
Amazon DynamoDB
Developer Guide

API Version 2012-08-10

Amazon DynamoDB: Developer Guide
Copyright © 2015 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
AWS CloudTrail, AWS CodeDeploy, Amazon Cognito, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic
Compute Cloud, Amazon Glacier, Amazon Kinesis, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift,
Amazon Route 53, Amazon S3, Amazon VPC, and Amazon WorkDocs. In addition, Amazon.com graphics, logos, page headers,
button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon's
trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Amazon DynamoDB Developer Guide

Table of Contents
What Is Amazon DynamoDB? ... 1

Service Highlights ... 2
Data Model .. 3

Data Model Concepts - Tables, Items, and Attributes .. 4
Primary Key ... 5
Secondary Indexes .. 6
Data Types ... 6

Supported Operations .. 9
Table Operations ... 9
Item Operations .. 9
Query and Scan .. 9
Data Read and Consistency Considerations ... 10
Conditional Updates and Concurrency Control .. 10

Provisioned Throughput .. 11
Read Capacity Units .. 11
Write Capacity Units ... 12

Accessing DynamoDB .. 12
Regions and Endpoints for DynamoDB .. 13

Creating Tables and Loading Sample Data ... 14
Step 1: Before You Begin ... 14

Step 1 of 6: Sign Up ... 14
Download AWS SDK .. 15

Step 2: Create Example Tables ... 15
Use Case 1: Product Catalog ... 16
Use Case 2: Forum Application .. 16
Creating Tables ... 17

Step 3: Load Sample Data ... 21
Load Data into Tables - Java .. 21
Load Data into Tables - .NET ... 28
Load Data into Tables - PHP .. 38
Verify Data Load .. 43

Step 4: Try a Query .. 44
Try a Query - Console .. 44
Try a Query - Java ... 45
Try a Query - .NET ... 47
Try a Query - PHP ... 50

Step 5: Delete Example Tables (Optional) ... 51
Where Do I Go from Here? .. 52

Using the AWS SDKs ... 53
Using the AWS SDK for Java ... 53

Running Java Examples ... 55
Using the AWS SDK for .NET .. 56

Running .NET Examples ... 57
Using the AWS SDK for PHP ... 59

Running PHP Examples ... 59
Working with Tables ... 61

Specifying the Primary Key .. 61
Read and Write Requirements for Tables ... 62
Capacity Units Calculations for Various Operations .. 64

Item Size Calculations .. 64
Read Operation and Consistency ... 66

Listing and Describing Tables ... 66
Guidelines for Working with Tables .. 66

Design For Uniform Data Access Across Items In Your Tables .. 66
Understand Partition Behavior .. 68

API Version 2012-08-10
iii

Amazon DynamoDB Developer Guide

Use Burst Capacity Sparingly .. 69
Distribute Write Activity During Data Upload ... 70
Understand Access Patterns for Time Series Data ... 71
Cache Popular Items .. 71
Consider Workload Uniformity When Adjusting Provisioned Throughput 72
Test Your Application At Scale .. 72

Working with Tables - Java Document API .. 73
Creating a Table .. 73
Updating a Table .. 74
Deleting a Table ... 75
Listing Tables .. 75
Example: Create, Update, Delete and List Tables - Java Document API 76

Working with Tables - .NET Low-Level API ... 79
Creating a Table .. 79
Updating a Table .. 80
Deleting a Table ... 81
Listing Tables .. 81
Example: Create, Update, Delete and List Tables - .NET Low-Level API 82

Working with Tables - PHP Low-Level API .. 86
Creating a Table .. 86
Updating a Table .. 87
Deleting a Table ... 88
Listing Tables .. 89
Example: Create, Update, Delete and List Tables - PHP Low-Level API 89

Working with Items ... 92
Overview .. 92
Reading an Item .. 93

Read Consistency .. 94
Writing an Item .. 94
Batch Operations ... 95
Atomic Counters .. 95
Conditional Writes .. 95
Reading and Writing Items Using Expressions .. 98

Case Study: A ProductCatalog Item .. 98
Accessing Item Attributes with Projection Expressions ... 99
Using Placeholders for Attribute Names and Values ... 101
Performing Conditional Writes with Condition Expressions ... 103
Modifying Items and Attributes with Update Expressions ... 109

Guidelines for Working with Items ... 115
Use One-to-Many Tables Instead Of Large Set Attributes .. 116
Use Multiple Tables to Support Varied Access Patterns ... 116
Compress Large Attribute Values .. 118
Store Large Attribute Values in Amazon S3 ... 118
Break Up Large Attributes Across Multiple Items ... 118

Working with Items - Java Document API ... 120
Putting an Item .. 120
Getting an Item .. 123
Batch Write: Putting and Deleting Multiple Items .. 125
Batch Get: Getting Multiple Items .. 126
Updating an Item ... 127
Deleting an Item ... 129
Example: CRUD Operations - Java Document API ... 130
Example: Batch Operations - Java Document API .. 134
Example: Handling Binary Type Attributes - Java Document API ... 139

Working with Items - .NET Low-Level API ... 142
Putting an Item .. 143
Getting an Item .. 144
Updating an Item ... 145

API Version 2012-08-10
iv

Amazon DynamoDB Developer Guide

Atomic Counter .. 147
Deleting an Item ... 148
Batch Write: Putting and Deleting Multiple Items .. 149
Batch Get: Getting Multiple Items .. 151
Example: CRUD Operations - .NET Low-Level API ... 153
Example: Batch Operations - .NET Low-Level API ... 161
Example: Handling Binary Type Attributes - .NET Low-Level API .. 172

Working with Items - PHP Low-Level API ... 177
Putting an Item .. 177
Getting an Item .. 179
Batch Write: Putting and Deleting Multiple Items .. 180
Batch Get: Getting Multiple Items .. 182
Updating an Item ... 183
Atomic Counter .. 185
Deleting an Item ... 186
Example: CRUD Operations - PHP Low-Level API ... 187
Example: Batch Operations-PHP SDK ... 190

Query and Scan .. 192
Query .. 192
Scan .. 194
Filtering the Results from a Query or a Scan ... 194
Capacity Units Consumed by Query and Scan .. 194
Paginating the Results .. 195
Count and ScannedCount ... 195
Limit .. 196
Read Consistency .. 196

Read Consistency for Query .. 196
Read Consistency for Scan .. 196

Query and Scan Performance .. 196
Parallel Scan ... 197
Guidelines for Query and Scan .. 198

Avoid Sudden Bursts of Read Activity .. 199
Take Advantage of Parallel Scans ... 201

Querying .. 202
Querying —Java Document API ... 202
Querying —.NET Low-Level API ... 208
Querying Tables—PHP Low-Level API ... 219

Scanning .. 222
Scanning —Java Document API ... 222
Scanning —.NET Low-Level API ... 230
Scanning —PHP Low-Level API ... 240

Improving Data Access with Secondary Indexes .. 248
Global Secondary Indexes ... 260

Attribute Projections ... 263
Querying a Global Secondary Index .. 265
Scanning a Global Secondary Index .. 265
Data Synchronization Between Tables and Global Secondary Indexes 265
Provisioned Throughput Considerations for Global Secondary Indexes 266
Storage Considerations for Global Secondary Indexes .. 267
Managing Global Secondary Indexes .. 268
Guidelines for Global Secondary Indexes ... 278
Global Secondary Indexes - Java Document API ... 280
Global Secondary Indexes - .NET Low-Level API ... 288
Global Secondary Indexes - PHP Low-Level API ... 299

Local Secondary Indexes .. 309
Attribute Projections ... 312
Creating a Local Secondary Index .. 313
Querying a Local Secondary Index .. 314

API Version 2012-08-10
v

Amazon DynamoDB Developer Guide

Scanning a Local Secondary Index ... 315
Item Writes and Local Secondary Indexes .. 315
Provisioned Throughput Considerations for Local Secondary Indexes 315
Storage Considerations for Local Secondary Indexes ... 317
Item Collections ... 317
Guidelines for Local Secondary Indexes ... 320
Local Secondary Indexes - Java Document API ... 322
Local Secondary Indexes - .NET Low-Level API .. 332
Local Secondary Indexes - PHP Low-Level API ... 346

Best Practices ... 355
Table Best Practices ... 355
Item Best Practices .. 355
Query and Scan Best Practices .. 356
Local Secondary Index Best Practices ... 356
Global Secondary Index Best Practices .. 356

Capturing Table Activity with DynamoDB Streams .. 357
Enabling a Stream .. 358
Reading and Processing a Stream .. 359

Data Retention Limit for DynamoDB Streams .. 360
Walkthrough: DynamoDB Streams Low-Level API .. 360

Step 1: Create a Table with a Stream Enabled ... 361
Step 2: Describe the Streams Settings For The Table .. 361
Step 3: Modify data in the table ... 362
Step 4: Describe the Shards in the Stream ... 362
Step 5: Read the Stream Records ... 363
Step 6: Clean Up ... 363
Complete Program: Low-Level Streams API .. 364

Using the DynamoDB Streams Kinesis Adapter to Process Stream Records 368
Walkthrough: DynamoDB Streams Kinesis Adapter .. 370

Cross-Region Replication Using DynamoDB Streams .. 381
Overview .. 381
Walkthrough: Setting Up Replication Using the Cross Region Replication Console 383
Troubleshooting ... 388
Cross-Region Replication Library .. 392

Amazon DynamoDB Triggers ... 393
Walkthrough: Using the AWS Management Console to Create a DynamoDB Trigger 393

DynamoDB Console ... 397
Working with Items and Attributes ... 399

Adding an Item .. 399
Deleting an Item .. 402
Updating an Item ... 402
Copying an Item .. 403

Monitoring Tables ... 405
Setting Up CloudWatch Alarms .. 405
Exporting and Importing Data ... 406

Higher-Level Programming Interfaces for DynamoDB ... 408
Java: Object Persistence Model .. 408

Supported Data Types .. 411
Java Annotations for DynamoDB .. 412
The DynamoDBMapper Class .. 416
Optimistic Locking With Version Number .. 425
Mapping Arbitrary Data ... 427
Example: CRUD Operations ... 430
Example: Batch Write Operations .. 432
Example: Query and Scan ... 437

.NET: Document Model ... 445
Operations Not Supported by the Document Model .. 445
Working with Items - .NET Document Model ... 446

API Version 2012-08-10
vi

Amazon DynamoDB Developer Guide

Getting an Item - Table.GetItem ... 449
Deleting an Item - Table.DeleteItem .. 450
Updating an Item - Table.UpdateItem ... 451
Batch Write - Putting and Deleting Multiple Items ... 453
Example: CRUD Operations - .NET Document Model ... 454
Example: Batch Operations-.NET Document Model API .. 460
Querying Tables - .NET Document Model ... 464

.NET: Object Persistence Model ... 476
DynamoDB Attributes ... 478
DynamoDBContext Class .. 480
Supported Data Types .. 485
Optimistic Locking Using Version Number ... 486
Mapping Arbitrary Data ... 488
Batch Operations ... 492
Example: CRUD Operations - .NET Object Persistence Model ... 496
Example: Batch Write Operation ... 499
Example: Query and Scan - .NET Object Persistence Model .. 505

Using the DynamoDB API ... 512
JSON Data Format ... 512

JSON Is Used as a Transport Protocol Only .. 513
Transferring Binary Data Type Values in JSON .. 514

Making HTTP Requests .. 514
HTTP Header Contents ... 514
HTTP Body Content ... 515
Handling HTTP Responses .. 515
Sample DynamoDB JSON Request and Response .. 516

Handling Errors ... 517
Error Types ... 517
API Error Codes .. 517
Catching Errors ... 521
Error Retries and Exponential Backoff ... 522
Batch Operations and Error Handling .. 523

Operations in DynamoDB .. 523
Example Application Using AWS SDK for Python (Boto) ... 525

Step 1: Deploy and Test Locally Using DynamoDB Local ... 526
1.1: Download and Install Required Packages ... 526
1.2: Test the Game Application ... 527

Step 2: Examine the Data Model and Implementation Details ... 529
2.1: Basic Data Model ... 529
2.2: Application in Action (Code Walkthrough) ... 531

Step 3: Deploy in Production .. 536
3.1: Create an IAM Role for Amazon EC2 ... 537
3.2: Create the Games Table in Amazon DynamoDB .. 538
3.3: Bundle and Deploy Tic-Tac-Toe Application Code ... 538
3.4: Set Up the AWS Elastic Beanstalk Environment .. 539

Step 4: Clean Up Resources .. 542
Additional Tools and Resources For DynamoDB .. 543

DynamoDB Local ... 543
Downloading and Running DynamoDB Local .. 544
Setting the Endpoint ... 545
Usage Notes ... 545
Differences Between DynamoDB Local and DynamoDB ... 546

JavaScript Shell for DynamoDB Local .. 547
Tutorial ... 547
Code Editor .. 549

Amazon DynamoDB Storage Backend for Titan ... 551
Working with Graph Databases .. 552
Titan with the DynamoDB Storage Backend for Titan .. 553

API Version 2012-08-10
vii

Amazon DynamoDB Developer Guide

Titan Features ... 553
Getting Started with the DynamoDB Storage Backend for Titan .. 555
Titan Graph Modeling in DynamoDB ... 561
Titan Metrics ... 567

Logstash Plugin for Amazon DynamoDB .. 572
Prerequisites ... 573
Setting Up the Logstash Plugin for Amazon DynamoDB .. 573
Running the Logstash Plugin for Amazon DynamoDB ... 575
Testing the Logstash Plugin for Amazon DynamoDB .. 577

AWS Command Line Interface for DynamoDB ... 578
Downloading and Configuring the AWS CLI .. 578
Using the AWS CLI with DynamoDB .. 578
Using the AWS CLI with DynamoDB Local ... 579

Integration with Other Services ... 580
Monitoring DynamoDB with CloudWatch .. 580

AWS Management Console ... 581
Command Line Interface (CLI) .. 581
API .. 581
DynamoDB Metrics .. 582
Dimensions for DynamoDB Metrics ... 591

Using IAM to Control Access to DynamoDB Resources .. 591
Amazon Resource Names (ARNs) for DynamoDB ... 592
DynamoDB Actions .. 593
Condition Types and Operators ... 593
IAM Policy Keys ... 594
Example Policies for API Actions and Resource Access .. 595
Fine-Grained Access Control for DynamoDB .. 600
Example Policies for Fine-Grained Access Control ... 602
Using Web Identity Federation .. 608

Logging DynamoDB API Calls By Using AWS CloudTrail ... 614
DynamoDB Information in CloudTrail ... 614
Understanding DynamoDB Log File Entries .. 615

Exporting, Importing and Transforming Data Using AWS Data Pipeline .. 620
Using the AWS Management Console to Export and Import Data 621
Predefined Templates for AWS Data Pipeline and DynamoDB .. 634

Querying and Joining Tables Using Amazon Elastic MapReduce .. 634
Prerequisites for Integrating Amazon EMR ... 636
Step 1: Create a Key Pair .. 636
Step 2: Create a Cluster .. 637
Step 3: SSH into the Master Node ... 640
Step 4: Set Up a Hive Table to Run Hive Commands .. 642
Hive Command Examples for Exporting, Importing, and Querying Data 646
Optimizing Performance .. 653
Walkthrough: Using DynamoDB and Amazon Elastic MapReduce 656

Loading Data From DynamoDB Into Amazon Redshift .. 665
Limits ... 667
Document History .. 672
Appendix .. 681

Example Tables and Data .. 681
ProductCatalog Table - Sample Data ... 682
Forum Table - Sample Data ... 684
Thread Table - Sample Data ... 685
Reply Sample Data .. 685

Creating Example Tables and Uploading Data ... 686
Creating Example Tables and Uploading Data - Java .. 687
Creating Example Tables and Uploading Data - .NET ... 695
Creating Example Tables and Uploading Data - PHP .. 713

Reserved Words in DynamoDB .. 721

API Version 2012-08-10
viii

Amazon DynamoDB Developer Guide

Legacy Conditional Parameters .. 731
AttributesToGet vs. ProjectionExpression ... 731
Expected vs. ConditionExpression .. 732
AttributeUpdates vs. UpdateExpression ... 732
KeyConditions vs. KeyConditionExpression .. 732
QueryFilter and ScanFilter vs. FilterExpression ... 732
Writing Conditions With Legacy Parameters .. 733

Current API Version (2012-08-10) ... 739
Previous API Version (2011-12-05) .. 740

BatchGetItem .. 740
BatchWriteItem .. 745
CreateTable .. 751
DeleteItem .. 755
DeleteTable ... 759
DescribeTables .. 762
GetItem .. 765
ListTables ... 767
PutItem .. 769
Query .. 774
Scan .. 780
UpdateItem ... 788
UpdateTable .. 793

AWS Glossary ... 798

API Version 2012-08-10
ix

Amazon DynamoDB Developer Guide

What Is Amazon DynamoDB?

Topics

• DynamoDB Service Highlights (p. 2)

• DynamoDB Data Model (p. 3)

• Supported Operations in DynamoDB (p. 9)

• Provisioned Throughput in Amazon DynamoDB (p. 11)

• Accessing DynamoDB (p. 12)

Welcome to the Amazon DynamoDB Developer Guide. DynamoDB is a fully managed NoSQL database
service that provides fast and predictable performance with seamless scalability. If you are a developer,
you can use DynamoDB to create a database table that can store and retrieve any amount of data, and
serve any level of request traffic. DynamoDB automatically spreads the data and traffic for the table over
a sufficient number of servers to handle the request capacity specified by the customer and the amount
of data stored, while maintaining consistent and fast performance. All data items are stored on solid state
disks (SSDs) and are automatically replicated across multiple Availability Zones in a Region to provide
built-in high availability and data durability.

If you are a database administrator, you can create a new DynamoDB database table, scale up or down
your request capacity for the table without downtime or performance degradation, and gain visibility into
resource utilization and performance metrics, all through the AWS Management Console.With DynamoDB,
you can offload the administrative burdens of operating and scaling distributed databases to AWS, so
you don't have to worry about hardware provisioning, setup and configuration, replication, software
patching, or cluster scaling.

If you are a first-time user of DynamoDB, we recommend that you begin by reading the following sections:

• What is DynamoDB—The rest of this section describes the underlying data model, the operations it
supports, and the class libraries that you can use to develop applications that use DynamoDB.

• Creating Tables and Loading Sample Data (p. 14)—This section walks you through the process of
creating sample tables, uploading data, and performing some basic database operations.

After this, you'll probably want to learn more about application development with DynamoDB.The following
sections provide additional information.

• Working with DynamoDB—The following sections provide in-depth information about the key
DynamoDB concepts:

• Working with Tables in DynamoDB (p. 61)

API Version 2012-08-10
1

Amazon DynamoDB Developer Guide

• Working with Items in DynamoDB (p. 92)

• Query and Scan Operations in DynamoDB (p. 192)

• Improving Data Access with Secondary Indexes in DynamoDB (p. 248)

• Using AWS SDKs—AWS provides SDKs for you to develop applications using DynamoDB. These
SDKs provide low-level API methods that correspond closely to the underlying DynamoDB operations.
The .NET SDK also provides a document model to further simplify your development work. In addition,
the AWS SDKs for Java and .NET also provide an object persistence model API that you can use to
map your client-side classes to DynamoDB tables. This allows you to call object methods instead of
making low-level API calls. For more information, including working samples, see Using the AWS SDKs
with DynamoDB (p. 53).

In addition to .NET, Java, and PHP examples provided in this guide, the other AWS SDKs also support
DynamoDB, including JavaScript, Python, Android, iOS, and Ruby. For links to the complete set of
AWS SDKs, see Start Developing with Amazon Web Services.

DynamoDB Service Highlights
Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable
performance with seamless scalability. With a few clicks in the AWS Management Console, customers
can create a new DynamoDB database table, scale up or down their request capacity for the table without
downtime or performance degradation, and gain visibility into resource utilization and performance metrics.
DynamoDB enables customers to offload the administrative burdens of operating and scaling distributed
databases to AWS, so they don't have to worry about hardware provisioning, setup and configuration,
replication, software patching, or cluster scaling.

DynamoDB is designed to address the core problems of database management, performance, scalability,
and reliability. Developers can create a database table and grow its request traffic or storage without limit.
DynamoDB automatically spreads the data and traffic for the table over a sufficient number of servers to
handle the request capacity specified by the customer and the amount of data stored, while maintaining
consistent, fast performance. All data items are stored on Solid State Disks (SSDs) and are automatically
replicated across multiple Availability Zones in a Region to provide built-in high availability and data
durability.

DynamoDB enables customers to offload the administrative burden of operating and scaling a highly
available distributed database cluster while only paying a low variable price for the resources they consume.

The following are some of the major DynamoDB features:

• Scalable — DynamoDB is designed for seamless throughput and storage scaling.

• Provisioned Throughput — When creating a table, simply specify how much throughput capacity
you require. DynamoDB allocates dedicated resources to your table to meet your performance
requirements, and automatically partitions data over a sufficient number of servers to meet your
request capacity. If your application requirements change, simply update your table throughput
capacity using the AWS Management Console or the DynamoDB APIs.You are still able to achieve
your prior throughput levels while scaling is underway.

• Automated Storage Scaling — There is no limit to the amount of data you can store in a DynamoDB
table, and the service automatically allocates more storage, as you store more data using the
DynamoDB write APIs.

• Fully Distributed, Shared Nothing Architecture — DynamoDB scales horizontally and seamlessly
scales a single table over hundreds of servers.

• Fast, Predictable Performance— Average service-side latencies for DynamoDB are typically single-digit
milliseconds. The service runs on solid state disks, and is built to maintain consistent, fast latencies at
any scale.

API Version 2012-08-10
2

Amazon DynamoDB Developer Guide
Service Highlights

http://aws.amazon.com/developers/getting-started/

• Easy Administration— DynamoDB is a fully managed service – you simply create a database table
and let the service handle the rest.You don't need to worry about hardware or software provisioning,
setup and configuration, software patching, operating a reliable, distributed database cluster, or
partitioning data over multiple instances as you scale.

• Built-in Fault Tolerance— DynamoDB has built-in fault tolerance, automatically and synchronously
replicating your data across multiple Availability Zones in a Region for high availability and to help
protect your data against individual machine, or even facility failures.

• Flexible — DynamoDB does not have a fixed schema. Instead, each data item may have a different
number of attributes. Multiple data types (strings, numbers, binary, and sets) add richness to the data
model.

• Efficient Indexing — Every item in an DynamoDB table is identified by a primary key, allowing you to
access data items quickly and efficiently.You can also define secondary indexes on non-key attributes,
and query your data using an alternate key.

• Strong Consistency, Atomic Counters— Unlike many non-relational databases, DynamoDB makes
development easier by allowing you to use strong consistency on reads to ensure you are always
reading the latest values. DynamoDB supports multiple native data types (numbers, strings, binaries,
and multi-valued attributes). The service also natively supports atomic counters, allowing you to
atomically increment or decrement numerical attributes with a single API call.

• Cost Effective— DynamoDB is designed to be extremely cost-efficient for workloads of any scale.
You can get started with a free tier that allows more than 40 million database operations per month,
and pay low hourly rates only for the resources you consume above that limit. With easy administration
and efficient request pricing, DynamoDB can offer significantly lower total cost of ownership (TCO) for
your workload compared to operating a relational or non-relational database on your own.

• Secure— DynamoDB is secure and uses proven cryptographic methods to authenticate users and
prevent unauthorized data access. It also integrates with AWS Identity and Access Management for
fine-grained access control for users within your organization.

• Integrated Monitoring— DynamoDB displays key operational metrics for your table in the AWS
Management Console. The service also integrates with CloudWatch so you can see your request
throughput and latency for each DynamoDB table, and easily track your resource consumption.

• Amazon Redshift Integration—You can load data from DynamoDB tables into Amazon Redshift, a
fully managed data warehouse service.You can connect to Amazon Redshift with a SQL client or
business intelligence tool using standard PostgreSQL JDBC or ODBC drivers, and perform complex
SQL queries and business intelligence tasks on your data.

• Amazon Elastic MapReduce Integration— DynamoDB also integrates with Amazon Elastic MapReduce
(Amazon EMR). Amazon EMR allows businesses to perform complex analytics of their large datasets
using a hosted pay-as-you-go Hadoop framework on AWS. With the launch of DynamoDB, it is easy
for customers to use Amazon EMR to analyze datasets stored in DynamoDB and archive the results
in Amazon Simple Storage Service (Amazon S3), while keeping the original dataset in DynamoDB
intact. Businesses can also use Amazon EMR to access data in multiple stores (i.e. DynamoDB and
Amazon RDS), perform complex analysis over this combined dataset, and store the results of this work
in Amazon S3.

DynamoDB Data Model
Topics

• Data Model Concepts - Tables, Items, and Attributes (p. 4)

• Primary Key (p. 5)

• Secondary Indexes (p. 6)

• DynamoDB Data Types (p. 6)

API Version 2012-08-10
3

Amazon DynamoDB Developer Guide
Data Model

Data Model Concepts - Tables, Items, and
Attributes
The DynamoDB data model concepts include tables, items and attributes.

In Amazon DynamoDB, a database is a collection of tables. A table is a collection of items and each item
is a collection of attributes.

In a relational database, a table has a predefined schema such as the table name, primary key, list of its
column names and their data types. All records stored in the table must have the same set of columns.
In contrast, DynamoDB only requires that a table has a primary key, but does not require you to define
all of the attribute names and data types in advance. Individual items in a DynamoDB table can have any
number of attributes, although there is a limit of 400 KB on the item size. An item size is the sum of lengths
of its attribute names and values (binary and UTF-8 lengths).

Each attribute in an item is a name-value pair. An attribute can be single-valued or multi-valued set. For
example, a book item can have title and authors attributes. Each book has one title but can have many
authors. The multi-valued attribute is a set; duplicate values are not allowed.

For example, consider storing a catalog of products in DynamoDB.You can create a table, ProductCatalog,
with the Id attribute as its primary key. The primary key uniquely identifies each item, so that no two
products in the table can have the same Id.

ProductCatalog (Id, ...)

You can store various kinds of product items in the table. The following table shows sample items.

Example items

{
Id = 101

 ProductName = "Book 101 Title"
 ISBN = "111-1111111111"
 Authors = ["Author 1", "Author 2"]
 Price = -2
 Dimensions = "8.5 x 11.0 x 0.5"
 PageCount = 500
 InPublication = 1
 ProductCategory = "Book"
}

{
Id = 201

 ProductName = "18-Bicycle 201"
 Description = "201 description"
 BicycleType = "Road"
 Brand = "Brand-Company A"
 Price = 100
 Gender = "M"
 Color = ["Red", "Black"]
 ProductCategory = "Bike"
}

API Version 2012-08-10
4

Amazon DynamoDB Developer Guide
Data Model Concepts - Tables, Items, and Attributes

Example items

{
Id = 202

 ProductName = "21-Bicycle 202"
 Description = "202 description"
 BicycleType = "Road"
 Brand = "Brand-Company A"
 Price = 200
 Gender = "M"
 Color = ["Green", "Black"]
 ProductCategory = "Bike"
}

In the example, the ProductCatalog table has one book item and two bicycle items. Item 101 is a book
with many attributes including the Authors multi-valued attribute. Item 201 and 202 are bikes, and these
items have a Color multi-valued attribute. The Id is the only required attribute. Note that attribute values
are shown using JSON-like syntax for illustration purposes.

Primary Key
When you create a table, in addition to the table name, you must specify the primary key of the table.
The primary key uniquely identifies each item in the table, so that no two items can have the same key.

DynamoDB supports the following two types of primary keys:

• Hash Type Primary Key—The primary key is made of one attribute, a hash attribute. DynamoDB
builds an unordered hash index on this primary key attribute. Each item in the table is uniquely identified
by its hash key value.

• Hash and Range Type Primary Key—The primary key is made of two attributes. The first attribute is
the hash attribute and the second one is the range attribute. DynamoDB builds an unordered hash
index on the hash primary key attribute, and a sorted range index on the range primary key attribute.
Each item in the table is uniquely identified by the combination of its hash and range key values. It is
possible for two items to have the same hash key value, but those two items must have different range
key values.

You must define the data type for each primary key attribute: String, Number, or Binary.

Different applications will have different requirements for tables and primary keys. For example, Amazon
Web Services maintains several forums (see Discussion Forums). Each forum has many threads of
discussion and each thread has many replies.You could potentially model this by creating the following
three tables:

Range Attribute NameHash Attribute
Name

Primary
Key Type

Table Name

-NameHashForum (Name, ...)

SubjectForumNameHash and
Range

Thread (ForumName, Subject, ...)

ReplyDateTimeIdHash and
Range

Reply (Id, ReplyDateTime, ...)

API Version 2012-08-10
5

Amazon DynamoDB Developer Guide
Primary Key

https://forums.aws.amazon.com/

In this example, both the Thread and Reply tables have primary key of the hash and range type. For the
Thread table, each forum name can have one or more subjects. In this case, ForumName is the hash
attribute and Subject is the range attribute.

The Reply table has Id as the hash attribute and ReplyDateTime as the range attribute. The reply Id
identifies the thread to which the reply belongs. When designing DynamoDB tables you have to take into
account the fact that DynamoDB does not support cross-table joins. For example, the Reply table stores
both the forum name and subject values in the Id attribute. If you have a thread reply item, you can then
parse the Id attribute to find the forum name and subject and use the information to query the Thread or
the Forum tables. This developer guide uses these tables to illustrate DynamoDB functionality. For
information about these tables and sample data stored in these tables, see Example Tables and
Data (p. 681).

Secondary Indexes
When you create a table with a hash-and-range key, you can optionally define one or more secondary
indexes on that table. A secondary index lets you query the data in the table using an alternate key, in
addition to queries against the primary key.

With the Reply table, you can query data items by Id (hash) or by Id and ReplyDateTime (hash and range).
Now suppose you had an attribute in the table—PostedBy—with the user ID of the person who posted
each reply. With a secondary index on PostedBy, you could query the data by Id (hash) and PostedBy
(range). Such a query would let you retrieve all the replies posted by a particular user in a thread, with
maximum efficiency and without having to access any other items.

DynamoDB supports two kinds of secondary indexes:

• Local secondary index — an index that has the same hash key as the table, but a different range key.

• Global secondary index — an index with a hash and range key that can be different from those on the
table.

You can define up to 5 global secondary indexes and 5 local secondary indexes per table. For more
information, see Improving Data Access with Secondary Indexes in DynamoDB (p. 248).

DynamoDB Data Types
Amazon DynamoDB supports the following data types:

• Scalar types – Number, String, Binary, Boolean, and Null.

• Multi-valued types – String Set, Number Set, and Binary Set.

• Document types – List and Map.

For example, in the ProductCatalog table, the Id is a Number type attribute and Authors is a String Set
type attribute. Note that primary key attributes must be of type String, Number, or Binary.

The following are descriptions of each data type, along with examples. Note that the examples use JSON
syntax.

Scalar Data Types

String

Strings are Unicode with UTF8 binary encoding.There is no upper limit to the string size when you assign
it to an attribute except when the attribute is part of the primary key. For more information, see Limits in

API Version 2012-08-10
6

Amazon DynamoDB Developer Guide
Secondary Indexes

DynamoDB (p. 667). Also, the length of the attribute is constrained by the 400 KB item size limit. Note that
the length of the attribute must be greater than zero.

String value comparison is used when returning ordered results in the Query and Scan API actions.
Comparison is based on ASCII character code values. For example, "a" is greater that "A" , and "aa" is
greater than "B". For a list of code values, see http://en.wikipedia.org/wiki/
ASCII#ASCII_printable_characters.

Example

"Bicycle"

Number

Numbers can have up to 38 digits precision, and can be positive, negative, or zero.

• Positive range: 1E-130 to 9.9999999999999999999999999999999999999E+125

• Negative range: -9.9999999999999999999999999999999999999E+125 to -1E-130

In DynamoDB, numbers are represented as variable length. Leading and trailing zeroes are trimmed.

All numbers are sent to DynamoDB as String types, which maximizes compatibility across languages
and libraries. However DynamoDB handles them as the Number type for mathematical operations.

Note
If number precision is important, you should pass numbers to DynamoDB using strings that you
convert from a number type. DynamoDB limits numbers to 38 digits. More than 38 digits will
cause an error.

Example

"300"

Binary

Binary type attributes can store any binary data, for example compressed data, encrypted data, or images.
DynamoDB treats each byte of the binary data as unsigned when it compares binary values, for example
when evaluating query expressions.

There is no upper limit to the length of the binary value when you assign it to an attribute except when
the attribute is part of the primary key. For more information, see Limits in DynamoDB (p. 667). Also, the
length of the attribute is constrained by the 400 KB item size limit. Note that the length of the attribute
must be greater than zero.

Client applications must encode binary values in base64 format. When DynamoDB receives the data
from the client, it decodes the data into an unsigned byte array and uses that as the length of the attribute.

The following example is a binary attribute, using base64-encoded text.

Example

"dGhpcyB0ZXh0IGlzIGJhc2U2NC1lbmNvZGVk"

Boolean

A Boolean type attribute can store either true or false.

API Version 2012-08-10
7

Amazon DynamoDB Developer Guide
Data Types

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

Example

true

Null

Null represents an attribute with an unknown or undefined state.

