages received prior to
the explicitly acknowledged message
 // are also acknowledged. Therefore, we have implicitly acknowledged
the first message.
 receiveMessage(consumer, true);

 // Close the connection. This will close the session automatically
 connection.close();
 System.out.println("Connection closed.");
 }

 /**
 * Sends a message through the producer.
 *
 * @param producer Message producer
 * @param session Session
 * @param messageText Text for the message to be sent
 * @throws JMSException
 */
 private static void sendMessage(MessageProducer producer, Session session,
 String messageText) throws JMSException {
 // Create a text message and send it
 producer.send(session.createTextMessage(messageText));
 }

 /**
 * Receives a message through the consumer synchronously with the default
timeout (TIME_OUT_SECONDS).
 * If a message is received, the message is printed. If no message is re
ceived, "Queue is empty!" is
 * printed.
 *
 * @param consumer Message consumer
 * @param acknowledge If true and a message is received, the received message
 is acknowledged.
 * @throws JMSException
 */
 private static void receiveMessage(MessageConsumer consumer, boolean acknow
ledge) throws JMSException {
 // Receive a message

API Version 2012-11-05
23

Amazon Simple Queue Service Developer Guide
SyncMessageReceiverClientAcknowledge.java

 Message message = consumer.receive(TimeUnit.SECONDS.to
Millis(TIME_OUT_SECONDS));

 if (message == null) {
 System.out.println("Queue is empty!");
 } else {
 // Since this queue has only text messages, cast the message object
 and print the text
 System.out.println("Received: " + ((TextMessage) message).getText());

 // Acknowledge the message if asked
 if (acknowledge) message.acknowledge();
 }
 }
}

SyncMessageReceiverUnorderedAcknowledge.java
The following Java code shows an example of a synchronous receiver with unordered acknowledge
mode.

/**
 * An example class to demonstrate the behavior of UNORDERED_ACKNOWLEDGE mode
for received messages. This example
 * complements the example given in {@link SyncMessageReceiverClientAcknowledge}
 for CLIENT_ACKNOWLEDGE mode.
 *
 * First, a session, a message producer, and a message consumer are created.
Then, two messages are sent. Next, two messages
 * are received but only the second one is acknowledged. After waiting for the
 visibility time out period, an attempt to
 * receive another message is made. It is shown that the first message received
 in the prior attempt is returned again
 * for the second attempt. In UNORDERED_ACKNOWLEDGE mode, all the messages must
 be explicitly acknowledged no matter what
 * the order they are received.
 *
 * This is NOT the behavior for CLIENT_ACKNOWLEDGE mode. Please see {@link
SyncMessageReceiverClientAcknowledge}
 * for an example.
 */
public class SyncMessageReceiverUnorderedAcknowledge {

 // Visibility time-out for the queue. It must match to the one set for the
 queue for this example to work.
 private static final long TIME_OUT_SECONDS = 1;

 public static void main(String args[]) throws JMSException, InterruptedEx
ception {
 // Create the configuration for the example
 ExampleConfiguration config = ExampleConfiguration.parseConfig("SyncMes
sageReceiverUnorderedAcknowledge", args);

 // Setup logging for the example
 ExampleCommon.setupLogging();

API Version 2012-11-05
24

Amazon Simple Queue Service Developer Guide
SyncMessageReceiverUnorderedAcknowledge.java

 // Create the connection factory based on the config
 SQSConnectionFactory connectionFactory =
 SQSConnectionFactory.builder()
 .withRegion(config.getRegion())
 .withAWSCredentialsProvider(config.getCredentialsPro
vider())
 .build();

 // Create the connection
 SQSConnection connection = connectionFactory.createConnection();

 // Create the queue if needed
 ExampleCommon.ensureQueueExists(connection, config.getQueueName());

 // Create the session with unordered acknowledge mode
 Session session = connection.createSession(false, SQSSession.UNORDERED_AC
KNOWLEDGE);

 // Create the producer and consume
 MessageProducer producer = session.createProducer(session.createQueue(con
fig.getQueueName()));
 MessageConsumer consumer = session.createConsumer(session.createQueue(con
fig.getQueueName()));

 // Open the connection
 connection.start();

 // Send two text messages
 sendMessage(producer, session, "Message 1");
 sendMessage(producer, session, "Message 2");

 // Receive a message and don't acknowledge it
 receiveMessage(consumer, false);

 // Receive another message and acknowledge it
 receiveMessage(consumer, true);

 // Wait for the visibility time out, so that unacknowledged messages
reappear in the queue
 System.out.println("Waiting for visibility timeout...");
 Thread.sleep(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS));

 // Attempt to receive another message and acknowledge it. This will
result in receiving the first message since
 // we have acknowledged only the second message. In the UNORDERED_AC
KNOWLEDGE mode, all the messages must
 // be explicitly acknowledged.
 receiveMessage(consumer, true);

 // Close the connection. This will close the session automatically
 connection.close();
 System.out.println("Connection closed.");
 }

 /**
 * Sends a message through the producer.
 *

API Version 2012-11-05
25

Amazon Simple Queue Service Developer Guide
SyncMessageReceiverUnorderedAcknowledge.java

 * @param producer Message producer
 * @param session Session
 * @param messageText Text for the message to be sent
 * @throws JMSException
 */
 private static void sendMessage(MessageProducer producer, Session session,
 String messageText) throws JMSException {
 // Create a text message and send it
 producer.send(session.createTextMessage(messageText));
 }

 /**
 * Receives a message through the consumer synchronously with the default
timeout (TIME_OUT_SECONDS).
 * If a message is received, the message is printed. If no message is re
ceived, "Queue is empty!" is
 * printed.
 *
 * @param consumer Message consumer
 * @param acknowledge If true and a message is received, the received message
 is acknowledged.
 * @throws JMSException
 */
 private static void receiveMessage(MessageConsumer consumer, boolean acknow
ledge) throws JMSException {
 // Receive a message
 Message message = consumer.receive(TimeUnit.SECONDS.to
Millis(TIME_OUT_SECONDS));

 if (message == null) {
 System.out.println("Queue is empty!");
 } else {
 // Since this queue has only text messages, cast the message object
 and print the text
 System.out.println("Received: " + ((TextMessage) message).getText());

 // Acknowledge the message if asked
 if (acknowledge) message.acknowledge();
 }
 }
}

SpringExampleConfig.xml
The following shows an example Spring configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans-3.0.xsd

API Version 2012-11-05
26

Amazon Simple Queue Service Developer Guide
SpringExampleConfig.xml

 http://www.springframework.org/schema/util http://www.springframe
work.org/schema/util/spring-util-3.0.xsd
 ">

 <bean id="CredentialsProviderBean" class="com.amazonaws.auth.DefaultAWSCre
dentialsProviderChain"/>

 <bean id="ConnectionFactoryBuilder" class="com.amazon.sqs.javames
saging.SQSConnectionFactory$Builder">
 <property name="regionName" value="us-east-1"/>
 <property name="numberOfMessagesToPrefetch" value="5"/>

 <property name="awsCredentialsProvider" ref="CredentialsProviderBean"/>
 </bean>

 <bean id="ConnectionFactory" class="com.amazon.sqs.javamessaging.SQSConnection
Factory"
 factory-bean="ConnectionFactoryBuilder"
 factory-method="build" />

 <bean id="Connection" class="javax.jms.Connection"
 factory-bean="ConnectionFactory"
 factory-method="createConnection"
 init-method="start"
 destroy-method="close" />

 <bean id="QueueName" class="java.lang.String">
 <constructor-arg value="SQSJMSClientExampleQueue"/>
 </bean>

</beans>

SpringExample.java
The following Java code shows an example that uses SpringExampleConfig.xml (p. 26).

public class SpringExample {
 public static void main(String args[]) throws JMSException {
 if(args.length != 1 || !args[0].endsWith(".xml")) {
 System.err.println("Usage: " + SpringExample.class.getName() + "
<spring config.xml>");
 System.exit(1);
 }

 File springFile = new File(args[0]);
 if(!springFile.exists() || !springFile.canRead()) {
 System.err.println("File " + args[0] + " does not exist or is not
 readable.");
 System.exit(2);
 }

 ExampleCommon.setupLogging();

 FileSystemXmlApplicationContext context =
 new FileSystemXmlApplicationContext("file://" + springFile.get
AbsolutePath());

API Version 2012-11-05
27

Amazon Simple Queue Service Developer Guide
SpringExample.java

 Connection connection;
 try {
 connection = context.getBean(Connection.class);
 } catch(NoSuchBeanDefinitionException e) {
 System.err.println("Could not find the JMS connection to use: " +
 e.getMessage());
 System.exit(3);
 return;
 }

 String queueName;
 try {
 queueName = context.getBean("QueueName", String.class);
 } catch(NoSuchBeanDefinitionException e) {
 System.err.println("Could not find the name of the queue to use:
" + e.getMessage());
 System.exit(3);
 return;
 }

 if(connection instanceof SQSConnection) {
 ExampleCommon.ensureQueueExists((SQSConnection) connection,
queueName);
 }

 // Create the session
 Session session = connection.createSession(false, Session.CLIENT_ACKNOW
LEDGE);
 MessageConsumer consumer = session.createConsumer(session.createQueue(
 queueName));

 receiveMessages(session, consumer);

 // The context can be setup to close the connection for us
 context.close();
 System.out.println("Context closed");
 }

 private static void receiveMessages(Session session, MessageConsumer con
sumer) {
 try {
 while(true) {
 System.out.println("Waiting for messages");
 // Wait 1 minute for a message
 Message message = consumer.receive(TimeUnit.MINUTES.toMillis(1));

 if(message == null) {
 System.out.println("Shutting down after 1 minute of silence"
);
 break;
 }
 ExampleCommon.handleMessage(message);
 message.acknowledge();
 System.out.println("Acknowledged message");
 }
 } catch (JMSException e) {
 System.err.println("Error receiving from SQS: " + e.getMessage()

API Version 2012-11-05
28

Amazon Simple Queue Service Developer Guide
SpringExample.java

);
 e.printStackTrace();
 }
 }
}

ExampleCommon.java
The following Java code first checks to see if an Amazon SQS queue exists and then creates one if it
does not already exist. In addition, example logging code is provided.

public class ExampleCommon {
 /**
 * A utility function to check the queue exists and create it if needed.
For most
 * use cases this will usually be done by an administrator before the ap
plication
 * is run.
 */
 public static void ensureQueueExists(SQSConnection connection, String
queueName) throws JMSException {
 AmazonSQSMessagingClientWrapper client = connection.getWrappedAmazon
SQSClient();

 /**
 * For most cases this could be done with just a createQueue call, but
 GetQueueUrl
 * (called by queueExists) is a faster operation for the common case
where the queue
 * already exists. Also many users and roles have permission to call
GetQueueUrl
 * but do not have permission to call CreateQueue.
 */
 if(!client.queueExists(queueName)) {
 client.createQueue(queueName);
 }
 }

 public static void setupLogging() {
 // Setup logging
 BasicConfigurator.configure();
 Logger.getRootLogger().setLevel(Level.WARN);
 }

 public static void handleMessage(Message message) throws JMSException {
 System.out.println("Got message " + message.getJMSMessageID());
 System.out.println("Content: ");
 if(message instanceof TextMessage) {
 TextMessage txtMessage = (TextMessage) message;
 System.out.println("\t" + txtMessage.getText());
 } else if(message instanceof BytesMessage){
 BytesMessage byteMessage = (BytesMessage) message;
 // Assume the length fits in an int - SQS only supports sizes up
to 256k so that
 // should be true
 byte[] bytes = new byte[(int)byteMessage.getBodyLength()];

API Version 2012-11-05
29

Amazon Simple Queue Service Developer Guide
ExampleCommon.java

 byteMessage.readBytes(bytes);
 System.out.println("\t" + Base64.encodeAsString(bytes));
 } else if(message instanceof ObjectMessage) {
 ObjectMessage objMessage = (ObjectMessage) message;
 System.out.println("\t" + objMessage.getObject());
 }
 }
}

Reference/Appendix
The following lists some of the supported JMS 1.1 specification implementations in the Amazon SQS
Java Messaging Library. For more information about the supported features and capabilities of the Amazon
SQS Java Messaging Library, see the Amazon SQS FAQ.

Supported JMS 1.1 Common Interfaces:
• ConnectionFactory

• Connection

• Destination

• Session

• MessageProducer

• MessageConsumer

Supported Message Types
• TextMessage

• ByteMessage

• ObjectMessage

Supported Message Acknowledgment Modes
• DUPS_OK_ACKNOWLEDGE

• AUTO_ACKNOWLEDGE

• CLIENT_ACKNOWLEDGE

• UNORDERED_ACKNOWLEDGE

Note
The UNORDERED_ACKNOWLEDGE acknowledgment mode is not part of the JMS 1.1
specification. It is added by Amazon SQS to allow for a JMS client to explicitly acknowledge the
message.

JMS Defined Headers and Reserved Properties
The Amazon SQS JMS client sets the following JMS defined headers:

• JMSDestination

API Version 2012-11-05
30

Amazon Simple Queue Service Developer Guide
Reference/Appendix

http://docs.oracle.com/javaee/6/api/javax/jms/package-summary.html
http://aws.amazon.com/sqs/faqs/

• JMSMessageID

• JMSRedelivered

The Amazon SQS JMS client sets the following JMS reserved property:

• JMSXDeliveryCount

API Version 2012-11-05
31

Amazon Simple Queue Service Developer Guide
JMS Defined Headers and Reserved Properties

Using Amazon SQS Message
Attributes

Amazon Simple Queue Service (Amazon SQS) provides support for message attributes. Message
attributes allow you to provide structured metadata items (such as timestamps, geospatial data, signatures,
and identifiers) about the message. Message attributes are optional and separate from, but sent along
with, the message body.This information can be used by the receiver of the message to help decide how
to handle the message without having to first process the message body. Each message can have up to
10 attributes. To specify message attributes, you can use the AWS Management Console, AWS software
development kits (SDKs), or query API.

Topics

• Message Attribute Items and Validation (p. 32)

• Message Attribute Data Types and Validation (p. 33)

• Using Message Attributes with the AWS Management Console (p. 33)

• Using Message Attributes with the AWS SDKs (p. 36)

• Using Message Attributes with the Amazon SQS Query API (p. 38)

• MD5 Message-Digest Calculation (p. 39)

Message Attribute Items and Validation
Each message attribute consists of the following items:

• Name – The message attribute name can contain the following characters: A-Z, a-z, 0-9, underscore(_),
hyphen(-), and period (.).The name must not start or end with a period, and it should not have successive
periods. The name is case sensitive and must be unique among all attribute names for the message.
The name can be up to 256 characters long. The name cannot start with "AWS." or "Amazon." (or any
variations in casing) because these prefixes are reserved for use by Amazon Web Services.

• Type – The supported message attribute data types are String, Number, and Binary.You can also
provide custom information on the type. The data type has the same restrictions on the content as the
message body.The data type is case sensitive, and it can be up to 256 bytes long. For more information,
see the Message Attribute Data Types and Validation (p. 33) section.

• Value – The user-specified message attribute value. For string data types, the value attribute has the
same restrictions on the content as the message body. For more information, see SendMessage.

API Version 2012-11-05
32

Amazon Simple Queue Service Developer Guide
Message Attribute Items and Validation

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Name, type, and value must not be empty or null. In addition, the message body should not be empty or
null. All parts of the message attribute, including name, type, and value, are included in the message size
restriction, which is currently 256 KB (262,144 bytes).

Message Attribute Data Types and Validation
Message attribute data types identify how the message attribute values are handled by Amazon SQS.
For example, if the type is a number, Amazon SQS will validate that it's a number.

Amazon SQS supports the following logical data types (with optional custom type labels):

.<Custom Type> (Optional)String

.<Custom Type> (Optional)Number

.<Custom Type> (Optional)Binary

• String – Strings are Unicode with UTF-8 binary encoding. For a list of code values, see http://
en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

• Number – Numbers are positive or negative integers or floating point numbers. Numbers have sufficient
range and precision to encompass most of the possible values that integers, floats, and doubles typically
support. A number can have up to 38 digits of precision, and it can be between 10^-128 to 10^+126.
Leading and trailing zeroes are trimmed.

• Binary – Binary type attributes can store any binary data, for example, compressed data, encrypted
data, or images.

• Custom Type – You can append a custom type label to the supported data types (String, Number, and
Binary) to create custom data types. This capability is similar to type traits in programming languages.
For example, if you have an application that needs to know which type of number is being sent in the
message, then you could create custom types similar to the following: Number.byte, Number.short,
Number.int, and Number.float. Another example using the binary data type is to use Binary.gif and
Binary.png to distinguish among different image file types in a message or batch of messages. The
appended data is optional and opaque to Amazon SQS, which means that the appended data is not
interpreted, validated, or used by Amazon SQS. The Custom Type extension has the same restrictions
on allowed characters as the message body.

Using Message Attributes with the AWS
Management Console

You can use the AWS Management Console to configure message attributes. In the Amazon SQS console,
select a queue, click the Queue Actions drop-down list, and then select Send a Message. The console
expects the user to input a Base-64-encoded value for sending a Binary type.

API Version 2012-11-05
33

Amazon Simple Queue Service Developer Guide
Data Types

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

On the Message Attributes tab, enter a name, select the type, and enter a value for the message attribute.
Optionally, you can also append custom information to the type. For example, the following screen shows
the Number type selected with byte added for customization. For more information about custom data
for the supported data types, see the Message Attribute Data Types and Validation (p. 33) section.

API Version 2012-11-05
34

Amazon Simple Queue Service Developer Guide
Using Message Attributes with the AWS Management

Console

To add an attribute, click Add Attribute. The attribute information will then appear in the Name, Type,
and Values list.

You can also use the console to view information about the message attributes for received messages.
In the console, select a queue, click the Queue Actions drop-down list, and then select View/Delete
Messages. In the list of messages, click Message Details to view the information. For example, you can
see the message attribute size and MD5 message digest.

API Version 2012-11-05
35

Amazon Simple Queue Service Developer Guide
Using Message Attributes with the AWS Management

Console

Using Message Attributes with the AWS SDKs
The AWS SDKs provide APIs in several languages for using message attributes with Amazon SQS. This
section includes some Java examples that show how to work with message attributes. These examples
can be integrated with the SimpleQueueServiceSample.java sample from the SDK for Java.
MessageBody and MessageAttributes checksums are automatically calculated and compared with the
data Amazon SQS returns by the latest SDK for Java. For more information about the SDK for Java, see
Getting Started with the AWS SDK for Java.