Example

NULL

Multi-Valued Data Types
DynamoDB also supports types that represent number sets, string sets and binary sets. Multi-valued
attributes such as an Authors attribute in a book item and a Color attribute of a product item are
examples of String Set type attributes. Because each of these types is a set, the values in each must be
unique. Attribute sets are not ordered; the order of the values returned in a set is not preserved. DynamoDB
does not support empty sets.

Examples

["Black", "Green" ,"Red"]

["42.2", "-19", "7.5", "3.14"]

["U3Vubnk=", "UmFpbnk=", "U25vd3k="]

Document Data Types
DynamoDB supports List and Map data types, which can be nested to represent complex data structures.

• A List type contains an ordered collection of values.

• A Map type contains an unordered collection of name-value pairs.

Lists and maps are ideal for storing JSON documents. The List data type is similar to a JSON array, and
the Map data type is similar to a JSON object. There are no restrictions on the data types that can be
stored in List or Map elements, and the elements do not have to be of the same type.

The following example shows a Map that contains a String, a Number, and a nested List (which itself
contains another Map).

Example

{
 Day: "Monday",
 UnreadEmails: 42,
 ItemsOnMyDesk: [
 "Coffee Cup",
 "Telephone",
 {
 Pens: { Quantity : 3},
 Pencils: { Quantity : 2},

API Version 2012-08-10
8

Amazon DynamoDB Developer Guide
Data Types

 Erasers: { Quantity : 1}
 }
]
}

Note
DynamoDB lets you access individual elements within lists and arrays, even if those elements
are deeply nested. For more information, see Document Paths (p. 100).

Supported Operations in DynamoDB
To work with tables and items, Amazon DynamoDB offers the following set of operations:

Table Operations
DynamoDB provides operations to create, update and delete tables. After the table is created, you can
use the UpdateTable operation to increase or decrease a table's provisioned throughput. DynamoDB
also supports an operation to retrieve table information (the DescribeTable operation) including the
current status of the table, the primary key, and when the table was created. The ListTables operation
enables you to get a list of tables in your account in the region of the endpoint you are using to communicate
with DynamoDB. For more information, see Working with Tables in DynamoDB (p. 61).

Item Operations
Item operations enable you to add, update and delete items from a table. The UpdateItem operation
allows you to update existing attribute values, add new attributes, and delete existing attributes from an
item.You can also perform conditional updates. For example, if you are updating a price value, you can
set a condition so the update happens only if the current price is $20.

DynamoDB provides an operation to retrieve a single item (GetItem) or multiple items (BatchGetItem).
You can use the BatchGetItem operation to retrieve items from multiple tables. For more information,
see Working with Items in DynamoDB (p. 92).

Query and Scan
The Query operation enables you to query a table using the hash attribute and an optional range filter.
If the table has a secondary index, you can also Query the index using its key.You can query only tables
whose primary key is of hash-and-range type; you can also query any secondary index on such tables.
Query is the most efficient way to retrieve items from a table or a secondary index.

DynamoDB also supports a Scan operation, which you can use on a table or a secondary index. The
Scan operation reads every item in the table or secondary index. For large tables and secondary indexes,
a Scan can consume a large amount of resources; for this reason, we recommend that you design your
applications so that you can use the Query operation mostly, and use Scan only where appropriate. For
more information, see Query and Scan Operations in DynamoDB (p. 192).

You can use conditional expressions in both the Query and Scan operations to control which items are
returned.

API Version 2012-08-10
9

Amazon DynamoDB Developer Guide
Supported Operations

Data Read and Consistency Considerations
DynamoDB maintains multiple copies of each item to ensure durability. When you receive an "operation
successful" response to your write request, DynamoDB ensures that the write is durable on multiple
servers. However, it takes time for the update to propagate to all copies.The data is eventually consistent,
meaning that a read request immediately after a write operation might not show the latest change. However,
DynamoDB offers you the option to request the most up-to-date version of the data. To support varied
application requirements, DynamoDB supports both eventually consistent and strongly consistent read
options.

Eventually Consistent Reads

When you read data (GetItem, BatchGetItem, Query or Scan operations), the response might not
reflect the results of a recently completed write operation (PutItem, UpdateItem or DeleteItem). The
response might include some stale data. Consistency across all copies of the data is usually reached
within a second; so if you repeat your read request after a short time, the response returns the latest data.
By default, the Query and GetItem operations perform eventually consistent reads, but you can optionally
request strongly consistent reads. BatchGetItem operations are eventually consistent by default, but
you can specify strongly consistent on a per-table basis. Scan operations are eventually consistent by
default . For more information about operations in DynamoDB, see Using the DynamoDB API (p. 512).

Strongly Consistent Reads

When you issue a strongly consistent read request, DynamoDB returns a response with the most up-to-date
data that reflects updates by all prior related write operations to which DynamoDB returned a successful
response. A strongly consistent read might be less available in the case of a network delay or outage.
For the GetItem, Query or Scan operations, you can request a strongly consistent read result by
specifying optional parameters in your request.

Conditional Updates and Concurrency Control
In a multiuser environment, it is important to ensure data updates made by one client don't overwrite
updates made by another client. This "lost update" problem is a classic database concurrency issue.
Suppose two clients read the same item. Both clients get a copy of that item from DynamoDB. Client 1
then sends a request to update the item. Client 2 is not aware of any update. Later, Client 2 sends its
own request to update the item, overwriting the update made by Client 1.Thus, the update made by Client
1 is lost.

DynamoDB supports a "conditional write" feature that lets you specify a condition when updating an item.
DynamoDB writes the item only if the specified condition is met; otherwise it returns an error. In the "lost
update" example, client 2 can add a condition to verify item values on the server-side are same as the
item copy on the client-side. If the item on the server is updated, client 2 can choose to get an updated
copy before applying its own updates.

DynamoDB also supports an "atomic counter" feature where you can send a request to add or subtract
from an existing attribute value without interfering with another simultaneous write request. For example,
a web application might want to maintain a counter per visitor to its site. In this case, the client only wants
to increment a value regardless of what the previous value was. DynamoDB write operations support
incrementing or decrementing existing attribute values.

For more information, see Working with Items in DynamoDB (p. 92).

API Version 2012-08-10
10

Amazon DynamoDB Developer Guide
Data Read and Consistency Considerations

Provisioned Throughput in Amazon DynamoDB
When you create or update a table, you specify how much provisioned throughput capacity you want to
reserve for reads and writes. DynamoDB will reserve the necessary machine resources to meet your
throughput needs while ensuring consistent, low-latency performance.

A unit of read capacity represents one strongly consistent read per second (or two eventually consistent
reads per second) for items as large as 4 KB. A unit of write capacity represents one write per second
for items as large as 1 KB.

Items larger than 4 KB will require more than one read operation. The total number of read operations
necessary is the item size, rounded up to the next multiple of 4 KB, divided by 4 KB. For example, to
calculate the number of read operations for an item of 10 KB, you would round up to the next multiple of
4 KB (12 KB) and then divide by 4 KB, for 3 read operations.

The following table explains how to calculate the provisioned throughput capacity that you need.

How to CalculateCapacity Units Required For

Number of item reads per second × 4 KB item size

(If you use eventually consistent reads, you'll get twice
as many reads per second.)

Reads

Number of item writes per second × 1 KB item sizeWrites

If your application's read or write requests exceed the provisioned throughput for a table, then those
requests might be throttled.You can use the AWS Management Console to monitor your provisioned
and actual throughput and to change your provisioned capacity in anticipation of traffic changes.

For more information about specifying the provisioned throughput requirements for a table, see Specifying
Read and Write Requirements for Tables (p. 62).

For tables with secondary indexes, DynamoDB consumes additional capacity units. For example, if you
wanted to add a single 1 KB item to a table, and that item contained an indexed attribute, then you would
need two write capacity units—one for writing to the table, and another for writing to the index. For more
information, see:

• Provisioned Throughput Considerations for Local Secondary Indexes (p. 315)

• Provisioned Throughput Considerations for Global Secondary Indexes (p. 266)

Read Capacity Units
If your items are smaller than 4 KB in size, each read capacity unit will give you one strongly consistent
read per second, or two eventually consistent reads per second.You cannot group multiple items in a
single read operation, even if the items together are 4 KB or smaller. For example, if your items are 3 KB
and you want to read 80 items per second from your table, then you need to provision 80 (reads per
second) × 1 (3 KB / 4 KB = 0.75, rounded up to the next whole number) = 80 read capacity units for strong
consistency. For eventual consistency, you need to provision only 40 read capacity units.

If your items are larger than 4 KB, you will need to round up the item size to the next 4 KB boundary. For
example, if your items are 6 KB and you want to do 100 strongly consistent reads per second, you need
to provision 100 (reads per second) × 2 (6 KB / 4 KB = 1.5, rounded up to the next whole number) = 200
read capacity units.

API Version 2012-08-10
11

Amazon DynamoDB Developer Guide
Provisioned Throughput

You can use the Query and Scan operations in DynamoDB to retrieve multiple consecutive items from
a table or an index in a single request. With these operations, DynamoDB uses the cumulative size of
the processed items to calculate provisioned throughput. For example, if a Query operation retrieves 100
items that are 1 KB each, the read capacity calculation is not (100 × 4 KB) = 100 read capacity units, as
if those items were retrieved individually using GetItem or BatchGetItem. Instead, the total would be
only 25 read capacity units ((100 * 1024 bytes) = 100 KB, which is then divided by 4 KB). For more
information see Item Size Calculations (p. 64).

Write Capacity Units
If your items are smaller than 1 KB in size, then each write capacity unit will give you 1 write per second.
You cannot group multiple items in a single write operation, even if the items together are 1 KB or smaller.
For example, if your items are 512 bytes and you want to write 100 items per second to your table, then
you would need to provision 100 write capacity units.

If your items are larger than 1 KB in size, you will need to round the item size up to the next 1 KB boundary.
For example, if your items are 1.5 KB and you want to do 10 writes per second, then you would need to
provision 10 (writes per second) × 2 (1.5 KB rounded up to the next whole number) = 20 write capacity
units.

Accessing DynamoDB
Amazon DynamoDB is a web service that uses HTTP and HTTPS as a transport and JavaScript Object
Notation (JSON) as a message serialization format.Your application code can make requests directly to
the DynamoDB web service API. Instead of making the requests to the DynamoDB API directly from your
application, we recommend that you use the AWS Software Development Kits (SDKs). The easy-to-use
libraries in the AWS SDKs make it unnecessary to call the DynamoDB API directly from your application.
The libraries take care of request authentication, serialization, and connection management. For more
information about using the AWS SDKs, see Using the AWS SDKs with DynamoDB (p. 53).

The AWS SDKs provide low-level APIs that closely match the underlying DynamoDB API. To further
simplify application development, the SDKs also provide the following additional APIs:

• The Java and .NET SDKs provide APIs with higher levels of abstraction. These higher-level interfaces
let you define the relationships between objects in your program and the database tables that store
those objects' data. After you define this mapping, you call simple object methods. This allows you to
write object-centric code, rather than database-centric code.

• The .NET SDK provides a document model that wraps some of the low-level API functionality to further
simplify your coding.

For more information, see Using the AWS SDK for Java (p. 53) and Using the AWS SDK for .NET (p. 56).

If you decide not to use the AWS SDKs, then your application will need to construct individual service
requests. Each request must contain a valid JSON payload and correct HTTP headers, including a valid
AWS signature. For more information on constructing your own service requests, see Using the DynamoDB
API (p. 512).

DynamoDB also provides a management console that enables you to work with tables and items.You
can create, update, and delete tables without writing any code.You can view all the existing items in a
table or use a query to filter the items in the table.You can add new items or delete items.You can also
use the management console to monitor the performance of your tables. Using CloudWatch metrics in
the console, you can monitor table throughput and other performance metrics. For more information, go
to DynamoDB console.

API Version 2012-08-10
12

Amazon DynamoDB Developer Guide
Write Capacity Units

https://console.aws.amazon.com/dynamodb

Regions and Endpoints for DynamoDB
By default, the AWS SDKs and console for DynamoDB reference the US West (Oregon) region. As
DynamoDB expands availability to new regions, new endpoints for these regions are also available to
use in your own HTTP requests, the AWS SDKs, and the console. For a current list of supported regions
and endpoints, see Regions and Endpoints.

API Version 2012-08-10
13

Amazon DynamoDB Developer Guide
Regions and Endpoints for DynamoDB

http://docs.aws.amazon.com/general/latest/gr/rande.html

Creating Tables and Loading
Sample Data

In this section, you will create tables in DynamoDB, and the populate those tables with data.These tables
and their data are used as examples throughout the rest of this Developer Guide.

Important
If you have not done so already, we recommend that you first read the Amazon DynamoDB
Getting Started Guide before you work through this section. The Amazon DynamoDB Getting
Started Guide provides hands-on exercises that help you learn the basics of working with
DynamoDB.

• Amazon DynamoDB Getting Started Guide

Topics

• Step 1: Before You Begin (p. 14)

• Step 2: Create Example Tables (p. 15)

• Step 3: Load Data into Tables (p. 21)

• Step 4: Try a Query (p. 44)

• Step 5: Delete Example Tables (p. 51)

• Where Do I Go from Here? (p. 52)

Step 1: Before You Begin
Before you can start with this exercise, you must sign up for the service and download one of the AWS
SDKs. The following sections provide step-by-step instructions.

Sign up for the Service
To use DynamoDB, you need an AWS account. If you don't already have one, you'll be prompted to
create one when you sign up.You're not charged for any AWS services that you sign up for unless you
use them.

API Version 2012-08-10
14

Amazon DynamoDB Developer Guide
Step 1: Before You Begin

http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/

To sign up for DynamoDB

1. Open http://aws.amazon.com/, and then click Sign Up.

2. Follow the on-screen instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Download AWS SDK
To try these examples, you must determine the programming language that you want to use and download
the appropriate AWS Software Development Kit (SDK) for your development platform.

Note
This developer guide provides code examples in Java, C#, and PHP.
If you want to use a different programming language with DynamoDB, go to http://
aws.amazon.com/code and download the appropriate SDK. AWS provides SDK support for
Python, Ruby, JavaScript, and more.

Downloading the AWS SDK for Java
To test the Java examples in this developer guide, you need the AWS SDK for Java.

You have the following download options:

• If you are using Eclipse, you can download and install the AWS Toolkit for Eclipse using the update
site http://aws.amazon.com/eclipse/. For more information, go to AWS Toolkit for Eclipse.

• If you are using any other IDE to create your application, download the AWS SDK for Java.

Downloading the AWS SDK for .NET
To test the C# examples in this developer guide, you need the AWS SDK for .NET.

You have the following download options:

• If you are using Visual Studio, you can install both the AWS SDK for .NET and the Toolkit for Visual
Studio. The toolkit provides AWS Explorer for Visual Studio and project templates that you can use for
development. Go to http://aws.amazon.com/sdkfornet and click Download AWS .NET SDK. By default,
the installation script installs both the AWS SDK and the Toolkit for Visual Studio. To learn more about
the toolkit, go to AWS Toolkit for Visual Studio User Guide.

• If you are using any other IDE to create you application, you can use the same link provided in the
preceding step and install only the AWS SDK for .NET.

Downloading the AWS SDK for PHP
To test the PHP examples in this developer guide, you need the AWS SDK for PHP. Go to
http://aws.amazon.com/sdkforphp and follow the instructions on that page to download the AWS SDK
for PHP.

Step 2: Create Example Tables
This example covers the two following simple use cases.

API Version 2012-08-10
15

Amazon DynamoDB Developer Guide
Download AWS SDK

http://aws.amazon.com/
http://aws.amazon.com/code
http://aws.amazon.com/code
http://aws.amazon.com/eclipse/
http://aws.amazon.com/sdkforjava
http://aws.amazon.com/sdkfornet/
http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/
http://aws.amazon.com/sdkforphp/

Use Case 1: Product Catalog
Suppose you want to store product information in DynamoDB. Each product you store has its own set of
properties, and accordingly, you need to store different information about each of these products.
DynamoDB is a NoSQL database: Except for a required common primary key, individual items in a table
can have any number of attributes. This enables you to save all the product data in the same table. So
you will create a ProductCatalog table that uses Id as the primary key and stores information for products
such as books and bicycles in the table. Id is a numeric attribute and hash type primary key. After creating
the table, in the next step you will write code to retrieve items from this table. Note that while you can
retrieve an item, you cannot query the table. To query the table, the primary key must be of the hash and
range type.

Provisioned
Throughput

Range Attribute
Name and Type

Hash Attribute
Name and Type

Primary
Key Type

Table Name

Read capacity units:
10

Write capacity units:
5

-Attribute Name: Id

Type: Number

HashProductCatalog (Id, ...
)

Use Case 2: Forum Application
Amazon Web Services maintains several forums (see Discussion Forums) for customers to engage with
the developer community, ask questions, or reply to other customer queries. AWS maintains one or more
forums for each of its services. Customers go to a forum and start a thread by posting a message. Over
time, each thread receives one or more replies.

In this exercise, we model this application by creating the three following tables. Note that the Thread
and Reply tables have hash and range type primary keys and therefore you can query these tables.

Provisioned
Throughput

Range Attribute
Name and Type

Hash Attribute
Name and Type

Primary
Key Type

Table Name

Read capacity units:
10

Write capacity units:
5

-Attribute Name:
Name

Type: String

HashForum (Name, ...)

Read capacity units:
10

Write capacity units:
5

Attribute Name:
Subject

Type: String

Attribute Name:
ForumName

Type: String

Hash and
Range

Thread (ForumName,
Subject, ...)

Read capacity units:
10

Write capacity units:
5

Attribute Name:
ReplyDateTime

Type: String

Attribute Name: Id

Type: String

Hash and
Range

Reply (Id, ReplyDate-
Time, ...)

The Reply table has the following local secondary index:

Projected AttributesAttribute to IndexIndex Name

Table and Index KeysPostedByPostedBy-index

API Version 2012-08-10
16

Amazon DynamoDB Developer Guide
Use Case 1: Product Catalog

https://forums.aws.amazon.com/

In the next step, you will write a simple query to retrieve data from these tables.

Creating Tables
For this exercise, you will use the DynamoDB console to create the ProductCatalog, Forum, Thread
and Reply tables.

Note
In these steps, you use these tables to explore some of the basic DynamoDB operations.
However, these tables are also used in other examples throughout this reference. If you delete
these tables and later want to recreate them, you can repeat this step, or programmatically
recreate them and upload sample data. For more information about creating the tables and
loading the data programmatically, see Creating Example Tables and Uploading Data (p. 686).

To Create the Sample Tables

Use the following procedure to create a table.You will need to perform this procedure once for each of
the tables described in Use Case 1: Product Catalog (p. 16) and Use Case 2: Forum Application (p. 16):

• ProductCatalog

• Forum

• Thread

• Reply

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

For first time users, the following wizard opens.

If you already have tables in DynamoDB, you'll see the console with your list of tables.

API Version 2012-08-10
17

Amazon DynamoDB Developer Guide
Creating Tables

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

2. Click Create Table.

The Create Table wizard opens.

3. Set the table name and its primary key

a. Specify the table name in the Table Name field.

See the preceding table for the list of tables that you are creating.

b. Select the primary key type.

See the preceding table for the primary key type of the table that you are creating.

c. If the table's primary key is of Hash and Range type, specify the hash attribute name and type
for both the hash and range attributes.

d. If the table's primary key is of Hash type, specify the hash attribute name and select the attribute
type.

API Version 2012-08-10
18

Amazon DynamoDB Developer Guide
Creating Tables

e. Click Continue.

4. If you are creating the Reply table, you will need to define a local secondary index:

A local secondary index allows you to perform queries against an attribute that is not part of the
primary key. For this exercise, you will create a local secondary index on the PostedBy attribute of
the Reply table.

a. In the Index Type field, select Local Secondary Index.

b. In the Index Range Key field, enter PostedBy.

c. In the Index Name field, accept the default name of PostedBy-index.

d. In the Projected Attributes field, select Table and Index Keys.

e. Click Add Index To Table.

f. Click Continue.

5. Specify the provisioned throughput

a. In the Create Table - Provisioned Throughput step, leave the Help me estimate Provisioned
Throughput checkbox unchecked.

API Version 2012-08-10
19

Amazon DynamoDB Developer Guide
Creating Tables

It is important to configure the appropriate provisioned throughput based on your expected item
size and your expected read and write request rates.There is cost associated with the configured
provisioned throughput. For more information, see Specifying Read and Write Requirements
for Tables (p. 62). However, for this exercise, you will set finite values.

b. In the Read Capacity Units field, enter 10. In the Write Capacity Units field, enter 5 and click
Continue.

These throughput values allow you up to ten 4 KB read operations and up to five 1 KB write
operations per second. For more information, see DynamoDB Data Model (p. 3).

6. Configure CloudWatch Alarms

In the Create Table - Throughput Alarms (optional) wizard, select the Use Basic Alarms check
box.

This automatically configures CloudWatch alarms to notify you when your consumption reaches 80%
of the table's provisioned throughput. By default, the alarm is set to send an email to the AWS Account
email address that you are using to create the table.You can edit the Send notification to: text box
and specify additional email addresses that are separated by commas.

When you delete the table using the console, you can optionally delete the associated CloudWatch
alarms.

For more information about CloudWatch alarms, see the Amazon CloudWatch Developer Guide.

7. Click Create Table.

API Version 2012-08-10
20

Amazon DynamoDB Developer Guide
Creating Tables

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

Note
Repeat this procedure to create the remaining tables described in Use Case 1: Product
Catalog (p. 16) and Use Case 2: Forum Application (p. 16).

The console shows the list of tables.You must wait for the status of all the tables to become ACTIVE.
The console also shows the Details, Monitoring, and Alarm Setup tabs that provide additional information
about the selected table.

Step 3: Load Data into Tables
Topics

• Load Data into Tables Using the AWS SDK for Java (p. 21)

• Load Data into Tables Using the AWS SDK for .NET (p. 28)

• Load Data into Tables Using the AWS SDK for PHP (p. 38)

• Verify Data Load (p. 43)

In this step, you will upload sample data to the tables that you created.You can choose the application
development platform that you want to use to explore DynamoDB.

After you do this, you can use the DynamoDB console to verify your data upload.

Load Data into Tables Using the AWS SDK for Java
In the preceding step, you created sample tables using the console. Now, you can upload the sample
data to these tables. The following Java code example uses the AWS SDK for Java to upload the sample
data. For step-by-step instructions on configuring your AWS access keys, setting the default endpoint
and running the sample, see Running Java Examples for DynamoDB (p. 55).

Note
After you run this program, see Verify Data Load (p. 43) to view the tables and data in the
DynamoDB console.

API Version 2012-08-10
21

Amazon DynamoDB Developer Guide
Step 3: Load Sample Data

Example - Upload Sample Items Using the AWS SDK for Java

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
import java.util.HashSet;
import java.util.TimeZone;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.Table;

public class SampleDataLoad {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));
 static SimpleDateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");
 static String productCatalogTableName = "ProductCatalog";
 static String forumTableName = "Forum";
 static String threadTableName = "Thread";
 static String replyTableName = "Reply";

 public static void main(String[] args) throws Exception {

 try {

 loadSampleProducts(productCatalogTableName);
 loadSampleForums(forumTableName);
 loadSampleThreads(threadTableName);
 loadSampleReplies(replyTableName);

 } catch (AmazonServiceException ase) {
 System.err.println("Data load script failed.");
 }
 }

 private static void loadSampleProducts(String tableName) {

 Table table = dynamoDB.getTable(tableName);

 try {

 System.out.println("Adding data to " + tableName);

 Item item = new Item()
 .withPrimaryKey("Id", 101)
 .withString("Title", "Book 101 Title")
 .withString("ISBN", "111-1111111111")
 .withStringSet("Authors",
 new HashSet<String>(Arrays.asList("Author1")))

API Version 2012-08-10
22

Amazon DynamoDB Developer Guide
Load Data into Tables - Java

 .withNumber("Price", 2)
 .withString("Dimensions", "8.5 x 11.0 x 0.5")
 .withNumber("PageCount", 500)
 .withBoolean("InPublication", true)
 .withString("ProductCategory", "Book");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 102)
 .withString("Title", "Book 102 Title")
 .withString("ISBN", "222-2222222222")
 .withStringSet("Authors", new HashSet<String>(
 Arrays.asList("Author1", "Author2")))
 .withNumber("Price", 20)
 .withString("Dimensions", "8.5 x 11.0 x 0.8")
 .withNumber("PageCount", 600)
 .withBoolean("InPublication", true)
 .withString("ProductCategory", "Book");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 103)
 .withString("Title", "Book 103 Title")
 .withString("ISBN", "333-3333333333")
 .withStringSet("Authors", new HashSet<String>(
 Arrays.asList("Author1", "Author2")))
 // Intentional. Later we'll run Scan to find price error. Find

 // items > 1000 in price.
 .withNumber("Price", 2000)
 .withString("Dimensions", "8.5 x 11.0 x 1.5")
 .withNumber("PageCount", 600)
 .withBoolean("InPublication", false)
 .withString("ProductCategory", "Book");
 table.putItem(item);

 // Add bikes.

 item = new Item()
 .withPrimaryKey("Id", 201)
 .withString("Title", "18-Bike-201")
 // Size, followed by some title.
 .withString("Description", "201 Description")
 .withString("BicycleType", "Road")
 .withString("Brand", "Mountain A")
 // Trek, Specialized.
 .withNumber("Price", 100)
 .withString("Gender", "M")
 // Men's
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Red", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 202)
 .withString("Title", "21-Bike-202")
 .withString("Description", "202 Description")

API Version 2012-08-10
23

Amazon DynamoDB Developer Guide
Load Data into Tables - Java

 .withString("BicycleType", "Road")
 .withString("Brand", "Brand-Company A")
 .withNumber("Price", 200)
 .withString("Gender", "M")
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Green", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 203)
 .withString("Title", "19-Bike-203")
 .withString("Description", "203 Description")
 .withString("BicycleType", "Road")
 .withString("Brand", "Brand-Company B")
 .withNumber("Price", 300)
 .withString("Gender", "W")
 // Women's
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Red", "Green", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 204)
 .withString("Title", "18-Bike-204")
 .withString("Description", "204 Description")
 .withString("BicycleType", "Mountain")
 .withString("Brand", "Brand-Company B")
 .withNumber("Price", 400)
 .withString("Gender", "W")
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Red")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 205)
 .withString("Title", "20-Bike-205")
 .withString("Description", "205 Description")
 .withString("BicycleType", "Hybrid")
 .withString("Brand", "Brand-Company C")
 .withNumber("Price", 500)
 .withString("Gender", "B")
 // Boy's
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Red", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());
 }

 }

 private static void loadSampleForums(String tableName) {

API Version 2012-08-10
24

Amazon DynamoDB Developer Guide
Load Data into Tables - Java

 Table table = dynamoDB.getTable(tableName);

 try {

 System.out.println("Adding data to " + tableName);

 Item item = new Item().withPrimaryKey("Name", "Amazon DynamoDB")
 .withString("Category", "Amazon Web Services")
 .withNumber("Threads", 2)
 .withNumber("Messages", 4)
 .withNumber("Views", 1000);
 table.putItem(item);

 item = new Item().withPrimaryKey("Name", "Amazon S3")
 .withString("Category", "Amazon Web Services")
 .withNumber("Threads", 0);
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());
 }
 }

 private static void loadSampleThreads(String tableName) {
 try {
 long time1 = (new Date()).getTime() - (7 * 24 * 60 * 60 * 1000);
// 7
 // days
 // ago
 long time2 = (new Date()).getTime() - (14 * 24 * 60 * 60 * 1000);
// 14
 // days
 // ago
 long time3 = (new Date()).getTime() - (21 * 24 * 60 * 60 * 1000);
// 21
 // days
 // ago

 Date date1 = new Date();
 date1.setTime(time1);

 Date date2 = new Date();
 date2.setTime(time2);

 Date date3 = new Date();
 date3.setTime(time3);

 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));

 Table table = dynamoDB.getTable(tableName);

 System.out.println("Adding data to " + tableName);

 Item item = new Item()
 .withPrimaryKey("ForumName", "Amazon DynamoDB")

API Version 2012-08-10
25

Amazon DynamoDB Developer Guide
Load Data into Tables - Java

 .withString("Subject", "DynamoDB Thread 1")
 .withString("Message", "DynamoDB thread 1 message")
 .withString("LastPostedBy", "User A")
 .withString("LastPostedDateTime", dateFormatter.format(date2))

 .withNumber("Views", 0)
 .withNumber("Replies", 0)
 .withNumber("Answered", 0)
 .withStringSet("Tags", new HashSet<String>(
 Arrays.asList("index", "primarykey", "table")));
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("ForumName", "Amazon DynamoDB")
 .withString("Subject", "DynamoDB Thread 2")
 .withString("Message", "DynamoDB thread 2 message")
 .withString("LastPostedBy", "User A")
 .withString("LastPostedDateTime", dateFormatter.format(date3))

 .withNumber("Views", 0)
 .withNumber("Replies", 0)
 .withNumber("Answered", 0)
 .withStringSet("Tags", new HashSet<String>(
 Arrays.asList("index", "primarykey", "rangekey")));
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("ForumName", "Amazon S3")
 .withString("Subject", "S3 Thread 1")
 .withString("Message", "S3 Thread 3 message")
 .withString("LastPostedBy", "User A")
 .withString("LastPostedDateTime", dateFormatter.format(date1))

 .withNumber("Views", 0)
 .withNumber("Replies", 0)
 .withNumber("Answered", 0)
 .withStringSet("Tags", new HashSet<String>(
 Arrays.asList("largeobjects", "multipart upload")));
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());
 }

 }

 private static void loadSampleReplies(String tableName) {
 try {
 // 1 day ago
 long time0 = (new Date()).getTime() - (1 * 24 * 60 * 60 * 1000);
 // 7 days ago
 long time1 = (new Date()).getTime() - (7 * 24 * 60 * 60 * 1000);
 // 14 days ago
 long time2 = (new Date()).getTime() - (14 * 24 * 60 * 60 * 1000);

 // 21 days ago
 long time3 = (new Date()).getTime() - (21 * 24 * 60 * 60 * 1000);

API Version 2012-08-10
26

Amazon DynamoDB Developer Guide
Load Data into Tables - Java

 Date date0 = new Date();
 date0.setTime(time0);

 Date date1 = new Date();
 date1.setTime(time1);

 Date date2 = new Date();
 date2.setTime(time2);

 Date date3 = new Date();
 date3.setTime(time3);

 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));

 Table table = dynamoDB.getTable(tableName);

 System.out.println("Adding data to " + tableName);

 // Add threads.

 Item item = new Item()
 .withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 1")
 .withString("ReplyDateTime", (dateFormatter.format(date3)))
 .withString("Message", "DynamoDB Thread 1 Reply 1 text")
 .withString("PostedBy", "User A");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 1")
 .withString("ReplyDateTime", dateFormatter.format(date2))
 .withString("Message", "DynamoDB Thread 1 Reply 2 text")
 .withString("PostedBy", "User B");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 2")
 .withString("ReplyDateTime", dateFormatter.format(date1))
 .withString("Message", "DynamoDB Thread 2 Reply 1 text")
 .withString("PostedBy", "User A");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 2")
 .withString("ReplyDateTime", dateFormatter.format(date0))
 .withString("Message", "DynamoDB Thread 2 Reply 2 text")
 .withString("PostedBy", "User A");
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());

 }
 }

}

API Version 2012-08-10
27

Amazon DynamoDB Developer Guide
Load Data into Tables - Java

Load Data into Tables Using the AWS SDK for .NET
In the preceding step, you created sample tables using the console. Now, you can upload sample data
to these tables. The following C# code example uses the AWS SDK for .NET document model API to
upload sample data. For step-by-step instructions on configuring your AWS access keys, setting the
default endpoint and running the sample, see Running .NET Examples for DynamoDB (p. 57).

Note
After you run this program, see Verify Data Load (p. 43) to view the tables and data in the
DynamoDB console.

API Version 2012-08-10
28

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

Example - Upload Sample Items Using the AWS SDK for .NET Document Model API

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DocumentModel;

using Amazon.Runtime;

using Amazon.SecurityToken;

namespace com.amazonaws.codesamples

{

 class SampleDataLoad

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 // Load data (using the .NET document API)

 LoadSampleProducts();

 LoadSampleForums();

 LoadSampleThreads();

 LoadSampleReplies();

 Console.WriteLine("Data loaded... To continue, press Enter");

 Console.ReadLine();

 }

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}

API Version 2012-08-10
29

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 }

 private static void LoadSampleProducts()

 {

 Table productCatalogTable = Table.LoadTable(client, "ProductCata
log");

 // ********** Add Books *********************

 var book1 = new Document();

 book1["Id"] = 101;

 book1["Title"] = "Book 101 Title";

 book1["ISBN"] = "111-1111111111";

 book1["Authors"] = new List<string> { "Author 1" };

 book1["Price"] = -2; // *** Intentional value. Later used to illus
trate scan.

 book1["Dimensions"] = "8.5 x 11.0 x 0.5";

 book1["PageCount"] = 500;

 book1["InPublication"] = true;

 book1["ProductCategory"] = "Book";

 productCatalogTable.PutItem(book1);

 var book2 = new Document();

 book2["Id"] = 102;

 book2["Title"] = "Book 102 Title";

 book2["ISBN"] = "222-2222222222";

 book2["Authors"] = new List<string> { "Author 1", "Author 2" }; ;

 book2["Price"] = 20;

 book2["Dimensions"] = "8.5 x 11.0 x 0.8";

API Version 2012-08-10
30

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

 book2["PageCount"] = 600;

 book2["InPublication"] = true;

 book2["ProductCategory"] = "Book";

 productCatalogTable.PutItem(book2);

 var book3 = new Document();

 book3["Id"] = 103;

 book3["Title"] = "Book 103 Title";

 book3["ISBN"] = "333-3333333333";

 book3["Authors"] = new List<string> { "Author 1", "Author2", "Author
 3" }; ;

 book3["Price"] = 2000;

 book3["Dimensions"] = "8.5 x 11.0 x 1.5";

 book3["PageCount"] = 700;

 book3["InPublication"] = false;

 book3["ProductCategory"] = "Book";

 productCatalogTable.PutItem(book3);

 // ************ Add bikes. *******************

 var bicycle1 = new Document();

 bicycle1["Id"] = 201;

 bicycle1["Title"] = "18-Bike 201"; // size, followed by some title.

 bicycle1["Description"] = "201 description";

 bicycle1["BicycleType"] = "Road";

 bicycle1["Brand"] = "Brand-Company A"; // Trek, Specialized.

 bicycle1["Price"] = 100;

 bicycle1["Gender"] = "M";

 bicycle1["Color"] = new List<string> { "Red", "Black" };

 bicycle1["ProductCategory"] = "Bike";

API Version 2012-08-10
31

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

 productCatalogTable.PutItem(bicycle1);

 var bicycle2 = new Document();

 bicycle2["Id"] = 202;

 bicycle2["Title"] = "21-Bike 202Brand-Company A";

 bicycle2["Description"] = "202 description";

 bicycle2["BicycleType"] = "Road";

 bicycle2["Brand"] = "";

 bicycle2["Price"] = 200;

 bicycle2["Gender"] = "M"; // Mens.

 bicycle2["Color"] = new List<string> { "Green", "Black" };

 bicycle2["ProductCategory"] = "Bicycle";

 productCatalogTable.PutItem(bicycle2);

 var bicycle3 = new Document();

 bicycle3["Id"] = 203;

 bicycle3["Title"] = "19-Bike 203";

 bicycle3["Description"] = "203 description";

 bicycle3["BicycleType"] = "Road";

 bicycle3["Brand"] = "Brand-Company B";

 bicycle3["Price"] = 300;

 bicycle3["Gender"] = "W";

 bicycle3["Color"] = new List<string> { "Red", "Green", "Black" };

 bicycle3["ProductCategory"] = "Bike";

 productCatalogTable.PutItem(bicycle3);

 var bicycle4 = new Document();

 bicycle4["Id"] = 204;

 bicycle4["Title"] = "18-Bike 204";

API Version 2012-08-10
32

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

 bicycle4["Description"] = "204 description";

 bicycle4["BicycleType"] = "Mountain";

 bicycle4["Brand"] = "Brand-Company B";

 bicycle4["Price"] = 400;

 bicycle4["Gender"] = "W"; // Women.

 bicycle4["Color"] = new List<string> { "Red" };

 bicycle4["ProductCategory"] = "Bike";

 productCatalogTable.PutItem(bicycle4);

 var bicycle5 = new Document();

 bicycle5["Id"] = 205;

 bicycle5["Title"] = "20-Title 205";

 bicycle4["Description"] = "205 description";

 bicycle5["BicycleType"] = "Hybrid";

 bicycle5["Brand"] = "Brand-Company C";

 bicycle5["Price"] = 500;

 bicycle5["Gender"] = "B"; // Boys.

 bicycle5["Color"] = new List<string> { "Red", "Black" };

 bicycle5["ProductCategory"] = "Bike";

 productCatalogTable.PutItem(bicycle5);

 }

 private static void LoadSampleForums()

 {

 Table forumTable = Table.LoadTable(client, "Forum");

 var forum1 = new Document();

 forum1["Name"] = "Amazon DynamoDB"; // PK

 forum1["Category"] = "Amazon Web Services";

API Version 2012-08-10
33

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

 forum1["Threads"] = 2;

 forum1["Messages"] = 4;

 forum1["Views"] = 1000;

 forumTable.PutItem(forum1);

 var forum2 = new Document();

 forum2["Name"] = "Amazon S3"; // PK

 forum2["Category"] = "Amazon Web Services";

 forum2["Threads"] = 1;

 forumTable.PutItem(forum2);

 }

 private static void LoadSampleThreads()

 {

 Table threadTable = Table.LoadTable(client, "Thread");

 // Thread 1.

 var thread1 = new Document();

 thread1["ForumName"] = "Amazon DynamoDB"; // Hash attribute.

 thread1["Subject"] = "DynamoDB Thread 1"; // Range attribute.

 thread1["Message"] = "DynamoDB thread 1 message text";

 thread1["LastPostedBy"] = "User A";

 thread1["LastPostedDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(14, 0, 0, 0));

 thread1["Views"] = 0;

 thread1["Replies"] = 0;

 thread1["Answered"] = false;

API Version 2012-08-10
34

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

 thread1["Tags"] = new List<string> { "index", "primarykey", "table"
 };

 threadTable.PutItem(thread1);

 // Thread 2.

 var thread2 = new Document();

 thread2["ForumName"] = "Amazon DynamoDB"; // Hash attribute.

 thread2["Subject"] = "DynamoDB Thread 2"; // Range attribute.

 thread2["Message"] = "DynamoDB thread 2 message text";

 thread2["LastPostedBy"] = "User A";

 thread2["LastPostedDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(21, 0, 0, 0));

 thread2["Views"] = 0;

 thread2["Replies"] = 0;

 thread2["Answered"] = false;

 thread2["Tags"] = new List<string> { "index", "primarykey",
"rangekey" };

 threadTable.PutItem(thread2);

 // Thread 3.

 var thread3 = new Document();

 thread3["ForumName"] = "Amazon S3"; // Hash attribute.

 thread3["Subject"] = "S3 Thread 1"; // Range attribute.

 thread3["Message"] = "S3 thread 3 message text";

 thread3["LastPostedBy"] = "User A";

 thread3["LastPostedDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(7, 0, 0, 0));

 thread3["Views"] = 0;

 thread3["Replies"] = 0;

API Version 2012-08-10
35

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

 thread3["Answered"] = false;

 thread3["Tags"] = new List<string> { "largeobjects", "multipart
upload" };

 threadTable.PutItem(thread3);

 }

 private static void LoadSampleReplies()

 {

 Table replyTable = Table.LoadTable(client, "Reply");

 // Reply 1 - thread 1.

 var thread1Reply1 = new Document();

 thread1Reply1["Id"] = "Amazon DynamoDB#DynamoDB Thread 1"; // Hash
 attribute.

 thread1Reply1["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(21, 0, 0, 0)); // Range attribute.

 thread1Reply1["Message"] = "DynamoDB Thread 1 Reply 1 text";

 thread1Reply1["PostedBy"] = "User A";

 replyTable.PutItem(thread1Reply1);

 // Reply 2 - thread 1.

 var thread1reply2 = new Document();

 thread1reply2["Id"] = "Amazon DynamoDB#DynamoDB Thread 1"; // Hash
 attribute.

 thread1reply2["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(14, 0, 0, 0)); // Range attribute.

 thread1reply2["Message"] = "DynamoDB Thread 1 Reply 2 text";

 thread1reply2["PostedBy"] = "User B";

 replyTable.PutItem(thread1reply2);

API Version 2012-08-10
36

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

 // Reply 3 - thread 1.

 var thread1Reply3 = new Document();

 thread1Reply3["Id"] = "Amazon DynamoDB#DynamoDB Thread 1"; // Hash
 attribute.

 thread1Reply3["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(7, 0, 0, 0)); // Range attribute.

 thread1Reply3["Message"] = "DynamoDB Thread 1 Reply 3 text";

 thread1Reply3["PostedBy"] = "User B";

 replyTable.PutItem(thread1Reply3);

 // Reply 1 - thread 2.

 var thread2Reply1 = new Document();

 thread2Reply1["Id"] = "Amazon DynamoDB#DynamoDB Thread 2"; // Hash
 attribute.

 thread2Reply1["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(7, 0, 0, 0)); // Range attribute.

 thread2Reply1["Message"] = "DynamoDB Thread 2 Reply 1 text";

 thread2Reply1["PostedBy"] = "User A";

 replyTable.PutItem(thread2Reply1);

 // Reply 2 - thread 2.

 var thread2Reply2 = new Document();

 thread2Reply2["Id"] = "Amazon DynamoDB#DynamoDB Thread 2"; // Hash
 attribute.

 thread2Reply2["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(1, 0, 0, 0)); // Range attribute.

 thread2Reply2["Message"] = "DynamoDB Thread 2 Reply 2 text";

 thread2Reply2["PostedBy"] = "User A";

API Version 2012-08-10
37

Amazon DynamoDB Developer Guide
Load Data into Tables - .NET

 replyTable.PutItem(thread2Reply2);

 }

 }

}

Load Data into Tables Using the AWS SDK for PHP
Note
This topic assumes that you are already following the instructions for Creating Tables and Loading
Sample Data (p. 14) and have the AWS SDK for PHP properly installed. For information about
setting up the SDK, configuring your AWS access keys and setting the default endpoint, see
Running PHP Examples (p. 59).

After you create a table and the table is in the ACTIVE state, you can begin performing data operations
on the table.

API Version 2012-08-10
38

Amazon DynamoDB Developer Guide
Load Data into Tables - PHP

Example - Upload Sample Items Using the AWS SDK for PHP

The following PHP code example adds items to your existing tables using the PHP command put_item.
Notice the following code example puts 8 items in the ProductCatalog table.The table has a write capacity
units value of 5.You might see ProvisionedThroughputExceeded errors in the response from DynamoDB.
However, the AWS SDKs retry requests for this error, and eventually all of the data is written to the table.

Note
After you run this program, see Verify Data Load (p. 43) to view the tables and data in the
DynamoDB console.

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

Setup some local variables for dates

date_default_timezone_set('UTC');

$oneDayAgo = date('Y-m-d H:i:s', strtotime('-1 days'));
$sevenDaysAgo = date('Y-m-d H:i:s', strtotime('-7 days'));
$fourteenDaysAgo = date('Y-m-d H:i:s', strtotime('-14 days'));
$twentyOneDaysAgo = date('Y-m-d H:i:s', strtotime('-21 days'));

$tableName = 'ProductCatalog';
echo "Adding data to the $tableName table..." . PHP_EOL;

$response = $client->batchWriteItem(array(
 'RequestItems' => array(
 $tableName => array(
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '1101'),
 'Title' => array('S' => 'Book 101 Title'),
 'ISBN' => array('S' => '111-1111111111'),
 'Authors' => array('SS' => array('Author1')),
 'Price' => array('N' => '2'),
 'Dimensions' => array('S' => '8.5 x 11.0 x 0.5'),

 'PageCount' => array('N' => '500'),
 'InPublication' => array('N' => '1'),
 'ProductCategory' => array('S' => 'Book')
)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '102'),
 'Title' => array('S' => 'Book 102 Title'),
 'ISBN' => array('S' => '222-2222222222'),
 'Authors' => array('SS' => array('Author1',

API Version 2012-08-10
39

Amazon DynamoDB Developer Guide
Load Data into Tables - PHP

'Author2')),
 'Price' => array('N' => '20'),
 'Dimensions' => array('S' => '8.5 x 11.0 x 0.8'),

 'PageCount' => array('N' => '600'),
 'InPublication' => array('N' => '1'),
 'ProductCategory' => array('S' => 'Book')

)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '103'),
 'Title' => array('S' => 'Book 103 Title'),
 'ISBN' => array('S' => '333-3333333333'),
 'Authors' => array('SS' => array('Author1',
'Author2')),
 'Price' => array('N' => '2000'),
 'Dimensions' => array('S' => '8.5 x 11.0 x 1.5'),

 'PageCount' => array('N' => '600'),
 'InPublication' => array('N' => '0'),
 'ProductCategory' => array('S' => 'Book')

)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '201'),
 'Title' => array('S' => '18-Bike-201'),
 'Description' => array('S' => '201 Description'),

 'BicycleType' => array('S' => 'Road'),
 'Brand' => array('S' => 'Mountain A'),
 'Price' => array('N' => '100'),
 'Gender' => array('S' => 'M'),
 'Color' => array('SS' => array('Red',
'Black')),
 'ProductCategory' => array('S' => 'Bicycle')

)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '202'),
 'Title' => array('S' => '21-Bike-202'),
 'Description' => array('S' => '202 Description'),

 'BicycleType' => array('S' => 'Road'),
 'Brand' => array('S' => 'Brand-Company A'),

 'Price' => array('N' => '200'),

API Version 2012-08-10
40

Amazon DynamoDB Developer Guide
Load Data into Tables - PHP

 'Gender' => array('S' => 'M'),
 'Color' => array('SS' => array('Green',
'Black')),
 'ProductCategory' => array('S' => 'Bicycle')
)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '203'),
 'Title' => array('S' => '19-Bike-203'),
 'Description' => array('S' => '203 Description'),

 'BicycleType' => array('S' => 'Road'),
 'Brand' => array('S' => 'Brand-Company B'),

 'Price' => array('N' => '300'),
 'Gender' => array('S' => 'W'),
 'Color' => array('SS' => array('Red', 'Green',
 'Black')),
 'ProductCategory' => array('S' => 'Bicycle')

)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '204'),
 'Title' => array('S' => '18-Bike-204'),
 'Description' => array('S' => '204 Description'),

 'BicycleType' => array('S' => 'Mountain'),
 'Brand' => array('S' => 'Brand-Company B'),

 'Price' => array('N' => '400'),
 'Gender' => array('S' => 'W'),
 'Color' => array('SS' => array('Red')),
 'ProductCategory' => array('S' => 'Bicycle')
)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '205'),
 'Title' => array('S' => '20-Bike-205'),
 'Description' => array('S' => '205 Description'),
 'BicycleType' => array('S' => 'Hybrid'),
 'Brand' => array('S' => 'Brand-Company C'),
 'Price' => array('N' => '500'),
 'Gender' => array('S' => 'B'),
 'Color' => array('SS' => array('Red',
'Black')),
 'ProductCategory' => array('S' => 'Bicycle')

)

API Version 2012-08-10
41

Amazon DynamoDB Developer Guide
Load Data into Tables - PHP

)
)
),
),
));

echo "done." . PHP_EOL;

$tableName = 'Forum';
echo "Adding data to the $tableName table..." . PHP_EOL;

$response = $client->batchWriteItem(array(
 'RequestItems' => array(
 $tableName => array(
 array(
 'PutRequest' => array(
 'Item' => array(
 'Name' => array('S' => 'Amazon DynamoDB'),
 'Category' => array('S' => 'Amazon Web Services'),
 'Threads' => array('N' => '0'),
 'Messages' => array('N' => '0'),
 'Views' => array('N' => '1000')
)
)
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Name' => array('S' => 'Amazon S3'),
 'Category' => array('S' => 'Amazon Web Services'),
 'Threads' => array('N' => '0')
)
)
),
)
)
));

echo "done." . PHP_EOL;

$tableName = 'Reply';
echo "Adding data to the $tableName table..." . PHP_EOL;

$response = $client->batchWriteItem(array(
 'RequestItems' => array(
 $tableName => array(
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('S' => 'Amazon DynamoDB#DynamoDB
 Thread 1'),
 'ReplyDateTime' => array('S' => $fourteenDaysAgo),
 'Message' => array('S' => 'DynamoDB Thread 1 Reply
 2 text'),
 'PostedBy' => array('S' => 'User B')

API Version 2012-08-10
42

Amazon DynamoDB Developer Guide
Load Data into Tables - PHP

)
)
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('S' => 'Amazon DynamoDB#DynamoDB
 Thread 2'),
 'ReplyDateTime' => array('S' => $twentyOneDaysAgo),
 'Message' => array('S' => 'DynamoDB Thread 2 Reply
 3 text'),
 'PostedBy' => array('S' => 'User B')
)
)
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('S' => 'Amazon DynamoDB#DynamoDB
 Thread 2'),
 'ReplyDateTime' => array('S' => $sevenDaysAgo),
 'Message' => array('S' => 'DynamoDB Thread 2 Reply
 2 text'),
 'PostedBy' => array('S' => 'User A')
)
)
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('S' => 'Amazon DynamoDB#DynamoDB
 Thread 2'),
 'ReplyDateTime' => array('S' => $oneDayAgo),
 'Message' => array('S' => 'DynamoDB Thread 2 Reply
 1 text'),
 'PostedBy' => array('S' => 'User A')
)
)
)
),
)
));

echo "done." . PHP_EOL;

?>

Verify Data Load

Using the AWS Management Console
You can use the AWS Management Console to view the data that you loaded into the tables.

API Version 2012-08-10
43

Amazon DynamoDB Developer Guide
Verify Data Load

To view table data

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the Tables pane, select the Reply table.

3. Click Explore Table to view the items you uploaded. The Browse Items tab lists the items in the
table.

Using the AWS Explorer
In addition to the AWS Management Console, you can use the AWS Explorer to see all of your tables
and data. The AWS Explorer is available in the AWS Toolkits for Java and .NET.

Step 4:Try a Query
Topics

• Try a Query Using the DynamoDB Console (p. 44)

• Try a Query Using the AWS SDK for Java (p. 45)

• Try a Query Using the AWS SDK for .NET (p. 47)

• Try a Query Using the AWS SDK for PHP (p. 50)

In this step, you will try a simple query against the tables that you created in the preceding step.You can
either use the DynamoDB console to query the tables or query the table programmatically.

Try a Query Using the DynamoDB Console
In this section, you will use the DynamoDB console to try an example query against the Reply table. The
query finds forum replies posted in the last 15 days for the "DynamoDB Thread 1" thread in the
"DynamoDB" forum.

API Version 2012-08-10
44

Amazon DynamoDB Developer Guide
Step 4:Try a Query

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

To query a table

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/home.

If you have not already signed in, you will see the Sign In dialog before you see the console.

2. In the Tables pane, select the Reply table and click Explore Table.

3. In the Browse Items tab, click Query.

The console shows data entry fields for you to specify the hash and range primary key values, Hash
Key and Range Key. It also shows drop-down list boxes for you to select comparison operators.

Note
A Query operation is only valid for tables that have a hash and range type primary key. If
you explore a table with a hash type primary key, the console will display Get instead of
Query.

4. Specify the Hash Key and Range Key values and select comparison operators as shown in the
following screen shot. For the Hash Key, enter Amazon DynamoDB#DynamoDB Thread 1. For the
Range Key (ReplyDateTime), set the condition to greater than and enter a date 15 days earlier than
today's date. Use the format YYYY-MM-DD for the date.

Note that the Range Key (ReplyDateTime) value shown is only for illustration. The date value you
will use depends on when you uploaded the sample data.

5. Click Go.

The Browse Items tab shows the query result.

Try a Query Using the AWS SDK for Java
The following Java code example uses the AWS SDK for Java to perform the following tasks:

• Get an item from the ProductCatalog table.

• Query the Reply table to find all replies posted in the last 15 days for a forum thread. In the code, you
first describe your request by creating a QuerySpec object. The QuerySpec describes the primary
key hash attribute value, a condition on the range attribute (ReplyDateTime) to retrieve replies posted
after a specific date, and the item attributes that you want to retrieve.

API Version 2012-08-10
45

Amazon DynamoDB Developer Guide
Try a Query - Java

https://console.aws.amazon.com/dynamodb/home

For step-by-step instructions on configuring your AWS access keys, setting the default endpoint and
running the sample, see Running Java Examples for DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Iterator;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.ItemCollection;
import com.amazonaws.services.dynamodbv2.document.QueryOutcome;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.spec.QuerySpec;
import com.amazonaws.services.dynamodbv2.document.utils.ValueMap;

public class SampleDataTryQuery {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));
 static SimpleDateFormat dateFormatter = new SimpleDateFormat(
 "yyyy-MM-dd'T'HH:mm:ss.SSS'Z'");

 public static void main(String[] args) throws Exception {

 try {

 String forumName = "Amazon DynamoDB";
 String threadSubject = "DynamoDB Thread 1";

 // Get an item.
 getBook(101, "ProductCatalog");

 // Query replies posted in the past 15 days for a forum thread.
 findRepliesInLast15DaysWithConfig("Reply", forumName, threadSubject);

 } catch (Exception e) {
 System.err.println(e.getMessage());
 }
 }

 private static void getBook(int id, String tableName) {

 Table table = dynamoDB.getTable(tableName);

 Item item = table.getItem("Id", // attribute name
 id, // attribute value
 "Id, ISBN, Title, Authors", // projection expression
 null); // name map - don't need this

 System.out.println("GetItem: printing results...");
 System.out.println(item.toJSONPretty());

API Version 2012-08-10
46

Amazon DynamoDB Developer Guide
Try a Query - Java

 }

 private static void findRepliesInLast15DaysWithConfig(
 String tableName, String forumName, String threadSubject) {

 String replyId = forumName + "#" + threadSubject;
 long twoWeeksAgoMilli = (new Date()).getTime()
 - (15L * 24L * 60L * 60L * 1000L);
 Date twoWeeksAgo = new Date();
 twoWeeksAgo.setTime(twoWeeksAgoMilli);
 SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");
 String twoWeeksAgoStr = df.format(twoWeeksAgo);

 Table table = dynamoDB.getTable(tableName);

 QuerySpec querySpec = new QuerySpec()
 .withKeyConditionExpression("Id = :v1 and ReplyDateTime > :v2")
 .withValueMap(new ValueMap()
 .withString(":v1", replyId)
 .withString(":v2", twoWeeksAgoStr))
 .withProjectionExpression("Message, ReplyDateTime, PostedBy");

 ItemCollection<QueryOutcome> items = table.query(querySpec);
 Iterator<Item> iterator = items.iterator();

 System.out.println("Query: printing results...");

 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }
 }

}

Try a Query Using the AWS SDK for .NET
The following C# code example uses the AWS SDK for .NET low-level API to perform the following tasks:

• Get an item from the ProductCatalog table.

• Query the Reply table to find all replies posted in the last 15 days for a forum thread. In the code, you
first describe your request by creating a QueryRequest object. The request specifies the table name,
the primary key hash attribute value, a condition on the range attribute (ReplyDateTime) to retrieve
replies posted after a specific date, and other optional parameters. The example uses pagination to
retrieve one page of query results at a time. It sets the page size as part of the request.

For step-by-step instructions on configuring your AWS access keys, setting the default endpoint and
running the sample, see Running .NET Examples for DynamoDB (p. 57).

using System;
using System.Collections.Generic;
using Amazon.DynamoDBv2;

API Version 2012-08-10
47

Amazon DynamoDB Developer Guide
Try a Query - .NET

using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;
using Amazon.Util;

namespace com.amazonaws.codesamples
 {
 class SampleDataTryQuery
 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)
 {
 try
 {
 // Get - Get a book item.
 GetBook(101, "ProductCatalog");

 // Query - Get replies posted in the last 15 days for a forum
thread.
 string forumName = "Amazon DynamoDB";
 string threadSubject = "DynamoDB Thread 1";

 FindRepliesInLast15DaysWithConfig(forumName, threadSubject);

 }
 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }
 }

 private static void GetBook(int id, string tableName)
 {
 var request = new GetItemRequest
 {
 TableName = tableName,
 Key = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue { N = id.ToString() } }
 },
 ReturnConsumedCapacity = "TOTAL"
 };
 var response = client.GetItem(request);

 Console.WriteLine("No. of reads used (by get book item) {0}\n",
 response.ConsumedCapacity.CapacityUnits);

 PrintItem(response.Item);

 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }

 private static void FindRepliesInLast15DaysWithConfig(string forumName,

API Version 2012-08-10
48

Amazon DynamoDB Developer Guide
Try a Query - .NET

 string threadSubject)
 {
 string replyId = forumName + "#" + threadSubject;

 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);

 string twoWeeksAgoString =
 twoWeeksAgoDate.ToString(AWSSDKUtils.ISO8601DateFormat);

 Dictionary<string, AttributeValue> lastKeyEvaluated = null;
 do
 {
 var request = new QueryRequest
 {
 TableName = "Reply",
 KeyConditionExpression = "Id = :v_replyId and ReplyDateTime
 > :v_datetime",
 ExpressionAttributeValues = new Dictionary<string, Attrib
uteValue> {
 {":v_replyId", new AttributeValue { S = replyId }},
 {":v_datetime", new AttributeValue { S = twoWeek
sAgoString }}
 },

 // Optional parameter.
 ProjectionExpression = "Id, ReplyDateTime, PostedBy",

 // Optional parameter.
 ConsistentRead = true,
 Limit = 2, // The Reply table has only a few sample items.
 So the page size is smaller.
 ExclusiveStartKey = lastKeyEvaluated,
 ReturnConsumedCapacity = "TOTAL"
 };

 // Optional parameter.
 request.ProjectionExpression = "Id, ReplyDateTime, PostedBy";

 // Optional parameter.
 request.ConsistentRead = true;
 request.Limit = 2; // The Reply table has only a few sample
items. So the page size is smaller.
 request.ExclusiveStartKey = lastKeyEvaluated;
 request.ReturnConsumedCapacity = "TOTAL";

 var response = client.Query(request);

 Console.WriteLine("No. of reads used (by query in FindReplies
ForAThreadSpecifyLimit) {0}\n",
 response.ConsumedCapacity.CapacityUnits);
 foreach (var item in response.Items)
 {
 PrintItem(item);
 }
 lastKeyEvaluated = response.LastEvaluatedKey;

 } while (lastKeyEvaluated != null && lastKeyEvaluated.Count !=
 0);

API Version 2012-08-10
49

Amazon DynamoDB Developer Guide
Try a Query - .NET

 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }

 private static void PrintItem(Dictionary<string, AttributeValue> attrib
uteList)
 {
 foreach (var kvp in attributeList)
 {
 string attributeName = kvp.Key;
 AttributeValue value = kvp.Value;

 Console.WriteLine(
 attributeName + " " +
 (value.S == null ? "" : "S=[" + value.S + "]") +
 (value.N == null ? "" : "N=[" + value.N + "]") +
 (value.SS == null ? "" : "SS=[" + string.Join(",",
value.SS.ToArray()) + "]") +
 (value.NS == null ? "" : "NS=[" + string.Join(",",
value.NS.ToArray()) + "]")
);
 }
 Con
sole.WriteLine("**");
 }
 }
 }

Try a Query Using the AWS SDK for PHP
Note
This topic assumes you are already following the instructions for Creating Tables and Loading
Sample Data (p. 14) and have the AWS SDK for PHP properly installed. For information about
setting up the SDK, configuring your AWS access keys and setting the default endpoint, see
Running PHP Examples (p. 59).

API Version 2012-08-10
50

Amazon DynamoDB Developer Guide
Try a Query - PHP

Example - Query for Items in your DynamoDB Tables with PHP

The following PHP code example uses the AWS SDK for PHP to query the Reply table for all replies
posted less than 14 days ago for a forum thread. The request specifies the table name, the primary key
hash attribute value, and a condition on the range attribute (ReplyDateTime) to retrieve replies posted
after a specific date.

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

date_default_timezone_set('UTC');

$fourteenDaysAgo = date('Y-m-d H:i:s', strtotime('-14 days'));

$response = $client->query(array(
 'TableName' => 'Reply',

 'KeyConditionExpression' => 'Id = :v_id and ReplyDateTime >= :v_reply_dt',

 'ExpressionAttributeValues' => array (
 ':v_id' => array('S' => 'Amazon DynamoDB#DynamoDB Thread 2'),
 ':v_reply_dt' => array('S' => $fourteenDaysAgo)
)
));

print_r ($response['Items']);

?>

Step 5: Delete Example Tables
These tables are also used in various sections of this developer guide to illustrate table and item operations
using various AWS SDKs. Don't delete these tables if you are reading the rest of the developer guide.
However, if you don't plan to use these tables, you should delete them to avoid getting charged for
resources you don't use.

You can also delete tables programmatically. For more information, see Working with Tables in
DynamoDB (p. 61).

To Delete the Sample Tables

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. Select the table that you want to delete.

3. Click the Delete Table button.You will be asked to confirm your selection.

API Version 2012-08-10
51

Amazon DynamoDB Developer Guide
Step 5: Delete Example Tables (Optional)

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

4. Select the Delete this table check box and click Delete.

This deletes the table from DynamoDB, along with the CloudWatch alarms and export/import pipelines
associated with this table.

Where Do I Go from Here?
Now that you have completed this exercise, you can explore the following sections to learn more about
DynamoDB:

• Using the AWS SDKs with DynamoDB (p. 53)

• Working with Tables in DynamoDB (p. 61)

• Working with Items in DynamoDB (p. 92)

• Query and Scan Operations in DynamoDB (p. 192)

• Improving Data Access with Secondary Indexes in DynamoDB (p. 248)

API Version 2012-08-10
52

Amazon DynamoDB Developer Guide
Where Do I Go from Here?

Using the AWS SDKs with
DynamoDB

Topics

• Using the AWS SDK for Java (p. 53)

• Using the AWS SDK for .NET (p. 56)

• Using the AWS SDK for PHP (p. 59)

AWS provides SDKs for you to develop applications for Amazon DynamoDB. The AWS SDKs for Java,
PHP, and .NET wrap the underlying DynamoDB API and request format, simplifying your programming
tasks. This section provides an overview of the AWS SDKs. This section also describes how you can test
AWS SDK code samples provided in this guide.

In addition to .NET, Java, and PHP, the other AWS SDKs also support DynamoDB, including JavaScript,
Python, Android, iOS, and Ruby. For links to the complete set of AWS SDKs, see Start Developing with
Amazon Web Services.

The AWS SDKs require an active AWS account.You should follow the steps in Creating Tables and
Loading Sample Data (p. 14) to get set up and familiar with using the AWS SDKs for DynamoDB.

Using the AWS SDK for Java
Topics

• Running Java Examples for DynamoDB (p. 55)

The AWS SDK for Java provides APIs for the DynamoDB item and table operations. The SDK allows
you to choose from among three different APIs:

API Version 2012-08-10
53

Amazon DynamoDB Developer Guide
Using the AWS SDK for Java

http://aws.amazon.com/developers/getting-started/
http://aws.amazon.com/developers/getting-started/

CommentAPI

The AWS SDK for Java Document API provides an intu-
itive interface for DynamoDB operations. With this API,
you work with Tables, Items, Attributes, and other objects
that closely resemble their counterparts in the database.
The Document API also provides utilities for working
with document data types, such as Lists and Maps. Fi-
nally, the document API makes it easy to store and re-
trieve JSON documents in DynamoDB.

The following sections describe the document API and
also provide working samples:

• Working with Tables Using the AWS SDK for Java
Document API (p. 73)

• Working with Items Using the AWS SDK for Java
Document API (p. 120)

• Querying Using the AWS SDK for Java Document
API (p. 202)

• Scanning Using the AWS SDK for Java Document
API (p. 222)

The Document API resides in the com.amazonaws.ser-
vices.dynamodbv2.document namespace.

Document API

The high-level API uses object persistence programming
techniques to map Java objects to DynamoDB tables
and attributes. In this API, the DynamoDBMapper class
provides an object-oriented view of your data:You define
getter and setter methods for attributes in a table, and
DynamoDBMapper insulates your application from low-
level DynamoDB operations.You cannot create tables
using the high-level API, but you can create, read, up-
date, and delete table items.The high-level API is espe-
cially advantageous if you have an existing code-base
that you want to leverage by mapping to DynamoDB
tables.

The high-level API resides in the com.amazonaws.ser-
vices.dynamodbv2.datamodeling namespace.

High-level API

The methods in the low-level API correspond closely to
the underlying DynamoDB API.The low-level API allows
you to perform the same operations that you can perform
using DynamoDB operations such as create, update,
and delete tables, and create, read, update, and delete
items.

The low-level API resides in the com.amazonaws.ser-
vices.dynamodbv2.model namespace.

Low-level API

Note
These APIs provide thread-safe clients for accessing DynamoDB. As a best practice, your
applications should create one client and reuse the client between threads.

API Version 2012-08-10
54

Amazon DynamoDB Developer Guide
Using the AWS SDK for Java

For more information about the AWS SDK for Java API, go to the AWS SDK for Java API Reference.

Choosing a JVM

For the best performance of your server-based applications with the AWS SDK for Java, we recommend
that you use the 64-bit version of the Java Virtual Machine (JVM). This JVM runs only in Server mode,
even if you specify the -Client option at run time. Using the 32-bit version of the JVM with the -Server
option at run time should provide comparable performance to the 64-bit JVM.

Running Java Examples for DynamoDB
General Process of Creating Java Code Examples (Using Eclipse)

Download and install the AWS Toolkit for Eclipse. This toolkit includes the AWS SDK for
Java, along with preconfigured templates for building applications.

1

From the Eclipse menu, click File, New, Other...
In the Select a wizard box, click File, AWS Java Project, Click Next.
In the Project name field, type a name for your project. Click Finish to create the project.
Note that the project is pre-configured, and includes the AWS SDK for Java .jar files.