The following three Java examples show how to use the MessageAttributeValue method to set the String,
Number, and Binary parameters for the message attributes:

String

Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("attributeName", new MessageAttributeValue().withData
Type("String").withStringValue("string-value-attribute-value"));

Number

Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("attributeName", new MessageAttributeValue().withData

API Version 2012-11-05
36

Amazon Simple Queue Service Developer Guide
Using Message Attributes with the AWS SDKs

http://aws.amazon.com/tools/
http://aws.amazon.com/articles/Java/3586
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_MessageAttributeValue.html

Type("Number").withStringValue("230.000000000000000001"));

Binary

Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("attributeName", new MessageAttributeValue().withData
Type("Binary").withBinaryValue(ByteBuffer.wrap(new byte[10])));

The following three examples show how to use the optional custom type for the message attributes:

String—Custom

Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("AccountId", new MessageAttributeValue().withData
Type("String.AccountId").withStringValue("000123456"));

Number—Custom

// NOTE Because the type is a number, the result in the receive message call
will be 123456.
Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("AccountId", new MessageAttributeValue().withDataType("Num
ber.AccountId").withStringValue("000123456"));

Binary—Custom

Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("PhoneIcon", new MessageAttributeValue().withDataType("Bin
ary.JPEG").withBinaryValue(ByteBuffer.wrap(new byte[10])));

To send a message using one of the previous message attribute examples your code should look similar
to the following:

SendMessageRequest request = new SendMessageRequest();
request.withMessageBody("A test message body.");
request.withQueueUrl("MyQueueUrlStringHere");
request.withMessageAttributes(messageAttributes);
sqs.sendMessage(request);

API Version 2012-11-05
37

Amazon Simple Queue Service Developer Guide
Using Message Attributes with the AWS SDKs

Using Message Attributes with the Amazon SQS
Query API

To specify message attributes with the query API, you call the SendMessage, SendMessageBatch, or
ReceiveMessage actions.

A query API request for this example will look similar to the following:

How you structure the AUTHPARAMS depends on how you are signing your API request. For information
on AUTHPARAMS in Signature Version 4, go to Examples of Signed Signature Version 4 Requests.

POST http://sqs.us-east-1.amazonaws.com/123456789012/MyQueue
...
?Action=SendMessage
&MessageBody=This+is+a+test+message
&MessageAttribute.1.Name=test_attribute_name_1
&MessageAttribute.1.Value.StringValue=test_attribute_value_1
&MessageAttribute.1.Value.DataType=String
&MessageAttribute.2.Name=test_attribute_name_2
&MessageAttribute.2.Value.StringValue=test_attribute_value_2
&MessageAttribute.2.Value.DataType=String
&Version=2012-11-05
&Expires=2014-05-05T22%3A52%3A43PST
&AUTHPARAMS

The query API response should look similar to the following:

HTTP/1.1 200 OK
...
<SendMessageResponse>
 <SendMessageResult>
 <MD5OfMessageBody>
 fafb00f5732ab283681e124bf8747ed1
 </MD5OfMessageBody>
 <MD5OfMessageAttributes>
 3ae8f24a165a8cedc005670c81a27295
 </MD5OfMessageAttributes>
 <MessageId>
 5fea7756-0ea4-451a-a703-a558b933e274
 </MessageId>
 </SendMessageResult>
 <ResponseMetadata>
 <RequestId>
 27daac76-34dd-47df-bd01-1f6e873584a0
 </RequestId>
 </ResponseMetadata>
</SendMessageResponse>

When using SendMessageBatch, the message attributes need to be specified on each individual message
in the batch.

A query API request for this example will look similar to the following:

API Version 2012-11-05
38

Amazon Simple Queue Service Developer Guide
Using Message Attributes with the Amazon SQS Query

API

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html

POST http://sqs.us-east-1.amazonaws.com/123456789012/MyQueue
...
?Action=SendMessageBatch
&SendMessageBatchRequestEntry.1.Id=test_msg_001
&SendMessageBatchRequestEntry.1.MessageBody=test%20message%20body%201
&SendMessageBatchRequestEntry.2.Id=test_msg_002
&SendMessageBatchRequestEntry.2.MessageBody=test%20message%20body%202
&SendMessageBatchRequestEntry.2.DelaySeconds=60
&SendMessageBatchRequestEntry.2.MessageAttribute.1.Name=test_attribute_name_1
&SendMessageBatchRequestEntry.2.MessageAttribute.1.Value.StringValue=test_at
tribute_value_1
&SendMessageBatchRequestEntry.2.MessageAttribute.1.Value.DataType=String
&Version=2012-11-05
&Expires=2014-05-05T22%3A52%3A43PST
&AUTHPARAMS

The query API response should look similar to the following:

HTTP/1.1 200 OK
...
<SendMessageBatchResponse>
<SendMessageBatchResult>
 <SendMessageBatchResultEntry>
 <Id>test_msg_001</Id>
 <MessageId>0a5231c7-8bff-4955-be2e-8dc7c50a25fa</MessageId>
 <MD5OfMessageBody>0e024d309850c78cba5eabbeff7cae71</MD5OfMessageBody>
 </SendMessageBatchResultEntry>
 <SendMessageBatchResultEntry>
 <Id>test_msg_002</Id>
 <MessageId>15ee1ed3-87e7-40c1-bdaa-2e49968ea7e9</MessageId>
 <MD5OfMessageBody>7fb8146a82f95e0af155278f406862c2</MD5OfMessageBody>
 <MD5OfMessageAttributes>295c5fa15a51aae6884d1d7c1d99ca50</MD5OfMessageAt
tributes>
 </SendMessageBatchResultEntry>
</SendMessageBatchResult>
<ResponseMetadata>
 <RequestId>ca1ad5d0-8271-408b-8d0f-1351bf547e74</RequestId>
</ResponseMetadata>
</SendMessageBatchResponse>

MD5 Message-Digest Calculation
If you want to calculate the MD5 message digest for Amazon SQS message attributes and you are either
using the query API or one of the AWS SDKs that does not support MD5 message digest for Amazon
SQS message attributes, then you must use the following information about the algorithm to calculate
the MD5 message digest of the message attributes.

Note
Currently the AWS SDK for Java supports MD5 message digest for Amazon SQS message
attributes. This is available in the MessageMD5ChecksumHandler class. If you are using the
SDK for Java, then you do not need to use the following information.

API Version 2012-11-05
39

Amazon Simple Queue Service Developer Guide
MD5 Message-Digest Calculation

The high-level steps of the algorithm to calculate the MD5 message digest for Amazon SQS message
attributes are:

1. Sort all message attributes by name in ascending order.

2. Encode the individual parts of each attribute (name, type, and value) into a buffer.

3. Compute the message digest of the entire buffer.

To encode a single Amazon SQS message attribute:

1. Encode the name (length of name [4 bytes] + UTF-8 bytes of the name).

2. Encode the type (length of type [4 bytes] + UTF-8 bytes of the type).

3. Encode the transport type (string or binary) of the value [1 byte].

a. For the string transport type, encode 1.

b. For the binary transport type, encode 2.

Note
The string and number logical data types use the string transport type. The binary logical
data type uses the binary transport type.

4. Encode the attribute value.

a. For a string transport type, encode the attribute value (length [4 bytes] + the UTF-8 bytes of the
value).

b. For a binary transport type, encode the attribute value (length [4 bytes] + use the raw bytes
directly).

The following diagram shows the encoding of the MD5 message digest for a single message attribute:

API Version 2012-11-05
40

Amazon Simple Queue Service Developer Guide
MD5 Message-Digest Calculation

Amazon SQS Long Polling

Topics

• Enabling Long Polling with the AWS Management Console (p. 42)

• Enabling Long Polling with the Query API (p. 44)

The API Version 2012-11-05 of Amazon SQS provides support for long polling.

One benefit of long polling with Amazon SQS is the reduction of the number of empty responses, when
there are no messages available to return, in reply to a ReceiveMessage request sent to an Amazon
SQS queue. Long polling allows the Amazon SQS service to wait until a message is available in the
queue before sending a response. So unless the connection times out, the response to the
ReceiveMessage request will contain at least one of the available messages (if any) and up to the
maximum number requested in the ReceiveMessage call.

Another benefit is helping to eliminate false empty responses, where messages are available in the queue
but are not included in the response.This happens when Amazon SQS uses short (standard) polling, the
default behavior, where only a subset of the servers (based on a weighted random distribution) are queried
to see if any messages are available to include in the response. On the other hand, when long polling in
enabled, Amazon SQS queries all of the servers.

Reducing the number of empty responses and false empty responses also helps reduce your cost of
using Amazon SQS.

Short polling occurs when the WaitTimeSeconds parameter of a ReceiveMessage call is set to 0.This
happens in one of two ways – either the ReceiveMessage call sets WaitTimeSeconds to 0, or the
ReceiveMessage call doesn’t set WaitTimeSeconds and the queue attribute
ReceiveMessageWaitTimeSeconds is 0.

Note
A value set between 1 to 20 for the WaitTimeSeconds parameter for ReceiveMessage has
priority over any value set for the queue attribute ReceiveMessageWaitTimeSeconds.

There are three different API action calls you can use to enable long polling in Amazon SQS,
ReceiveMessage, CreateQueue, and SetQueueAttributes. For ReceiveMessage, you configure
the WaitTimeSeconds parameter, and for CreateQueue and SetQueueAttributes, you configure
the ReceiveMessageWaitTimeSeconds attribute.

Important
If you decide to implement long polling with multiple queues then it is recommended that you
use one thread for each queue, instead of trying to use one single thread for polling all of the

API Version 2012-11-05
41

Amazon Simple Queue Service Developer Guide

queues.When using one thread for each queue your application is able to process the messages
in each of the queues as they become available, as opposed to one single thread for multiple
queues where your application could be blocked from processing available messages in the
other queues while waiting (up to 20 seconds) on a queue that does not have any available
messages.

For most use cases when using long polling, you should set the timeout value to the maximum of 20
seconds. If the 20 second maximum does not work for your application, you can choose a shorter long
poll timeout, down to as low as 1 second. If you are not using an AWS SDK to access Amazon SQS, or
if you’ve specially configured your AWS SDK to have a shorter timeout, you may need to modify your
Amazon SQS client to allow for longer requests or use a shorter long poll timeout.

Enabling Long Polling with the AWS
Management Console

You can enable long polling using the AWS Management Console by setting a Receive Message Wait
Time value that is greater than 0.

To enable long polling with the AWS Management Console for a new queue

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Click Create New Queue.

3. In the Create New Queue dialog box, enter a name for your queue (e.g., MyQueue) in the Queue
Name field.

API Version 2012-11-05
42

Amazon Simple Queue Service Developer Guide
Enabling Long Polling with the AWS Management

Console

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

4. Enter a positive integer value, from 1 to 20 seconds, for Receive Message Wait Time.
You can leave the default value settings for the remaining fields or enter new values.

5. Click Create Queue.

You can use the AWS Management Console to change the Receive Message Wait Time setting for an
existing queue by selecting the Configure Queue action with an existing queue highlighted.

To set a new Receive Message Wait Time value for an existing queue

1. Select the Configure Queue action with an existing queue highlighted.

API Version 2012-11-05
43

Amazon Simple Queue Service Developer Guide
Enabling Long Polling with the AWS Management

Console

2. Change the value of Receive Message Wait Time to a positive integer value.

3. Click Save Changes.

Enabling Long Polling with the Query API
The following Query API example enables long polling by calling the ReceiveMessage action with the
WaitTimeSeconds parameter set to 10 seconds. For more information, go to ReceiveMessage in the
Amazon Simple Queue Service API Reference.

How you structure the AUTHPARAMS depends on how you are signing your API request. For information
on AUTHPARAMS in Signature Version 4, go to Examples of Signed Signature Version 4 Requests.

http://sqs.us-east-1.amazonaws.com/123456789012/testQueue/
?Action=ReceiveMessage
&WaitTimeSeconds=10
&MaxNumberOfMessages=5
&VisibilityTimeout=15
&AttributeName=All;
&Version=2012-11-05
&Expires=2013-10-25T22%3A52%3A43PST
&AUTHPARAMS

The following example shows another option for enabling long polling. Here, the
ReceiveMessageWaitTimeSeconds attribute for the SetQueueAttributes action is set to 20 seconds.
For more information, go to SetQueueAttributes in the Amazon Simple Queue Service API Reference.

http://sqs.us-east-1.amazonaws.com/123456789012/testQueue/
?Action=SetQueueAttributes
&Attribute.Name=ReceiveMessageWaitTimeSeconds

API Version 2012-11-05
44

Amazon Simple Queue Service Developer Guide
Enabling Long Polling with the Query API

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

&Attribute.Value=20
&Version=2012-11-05
&Expires=2013-10-25T22%3A52%3A43PST
&AUTHPARAMS

API Version 2012-11-05
45

Amazon Simple Queue Service Developer Guide
Enabling Long Polling with the Query API

Amazon SQS Delay Queues

Topics

• Creating Delay Queues with the AWS Management Console (p. 47)

• Creating Delay Queues with the Query API (p. 49)

Delay queues allow you to postpone the delivery of new messages in a queue for a specific number of
seconds. If you create a delay queue, any message that you send to that queue will be invisible to
consumers for the duration of the delay period.You can use CreateQueue to create a delay queue by
setting the DelaySeconds attribute to any value between 0 and 900 (15 minutes).You can also turn an
existing queue into a delay queue by using SetQueueAttributes to set the queue's DelaySeconds
attribute.

Delay queues are similar to visibility timeouts in that both features make messages unavailable to
consumers for a specific period of time. The difference between delay queues and visibility timeouts is
that for delay queues, a message is hidden when it is first added to the queue, whereas for visibility
timeouts, a message is hidden only after a message is retrieved from the queue. The following figure
illustrates the relationship between delay queues and visibility timeouts.

Note
There is a 120,000 limit for the number of inflight messages per queue. Messages are inflight
after they have been received from the queue by a consuming component, but have not yet
been deleted from the queue. If you reach the 120,000 limit, you will receive an OverLimit error
message from Amazon SQS. To help avoid reaching the limit, you should delete the messages
from the queue after they have been processed.You can also increase the number of queues
you use to process the messages.

To set delay seconds on individual messages, rather than for an entire queue, use message timers. If
you send a message with a message timer, Amazon SQS uses the message timer's delay seconds value
instead of the delay queue's delay seconds value. For more information, see Amazon SQS Message
Timers (p. 50).

API Version 2012-11-05
46

Amazon Simple Queue Service Developer Guide

Important
All Amazon SQS queues have delay functionality enabled.You can turn any queue that you
create using the 2008-01-01 or 2009-02-01 API versions into a delay queue. Message timers
are available in the 2011-10-01 API version and later API versions. If you want to apply specific
delay values to individual messages, you must use the 2011-10-01 API version or later API
versions.

Creating Delay Queues with the AWS
Management Console

You can create a delay queue using the AWS Management Console by setting a Delivery Delay value
that is greater than 0.

To create a delay queue with the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Click Create New Queue.

3. In the Create New Queue dialog box, enter a name for your queue (e.g., MyQueue) in the Queue
Name field.

4. Enter a positive integer value (e.g., 30) for the Delivery Delay attribute.
You can leave the default value settings for the remaining fields or enter new values.

API Version 2012-11-05
47

Amazon Simple Queue Service Developer Guide
Creating Delay Queues with the AWS Management

Console

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

5. Click Create Queue.

You can use the AWS Management Console to change the Delivery Delay setting for an existing queue
by selecting the Configure Queue action with an existing queue highlighted.

To set a new delivery delay value for an existing queue

1. Select the Configure Queue action with an existing queue highlighted.

2. Change the value of Delivery Delay to a positive integer value.

3. Click Save Changes.

API Version 2012-11-05
48

Amazon Simple Queue Service Developer Guide
Creating Delay Queues with the AWS Management

Console

Creating Delay Queues with the Query API
The following Query API example calls the CreateQueue action to create a delay queue that hides each
message from consumers for the first 45 seconds that the message is in the queue.

How you structure the AUTHPARAMS depends on how you are signing your API request. For information
on AUTHPARAMS in Signature Version 4, go to Examples of Signed Signature Version 4 Requests.

http://sqs.us-east-1.amazonaws.com/
?Action=CreateQueue
&QueueName=testQueue
&Attribute.1.Name=DelaySeconds
&Attribute.1.Value=45
&Version=2011-10-01
&Expires=2011-10-20T22%3A52%3A43PST
&AUTHPARAMS

You can also change an existing queue into a delay queue by changing the DelaySeconds attribute from
its default value of 0 to a positive integer value that is less than or equal to 900. The following example
calls SetQueueAttributes to set the DelaySeconds attribute of a queue named testQueue to 45
seconds.

http://sqs.us-east-1.amazonaws.com/123456789012/testQueue/
?Action=SetQueueAttributes
&Attribute.Name=DelaySeconds
&Attribute.Value=45
&Version=2011-10-01
&Expires=2011-10-20T22%3A52%3A43PST
&AUTHPARAMS

API Version 2012-11-05
49

Amazon Simple Queue Service Developer Guide
Creating Delay Queues with the Query API

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Amazon SQS Message Timers

Topics

• Creating Message Timers Using the Console (p. 50)

• Creating Message Timers Using the Query API (p. 52)

Amazon SQS message timers allow you to specify an initial invisibility period for a message that you are
adding to a queue. For example, if you send a message with the DelaySeconds parameter set to 45,
the message will not be visible to consumers for the first 45 seconds that the message resides in the
queue. The default value for DelaySeconds is 0.

Note
There is a 120,000 limit for the number of inflight messages per queue. Messages are inflight
after they have been received from the queue by a consuming component, but have not yet
been deleted from the queue. If you reach the 120,000 limit, you will receive an OverLimit error
message from Amazon SQS. To help avoid reaching the limit, you should delete the messages
from the queue after they have been processed.You can also increase the number of queues
you use to process the messages.

To set a delay period that applies to all messages in a queue, use delay queues. For more information,
see Amazon SQS Delay Queues (p. 46). A message timer setting for an individual message overrides
any DelaySeconds value that applies to the entire delay queue.

Creating Message Timers Using the Console
To send a message with a message timer using the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select a queue.

API Version 2012-11-05
50

Amazon Simple Queue Service Developer Guide
Creating Message Timers Using the Console

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

3. Select Send a Message from the Queue Actions drop-down list.

Note
The Queue Actions drop-down list is available only if a queue is selected.