2

You will now need to create a default credential profiles file. This file enhances security by
storing your credentials separately from your project directories, so that they cannot be un-
intentionally committed to a public repository. For more information, see Using the Default
Credential Provider Chain in the AWS SDK for Java Developer Guide.

The credential properties file should be saved as ~/.aws/credentials, where the tilde
character represents your home directory. In this file, you can store multiple sets of credentials
from any number of accounts. Each set is referred to as a profile.The following is an example
of a credential properties file with a profile named default:

[default]
aws_access_key_id = <Your Access Key ID>
aws_secret_access_key = <Your Secret Key>

The code examples in this document use the default client constructors that read your AWS
credentials stored in the credential properties file.

3

Copy the code from the section that you are reading to your project.4

Run the code.5

Setting the Region
You can set the DynamoDB region explicitly, as shown in the following Java code snippet.

client = new AmazonDynamoDBClient(credentials);
client.setRegion(Region.getRegion(Regions.US_WEST_2));

For a current list of supported regions and endpoints, see Regions and Endpoints.

API Version 2012-08-10
55

Amazon DynamoDB Developer Guide
Running Java Examples

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
http://aws.amazon.com/eclipse/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/credentials.html#credentials-default
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/credentials.html#credentials-default
http://docs.aws.amazon.com/general/latest/gr/rande.html

Using the AWS SDK for .NET
Topics

• Running .NET Examples for DynamoDB (p. 57)

The AWS SDK for .NET provides the following APIs to work with DynamoDB. All the APIs are available
in the AWSSDK.dll. For information about downloading the AWS SDK for .NET, go to Sample Code
Libraries.

Note
The low-level API and high-level API provide thread-safe clients for accessing DynamoDB. As
a best practice, your applications should create one client and reuse the client between threads.

CommentAPI

This is the protocol level API that maps closely to the
DynamoDB API.You can use the low-level API for all
table and item operations such as create, update, delete
table and items.You can also query and scan your
tables.

This API is available in the Amazon.Dy-
namoDB.DataModel namespace.

The following sections describe the low-level API in
various AWS SDKs and also provide working samples:

• Working with Tables in DynamoDB (p. 61)

• Working with Items in DynamoDB (p. 92)

• Query and Scan Operations in DynamoDB (p. 192)

• Improving Data Access with Secondary Indexes in
DynamoDB (p. 248)

Low-level API

This API provides wrapper classes around the low-level
API to further simplify your programming task. The
Table and Document are the key wrapper classes.
You can use the document model for the data operations
such as create, retrieve, update and delete items. To
create, update and delete tables, you must use the low-
level API.

The API is available in the Amazon.DynamoDB.Docu-
mentModel namespace.

For more information about the document model API
and working samples, see .NET: Document Mod-
el (p. 445).

Document Model API

API Version 2012-08-10
56

Amazon DynamoDB Developer Guide
Using the AWS SDK for .NET

http://aws.amazon.com/sdkfornet/
http://aws.amazon.com/sdkfornet/

CommentAPI

The object persistence API enables you to map your
client-side classes to the DynamoDB tables. Each object
instance then maps to an item in the corresponding
tables.The DynamoDBContext class in this API provides
methods for you to save client-side objects to a table,
retrieve items as objects and perform query and scan.

You can use the object persistence model for the data
operations such as create, retrieve, update and delete
items.You must first create your tables using the low-
level API and then use the object persistence model to
map your classes to the tables.

The API is available in the Amazon.DynamoDB.DataMod-
el namespace.

For more information about the object persistence API
and working samples, see .NET: Object Persistence
Model (p. 476).

Object Persistence API

Running .NET Examples for DynamoDB
General Process of Creating .NET Code Examples (Using Visual Studio)

Download and install the AWS SDK for .NET. This toolkit includes the AWS .NET library
and the AWS Toolkit for Visual Studio, along with preconfigured templates for building ap-
plications.

1

Create a new Visual Studio project using the AWS Empty Project template.You get this
template if you installed the Toolkit for Visual Studio.

The AWS Access Credentials dialog box opens.

2

API Version 2012-08-10
57

Amazon DynamoDB Developer Guide
Running .NET Examples

http://aws.amazon.com/sdkfornet/

In the AWS Access Credentials dialog box, select either an account that you previously
added to the toolkit, or add a new account. For each account that you add to the toolkit, you
must provide your AWS access keys credentials.

Visual Studio saves your credentials in the SDK Store. The SDK Store enhances security
by storing your credentials separately from your project directories, so that they cannot be
unintentionally committed to a public repository. For more information, see Setting Up the
AWS Toolkit for Visual Studio in the AWS Toolkit for Visual Studio User Guide.

The Toolkit for Visual Studio supports multiple sets of credentials from any number of ac-
counts. Each set is referred to as a profile. Visual Studio adds entries to the project's
App.config file so that your application can find the AWS Credentials at runtime:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="AWSProfileName" value="default"/>
 <add key="AWSRegion" value="us-west-2" />
 </appSettings>
</configuration>

The code examples in this document use the default client constructors that read your AWS
credentials stored in the SDK Store.

3

Note that the AWS Empty Project template includes the required AWSSDK reference.4

Replace the code in the project file, Program.cs, with the code in the section you are
reading.

5

Run the code.6

Setting the Endpoint
You can set the DynamoDB endpoint explicitly, as shown in the following C# code snippet.

private static void CreateClient()
{
 AmazonDynamoDBConfig config = new AmazonDynamoDBConfig();
 config.ServiceURL = "http://dynamodb.us-west-2.amazonaws.com";
 var client = new AmazonDynamoDBClient(config);
}

You can also set the DynamoDB endpoint explicitly from the app.config file, as shown in the following C#
code snippet.

private static void CreateClient()
{
 AmazonDynamoDBConfig config = new AmazonDynamoDBConfig();
 config.ServiceURL = System.Configuration.ConfigurationManager.AppSettings["Ser
viceURL"];
 client = new AmazonDynamoDBClient(config);
}

For a current list of supported regions and endpoints, see Regions and Endpoints.

API Version 2012-08-10
58

Amazon DynamoDB Developer Guide
Running .NET Examples

http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/tkv_setup.html
http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/tkv_setup.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Using the AWS SDK for PHP
The AWS SDK for PHP currently has one level of API (called the "low-level" API) for DynamoDB that
maps directly to the service's native API.

The SDK is available at AWS SDK for PHP, which also has instructions for installing and getting started
with the SDK.

Note
The setup for using the AWS SDK for PHP depends on your environment and how you want to
run your application. To set up your environment to run the examples in this documentation, see
the AWS SDK for PHP Getting Started Guide.

Running PHP Examples
The general process for running a PHP code example is as follows. The individual steps are explained
in greater detail in the following sections.

General Process of Creating PHP Code Examples

Download and install the AWS SDK for PHP, and then verify that your environment meets
the minimum requirements as described in the AWS SDK for PHP Getting Started Guide.

1

Install the AWS SDK for PHP according to the instructions in the AWS SDK for PHP Getting
Started Guide. Depending on the installation method that you use, you might have to
modify your code to resolve dependencies among the PHP extensions.

The PHP code samples in this document use the Composer dependency manager that is
described in the AWS SDK for PHP Getting Started Guide.

2

Copy the example code from the document to your project.3

Configure your credentials provider for the AWS SDK for PHP. For more information, go to
Providing Credentials to the SDK in the AWS SDK for PHP Getting Started Guide.

4

Test the example according to your setup.5

Setting Your AWS Access Keys
For security reasons, we recommend that you create a credential profile that contains your AWS access
key ID and secret key. This approach will let you avoid hardcoding your access keys in the PHP code
itself. At run time, when you create a new DynamoDb object, the client can obtain the keys from the
configuration file.

The following is an example of using an AWS credentials file and a credential profile. The credentials file
is named ~/.aws/credentials , where ~ represents your HOME directory.

[default]
aws_access_key_id = AWS access key ID goes here
aws_secret_access_key = Secret key goes here

Here is how to use the credential profile to instantiate a new client:

API Version 2012-08-10
59

Amazon DynamoDB Developer Guide
Using the AWS SDK for PHP

http://aws.amazon.com/sdkforphp/
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://aws.amazon.com/sdkforphp/
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/credentials.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
));

For more information, go to Providing Credentials to the SDK in the AWS SDK for PHP Getting Started
Guide

Setting the Region
If you are using a credential profile, you can set the default region for your client, as in the following
example:

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

For a current list of supported regions and endpoints, see Regions and Endpoints.

API Version 2012-08-10
60

Amazon DynamoDB Developer Guide
Running PHP Examples

http://docs.aws.amazon.com/aws-sdk-php/guide/latest/credentials.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/index.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Working with Tables in DynamoDB

Topics

• Specifying the Primary Key (p. 61)

• Specifying Read and Write Requirements for Tables (p. 62)

• Capacity Units Calculations for Various Operations (p. 64)

• Listing and Describing Tables (p. 66)

• Guidelines for Working with Tables (p. 66)

• Working with Tables Using the AWS SDK for Java Document API (p. 73)

• Working with Tables Using the AWS SDK for .NET Low-Level API (p. 79)

• Working with Tables Using the AWS SDK for PHP Low-Level API (p. 86)

When you create a table in Amazon DynamoDB, you must provide a table name, its primary key and
your required read and write throughput values. The table name can include characters a-z, A-Z, 0-9, '_'
(underscore), '-' (dash), and '.' (dot). Names can be between 3 and 255 characters long. In a relational
database, a table has a predefined schema that describes properties such as the table name, primary
key, column names, and data types. All records stored in the table must have the same set of columns.
DynamoDB is a NoSQL database: Except for the required primary key, a DynamoDB table is schema-less.
Individual items in a DynamoDB table can have any number of attributes, although there is a limit of 400
KB on the item size.

Specifying the Primary Key
When you create a table, in addition to the table name, you must specify the primary key of the table.
The primary key uniquely identifies each item, so that no two items in the table can have the same primary
key.

DynamoDB supports the following two types of primary keys:

• Hash Primary Key – The primary key is made of one attribute, a hash attribute. DynamoDB builds
an unordered hash index on this primary key attribute. Each item in the table is uniquely identified by
its hash key value.

• Hash and Range Primary Key – The primary key is made of two attributes. The first attribute is the
hash attribute and the second attribute is the range attribute. DynamoDB builds an unordered hash
index on the hash attribute and a sorted range index on the range attribute. Each item in the table is

API Version 2012-08-10
61

Amazon DynamoDB Developer Guide
Specifying the Primary Key

uniquely identified by the combination of its hash and range key values. It is possible for two items to
have the same hash key value, but those two items must have different range key values.

Specifying Read and Write Requirements for
Tables

DynamoDB is built to support workloads of any scale with predictable, low-latency response times.

To ensure high availability and low latency responses, DynamoDB requires that you specify your required
read and write throughput values when you create a table. DynamoDB uses this information to reserve
sufficient hardware resources and appropriately partitions your data over multiple servers to meet your
throughput requirements. As your application data and access requirements change, you can easily
increase or decrease your provisioned throughput using the DynamoDB console or the API.

DynamoDB allocates and reserves resources to handle your throughput requirements with sustained low
latency and you pay for the hourly reservation of these resources. However, you pay as you grow and
you can easily scale up or down your throughput requirements. For example, you might want to populate
a new table with a large amount of data from an existing data store. In this case, you could create the
table with a large write throughput setting, and after the initial data upload, you could reduce the write
throughput and increase the read throughput to meet your application's requirements.

During the table creation, you specify your throughput requirements in terms of the following capacity
units.You can also specify these units in an UpdateTable request to increase or decrease the provisioned
throughput of an existing table:

• Read capacity units – The number of strongly consistent reads per second of items up to 4 KB in size
per second. For example, when you request 10 read capacity units, you are requesting a throughput
of 10 strongly consistent reads per second of 4 KB for that table. For eventually consistent reads, one
read capacity unit is two reads per second for items up to 4 KB. For more information about read
consistency, see Data Read and Consistency Considerations (p. 10).

• Write capacity units – The number of 1 KB writes per second. For example, when you request 10
write capacity units, you are requesting a throughput of 10 writes per second of 1 KB size per second
for that table.

DynamoDB uses these capacity units to provision sufficient resources to provide the requested throughput.

When deciding the capacity units for your table, you must take the following into consideration:

• Item size – DynamoDB allocates resources for your table according to the number of read or write
capacity units that you specify. These capacity units are based on a data item size of 4 KB per read or
1 KB per write. For example, if the items in your table are 4 KB or smaller, each item read operation
will consume one read capacity unit. If your items are larger than 4 KB, each read operation consumes
additional capacity units, in which case you can perform fewer database read operations per second
than the number of read capacity units you have provisioned. For example, if you request 10 read
capacity units throughput for a table, but your items are 8 KB in size, then you will get a maximum of
5 strongly consistent reads per second on that table.

• Expected read and write request rates – You must also determine the expected number of read and
write operations your application will perform against the table, per second.This, along with the estimated
item size helps you to determine the read and write capacity unit values.

• Consistency – Read capacity units are based on strongly consistent read operations, which require
more effort and consume twice as many database resources as eventually consistent reads. For
example, a table that has 10 read capacity units of provisioned throughput would provide either 10
strongly consistent reads per second of 4 KB items, or 20 eventually consistent reads per second of
the same items. Whether your application requires strongly or eventually consistent reads is a factor

API Version 2012-08-10
62

Amazon DynamoDB Developer Guide
Read and Write Requirements for Tables

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html

in determining how many read capacity units you need to provision for your table. By default, DynamoDB
read operations are eventually consistent. Some of these operations allow you to specify strongly
consistent reads.

• Local secondary indexes – If you want to create one or more local secondary indexes on a table,
you must do so at table creation time. DynamoDB automatically creates and maintains these indexes.
Queries against indexes consume provisioned read throughput. If you write to a table, DynamoDB will
automatically write data to the indexes when needed, to keep them synchronized with the table. The
capacity units consumed by index operations are charged against the table's provisioned throughput.
In other words, you only specify provisioned throughput settings for the table, not for each individual
index on that table. For more information, see Provisioned Throughput Considerations for Local
Secondary Indexes (p. 315).

These factors help you to determine your application's throughput requirements that you provide when
you create a table.You can monitor the performance using CloudWatch metrics, and even configure
alarms to notify you in the event you reach certain threshold of consumed capacity units.The DynamoDB
console provides several default metrics that you can review to monitor your table performance and adjust
the throughput requirements as needed. For more information, go to DynamoDB Console.

DynamoDB automatically distributes your data across table partitions, which are stored on multiple servers.
For optimal throughput, you should distribute read requests as evenly as possible across these partitions.
For example, you might provision a table with 1 million read capacity units per second. If you issue 1
million requests for a single item in the table, all of the read activity will be concentrated on a single
partition. However, if you spread your requests across all of the items in the table, DynamoDB can access
the table partitions in parallel, and allow you to reach your provisioned throughput goal for the table.

For reads, the following table compares some provisioned throughput values for different average item
sizes, request rates, and consistency combinations.

Provisioned Throughput
Required

Desired Reads Per
Second

ConsistencyExpected Item Size

5050Strongly consistent4 KB

10050Strongly consistent8 KB

2550Eventually consistent4 KB

5050Eventually consistent8 KB

Item sizes for reads are rounded up to the next 4 KB multiple. For example, an item of 3,500 bytes
consumes the same throughput as a 4 KB item.

For writes, the following table compares some provisioned throughput values for different average item
sizes and write request rates.

Provisioned Throughput RequiredDesired Writes Per SecondExpected Item Size

50501 KB

100502 KB

Item sizes for writes are rounded up to the next 1 KB multiple. For example, an item of 500 bytes consumes
the same throughput as a 1 KB item.

API Version 2012-08-10
63

Amazon DynamoDB Developer Guide
Read and Write Requirements for Tables

https://console.aws.amazon.com/dynamodb

DynamoDB commits resources to your requested read and write capacity units, and, consequently, you
are expected to stay within your requested rates. Provisioned throughput also depends on the size of the
requested data. If your read or write request rate, combined with the cumulative size of the requested
data, exceeds the current reserved capacity, DynamoDB returns an error that indicates that the provisioned
throughput level has been exceeded.

Set your provisioned throughput using the ProvisionedThroughput parameter. For information about
setting the ProvisionedThroughput parameter, see CreateTable in the Amazon DynamoDB API
Reference.

For information about using provisioned throughput, see Guidelines for Working with Tables (p. 66).

Note
If you expect upcoming spikes in your workload (such as a new product launch) that will cause
your throughput to exceed the current provisioned throughput for your table, we advise that you
use the UpdateTable operation to increase the ProvisionedThroughput value. For the current
maximum Provisioned Throughput values per table or account, see Limits in DynamoDB (p. 667).
When you issue an UpdateTable request, the status of the table changes from AVAILABLE to
UPDATING. The table remains fully available for use while it is UPDATING. During this time,
DynamoDB allocates the necessary resources to support the new provisioned throughput levels.
When this process is completed, the table status changes from UPDATING to AVAILABLE.

Capacity Units Calculations for Various
Operations

The capacity units consumed by an operation depends on the following:

• Item size

• Read consistency (in case of a read operation)

For a table without local secondary indexes, the basic rule is that if your request reads a item of 4 KB or
writes an item of 1 KB in size, you consume 1 capacity unit. This section describes how DynamoDB
computes the item size for the purpose of determining capacity units consumed by an operation. In the
case of a read operation, this section describes the impact of strong consistency vs. eventual consistency
read on the capacity unit consumed by the read operation.

Item Size Calculations
For each request that you send, DynamoDB computes the capacity units consumed by that operation.
Item size is one of the factors that DynamoDB uses in computing the capacity units consumed. This
section describes how DynamoDB determines the size of items involved in an operation.

Note
You can optimize the read capacity consumption by making individual items as small as possible.
The easiest way to do so is to minimize the length of the attribute names.You can also reduce
item size by storing less frequently accessed attributes in a separate table.

The size of an item is the sum of the lengths of its attribute names and values.

The size of a Null or Boolean attribute value is (length of the attribute name + one byte).

An attribute of type List or Map requires 3 bytes of overhead, regardless of its contents. The size of an
empty List or Map is (length of the attribute name + 3 bytes). If the attribute is non-empty, the size is
(length of the attribute name + sum (length of attribute values) + 3 bytes).

API Version 2012-08-10
64

Amazon DynamoDB Developer Guide
Capacity Units Calculations for Various Operations

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html

DynamoDB reads data in blocks of 4 KB. For GetItem, which reads only one item, DynamoDB rounds
the item size up to the next 4 KB. For example, if you get an item of 3.5 KB, DynamoDB rounds the items
size to 4 KB. If you get an item of 10 KB, DynamoDB rounds the item size to 12 KB.

DynamoDB writes data in blocks of 1 KB. For PutItem, UpdateItem, and DeleteItem, which write
only one item, DynamoDB rounds the item size up to the next 1 KB. For example, if you put or delete an
item of 1.6 KB, DynamoDB rounds the item size up to 2 KB.

If you perform a read operation on an item that does not exist, DynamoDB will still consume provisioned
read throughput: A strongly consistent read request consumes one read capacity unit, while an eventually
consistent read request consumes 0.5 of a read capacity unit.

Most write operations in DynamoDB allow conditional writes, where you specify one or more conditions
that must be met in order for the operation to succeed. Even if a conditional write fails, it still consumes
provisioned throughput. A failed conditional write of a 1 KB item would consume one write capacity unit;
if the item were twice that size, the failed conditional write would consume two write capacity units.

For BatchGetItem, each item in the batch is read separately, so DynamoDB first rounds up the size of
each item to the next 4 KB and then calculates the total size. The result is not necessarily the same as
the total size of all the items. For example, if BatchGetItem reads a 1.5 KB item and a 6.5 KB item,
DynamoDB will calculate the size as 12 KB (4 KB + 8 KB), not 8 KB (1.5 KB + 6.5 KB).

For Query, all items returned are treated as a single read operation. As a result, DynamoDB computes
the total size of all items and then rounds up to the next 4 KB boundary. For example, suppose your query
returns 10 items whose combined size is 40.8 KB. DynamoDB rounds the item size for the operation to
44 KB. If a query returns 1500 items of 64 bytes each, the cumulative size is 96 KB.

In the case of a Scan operation, DynamoDB considers the size of the items that are evaluated, not the
size of the items returned by the scan. For a scan request, DynamoDB evaluates up to 1 MB of items
and returns only the items that satisfy the scan condition.

Note
In computing the storage used by the table, DynamoDB adds 100 bytes of overhead to each
item for indexing purposes. The DescribeTable operation returns a table size that includes
this overhead. This overhead is also included when billing you for the storage costs. However,
this extra 100 bytes is not used in computing the capacity unit calculation. For more information
about pricing, go to DynamoDB Pricing.

For any operation that returns items, you can request a subset of attributes to retrieve; however, doing
so has no impact on the item size calculations. In addition, Query and Scan can return item counts instead
of attribute values. Getting the count of items uses the same quantity of read capacity units and is subject
to the same item size calculations, because DynamoDB has to read each item in order to increment the
count.

The PutItem operation adds an item to the table. If an item with the same primary key exists in the table,
the operation replaces the item. For calculating provisioned throughput consumption, the item size that
matters is the larger of the two.

For an UpdateItem operation, DynamoDB considers the size of the item as it appears before and after
the update. The provisioned throughput consumed reflects the larger of these item sizes. Even if you
update just a subset of the item's attributes, UpdateItem will still consume the full amount of provisioned
throughput (the larger of the "before" and "after" item sizes).

When you issue a DeleteItem request, DynamoDB uses the size of the deleted item to calculate
provisioned throughput consumption.

API Version 2012-08-10
65

Amazon DynamoDB Developer Guide
Item Size Calculations

http://aws.amazon.com/dynamodb/pricing/

Read Operation and Consistency
For a read operation, the preceding calculations assume strongly consistent read requests. For an
eventually consistent read request, the operation consumes only half the capacity units. For an eventually
consistent read, if total item size is 80 KB, the operation consumes only 10 capacity units.

Listing and Describing Tables
To obtain a list of all your tables, use the ListTables operation. A single ListTables call can return
a maximum of 100 table names; if you have more than 100 tables, you can request that ListTables
return paginated results, so that you can retrieve all of the table names.

To determine the structure of any table, use the DescribeTable operation. The metadata returned by
DescribeTable includes the timestamp when it was created, its key schema, its provisioned throughput
settings, its estimated size, and any secondary indexes that are present.

Note
If you issue a DescribeTable request immediately after a CreateTable request, DynamoDB
might return a ResourceNotFoundException. This is because DescribeTable uses an
eventually consistent query, and the metadata for your table might not be available at that
moment. Wait for a few seconds, and then try the DescribeTable request again.

Guidelines for Working with Tables
Topics

• Design For Uniform Data Access Across Items In Your Tables (p. 66)

• Understand Partition Behavior (p. 68)

• Use Burst Capacity Sparingly (p. 69)

• Distribute Write Activity During Data Upload (p. 70)

• Understand Access Patterns for Time Series Data (p. 71)

• Cache Popular Items (p. 71)

• Consider Workload Uniformity When Adjusting Provisioned Throughput (p. 72)

• Test Your Application At Scale (p. 72)

This section covers some best practices for working with tables.

Design For Uniform Data Access Across Items In
Your Tables
The optimal usage of a table's provisioned throughput depends on these factors:

• The primary key selection.

• The workload patterns on individual items.

The primary key uniquely identifies each item in a table. The primary key can be defined as one attribute
(hash type) or two attributes (hash and range type).

API Version 2012-08-10
66

Amazon DynamoDB Developer Guide
Read Operation and Consistency

When it stores data, DynamoDB divides a table's items into multiple partitions, and distributes the data
primarily based upon the hash key element. The provisioned throughput associated with a table is also
divided evenly among the partitions, with no sharing of provisioned throughput across partitions.

Total Provisioned Throughput / Partitions = Throughput Per Partition

Consequently, to achieve the full amount of request throughput you have provisioned for a table, keep
your workload spread evenly across the hash key values. Distributing requests across hash key values
distributes the requests across partitions.

For example, if a table has a very small number of heavily accessed hash key elements, possibly even
a single very heavily used hash key element, request traffic is concentrated on a small number of partitions
– potentially only one partition. If the workload is heavily unbalanced, meaning that it is disproportionately
focused on one or a few partitions, the requests will not achieve the overall provisioned throughput level.
To get the most out of DynamoDB throughput, create tables where the hash key element has a large
number of distinct values, and values are requested fairly uniformly, as randomly as possible.

This does not mean that you must access all of the hash keys to achieve your throughput level; nor does
it mean that the percentage of accessed hash keys needs to be high. However, do be aware that when
your workload accesses more distinct hash keys, those requests will be spread out across the partitioned
space in a manner that better utilizes your allocated throughput level. In general, you will utilize your
throughput more efficiently as the ratio of hash keys accessed to total hash keys in a table grows.

Choosing a Hash Key
The following table compares some common hash key schemas for provisioned throughput efficiency:

UniformityHash key value

GoodUser ID, where the application has many users.

BadStatus code, where there are only a few possible
status codes.

BadItem creation date, rounded to the nearest time
period (e.g. day, hour, minute)

GoodDevice ID, where each device accesses data at
relatively similar intervals

BadDevice ID, where even if there are a lot of devices
being tracked, one is by far more popular than all
the others.

If a single table has only a very small number of hash key values, consider distributing your write operations
across more distinct hash values. In other words, structure the primary key elements to avoid one "hot"
(heavily requested) hash key value that slows overall performance.

For example, consider a table with a hash and range type primary key. The hash key represents the
item's creation date, rounded to the nearest day. The range key is an item identifier. On a given day, say
2014-07-09, all of the new items will be written to that same hash key value.

If the table will fit entirely into a single partition (taking into consideration growth of your data over time),
and if your application's read and write throughput requirements do not exceed the read and write
capabilities of a single partition, then your application should not encounter any unexpected throttling as
a result of partitioning.

API Version 2012-08-10
67

Amazon DynamoDB Developer Guide
Design For Uniform Data Access Across Items In Your

Tables

However, if you anticipate scaling beyond a single partition, then you should architect your application
so that it can use more of the table's full provisioned throughput.

Randomizing Across Multiple Hash Key Values

One way to increase the write throughput of this application would be to randomize the writes across
multiple hash key values. Choose a random number from a fixed set (for example, 1 to 200) and
concatenate it as a suffix to the date. This will yield hash key values such as 2014-07-09.1,
2014-07-09.2 and so on through 2014-07-09.200. Because you are randomizing the hash key, the
writes to the table on each day are spread evenly across all of the hash key values; this will yield better
parallelism and higher overall throughput.

To read all of the items for a given day, you would need to obtain all of the items for each suffix. For
example, you would first issue a Query request for the hash key 2014-07-09.1, then another Query
for 2014-07-09.2, and so on through 2014-07-09.200. Finally, your application would need to merge
the results from all of the Query requests.

Using a Calculated Value

A randomizing strategy can greatly improve write throughput; however, it is difficult to read a specific item
because you don't know which suffix value was used when writing the item. To make it easier to read
individual items, you can use a different strategy: Instead of using a random number to distribute the
items among partitions, use a number that you are able to calculate based upon something that's intrinsic
to the item.

Continuing with our example, suppose that each item has an OrderId. Before your application writes
the item to the table, it can calculate a hash key suffix based upon the order ID. The calculation should
result in a number between 1 and 200 that is fairly evenly distributed given any set of names (or user
IDs.)

A simple calculation would suffice, such as the product of the ASCII values for the characters in the order
ID, modulo 200 + 1. The hash key value would then be the date concatenated with the calculation result
as a suffix. With this strategy, the writes are spread evenly across the hash keys, and thus across the
partitions.You can easily perform a GetItem operation on a particular item, because you can calculate
the hash key you need when you want to retrieve a specific OrderId value.

To read all of the items for a given day, you would still need to Query each of the 2014-07-09.N keys
(where N is 1 to 200), and your application would need to merge all of the results. However, you will avoid
having a single "hot" hash key taking all of the workload.

Understand Partition Behavior
DynamoDB manages table partitioning for you automatically, adding new partitions as your table grows
in size.You can estimate the number of partitions that DynamoDB will create for your table, and compare
that estimate against your scale and access patterns. This can help you determine the best table design
for your application needs.

The number of partitions in a table is based on the table's storage requirements, and also its provisioned
throughput requirements.

Number of partitions required, based solely on a table's size

• numPartitionstableSize = tableSizeInBytes / 10 GB

The size of the table is one factor in determining the number of partitions needed. The other factor is the
table's provisioned throughput requirements. For any one partition, DynamoDB can allocate a maximum
of 3000 read capacity units or 1000 write capacity units.

API Version 2012-08-10
68

Amazon DynamoDB Developer Guide
Understand Partition Behavior

Number of partitions required, based solely on a table's provisioned read and write throughput
settings

• numPartitionsthroughput = (readCapacityUnits / 3000) + (writeCapacityUnits / 1000)

For example, suppose that you provisioned a table with 1000 read capacity units and 500 write capacity
units. In this case, numPartitionsthroughput would be:

(1000 / 3000) + (500 / 1000) = 0.8333

Therefore, a single partition could accommodate all of the table's provisioned throughput requirements.

However, if you provisioned 1000 read capacity units and 1000 write capacity units, then
numPartitionsthroughput would exceed a single partition's throughput capacity:

(1000 / 3000) + (1000 / 1000) = 1.333

In this case, the table would require two partitions, each with 500 read capacity units and 500 write capacity
units.

The total number of partitions allocated by DynamoDB is the larger of the table's size or its provisioned
throughput requirements:

Total number of partitions allocated by DynamoDB

• numPartitionstotal = MAX (numPartitionstableSize | numPartitionsthroughput)

A single partition can hold approximately 10 GB of data. If your table size grows beyond 10 GB, DynamoDB
will spread your data across additional partitions, and will also distribute your table's read and write
throughput accordingly. Therefore, as your table grows in size, less throughput will be provisioned per
partition.

Suppose that you have a table that has grown to 500 GB in size. This would mean that the table now
occupies approximately 50 partitions:

500 GB / 10 GB = 50 partitions

Now suppose that you have allocated 100,000 read capacity units to the table.You could determine the
amount of read capacity per partition as follows:

100,000 read capacity units / 50 partitions = 2000 read capacity units per
partition

Note
In the future, these details of partition sizes and throughput allocation per partition may change.

Use Burst Capacity Sparingly
DynamoDB provides some flexibility in the per-partition throughput provisioning: When you are not fully
utilizing a partition's throughput, DynamoDB reserves a portion of your unused capacity for later "bursts"
of throughput usage. DynamoDB currently reserves up 5 minutes (300 seconds) of unused read and
write capacity. During an occasional burst of read or write activity, this reserved throughput can be
consumed very quickly — even faster than the per-second provisioned throughput capacity that you've

API Version 2012-08-10
69

Amazon DynamoDB Developer Guide
Use Burst Capacity Sparingly

defined for your table. However, do not design your application so that it depends on burst capacity being
available at all times: DynamoDB can and does use burst capacity for background maintenance and other
tasks without prior notice.

Note
In the future, these details of burst capacity may change.

Distribute Write Activity During Data Upload
There are times when you load data from other data sources into DynamoDB. Typically, DynamoDB
partitions your table data on multiple servers.When uploading data to a table, you get better performance
if you upload data to all the allocated servers simultaneously. For example, suppose you want to upload
user messages to a DynamoDB table.You might design a table that uses a hash and range type primary
key in which UserID is the hash attribute and the MessageID is the range attribute. When uploading data
from your source, you might tend to read all message items for a specific user and upload these items
to DynamoDB as shown in the sequence in the following table.

MessageIDUserID

1U1

2U1

...U1

... up to 100U1

1U2

2U2

...U2

... up to 200U2

The problem in this case is that you are not distributing your write requests to DynamoDB across your
hash key values.You are taking one hash key at a time and uploading all its items before going to the
next hash key items. Behind the scenes, DynamoDB is partitioning the data in your tables across multiple
servers. To fully utilize all of the throughput capacity that has been provisioned for your tables, you need
to distribute your workload across your hash keys. In this case, by directing an uneven amount of upload
work toward items all with the same hash key, you may not be able to fully utilize all of the resources
DynamoDB has provisioned for your table.You can distribute your upload work by uploading one item
from each hash key first. Then you repeat the pattern for the next set of range keys for all the items until
you upload all the data as shown in the example upload sequence in the following table:

MessageIDUserID

1U1

1U2

1U3

.......

2U1

2U2

API Version 2012-08-10
70

Amazon DynamoDB Developer Guide
Distribute Write Activity During Data Upload

MessageIDUserID

2U3

......

Every upload in this sequence uses a different hash key, keeping more DynamoDB servers busy
simultaneously and improving your throughput performance.

Understand Access Patterns for Time Series Data
For each table that you create, you specify the throughput requirements. DynamoDB allocates and
reserves resources to handle your throughput requirements with sustained low latency. When you design
your application and tables, you should consider your application's access pattern to make the most
efficient use of your table's resources.

Suppose you design a table to track customer behavior on your site, such as URLs that they click.You
might design the table with hash and range type primary key with Customer ID as the hash attribute and
date/time as the range attribute. In this application, customer data grows indefinitely over time; however,
the applications might show uneven access pattern across all the items in the table where the latest
customer data is more relevant and your application might access the latest items more frequently and
as time passes these items are less accessed, eventually the older items are rarely accessed. If this is
a known access pattern, you could take it into consideration when designing your table schema. Instead
of storing all items in a single table, you could use multiple tables to store these items. For example, you
could create tables to store monthly or weekly data. For the table storing data from the latest month or
week, where data access rate is high, request higher throughput and for tables storing older data, you
could dial down the throughput and save on resources.

You can save on resources by storing "hot" items in one table with higher throughput settings, and "cold"
items in another table with lower throughput settings.You can remove old items by simply deleting the
tables.You can optionally backup these tables to other storage options such as Amazon Simple Storage
Service (Amazon S3). Deleting an entire table is significantly more efficient than removing items one-by-one,
which essentially doubles the write throughput as you do as many delete operations as put operations.

Cache Popular Items
Some items in a table might be more popular than others. For example, consider the ProductCatalog
table that is described in Example Tables and Data (p. 681), and suppose that this table contains millions
of different products. Some products might be very popular among customers, so those items would be
consistently accessed more frequently than the others. As a result, the distribution of read activity on
ProductCatalog would be highly skewed toward those popular items.

One solution would be to cache these reads at the application layer. Caching is a technique that is used
in many high-throughput applications, offloading read activity on hot items to the cache rather than to the
database.Your application can cache the most popular items in memory, or use a product such as
ElastiCache to do the same.

Continuing with the ProductCatalog example, when a customer requests an item from that table, the
application would first consult the cache to see if there is a copy of the item there. If so, it is a cache hit;
otherwise, it is a cache miss. When there is a cache miss, the application would need to read the item
from DynamoDB and store a copy of the item in the cache. Over time, the cache misses would decrease
as the cache fills with the most popular items; applications would not need to access DynamoDB at all
for these items.

API Version 2012-08-10
71

Amazon DynamoDB Developer Guide
Understand Access Patterns for Time Series Data

http://aws.amazon.com/elasticache

A caching solution can mitigate the skewed read activity for popular items. In addition, since it reduces
the amount of read activity against the table, caching can help reduce your overall costs for using
DynamoDB.

Consider Workload Uniformity When Adjusting
Provisioned Throughput
As the amount of data in your table grows, or as you provision additional read and write capacity,
DynamoDB automatically spreads the data across multiple partitions. If your application doesn't require
as much throughput, you simply decrease it using the UpdateTable operation, and pay only for the
throughput that you have provisioned.

For applications that are designed for use with uniform workloads, DynamoDB's partition allocation activity
is not noticeable. A temporary non-uniformity in a workload can generally be absorbed by the bursting
allowance, as described in Use Burst Capacity Sparingly (p. 69). However, if your application must
accommodate non-uniform workloads on a regular basis, you should design your table with DynamoDB's
partitioning behavior in mind (see Understand Partition Behavior (p. 68)), and be mindful when increasing
and decreasing provisioned throughput on that table.

If you reduce the amount of provisioned throughput for your table, DynamoDB will not decrease the
number of partitions . Suppose that you created a table with a much larger amount of provisioned
throughput than your application actually needed, and then decreased the provisioned throughput later.
In this scenario, the provisioned throughput per partition would be less than it would have been if you had
initially created the table with less throughput.

For example, consider a situation where you need to bulk-load 20 million items into a DynamoDB table.
Assume that each item is 1 KB in size, resulting in 20 GB of data. This bulk-loading task will require a
total of 20 million write capacity units. To perform this data load within 30 minutes, you would need to set
the provisioned write throughput of the table to 11,000 write capacity units.

The maximum write throughput of a partition is 1000 write capacity units ((see Understand Partition
Behavior (p. 68)); therefore, DynamoDB will create 11 partitions, each with 1000 provisioned write capacity
units.

After the bulk data load, your steady-state write throughput requirements might be much lower — for
example, suppose that your applications only require 200 writes per second. If you decrease the table's
provisioned throughput to this level, each of the 11 partitions will have around 20 write capacity units per
second provisioned. This level of per-partition provisioned throughput, combined with DynamoDB's
bursting behavior, might be adequate for the application.

However, if an application will require sustained write throughput above 20 writes per second per partition,
you should either: (a) design a schema that requires fewer writes per second per hash key, or (b) design
the bulk data load so that it runs at a slower pace and reduces the initial throughput requirement. For
example, suppose that it was acceptable to run the bulk import for over 3 hours, instead of just 30 minutes.
In this scenario, only 1900 write capacity units per second needs to be provisioned, rather than 11,000.
As a result, DynamoDB would create only two partitions for the table.

Test Your Application At Scale
Many tables begin with small amounts of data, but then grow larger as applications perform write activity.
This growth can occur gradually, without exceeding the provisioned throughput settings you have defined
for the table. As your table grows larger, DynamoDB automatically scales your table out by distributing
the data across more partitions. When this occurs, the provisioned throughput that is allocated to each
resulting partition is less than that which is allocated for the original partition(s).

Suppose that your application accesses the table's data across all of the hash key values, but in a
non-uniform fashion (accessing a small number of hash keys more frequently than others).Your application

API Version 2012-08-10
72

Amazon DynamoDB Developer Guide
Consider Workload Uniformity When Adjusting

Provisioned Throughput

might perform acceptably when there is not very much data in the table. However, as the table becomes
larger, there will be more partitions and less throughput per partition.You might discover that your
application is throttled when it attempts to use the same non-uniform access pattern that worked in the
past.

To avoid problems with "hot" keys when your table becomes larger, make sure that you test your application
design at scale. Consider the ratio of storage to throughput when running at scale, and how DynamoDB
will allocate partitions to the table. (For more information, see Understand Partition Behavior (p. 68).)

If it isn't possible for you to generate a large amount of test data, you can create a table that has very
high provisioned throughput settings. This will create a table with many partitions; you can then use
UpdateTable to reduce the settings, but keep the same ratio of storage to throughput that you determined
for running the application at scale.You now have a table that has the throughput-per-partition ratio that
you expect after it grows to scale. Test your application against this table using a realistic workload.

Tables that store time series data can grow in an unbounded manner, and can cause slower application
performance over time. With time series data, applications typically read and write the most recent items
in the table more frequently than older items. If you can remove older time series data from your real-time
table, and archive that data elsewhere, you can maintain a high ratio of throughput per partition.

For best practices with time series data, Understand Access Patterns for Time Series Data (p. 71).

Working with Tables Using the AWS SDK for
Java Document API

Topics

• Creating a Table (p. 73)

• Updating a Table (p. 74)

• Deleting a Table (p. 75)

• Listing Tables (p. 75)

• Example: Create, Update, Delete, and List Tables Using the AWS SDK for Java Document API (p. 76)

You can use the AWS SDK for Java Document API to create, update, and delete tables, list all the tables
in your account, or get information about a specific table.

The following are the common steps for table operations using the AWS SDK for Java Document API.

Creating a Table
To create a table, you must provide the table name, its primary key, and the provisioned throughput
values. For more information, see Specifying Read and Write Requirements for Tables (p. 62). The
following Java code snippet creates an example table that uses a numeric type attribute Id as its primary
key.

The following are the steps to create a table using the AWS SDK for Java Document API.

1. Create an instance of the DynamoDB class.

2. Instantiate a CreateTableRequest to provide the request information.

You must provide the table name, attribute definitions, key schema, and provisioned throughput values.

3. Execute the createTable method by providing the request object as a parameter.

API Version 2012-08-10
73

Amazon DynamoDB Developer Guide
Working with Tables - Java Document API

The following Java code snippet demonstrates the preceding steps.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

ArrayList<AttributeDefinition> attributeDefinitions= new ArrayList<AttributeDefin
ition>();
attributeDefinitions.add(new AttributeDefinition().withAttributeName("Id").withAt
tributeType("N"));

ArrayList<KeySchemaElement> keySchema = new ArrayList<KeySchemaElement>();
keySchema.add(new KeySchemaElement().withAttributeName("Id").withKeyType(Key
Type.HASH));

CreateTableRequest request = new CreateTableRequest()
 .withTableName(tableName)
 .withKeySchema(keySchema)
 .withAttributeDefinitions(attributeDefinitions)
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits(5L)
 .withWriteCapacityUnits(6L));

Table table = dynamoDB.createTable(request);

table.waitForActive();

The table will not be ready for use until DynamoDB creates it and sets its status to ACTIVE. The
createTable request returns a Table object that you can use to obtain more information about the
table.

TableDescription tableDescription =
 dynamoDB.getTable(tableName).describe();

System.out.printf("%s: %s \t ReadCapacityUnits: %d \t WriteCapacityUnits: %d",

 tableDescription.getTableStatus(),
 tableDescription.getTableName(),
 tableDescription.getProvisionedThroughput().getReadCapacityUnits(),
 tableDescription.getProvisionedThroughput().getWriteCapacityUnits());

You can call the describeTable method of the client to get table information at any time.

TableDescription tableDescription = dynamoDB.getTable(tableName).describe();

Updating a Table
You can update only the provisioned throughput values of an existing table. Depending on you application
requirements, you might need to update these values.

API Version 2012-08-10
74

Amazon DynamoDB Developer Guide
Updating a Table

Note
You can increase the read capacity units and write capacity units anytime. However, you can
decrease these values only four times in a 24 hour period. For additional guidelines and limitations,
see Specifying Read and Write Requirements for Tables (p. 62).

The following are the steps to update a table using the AWS SDK for Java Document API.

1. Create an instance of the Table class.

2. Create an instance of the ProvisionedThroughput class to provide the new throughput values.

3. Execute the updateTable method by providing the ProvisionedThroughput instance as a
parameter.

The following Java code snippet demonstrates the preceding steps.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("ProductCatalog");

ProvisionedThroughput provisionedThroughput = new ProvisionedThroughput()
 .withReadCapacityUnits(15L)
 .withWriteCapacityUnits(12L);

table.updateTable(provisionedThroughput);

table.waitForActive();

Deleting a Table
The following are the steps to delete a table.

1. Create an instance of the Table class.

2. Create an instance of the DeleteTableRequest class and provide the table name that you want to
delete.

3. Execute the deleteTable method by providing the Table instance as a parameter.

The following Java code snippet demonstrates the preceding steps.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("ProductCatalog");

table.delete();

table.waitForDelete();

Listing Tables
To list tables in your account, create an instance of DynamoDB and execute the listTables method.
The ListTables operation requires no parameters.

API Version 2012-08-10
75

Amazon DynamoDB Developer Guide
Deleting a Table

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_ListTables.html

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

TableCollection<ListTablesResult> tables = dynamoDB.listTables();
Iterator<Table> iterator = tables.iterator();

while (iterator.hasNext()) {
 Table table = iterator.next();
 System.out.println(table.getTableName());
}

Example: Create, Update, Delete, and List Tables
Using the AWS SDK for Java Document API
The following Java example uses the AWS SDK for Java Document API to create, update, and delete a
table (ExampleTable). As part of the table update, it increases the provisioned throughput values. The
example also lists all the tables in your account and gets the description of a specific table. For step-by-step
instructions to run the following example, see Running Java Examples for DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.util.ArrayList;
import java.util.Iterator;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.TableCollection;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ListTablesResult;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.TableDescription;

public class DocumentAPITableExample {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

 static String tableName = "ExampleTable";

 public static void main(String[] args) throws Exception {

 createExampleTable();
 listMyTables();
 getTableInformation();
 updateExampleTable();

 deleteExampleTable();

API Version 2012-08-10
76

Amazon DynamoDB Developer Guide
Example: Create, Update, Delete and List Tables - Java

Document API

 }

 static void createExampleTable() {

 try {

 ArrayList<AttributeDefinition> attributeDefinitions = new ArrayL
ist<AttributeDefinition>();
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Id")
 .withAttributeType("N"));

 ArrayList<KeySchemaElement> keySchema = new ArrayList<KeySchemaEle
ment>();
 keySchema.add(new KeySchemaElement()
 .withAttributeName("Id")
 .withKeyType(KeyType.HASH));

 CreateTableRequest request = new CreateTableRequest()
 .withTableName(tableName)
 .withKeySchema(keySchema)
 .withAttributeDefinitions(attributeDefinitions)
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits(5L)
 .withWriteCapacityUnits(6L));

 System.out.println("Issuing CreateTable request for " + tableName);

 Table table = dynamoDB.createTable(request);

 System.out.println("Waiting for " + tableName
 + " to be created...this may take a while...");
 table.waitForActive();

 getTableInformation();

 } catch (Exception e) {
 System.err.println("CreateTable request failed for " + tableName);

 System.err.println(e.getMessage());
 }

 }

 static void listMyTables() {

 TableCollection<ListTablesResult> tables = dynamoDB.listTables();
 Iterator<Table> iterator = tables.iterator();

 System.out.println("Listing table names");

 while (iterator.hasNext()) {
 Table table = iterator.next();
 System.out.println(table.getTableName());
 }
 }

 static void getTableInformation() {

API Version 2012-08-10
77

Amazon DynamoDB Developer Guide
Example: Create, Update, Delete and List Tables - Java

Document API

 System.out.println("Describing " + tableName);

 TableDescription tableDescription = dynamoDB.getTable(tableName).de
scribe();
 System.out.format("Name: %s:\n" + "Status: %s \n"
 + "Provisioned Throughput (read capacity units/sec): %d \n"
 + "Provisioned Throughput (write capacity units/sec): %d \n",
 tableDescription.getTableName(),
 tableDescription.getTableStatus(),
 tableDescription.getProvisionedThroughput().getReadCapacityUnits(),
 tableDescription.getProvisionedThroughput().getWriteCapacityUnits());
 }

 static void updateExampleTable() {

 Table table = dynamoDB.getTable(tableName);
 System.out.println("Modifying provisioned throughput for " + tableName);

 try {
 table.updateTable(new ProvisionedThroughput()
 .withReadCapacityUnits(6L).withWriteCapacityUnits(7L));

 table.waitForActive();
 } catch (Exception e) {
 System.err.println("UpdateTable request failed for " + tableName);

 System.err.println(e.getMessage());
 }
 }

 static void deleteExampleTable() {

 Table table = dynamoDB.getTable(tableName);
 try {
 System.out.println("Issuing DeleteTable request for " + tableName);

 table.delete();

 System.out.println("Waiting for " + tableName
 + " to be deleted...this may take a while...");

 table.waitForDelete();
 } catch (Exception e) {
 System.err.println("DeleteTable request failed for " + tableName);

 System.err.println(e.getMessage());
 }
 }

}

API Version 2012-08-10
78

Amazon DynamoDB Developer Guide
Example: Create, Update, Delete and List Tables - Java

Document API

Working with Tables Using the AWS SDK for
.NET Low-Level API

Topics

• Creating a Table (p. 79)

• Updating a Table (p. 80)

• Deleting a Table (p. 81)

• Listing Tables (p. 81)

• Example: Create, Update, Delete, and List Tables Using the AWS SDK for .NET Low-Level API (p. 82)

You can use the AWS SDK for .NET low-level API (protocol-level API) to create, update, and delete
tables, list all the tables in your account, or get information about a specific table. These operations map
to the corresponding DynamoDB API. For more information, see Using the DynamoDB API (p. 512).

The following are the common steps for table operations using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class (the client).

2. Provide the required and optional parameters for the operation by creating the corresponding request
objects.

For example, create a CreateTableRequest object to create a table and UpdateTableRequest
object to update an existing table.

3. Execute the appropriate method provided by the client that you created in the preceding step.

Creating a Table
To create a table, you must provide the table name, its primary key, and the provisioned throughput
values. For more information, see Specifying Read and Write Requirements for Tables (p. 62).

The following are the steps to create a table using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the CreateTableRequest class to provide the request information.

You must provide the table name, primary key, and the provisioned throughput values.

3. Execute the AmazonDynamoDBClient.CreateTable method by providing the request object as a
parameter.

The following C# code snippet demonstrates the preceding steps. The sample creates a table
(ProductCatalog) that uses Id as the primary key and set of provisioned throughput values. Depending
on your application requirements, you can update the provisioned throughput values by using the
UpdateTable API.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new CreateTableRequest
{
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()

API Version 2012-08-10
79

Amazon DynamoDB Developer Guide
Working with Tables - .NET Low-Level API

 {
 new AttributeDefinition
 {
 AttributeName = "Id",
 AttributeType = "N"
 }
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement
 {
 AttributeName = "Id",
 KeyType = "HASH"
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 5
 }
};

var response = client.CreateTable(request);

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. The CreateTable
response includes the TableDescription property that provides the necessary table information.

var result = response.CreateTableResult;
 var tableDescription = result.TableDescription;
 Console.WriteLine("{1}: {0} \t ReadCapacityUnits: {2} \t WriteCapacityUnits:
{3}",
 tableDescription.TableStatus,
 tableDescription.TableName,
 tableDescription.ProvisionedThroughput.ReadCapacityUnits,
 tableDescription.ProvisionedThroughput.WriteCapacityUnits);

 string status = tableDescription.TableStatus;
 Console.WriteLine(tableName + " - " + status);

You can also call the DescribeTable method of the client to get table information at anytime.

var res = client.DescribeTable(new DescribeTableRequest{TableName = "Product
Catalog"});

Updating a Table
You can update only the provisioned throughput values of an existing table. Depending on you application
requirements, you might need to update these values.

Note
You can increase the read capacity units and write capacity units anytime.You can also decrease
read capacity units anytime. However, you can decrease write capacity units only four times in
a 24 hour period. Any change you make must be at least 10% different from the current values.
For additional guidelines and limitations, see Specifying Read and Write Requirements for
Tables (p. 62).

API Version 2012-08-10
80

Amazon DynamoDB Developer Guide
Updating a Table

The following are the steps to update a table using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the UpdateTableRequest class to provide the request information.

You must provide the table name and the new provisioned throughput values.

3. Execute the AmazonDynamoDBClient.UpdateTable method by providing the request object as a
parameter.

The following C# code snippet demonstrates the preceding steps.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ExampleTable";

var request = new UpdateTableRequest()
 {
 TableName = tableName,
 ProvisionedThroughput = new ProvisionedThroughput()
 {
 // Provide new values.
 ReadCapacityUnits = 20,
 WriteCapacityUnits = 10
 }
 };
var response = client.UpdateTable(request);

Deleting a Table
The following are the steps to delete a table using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the DeleteTableRequest class and provide the table name that you want to
delete.

3. Execute the AmazonDynamoDBClient.DeleteTable method by providing the request object as a
parameter.

The following C# code snippet demonstrates the preceding steps.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ExampleTable";

var request = new DeleteTableRequest{ TableName = tableName };
var response = client.DeleteTable(request);

Listing Tables
To list tables in your account using the AWS SDK for .NET low-level API, create an instance of the
AmazonDynamoDBClient and execute the ListTables method. The ListTables operation requires no
parameters. However, you can specify optional parameters. For example, you can set the Limit parameter
if you want to use paging to limit the number of table names per page. This requires you to create a
ListTablesRequest object and provide optional parameters as shown in the following C# code snippet.
Along with the page size, the request sets the ExclusiveStartTableName parameter. Initially,
ExclusiveStartTableName is null, however, after fetching the first page of result, to retrieve the next

API Version 2012-08-10
81

Amazon DynamoDB Developer Guide
Deleting a Table

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_ListTables.html

page of result, you must set this parameter value to the LastEvaluatedTableName property of the
current result.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

// Initial value for the first page of table names.
string lastEvaluatedTableName = null;
do
{
 // Create a request object to specify optional parameters.
 var request = new ListTablesRequest
 {
 Limit = 10, // Page size.
 ExclusiveStartTableName = lastEvaluatedTableName
 };

 var response = client.ListTables(request);
 ListTablesResult result = response.ListTablesResult;
 foreach (string name in result.TableNames)
 Console.WriteLine(name);

 lastEvaluatedTableName = result.LastEvaluatedTableName;

} while (lastEvaluatedTableName != null);

Example: Create, Update, Delete, and List Tables
Using the AWS SDK for .NET Low-Level API
The following C# example uses the AWS SDK for .NET low-level API to create, update, and delete a
table (ExampleTable). It also lists all the tables in your account and gets the description of a specific table.
The table update increases the provisioned throughput values. For step-by-step instructions to test the
following sample, see Using the AWS SDK for .NET (p. 56).

using System;
using System.Collections.Generic;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;

namespace com.amazonaws.codesamples
{
 class LowLevelTableExample
 {
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 private static string tableName = "ExampleTable";

 static void Main(string[] args)
 {

 try
 {
 CreateExampleTable();
 ListMyTables();
 GetTableInformation();

API Version 2012-08-10
82

Amazon DynamoDB Developer Guide
Example: Create, Update, Delete and List Tables - .NET

Low-Level API

 UpdateExampleTable();

 DeleteExampleTable();

 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }
 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }
 }

 private static void CreateExampleTable()
 {
 Console.WriteLine("\n*** Creating table ***");
 var request = new CreateTableRequest
 {
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "Id",
 AttributeType = "N"
 },
 new AttributeDefinition
 {
 AttributeName = "ReplyDateTime",
 AttributeType = "N"
 }
 },
 KeySchema = new List<KeySchemaElement>
 {
 new KeySchemaElement
 {
 AttributeName = "Id",
 KeyType = "HASH"
 },
 new KeySchemaElement
 {
 AttributeName = "ReplyDateTime",
 KeyType = "RANGE"
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 5,
 WriteCapacityUnits = 6
 },
 TableName = tableName
 };

 var response = client.CreateTable(request);

 var tableDescription = response.TableDescription;
 Console.WriteLine("{1}: {0} \t ReadsPerSec: {2} \t WritesPerSec:
{3}",

API Version 2012-08-10
83

Amazon DynamoDB Developer Guide
Example: Create, Update, Delete and List Tables - .NET

Low-Level API

 tableDescription.TableStatus,
 tableDescription.TableName,
 tableDescription.ProvisionedThroughput.ReadCapacity
Units,
 tableDescription.ProvisionedThroughput.WriteCapa
cityUnits);

 string status = tableDescription.TableStatus;
 Console.WriteLine(tableName + " - " + status);

 WaitUntilTableReady(tableName);

 }

 private static void ListMyTables()
 {
 Console.WriteLine("\n*** listing tables ***");
 string lastTableNameEvaluated = null;
 do
 {
 var request = new ListTablesRequest
 {
 Limit = 2,
 ExclusiveStartTableName = lastTableNameEvaluated
 };

 var response = client.ListTables(request);
 foreach (string name in response.TableNames)
 Console.WriteLine(name);

 lastTableNameEvaluated = response.LastEvaluatedTableName;

 } while (lastTableNameEvaluated != null);
 }

 private static void GetTableInformation()
 {
 Console.WriteLine("\n*** Retrieving table information ***");
 var request = new DescribeTableRequest
 {
 TableName = tableName
 };

 var response = client.DescribeTable(request);

 TableDescription description = response.Table;
 Console.WriteLine("Name: {0}", description.TableName);
 Console.WriteLine("# of items: {0}", description.ItemCount);
 Console.WriteLine("Provision Throughput (reads/sec): {0}",
 description.ProvisionedThroughput.ReadCapacity
Units);
 Console.WriteLine("Provision Throughput (writes/sec): {0}",
 description.ProvisionedThroughput.WriteCapacity
Units);

 }

 private static void UpdateExampleTable()

API Version 2012-08-10
84

Amazon DynamoDB Developer Guide
Example: Create, Update, Delete and List Tables - .NET

Low-Level API

 {
 Console.WriteLine("\n*** Updating table ***");
 var request = new UpdateTableRequest()
 {
 TableName = tableName,
 ProvisionedThroughput = new ProvisionedThroughput()
 {
 ReadCapacityUnits = 6,
 WriteCapacityUnits = 7
 }
 };

 var response = client.UpdateTable(request);

 WaitUntilTableReady(tableName);
 }

 private static void DeleteExampleTable()
 {
 Console.WriteLine("\n*** Deleting table ***");
 var request = new DeleteTableRequest
 {
 TableName = tableName
 };

 var response = client.DeleteTable(request);

 Console.WriteLine("Table is being deleted...");
 }

 private static void WaitUntilTableReady(string tableName)
 {
 string status = null;
 // Let us wait until table is created. Call DescribeTable.
 do
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 status = res.Table.TableStatus;
 }
 catch (ResourceNotFoundException)
 {
 // DescribeTable is eventually consistent. So you might
 // get resource not found. So we handle the potential excep
tion.
 }
 } while (status != "ACTIVE");
 }

API Version 2012-08-10
85

Amazon DynamoDB Developer Guide
Example: Create, Update, Delete and List Tables - .NET

Low-Level API

 }
}

Working with Tables Using the AWS SDK for
PHP Low-Level API

Topics

• Creating a Table (p. 86)

• Updating a Table (p. 87)

• Deleting a Table (p. 88)

• Listing Tables (p. 89)

• Example: Create, Update, Delete, and List Tables Using the AWS SDK for PHP Low-Level API (p. 89)

You can use the AWS SDK for PHP to create, update, and delete tables, list all the tables in your account,
or get information about a specific table. These operations map to the corresponding DynamoDB API.
For more information, see Using the DynamoDB API (p. 512).

The following are the common steps for table operations using the AWS SDK for PHP API.

1. Create an instance of the DynamoDbClient client class.

2. Provide the parameters for a DynamoDB operation to the client instance, including any optional
parameters.

3. Load the response from DynamoDB into a local variable for your application.

Creating a Table
To create a table, you must provide the table name, its primary key, and the provisioned throughput
values. For more information, see Specifying Read and Write Requirements for Tables (p. 62). The
following PHP code sample creates an ExampleTable that uses a numeric type attribute Id as its primary
key.

The following are the steps to create a table using the AWS SDK for PHP.

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the createTable operation to the client instance.

You must provide the table name, its primary key, attribute type definitions, and the provisioned
throughput values.

3. Load the response into a local variable, such as $response, for use in your application.

The following PHP code snippet demonstrates the preceding steps. The code creates a table
(ProductCatalog) that uses Id as the primary key and set of provisioned throughput values. Depending
on your application requirements, you can update the provisioned throughput values by using the
updateTable method.

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(

API Version 2012-08-10
86

Amazon DynamoDB Developer Guide
Working with Tables - PHP Low-Level API

 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$tableName = 'ExampleTable';

echo "# Creating table $tableName..." . PHP_EOL;

$result = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(
 array(
 'AttributeName' => 'Id',
 'AttributeType' => 'N'
)
),
 'KeySchema' => array(
 array(
 'AttributeName' => 'Id',
 'KeyType' => 'HASH'
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 5,
 'WriteCapacityUnits' => 6
)
));

print_r($result->getPath('TableDescription'));

You must wait until DynamoDB creates the table and sets the table status to ACTIVE before you can put
data into the table.You can use the client's waitUntil function to wait until the table's status becomes
ACTIVE. For more information, see the DescribeTable operation.

The following code snippet demonstrates a sleep operation to wait for the table to be in the ACTIVE state.

$client->waitUntilTableExists(array('TableName' => $tableName));
echo "table $tableName has been created." . PHP_EOL;

Updating a Table
You can update the provisioned throughput values of an existing table. Depending on your application
requirements, you might need to update these values.

Note
You can increase the read capacity units and write capacity units anytime. However, you can
decrease these values only four times in a 24 hour period. For additional guidelines and limitations,
see Specifying Read and Write Requirements for Tables (p. 62).

The following are the steps to update a table using the AWS SDK for PHP API.

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the updateTable operation to the client instance.

You must provide the table name and the new provisioned throughput values.

3. Load the response into a local variable, such as $response, for use in your application.

API Version 2012-08-10
87

Amazon DynamoDB Developer Guide
Updating a Table

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

Immediately after a successful request, the table will be in the UPDATING state until the new values
are set. The new provisioned throughput values are available when the table returns to the ACTIVE
state.

The following PHP code snippet demonstrates the preceding steps.

$tableName = 'ExampleTable';

echo "Updating provisioned throughput settings on $tableName..." . PHP_EOL;

$result = $client->updateTable(array(
 'TableName' => $tableName,
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 6,
 'WriteCapacityUnits' => 7
)
));

// Wait until update completes
$client->waitUntilTableExists(array('TableName' => $tableName));

echo "New provisioned throughput settings:" . PHP_EOL;

echo "Read capacity units: " . $result['TableDescription']['ProvisionedThrough
put']['ReadCapacityUnits'] . PHP_EOL;
echo "Write capacity units: " . $result['TableDescription']['ProvisionedThrough
put']['WriteCapacityUnits'] . PHP_EOL;

Deleting a Table
The following are the steps to delete a table using the AWS SDK for PHP.

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the deleteTable operation to the client instance.

You must provide the table name for the table to delete.

3. Load the response into a local variable, such as $response, for use in your application.

Immediately after a successful request, the table will be in the DELETING state until the table and all
of the values in the table are removed from the server.

The following PHP code snippet demonstrates the preceding steps.

$tableName = 'ExampleTable';

echo "Deleting the table..." . PHP_EOL;

$result = $client->deleteTable(array(
 'TableName' => $tableName
));

API Version 2012-08-10
88

Amazon DynamoDB Developer Guide
Deleting a Table

$client->waitUntilTableNotExists(array('TableName' => $tableName));
echo "The table has been deleted." . PHP_EOL;

Listing Tables
To list tables in your account using the AWS SDK for PHP, create an instance of the DynamoDbClient
class and execute the list_tables operation. The ListTables operation requires no parameters.

However, you can specify optional parameters. For example, you can set the Limit parameter if you
want to use paging to limit the number of table names per page.You can also set the
ExclusiveStartTableName parameter. After fetching the first page of results, DynamoDB returns a
LastEvalutedTableName value. Use the LastEvalutedTableName value for the
ExclusiveStartTableName parameter to get the next page of results.

The following PHP code snippet demonstrates how to list all of the tables in your account by using the
LastEvalutedTableName value for the ExclusiveStartTableName parameter, using a Limit value
of 2 table names per page.

$tables = array();

// Walk through table names, two at a time

do {
 $response = $client->listTables(array(
 'Limit' => 2,
 'ExclusiveStartTableName' => isset($response) ? $response['LastEvalu
atedTableName'] : null
));

 foreach ($response['TableNames'] as $key => $value) {
 echo "$value" . PHP_EOL;
 }

 $tables = array_merge($tables, $response['TableNames']);

}
while ($response['LastEvaluatedTableName']);

// Print total number of tables

echo "Total number of tables: ";
print_r(count($tables));
echo PHP_EOL;

Example: Create, Update, Delete, and List Tables
Using the AWS SDK for PHP Low-Level API
The following PHP code example uses the AWS SDK for PHP API to create, update, and delete a table
(ExampleTable). As part of the table update, it increases the provisioned throughput values.The example
also lists all the tables in your account and gets the description of a specific table. At the end, the example
deletes the table. However, the delete operation is commented-out so you can keep the table and data
until you are ready to delete it.

API Version 2012-08-10
89

Amazon DynamoDB Developer Guide
Listing Tables

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_ListTables.html

Note
For step-by-step instructions to run the following code example, see Running PHP
Examples (p. 59).

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

$tableName = 'ExampleTable';

echo "# Creating table $tableName..." . PHP_EOL;

$response = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(
 array(
 'AttributeName' => 'Id',
 'AttributeType' => 'N'
)
),
 'KeySchema' => array(
 array(
 'AttributeName' => 'Id',
 'KeyType' => 'HASH'
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 5,
 'WriteCapacityUnits' => 6
)
));

print_r($response->getPath('TableDescription'));

$client->waitUntilTableExists(array('TableName' => $tableName));
echo "table $tableName has been created." . PHP_EOL;

##
Updating the table

echo "# Updating the provisioned throughput of table $tableName." . PHP_EOL;

$response = $client->updateTable(array(
 'TableName' => $tableName,
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 6,
 'WriteCapacityUnits' => 7
)
));

// Wait until update completes
$client->waitUntilTableExists(array('TableName' => $tableName));

API Version 2012-08-10
90

Amazon DynamoDB Developer Guide
Example: Create, Update, Delete and List Tables - PHP

Low-Level API

echo "New provisioned throughput settings:" . PHP_EOL;

echo "Read capacity units: " . $response['TableDescription']['ProvisionedThrough
put']['ReadCapacityUnits'] . PHP_EOL;
echo "Write capacity units: " . $response['TableDescription']['ProvisionedThrough
put']['WriteCapacityUnits'] . PHP_EOL;

##
Deleting the table

echo "# Deleting table $tableName..." . PHP_EOL;

$response = $client->deleteTable(array(
 'TableName' => $tableName
));

$client->waitUntilTableNotExists(array('TableName' => $tableName));
echo "The table has been deleted." . PHP_EOL;

##
Collect all table names in the account

echo "# Listing all the tables in the account..." . PHP_EOL;

$tables = array();

// Walk through table names, two at a time

do {
 $response = $client->listTables(array(
 'Limit' => 2,
 'ExclusiveStartTableName' => isset($response) ? $response['LastEvalu
atedTableName'] : null
));

 foreach ($response['TableNames'] as $key => $value) {
 echo "$value" . PHP_EOL;
 }

 $tables = array_merge($tables, $response['TableNames']);

}
while ($response['LastEvaluatedTableName']);

// Print total number of tables

echo "Total number of tables: ";
print_r(count($tables));
echo PHP_EOL;

?>

API Version 2012-08-10
91

Amazon DynamoDB Developer Guide
Example: Create, Update, Delete and List Tables - PHP

Low-Level API

Working with Items in DynamoDB

Topics

• Overview (p. 92)

• Reading an Item (p. 93)

• Writing an Item (p. 94)

• Batch Operations (p. 95)

• Atomic Counters (p. 95)

• Conditional Writes (p. 95)

• Reading and Writing Items Using Expressions (p. 98)

• Guidelines for Working with Items (p. 115)

• Working with Items Using the AWS SDK for Java Document API (p. 120)

• Working with Items Using the AWS SDK for .NET Low-Level API (p. 142)

• Working with Items Using the AWS SDK for PHP Low-Level API (p. 177)

In DynamoDB, an item is a collection of attributes. Each attribute has a name and a value. An attribute
value can be a scalar, a set, or a document type. For more information, see DynamoDB Data Types (p. 6).