4. In the Send a Message to MyQueue dialog box, enter a message (e.g., This is a test message
with a message timer.).

5. Enter a delay value (e.g., 30) in the Delay delivery of this message by text box.

API Version 2012-11-05
51

Amazon Simple Queue Service Developer Guide
Creating Message Timers Using the Console

6. Click Send Message.

7. In the Send a Message to MyQueue confirmation box click Close.

Creating Message Timers Using the Query API
The following Query API example applies a 45 second initial visibility delay for a single message sent
with SendMessage.

How you structure the AUTHPARAMS depends on how you are signing your API request. For information
on AUTHPARAMS in Signature Version 4, go to Examples of Signed Signature Version 4 Requests.

API Version 2012-11-05
52

Amazon Simple Queue Service Developer Guide
Creating Message Timers Using the Query API

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

http://sqs.us-east-1.amazonaws.com/123456789012/testQueue/
?Action=SendMessage
&MessageBody=This+is+a+test+message
&Attribute.Name=DelaySeconds
&Attribute.Value=45
&Version=2011-10-01
&Expires=2011-10-18T22%3A52%3A43PST
&AUTHPARAMS

You can also use the Query API SendMessageBatch action to send up to ten messages with message
timers.You can assign a different DelaySeconds value to each message or assign no value at all. If
you do not set a value for DelaySeconds, the message might still be subject to a delay if you are adding
the message to a delay queue. For more information about delay queues, see Amazon SQS Delay
Queues (p. 46).The following example uses SendMessageBatch to send three messages: one message
without a message timer and two messages with different values for DelaySeconds.

http://sqs.us-east-1.amazonaws.com/123456789012/testQueue/
?Action=SendMessageBatch
&SendMessageBatchRequestEntry.1.Id=test_msg_no_message_timer
&SendMessageBatchRequestEntry.1.MessageBody=test%20message%20body%201
&SendMessageBatchRequestEntry.2.Id=test_msg_delay_45_seconds
&SendMessageBatchRequestEntry.2.MessageBody=test%20message%20body%202
&SendMessageBatchRequestEntry.2.DelaySeconds=45
&SendMessageBatchRequestEntry.3.Id=test_msg_delay_2_minutes
&SendMessageBatchRequestEntry.3.MessageBody=test%20message%20body%203
&SendMessageBatchRequestEntry.3.DelaySeconds=120
&Version=2011-10-01
&Expires=2011-10-18T22%3A52%3A43PST
&AUTHPARAMS

API Version 2012-11-05
53

Amazon Simple Queue Service Developer Guide
Creating Message Timers Using the Query API

Amazon SQS Batch API Actions

Topics

• Maximum Message Size for SendMessageBatch (p. 54)

In the 2009-02-01 API version of Amazon SQS, only one action—ReceiveMessage—supports batch
processing, i.e., processing more than one message with a single call. With the 2011-10-01 API version,
Amazon SQS adds batch functionality for sending messages, deleting messages, and changing message
visibility timeout values. To send up to ten messages at once, use the SendMessageBatch action. To
delete up to ten messages with one API call, use the DeleteMessageBatch action. To change the
visibility timeout value for up to ten messages, use the ChangeMessageVisibilityBatch action.

To use the new batch actions, you must use either the Query API or a Software Development Kit (SDK)
that supports the new batch actions. Check your specific SDK's documentation to see whether it supports
the new Amazon SQS batch actions. The Amazon SQS console does not currently support the batch
API actions.

For details and examples of the three batch API actions, go to the Amazon Simple Queue Service API
Reference:

• ChangeMessageVisibilityBatch

• DeleteMessageBatch

• SendMessageBatch

Maximum Message Size for SendMessageBatch
You can send a message as large as 262,144 bytes (256 KB) with SendMessageBatch. However, the
total size of all the messages that you send in a single call to SendMessageBatch cannot exceed 262,144
bytes (256 KB).

API Version 2012-11-05
54

Amazon Simple Queue Service Developer Guide
Maximum Message Size for SendMessageBatch

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html

Making API Requests

Topics

• Endpoints (p. 56)

• Making Query Requests (p. 57)

• Making SOAP Requests (p. 59)

• Request Authentication (p. 60)

• Responses (p. 68)

• Shared Queues (p. 70)

• Programming Languages (p. 72)

This section describes how to make requests to Amazon SQS. The topics acquaint you with the basic
differences between the interfaces, the components of a request, how to authenticate a request, and the
content of responses.

We also provide SDKs that enable you to access Amazon SQS from your preferred programming language.
The SDKs contain functionality that automatically takes care of tasks such as:

• Cryptographically signing your service requests

• Retrying requests

• Handling error responses

For a list of available SDKs, go to Tools for Amazon Web Services

API Version 2012-11-05
55

Amazon Simple Queue Service Developer Guide

http://aws.amazon.com/tools/

Endpoints
For information about this product's regions and endpoints, go to Regions and Endpoints in the Amazon
Web Services General Reference.

For example, to create a queue in Europe, you would generate a Query request similar to the following:

How you structure the AUTHPARAMS depends on how you are signing your API request. For information
on AUTHPARAMS in Signature Version 4, go to Examples of Signed Signature Version 4 Requests.

 http://sqs.eu-west-1.amazonaws.com/
 ?Action=CreateQueue
 &DefaultVisibilityTimeout=40
 &QueueName=testQueue
 &Version=2009-02-01
 &AUTHPARAMS

Each Amazon SQS endpoint is entirely independent. For example, if you have two queues called
"MyQueue," one in sqs.us-east-1.amazonaws.com and one in sqs.eu-west-1.amazonaws.com, they are
completely independent and do not share any data.

API Version 2012-11-05
56

Amazon Simple Queue Service Developer Guide
Endpoints

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

Making Query Requests
Topics

• Structure of a GET Request (p. 57)

• Structure of a POST Request (p. 58)

• Related Topics (p. 59)

Amazon SQS supports Query requests for calling service actions. Query requests are simple HTTP or
HTTPS requests, using the GET or POST method. Query requests must contain an Action parameter
to indicate the action to be performed. The response is an XML document that conforms to a schema.

Structure of a GET Request
This guide presents the Amazon SQS GET requests as URLs, which can be used directly in a browser.
The URL consists of:

• Endpoint—The resource the request is acting on (in the case of Amazon SQS, the endpoint is a queue)

• Action—The action you want to perform on the endpoint; for example: sending a message

• Parameters—Any request parameters

The following is an example GET request to send a message to an Amazon SQS queue.

How you structure the AUTHPARAMS depends on how you are signing your API request. For information
on AUTHPARAMS in Signature Version 4, go to Examples of Signed Signature Version 4 Requests.

http://sqs.us-east-1.amazonaws.com/123456789012/queue1?Action=SendMessage&Mes
sageBody=Your%20Message%20Text&Version=2012-11-05&AUTHPARAMS

Important
Because the GET requests are URLs, you must URL encode the parameter values. For example,
in the preceding example request, the value for the MessageBody parameter is actually Your
Message Text. However, spaces are not allowed in URLs, so each space is URL encoded as
"%20". The rest of the example has not been URL encoded to make it easier for you to read.

To make the GET examples even easier to read, this guide presents them in the following parsed format.

http://sqs.us-east-1.amazonaws.com/123456789012/queue1
?Action=SendMessage
&MessageBody=Your%20Message%20Text
&Version=2012-11-05
&Expires=2011-10-15T12:00:00Z
&AUTHPARAMS

Note
In the example Query requests we present in this guide, we use a false AWS Access Key ID
and false signature, each with EXAMPLE appended. We do this to indicate that you shouldn't
expect the signature in the example to be accurate based on the request parameters presented
in the example. The one exception to this is in the instructions for creating Query request
signatures. The example there shows a real signature based on a particular AWS Access Key
ID we specify and the request parameters in the example (for more information, see Query
Request Authentication (p. 67)).

API Version 2012-11-05
57

Amazon Simple Queue Service Developer Guide
Making Query Requests

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

In Amazon SQS, all parameters except MessageBody always have values that have no spaces. The
value you provide for MessageBody in SendMessage requests can have spaces. In this guide, any
example SendMessage Query requests with a MessageBody that includes spaces is displayed with the
spaces URL encoded (as %20). For clarity, the rest of the URL is not displayed in a URL encoded format.

The first line represents the endpoint of the request.This is the resource the request acts on.The preceding
example acts on a queue, so the request's endpoint is the queue's identifier, known as the queue URL.
For more details about the queue URL, see Queue URLs (p. 5).

After the endpoint is a question mark (?), which separates the endpoint from the parameters. Each
parameter is separated by an ampersand (&).

The Action parameter indicates the action to perform (for a list of the actions, see API Actions in the
Amazon SQS API Reference). For a list of the other parameters that are common to all Query requests,
see Common Parameters in the Amazon SQS API Reference.

Structure of a POST Request
Amazon SQS also accepts POST requests. With a POST request, you send the query parameters as a
form in the HTTP request body as described in the following procedure.

How you structure the AUTHPARAMS depends on how you are signing your API request. For information
on AUTHPARAMS in Signature Version 4, go to Examples of Signed Signature Version 4 Requests.

To create a POST request

1. Assemble the query parameter names and values into a form.

This means you put the parameters and values together like you would for a GET request (with an
ampersand separating each name-value pair).The following example shows a SendMessage request
with the line breaks we use in this guide to make the information easier to read.

Action=SendMessage
&MessageBody=Your Message Text
&Version=2012-11-05
&Expires=2011-10-15T12:00:00Z
&AUTHPARAMS

2. Form-URL-encode the form according to the Form Submission section of the HTML specification
(for more information, go to http://www.w3.org/MarkUp/html-spec/html-spec_toc.html#SEC8.2.1).

Action=SendMessage
&MessageBody=Your+Message+Text
&Version=2012-11-05
&Expires=2011-10-15T12%3A00%3A00Z
&AUTHPARAMS

3. Add the request signature to the form (for more information, see Query Request Authentication (p. 67)).

Action=SendMessage
&MessageBody=Your+Message+Text
&Version=2012-11-05
&Expires=2011-10-15T12%3A00%3A00Z
&AUTHPARAMS

API Version 2012-11-05
58

Amazon Simple Queue Service Developer Guide
Structure of a POST Request

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/index.html?Operations.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/CommonParameters.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://www.w3.org/MarkUp/html-spec/html-spec_toc.html#SEC8.2.1

4. Provide the resulting form as the body of the POST request.

5. Include the Content-Type HTTP header with the value set to
application/x-www-form-urlencoded.

The following example shows the final POST request.

POST /queue1 HTTP/1.1
Host: sqs.us-east-1.amazonaws.com
Content-Type: application/x-www-form-urlencoded

Action=SendMessage
&MessageBody=Your+Message+Text
&Version=2012-11-05
&Expires=2011-10-15T12%3A00%3A00Z
&AUTHPARAMS

Amazon SQS requires no other HTTP headers in the request besides Content-Type.The authentication
signature you provide is the same signature you would provide if you sent a GET request (for information
about the signature, see Query Request Authentication (p. 67)).

Note
Your HTTP client typically adds other items to the HTTP request as required by the version of
HTTP the client uses. We don't include those additional items in the examples in this guide.

Related Topics
• Query Request Authentication (p. 67)

• Responses (p. 68)

Making SOAP Requests
Important
As of August 8, 2011, Amazon SQS no longer supports SOAP requests.

API Version 2012-11-05
59

Amazon Simple Queue Service Developer Guide
Related Topics

Request Authentication
Topics

• What Is Authentication? (p. 60)

• Your AWS Account (p. 62)

• Your Access Keys (p. 62)

• HMAC-SHA Signatures (p. 62)

• Query Request Authentication (p. 67)

The topics in this section describe how Amazon SQS authenticates your requests. In this section you
can learn about the basics of authentication, how your AWS account and access keys are used to support
authentication, and how to create an HMAC-SHA1 signature. This section also covers the request
authentication requirements for Query requests.

What Is Authentication?
Authentication is a process for identifying and verifying who is sending a request. The following diagram
shows a simplified version of an authentication process.

API Version 2012-11-05
60

Amazon Simple Queue Service Developer Guide
Request Authentication

General Process of Authentication

The sender obtains the necessary credential.1

The sender sends a request with the credential to the recipient.2

The recipient uses the credential to verify the sender truly sent the request.3

If yes, the recipient processes the request. If no, the recipient rejects the request and re-
sponds accordingly.

4

During authentication, AWS verifies both the identity of the sender and whether the sender is registered
to use services offered by AWS. If either test fails, the request is not processed further.

For further discussion of authentication, go to the techencylopedia.com entry for authentication. For
definitions of common industry terms related to authentication, go to the RSA Laboratories Glossary.

The subsequent sections describe how Amazon SQS implements authentication to protect your data.

API Version 2012-11-05
61

Amazon Simple Queue Service Developer Guide
What Is Authentication?

http://www.techweb.com/encyclopedia/defineterm.jhtml?term=authentication&x=13&y=4
http://www.rsa.com/rsalabs/node.asp?id=2373

Your AWS Account
To access any web services offered by AWS, you must first create an AWS account at http://
aws.amazon.com. An AWS account is simply an Amazon.com account that is enabled to use AWS
products; you can use an existing Amazon.com account login and password when creating the AWS
account.

Alternately, you could create a new AWS-enabled Amazon.com account by using a new login and
password. The e-mail address you provide as the account login must be valid.You'll be asked to provide
a credit card or other payment method to cover the charges for any AWS products you use.

From your AWS account you can view your AWS account activity and view usage reports.

For more information, see Creating an AWS Account in the Amazon Simple Queue Service Getting Started
Guide.

Related Topics
• Your Access Keys (p. 62)

Your Access Keys
For API access, you need an access key ID and secret access key. Use IAM user access keys instead
of AWS root account access keys. IAM lets you securely control access to AWS services and resources
in your AWS account. For more information about creating access keys, see How Do I Get Security
Credentials? in the AWS General Reference.

Related Topics
• HMAC-SHA Signatures (p. 62)

• Query Request Authentication (p. 67)

HMAC-SHA Signatures
Topics

• Required Authentication Information (p. 62)

• Basic Authentication Process (p. 64)

• About the String to Sign (p. 65)

• About the Time Stamp (p. 65)

• Java Sample Code for Base64 Encoding (p. 66)

• Java Sample Code for Calculating HMAC-SHA1 Signatures (p. 66)

The topics in this section describe how Amazon SQS uses HMAC-SHA signatures to authenticate Query
requests.

Required Authentication Information
When accessing Amazon SQS using the Query API, you must provide the following items so the request
can be authenticated:

API Version 2012-11-05
62

Amazon Simple Queue Service Developer Guide
Your AWS Account

http://aws.amazon.com
http://aws.amazon.com
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSAccounts.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

• AWS Access Key ID—Your AWS account is identified by your Access Key ID, which AWS uses to
look up your Secret Access Key.

• Signature—Each request must contain a valid HMAC-SHA request signature, or the request is rejected.
You calculate the request signature by using your Secret Access Key, which is a shared secret known
only to you and AWS.

• Date—Each request must contain the time stamp of the request.You can provide an expiration date
and time for the request instead of or in addition to the time stamp.

Related Topics

• Your Access Keys (p. 62)

API Version 2012-11-05
63

Amazon Simple Queue Service Developer Guide
HMAC-SHA Signatures

Basic Authentication Process
Following is the series of tasks required to authenticate requests to AWS using an HMAC-SHA request
signature. It is assumed you have already created an AWS account and created an Access Key ID and
Secret Access Key. For more information about those, see Your AWS Account (p. 62) and Your Access
Keys (p. 62).

You perform the first three tasks.

Process for Authentication:Tasks You Perform

You construct a request to AWS.1

You calculate a keyed-hash message authentication code (HMAC-SHA) signature using
your Secret Access Key (for information about HMAC, go to http://www.faqs.org/rfcs/
rfc2104.html)

2

You include the signature and your Access Key ID in the request, and then send the request
to AWS.

3

API Version 2012-11-05
64

Amazon Simple Queue Service Developer Guide
HMAC-SHA Signatures

http://www.faqs.org/rfcs/rfc2104.html
http://www.faqs.org/rfcs/rfc2104.html

AWS performs the next three tasks.

Process for Authentication:Tasks AWS Performs

AWS uses the Access Key ID to look up your Secret Access Key.4

AWS generates a signature from the request data and the Secret Access Key using the
same algorithm you used to calculate the signature you sent in the request.

5

If the signature generated by AWS matches the one you sent in the request, the request is
considered authentic. If the comparison fails, the request is discarded, and AWS returns an
error response.

6

About the String to Sign
Each AWS request you send must include an HMAC-SHA request signature calculated with your Secret
Access Key. The details are covered in Query Request Authentication (p. 67).

About the Time Stamp
The time stamp (or expiration time) you use in the request must be a dateTime object, with the complete
date plus hours, minutes, and seconds (for more information, go to http://www.w3.org/TR/xmlschema-2/
#dateTime). For example: 2007-01-31T23:59:59Z. Although it is not required, we recommend you provide
the time stamp in the Coordinated Universal Time (Greenwich Mean Time) time zone.

If you specify a time stamp (instead of an expiration time), the request automatically expires 15 minutes
after the time stamp (in other words, AWS does not process a request if the request time stamp is more
than 15 minutes earlier than the current time on AWS servers). Make sure your server's time is set
correctly.

API Version 2012-11-05
65

Amazon Simple Queue Service Developer Guide
HMAC-SHA Signatures

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

Important
If you are using .NET you must not send overly specific time stamps, due to different
interpretations of how extra time precision should be dropped. To avoid overly specific time
stamps, manually construct dateTime objects with no more than millisecond precision.

Java Sample Code for Base64 Encoding
Request signatures must be base64 encoded. The following Java sample code shows how to perform
base64 encoding.

package amazon.webservices.common;
/**
* This class defines common routines for encoding data in AWS requests.
*/
public class Encoding {
/**
* Performs base64-encoding of input bytes.
*
* @param rawData * Array of bytes to be encoded.
* @return * The base64 encoded string representation of rawData.
*/
public static String EncodeBase64(byte[] rawData) {
return Base64.encodeBytes(rawData);
}
}

Java Sample Code for Calculating HMAC-SHA1 Signatures
The following Java code sample shows how to calculate an HMAC request signature.

package amazon.webservices.common;

import java.security.SignatureException;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;

/**
* This class defines common routines for generating
* authentication signatures for AWS requests.
*/
public class Signature {
private static final String HMAC_SHA1_ALGORITHM = "HmacSHA1";

/**
* Computes RFC 2104-compliant HMAC signature.
* * @param data
* The data to be signed.
* @param key
* The signing key.
* @return
* The Base64-encoded RFC 2104-compliant HMAC signature.
* @throws
* java.security.SignatureException when signature generation fails
*/
public static String calculateRFC2104HMAC(String data, String key)

API Version 2012-11-05
66

Amazon Simple Queue Service Developer Guide
HMAC-SHA Signatures

throws java.security.SignatureException
{
String result;
try {

// get an hmac_sha1 key from the raw key bytes
SecretKeySpec signingKey = new SecretKeySpec(key.getBytes(), HMAC_SHA1_AL
GORITHM);

// get an hmac_sha1 Mac instance and initialize with the signing key
Mac mac = Mac.getInstance(HMAC_SHA1_ALGORITHM);
mac.init(signingKey);

// compute the hmac on input data bytes
byte[] rawHmac = mac.doFinal(data.getBytes());

// base64-encode the hmac
result = Encoding.EncodeBase64(rawHmac);

} catch (Exception e) {
throw new SignatureException("Failed to generate HMAC : " + e.getMessage());
}
return result;
}
}

Query Request Authentication
When you programmatically call the functionality exposed by the Amazon SQS API, all calls sent to
Amazon SQS must be signed. If you use an AWS SDK, the SDK handles the signing process for you so
that you do not have to manually complete the tasks. On the other hand, if you submit a Query request
over HTTP/HTTPS, then you must include a signature in every Query request.

Amazon SQS supports signature version 4. Signature version 4 provides improved security and
performance over previous versions. If you are creating new applications that use Amazon SQS, then
you should use signature version 4.

For information on how to create the signature using signature version 4, see Signature Version 4 Signing
Process in the AWS General Reference.

API Version 2012-11-05
67

Amazon Simple Queue Service Developer Guide
Query Request Authentication

http://aws.amazon.com/code/
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Responses
Topics

• Structure of a Successful Response (p. 68)

• Structure of an Error Response (p. 68)

• Related Topics (p. 69)

In response to an action request, Amazon SQS returns an XML data structure that contains the results
of the request.This data conforms to the Amazon SQS schema. For more information, see WSDL Location
and API Version in the Amazon SQS API Reference.

Structure of a Successful Response
If the request succeeded, the main response element is named after the action, but with "Response"
appended. For example, CreateQueueResponse is the response element returned for a successful
CreateQueue request. This element contains the following child elements:

• ResponseMetadata, which contains the RequestId child element

• An optional element containing action-specific results; for example, the CreateQueueResponse
element includes an element called CreateQueueResult

The XML schema describes the XML response message for each Amazon SQS action.

The following is an example of a successful response.

<CreateQueueResponse
 xmlns=http://sqs.us-east-1.amazonaws.com/doc/2012-11-05/
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:type=CreateQueueResponse>
 <CreateQueueResult>
 <QueueUrl>
 http://sqs.us-east-1.amazonaws.com/770098461991/queue2
 </QueueUrl>
 </CreateQueueResult>
 <ResponseMetadata>
 <RequestId>cb919c0a-9bce-4afe-9b48-9bdf2412bb67</RequestId>
 </ResponseMetadata>
</CreateQueueResponse>

Structure of an Error Response
If a request is unsuccessful, the main response element is called ErrorResponse regardless of the
action that was called.This element contains an Error element and a RequestId element. Each Error
includes:

• A Type element that identifies whether the error was a receiver or sender error

• A Code element that identifies the type of error that occurred

• A Message element that describes the error condition in a human-readable form

• A Detail element that might give additional details about the error or might be empty

The following is an example of an error response.

API Version 2012-11-05
68

Amazon Simple Queue Service Developer Guide
Responses

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/index.html?QueueServiceWsdlArticle.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/index.html?QueueServiceWsdlArticle.html

<ErrorResponse>
 <Error>
 <Type>
 Sender
 </Type>
 <Code>
 InvalidParameterValue
 </Code>
 <Message>
 Value (quename_nonalpha) for parameter QueueName is invalid.
 Must be an alphanumeric String of 1 to 80 in length
 </Message>
 </Error>
 <RequestId>
 42d59b56-7407-4c4a-be0f-4c88daeea257
 </RequestId>
</ErrorResponse>

Related Topics
• Making Query Requests (p. 57)

API Version 2012-11-05
69

Amazon Simple Queue Service Developer Guide
Related Topics

Shared Queues
Topics

• Simple API for Shared Queues (p. 70)

• Advanced API for Shared Queues (p. 70)

• Understanding Permissions (p. 70)

• Granting Anonymous Access to a Queue (p. 71)

Amazon SQS includes methods to share your queues so others can use them, using permissions set in
an access control policy. A permission gives access to another person to use your queue in some particular
way. A policy is the actual document that contains the permissions you've granted.

Amazon SQS offers two methods for setting a policy: a simple API and an advanced API. In the simple
API, Amazon SQS generates an access control policy for you. In the advanced API, you create the access
control policy.

Simple API for Shared Queues
The simple API for sharing a queue has two operations:

• AddPermission

• RemovePermission

With the Simple API, Amazon SQS writes the policy in the required language for you based on the
information you include in the AddPermission operation. However, the policy that Amazon SQS generates
is limited in scope.You can grant permissions to principals, but you can't specify restrictions.

Advanced API for Shared Queues
With the advanced API, you write the policy yourself directly in the access policy language and upload
the policy with the SetQueueAttributes operation. The advanced API allows you to deny access or to
apply finer access restrictions (for example, based on time or based on IP address).

If you choose to write your own policies, you need to understand how policies are structured. For complete
reference information about policies, see Using The Access Policy Language (p. 77). For examples of
policies, see Amazon SQS Policy Examples (p. 91).

Understanding Permissions
A permission is the type of access you give to a principal (the user receiving the permission).You give
each permission a label that identifies that permission. If you want to delete that permission in the future,
you use that label to identify the permission. If you want to see what permissions are on a queue, use
the GetQueueAttributes operation. Amazon SQS returns the entire policy (containing all the permissions).

Amazon SQS supports the permission types shown in the following table.

DescriptionPermission

This permission type grants the following actions to a principal on a shared
queue: receive messages, send messages, delete messages, change a
message's visibility, get a queue's attributes.

*

This grants permission to receive messages in the queue.ReceiveMessage

API Version 2012-11-05
70

Amazon Simple Queue Service Developer Guide
Shared Queues

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

DescriptionPermission

This grants permission to send messages to the queue.SendMessageBatch
inherits permissions associated with SendMessage.

SendMessage

This grants permission to delete messages from the queue.DeleteMessage-
Batch inherits permissions associated with DeleteMessage.

DeleteMessage

This grants permission to extend or terminate the read lock timeout of a
specified message.ChangeMessageVisibilityBatch inherits permissions
associated with ChangeMessageVisibility. For more information about
visibility timeout, see Visibility Timeout (p. 6). For more information about
this permission type, see the ChangeMessageVisibility operation.

ChangeMessageVisib-
ility

This grants permission to receive all of the queue attributes except the policy,
which can only be accessed by the queue's owner. For more information,
see the GetQueueAttributes operation..

GetQueueAttributes

Note
Setting permissions for SendMessage, DeleteMessage, or ChangeMessageVisibility also
sets permissions for the corresponding batch versions of those actions: SendMessageBatch,
DeleteMessageBatch, and ChangeMessageVisibilityBatch. Setting permissions explicitly
on SendMessageBatch, DeleteMessageBatch, and ChangeMessageVisibilityBatch is
not allowed.

Permissions for each of the different permission types are considered separate permissions by Amazon
SQS, even though * includes the access provided by the other permission types. For example, it is
possible to grant both * and SendMessage permissions to a user, even though a * includes the access
provided by SendMessage.

This concept applies when you remove a permission. If a principal has only a * permission, requesting
to remove a SendMessage permission does not leave the principal with an "everything but" permission.
Instead, the request does nothing, because the principal did not previously possess an explicit
SendMessage permission.

If you want to remove * and leave the principal with just the ReceiveMessage permission, first add the
ReceiveMessage permission, then remove the * permission.

Tip
You give each permission a label that identifies that permission. If you want to delete that
permission in the future, you use that label to identify the permission.

Note
If you want to see what permissions are on a queue, use the GetQueueAttributes operation.The
entire policy (containing all the permissions) is returned.

Granting Anonymous Access to a Queue
You can allow shared queue access to anonymous users. Such access requires no signature or Access
Key ID.

To allow anonymous access you must write your own policy, setting the Principal to *. For information
about writing your own policies, see Using The Access Policy Language (p. 77).

Caution
Keep in mind that the queue owner is responsible for all costs related to the queue. Therefore
you probably want to limit anonymous access in some other way (by time or IP address, for
example).

API Version 2012-11-05
71

Amazon Simple Queue Service Developer Guide
Granting Anonymous Access to a Queue

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Programming Languages
AWS provides libraries, sample code, tutorials, and other resources for software developers who prefer
to build applications using language-specific APIs instead of Amazon SQS's Query API. These libraries
provide basic functions (not included in Amazon SQS's Query API), such as request authentication,
request retries, and error handling so you can get started more easily. Libraries and resources are available
for the following languages:

• Java

• PHP

• Python

• Ruby

• Windows and .NET

For libraries and sample code in all languages, see Sample Code & Libraries.

For mobile application development, see:

• AWS SDK for Android

• AWS SDK for iOS

API Version 2012-11-05
72

Amazon Simple Queue Service Developer Guide
Programming Languages

http://aws.amazon.com/java
http://aws.amazon.com/php
http://aws.amazon.com/python
http://aws.amazon.com/ruby
http://aws.amazon.com/net
http://aws.amazon.com/code
http://aws.amazon.com/mobile/
http://aws.amazon.com/mobile/

Using Amazon SQS Dead Letter
Queues

Amazon SQS now provides support for dead letter queues. A dead letter queue is a queue that other
(source) queues can target to send messages that for some reason could not be successfully processed.
A primary benefit of using a dead letter queue is the ability to sideline and isolate the unsuccessfully
processed messages.You can then analyze any messages sent to the dead letter queue to try and
determine why they were not successfully processed.

To specify a dead letter queue, you can use the AWS Management Console or the query API. This must
be done for each (source) queue that will send messages to a dead letter queue.You can have multiple
(source) queues target a single dead letter queue.

Important
You must use the same AWS account to create the queue which will be used as a dead letter
queue and the other (source) queues that will send messages to the dead letter queue. Dead
letter queues also must reside in the same region as the other queues that use the dead letter
queue. For example, if you created a queue in the US East (N. Virginia) region and you want to
use a dead letter queue with that queue, then both queues must be in the US East (N. Virginia)
region.

Topics

• Setting up Dead Letter Queue with the AWS Management Console (p. 73)

• Using Dead Letter Queue with the Amazon SQS API (p. 75)

Setting up Dead Letter Queue with the AWS
Management Console

You can use the AWS Management Console to configure dead letter queue functionality so that messages,
which for some reason could not be successfully processed, are sent to a specified dead letter queue.
This is accomplished by first selecting the source queue's Use Redrive Policy check box for existing
and newly created queues.

API Version 2012-11-05
73

Amazon Simple Queue Service Developer Guide
Setting up Dead Letter Queue with the AWS Management

Console

Next, enter the name of the queue to which messages will be sent from the source queues.

You then set the Maximum Receives to a value between 1 and 1000.

The following figure shows the MySourceQueue queue, which has the Redrive Policy configured to have
messages sent to the MyDeadLetterQueue queue.

API Version 2012-11-05
74

Amazon Simple Queue Service Developer Guide
Setting up Dead Letter Queue with the AWS Management

Console

Using Dead Letter Queue with the Amazon SQS
API

To specify a dead letter queue with the query API, you call either the CreateQueue or
SetQueueAttributes actions and set the maxReceiveCount and deadLetterTargetArn parameters
for the RedrivePolicy queue attribute.

You can set maxReceiveCount to a value between 1 and 1000. The deadLetterTargetArn value is
the Amazon Resource Name (ARN) of the queue that will receive the dead letter messages.

The following Java example shows how to use SetQueueAttributes to set the maxReceiveCount
and deadLetterTargetArn parameters for the RedrivePolicy queue attribute.This example is based
on the SimpleQueueServiceSample.java sample from the AWS SDK for Java.

First, a string is set that contains JSON formatted parameters and values for the RedrivePolicy queue
attribute:

String redrivePolicy = "{\"maxReceiveCount\":\"5\", \"deadLetterTarget
Arn\":\"arn:aws:sqs:us-east-1:123456789012:MyDeadLetterQueue\"}";

Next, SetQueueAttributesRequest is used to set the RedrivePolicy queue attribute:

SetQueueAttributesRequest queueAttributes = new SetQueueAttributesRequest();
Map<String,String> attributes = new HashMap<String,String>();
attributes.put("RedrivePolicy", redrivePolicy);
queueAttributes.setAttributes(attributes);
queueAttributes.setQueueUrl(myQueueUrl);
sqs.setQueueAttributes(queueAttributes);

An API query request for this example should look similar to the following:

http://sqs.us-east-1.amazonaws.com/123456789012/MySourceQueue
?Action=SetQueueAttributes
&Attribute.1.Value=%7B%22maxReceiveCount%22%3A%225%22%2C+%22deadLetterTarget
Arn%22%3A%22arn%3Aaws%3Asqs%3Aus-east-1%3A123456789012%3AMyDeadLetterQueue%22%7D
&Version=2012-11-05
&Attribute.1.Name=RedrivePolicy

The API query response should look similar to the following:

<SetQueueAttributesResponse xmlns="http://queue.amazonaws.com/doc/2012-11-05/">

 <ResponseMetadata>
 <RequestId>40945605-b328-53b5-aed4-1cc24a7240e8</RequestId>
 </ResponseMetadata>

API Version 2012-11-05
75

Amazon Simple Queue Service Developer Guide
Using Dead Letter Queue with the Amazon SQS API

</SetQueueAttributesResponse>

API Version 2012-11-05
76

Amazon Simple Queue Service Developer Guide
Using Dead Letter Queue with the Amazon SQS API

Using The Access Policy Language

Topics

• Overview (p. 78)

• Amazon SQS Policy Examples (p. 91)

• Special Information for Amazon SQS Policies (p. 95)

This section is for Amazon SQS users who want to write their own access control policies.You don't need
to write your own policies if you want to allow access based only on AWS account ID and basic permissions
(e.g., SendMessage, ReceiveMessage). In that case, you can just use the Amazon SQS AddPermission
action. If you want to explicitly deny access or allow it based on finer conditions (such as the time the
request comes in or the IP address of the requester), you need to write your own policies and upload
them to the AWS system using the Amazon SQS SetQueueAttributes action.

Note
To write your own policies, you must be familiar with JSON. For more information, go to
http://json.org.

The main portion of this section includes basic concepts you need to understand, how to write a policy,
and the logic AWS uses to evaluate policies and decide whether to give the requester access to the
resource. Although most of the information in this section is service-agnostic, there are some SQS-specific
details you need to know. For more information, see Special Information for Amazon SQS Policies (p. 95).

API Version 2012-11-05
77

Amazon Simple Queue Service Developer Guide

http://json.org/

Overview
Topics

• When to Use Access Control (p. 78)

• Key Concepts (p. 78)

• Architectural Overview (p. 81)

• Using the Access Policy Language (p. 83)

• Evaluation Logic (p. 84)

• Basic Use Cases for Access Control (p. 88)

This section describes basic concepts you need to understand to use the access policy language to write
policies. It also describes the general process for how access control works with the access policy
language, and how policies are evaluated.

When to Use Access Control
You have a great deal of flexibility in how you grant or deny access to a resource. However, the typical
use cases are fairly simple:

• You want to grant another AWS account a particular type of access to your queue (e.g., SendMessage).
For more information, see Use Case 1 (p. 88).

• You want to grant another AWS account access to your queue for a specific period of time. For more
information, see Use Case 2 (p. 88).

• You want to grant another AWS account access to your queue only if the requests come from your
Amazon EC2 instances. For more information, see Use Case 3 (p. 89).

• You want to deny another AWS account access to your queue. For more information, see Use Case
4 (p. 90).

Key Concepts
The following sections describe the concepts you need to understand to use the access policy language.
They're presented in a logical order, with the first terms you need to know at the top of the list.

Permission
A permission is the concept of allowing or disallowing some kind of access to a particular resource.
Permissions essentially follow this form: "A is/isn't allowed to do B to C where D applies." For example,
Jane (A) has permission to receive messages (B) from John's Amazon SQS queue (C), as long as she
asks to receive them before midnight on May 30, 2009 (D). Whenever Jane sends a request to Amazon
SQS to use John's queue, the service checks to see if she has permission and if the request satisfies the
conditions John set forth in the permission.

Statement
A statement is the formal description of a single permission, written in the access policy language.You
always write a statement as part of a broader container document known as a policy (see the next concept).

Policy
A policy is a document (written in the access policy language) that acts as a container for one or more
statements. For example, a policy could have two statements in it: one that states that Jane can use

API Version 2012-11-05
78

Amazon Simple Queue Service Developer Guide
Overview

John's queue, and another that states that Bob cannot use John's queue. As shown in the following figure,
an equivalent scenario would be to have two policies, one containing the statement that Jane can use
John's queue, and another containing the statement that Bob cannot use John's queue.

The AWS service implementing access control (e.g., Amazon SQS) uses the information in the statements
(whether they're contained in a single policy or multiple) to determine if someone requesting access to a
resource should be granted that access. We often use the term policy interchangeably with statement,
as they generally represent the same concept (an entity that represents a permission).

Issuer
The issuer is the person who writes a policy to grant permissions for a resource.The issuer (by definition)
is always the resource owner. AWS does not permit AWS service users to create policies for resources
they don't own. If John is the resource owner, AWS authenticates John's identity when he submits the
policy he's written to grant permissions for that resource.

Principal
The principal is the person or persons who receive the permission in the policy. The principal is A in the
statement "A has permission to do B to C where D applies." In a policy, you can set the principal to
"anyone" (i.e., you can specify a wildcard to represent all people).You might do this, for example, if you
don't want to restrict access based on the actual identity of the requester, but instead on some other
identifying characteristic such as the requester's IP address.

Action
The action is the activity the principal has permission to perform. The action is B in the statement "A has
permission to do B to C where D applies." Typically, the action is just the operation in the request to AWS.
For example, Jane sends a request to Amazon SQS with Action=ReceiveMessage.You can specify
one or multiple actions in a policy.

Resource
The resource is the object the principal is requesting access to. The resource is C in the statement "A
has permission to do B to C where D applies."