DynamoDB provides APIs to read and write items. For these operations, you need to specify the items
and attributes that you want to work with.When you write an item, you can specify one or more conditions
that must evaluate to true. For example, you might want the write to succeed only if an item with the same
key does not already exist.

This section describes how to work with items in Amazon DynamoDB. This includes reading and writing
items, conditional updates, and atomic counters. This section also includes guidelines for working with
items, and example code that uses the AWS SDKs.

Overview
An item consists of one or more attributes. Each attribute consists of a name, a data type, and a value.
When you read or write an item, the only attributes that are required are those that make up the primary
key.

Important
For the primary key, you must provide all of its attributes. For example, with a hash type primary
key, you only need to specify the hash attribute. For a hash-and-range type primary key, you

API Version 2012-08-10
92

Amazon DynamoDB Developer Guide
Overview

must specify both the hash attribute and the range attribute. For more information, see Primary
Key (p. 5).

Except for the primary key, there is no predefined schema for the items in a table. For example, to store
product information, you can create a ProductCatalog table and store various product items in it such as
books and bicycles. The following table shows two items, a book and a bicycle, that you can store in the
ProductCatalog table. Note that the example uses JSON-like syntax to show the attribute value.

Other AttributesId (Primary Key)

{
 Title = "Book 101 Title"
 ISBN = "111-1111111111"
 Authors = "Author 1"
 Price = "-2"
 Dimensions = "8.5 x 11.0 x 0.5"
 PageCount = "500"
 InPublication = true
 ProductCategory = "Book"
}

101

{
 Title = "18-Bicycle 201"
 Description = "201 description"
 BicycleType = "Road"
 Brand = "Brand-Company A"
 Price = "100"
 Gender = "M"
 Color = ["Red", "Black"]
 ProductCategory = "Bike"
}

201

An item can have any number of attributes, although there is a limit of 400 KB on the item size. An item
size is the sum of lengths of its attribute names and values (binary and UTF-8 lengths); it helps if you
keep the attribute names short. For more information about attributes and data types, see DynamoDB
Data Model (p. 3).

Reading an Item
To read an item from a DynamoDB table, use the GetItem operation.You must provide the name of the
table, along with the primary key of the item you want.

You need to specify the entire primary key, not just part of it. For example, if a table has a hash and range
type primary key, you must supply a value for the hash attribute and a value for the range attribute.

The following are the default behaviors for GetItem:

• GetItem performs an eventually consistent read.

• GetItem returns all of the item's attributes.

• GetItem does not return any information about how many provisioned capacity units it consumes.

API Version 2012-08-10
93

Amazon DynamoDB Developer Guide
Reading an Item

You can override these defaults using GetItem parameters. For more information, see GetItem in the
Amazon DynamoDB API Reference.

Read Consistency
DynamoDB maintains multiple copies of each item to ensure durability. For every successful write request,
DynamoDB ensures that the write is durable on multiple servers. However, it takes time for a write to
propagate to all copies. In DynamoDB, data is eventually consistent. This means that if you write an item
and then immediately try to read it, you might not see the results from the earlier write.

By default, a GetItem operation performs an eventually consistent read.You can optionally request a
strongly consistent read instead; this will consume additional read capacity units, but it will return the
most up-to-date version of the item.

An eventually consistent GetItem request consumes only half the read capacity units as a strongly
consistent request.Therefore, it is best to design applications so that they use eventually consistent reads
whenever possible. Consistency across all copies of the data is usually reached within one second.

Writing an Item
To create, update, and delete items in a DynamoDB table, use the following operations:

• PutItem — creates a new item. If an item with the same key already exists in the table, it is replaced
with the new item.You must provide the table name and the item that you want to write.

• UpdateItem — if the item does not already exist, this operation creates a new item; otherwise, it
modifies an existing item's attributes.You must specify the table name and the key of the item you
want to modify. For each of the attributes that you want to update, you must provide new values for
them.

• DeleteItem — deletes an item.You must specify the table name and the key of the item you want to
delete.

For each of these operations, you need to specify the entire primary key, not just part of it. For example,
if a table has a hash and range type primary key, you must supply a value for the hash attribute and a
value for the range attribute.

If you want to avoid accidentally overwriting or deleting an existing item, you can use a conditional
expression with any of these operations. A conditional expression lets you check whether a condition is
true (such as an item already existing in the table) before the operation can proceed. For more information,
see Conditional Write Operations (p. 114).

In some cases, you might want DynamoDB to display certain attribute values before or after you modify
them. For example, with an UpdateItem operation, you could request that attribute values be returned
as they appeared before the update occurs. PutItem, UpdateItem, and DeleteItem have a
ReturnValues parameter, which you can use to return the attribute values before or after they are
modified.

By default, none of these operations return any information about how many provisioned capacity units
they consume.You can use the ReturnConsumedCapacity parameter to obtain this information.

For detailed information about these operations, see PutItem, UpdateItem, and DeleteItem in the Amazon
DynamoDB API Reference.

API Version 2012-08-10
94

Amazon DynamoDB Developer Guide
Read Consistency

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

Batch Operations
If your application needs to read multiple items, you can use the BatchGetItem API. A single
BatchGetItem request can retrieve up to 1 MB of data, which can contain as many as 100 items. In
addition, a single BatchGetItem request can retrieve items from multiple tables.

The BatchWriteItem operation lets you put or delete multiple items. BatchWriteItem can write up
to 16 MB of data, consisting of up to 25 put or delete requests. The maximum size of an individual item
is 400 KB in size. In addition, a singleBatchWriteItem request can put or delete items in multiple tables.
(Note that BatchWriteItem cannot update items. To update items, use the UpdateItem API.)

A batch consists of one or more requests. For each request, DynamoDB invokes the corresponding API
for that request. For example, if a BatchGetItem request contains five items, DynamoDB implicitly
performs five GetItem operations on your behalf. Similarly, if a BatchWriteItem request contains two
put requests and four delete requests, DynamoDB implicitly performs two PutItem and four DeleteItem
requests.

If an individual request in a batch should fail (for example, because you exceed the provisioned throughput
settings on a table), this does not cause the entire batch to fail. Instead, the batch operation returns the
keys and data from the individual failed request, so that you can retry the operation. In general, a batch
operation does not fail unless all of the requests in the batch fail.

For detailed information about batch operations, see BatchGetItem and BatchWriteItem in the Amazon
DynamoDB API Reference.

Atomic Counters
DynamoDB supports atomic counters, where you use the UpdateItem operation to increment or decrement
the value of an existing attribute without interfering with other write requests. (All write requests are applied
in the order in which they were received.) For example, a web application might want to maintain a counter
per visitor to their site. In this case, the application would need to increment this counter regardless of its
current value.

Atomic counter updates are not idempotent. This means that the counter will increment each time you
call UpdateItem. If you suspect that a previous request was unsuccessful, your application could retry
the UpdateItem operation; however, this would risk updating the counter twice.This might be acceptable
for a web site counter, because you can tolerate with slightly over- or under-counting the visitors. However,
in a banking application, it would be safer to use a conditional update rather than an atomic counter.

To update an atomic counter, use an UpdateItem operation with an attribute of type Number in the
UpdateExpression parameter, and SET as the update action to perform.You can increment the counter
using a positive number, or decrement it using a negative number. For more information, see Incrementing
and Decrementing Numeric Attributes (p. 111).

Conditional Writes
In a multi-user environment, multiple clients can access the same item and attempt to modify its attribute
values at the same time. However, each client might not realize that other clients might have modified
the item already. This is shown in the following illustration in which Client 1 and Client 2 have retrieved
a copy of an item (Id=1). Client 1 changes the price from $10 to $8. Later, Client 2 changes the same
item price to $12, and the previous change made by Client 1 is lost.

API Version 2012-08-10
95

Amazon DynamoDB Developer Guide
Batch Operations

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchGetItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

To help clients coordinate writes to data items, DynamoDB supports conditional writes for PutItem,
DeleteItem, and UpdateItem operations. With a conditional write, an operation succeeds only if the
item attributes meet one or more expected conditions; otherwise it returns an error. For example, the
following illustration shows both Client 1 and Client 2 retrieving a copy of an item (Id=1). Client 1 first
attempts to update the item price to $8, with the expectation that the existing item price on the server will
be $10. This operation succeeds because the expectation is met. Client 2 then attempts to update the
price to $12, with the expectation that the existing item price on the server will be $10. This expectation
cannot be met, because the price is now $8; therefore, Client 2's request fails.

API Version 2012-08-10
96

Amazon DynamoDB Developer Guide
Conditional Writes

Note that conditional writes are idempotent. This means that you can send the same conditional write
request multiple times, but it will have no further effect on the item after the first time DynamoDB performs
the specified update. For example, suppose you issue a request to update the price of a book item by
10%, with the expectation that the price is currently $20. However, before you get a response, a network
error occurs and you don't know whether your request was successful or not. Because a conditional
update is an idempotent operation, you can send the same request again. and DynamoDB will update
the price only if the current price is still $20.

To request a conditional PutItem, DeleteItem, or UpdateItem, you specify the condition(s) in the
ConditionExpression parameter. ConditionExpression is a string containing attribute names,
conditional operators and built-in functions. The entire expression must evaluate to true; otherwise the
operation will fail.

Tip
For more information, see Conditional Write Operations (p. 114).

If you specify the ReturnConsumedCapacity parameter, DynamoDB will return the number of write
capacity units that were consumed during the conditional write. (Note that write operations only consume
write capacity units; they never consume read capacity units.) Setting ReturnConsumedCapacity to
TOTAL returns the write capacity consumed for the table and all of its global secondary indexes; INDEXES
returns only the write capacity consumed by the global secondary indexes; NONE means that you do not
want any consumed capacity statistics returned.

If a ConditionExpression fails during a conditional write, DynamoDB will still consume one write
capacity unit from the table. A failed conditional write will return a ConditionalCheckFailedException
instead of the expected response from the write operation. For this reason, you will not receive any
information about the write capacity unit that was consumed. However, you can view the
ConsumedWriteCapacityUnits metric for the table in Amazon CloudWatch to determine the provisioned
write capacity that was consumed from the table. For more information, see DynamoDB Metrics (p. 582)
in Monitoring DynamoDB with CloudWatch (p. 580).

API Version 2012-08-10
97

Amazon DynamoDB Developer Guide
Conditional Writes

Note
Unlike a global secondary index, a local secondary index shares its provisioned throughput
capacity with its table. Read and write activity on a local secondary index consumes provisioned
throughput capacity from the table.

Reading and Writing Items Using Expressions
In DynamoDB, you use expressions to denote the attributes that you want to read from an item.You also
use expressions when writing an item, to indicate any conditions that must be met (also known as a
conditional update) and to indicate how the attributes are to be updated. Some update examples are
replacing the attribute with a new value, or adding new data to a list or a map. This section describes the
different kinds of expressions that are available.

Note
For backward compatibility, DynamoDB also supports conditional parameters that do not use
expressions. For more information, see Legacy Conditional Parameters (p. 731).
New applications should use expressions rather than the legacy parameters.

Topics

• Case Study: A ProductCatalog Item (p. 98)

• Accessing Item Attributes with Projection Expressions (p. 99)

• Using Placeholders for Attribute Names and Values (p. 101)

• Performing Conditional Writes with Condition Expressions (p. 103)

• Modifying Items and Attributes with Update Expressions (p. 109)

Case Study: A ProductCatalog Item
In this section, we will consider an item in the ProductCatalog table. (This table is shown in Example
Tables and Data in the Amazon DynamoDB Developer Guide, along with some sample items.) Here is
a representation of the item:

{
Id: 206,

 Title: "20-Bicycle 206",
 Description: "206 description",
 BicycleType: "Hybrid",
 Brand: "Brand-Company C",
 Price: 500,
 Gender: "B",
 Color: ["Red", "Black"],
 ProductCategory: "Bike",
 InStock: true,
 QuantityOnHand: null,
 RelatedItems: [
 341,
 472,
 649
],
 Pictures: {
 FrontView: "http://example.com/products/206_front.jpg",
 RearView: "http://example.com/products/206_rear.jpg",
 SideView: "http://example.com/products/206_left_side.jpg"
 },

API Version 2012-08-10
98

Amazon DynamoDB Developer Guide
Reading and Writing Items Using Expressions

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SampleTablesAndData.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SampleTablesAndData.html

 ProductReviews: {
 FiveStar: [
 "Excellent! Can't recommend it highly enough! Buy it!",
 "Do yourself a favor and buy this."
],
 OneStar: [
 "Terrible product! Do not buy this."
]
 }
}

Note the following:

• The hash key value (Id) is 206. There is no range key.

• Most of the attributes have scalar data types, such as String, Number, Boolean and Null.

• One attribute (Color) is a String Set.

• The following attributes are document data types:

• A List of RelatedItems. Each element is an Id for a related product.

• A Map of Pictures. Each element is a short description of a picture, along with a URL for the
corresponding image file.

• A Map of ProductReviews. Each element represents a rating and a list of reviews corresponding
to that rating. Initially, this map will be populated with five-star and one-star reviews.

Accessing Item Attributes with Projection
Expressions
To read data from a table, you use API operations such as GetItem, Query or Scan. DynamoDB returns
all of the item attributes by default. To get just some of the attributes, rather than all of them, use a
projection expression.

Note
The examples in the following sections are based on the ProductCatalog item from Case Study:
A ProductCatalog Item (p. 98).

Topics

• Projection Expressions (p. 99)

• Document Paths (p. 100)

Projection Expressions
A projection expression is a string that identifies the attributes you want. To retrieve a single attribute,
specify its name. For multiple attributes, the names must be comma-separated.

Following are some examples of projection expressions:

• A single top-level attribute.

Title

• Three top-level attributes. Note that DynamoDB will retrieve the entire Color set.

Title, Price, Color

API Version 2012-08-10
99

Amazon DynamoDB Developer Guide
Accessing Item Attributes with Projection Expressions

• Four top-level attributes. Note that DynamoDB will return the entire contents of RelatedItems and
ProductReviews.

Title, Description, RelatedItems, ProductReviews

You can use any attribute name in a projection expression, provided that the first character is a-z or A-Z
and the second character (if present) is a-z, A-Z, or 0-9. If an attribute name does not meet this
requirement, you will need to define an expression attribute name as a placeholder. For more information,
see Expression Attribute Names (p. 101).

Document Paths
In addition to top-level attributes, expressions can access individual elements in any document type
attribute. To do this, you must provide the element's location, or document path, within the item. The
document path tells DynamoDB where to find the attribute, even if it is deeply nested within multiple lists
and maps.

For a top-level attribute, the document path is simply the attribute name.

For a nested attribute, you construct the document path using dereference operators.

Accessing List Elements

The dereference operator for a list element is [n], where n is the element number. List elements are
zero-based, so [0] represents the first element in the list, [1] represents the second, and so on:

• MyList[0]

• AnotherList[12]

• ThisList[5][11]

The element ThisList[5] is itself a nested list. Therefore, ThisList[5][11] refers to the twelfth
element in that list.

The index in a list dereference must be a non-negative integer. Therefore, the following expressions are
invalid:

• MyList[-1]

• MyList[0.4]

Accessing Map Elements

The dereference operator for a map element is . (a dot). Use a dot as a separator between elements in
a map:

• MyMap.nestedField

• MyMap.nestedField.deeplyNestedField

Document Path Examples

Following are some examples of projection expressions using document paths.

• The third element from the RelatedItems list. (Remember that list elements are zero-based.)

RelatedItems[2]

API Version 2012-08-10
100

Amazon DynamoDB Developer Guide
Accessing Item Attributes with Projection Expressions

• The item's price, color, and a front-view picture of the product.

Price, Color, Pictures.FrontView

• All of the five-star reviews.

ProductReviews.FiveStar

• The first of the five-star reviews.

ProductReviews.FiveStar[0]

Note
The maximum depth for a document path is 32. Therefore, the number of dereferences in any
path cannot exceed this limit.

You can use any attribute name in a document path, provided that the first character is a-z or A-Z and
the second character (if present) is a-z, A-Z, or 0-9. If an attribute name does not meet this requirement,
you will need to define an expression attribute name as a placeholder. For more information, see Expression
Attribute Names (p. 101).

Using Placeholders for Attribute Names and Values
This section introduces placeholders, or substitution variables, that you can use in DynamoDB expressions.

Topics

• Expression Attribute Names (p. 101)

• Expression Attribute Values (p. 103)

Expression Attribute Names
On some occasions, you might need to write an expression containing an attribute name that conflicts
with a DynamoDB reserved word. (For a complete list of reserved words, see Reserved Words in
DynamoDB (p. 721).)

For example, the following projection expression would be invalid because SESSION is a reserved word:

• Classroom, Session, StartTime

To work around this, you can define an expression attribute name. An expression attribute name is a
placeholder that you use in the expression, as an alternative to the actual attribute name. An expression
attribute name must begin with a #, followed by one alphabetic character, and then by zero or more
alphanumeric characters.

In the preceding expression, you can replace Session with an expression attribute name such as #s.
The # (pound sign) is required and indicates that this is a placeholder for an attribute name. The revised
expression would now look like this:

• Classroom, #s, StartTime

Tip
If an attribute name begins with a number or contains a space, a special character, or a reserved
word, then you must use an expression attribute name to replace that attribute's name in the
expression.

API Version 2012-08-10
101

Amazon DynamoDB Developer Guide
Using Placeholders for Attribute Names and Values

In an expression, a dot (".") is interpreted as a separator character in a document path. However,
DynamoDB also allows you to use a dot character as part of an attribute name. This can be ambiguous
in some cases. To illustrate, consider the following item in a DynamoDB table:

{
 Id: 1234,
 My.Scalar.Message: "Hello",
 MyMap: {
 MyKey: "My key value",
 MyOtherKey: 10
 }
}

Suppose that you wanted to access My.Scalar.Message using the following projection expression:

My.Scalar.Message

DynamoDB would return an empty result, rather than the expected Hello string. This is because
DynamoDB interprets a dot in an expression as a document path separator. In this case, you would need
to define an expression attribute name (such as #msm) as a substitute for My.Scalar.Message.You
could then use the following projection expression:

#msm

DynamoDB would then return the desired result: Hello

Tip
A dot in an expression represents a document path separator.
If an attribute name contains dot characters, define an expression attribute name for it.You can
then use that name in an expression.

Now suppose that you wanted to access the embedded attribute MyMap.MyKey, using the following
projection expression:

MyMap.MyKey

The result would be My key value, which is expected.

But what if you decided to use an expression attribute name instead? For example, what would happen
if you were to define #mmmk as a substitute for MyMap.MyKey? DynamoDB would return an empty result,
instead of the expected string. This is because DynamoDB interprets a dot in an expression attribute
value as a character within an attribute's name. When DynamoDB evaluates the expression attribute
name #mmmk, it determines that MyMap.MyKey refers to a scalar attribute—which is not what was intended.

The correct approach would be to define two expression attribute names, one for each element in the
document path:

• #mm — MyMap

• #mk — MyKey

You could then use the following projection expression:

#mm.#mk

DynamoDB would then return the desired result: My key value

Tip
A dot in an expression attribute name represents a valid character within an attribute's name.

API Version 2012-08-10
102

Amazon DynamoDB Developer Guide
Using Placeholders for Attribute Names and Values

To access a nested attribute, define an expression attribute name for each element in the
document path.You can then use these names in an expression, with each name separated by
a dot.

Expression attribute names are also helpful when you need to refer to the same attribute name repeatedly.
For example, consider the following expression for retrieving some of the reviews from a ProductCatalog
item:

• ProductReviews.FiveStar, ProductReviews.ThreeStar, ProductReviews.OneStar

To make this more concise, you can replace ProductReviews with an expression attribute name such
as #pr. The revised expression would now look like this:

• #pr.FiveStar, #pr.ThreeStar, #pr.OneStar

If you define an expression attribute name, you must use it consistently throughout the entire expression.
Also, you cannot omit the # symbol.

Expression Attribute Values
If you need to compare an attribute with a value, define an expression attribute value as a placeholder.
Expression attribute values are substitutes for the actual values that you want to compare — values that
you might not know until runtime. An expression attribute value must begin with a :, followed by one
alphabetic character, and then by zero or more alphanumeric characters.

For example, suppose you have an application that shows products costing less than a certain value,
with the actual value to be entered by the user.You can define an expression attribute value, such as
:p, as a placeholder. The : is required, and indicates that this is a placeholder for an attribute value.
Such an expression would look like this:

• Price < :p

At runtime, the application can prompt the user for the desired price. This price will be used in the
expression, and DynamoDB will retrieve the desired results.

If you define an expression attribute value, you must use it consistently throughout the entire expression.
Also, you cannot omit the : symbol.

Performing Conditional Writes with Condition
Expressions
To read items from a table, you use API operations such as Query or Scan. These API actions let you
provide your own conditions for selection criteria and filtering. DynamoDB will evaluate and return only
those items that match your conditions.

To write an item, you use API operations such as PutItem, UpdateItem and DeleteItem. These API
actions give you control over how an under what conditions an item can be modified. For example, you
can prevent an update from occurring if the item does not meet some condition beforehand.

Note
The examples in this sections are based on the ProductCatalog item from Case Study: A
ProductCatalog Item (p. 98).

Topics

• Condition Expressions (p. 104)

API Version 2012-08-10
103

Amazon DynamoDB Developer Guide
Performing Conditional Writes with Condition

Expressions

• Condition Expression Reference (p. 104)

Condition Expressions
A condition expression represents restrictions to put in place when you read and write items in a table.
A condition expression is a free-form string that can contain attribute names, document paths, logical
operators, and functions. For a complete list of elements allowed in a condition expression, see Condition
Expression Reference (p. 104).

Following are some examples of condition expressions. Note that some of these expressions use
placeholders for attribute names and values. For more information, see Using Placeholders for Attribute
Names and Values (p. 101).

• All of the items that have a RearView picture.

attribute_exists(Pictures.RearView)

• Only the items that don't have one-star reviews. The expression attribute name, #pr, is a substitute
for ProductReviews.

attribute_not_exists (#pr.OneStar)

For more information about the # character, see Expression Attribute Names (p. 101).

• Simple scalar comparisons. :p represents a number and :bt represents a string.

Price <= :p

BicycleType = :bt

• Two conditions that must both be true.#P and #PC are placeholders for Price and ProductCategory
attribute names. :lo and :hi represent values of type Number, and :cat1 and :cat2 represent
values of type String.

(#P between :lo and :hi) and (#PC in (:cat1, :cat2))

You can use any attribute name in a condition expression, provided that the first character is a-z or A-Z
and the second character (if present) is a-z, A-Z, or 0-9. If an attribute name does not meet this
requirement, you will need to define an expression attribute name as a placeholder. For more information,
see Expression Attribute Names (p. 101).

Condition Expression Reference
This section covers the fundamental building blocks of condition expressions in DynamoDB.

Note
The syntax for ConditionExpression is identical to that of the FilterExpression parameter.
FilterExpression is used for querying and scanning data; for more information, see Filtering
the Results from a Query or a Scan (p. 194).

Topics

• Syntax for Condition Expressions (p. 105)

• Making Comparisons (p. 105)

• Functions (p. 106)

• Logical Evaluations (p. 108)

• Parentheses (p. 108)

• Precedence in Conditions (p. 109)

API Version 2012-08-10
104

Amazon DynamoDB Developer Guide
Performing Conditional Writes with Condition

Expressions

Syntax for Condition Expressions

In the following syntax summary, an operand can be the following:

• A top-level attribute name, such as Id, Title, Description or ProductCategory

• A document path that references a nested attribute

condition-expression ::=
operand comparator operand

 | operand BETWEEN operand AND operand
 | operand IN (operand (',' operand (, ...)))
 | function
 | condition AND condition
 | condition OR condition
 | NOT condition
 | (condition)

comparator ::=
 =
 | <>
 | <
 | <=
 | >
 | >=

function ::=
 attribute_exists (path)
 | attribute_not_exists (path)
 | attribute_type (path, type)
 | begins_with (path, substr)
 | contains (path, operand)
 | size (path)

Making Comparisons

Use these comparators to compare an operand against a range of values, or an enumerated list of values:

• a = b — true if a is equal to b

• a <> b — true if a is not equal to b

• a < b — true if a is less than b

• a <= b — true if a is less than or equal to b

• a > b — true if a is greater than b

• a >= b — true if a is greater than or equal to b

Use the BETWEEN and IN keywords to compare an operand against a range of values, or an enumerated
list of values:

• a BETWEEN b AND c - true if a is greater than or equal to b, and less than or equal to c.

• a IN (b, c, d) — true if a is equal to any value in the list — for example, any of b, c or d. The list
can contain up to 100 values, separated by commas.

API Version 2012-08-10
105

Amazon DynamoDB Developer Guide
Performing Conditional Writes with Condition

Expressions

Functions

Use the following functions to determine whether an attribute exists in an item, or to evaluate the value
of an attribute. These function names are case-sensitive. For a nested attribute, you must provide its full
path; for more information, see Document Paths (p. 100).

DescriptionFunction

True if the item contains the attribute specified by path.

Example: Check whether an item in the Product table has a side view
picture.

• attribute_exists (Pictures.SideView)

attribute_exists
(path)

True if the attribute specified by path does not exist in the item.

Example: Check whether an item has a Manufacturer attribute

• attribute_not_exists (Manufacturer)

attribute_not_exists
(path)

True if the attribute at the specified path is of a particular data type. The
type parameter must be one of the following:

• S — String

• SS — String Set

• N — Number

• NS — Number Set

• B — Binary

• BS — Binary Set

• BOOL — Boolean

• NULL — Null

• L — List

• M — Map

You must use an expression attribute value for the type parameter.

Example: Check whether the QuantityOnHand attribute is of type List.
In this example, :v_sub is a placeholder for the string L.

• attribute_type (ProductReviews.FiveStar, :v_sub)

You must use an expression attribute value for the second parameter.

attribute_type (path,
type)

API Version 2012-08-10
106

Amazon DynamoDB Developer Guide
Performing Conditional Writes with Condition

Expressions

DescriptionFunction

True if the attribute specified by path begins with a particular substring.

Example: Check whether the first few characters of the front view picture
URL are http://.

• begins_with (Pictures.FrontView, :v_sub)

The expression attribute value :v_sub is a placeholder for http://.

begins_with (path,
substr)

True if the attribute specified by path is:

• a String that contains a particular substring.

• a Set that contains a particular element within the set.

The path and the operand must be distinct; that is, contains (a, a)
will return an error.

Example: Check whether the Brand attribute contains the substring
Company.

• contains (Brand, :v_sub)

The expression attribute value :v_sub is a placeholder for Company.

Example: Check whether the product is available in red.

• contains (Color, :v_sub)

The expression attribute value :v_sub is a placeholder for Red.

contains (path, oper-
and)

API Version 2012-08-10
107

Amazon DynamoDB Developer Guide
Performing Conditional Writes with Condition

Expressions

DescriptionFunction

Returns a number representing an attribute's size. Following are valid
data types for use with size.

If the attribute is of type String, size returns the length of the string.

Example: Check whether the string Brand is less than or equal to 20
characters. The expression attribute value :v_sub is a placeholder for
20.

• size (Brand) <= :v_sub

If the attribute is of type Binary, size returns the number of bytes in the
attribute value.

Example: Suppose that the ProductCatalog item has a Binary attribute
named VideoClip, which contains a short video of the product in use.
The following expression checks whether VideoClip exceeds 64,000
bytes.The expression attribute value :v_sub is a placeholder for 64000.

• size(VideoClip) > :v_sub

If the attribute is a Set data type, size returns the number of elements
in the set.

Example: Check whether the product is available in more than one color.
The expression attribute value :v_sub is a placeholder for 1.

• size (Color) < :v_sub

If the attribute is of type List or Map, size returns the number of child
elements.

Example: Check whether the number of OneStar reviews has exceeded
a certain threshold. The expression attribute value :v_sub is a place-
holder for 3.

• size(ProductReviews.OneStar) > :v_sub

size (path)

Logical Evaluations

Use the AND, OR and NOT keywords to perform logical evaluations. In the list following, a and b represent
conditions to be evaluated.

• a AND b — true if a and b are both true.

• a OR b — true if either a or b (or both) are true.

• NOT a — true if a is false; false if a is true.

Parentheses

Use parentheses to change the precedence of a logical evaluation. For example, suppose that conditions
a and b are true, and that condition c is false. The following expression evaluates to true:

API Version 2012-08-10
108

Amazon DynamoDB Developer Guide
Performing Conditional Writes with Condition

Expressions

• a OR b AND c

However, if you enclose a condition in parentheses, it is evaluated first. For example, the following
evaluates to false:

• (a OR b) AND c

Note
You can nest parentheses in an expression. The innermost ones are evaluated first.

Precedence in Conditions

DynamoDB evaluates conditions from left to right using the following precedence rules:

• = <> < <= > >=

• IN

• BETWEEN

• attribute_exists attribute_not_exists begins_with contains

• Parentheses

• NOT

• AND

• OR

Modifying Items and Attributes with Update
Expressions
To delete an item from a table, use the DeleteItem operation.You must provide the key of the item you
want to delete.

To update an existing item in a table, use the UpdateItem operation.You must provide the key of the
item you want to update.You must also provide an update expression, indicating the attributes you want
to modify and the values you want to assign to them. For more information, see Update Expressions (p.110).

The DeleteItem and UpdateItem operations support conditional writes, where you provide a condition
expression to indicate the conditions that must be met in order for the operation to succeed. For more
information, see Conditional Write Operations (p. 114).

If DynamoDB modifies an item successfully, it acknowledges this with an HTTP 200 status code (OK).
No further data is returned in the reply; however, you can request that the item or its attributes are returned.
You can request these as they appeared before or after an update. For more information, see Return
Values (p. 115).

Note
The examples in the following sections are based on the ProductCatalog item from Case Study:
A ProductCatalog Item (p. 98).

Topics

• Update Expressions (p. 110)

• Conditional Write Operations (p. 114)

• Return Values (p. 115)

API Version 2012-08-10
109

Amazon DynamoDB Developer Guide
Modifying Items and Attributes with Update Expressions

Update Expressions
An update expression specifies the attributes you want to modify, along with new values for those attributes.
An update expression also specifies how to modify the attributes—for example, setting a scalar value, or
deleting elements in a list or a map. It is a free-form string that can contain attribute names, document
paths, operators and functions. It also contains keywords that indicate how to modify attributes.

The PutItem, UpdateItem and DeleteItem operations require a primary key value, and will only
modify the item with that key. If you want to perform a conditional update, you must provide an update
expression and a condition expression. The condition expression specifies the condition(s) that must be
met in order for the update to succeed. The following is a syntax summary for update expressions:

update-expression ::=
 SET set-action , ...
 | REMOVE remove-action , ...
 | ADD add-action , ...
 | DELETE delete-action , ...

An update expression consists of sections. Each section begins with a SET, REMOVE, ADD or DELETE
keyword.You can include any of these sections in an update expression in any order. However, each
section keyword can appear only once.You can modify multiple attributes at the same time. Following
are some examples of update expressions:

• SET list[0] = :val1

• REMOVE #m.nestedField1, #m.nestedField2

• ADD aNumber :val2, anotherNumber :val3

• DELETE aSet :val4

The following example shows a single update expression with multiple sections:

• SET list[0] = :val1 REMOVE #m.nestedField1, #m.nestedField2 ADD aNumber :val2,
anotherNumber :val3 DELETE aSet :val4

You can use any attribute name in an update expression, provided that the first character is a-z or A-Z
and the second character (if present) is a-z, A-Z, or 0-9. If an attribute name does not meet this
requirement, you will need to define an expression attribute name as a placeholder. For more information,
see Expression Attribute Names (p. 101).

To specify a literal value in an update expression, you use expression attribute values. For more
information, see Expression Attribute Values (p. 103).

Topics

• SET (p. 110)

• REMOVE (p. 112)

• ADD (p. 113)

• DELETE (p. 114)

SET

Use the SET action in an update expression to add one or more attributes and values to an item. If any
of these attribute already exist, they are replaced by the new values. However, note that you can also

API Version 2012-08-10
110

Amazon DynamoDB Developer Guide
Modifying Items and Attributes with Update Expressions

use SET to add or subtract from an attribute that is of type Number. To SET multiple attributes, separate
them by commas.