API Version 2012-11-05
79

Amazon Simple Queue Service Developer Guide
Key Concepts

Conditions and Keys
The conditions are any restrictions or details about the permission. The condition is D in the statement
"A has permission to do B to C where D applies." The part of the policy that specifies the conditions can
be the most detailed and complex of all the parts. Typical conditions are related to:

• Date and time (e.g., the request must arrive before a specific day)

• IP address (e.g., the requester's IP address must be part of a particular CIDR range)

A key is the specific characteristic that is the basis for access restriction. For example, the date and time
of request.

You use both conditions and keys together to express the restriction. The easiest way to understand how
you actually implement a restriction is with an example: If you want to restrict access to before May 30,
2010, you use the condition called DateLessThan.You use the key called AWS:CurrentTime and set
it to the value 2010-05-30T00:00:00Z. AWS defines the conditions and keys you can use. The AWS
service itself (e.g., Amazon SQS) might also define service-specific keys. For more information about the
available keys, see Amazon SQS Keys (p. 101).

Requester
The requester is the person who sends a request to an AWS service and asks for access to a particular
resource. The requester sends a request to AWS that essentially says: "Will you allow me to do B to C
where D applies?"

Evaluation
Evaluation is the process the AWS service uses to determine if an incoming request should be denied
or allowed based on the applicable policies. For information about the evaluation logic, see Evaluation
Logic (p. 84).

Effect
The effect is the result that you want a policy statement to return at evaluation time.You specify this value
when you write the statements in a policy, and the possible values are deny and allow.

For example, you could write a policy that has a statement that denies all requests that come from
Antarctica (effect=deny given that the request uses an IP address allocated to Antarctica). Alternately,
you could write a policy that has a statement that allows all requests that don't come from Antarctica
(effect=allow, given that the request doesn't come from Antarctica). Although the two statements sound
like they do the same thing, in the access policy language logic, they are different. For more information,
see Evaluation Logic (p. 84).

Although there are only two possible values you can specify for the effect (allow or deny), there can be
three different results at policy evaluation time: default deny, allow, or explicit deny. For more information,
see the following concepts and Evaluation Logic (p. 84).

Default Deny
A default deny is the default result from a policy in the absence of an allow or explicit deny.

API Version 2012-11-05
80

Amazon Simple Queue Service Developer Guide
Key Concepts

Allow
An allow results from a statement that has effect=allow, assuming any stated conditions are met. Example:
Allow requests if they are received before 1:00 p.m. on April 30, 2010. An allow overrides all default
denies, but never an explicit deny.

Explicit Deny
An explicit deny results from a statement that has effect=deny, assuming any stated conditions are met.
Example: Deny all requests if they are from Antarctica. Any request that comes from Antarctica will always
be denied no matter what any other policies might allow.

Architectural Overview
The following figure and table describe the main components that interact to provide access control for
your resources.

You, the resource owner.1

Your resources (contained within the AWS service; e.g., Amazon SQS queues).2

Your policies.

Typically you have one policy per resource, although you could have multiple. The AWS service
itself provides an API you use to upload and manage your policies.

3

Requesters and their incoming requests to the AWS service.4

The access policy language evaluation code.

This is the set of code within the AWS service that evaluates incoming requests against the ap-
plicable policies and determines whether the requester is allowed access to the resource. For
information about how the service makes the decision, see Evaluation Logic (p. 84).

5

API Version 2012-11-05
81

Amazon Simple Queue Service Developer Guide
Architectural Overview

For the typical process of how the components work together, see Using the Access Policy
Language (p. 83).

API Version 2012-11-05
82

Amazon Simple Queue Service Developer Guide
Architectural Overview

Using the Access Policy Language
The following figure and table describe the general process of how access control works with the access
policy language.

Process for Using Access Control with the Access Policy Language

You write a policy for your resource.

For example, you write a policy to specify permissions for your Amazon SQS queues.

1

You upload your policy to AWS.

The AWS service itself provides an API you use to upload your policies. For example, you use
the Amazon SQS SetQueueAttributes action to upload a policy for a particular Amazon SQS
queue.

2

Someone sends a request to use your resource.

For example, a user sends a request to Amazon SQS to use one of your queues.

3

The AWS service determines which policies are applicable to the request.

For example, Amazon SQS looks at all the available Amazon SQS policies and determines which
ones are applicable (based on what the resource is, who the requester is, etc.).

4

The AWS service evaluates the policies.

For example, Amazon SQS evaluates the policies and determines if the requester is allowed to
use your queue or not. For information about the decision logic, see Evaluation Logic (p. 84).

5

The AWS service either denies the request or continues to process it.

For example, based on the policy evaluation result, the service either returns an "Access denied"
error to the requester or continues to process the request.

6

Related Topics

• Architectural Overview (p. 81)

API Version 2012-11-05
83

Amazon Simple Queue Service Developer Guide
Using the Access Policy Language

Evaluation Logic
The goal at evaluation time is to decide whether a given request from someone other than you (the
resource owner) should be allowed or denied. The evaluation logic follows several basic rules:

• By default, all requests to use your resource coming from anyone but you are denied

• An allow overrides any default denies

• An explicit deny overrides any allows

• The order in which the policies are evaluated is not important

The following flow chart and discussion describe in more detail how the decision is made.

API Version 2012-11-05
84

Amazon Simple Queue Service Developer Guide
Evaluation Logic

The decision starts with a default deny.1

The enforcement code then evaluates all the policies that are applicable to the request (based
on the resource, principal, action, and conditions).

The order in which the enforcement code evaluates the policies is not important.

2

API Version 2012-11-05
85

Amazon Simple Queue Service Developer Guide
Evaluation Logic

In all those policies, the enforcement code looks for an explicit deny instruction that would apply
to the request.

If it finds even one, the enforcement code returns a decision of "deny" and the process is finished
(this is an explicit deny; for more information, see Explicit Deny (p. 81)).

3

If no explicit deny is found, the enforcement code looks for any "allow" instructions that would
apply to the request.

If it finds even one, the enforcement code returns a decision of "allow" and the process is done
(the service continues to process the request).

4

If no allow is found, then the final decision is "deny" (because there was no explicit deny or allow,
this is considered a default deny (for more information, see Default Deny (p. 80)).

5

The Interplay of Explicit and Default Denials
A policy results in a default deny if it doesn't directly apply to the request. For example, if a user requests
to use Amazon SQS, but the only policy that applies to the user states that the user can use Amazon
SimpleDB, then that policy results in a default deny.

A policy also results in a default deny if a condition in a statement isn't met. If all conditions in the statement
are met, then the policy results in either an allow or an explicit deny, based on the value of the Effect
element in the policy. Policies don't specify what to do if a condition isn't met, and so the default result in
that case is a default deny.

For example, let's say you want to prevent requests coming in from Antarctica.You write a policy (called
Policy A1) that allows a request only if it doesn't come from Antarctica. The following diagram illustrates
the policy.

If someone sends a request from the U.S., the condition is met (the request is not from Antarctica).
Therefore, the request is allowed. But, if someone sends a request from Antarctica, the condition isn't
met, and the policy's result is therefore a default deny.

You could turn the result into an explicit deny by rewriting the policy (named Policy A2) as in the following
diagram. Here, the policy explicitly denies a request if it comes from Antarctica.

API Version 2012-11-05
86

Amazon Simple Queue Service Developer Guide
Evaluation Logic

If someone sends a request from Antarctica, the condition is met, and the policy's result is therefore an
explicit deny.

The distinction between a default deny and an explicit deny is important because a default deny can be
overridden by an allow, but an explicit deny can't. For example, let's say there's another policy that allows
requests if they arrive on June 1, 2010. How does this policy affect the overall outcome when coupled
with the policy restricting access from Antarctica? We'll compare the overall outcome when coupling the
date-based policy (we'll call Policy B) with the preceding policies A1 and A2. Scenario 1 couples Policy
A1 with Policy B, and Scenario 2 couples Policy A2 with Policy B. The following figure and discussion
show the results when a request comes in from Antarctica on June 1, 2010.

API Version 2012-11-05
87

Amazon Simple Queue Service Developer Guide
Evaluation Logic

In Scenario 1, Policy A1 returns a default deny, as described earlier in this section. Policy B returns an
allow because the policy (by definition) allows requests that come in on June 1, 2010. The allow from
Policy B overrides the default deny from Policy A1, and the request is therefore allowed.

In Scenario 2, Policy B2 returns an explicit deny, as described earlier in this section. Again, Policy B
returns an allow. The explicit deny from Policy A2 overrides the allow from Policy B, and the request is
therefore denied.

Basic Use Cases for Access Control
This section gives a few examples of typical use cases for access control.

Use Case 1
Let's say you have a set of queues in the Amazon SQS system. In the simplest case, you want to allow
one or more AWS accounts a particular type of access to a queue (e.g., SendMessage, ReceiveMessage).

You can do this by simply using the Amazon SQS API action AddPermission. It takes a few input
parameters and automatically creates a policy in the Amazon SQS system for that queue. For this use
case, you don't need to read this appendix or learn how to write a policy yourself, because Amazon SQS
can automatically create the policy for you.

The following example shows a policy that gives AWS account ID 1111-2222-3333 permission to send
and receive from a queue you own named queue2. In this example, your AWS account ID is
4444-5555-6666.

{
 "Version":"2012-10-17",
 "Id":"UseCase1",
 "Statement" : [
 {
 "Sid":"1",
 "Effect":"Allow",
 "Principal" : {
 "AWS": "111122223333"
 },
 "Action":["sqs:SendMessage","sqs:ReceiveMessage"],
 "Resource": "arn:aws:sqs:us-east-1:444455556666:queue2",
 }
]
}

Use Case 2
In this use case, you want to allow one or more AWS accounts access to your queues only for a specific
time period.

You need to know how to write your own policy for the queue because the Amazon SQS AddPermission
action doesn't let you specify a time restriction when granting someone access to your queue. In this
case, you would write your own policy and then upload it to the AWS system with the
SetQueueAttributes action. Effectively the action sets your policy as an attribute of the queue.

The following example is the same as in use case 1, except it also includes a condition that restricts
access to before June 30, 2009, at noon (UTC).

API Version 2012-11-05
88

Amazon Simple Queue Service Developer Guide
Basic Use Cases for Access Control

{
 "Version":"2012-10-17",
 "Id":"UseCase2",
 "Statement" : [
 {
 "Sid":"1",
 "Effect":"Allow",
 "Principal" : {
 "AWS": "111122223333"
 },
 "Action":["sqs:SendMessage","sqs:ReceiveMessage"],
 "Resource": "arn:aws:sqs:us-east-1:444455556666:queue2",
 "Condition" : {
 "DateLessThan" : {
 "AWS:CurrentTime":"2009-06-30T12:00Z"
 }
 }
 }
]
}

Use Case 3
In this use case, you want to allow access to your queues only if the requests come from your Amazon
EC2 instances.

Again, you need to know how to write your own policy because the Amazon SQS AddPermission action
doesn't let you specify an IP address restriction when granting access to your queue.

The following example builds on the example in use case 2, and also includes a condition that restricts
access to the IP address range 10.52.176.0/24. So in this example, a request from AWS account
1234-5678-9012 to send or receive messages from queue2 would be allowed only if it came in before
noon on June 30, 2009, and it came from the 10.52.176.0/24 address range.

{
 "Version":"2012-10-17",
 "Id":"UseCase3",
 "Statement" : [
 {
 "Sid":"1",
 "Effect":"Allow",
 "Principal" : {
 "AWS": "111122223333"
 },
 "Action":["sqs:SendMessage","sqs:ReceiveMessage"],
 "Resource": "arn:aws:sqs:us-east-1:444455556666:queue2",
 "Condition" : {
 "DateLessThan" : {
 "AWS:CurrentTime":"2009-06-30T12:00Z"
 },
 "IpAddress" : {
 "AWS:SourceIp":"10.52.176.0/24"
 }
 }
 }

API Version 2012-11-05
89

Amazon Simple Queue Service Developer Guide
Basic Use Cases for Access Control

]
}

Use Case 4
In this use case, you want to specifically deny a certain AWS account access to your queues.

Again, you need to know how to write your own policy because the Amazon SQS AddPermission action
doesn't let you deny access to a queue; it only lets you grant access.

The following example is the same as in the original use case (#1), except it denies access to the specified
AWS account.

{
 "Version":"2012-10-17",
 "Id":"UseCase4",
 "Statement" : [
 {
 "Sid":"1",
 "Effect":"Deny",
 "Principal" : {
 "AWS": "111122223333"
 },
 "Action":["sqs:SendMessage","sqs:ReceiveMessage"],
 "Resource": "arn:aws:sqs:us-east-1:444455556666:queue2",
 }
]
}

From these use cases, you can see that if you want to restrict access based on special conditions or
deny someone access entirely, you need to read this appendix and learn how to write your own policies.
You can also see that the policies themselves are not that complex and the access policy language is
straightforward.

API Version 2012-11-05
90

Amazon Simple Queue Service Developer Guide
Basic Use Cases for Access Control

Amazon SQS Policy Examples
This section shows example policies for common Amazon SQS use cases.

The following example policy gives the developer with AWS account number 111122223333 the
SendMessage permission for the queue named 444455556666/queue1 in the US East (N.Virginia) region.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement":
 {
 "Sid":"Queue1_SendMessage",
 "Effect": "Allow",
 "Principal": {
 "AWS": "111122223333"
 },
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:us-east-1:444455556666:queue1"
 }
}

The following example policy gives the developer with AWS account number 111122223333 both the
SendMessage and ReceiveMessage permission for the queue named 444455556666/queue1.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement":
 {
 "Sid":"Queue1_Send_Receive",
 "Effect": "Allow",
 "Principal": {
 "AWS": "111122223333"
 },
 "Action": ["sqs:SendMessage","sqs:ReceiveMessage"],
 "Resource": "arn:aws:sqs:*:444455556666:queue1"
 }
}

The following example policy gives two different developers (with AWS account numbers 111122223333
and 444455556666) permission to use all actions that Amazon SQS allows shared access for the queue
named 123456789012/queue1 in the US East (N. Virginia) region.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement":
 {
 "Sid":"Queue1_AllActions",
 "Effect": "Allow",
 "Principal": {
 "AWS": ["111122223333","444455556666"]
 },
 "Action": "sqs:*",

API Version 2012-11-05
91

Amazon Simple Queue Service Developer Guide
Amazon SQS Policy Examples

 "Resource": "arn:aws:sqs:us-east-1:123456789012:queue1"
 }
}

The following example policy gives all users ReceiveMessage permission for the queue named
111122223333/queue1.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement":
 {
 "Sid":"Queue1_AnonymousAccess_ReceiveMessage",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "sqs:ReceiveMessage",
 "Resource": "arn:aws:sqs:*:111122223333:queue1"
 }
}

The following example policy gives all users ReceiveMessage permission for the queue named
111122223333/queue1, but only between noon and 3:00 p.m. on January 31, 2009.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement":
 {
 "Sid":"Queue1_AnonymousAccess_ReceiveMessage_TimeLimit",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "sqs:ReceiveMessage",
 "Resource": "arn:aws:sqs:*:111122223333:queue1",
 "Condition" : {
 "DateGreaterThan" : {
 "aws:CurrentTime":"2009-01-31T12:00Z"
 },
 "DateLessThan" : {
 "aws:CurrentTime":"2009-01-31T15:00Z"
 }
 }
 }
}

The following example policy gives all users permission to use all possible Amazon SQS actions that can
be shared for the queue named 111122223333/queue1, but only if the request comes from the
192.168.143.0/24 range.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement":
 {
 "Sid":"Queue1_AnonymousAccess_AllActions_WhitelistIP",
 "Effect": "Allow",

API Version 2012-11-05
92

Amazon Simple Queue Service Developer Guide
Amazon SQS Policy Examples

 "Principal": "*",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:*:111122223333:queue1",
 "Condition" : {
 "IpAddress" : {
 "aws:SourceIp":"192.168.143.0/24"
 }
 }
 }
}

The following example policy has two statements:

• One that gives all users in the 192.168.143.0/24 range (except for 192.168.143.188) permission to use
the SendMessage action for the queue named 111122223333/queue1.

• One that blacklists all users in the 10.1.2.0/24 range from using the queue.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [
 {
 "Sid":"Queue1_AnonymousAccess_SendMessage_IPLimit",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:*:111122223333:queue1",
 "Condition" : {
 "IpAddress" : {
 "aws:SourceIp":"192.168.143.0/24"
 },
 "NotIpAddress" : {
 "aws:SourceIp":"192.168.143.188/32"
 }
 }
 },
 {
 "Sid":"Queue1_AnonymousAccess_AllActions_IPLimit_Deny",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:*:111122223333:queue1",
 "Condition" : {
 "IpAddress" : {
 "aws:SourceIp":"10.1.2.0/24"
 }
 }
 }
]
 }

The following example policy enables a connection between the Amazon Simple Notification Service
topic specified by the Amazon Resource Name (ARN)
arn:aws:sns:us-east-1:111122223333:test-topic and the queue named
arn:aws:sqs:us-east-1:111122223333:test-topic-queue.

API Version 2012-11-05
93

Amazon Simple Queue Service Developer Guide
Amazon SQS Policy Examples

{
 "Version": "2012-10-17",
 "Id": "SNStoSQS",
 "Statement":
 {
 "Sid":"rule1",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:us-east-1:111122223333:test-topic-queue",
 "Condition" : {
 "StringEquals" : {
 "aws:SourceArn":"arn:aws:sns:us-east-1:111122223333:test-topic"
 }
 }
 }
}

API Version 2012-11-05
94

Amazon Simple Queue Service Developer Guide
Amazon SQS Policy Examples

Special Information for Amazon SQS Policies
The following list gives information specific to the Amazon SQS implementation of access control.

• Amazon SQS allows you to share only certain types of permissions (for more information, see
Understanding Permissions (p. 70))

• Each policy must cover only a single queue (when writing a policy, don't include statements that cover
different queues)

• Each policy must have a unique policy ID (Id)

• Each statement in a policy must have a unique statement ID (sid)

• Amazon SQS does not implement any special keys to use when you write conditions; the only keys
available are the general AWS-wide keys.

The following table lists the maximum limits for policy information.

Maximum LimitName

8192Bytes

20Statements

50Principals

10Conditions

API Version 2012-11-05
95

Amazon Simple Queue Service Developer Guide
Special Information for Amazon SQS Policies

Access Control Using AWS Identity
and Access Management (IAM)

Topics

• IAM-Related Features of Amazon SQS Policies (p. 96)

• IAM and Amazon SQS Policies Together (p. 98)

• Amazon SQS ARNs (p. 100)

• Amazon SQS Actions (p. 101)

• Amazon SQS Keys (p. 101)

• Example IAM Policies for Amazon SQS (p. 102)

• Using Temporary Security Credentials (p. 103)

Amazon SQS has its own resource-based permissions system that uses policies written in the same
language used for AWS Identity and Access Management (IAM) policies.This means that you can achieve
the same things with Amazon SQS policies that you can with IAM policies, such as using variables in
IAM policies. For more information, see Policy Variables in the Using IAM guide.

The main difference between using Amazon SQS policies versus IAM policies is that you can grant
another AWS Account permission to your queues with an Amazon SQS policy, and you can't do that with
an IAM policy.

Note
When you grant other AWS accounts access to your AWS resources, be aware that all AWS
accounts can delegate their permissions to users under their accounts. This is known as
cross-account access. Cross-account access enables you to share access to your AWS resources
without having to manage additional users. For information about using cross-account access,
go to Enabling Cross-Account Access in IAM User Guide.

This section describes how the Amazon SQS policy system works with IAM.

IAM-Related Features of Amazon SQS Policies
You can use an Amazon SQS policy with a queue to specify which AWS Accounts have access to the
queue.You can specify the type of access and conditions (e.g., permission to use SendMessage,
ReceiveMessage, if the request is before December 31, 2010). The specific actions you can grant

API Version 2012-11-05
96

Amazon Simple Queue Service Developer Guide
IAM-Related Features of Amazon SQS Policies

http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html

permission for are a subset of the overall list of Amazon SQS actions. When you write an Amazon SQS
policy and specify * to mean "all the Amazon SQS actions", that means all actions in that subset.

The following diagram illustrates the concept of one of these basic Amazon SQS policies that covers the
subset of actions.The policy is for queue_xyz, and it gives AWS Account 1 and AWS Account 2 permission
to use any of the allowed actions with the queue. Notice that the resource in the policy is specified as
123456789012/queue_xyz (where 123456789012 is the AWS Account ID of the account that owns the
queue).

With the introduction of IAM and the concepts of Users and Amazon Resource Names (ARNs), a few
things have changed about SQS policies. The following diagram and table describe the changes.

In addition to specifying which AWS Accounts have access to the queue, you can specify which
Users in your own AWS Account have access to the queue.

The Users can't be in another AWS Account.

1

The subset of actions included in "*" has expanded (for a list of allowed actions, see Amazon
SQS Actions (p. 101)).

2

API Version 2012-11-05
97

Amazon Simple Queue Service Developer Guide
IAM-Related Features of Amazon SQS Policies

You can specify the resource using the Amazon Resource Name (ARN), which is how you must
specify resources in IAM policies. For information about the ARN format for Amazon SQS queues,
see Amazon SQS ARNs (p. 100).

You can still use the original format instead (<account_ID>/<queue_name>).

3

So for example, according to the Amazon SQS policy shown in the preceding figure, anyone possessing
the security credentials for AWS Account 1 or AWS Account 2 could access queue_xyz. Also, Users Bob
and Susan in your own AWS Account (with ID 123456789012) can access the queue.

Before the introduction of IAM, Amazon SQS automatically gave the creator of a queue full control over
the queue (e.g., access to all possible Amazon SQS actions with that queue). This is no longer true,
unless the creator is using the AWS security credentials. Any User who has permission to create a queue
must also have permission to use other Amazon SQS actions in order to do anything with the queues
they create.

IAM and Amazon SQS Policies Together
There are two ways you can give your Users permissions for your Amazon SQS resources: through the
Amazon SQS policy system or the IAM policy system.You can use one or the other, or both. For the
most part, you can achieve the same results with either. For example, the following diagram shows an
IAM policy and an Amazon SQS policy that are equivalent. The IAM policy allows the Amazon SQS
ReceiveMessage and SendMessage actions for the queue called queue_xyz in your AWS Account, and
it's attached to the Users Bob and Susan (which means Bob and Susan have the permissions stated in
the policy). The Amazon SQS policy also gives Bob and Susan permission to access ReceiveMessage
and SendMessage for the same queue.

Note
The preceding example shows simple policies with no conditions.You could specify a particular
condition in either policy and get the same result.

There is one difference between IAM and Amazon SQS policies: the Amazon SQS policy system lets
you grant permission to other AWS Accounts, whereas IAM doesn't.

API Version 2012-11-05
98

Amazon Simple Queue Service Developer Guide
IAM and Amazon SQS Policies Together

It's up to you how you use both of the systems together to manage your permissions, based on your
needs. The following examples show how the two policy systems work together.

1

In this example, Bob has both an IAM policy and an Amazon SQS policy that apply to him.The IAM policy
gives him permission to use ReceiveMessage on queue_xyz, whereas the Amazon SQS policy gives
him permission to use SendMessage on the same queue. The following diagram illustrates the concept.

If Bob were to send a request to receive a message from queue_xyz, the IAM policy would allow the
action. If Bob were to send a request to send a message to queue_xyz, the Amazon SQS policy would
allow the action.

2

In this example, we build on example 1 (where Bob has two policies that apply to him). Let's say that Bob
abuses his access to queue_xyz, so you want to remove his entire access to that queue. The easiest
thing to do is add a policy that denies him access to all actions on the queue. This third policy overrides
the other two, because an explicit deny always overrides an allow (for more information about policy
evaluation logic, see Evaluation Logic (p. 84)). The following diagram illustrates the concept.

API Version 2012-11-05
99

Amazon Simple Queue Service Developer Guide
IAM and Amazon SQS Policies Together

Alternatively, you could add an additional statement to the Amazon SQS policy that denies Bob any type
of access to the queue. It would have the same effect as adding a IAM policy that denies him access to
the queue.

For examples of policies that cover Amazon SQS actions and resources, see Example IAM Policies for
Amazon SQS (p. 102). For more information about writing Amazon SQS policies, go to the Amazon Simple
Queue Service Developer Guide.

Amazon SQS ARNs
For Amazon SQS, queues are the only resource type you can specify in a policy. Following is the Amazon
Resource Name (ARN) format for queues:

arn:aws:sqs:region:account_ID:queue_name

For more information about ARNs, go to IAM ARNs in Using IAM.

Following is an ARN for a queue named my_queue in the US East (N.Virginia) region, belonging to AWS
Account 123456789012.

arn:aws:sqs:us-east-1:123456789012:my_queue

If you had a queue named my_queue in each of the different Regions that Amazon SQS supports, you
could specify the queues with the following ARN.

arn:aws:sqs:*:123456789012:my_queue

You can use * and ? wildcards in the queue name. For example, the following could refer to all the queues
Bob has created, which he has prefixed with bob_.

API Version 2012-11-05
100

Amazon Simple Queue Service Developer Guide
Amazon SQS ARNs

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_Identifiers.html#Identifiers_ARNs

arn:aws:sqs:*:123456789012:bob_*

As a convenience to you, Amazon SQS has a queue attribute called Arn whose value is the queue's
ARN.You can get the value by calling the Amazon SQS GetQueueAttributes action.

Amazon SQS Actions
All Amazon SQS actions that you specify in a policy must be prefixed with the lowercase string sqs:.
For example, sqs:CreateQueue.

Before the introduction of IAM, you could use an Amazon SQS policy with a queue to specify which AWS
Accounts have access to the queue.You could also specify the type of access (e.g., sqs:SendMessage,
sqs:ReceiveMessage, etc.). The specific actions you could grant permission for were a subset of the
overall set of Amazon SQS actions. When you wrote an Amazon SQS policy and specified * to mean "all
the Amazon SQS actions", that meant all actions in that subset. That subset originally included:

• sqs:SendMessage

• sqs:ReceiveMessage

• sqs:ChangeMessageVisibility

• sqs:DeleteMessage

• sqs:GetQueueAttributes (for all attributes except Policy)

• sqs:GetQueueUrl

With the introduction of IAM, that list of actions expanded to include the following actions:

• sqs:CreateQueue

• sqs:DeleteQueue

• sqs:ListQueues

The actions related to granting and removing permissions from a queue (sqs:AddPermission, etc.)
are reserved and so don't appear in the preceding two lists. This means that Users in the AWS Account
can't use those actions. However, the AWS Account can use those actions.

Amazon SQS Keys
Amazon SQS implements the following policy keys, but no others.

AWS-Wide Policy Keys

• aws:CurrentTime—To check for date/time conditions.

• aws:EpochTime—To check for date/time conditions using a date in epoch or UNIX time.

• aws:MultiFactorAuthAge—To check how long ago (in seconds) the MFA-validated security credentials
making the request were issued using Multi-Factor Authentication (MFA). Unlike other keys, if MFA is
not used, this key is not present.

• aws:principaltype—To check the type of principal (user, account, federated user, etc.) for the current
request.

• aws:SecureTransport—To check whether the request was sent using SSL. For services that use
only SSL, such as Amazon RDS and Amazon Route 53, the aws:SecureTransport key has no
meaning.

API Version 2012-11-05
101

Amazon Simple Queue Service Developer Guide
Amazon SQS Actions

• aws:SourceArn—To check the source of the request, using the Amazon Resource Name (ARN) of
the source. (This value is available for only some services. For more information, see Amazon Resource
Name (ARN) under "Element Descriptions" in the Amazon Simple Queue Service Developer Guide.)

• aws:SourceIp—To check the IP address of the requester. Note that if you use aws:SourceIp, and
the request comes from an Amazon EC2 instance, the public IP address of the instance is evaluated.

• aws:UserAgent—To check the client application that made the request.

• aws:userid—To check the user ID of the requester.

• aws:username—To check the user name of the requester, if available.

Note
Key names are case sensitive.

Example IAM Policies for Amazon SQS
This section shows several simple IAM policies for controlling User access to Amazon SQS.

Note
In the future, Amazon SQS might add new actions that should logically be included in one of the
following policies, based on the policy’s stated goals.

1: Allow a User to create and use his or her own queues

In this example, we create a policy for Bob that lets him access all Amazon SQS actions, but only with
queues whose names begin with the literal string bob_queue.

Note
Amazon SQS doesn't automatically grant the creator of a queue permission to subsequently
use the queue. Therefore, in our IAM policy, we must explicitly grant Bob permission to use all
the Amazon SQS actions in addition to CreateQueue.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"sqs:*",
 "Resource":"arn:aws:sqs:*:123456789012:bob_queue*"
 }
]
}

2: Allow developers to write messages to a shared test queue

In this example, we create a group for developers and attach a policy that lets the group use the Amazon
SQS SendMessage action, but only with the AWS Account's queue named CompanyTestQueue.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"sqs:SendMessage",
 "Resource":"arn:aws:sqs:*:123456789012:CompanyTestQueue"
 }
]
}

API Version 2012-11-05
102

Amazon Simple Queue Service Developer Guide
Example IAM Policies for Amazon SQS

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN

3: Allow managers to get the general size of queues

In this example, we create a group for managers and attach a policy that lets the group use the Amazon
SQS GetQueueAttributes action with all of the AWS Account's queues.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"sqs:GetQueueAttributes",
 "Resource":"*"
 }
]
}

4: Allow a partner to send messages to a particular queue

You could do this with an Amazon SQS policy or an IAM policy. Using an Amazon SQS policy might be
easier if the partner has an AWS Account. However, anyone in the partner's company who possesses
the AWS security credentials could send messages to the queue (and not just a particular User). We'll
assume you want to limit access to a particular person (or application), so you need to treat the partner
like a User within your own company, and use a IAM policy instead of an Amazon SQS policy.

In this example, we create a group called WidgetCo that represents the partner company, then create a
User for the specific person (or application) at the partner company who needs access, and then put the
User in the group.

We then attach a policy that gives the group SendMessage access on the specific queue named
WidgetPartnerQueue.

We also want to prevent the WidgetCo group from doing anything else with queues, so we add a statement
that denies permission to any Amazon SQS actions besides SendMessage on any queue besides
WidgetPartnerQueue. This is only necessary if there's a broad policy elsewhere in the system that gives
Users wide access to Amazon SQS.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"sqs:SendMessage",
 "Resource":"arn:aws:sqs:*:123456789012:WidgetPartnerQueue"
 },
 {
 "Effect":"Deny",
 "NotAction":"sqs:SendMessage",
 "NotResource":"arn:aws:sqs:*:123456789012:WidgetPartnerQueue"
 }
]
}

Using Temporary Security Credentials
In addition to creating IAM users with their own security credentials, IAM also enables you to grant
temporary security credentials to any user allowing this user to access your AWS services and resources.
You can manage users who have AWS accounts; these users are IAM users.You can also manage users

API Version 2012-11-05
103

Amazon Simple Queue Service Developer Guide
Using Temporary Security Credentials

for your system who do not have AWS accounts; these users are called federated users. Additionally,
"users" can also be applications that you create to access your AWS resources.

You can use these temporary security credentials in making requests to Amazon SQS. The API libraries
compute the necessary signature value using those credentials to authenticate your request. If you send
requests using expired credentials Amazon SQS denies the request.

First, use IAM to create temporary security credentials, which include a security token, an Access Key
ID, and a Secret Access Key. Second, prepare your string to sign with the temporary Access Key ID and
the security token. Third, use the temporary Secret Access Key instead of your own Secret Access Key
to sign your Query API request. Finally, when you submit the signed Query API request, don't forget to
use the temporary Access Key ID instead of your own Access Key ID and include the security token. For
more information about IAM support for temporary security credentials, go to Granting Temporary Access
to Your AWS Resources in Using IAM.

To call an Amazon SQS Query API action using Temporary Security Credentials

1. Request a temporary security token with AWS Identity and Access Management. For more information,
go to Creating Temporary Security Credentials to Enable Access for IAM Users in IAM User Guide.
IAM returns a security token, an Access Key ID, and a Secret Access Key.

2. Prepare your Query as you normally would, but use the temporary Access Key ID in place of your
own Access Key ID and include the security token. Sign your request using the temporary Secret
Access Key instead of your own.

3. Submit your signed query string with the temporary Access Key ID and the security token.

The following example demonstrates how to use temporary security credentials to authenticate an
Amazon SQS request.

How you structure the AUTHPARAMS depends on how you are signing your API request. For
information on AUTHPARAMS in Signature Version 4, go to Examples of Signed Signature Version
4 Requests.

http://sqs.us-east-1.amazonaws.com/
?Action=CreateQueue
&DefaultVisibilityTimeout=40
&QueueName=testQueue
&Attribute.1.Name=VisibilityTimeout
&Attribute.1.Value=40
&Version=2011-10-01
&Expires=2011-10-18T22%3A52%3A43PST
&SecurityToken=SecurityTokenValue
&AWSAccessKeyId= Access Key ID provided by AWS Security Token Service
&AUTHPARAMS

The following example uses Temporary Security Credentials to send two messages with
SendMessageBatch.

http://sqs.us-east-1.amazonaws.com/
?Action=SendMessageBatch
&SendMessageBatchRequestEntry.1.Id=test_msg_001
&SendMessageBatchRequestEntry.1.MessageBody=test%20message%20body%201
&SendMessageBatchRequestEntry.2.Id=test_msg_002
&SendMessageBatchRequestEntry.2.MessageBody=test%20message%20body%202
&SendMessageBatchRequestEntry.2.DelaySeconds=60
&Version=2011-10-01
&Expires=2011-10-18T22%3A52%3A43PST

API Version 2012-11-05
104

Amazon Simple Queue Service Developer Guide
Using Temporary Security Credentials

http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/CreatingSessionTokens.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

&SecurityToken=SecurityTokenValue
&AWSAccessKeyId=Access Key ID provided by AWS Security Token Service
&AUTHPARAMS

API Version 2012-11-05
105

Amazon Simple Queue Service Developer Guide
Using Temporary Security Credentials

Monitoring Amazon SQS with
CloudWatch

Amazon SQS and CloudWatch are integrated so you can use CloudWatch to easily collect, view, and
analyze metrics for your Amazon SQS queues. Once you have configured CloudWatch for Amazon SQS,
you can gain better insight into the performance of your Amazon SQS queues and applications. For
example, you can monitor the NumberOfEmptyReceives metric to make sure that your application isn't
spending too much of its time polling for new messages.You can also set an alarm to send you an email
notification if a specified threshold is met for an Amazon SQS metric, such as
NumberOfMessagesReceived. For a list of all the metrics that Amazon SQS sends to CloudWatch, see
Amazon SQS Metrics (p. 107).

The metrics you configure with CloudWatch for your Amazon SQS queues are automatically collected
and pushed to CloudWatch every five minutes. These metrics are gathered on all queues that meet the
CloudWatch guidelines for being active. A queue is considered active by CloudWatch for up to six hours
from the last activity (i.e., any API call) on the queue.

Note
There is no charge for the Amazon SQS metrics reported in CloudWatch; they are provided as
part of the Amazon SQS service.

Access CloudWatch Metrics for Amazon SQS
You can monitor metrics for Amazon SQS using the CloudWatch console, CloudWatch's own command
line interface (CLI), or programmatically using the CloudWatch API. The following procedures show you
how to access the metrics using these different options.

To view metrics using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Click View Metrics.

3. From the Viewing drop-down menu select SQS: Queue Metrics to show the available metrics for
each queue.

4. Click a specific metric in the MetricName column to see more detail, such as a graph of the data
collected.

API Version 2012-11-05
106

Amazon Simple Queue Service Developer Guide
Access CloudWatch Metrics for Amazon SQS

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

To access metrics from the CloudWatch CLI

• Call mon-get-stats.You can learn more about this and other metrics-related functions in the
Amazon CloudWatch Developer Guide.

To access metrics from the CloudWatch API

• Call GetMetricStatistics.You can learn more about this and other metrics-related functions in
the Amazon CloudWatch API Reference.

Set CloudWatch Alarms for Amazon SQS Metrics
CloudWatch also allows you to set alarms when a threshold is met for a metric. For example, you could
set an alarm for the metric, NumberOfEmptyReceives, so that when your specified threshold number
is met within the sampling period, then an email notification would be sent to inform you of the event.

To set alarms using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Click Alarms, and then click the Create Alarm button. This launches the Create Alarm Wizard.

3. Scroll through the Amazon SQS metrics to locate the metric you want to place an alarm on. Select
the metric to create an alarm on and click Continue.

4. Fill in the Name, Description, Threshold, and Time values for the metric, and click Continue.

5. Choose Alarm as the alarm state. If you want CloudWatch to send you an email when the alarm
state is reached, either select a preexisting Amazon SNS topic or click Create New Email Topic. If
you click Create New Email Topic, you can set the name and email addresses for a new topic. This
list will be saved and appear in the drop-down box for future alarms. Click Continue.

Note
If you use Create New Email Topic to create a new Amazon SNS topic, the email addresses
must be verified before they will receive notifications. Emails are sent only when the alarm
enters an alarm state. If this alarm state change happens before the email addresses are
verified, they will not receive a notification.