In the following syntax summary:

• The path element is the document path to the item. For more information, see Document Paths (p. 100).

• An operand element can be either a document path to an item, or a function. For more information,
see Functions for Updating Attributes (p. 112).

set-action ::=
path = value

value ::=
operand

 | operand '+' operand
 | operand '-' operand

operand ::=
path | function

Following are some examples of update expressions using the SET action.

• The following example updates the Brand and Price attributes. The expression attribute value :b is a
string and :p is a number.

SET Brand = :b, Price = :p

• The following example updates an attribute in the RelatedItems list.The expression attribute value :ri
is a number.

SET RelatedItems[0] = :ri

• The following example updates some nested map attributes. The expression attribute name #pr is
ProductReviews; the attribute values :r1 and :r2 are strings.

SET #pr.FiveStar[0] = :r1, #pr.FiveStar[1] = :r2

Incrementing and Decrementing Numeric Attributes

You can add to or subtract from an existing numeric attribute. To do this, use the + (plus) and - (minus)
operators.

The following example decreases the Price value of an item. The expression attribute value :p is a
number.

• SET Price = Price - :p

To increase the Price, use the + operator instead.

Using SET with List Elements

When you use SET to update a list element, the contents of that element are replaced with the new data
that you specify. If the element does not already exist, SET will append the new element at the end of the
array.

API Version 2012-08-10
111

Amazon DynamoDB Developer Guide
Modifying Items and Attributes with Update Expressions

If you add multiple elements in a single SET operation, the elements are sorted in order by element
number. For example, consider the following list:

MyNumbers: { ["Zero","One","Two","Three","Four"] }

The list contains elements [0], [1], [2], [3], [4]. Now, let's use the SET action to add two new
elements:

set MyNumbers[8]="Eight", MyNumbers[10] = "Ten"

The list now contains elements [0], [1], [2], [3], [4], [5], [6], with the following data at each
element:

MyNumbers: { ["Zero","One","Two","Three","Four","Eight","Ten"] }

Note
The new elements are added to the end of the list and will be assigned the next available element
numbers.

Functions for Updating Attributes

The SET action supports the following functions:

• if_not_exists (path, operand) – If the item does not contain an attribute at the specified path,
then if_not_exists evaluates to operand; otherwise, it evaluates to path.You can use this function
to avoid overwriting an attribute already present in the item.

• list_append (operand, operand) – This function evaluates to a list with a new element added
to it.You can append the new element to the start or the end of the list by reversing the order of the
operands.

Important
These function names are case-sensitive.

Following are some examples of using the SET action with these functions.

• If the attribute already exists, the following example does nothing; otherwise it sets the attribute to a
default value.

SET Price = if_not_exists(Price, 100)

• The following example adds a new element to the FiveStar review list. The expression attribute name
#pr is ProductReviews; the attribute value :r is a one-element list. If the list previously had two
elements, [0] and [1], then the new element will be [2].

SET #pr.FiveStar = list_append(#pr.FiveStar, :r)

• The following example adds another element to the FiveStar review list, but this time the element will
be appended to the start of the list at [0]. All of the other elements in the list will be shifted by one.

SET #pr.FiveStar = list_append(:r, #pr.FiveStar)

REMOVE

Use the REMOVE action in an update expression to remove one or more attributes from an item.To perform
multiple REMOVE operations, separate them by commas.

The following is a syntax summary for REMOVE in an update expression.The only operand is the document
path for the attribute you want to remove:

API Version 2012-08-10
112

Amazon DynamoDB Developer Guide
Modifying Items and Attributes with Update Expressions

remove-action ::=
path

Following is an example of an update expression using the REMOVE action. Several attributes are removed
from the item:

• REMOVE Title, RelatedItems[2], Pictures.RearView

Using REMOVE with List Elements

When you remove an existing list element, the remaining elements are shifted. For example, consider
the following list:

• MyNumbers: { ["Zero","One","Two","Three","Four"] }

The list contains elements [0], [1], [2], [3], and [4]. Now, let's use the REMOVE action to remove
two of the elements:

• REMOVE MyNumbers[1], MyNumbers[3]

The remaining elements are shifted to the right, resulting in a list with elements [0], [1], and [2], with
the following data at each element:

• MyNumbers: { ["Zero","Two","Four"] }

Note
If you use REMOVE to delete a nonexistent item past the last element of the list, nothing happens:
There is no data to be deleted. For example, the following expression has no effect on the
MyNumbers list:

• REMOVE MyNumbers[11]

ADD
Important
The ADD action only supports Number and set data types. In general, we recommend using SET
rather than ADD.

Use the ADD action in an update expression to do either of the following:

• If the attribute does not already exist, add the new attribute and its value(s) to the item.

• If the attribute already exists, then the behavior of ADD depends on the attribute's data type:

• If the attribute is a number, and the value you are adding is also a number, then the value is
mathematically added to the existing attribute. (If the value is a negative number, then it is subtracted
from the existing attribute.)

• If the attribute is a set, and the value you are adding is also a set, then the value is appended to the
existing set.

To perform multiple ADD operations, separate them by commas.

In the following syntax summary:

API Version 2012-08-10
113

Amazon DynamoDB Developer Guide
Modifying Items and Attributes with Update Expressions

• The path element is the document path to an attribute. The attribute must be either a Number or a set
data type.

• The value element is a number that you want to add to the attribute (for Number data types), or a set
to append to the attribute (for set types).

add-action ::=
path value

Following are some examples of update expressions using the add action.

• The following example increments a number. The expression attribute value :n is a number, and this
value will be added to Price.

ADD Price :n

• The following example adds one or more values to the Color set. The expression attribute value :c is
a string set.

ADD Color :c

DELETE
Important
The DELETE action only supports set data types.

Use the DELETE action in an update expression to delete an element from a set. To perform multiple
DELETE operations, separate them by commas.

In the following syntax summary:

• The path element is the document path to an attribute. The attribute must be a set data type.

• The value element is the element(s) in the set that you want to delete.

delete-action ::=
path value

The following example deletes an element from the Color set using the DELETE action. The expression
attribute value :c is a string set.

DELETE Color :c

Conditional Write Operations
To perform a conditional delete, use a DeleteItem operation with a condition expression. The condition
expression must evaluate to true in order for the operation to succeed; otherwise, the operation fails.

Suppose that you want to delete an item, but only if there are no related items.You can use the following
expression to do this:

• Condition expression: attribute_not_exists(RelatedItems)

API Version 2012-08-10
114

Amazon DynamoDB Developer Guide
Modifying Items and Attributes with Update Expressions

To perform a conditional update, use an UpdateItem operation with an update expression and a condition
expression.The condition expression must evaluate to true in order for the operation to succeed; otherwise,
the operation fails.

Suppose that you want to increase the price of an item, but only if the result does not exceed a maximum
price.You can use the following expressions to do this:

• Condition expression: Price <= (:maxprice - :amt)

• Update expression: SET Price = Price + :amt

Now suppose you want to set a front view picture for an item, but only if that item doesn't already have
such a picture—you want to avoid overwriting any existing element.You can use the following expressions
to do this:

• Update expression: SET Pictures.FrontView = :myURL

(Assume that :myURL is the location of a picture of the item, such as http://example.com/picture.jpg.)

• Condition expression: attribute_not_exists(Pictures.FrontView)

Return Values
When you perform a DeleteItem or UpdateItem operation, DynamoDB can optionally return some or
all of the item in the response. To do this, you set the ReturnValues parameter. The default value for
ReturnValues is NONE, so no data will be returned.You can change this behavior as described below.

Deleting an Item

In a DeleteItem operation, you can set ReturnValues to ALL_OLD. Doing this will cause DynamoDB
to return the entire item, as it appeared before the delete operation occurred.

Updating an Item

In an UpdateItem operation, you can set ReturnValues to one of the following:

• ALL_OLD – The entire item is returned, as it appeared before the update occurred.

• ALL_NEW – The entire item is returned, as it appears after the update.

• UPDATED_OLD – Only the value(s) that you updated are returned, as they appear before the update
occurred.

• UPDATED_NEW – Only the value(s) that you updated are returned, as they appear after the update.

Guidelines for Working with Items
Topics

• Use One-to-Many Tables Instead Of Large Set Attributes (p. 116)

• Use Multiple Tables to Support Varied Access Patterns (p. 116)

• Compress Large Attribute Values (p. 118)

• Store Large Attribute Values in Amazon S3 (p. 118)

• Break Up Large Attributes Across Multiple Items (p. 118)

When you are working with items in DynamoDB, you need to consider how to get the best performance,
how to reduce provisioned throughput costs, and how to avoid throttling by staying within your read and

API Version 2012-08-10
115

Amazon DynamoDB Developer Guide
Guidelines for Working with Items

write capacity units. If the items that you are handling exceed the maximum item size, as described in
Limits in DynamoDB (p. 667), you need to consider how you will deal with the situation.This section offers
best practices for addressing these considerations.

Use One-to-Many Tables Instead Of Large Set
Attributes
If your table has items that store a large set type attribute, such as number set or string set, consider
removing the attribute and breaking the table into two tables. To form one-to-many relationships between
these tables, use the primary keys.

The Forum, Thread, and Reply tables in the Creating Tables and Loading Sample Data (p. 14) section
are good examples of these one-to-many relationships. For example, the Thread table has one item for
each forum thread, and the Reply table stores one or more replies for each thread.

Instead of storing replies as items in a separate table, you could store both threads and replies in the
same table. For each thread, you could store all replies in an attribute of string set type; however, keeping
thread and reply data in separate tables is beneficial in several ways:

• If you store replies as items in a table, you can store any number of replies, because a DynamoDB
table can store any number of items.

If you store replies as an attribute value in the Thread table, you would be constrained by the maximum
item size, which would limit the number of replies that you could store. (See Limits in DynamoDB (p. 667))

• When you retrieve a Thread item, you pay less for provisioned throughput, because you are retrieving
only the thread data and not all the replies for that thread.

• Queries allow you to retrieve only a subset of items from a table. By storing replies in a separate Reply
table, you can retrieve only a subset of replies, for example, those within a specific date range, by
querying the Reply table.

If you store replies as a set type attribute value, you would always have to retrieve all the replies, which
would consume more provisioned throughput for data that you might not need.

• When you add a new reply to a thread, you add only an item to the Reply table, which incurs the
provisioned throughput cost of only that single Reply item. If replies are stored in the Thread table, you
incur the full cost of writing the entire Thread item including all replies whenever you add a single user
reply to a thread.

Use Multiple Tables to Support Varied Access
Patterns
If you frequently access large items in a DynamoDB table and you do not always use all of an item's
larger attributes, you can improve your efficiency and make your workload more uniform by storing your
smaller, more frequently accessed attributes as separate items in a separate table.

For example, consider the ProductCatalog table described in the Creating Tables and Loading Sample
Data (p. 14) section. Items in this table contain basic product information, such as product name and
description. This information changes infrequently, but it is used every time an application displays a
product for the user.

If your application also needed to keep track of rapidly changing product attributes, such as price and
availability, you could store this information in a separate table called ProductAvailability. This approach
would minimize the throughput cost of updates. To illustrate, suppose that a ProductCatalog item was 3
KB in size, and the price and availability attributes for that item was 300 bytes. In this case, an update of
these rapidly changing attributes would cost three, the same cost as updating any other product attributes.

API Version 2012-08-10
116

Amazon DynamoDB Developer Guide
Use One-to-Many Tables Instead Of Large Set Attributes

Now suppose that price and availability information were stored in a ProductAvailability table instead. In
this case, updating the information would cost only one write capacity unit.

Note
For an explanation of capacity units, see Provisioned Throughput in Amazon DynamoDB (p. 11).

If your application also needed to store product data that is displayed less frequently, you could store this
information in a separate table called ExtendedProductCatalog. Such data might include product
dimensions, a track listing for music albums, or other attributes that are not accessed as often as the
basic product data. This way, the application would only consume throughput when displaying basic
product information to the users, and would only consume additional throughput if the user requests the
extended product details.

The following are example instances of the tables in the preceding discussion. Note that all the tables
have an Id attribute as the primary key.

ProductCatalog

DescriptionTitleId

"From last year's best sellers list,
..."

"Famous Book"21

"Classic red bicycle...""Red Bicycle"302

"A new popular album from this
week..."

"Music Album"58

ProductAvailability

QuantityOnHandPriceId

3750"$5.00 USD"21

8"$125.00 USD"302

"infinity (digital item)""$5.00 USD"58

ExtendedProductCatalog

TrackListingAverageCustomerRatingId

521

3.5302

{"Track1#3:59", "Track2#2:34",
"Track3#5:21", ...}

458

Here are several advantages and considerations for splitting the attributes of an item into multiple items
in different tables:

• The throughput cost of reading or writing these attributes is reduced. The cost of updating a single
attribute of an item is based on the full size of the item. If the items are smaller, you will incur less
throughput when you access each one.

• If you keep your frequently accessed items small, your I/O workload will be distributed more evenly.
Retrieving a large item can consume a great deal of read capacity all at once, from the same partition

API Version 2012-08-10
117

Amazon DynamoDB Developer Guide
Use Multiple Tables to Support Varied Access Patterns

of your table; this can make your workload uneven, which can cause throttling. For more information,
see Avoid Sudden Bursts of Read Activity (p. 199)

• For single-item read operations, such as GetItem, throughput calculations are rounded up to the next
4 KB boundary. If your items are smaller than 4 KB and you retrieve the items by primary key only,
storing item attributes as separate items may not reduce throughput. Even so, the throughput cost of
range operations such as Query and Scan are calculated differently: the sizes of all returned items
are totaled, and that final total is rounded up to the next 4 KB boundary. For these operations, you
might still reduce your throughput cost by moving the large attributes into separate items. For more
information, see Capacity Units Calculations for Various Operations (p. 64).

Compress Large Attribute Values
You can compress large values before storing them in DynamoDB. Doing so can reduce the cost of
storing and retrieving such data. Compression algorithms, such as GZIP or LZO, produce a binary output.
You can then store this output in a Binary attribute type.

For example, the Reply table in the Creating Tables and Loading Sample Data (p. 14) section stores
messages written by forum users. These user replies might consist of very long strings of text, which
makes them excellent candidates for compression.

For sample code that demonstrates how to compress long messages in DynamoDB, see:

• Example: Handling Binary Type Attributes Using the AWS SDK for Java Document API (p. 139)

• Example: Handling Binary Type Attributes Using the AWS SDK for .NET Low-Level API (p. 172)

Store Large Attribute Values in Amazon S3
DynamoDB currently limits the size of the items that you store in tables. For more information, see Limits
in DynamoDB (p. 667).Your application, however, might need to store more data in an item than the
DynamoDB size limits permit. To work around this issue, you can store the large attributes as an object
in Amazon Simple Storage Service (Amazon S3), and store the object identifier in your item.You can
also use the object metadata support in Amazon S3 to store the primary key value of the corresponding
item as Amazon S3 object metadata. This use of metadata can help with future maintenance of your
Amazon S3 objects.

For example, consider the ProductCatalog table in the Creating Tables and Loading Sample Data (p. 14)
section. Items in the ProductCatalog table store information about item price, description, authors for
books, and dimensions for other products. If you wanted to store an image of each product, these images
could be large. It might make sense to store the images in Amazon S3 instead of DynamoDB.

There are important considerations with this approach:

• Since DynamoDB does not support transactions that cross Amazon S3 and DynamoDB, your application
will have to deal with failures and with cleaning up orphaned Amazon S3 objects.

• Amazon S3 limits length of object identifiers, so you must organize your data in a way that accommodates
this and other Amazon S3 constraints. For more information, go to the Amazon Simple Storage Service
Developer Guide.

Break Up Large Attributes Across Multiple Items
If you need to store more data in a single item than DynamoDB allows, you can store that data in multiple
items as chunks of a larger "virtual item". To get the best results, store the chunks in a separate hash

API Version 2012-08-10
118

Amazon DynamoDB Developer Guide
Compress Large Attribute Values

http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://docs.aws.amazon.com/AmazonS3/latest/dev/

schema table, and use batch API calls to read and write the chunks.This approach will help you to spread
your workload evenly across table partitions.

For example, consider the Forum, Thread and Reply tables described in the Creating Tables and Loading
Sample Data (p. 14) section. Items in the Reply table contain forum messages that were written by forum
users. Due to the 400 KB item size limit in DynamoDB, the length of each reply is also limited. For large
replies, instead of storing one item in the Reply table, break the reply message into chunks, and then
write each chunk into its own separate item in a new ReplyChunks hash schema table.

The primary key of each chunk would be a concatenation of the primary key of its "parent" reply item, a
version number, and a sequence number. The sequence number determines the order of the chunks.
The version number ensures that if a large reply is updated later, it will be updated atomically. In addition,
chunks that were created before the update will not be mixed with chunks that were created after the
update.

You would also need to update the "parent" reply item with the number of chunks, so that when you need
to retrieve all the chunks for a reply, you will know how many chunks to look for.

As an illustration, here is how these items might appear in the Reply and ReplyChunks tables:

Reply

Chunk-
Ver-
sion

ChunkCountMessageReplyDateTimeId

13"2012-03-
15T20:42:54.023Z"

"DynamoDB#Thread1"

"short message""2012-03-
21T20:41:23.192Z"

"DynamoDB#Thread2"

ReplyChunks

MessageId

"first part of long message text...""DynamoDB#Thread1#2012-03-
15T20:42:54.023Z#1#1"

"...third part of long message text""DynamoDB#Thread1#2012-03-
15T20:42:54.023Z#1#3"

"...second part of long message text...""DynamoDB#Thread1#2012-03-
15T20:42:54.023Z#1#2"

Here are important considerations with this approach:

• Because DynamoDB does not support cross-item transactions, your application will need to deal with
failure scenarios when writing multiple items and with inconsistencies between items when reading
multiple items.

• If your application retrieves a large amount of data all at once, it can generate nonuniform workloads,
which can cause unexpected throttling. This is especially true when retrieving items that share a hash
key value.

Chunking large data items avoids this problem by using a separate table with a hash key, so that each
large chunk is spread across the table.

API Version 2012-08-10
119

Amazon DynamoDB Developer Guide
Break Up Large Attributes Across Multiple Items

A workable, but less optimal, solution would be to store each chunk in a table with a hash and range key,
with the hash portion being the primary key of the "parent" item. With this design choice, an application
that retrieves all of the chunks of the same "parent" item would generate a nonuniform workload, with
uneven I/O distribution across partitions.

Working with Items Using the AWS SDK for Java
Document API

Topics

• Putting an Item (p. 120)

• Getting an Item (p. 123)

• Batch Write: Putting and Deleting Multiple Items (p. 125)

• Batch Get: Getting Multiple Items (p. 126)

• Updating an Item (p. 127)

• Deleting an Item (p. 129)

• Example: CRUD Operations Using the AWS SDK for Java Document API (p. 130)

• Example: Batch Operations Using AWS SDK for Java Document API (p. 134)

• Example: Handling Binary Type Attributes Using the AWS SDK for Java Document API (p. 139)

You can use the AWS SDK for Java Document API to perform typical create, read, update, and delete
(CRUD) operations on items in a table.

Note that the AWS SDK for Java also provides a high-level object persistence model, enabling you to
map your client-side classes to DynamoDB tables. This approach can reduce the amount of code you
have to write. For more information, see Java: Object Persistence Model.

Putting an Item
The putItem method stores an item in a table. If the item exists, it replaces the entire item. Instead of
replacing the entire item, if you want to update only specific attributes, you can use the updateItem
method. For more information, see Updating an Item (p. 127).

Follow these steps:

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class to represent the table you want to work with.

3. Create an instance of the Item class to represent the new item.You must specify the new item's
primary key and its attributes.

4. Call the putItem method of the Table object, using the Item that you created in the preceding step.

The following Java code snippet demonstrates the preceding tasks. The snippet writes a new bicycle
item to the ProductCatalog table. (This is the same item that is described in Case Study: A
ProductCatalog Item (p. 98).)

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("ProductCatalog");

API Version 2012-08-10
120

Amazon DynamoDB Developer Guide
Working with Items - Java Document API

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaSDKHighLevel.html

// Build a list of related items
List<Number> relatedItems = new ArrayList<Number>();
relatedItems.add(341);
relatedItems.add(472);
relatedItems.add(649);

//Build a map of product pictures
Map<String, String> pictures = new HashMap<String, String>();
pictures.put("FrontView", "http://example.com/products/206_front.jpg");
pictures.put("RearView", "http://example.com/products/206_rear.jpg");
pictures.put("SideView", "http://example.com/products/206_left_side.jpg");

//Build a map of product reviews
Map<String, List<String>> reviews = new HashMap<String, List<String>>();

List<String> fiveStarReviews = new ArrayList<String>();
fiveStarReviews.add("Excellent! Can't recommend it highly enough! Buy it!");
fiveStarReviews.add("Do yourself a favor and buy this");
reviews.put("FiveStar", fiveStarReviews);

List<String> oneStarReviews = new ArrayList<String>();
oneStarReviews.add("Terrible product! Do not buy this.");
reviews.put("OneStar", oneStarReviews);

// Build the item
Item item = new Item()
 .withPrimaryKey("Id", 206)
 .withString("Title", "20-Bicycle 206")
 .withString("Description", "206 description")
 .withString("BicycleType", "Hybrid")
 .withString("Brand", "Brand-Company C")
 .withNumber("Price", 500)
 .withString("Gender", "B")
 .withStringSet("Color", new HashSet<String>(Arrays.asList("Red", "Black")))

 .withString("ProductCategory", "Bike")
 .withBoolean("InStock", true)
 .withNull("QuantityOnHand")
 .withList("RelatedItems", relatedItems)
 .withMap("Pictures", pictures)
 .withMap("Reviews", reviews);

// Write the item to the table
PutItemOutcome outcome = table.putItem(item);

In the preceding example, the item has attributes that are scalars (String, Number, Boolean, Null), sets
(String Set), and document types (List, Map).

Specifying Optional Parameters
Along with the required parameters, you can also specify optional parameters to the putItem method.
For example, the following Java code snippet uses an optional parameter to specify a condition for
uploading the item. If the condition you specify is not met, then the AWS Java SDK throws a
ConditionalCheckFailedException. The code snippet specifies the following optional parameters
in the putItem method:

API Version 2012-08-10
121

Amazon DynamoDB Developer Guide
Putting an Item

• A ConditionExpression that defines the conditions for the request.The snippet defines the condition
that the existing item that has the same primary key is replaced only if it has an ISBN attribute that
equals a specific value.

• A map for ExpressionAttributeValues that will be used in the condition. In this case, there is only
one substitution required: The placeholder :val in the condition expression will be replaced at runtime
with the actual ISBN value to be checked.

The following example adds a new book item using these optional parameters.

Item item = new Item()
 .withPrimaryKey("Id", 104)
 .withString("Title", "Book 104 Title")
 .withString("ISBN", "444-4444444444")
 .withNumber("Price", 20)
 .withStringSet("Authors",
 new HashSet<String>(Arrays.asList("Author1", "Author2")));

Map<String, Object> expressionAttributeValues = new HashMap<String, Object>();
expressionAttributeValues.put(":val", "444-4444444444");

PutItemOutcome outcome = table.putItem(
 item,
 "ISBN = :val", // ConditionExpression parameter
 null, // ExpressionAttributeNames parameter - we're not using it
for this example
 expressionAttributeValues);

PutItem and JSON Documents
You can store a JSON document as an attribute in a DynamoDB table. To do this, use the withJSON
method of Item.This method will parse the JSON document and map each element to a native DynamoDB
data type.

Suppose that you wanted to store the following JSON document, containing vendors that can fulfill orders
for a particular product:

{
 "V01": {
 "Name": "Acme Books",
 "Offices": ["Seattle"]
 },
 "V02": {
 "Name": "New Publishers, Inc.",
 "Offices": ["London", "New York"
]
 },
 "V03": {
 "Name": "Better Buy Books",
 "Offices": ["Tokyo", "Los Angeles", "Sydney"
]
 }
}

You can use the withJSON method to store this in the ProductCatalog table, in a Map attribute named
VendorInfo. The following Java code snippet demonstrates how to do this.

API Version 2012-08-10
122

Amazon DynamoDB Developer Guide
Putting an Item

// Convert the document into a String. Must escape all double-quotes.
String vendorDocument = "{"
 + " \"V01\": {"
 + " \"Name\": \"Acme Books\","
 + " \"Offices\": [\"Seattle\"]"
 + " },"
 + " \"V02\": {"
 + " \"Name\": \"New Publishers, Inc.\","
 + " \"Offices\": [\"London\", \"New York\"" + "]" + "},"
 + " \"V03\": {"
 + " \"Name\": \"Better Buy Books\","
 + "\"Offices\": [\"Tokyo\", \"Los Angeles\", \"Sydney\""
 + "]"
 + " }"
 + " }";

Item item = new Item()
 .withPrimaryKey("Id", 210)
 .withString("Title", "Book 210 Title")
 .withString("ISBN", "210-2102102102")
 .withNumber("Price", 30)
 .withJSON("VendorInfo", vendorDocument);

PutItemOutcome outcome = table.putItem(item);

Getting an Item
To retrieve a single item, use the getItem method of a Table object. Follow these steps:

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class to represent the table you want to work with.

3. Call the getItem method of the Table instance.You must specify the primary key of the item that
you want to retrieve.

The following Java code snippet demonstrates the preceding steps. The code snippet gets the item that
has the specified hash primary key.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("ProductCatalog");

Item item = table.getItem("Id", 101);

Specifying Optional Parameters
Along with the required parameters, you can also specify optional parameters for the getItem method.
For example, the following Java code snippet uses an optional method to retrieve only a specific list of
attributes, and to specify strongly consistent reads. (To learn more about read consistency, see Data
Read and Consistency Considerations (p. 10).)

API Version 2012-08-10
123

Amazon DynamoDB Developer Guide
Getting an Item

You can use a ProjectionExpression to retrieve only specific attributes or elements, rather than an
entire item. A ProjectionExpression can specify top-level or nested attributes, using document paths.
For more information, see Projection Expressions (p. 99) and Document Paths (p. 100).

The parameters of the getItem method do not let you specify read consistency; however, you can create
a GetItemSpec, which provides full access to all of the low-level GetItem API inputs.The code example
below creates a GetItemSpec, and uses that spec as input to the getItem method.

GetItemSpec spec = new GetItemSpec()
 .withPrimaryKey("Id", 206)
 .withProjectionExpression("Id, Title, RelatedItems[0], Reviews.FiveStar")
 .withConsistentRead(true);

Item item = table.getItem(spec);

System.out.println(item.toJSONPretty());

Tip
To print an Item in a human-readable format, use the toJSONPretty method. The output from
the example above looks like this:

{
 "RelatedItems" : [341],
 "Reviews" : {
 "FiveStar" : ["Excellent! Can't recommend it highly enough! Buy
it!", "Do yourself a favor and buy this"]
 },
 "Id" : 206,
 "Title" : "20-Bicycle 206"
}

GetItem and JSON Documents
In the PutItem and JSON Documents (p. 122) section, we stored a JSON document in a Map attribute
named VendorInfo.You can use the getItem method to retrieve the entire document in JSON format,
or use document path notation to retrieve only some of the elements in the document.The following Java
code snippet demonstrates these techniques.

GetItemSpec spec = new GetItemSpec()
 .withPrimaryKey("Id", 210);

System.out.println("All vendor info:");
spec.withProjectionExpression("VendorInfo");
System.out.println(table.getItem(spec).toJSON());

System.out.println("A single vendor:");
spec.withProjectionExpression("VendorInfo.V03");
System.out.println(table.getItem(spec).toJSON());

System.out.println("First office location for this vendor:");
spec.withProjectionExpression("VendorInfo.V03.Offices[0]");
System.out.println(table.getItem(spec).toJSON());

API Version 2012-08-10
124

Amazon DynamoDB Developer Guide
Getting an Item

The output from the example above looks like this:

All vendor info:
{"VendorInfo":{"V03":{"Name":"Better Buy Books","Offices":["Tokyo","Los
Angeles","Sydney"]},"V02":{"Name":"New Publishers, Inc.","Offices":["London","New
 York"]},"V01":{"Name":"Acme Books","Offices":["Seattle"]}}}
A single vendor:
{"VendorInfo":{"V03":{"Name":"Better Buy Books","Offices":["Tokyo","Los
Angeles","Sydney"]}}}
First office location for a single vendor:
{"VendorInfo":{"V03":{"Offices":["Tokyo"]}}}

Tip
You can use the toJSON method to convert any item (or its attributes) to a JSON-formatted
string. The following code snippet retrieves several top-level and nested attributes, and prints
the results as JSON:

GetItemSpec spec = new GetItemSpec()
 .withPrimaryKey("Id", 210)
 .withProjectionExpression("VendorInfo.V01, Title, Price");

Item item = table.getItem(spec);
System.out.println(item.toJSON());

The output looks like this:

{"VendorInfo":{"V01":{"Name":"Acme Books","Of
fices":["Seattle"]}},"Price":30,"Title":"Book 210 Title"}

Batch Write: Putting and Deleting Multiple Items
Batch write refers to putting and deleting multiple items in a batch.The batchWriteItem method enables
you to put and delete multiple items from one or more tables in a single API call. The following are the
steps to put or delete multiple items using the AWS SDK for Java Document API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the TableWriteItems class that describes all the put and delete operations
for a table. If you want to write to multiple tables in a single batch write operation, you will need to
create one TableWriteItems instance per table.

3. Call the batchWriteItem method by providing the TableWriteItems object(s) that you created in
the preceding step.

4. Process the response.You should check if there were any unprocessed request items returned in the
response. This could happen if you reach the provisioned throughput limit or some other transient
error. Also, DynamoDB limits the request size and the number of operations you can specify in a
request. If you exceed these limits, DynamoDB rejects the request. For more information, see Limits
in DynamoDB (p. 667).

The following Java code snippet demonstrates the preceding steps. The example performs a
batchWriteItem operation on two tables - Forum and Thread. The corresponding TableWriteItems
objects define the following actions:

• Put an item in the Forum table

API Version 2012-08-10
125

Amazon DynamoDB Developer Guide
Batch Write: Putting and Deleting Multiple Items

• Put and delete an item in the Thread table

The code then calls batchWriteItem to perform the operation.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

TableWriteItems forumTableWriteItems = new TableWriteItems("Forum")
 .withItemsToPut(
 new Item()
 .withPrimaryKey("Name", "Amazon RDS")
 .withNumber("Threads", 0));

TableWriteItems threadTableWriteItems = new TableWriteItems(Thread)
 .withItemsToPut(
 new Item()
 .withPrimaryKey("ForumName","Amazon RDS","Subject","Amazon RDS
Thread 1")
 .withHashAndRangeKeysToDelete("ForumName","Some hash attribute value",
"Amazon S3", "Some range attribute value");

BatchWriteItemOutcome outcome = dynamoDB.batchWriteItem(forumTableWriteItems,
threadTableWriteItems);

// Code for checking unprocessed items is omitted in this example

For a working example, see Example: Batch Write Operation Using the AWS SDK for Java Document
API (p. 135).

Batch Get: Getting Multiple Items
The batchGetItem method enables you to retrieve multiple items from one or more tables. To retrieve
a single item, you can use the getItem method.

Follow these steps:

1. Create an instance of the DynamoDB class.

2. Create an instance of the TableKeysAndAttributes class that describes a list of primary key values
to retrieve from a table. If you want to read from multiple tables in a single batch get operation, you
will need to create one TableKeysAndAttributes instance per table.

3. Call the batchGetItem method by providing the TableKeysAndAttributes object(s) that you
created in the preceding step.

The following Java code snippet demonstrates the preceding steps. The example retrieves two items
from the Forum table and three items from the Thread table.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

 TableKeysAndAttributes forumTableKeysAndAttributes = new TableKeysAndAttrib
utes(forumTableName);
 forumTableKeysAndAttributes.addHashOnlyPrimaryKeys("Name",

API Version 2012-08-10
126

Amazon DynamoDB Developer Guide
Batch Get: Getting Multiple Items

 "Amazon S3",
 "Amazon DynamoDB");

TableKeysAndAttributes threadTableKeysAndAttributes = new TableKeysAndAttrib
utes(threadTableName);
threadTableKeysAndAttributes.addHashAndRangePrimaryKeys("ForumName", "Subject",

 "Amazon DynamoDB","DynamoDB Thread 1",
 "Amazon DynamoDB","DynamoDB Thread 2",
 "Amazon S3","S3 Thread 1");

BatchGetItemOutcome outcome = dynamoDB.batchGetItem(
 forumTableKeysAndAttributes, threadTableKeysAndAttributes);

for (String tableName : outcome.getTableItems().keySet()) {
 System.out.println("Items in table " + tableName);
 List<Item> items = outcome.getTableItems().get(tableName);
 for (Item item : items) {
 System.out.println(item);
 }
}

Specifying Optional Parameters
Along with the required parameters, you can also specify optional parameters when using batchGetItem.
For example, you can provide a ProjectionExpression with each TableKeysAndAttributes you
define. This allows you to specify the attributes that you want to retrieve from the table.

The following code snippet retrieves two items from the Forum table.The withProjectionExpression
parameter specifies that only the Threads attribute is to be retrieved.