6. At this point, the Create Alarm Wizard gives you a chance to review the alarm you're about to create.
If you need to make any changes, you can use the Edit links on the right. Once you're satisfied, click
Create Alarm.

For more information about using CloudWatch and alarms, see the CloudWatch Documentation

Amazon SQS Metrics
Amazon SQS sends the following metrics to CloudWatch.

DescriptionMetric

The number of messages added to a queue.

Units: Count

Valid Statistics: Sum

NumberOfMessagesSent

API Version 2012-11-05
107

Amazon Simple Queue Service Developer Guide
Set CloudWatch Alarms for Amazon SQS Metrics

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cli-mon-get-stats.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
http://aws.amazon.com/documentation/cloudwatch

DescriptionMetric

The size of messages added to a queue.

Units: Bytes

Valid Statistics: Minimum, Maximum, Average,
and Count

SentMessageSize

The number of messages returned by calls to
the ReceiveMessage API action.

Units: Count

Valid Statistics: Sum

NumberOfMessagesReceived

The number of ReceiveMessage API calls
that did not return a message.

Units: Count

Valid Statistics: Sum

NumberOfEmptyReceives

The number of messages deleted from the
queue.

Units: Count

Valid Statistics: Sum

NumberOfMessagesDeleted

The number of messages in the queue that
are delayed and not available for reading im-
mediately. This can happen when the queue
is configured as a delay queue or when a
message has been sent with a delay paramet-
er.

Units: Count

Valid Statistics: Average

ApproximateNumberOfMessagesDelayed

The number of messages available for retriev-
al from the queue.

Units: Count

Valid Statistics: Average

ApproximateNumberOfMessagesVisible

The number of messages that are "in flight."
Messages are considered in flight if they have
been sent to a client but have not yet been
deleted or have not yet reached the end of
their visibility window.

Units: Count

Valid Statistics: Average

ApproximateNumberOfMessagesNotVisible

API Version 2012-11-05
108

Amazon Simple Queue Service Developer Guide
Amazon SQS Metrics

Logging Amazon SQS API Calls By
Using AWS CloudTrail

Amazon SQS is integrated with CloudTrail, a service that captures API calls made by or on behalf of
Amazon SQS in your AWS account and delivers the log files to an Amazon S3 bucket that you specify.
CloudTrail captures API calls made from the Amazon SQS console or from the Amazon SQS API. Using
the information collected by CloudTrail, you can determine what request was made to Amazon SQS, the
source IP address from which the request was made, who made the request, when it was made, and so
on. To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon SQS Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to Amazon SQS actions are
tracked in log files. Amazon SQS records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

The following actions are supported:

• AddPermission

• CreateQueue

• DeleteQueue

• RemovePermission

• SetQueueAttributes

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

API Version 2012-11-05
109

Amazon Simple Queue Service Developer Guide
Amazon SQS Information in CloudTrail

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications.

You can also aggregate Amazon SQS log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket.

Understanding Amazon SQS Log File Entries
CloudTrail log files contain one or more log entries where each entry is made up of multiple JSON-formatted
events. A log entry represents a single request from any source and includes information about the
requested action, any parameters, the date and time of the action, and so on. The log entries are not
guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public API
calls.

AddPermission
The following example shows a CloudTrail log entry for AddPermission:

{
 "Records": [
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-07-16T00:44:19Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "AddPermission",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
Firefox/24.0",
 "requestParameters": {
 "actions": [
 "SendMessage"
],
 "aWSAccountIds": [
 "123456789012"
],
 "label": "label",
 "queueUrl": "http://test-sqs.amazon.com/123456789012/hello1"
 },
 "responseElements": null,
 "requestID": "334ccccd-b9bb-50fa-abdb-80f274981d60",
 "eventID": "0552b000-09a3-47d6-a810-c5f9fd2534fe"
 }
]
}

API Version 2012-11-05
110

Amazon Simple Queue Service Developer Guide
Understanding Amazon SQS Log File Entries

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

CreateQueue
The following example shows a CloudTrail log entry for CreateQueue:

{
 "Records": [
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-07-16T00:42:42Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "CreateQueue",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
Firefox/24.0",
 "requestParameters": {
 "queueName": "hello1"
 },
 "responseElements": {
 "queueUrl": "http://test-sqs.amazon.com/123456789012/hello1"
 },
 "requestID": "49ebbdb7-5cd3-5323-8a00-f1889011fee9",
 "eventID": "68f4e71c-4f2f-4625-8378-130ac89660b1"
 }
]
}

DeleteQueue
The following example shows a CloudTrail log entry for DeleteQueue:

{
 "Records": [
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-07-16T00:44:47Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "DeleteQueue",
 "awsRegion": "us-east-1",

API Version 2012-11-05
111

Amazon Simple Queue Service Developer Guide
CreateQueue

 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
Firefox/24.0",
 "requestParameters": {
 "queueUrl": "http://test-sqs.amazon.com/123456789012/hello1"
 },
 "responseElements": null,
 "requestID": "e4c0cc05-4faa-51d5-aab2-803a8294388d",
 "eventID": "af1bb158-6443-4b4d-abfd-1b867280d964"
 }
]
}

RemovePermission
The following example shows a CloudTrail log entry for RemovePermission:

{
 "Records": [
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-07-16T00:44:36Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "RemovePermission",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
Firefox/24.0",
 "requestParameters": {
 "label": "label",
 "queueUrl": "http://test-sqs.amazon.com/123456789012/hello1"
 },
 "responseElements": null,
 "requestID": "48178821-9c2b-5be0-88bf-c41e5118162a",
 "eventID": "fed8a623-3fe9-4e64-9543-586d9e500159"
 }
]
}

SetQueueAttributes
The following example shows a CloudTrail log entry for SetQueueAttributes:

{
 "Records": [
 {

API Version 2012-11-05
112

Amazon Simple Queue Service Developer Guide
RemovePermission

 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-07-16T00:43:15Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "SetQueueAttributes",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
Firefox/24.0",
 "requestParameters": {
 "attributes": {
 "VisibilityTimeout": "100"
 },
 "queueUrl": "http://test-sqs.amazon.com/123456789012/hello1"
 },
 "responseElements": null,
 "requestID": "7f15d706-f3d7-5221-b9ca-9b393f349b79",
 "eventID": "8b6fb2dc-2661-49b1-b328-94317815088b"
 }
]
}

API Version 2012-11-05
113

Amazon Simple Queue Service Developer Guide
SetQueueAttributes

Appendix A: Increasing
Throughput with Horizontal Scaling
and Batching

By Marc Levy, July 2012

Amazon SQS queues can deliver very high throughput (many thousands of messages per second). The
key to achieving this throughput is to horizontally scale message producers and consumers. In addition,
you can use the batching actions in the Amazon SQS API to send, receive, or delete up to 10 messages
at a time. In conjunction with horizontal scaling, batching achieves a given throughput with fewer threads,
connections, and requests than would be required by individual message requests. Because Amazon
SQS charges by the request instead of by the message, batching can also substantially reduce costs.

This appendix discusses horizontal scaling and batching in more detail. It then walks through a simple
example that you can try out yourself. It also briefly discusses Amazon SQS throughput metrics that you
can monitor by using CloudWatch.

Horizontal Scaling
Because you access Amazon SQS through an HTTP request-response protocol, the request latency (the
time interval between initiating a request and receiving a response) limits the throughput that you can
achieve from a single thread over a single connection. For example, if the latency from an Amazon Elastic
Compute Cloud (Amazon EC2) based client to Amazon SQS in the same region averages around 20 ms,
the maximum throughput from a single thread over a single connection will average 50 operations per
second.

Horizontal scaling means increasing the number of your message producers (making SendMessage
requests) and consumers (making ReceiveMessage and DeleteMessage requests) in order to increase
your overall queue throughput.You can scale horizontally by increasing the number of threads on a client,
adding clients, or both.You should achieve essentially linear gains in queue throughput as you add more
clients. For example, if you double the number of clients, you will get twice the throughput.

API Version 2012-11-05
114

Amazon Simple Queue Service Developer Guide
Horizontal Scaling

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Important
As you scale horizontally, you need to ensure that the Amazon SQS that you are using has
enough connections or threads to support the number of concurrent message producers and
consumers that will be sending requests and receiving responses. For example, by default,
instances of the AWS SDK for Java AmazonSQSClient class maintain at most 50 connections
to Amazon SQS.To create additional concurrent producers and consumers, you’ll need to adjust
that limit. For example, in the AWS SDK for Java, you can adjust the maximum number of
allowable producer and consumer threads on an AmazonSQSClient object with this line of
code:

AmazonSQS sqsClient = new AmazonSQSClient(credentials,
 new ClientConfiguration().withMaxConnec
tions(producerCount + consumerCount));

For the SDK for Java asynchronous client AmazonSQSAsyncClient, you’ll also need to make
sure there are enough threads available. For more information, consult the documentation for
the SDK library that you are using.

Batching
The batching actions in the Amazon SQS API (SendMessageBatch and DeleteMessageBatch), which
were introduced in October 2011 (WSDL 2011-10-01), can further optimize throughput by processing up
to ten messages at a time. ReceiveMessage can process ten messages at a time, so there is no
ReceiveMessageBatch action.

The basic idea of batching is to perform more work in each round trip to the service (e.g., sending multiple
messages with a single SendMessageBatch request), and to distribute the latency of the batch operation
over the multiple messages in the batch request, as opposed to accepting the entire latency for a single
message (for example, a SendMessage request). Because each round-trip carries more work, batch
requests make more efficient use of threads and connections and so improve throughput. Amazon SQS
charges by the request, so the cost can be greatly reduced when fewer requests are processing the same
number of messages. Moreover, fewer threads and connections reduce client-side resource utilization
and can reduce client-side cost by doing the same work with smaller or fewer hosts.

Batching does introduce a bit of complication for the application. For example, the application has to
accumulate the messages before sending them and it will sometimes have to wait longer for a response,
but batching can be effective in the following circumstances:

• Your application is generating a lot of messages in a short time, so the delay is never very long.

• A message consumer fetches messages from a queue at its discretion, as opposed to typical message
producers that need to send messages in response to events they do not control.

Important
A batch request (SendMessageBatch or DeleteMessageBatch) may succeed even though
individual messages in the batch have failed. After a batch request, you should always check
for individual message failures and retry them if necessary.

API Version 2012-11-05
115

Amazon Simple Queue Service Developer Guide
Batching

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/AmazonSQSClient.html
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/AmazonSQSAsyncClient.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Example
The example presented in this section implements a simple producer-consumer pattern. The complete
example is available as a free download at https://s3.amazonaws.com/cloudformation-examples/
sqs-producer-consumer-sample.tar. The resources that are deployed by each template are described
later in this section.

The code for the samples is available on the provisioned instances in
/tmp/sqs-producer-consumer-sample/src. The command line for the configured run is in
/tmp/sqs-producer-consumer-sample/command.log.

The main thread spawns a number of producer and consumer threads that process 1 KB messages for
a specified time. The example includes producers and consumers that make single-operation requests
and others that make batch requests.

In the program, each producer thread sends messages until the main thread stops the producer thread.
The producedCount object tracks the number of messages produced by all producer threads. Error
handling is simple: if there is an error, the program exits the run() method. Requests that fail on transient
errors are, by default, retried three times by the AmazonSQSClient, so very few such errors are surfaced.
The retry count can be configured as necessary to reduce the number of exceptions that are thrown.The
run() method on the message producer is implemented as follows:

try {
 while (!stop.get()) {
 sqsClient.sendMessage(new SendMessageRequest(queueUrl, theMessage));
 producedCount.incrementAndGet();
 }
} catch (AmazonClientException e) {
 // By default AmazonSQSClient retries calls 3 times before failing,
 // so when this rare condition occurs, simply stop.
 log.error("Producer: " + e.getMessage());
 System.exit(1);
}

The batch producer is much the same. One noteworthy difference is the need to retry failed individual
batch entries:

SendMessageBatchResult batchResult = sqsClient.sendMessageBatch(batchRequest);

if (!batchResult.getFailed().isEmpty()) {
 log.warn("Producer: retrying sending " + batchResult.getFailed().size() + "
messages");
 for (int i = 0, n = batchResult.getFailed().size(); i < n; i++)
 sqsClient.sendMessage(new SendMessageRequest(queueUrl, theMessage));
}

The consumer run() method is as follows:

while (!stop.get()) {
 result = sqsClient.receiveMessage(new ReceiveMessageRequest(queueUrl));

 if (!result.getMessages().isEmpty()) {
 m = result.getMessages().get(0);
 sqsClient.deleteMessage(new DeleteMessageRequest(queueUrl,

API Version 2012-11-05
116

Amazon Simple Queue Service Developer Guide
Example

https://s3.amazonaws.com/cloudformation-examples/sqs-producer-consumer-sample.tar
https://s3.amazonaws.com/cloudformation-examples/sqs-producer-consumer-sample.tar

 m.getReceiptHandle()));

 consumedCount.incrementAndGet();
 }
}

Each consumer thread receives and deletes messages until it is stopped by the main thread. The
consumedCount object tracks the number of messages that are consumed by all consumer threads, and
the count is periodically logged. The batch consumer is similar, except that up to ten messages are
received at a time, and it uses DeleteMessageBatch instead of DeleteMessage.

Running the Example
You can use the AWS CloudFormation templates provided to run the example code in three different
configurations: single host with the single operation requests, two hosts with the single operation requests,
one host with the batch requests.

Important
The complete sample is available in a single .tar file. The resources that are deployed by each
template are described later in this section.
The code for the samples is available on the provisioned instance(s) in
/tmp/sqs-producer-consumer-sample/src. The command line for the configured run is in
/tmp/sqs-producer-consumer-sample/command.log.
The default duration (20 minutes) is set to provide three or four 5-minute CloudWatch data points
of volume metrics. The Amazon EC2 cost for each run will be the m1.large instance cost. The
Amazon SQS cost varies based on the API call rate for each sample, and that should range
between approximately 38,000 API calls / min for the batching sample and 380,000 API calls /
min for the two host single API sample. For example, a run of the single API sample on a single
host should cost approximately 1 instance hour of an m1.large (large standard on demand
instance, $0.32 as of July 2012) and 20 min x 190,000 API calls / min x $1 / 1,000,000 API calls
= $3.80 for Amazon SQS operations with the default 20 min duration (as of July 2012, check
current pricing).

If you want to deploy the AWS CloudFormation stack in a region other than the US East (N. Virginia)
region, in the Region box of the AWS CloudFormation console, click the region that you want.

To run the example

1. Click the link below that corresponds to the stack that you want to launch:

• Single Operation API, One Host: The SQS_Sample_Base_Producer_Consumer.template sample
template uses the single operation form of Amazon SQS API requests: SendMessage,
ReceiveMessage, and DeleteMessage. A single m1.large Amazon EC2 instance animates 16
producer threads and 32 consumer threads.

To view the template, go to https://s3.amazonaws.com/cloudformation-templates-us-east-1/
SQS_Sample_Base_Producer_Consumer.template

• Single Operation API, Two Hosts: SQS_Sample_Base_Producer_Consumer_x2.template sample
template uses the single operation form of Amazon SQS API requests, but instead of a single
m1.large Amazon EC2 instance, it uses two, each with 16 producer threads and 32 consumer
threads for a total of 32 producers and 64 consumers. It illustrates Amazon SQS' elasticity with
throughput increasing proportionally to the greater number of producers and consumers.

To view the template, go to https://s3.amazonaws.com/cloudformation-templates-us-east-1/
SQS_Sample_Base_Producer_Consumer_x2.template

API Version 2012-11-05
117

Amazon Simple Queue Service Developer Guide
Running the Example

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#cstack=sn~sqs-blog-base|turl~https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer.template
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#cstack=sn~sqs-blog-base-x2|turl~https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer_x2.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer_x2.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Base_Producer_Consumer_x2.template

• Batch API, One Host: The SQS_Sample_Batch_Producer_Consumer.template sample template
uses the batch form of Amazon SQS API requests on a single m1.large Amazon EC2 instance
with 12 producer threads and 20 consumer threads.

To view the template, go to https://s3.amazonaws.com/cloudformation-templates-us-east-1/
SQS_Sample_Batch_Producer_Consumer.template

2. If you are prompted, sign in to the AWS Management Console.

3. In the Create Stack wizard, on the Select Template page, click Continue.

4. On the Specify Parameters page, specify how long the program should run, whether or not you
want to automatically terminate the Amazon EC2 instances when the run is complete, and provide
an Amazon EC2 key pair so that you can access the instances that are running the sample. Here is
an example:

5. Select the I acknowledge that this template may create IAM resources check box. All templates
create an AWS Identity and Access Management (IAM) user so that the producer-consumer program
can access the queue.

6. When all the settings are as you want them, click Continue.

7. On the Review page, review the settings. If they are as you want them, click Continue. If not, click
Back and make the necessary changes.

8. On the final page of the wizard, click Close. Stack deployment may take several minutes.

To follow the progress of stack deployment, in the AWS CloudFormation console, click the sample stack.
In the lower pane, click the Events tab. After the stack is created, it should take less than 5 minutes for
the sample to start running. When it does, you can see the queue in the Amazon SQS console.

To monitor queue activity, you can do the following:

• Access the client instance, and open its output log file (/tmp/sqs-producer-consumer-sample/output.log)
for a tally of messages produced and consumed so far. This tally is updated once per second.

• In the Amazon SQS console, observe changes in the Message Available and Messages in Flight
numbers.

In addition, after a delay of up to 15 minutes after the queue is started, you can monitor the queue in
CloudWatch as described later in this topic.

API Version 2012-11-05
118

Amazon Simple Queue Service Developer Guide
Running the Example

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#cstack=sn~sqs-blog-batch|turl~https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Batch_Producer_Consumer.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Batch_Producer_Consumer.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/SQS_Sample_Batch_Producer_Consumer.template
https://console.aws.amazon.com/sqs/home

Although the templates and samples have safeguards to prevent excessive use of resources, it is best
to delete your AWS CloudFormation stacks when you are done running the samples. To do so, in the
Amazon SQS console, click the stack that you want to delete, and then click Delete Stack. When the
resources are all deleted, CloudWatch metrics will all drop to zero.

Monitoring Volume Metrics from Example Run
Amazon SQS automatically generates volume metrics for messages sent, received, and deleted.You
can access those metrics and others through the CloudWatch console. The metrics can take up to 15
minutes after the queue starts to become available. To manage the search result set, click Search, and
then select the check boxes that correspond to the queues and metrics that you want to monitor.

Here is the NumberOfMessageSent metric for consecutive runs of the three samples.Your results may
vary somewhat, but the results should be qualitatively similar:

• The NumberOfMessagesReceived and NumberOfMessagesDeleted metrics show the same pattern,
but we have omitted them from this graph to reduce clutter.

• The first sample (single operation API on a single m1.large) delivers approximately 210,000 messages
over 5 minutes, or about 700 messages per second, with the same throughput for receive and delete
operations.

• The second sample (single operation API on two m1.large instances) delivers roughly double that
throughput: approximately 440,000 messages in 5 minutes, or about 1,450 messages per second, with
the same throughput for receive and delete operations.

• The last sample (batch API on a single m1.large) delivers over 800,000 messages in 5 minutes, or
about 2,500 messages per second, with the same throughput for received and deleted messages.With
a batch size of 10, these messages are processed with far fewer requests and therefore at lower cost.

API Version 2012-11-05
119

Amazon Simple Queue Service Developer Guide
Monitoring Volume Metrics from Example Run

https://console.aws.amazon.com/sqs/home
https://console.aws.amazon.com/cloudwatch/home

Appendix B: Client-Side Buffering
and Request Batching

The AWS SDK for Java (http://aws.amazon.com/sdkforjava/) includes a buffered asynchronous client,
AmazonSQSBufferedAsyncClient, for accessing Amazon SQS. This new client allows for easier request
batching by enabling client-side buffering, where calls made from the client are first buffered and then
sent as a batch request to Amazon SQS.

Client-side buffering allows up to 10 requests to be buffered and sent as a batch request instead of
sending each request separately. As a result, your cost of using Amazon SQS decreases as you reduce
the number of requests sent to the service. AmazonSQSBufferedAsyncClient buffers both synchronous
and asynchronous calls. Batched requests and support for long polling can also help increase throughput
(the number of messages transmitted per second). For more information, see Amazon SQS Long
Polling (p. 41) and Appendix A: Increasing Throughput with Horizontal Scaling and Batching (p. 114).

Migrating from the asynchronous client, AmazonSQSAsyncClient, to the buffered asynchronous client,
AmazonSQSBufferedAsyncClient, should require only minimal changes to your existing code. This is
because AmazonSQSBufferedAsyncClient implements the same interface as AmazonSQSAsyncClient.

Getting Started with
AmazonSQSBufferedAsyncClient

Before you begin using the example code in this section, you must first install the AWS SDK for Java and
set up your AWS credentials. For instructions, see Getting Started with the AWS SDK for Java.

The following code sample shows how to create a new AmazonSQSBufferedAsyncClient based on the
AmazonSQSAsyncClient.

// Create the basic Amazon SQS async client
AmazonSQSAsync sqsAsync = new AmazonSQSAsyncClient();

// Create the buffered client
AmazonSQSAsync bufferedSqs = new AmazonSQSBufferedAsyncClient(sqsAsync);

API Version 2012-11-05
120

Amazon Simple Queue Service Developer Guide
Getting Started with AmazonSQSBufferedAsyncClient

http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-setup.html

After you have created the new AmazonSQSBufferedAsyncClient, you can make calls to it as you do
with the AmazonSQSAsyncClient, as the following code sample demonstrates.

CreateQueueRequest createRequest = new CreateQueueRe
quest().withQueueName("MyTestQueue");

CreateQueueResult res = bufferedSqs.createQueue(createRequest);

SendMessageRequest request = new SendMessageRequest();
String body = "test message_" + System.currentTimeMillis();
request.setMessageBody(body);
request.setQueueUrl(res.getQueueUrl());

SendMessageResult sendResult = bufferedSqs.sendMessage(request);

ReceiveMessageRequest receiveRq = new ReceiveMessageRequest()
 .withMaxNumberOfMessages(1)
 .withQueueUrl(queueUrl);
ReceiveMessageResult rx = bufferedSqs.receiveMessage(receiveRq);

Advanced Configuration
AmazonSQSBufferedAsyncClient is pre-configured with settings that will work for most use cases. If you
would like to configure it yourself, you can use the QueueBufferConfig class to do so. Just create an
instance of QueueBufferConfig with the settings you want and supply it to the
AmazonSQSBufferedAsyncClient constructor, as the following sample code shows.

// Create the basic Amazon SQS async client
AmazonSQSAsync sqsAsync = new AmazonSQSAsyncClient();

QueueBufferConfig config = new QueueBufferConfig()
 .withMaxInflightReceiveBatches(5)
 .withMaxDoneReceiveBatches(15);

// Create the buffered client
AmazonSQSAsync bufferedSqs = new AmazonSQSBufferedAsyncClient(sqsAsync, config);

The parameters you can use for configuring QueueBufferConfig are as follows:

• longPoll—if this parameter is set to true, AmazonBufferedAsyncClient attempts to use long-polling
when retrieving messages. The default value is true.

• longPollWaitTimeoutSeconds—the maximum amount of time, in seconds, that a receive message
call blocks on the server waiting for messages to appear in the queue before returning with an empty
receive result. This setting has no impact if long polling is disabled. The default value of this setting is
20 seconds.

• maxBatchOpenMs—the maximum amount of time, in milliseconds, that an outgoing call waits for other
calls of the same type to batch with. The higher the setting, the fewer batches are required to perform
the same amount of work. Of course, the higher the setting, the more the first call in a batch has to
spend waiting. If this parameter is set to zero, submitted requests do not wait for other requests,
effectively disabling batching. The default value of this setting is 200 milliseconds.

API Version 2012-11-05
121

Amazon Simple Queue Service Developer Guide
Advanced Configuration

• maxBatchSize—the maximum number of messages that will be batched together in a single batch
request. The higher the setting, the fewer batches will be required to carry out the same number of
requests. The default value of this setting is 10 requests per batch, which is also the maximum batch
size currently allowed by Amazon SQS.

• maxBatchSizeBytes—the maximum size of a message batch, in bytes, that the client attempts to
send to Amazon SQS. The default value is 256 KB, which is also the maximum message and batch
size currently allowed by Amazon SQS.

• maxDoneReceiveBatches—the maximum number of receive batches AmazonBufferedAsyncClient
prefetches and stores on the client side. The higher the setting, the more receive requests can be
satisfied without having to make a call to Amazon SQS server. However, the more messages are
pre-fetched, the longer they will sit in the buffer, which means that their visibility timeout will be expiring.
If this parameter is set to zero, all pre-fetching of messages is disabled and messages are retrieved
only on demand. The default value is 10 batches.

• maxInflightOutboundBatches—the maximum number of active outbound batches that can be
processed at the same time. The higher the setting, the faster outbound batches can be sent (subject
to other limits, such as CPU or bandwidth). The higher the setting, the more threads are consumed by
the AmazonSQSBufferedAsyncClient. The default value is 5 batches.

• maxInflightReceiveBatches—the maximum number of active receive batches that can be processed
at the same time. The higher the setting, the more messages can be received (subject to other limits,
such as CPU or bandwidth, are hit). Although, the higher the setting, the more threads will be consumed
by the AmazonSQSBufferedAsyncClient. If this parameter is set to 0, all pre-fetching of messages is
disabled and messages are only retrieved on demand. The default value is 10 batches.

• visibilityTimeoutSeconds—if this parameter is set to a positive nonzero value, this visibility
timeout overrides the visibility timeout set on the queue from which messages are retrieved. A visibility
timeout of zero seconds is not supported.The default value is -1, which means the default queue setting
is used.

API Version 2012-11-05
122

Amazon Simple Queue Service Developer Guide
Advanced Configuration

Appendix C: Subscribe Queue to
Amazon SNS Topic

You can now subscribe an Amazon SQS queue to an Amazon SNS topic using the AWS Management
Console for Amazon SQS, which simplifies the process. For example, you can choose from the list of
available topics for the selected queue. Amazon SQS then manages the subscription of the queue to the
topic and the addition of the necessary permissions. When a message is published to the topic, Amazon
SNS sends an Amazon SQS message to the subscribed queue. For more information about Amazon
SNS, see Get Started with Amazon SNS. For more information about Amazon SQS, see Get Started with
Amazon SQS

Subscribe Queue to Amazon SNS Topic with the
AWS Management Console

The following steps assume you have already created a queue and an Amazon SNS topic.

To subscribe a queue to an Amazon SNS topic with the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the queue to which you want to subscribe an Amazon SNS topic.

3. Select Subscribe Queue to SNS Topic from the Queue Actions drop-down list.

API Version 2012-11-05
123

Amazon Simple Queue Service Developer Guide
Subscribe Queue to Amazon SNS Topic with the AWS

Management Console

http://docs.aws.amazon.com/sns/latest/gsg/Welcome.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/Welcome.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/Welcome.html
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

4. From the Choose a Topic drop-down list, select an Amazon SNS topic to subscribe the queue to
and then click Subscribe.

Note
You can also enter the ARN of the Amazon SNS topic in the Topic ARN: box. This is useful
when you want to subscribe the queue to an Amazon SNS topic from an AWS account other
than the one you used to create the queue. It's also useful if the Amazon SNS topic is not
listed in the Choose a Topic drop-down list.

5. In the Topic Subscription Result dialog box, click OK.

You can verify the results of the topic's queue subscription by publishing to the topic and viewing the
message that the topic sends to the queue. For detailed steps, see Test it out by publishing a message
to the topic and reading the message from the queue.

API Version 2012-11-05
124

Amazon Simple Queue Service Developer Guide
Subscribe Queue to Amazon SNS Topic with the AWS

Management Console

http://docs.aws.amazon.com/sns/latest/gsg/SendMessageToSQS.html#SendMessageToSQS.test
http://docs.aws.amazon.com/sns/latest/gsg/SendMessageToSQS.html#SendMessageToSQS.test

Amazon SQS Resources

The following table lists related resources that you'll find useful as you work with this service.

DescriptionResource

The getting started guide provides a quick tutorial of the ser-
vice based on a simple use case. Examples and instructions
in multiple programming languages are included.

Amazon Simple Queue Service Getting
Started Guide

The API reference gives the WSDL location; complete descrip-
tions of the API actions, parameters, and data types; and a
list of errors that the service returns.

Amazon Simple Queue Service API
Reference

The release notes give a high-level overview of the current
release.They specifically note any new features, corrections,
and known issues.

Amazon SQS Release Notes

The primary web page for information about Amazon SQS.Product information for Amazon SQS

A community-based forum for developers to discuss technical
questions related to Amazon SQS.

Discussion Forums

The primary web page for information about AWS Premium
Support, a one-on-one, fast-response support channel to help
you build and run applications on AWS infrastructure services.

AWS Premium Support Information

API Version 2012-11-05
125

Amazon Simple Queue Service Developer Guide

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
http://aws.amazon.com/releasenotes/Amazon-SQS
http://aws.amazon.com/sqs
https://forums.aws.amazon.com/
http://aws.amazon.com/premiumsupport/

Document History

The following table describes the important changes to the documentation since the last release of the
Amazon Simple Queue Service Developer Guide.

• API version: 2012-11-05

• Latest documentation update: December 29, 2014

Date ChangedDescriptionChange

December 29,
2014

Amazon SQS now enables you to use JMS (Java Message Service)
with Amazon SQS queues. For more information, see Using JMS
with Amazon SQS in the Amazon SQS Developer Guide.

New feature

December 8,
2014

Amazon SQS now enables you to delete the messages in a queue
by using the PurgeQueue API. For more information, see
PurgeQueue in the Amazon SQS API Reference.

New feature

August 4, 2014Updated information about access keys. For more information, see
Your Access Keys (p. 62).

Update

July 16, 2014Amazon SQS now enables you to log API calls by using AWS
CloudTrail. For more information, see Logging Amazon SQS API
Calls By Using AWS CloudTrail (p. 109).

New feature

May 6, 2014Amazon SQS now provides support for message attributes. For more
information, see Using Amazon SQS Message Attributes (p. 32).

New feature

January 29,
2014

Amazon SQS now provides support for dead letter queues. For more
information, see Using Amazon SQS Dead Letter Queues (p. 73).

New feature

November 21,
2012

You can now subscribe an Amazon SQS queue to an Amazon SNS
topic using the AWS Management Console for Amazon SQS, which
simplifies the process. For more information, see Appendix C: Sub-
scribe Queue to Amazon SNS Topic (p. 123).

New console
feature

November 5,
2012

The 2012-11-05 API version of Amazon SQS adds support for signa-
ture version 4, which provides improved security and performance.
For more information about signature version 4, see Query Request
Authentication (p. 67).

New feature

API Version 2012-11-05
126

Amazon Simple Queue Service Developer Guide

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/jmsclient.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/jmsclient.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html

Date ChangedDescriptionChange

November 5,
2012

The AWS SDK for Java now includes a buffered asynchronous client,
AmazonSQSBufferedAsyncClient, for accessing Amazon SQS.This
new client allows for easier request batching by enabling client-side
buffering, where calls made from the client are first buffered and then
sent as a batch request to Amazon SQS. For more information about
client-side buffering and request batching, see Appendix B: Client-
Side Buffering and Request Batching (p. 120).

New feature

November 5,
2012

The 2012-11-05 API version of Amazon SQS adds long polling sup-
port. Long polling allows for Amazon SQS to wait for a specified
amount time for a message to be available instead of returning an
empty response if one is not available. For more information about
long polling, see Amazon SQS Long Polling (p. 41).

New feature

API Version 2012-11-05
127

Amazon Simple Queue Service Developer Guide

	Amazon Simple Queue Service
	Table of Contents
	What is Amazon Simple Queue Service?
	Architectural Overview
	Amazon SQS Features

	How Amazon SQS Queues Work
	Properties of Distributed Queues
	Message Order
	At-Least-Once Delivery
	Message Sample

	Queue and Message Identifiers
	Queue URLs
	Message IDs
	Receipt Handles

	Resources Required to Process Messages
	Visibility Timeout
	General Recommendations for Visibility Timeout
	Extending a Message's Visibility Timeout
	Terminating a Message's Visibility Timeout
	API Actions Related to Visibility Timeout

	Message Lifecycle

	Using JMS with Amazon SQS
	Amazon SQS and JMS Prerequisites
	Getting Started with the Amazon SQS Java Messaging Library
	Creating a JMS Connection
	Creating an Amazon SQS Queue
	Sending Messages Synchronously
	Receiving Messages Synchronously

	Receiving Messages Asynchronously
	Client Acknowledge Mode
	Unordered Acknowledge Mode
	Code Samples
	ExampleConfiguration.java
	TextMessageSender.java
	AsyncMessageReceiver.java
	SyncMessageReceiver.java
	SyncMessageReceiverClientAcknowledge.java
	SyncMessageReceiverUnorderedAcknowledge.java
	SpringExampleConfig.xml
	SpringExample.java
	ExampleCommon.java

	Reference/Appendix
	Supported JMS 1.1 Common Interfaces:
	Supported Message Types
	Supported Message Acknowledgment Modes
	JMS Defined Headers and Reserved Properties

	Using Amazon SQS Message Attributes
	Message Attribute Items and Validation
	Message Attribute Data Types and Validation
	Using Message Attributes with the AWS Management Console
	Using Message Attributes with the AWS SDKs
	Using Message Attributes with the Amazon SQS Query API
	MD5 Message-Digest Calculation

	Amazon SQS Long Polling
	Enabling Long Polling with the AWS Management Console
	Enabling Long Polling with the Query API

	Amazon SQS Delay Queues
	Creating Delay Queues with the AWS Management Console
	Creating Delay Queues with the Query API

	Amazon SQS Message Timers
	Creating Message Timers Using the Console
	Creating Message Timers Using the Query API

	Amazon SQS Batch API Actions
	Maximum Message Size for SendMessageBatch

	Making API Requests
	Endpoints
	Making Query Requests
	Structure of a GET Request
	Structure of a POST Request
	Related Topics

	Making SOAP Requests
	Request Authentication
	What Is Authentication?
	Your AWS Account
	Related Topics

	Your Access Keys
	Related Topics

	HMAC-SHA Signatures
	Required Authentication Information
	Related Topics

	Basic Authentication Process
	About the String to Sign
	About the Time Stamp
	Java Sample Code for Base64 Encoding
	Java Sample Code for Calculating HMAC-SHA1 Signatures

	Query Request Authentication

	Responses
	Structure of a Successful Response
	Structure of an Error Response
	Related Topics

	Shared Queues
	Simple API for Shared Queues
	Advanced API for Shared Queues
	Understanding Permissions
	Granting Anonymous Access to a Queue

	Programming Languages

	Using Amazon SQS Dead Letter Queues
	Setting up Dead Letter Queue with the AWS Management Console
	Using Dead Letter Queue with the Amazon SQS API

	Using The Access Policy Language
	Overview
	When to Use Access Control
	Key Concepts
	Permission
	Statement
	Policy
	Issuer
	Principal
	Action
	Resource
	Conditions and Keys
	Requester
	Evaluation
	Effect
	Default Deny
	Allow
	Explicit Deny

	Architectural Overview
	Using the Access Policy Language
	Evaluation Logic
	The Interplay of Explicit and Default Denials

	Basic Use Cases for Access Control
	Use Case 1
	Use Case 2
	Use Case 3
	Use Case 4

	Amazon SQS Policy Examples
	Special Information for Amazon SQS Policies

	Access Control Using AWS Identity and Access Management (IAM)
	IAM-Related Features of Amazon SQS Policies
	IAM and Amazon SQS Policies Together
	Amazon SQS ARNs
	Amazon SQS Actions
	Amazon SQS Keys
	Example IAM Policies for Amazon SQS
	Using Temporary Security Credentials

	Monitoring Amazon SQS with CloudWatch
	Access CloudWatch Metrics for Amazon SQS
	Set CloudWatch Alarms for Amazon SQS Metrics
	Amazon SQS Metrics

	Logging Amazon SQS API Calls By Using AWS CloudTrail
	Amazon SQS Information in CloudTrail
	Understanding Amazon SQS Log File Entries
	AddPermission
	CreateQueue
	DeleteQueue
	RemovePermission
	SetQueueAttributes

	Appendix A: Increasing Throughput with Horizontal Scaling and Batching
	Horizontal Scaling
	Batching
	Example
	Running the Example
	Monitoring Volume Metrics from Example Run

	Appendix B: Client-Side Buffering and Request Batching
	Getting Started with AmazonSQSBufferedAsyncClient
	Advanced Configuration

	Appendix C: Subscribe Queue to Amazon SNS Topic
	Subscribe Queue to Amazon SNS Topic with the AWS Management Console

	Amazon SQS Resources
	Document History