TableKeysAndAttributes forumTableKeysAndAttributes = new TableKeysAndAttrib
utes("Forum")
 .withProjectionExpression("Threads");

forumTableKeysAndAttributes.addHashOnlyPrimaryKeys("Name",
 "Amazon S3",
 "Amazon DynamoDB");

BatchGetItemOutcome outcome = dynamoDB.batchGetItem(forumTableKeysAndAttributes);

Updating an Item
The updateItem method of a Table object can update existing attribute values, add new attributes, or
delete attributes from an existing item.

The updateItem method behaves as follows:

• If an item does not exist (no item in the table with the specified primary key), updateItem adds a new
item to the table

• If an item exists, updateItem performs the update as specified by the UpdateExpression parameter:

API Version 2012-08-10
127

Amazon DynamoDB Developer Guide
Updating an Item

Note
It is also possible to "update" an item using putItem. For example, if you call putItem to add
an item to the table, but there is already an item with the specified primary key, putItem will
replace the entire item. If there are attributes in the existing item that are not specified in the
input, putItem will remove those attributes from the item.
In general, we recommend that you use updateItem whenever you want to modify any item
attributes. The updateItem method will only modify the item attributes that you specify in the
input, and the other attributes in the item will remain unchanged.

Follow these steps:

1. Create an instance of the Table class to represent the table you want to work with.

2. Call the updateTable method of the Table instance.You must specify the primary key of the item
that you want to retrieve, along with an UpdateExpression that describes the attributes to modify
and how to modify them.

The following Java code snippet demonstrates the preceding tasks. The snippet updates a book item in
the ProductCatalog table. It adds a new author to the Authors multi-valued attribute and deletes the
existing ISBN attribute. It also reduces the price by one.

An ExpressionAttributeValues map is used in the UpdateExpression. The placeholders :val1
and :val2 will be replaced at runtime with the actual values for Authors and Price.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("ProductCatalog");

Map<String, String> expressionAttributeNames = new HashMap<String, String>();
expressionAttributeNames.put("#A", "Authors");
expressionAttributeNames.put("#P", "Price");
expressionAttributeNames.put("#I", "ISBN");

Map<String, Object> expressionAttributeValues = new HashMap<String, Object>();
expressionAttributeValues.put(":val1",
 new HashSet<String>(Arrays.asList("Author YY","Author ZZ")));
expressionAttributeValues.put(":val2", 1); //Price

UpdateItemOutcome outcome = table.updateItem(
 "Id", // key attribute name
 101, // key attribute value
 "add #A :val1 set #P = #P - :val2 remove #I", // UpdateExpression
 expressionAttributeNames,
 expressionAttributeValues);

Specifying Optional Parameters
Along with the required parameters, you can also specify optional parameters for the updateItem method
including a condition that must be met in order for the update is to occur. If the condition you specify is
not met, then the AWS Java SDK throws a ConditionalCheckFailedException. For example, the
following Java code snippet conditionally updates a book item price to 25. It specifies a ConditionExpression
stating that the price should be updated only if the existing price is 20.

API Version 2012-08-10
128

Amazon DynamoDB Developer Guide
Updating an Item

Table table = dynamoDB.getTable("ProductCatalog");

Map<String, String> expressionAttributeNames = new HashMap<String, String>();
expressionAttributeNames.put("#P", "Price");

Map<String, Object> expressionAttributeValues = new HashMap<String, Object>();
expressionAttributeValues.put(":val1", 25); // update Price to 25...
expressionAttributeValues.put(":val2", 20); //...but only if existing Price
is 20

UpdateItemOutcome outcome = table.updateItem(
 new PrimaryKey("Id",101),
 "set #P = :val1", // UpdateExpression
 "#P = :val2", // ConditionExpression
 expressionAttributeNames,
 expressionAttributeValues);

Atomic Counter
You can use updateItem to implement an atomic counter, where you increment or decrement the value
of an existing attribute without interfering with other write requests. To increment an atomic counter, use
an UpdateExpression with a set action to add a numeric value to an existing attribute of type Number.

The following code snippet demonstrates this, incrementing the Quantity attribute by one. It also
demonstrates the use of the ExpressionAttributeNames parameter in an UpdateExpression.

Table table = dynamoDB.getTable("ProductCatalog");

Map<String,String> expressionAttributeNames = new HashMap<String,String>();
expressionAttributeNames.put("#p", "PageCount");

Map<String,Object> expressionAttributeValues = new HashMap<String,Object>();
expressionAttributeValues.put(":val", 1);

UpdateItemOutcome outcome = table.updateItem(
 "Id", 121,
 "set #p = #p + :val",
 expressionAttributeNames,
 expressionAttributeValues);

Deleting an Item
The deleteItem method deletes an item from a table.You must provide the primary key of the item you
want to delete.

Follow these steps:

1. Create an instance of the DynamoDB client.

2. Call the deleteItem method by providing the key of the item you want to delete.

The following Java code snippet demonstrates these tasks.

API Version 2012-08-10
129

Amazon DynamoDB Developer Guide
Deleting an Item

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("ProductCatalog");

DeleteItemOutcome outcome = table.deleteItem("Id", 101);

Specifying Optional Parameters
You can specify optional parameters for deleteItem. For example, the following Java code snippet
specifies includes a ConditionExpression, stating that a book item in ProductCatalog can only be
deleted if the book is no longer in publication (the InPublication attribute is false).

Map<String,Object> expressionAttributeValues = new HashMap<String,Object>();
expressionAttributeValues.put(":val", false);

DeleteItemOutcome outcome = table.deleteItem("Id",103,
 "InPublication = :val",
 null, // ExpressionAttributeNames - not used in this example
 expressionAttributeValues);

Example: CRUD Operations Using the AWS SDK
for Java Document API
The following AWS SDK for Java Document API code example illustrates CRUD operations on an item.
The example creates an item, retrieves it, performs various updates, and finally deletes the item.

Note
This section explains the AWS SDK for Java Document API.The AWS SDK for Java also provides
a high-level object persistence model, enabling you to map your client-side classes to DynamoDB
tables. This approach can reduce the amount of code you have to write. For more information,
see Java: Object Persistence Model.
For a code example that demonstrates CRUD operations using the object persistence model,
see Example: CRUD Operations (p. 430).

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for Java (p. 687) topic.
For step-by-step instructions to run the following example, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;

API Version 2012-08-10
130

Amazon DynamoDB Developer Guide
Example: CRUD Operations - Java Document API

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaSDKHighLevel.html

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DeleteItemOutcome;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.UpdateItemOutcome;
import com.amazonaws.services.dynamodbv2.document.spec.DeleteItemSpec;
import com.amazonaws.services.dynamodbv2.document.spec.UpdateItemSpec;
import com.amazonaws.services.dynamodbv2.document.utils.NameMap;
import com.amazonaws.services.dynamodbv2.document.utils.ValueMap;
import com.amazonaws.services.dynamodbv2.model.ReturnValue;

public class DocumentAPIItemCRUDExample {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

 static String tableName = "ProductCatalog";

 public static void main(String[] args) throws IOException {

 createItems();

 retrieveItem();

 // Perform various updates.
 updateMultipleAttributes();
 updateAddNewAttribute();
 updateExistingAttributeConditionally();

 // Delete the item.
 deleteItem();

 }

 private static void createItems() {

 Table table = dynamoDB.getTable(tableName);
 try {

 Item item = new Item()
 .withPrimaryKey("Id", 120)
 .withString("Title", "Book 120 Title")
 .withString("ISBN", "120-1111111111")
 .withStringSet("Authors",
 new HashSet<String>(Arrays.asList("Author12", "Author22")))

 .withNumber("Price", 20)
 .withString("Dimensions", "8.5x11.0x.75")
 .withNumber("PageCount", 500)
 .withBoolean("InPublication", false)
 .withString("ProductCategory", "Book");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 121)

API Version 2012-08-10
131

Amazon DynamoDB Developer Guide
Example: CRUD Operations - Java Document API

 .withString("Title", "Book 121 Title")
 .withString("ISBN", "121-1111111111")
 .withStringSet("Authors",
 new HashSet<String>(Arrays.asList("Author21", "Author 22")))

 .withNumber("Price", 20)
 .withString("Dimensions", "8.5x11.0x.75")
 .withNumber("PageCount", 500)
 .withBoolean("InPublication", true)
 .withString("ProductCategory", "Book");
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Create items failed.");
 System.err.println(e.getMessage());

 }
 }

 private static void retrieveItem() {
 Table table = dynamoDB.getTable(tableName);

 try {

 Item item = table.getItem("Id", 120, "Id, ISBN, Title, Authors",
null);

 System.out.println("Printing item after retrieving it....");
 System.out.println(item.toJSONPretty());

 } catch (Exception e) {
 System.err.println("GetItem failed.");
 System.err.println(e.getMessage());
 }

 }

 private static void updateAddNewAttribute() {
 Table table = dynamoDB.getTable(tableName);

 try {

 Map<String, String> expressionAttributeNames = new HashMap<String,
 String>();
 expressionAttributeNames.put("#na", "NewAttribute");

 UpdateItemSpec updateItemSpec = new UpdateItemSpec()
 .withPrimaryKey("Id", 121)
 .withUpdateExpression("set #na = :val1")
 .withNameMap(new NameMap()
 .with("#na", "NewAttribute"))
 .withValueMap(new ValueMap()
 .withString(":val1", "Some value"))
 .withReturnValues(ReturnValue.ALL_NEW);

 UpdateItemOutcome outcome = table.updateItem(updateItemSpec);

 // Check the response.

API Version 2012-08-10
132

Amazon DynamoDB Developer Guide
Example: CRUD Operations - Java Document API

 System.out.println("Printing item after adding new attribute...");

 System.out.println(outcome.getItem().toJSONPretty());

 } catch (Exception e) {
 System.err.println("Failed to add new attribute in " + tableName);

 System.err.println(e.getMessage());
 }
 }

 private static void updateMultipleAttributes() {

 Table table = dynamoDB.getTable(tableName);

 try {

 UpdateItemSpec updateItemSpec = new UpdateItemSpec()
 .withPrimaryKey("Id", 120)
 .withUpdateExpression("add #a :val1 set #na=:val2")
 .withNameMap(new NameMap()
 .with("#a", "Authors")
 .with("#na", "NewAttribute"))
 .withValueMap(new ValueMap()
 .withStringSet(":val1", "Author YY", "Author ZZ")
 .withString(":val2", "someValue"))
 .withReturnValues(ReturnValue.ALL_NEW);

 UpdateItemOutcome outcome = table.updateItem(updateItemSpec);

 // Check the response.
 System.out
 .println("Printing item after multiple attribute update...");
 System.out.println(outcome.getItem().toJSONPretty());

 } catch (Exception e) {
 System.err.println("Failed to update multiple attributes in "
 + tableName);
 System.err.println(e.getMessage());

 }
 }

 private static void updateExistingAttributeConditionally() {

 Table table = dynamoDB.getTable(tableName);

 try {

 // Specify the desired price (25.00) and also the condition (price
 =
 // 20.00)

 UpdateItemSpec updateItemSpec = new UpdateItemSpec()
 .withPrimaryKey("Id", 120)
 .withReturnValues(ReturnValue.ALL_NEW)
 .withUpdateExpression("set #p = :val1")
 .withConditionExpression("#p = :val2")

API Version 2012-08-10
133

Amazon DynamoDB Developer Guide
Example: CRUD Operations - Java Document API

 .withNameMap(new NameMap()
 .with("#p", "Price"))
 .withValueMap(new ValueMap()
 .withNumber(":val1", 25)
 .withNumber(":val2", 20));

 UpdateItemOutcome outcome = table.updateItem(updateItemSpec);

 // Check the response.
 System.out
 .println("Printing item after conditional update to new attrib
ute...");
 System.out.println(outcome.getItem().toJSONPretty());

 } catch (Exception e) {
 System.err.println("Error updating item in " + tableName);
 System.err.println(e.getMessage());
 }
 }

 private static void deleteItem() {

 Table table = dynamoDB.getTable(tableName);

 try {

 DeleteItemSpec deleteItemSpec = new DeleteItemSpec()
 .withPrimaryKey("Id", 120)
 .withConditionExpression("#ip = :val")
 .withNameMap(new NameMap()
 .with("#ip", "InPublication"))
 .withValueMap(new ValueMap()
 .withBoolean(":val", false))
 .withReturnValues(ReturnValue.ALL_OLD);

 DeleteItemOutcome outcome = table.deleteItem(deleteItemSpec);

 // Check the response.
 System.out.println("Printing item that was deleted...");
 System.out.println(outcome.getItem().toJSONPretty());

 } catch (Exception e) {
 System.err.println("Error deleting item in " + tableName);
 System.err.println(e.getMessage());
 }
 }
}

Example: Batch Operations Using AWS SDK for
Java Document API
Topics

• Example: Batch Write Operation Using the AWS SDK for Java Document API (p. 135)

• Example: Batch Get Operation Using the AWS SDK for Java Document API (p. 137)

API Version 2012-08-10
134

Amazon DynamoDB Developer Guide
Example: Batch Operations - Java Document API

This section provides examples of batch write and batch get operations using the AWS SDK for Java
Document API.

Note
This section explains the AWS SDK for Java Document API.The AWS SDK for Java also provides
a high-level object persistence model, enabling you to map your client-side classes to DynamoDB
tables. This approach can reduce the amount of code you have to write. For more information,
see Java: Object Persistence Model.
For a code example that demonstrates batch write operations using the object persistence model,
see Example: Batch Write Operations (p. 432).

Example: Batch Write Operation Using the AWS SDK for
Java Document API
The following Java code example uses the batchWriteItem method to perform the following put and
delete operations:

• Put one item in the Forum table

• Put one item and delete one item from the Thread table.

You can specify any number of put and delete requests against one or more tables when creating your
batch write request. However, the DynamoDB batchWriteItem API limits the size of a batch write
request and the number of put and delete operations in a single batch write operation. If your request
exceeds these limits, your request is rejected. If your table does not have sufficient provisioned throughput
to serve this request, the unprocessed request items are returned in the response.

The following example checks the response to see if it has any unprocessed request items. If it does, it
loops back and resends the batchWriteItem request with unprocessed items in the request. If you
followed the Creating Tables and Loading Sample Data (p. 14) section, you should already have created
the Forum and Thread tables.You can also create these tables and upload sample data programmatically.
For more information, see Creating Example Tables and Uploading Data Using the AWS SDK for
Java (p. 687).

For step-by-step instructions to test the following sample, see Using the AWS SDK for Java (p. 53).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Map;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.BatchWriteItemOutcome;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.TableWriteItems;
import com.amazonaws.services.dynamodbv2.model.WriteRequest;

public class DocumentAPIBatchWrite {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(

API Version 2012-08-10
135

Amazon DynamoDB Developer Guide
Example: Batch Operations - Java Document API

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaSDKHighLevel.html

 new ProfileCredentialsProvider()));

 static String forumTableName = "Forum";
 static String threadTableName = "Thread";

 public static void main(String[] args) throws IOException {

 writeMultipleItemsBatchWrite();

 }

 private static void writeMultipleItemsBatchWrite() {
 try {

 // Add a new item to Forum
 TableWriteItems forumTableWriteItems = new TableWriteItems(forumT
ableName) //Forum
 .withItemsToPut(new Item()
 .withPrimaryKey("Name", "Amazon RDS")
 .withNumber("Threads", 0));

 // Add a new item, and delete an existing item, from Thread
 TableWriteItems threadTableWriteItems = new Table
WriteItems(threadTableName)
 .withItemsToPut(new Item()
 .withPrimaryKey("ForumName","Amazon RDS","Subject","Amazon RDS
 Thread 1")
 .withString("Message", "ElasticCache Thread 1 message")
 .withStringSet("Tags", new HashSet<String>(
 Arrays.asList("cache", "in-memory"))))
 .withHashAndRangeKeysToDelete("ForumName","Subject", "Amazon S3",
"S3 Thread 100");

 System.out.println("Making the request.");
 BatchWriteItemOutcome outcome = dynamoDB.batchWriteItem(forumTable
WriteItems, threadTableWriteItems);

 do {

 // Check for unprocessed keys which could happen if you exceed
 provisioned throughput

 Map<String, List<WriteRequest>> unprocessedItems = outcome.ge
tUnprocessedItems();

 if (outcome.getUnprocessedItems().size() == 0) {
 System.out.println("No unprocessed items found");
 } else {
 System.out.println("Retrieving the unprocessed items");
 outcome = dynamoDB.batchWriteItemUnprocessed(unpro
cessedItems);
 }

 } while (outcome.getUnprocessedItems().size() > 0);

 } catch (Exception e) {
 System.err.println("Failed to retrieve items: ");
 e.printStackTrace(System.err);

API Version 2012-08-10
136

Amazon DynamoDB Developer Guide
Example: Batch Operations - Java Document API

 }

 }

}

Example: Batch Get Operation Using the AWS SDK for Java
Document API
The following Java code example uses the batchGetItem method to retrieve multiple items from the
Forum and the Thread tables. The BatchGetItemRequest specifies the table names and item key list
for each item to get. The example processes the response by printing the items retrieved.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for Java (p. 687) topic.
For step-by-step instructions to run the following example, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.BatchGetItemOutcome;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.TableKeysAndAttributes;
import com.amazonaws.services.dynamodbv2.model.KeysAndAttributes;

public class DocumentAPIBatchGet {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

 static String forumTableName = "Forum";
 static String threadTableName = "Thread";

 public static void main(String[] args) throws IOException {

 retrieveMultipleItemsBatchGet();

 }

 private static void retrieveMultipleItemsBatchGet() {

 try {

API Version 2012-08-10
137

Amazon DynamoDB Developer Guide
Example: Batch Operations - Java Document API

 TableKeysAndAttributes forumTableKeysAndAttributes = new TableKey
sAndAttributes(forumTableName);
 forumTableKeysAndAttributes.addHashOnlyPrimaryKeys("Name", "Amazon
 S3", "Amazon DynamoDB");

 TableKeysAndAttributes threadTableKeysAndAttributes = new
TableKeysAndAttributes(threadTableName);
 threadTableKeysAndAttributes.addHashAndRangePrimaryKeys("ForumName",
 "Subject",
 "Amazon DynamoDB","DynamoDB Thread 1",
 "Amazon DynamoDB","DynamoDB Thread 2",
 "Amazon S3","S3 Thread 1");

 Map<String, TableKeysAndAttributes> requestItems = new
HashMap<String, TableKeysAndAttributes>();
 requestItems.put(forumTableName, forumTableKeysAndAttributes);
 requestItems.put(threadTableName, threadTableKeysAndAttributes);

 System.out.println("Making the request.");

 BatchGetItemOutcome outcome = dynamoDB.batchGetItem(forumTableKey
sAndAttributes,
 threadTableKeysAndAttributes);

 do {

 for (String tableName : outcome.getTableItems().keySet()) {
 System.out.println("Items in table " + tableName);
 List<Item> items = outcome.getTableItems().get(tableName);

 for (Item item : items) {
 System.out.println(item.toJSONPretty());
 }
 }

 // Check for unprocessed keys which could happen if you exceed
 provisioned
 // throughput or reach the limit on response size.

 Map<String, KeysAndAttributes> unprocessedKeys = outcome.getUn
processedKeys();

 if (outcome.getUnprocessedKeys().size() == 0) {
 System.out.println("No unprocessed keys found");
 } else {
 System.out.println("Retrieving the unprocessed keys");
 outcome = dynamoDB.batchGetItemUnprocessed(unprocessedKeys);

 }

 } while (outcome.getUnprocessedKeys().size() > 0);

 } catch (Exception e) {
 System.err.println("Failed to retrieve items.");
 System.err.println(e.getMessage());
 }

API Version 2012-08-10
138

Amazon DynamoDB Developer Guide
Example: Batch Operations - Java Document API

 }

}

Example: Handling Binary Type Attributes Using
the AWS SDK for Java Document API
The following Java code example illustrates handling binary type attributes. The example adds an item
to the Reply table.The item includes a binary type attribute (ExtendedMessage) that stores compressed
data. The example then retrieves the item and prints all the attribute values. For illustration, the example
uses the GZIPOutputStream class to compress a sample stream and assign it to the ExtendedMessage
attribute. When the binary attribute is retrieved, it is decompressed using the GZIPInputStream class.

Note
The AWS SDK for Java also provides a high-level object persistence model, enabling you to
map your client-side classes to DynamoDB tables. This approach can reduce the amount of
code you have to write. For more information, see Java: Object Persistence Model.

If you followed the Creating Tables and Loading Sample Data (p. 14) section, you should already have
created the Reply table.You can also create this tables programmatically. For more information, see
Creating Example Tables and Uploading Data Using the AWS SDK for Java (p. 687).

For step-by-step instructions to test the following sample, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.TimeZone;
import java.util.zip.GZIPInputStream;
import java.util.zip.GZIPOutputStream;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.spec.GetItemSpec;

public class DocumentAPIItemBinaryExample {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

 static String tableName = "Reply";

API Version 2012-08-10
139

Amazon DynamoDB Developer Guide
Example: Handling Binary Type Attributes - Java

Document API

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaSDKHighLevel.html

 static SimpleDateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");

 public static void main(String[] args) throws IOException {
 try {

 // Format the primary key values
 String threadId = "Amazon DynamoDB#DynamoDB Thread 2";

 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));
 String replyDateTime = dateFormatter.format(new Date());

 // Add a new reply with a binary attribute type
 createItem(threadId, replyDateTime);

 // Retrieve the reply with a binary attribute type
 retrieveItem(threadId, replyDateTime);

 // clean up by deleting the item
 deleteItem(threadId, replyDateTime);
 } catch (Exception e) {
 System.err.println("Error running the binary attribute type example:
 " + e);
 e.printStackTrace(System.err);
 }
 }

 public static void createItem(String threadId, String replyDateTime) throws
 IOException {

 Table table = dynamoDB.getTable(tableName);

 // Craft a long message
 String messageInput = "Long message to be compressed in a lengthy forum
 reply";

 // Compress the long message
 ByteBuffer compressedMessage = compressString(messageInput.toString());

 table.putItem(new Item()
 .withPrimaryKey("Id", threadId)
 .withString("ReplyDateTime", replyDateTime)
 .withString("Message", "Long message follows")
 .withBinary("ExtendedMessage", compressedMessage)
 .withString("PostedBy", "User A"));
 }

 public static void retrieveItem(String threadId, String replyDateTime)
throws IOException {

 Table table = dynamoDB.getTable(tableName);

 GetItemSpec spec = new GetItemSpec()
 .withPrimaryKey("Id", threadId, "ReplyDateTime", replyDateTime)
 .withConsistentRead(true);

API Version 2012-08-10
140

Amazon DynamoDB Developer Guide
Example: Handling Binary Type Attributes - Java

Document API

 Item item = table.getItem(spec);

 // Uncompress the reply message and print
 String uncompressed = uncompressString(ByteBuffer.wrap(item.getBinary("Ex
tendedMessage")));

 System.out.println("Reply message:\n"
 + " Id: " + item.getString("Id") + "\n"
 + " ReplyDateTime: " + item.getString("ReplyDateTime") + "\n"
 + " PostedBy: " + item.getString("PostedBy") + "\n"
 + " Message: " + item.getString("Message") + "\n"
 + " ExtendedMessage (uncompressed): " + uncompressed + "\n");
 }

 public static void deleteItem(String threadId, String replyDateTime) {

 Table table = dynamoDB.getTable(tableName);
 table.deleteItem("Id", threadId, "ReplyDateTime", replyDateTime);
 }

 private static ByteBuffer compressString(String input) throws IOException
{
 // Compress the UTF-8 encoded String into a byte[]
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 GZIPOutputStream os = new GZIPOutputStream(baos);
 os.write(input.getBytes("UTF-8"));
 os.finish();
 byte[] compressedBytes = baos.toByteArray();

 // The following code writes the compressed bytes to a ByteBuffer.
 // A simpler way to do this is by simply calling ByteBuffer.wrap(com
pressedBytes);
 // However, the longer form below shows the importance of resetting the
 position of the buffer
 // back to the beginning of the buffer if you are writing bytes directly
 to it, since the SDK
 // will consider only the bytes after the current position when sending
 data to DynamoDB.
 // Using the "wrap" method automatically resets the position to zero.
 ByteBuffer buffer = ByteBuffer.allocate(compressedBytes.length);
 buffer.put(compressedBytes, 0, compressedBytes.length);
 buffer.position(0); // Important: reset the position of the ByteBuffer
 to the beginning
 return buffer;
 }

 private static String uncompressString(ByteBuffer input) throws IOException
 {
 byte[] bytes = input.array();
 ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 GZIPInputStream is = new GZIPInputStream(bais);

 int chunkSize = 1024;
 byte[] buffer = new byte[chunkSize];
 int length = 0;
 while ((length = is.read(buffer, 0, chunkSize)) != -1) {

API Version 2012-08-10
141

Amazon DynamoDB Developer Guide
Example: Handling Binary Type Attributes - Java

Document API

 baos.write(buffer, 0, length);
 }

 return new String(baos.toByteArray(), "UTF-8");
 }
}

Working with Items Using the AWS SDK for .NET
Low-Level API

Topics

• Putting an Item (p. 143)

• Getting an Item (p. 144)

• Updating an Item (p. 145)

• Atomic Counter (p. 147)

• Deleting an Item (p. 148)

• Batch Write: Putting and Deleting Multiple Items (p. 149)

• Batch Get: Getting Multiple Items (p. 151)

• Example: CRUD Operations Using the AWS SDK for .NET Low-Level API (p. 153)

• Example: Batch Operations Using AWS SDK for .NET Low-Level API (p. 161)

• Example: Handling Binary Type Attributes Using the AWS SDK for .NET Low-Level API (p. 172)

You can use the AWS SDK for .NET low-level API (protocol-level API) to perform typical create, read,
update, and delete (CRUD) operations on an item in a table. The low-level API for item operations map
to the corresponding DynamoDB API (see Using the DynamoDB API (p. 512)).

Note that the .NET SDK also provides a set of document model classes (see .NET: Document
Model (p. 445)) that wrap some of the low-level API to simplify your coding tasks. The .NET SDK also
provides a high-level object persistence model (see .NET: Object Persistence Model (p. 476)), enabling
you to map your client-side classes to DynamoDB tables.These higher level APIs can reduce the amount
of code you have to write.

The following are the common steps you follow to perform data CRUD operations using the .NET low-level
API.

1. Create an instance of the AmazonDynamoDBClient class (the client).

2. Provide the operation specific required parameters in a corresponding request object.
For example, use the PutItemRequest request object when uploading an item and use the
GetItemRequest request object when retrieving an existing item.

You can use the request object to provide both the required and optional parameters.

3. Execute the appropriate method provided by the client by passing in the request object that you created
in the preceding step.
The AmazonDynamoDBClient client provides PutItem, GeItem, UpdateItem, and DeleteItem
methods for the CRUD operations.

API Version 2012-08-10
142

Amazon DynamoDB Developer Guide
Working with Items - .NET Low-Level API

Putting an Item
The PutItem method uploads an item to a table. If the item exists, it replaces the entire item.

Note
Instead of replacing the entire item, if you want to update only specific attributes, you can use
the UpdateItem method. For more information, see Updating an Item (p. 145).

The following are the steps to upload an item using the low-level .NET SDK API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the PutItemRequest class.

To put an item, you must provide the table name and the item.

3. Execute the PutItem method by providing the PutItemRequest object that you created in the
preceding step.

The following C# code snippet demonstrates the preceding steps. The example uploads an item to the
ProductCatalog table.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new PutItemRequest
{
 TableName = tableName,
 Item = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue { N = "201" }},
 { "Title", new AttributeValue { S = "Book 201 Title" }},
 { "ISBN", new AttributeValue { S = "11-11-11-11" }},
 { "Price", new AttributeValue { S = "20.00" }},
 {
 "Authors",
 new AttributeValue
 { SS = new List<string>{"Author1", "Author2"} }
 }
 }
};
client.PutItem(request);

In the preceding example, you upload a book item that has the Id, Title, ISBN, and Authors attributes.
Note that Id is a numeric type attribute and all other attributes are of the string type. Authors is a
multi-valued string attribute.

Specifying Optional Parameters
You can also provide optional parameters using the PutItemRequest object as shown in the following
C# code snippet. The sample specifies the following optional parameters:

• ExpressionAttributeNames, ExpressionAttributeValues, and ConditionExpression
specify that the item can be replaced only if the existing item has the ISBN attribute with a specific
value.

• ReturnValues parameter to request the old item in the response.

API Version 2012-08-10
143

Amazon DynamoDB Developer Guide
Putting an Item

var request = new PutItemRequest
 {
 TableName = tableName,
 Item = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue { N = "104" }},
 { "Title", new AttributeValue { S = "Book 104 Title" }},
 { "ISBN", new AttributeValue { S = "444-4444444444" }},
 { "Authors",
 new AttributeValue { SS = new List<string>{"Author3"}}}
 },
 // Optional parameters.
 ExpressionAttributeNames = new Dictionary<string,string>()
 {
 {"#I", "ISBN"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":isbn",new AttributeValue {S = "444-4444444444"}}
 },
 ConditionExpression = "#I = :isbn"

};
var response = client.PutItem(request);

For more information about the parameters and the API, see PutItem.

Getting an Item
The GetItem method retrieves an item.

Note
To retrieve multiple items you can use the BatchGetItem method. For more information, see
Batch Get: Getting Multiple Items (p. 151).

The following are the steps to retrieve an existing item using the low-level .NET SDK API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the GetItemRequest class.

To get an item, you must provide the table name and primary key of the item.

3. Execute the GetItem method by providing the GetItemRequest object that you created in the
preceding step.

The following C# code snippet demonstrates the preceding steps. The example retrieves an item from
the ProductCatalog table.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new GetItemRequest
 {
 TableName = tableName,
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue
{ N = "202" } } },

API Version 2012-08-10
144

Amazon DynamoDB Developer Guide
Getting an Item

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

 };
 var response = client.GetItem(request);

// Check the response.
var result = response.GetItemResult;
var attributeMap = result.Item; // Attribute list in the response.

Specifying Optional Parameters
You can also provide optional parameters using the GetItemRequest object as shown in the following
C# code snippet. The sample specifies the following optional parameters:

• ProjectionExpression parameter to specify the attributes to retrieve.

• ConsistentRead parameter to perform a strongly consistent read. To learn more read consistency,
see Data Read and Consistency Considerations (p. 10).

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new GetItemRequest
 {
 TableName = tableName,
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue
{ N = "202" } } },
 // Optional parameters.
 ProjectionExpression = "Id, ISBN, Title, Authors",
 ConsistentRead = true
 };

 var response = client.GetItem(request);

// Check the response.
var result = response.GetItemResult;
var attributeMap = result.Item;

For more information about the parameters and the API, see GetItem.

Updating an Item
The UpdateItem method updates an existing item if it is present.You can use the UpdateItem operation
to update existing attribute values, add new attributes, or delete attributes from the existing collection. If
the item that has the specified primary key is not found, it adds a new item.

The UpdateItem API uses the following guidelines:

• If the item does not exist, the UpdateItem API adds a new item using the primary key that is specified
in the input.

• If the item exists, the UpdateItem API applies the updates as follows:

• Replaces the existing attribute values by the values in the update

• If the attribute that you provide in the input does not exist, it adds a new attribute to the item.

• If the input attribute is null, it deletes the attribute, if it is present.

API Version 2012-08-10
145

Amazon DynamoDB Developer Guide
Updating an Item

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html

• If you use ADD for the Action, you can add values to an existing set (string or number set), or
mathematically add (use a positive number) or subtract (use a negative number) from the existing
numeric attribute value.

Note
The PutItem operation also can perform an update. For more information, see Putting an
Item (p. 143). For example, if you call PutItem to upload an item and the primary key exists, the
PutItem operation replaces the entire item. Note that, if there are attributes in the existing item
and those attributes are not specified in the input, the PutItem operation deletes those attributes.
However, the UpdateItem API only updates the specified input attributes, any other existing
attributes of that item remain unchanged.

The following are the steps to update an existing item using the low-level .NET SDK API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the UpdateItemRequest class.

This is the request object in which you describe all the updates, such as add attributes, update existing
attributes, or delete attributes.To delete an existing attribute, specify the attribute name with null value.

3. Execute the UpdateItem method by providing the UpdateItemRequest object that you created in
the preceding step.

The following C# code snippet demonstrates the preceding steps. The example updates a book item in
the ProductCatalog table. It adds a new author to the Authors collection, and deletes the existing ISBN
attribute. It also reduces the price by one.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new UpdateItemRequest
{
 TableName = tableName,
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue
 { N = "202" } } },
 ExpressionAttributeNames = new Dictionary<string,string>()
 {
 {"#A", "Authors"},
 {"#P", "Price"},
 {"#NA", "NewAttribute"},
 {"#I", "ISBN"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":auth",new AttributeValue { SS = {"Author YY","Author ZZ"}}},
 {":p",new AttributeValue {N = "1"}},
 {":newattr",new AttributeValue {S = "someValue"}},
 },

 // This expression does the following:
 // 1) Adds two new authors to the list
 // 2) Reduces the price
 // 3) Adds a new attribute to the item
 // 4) Removes the ISBN attribute from the item
 UpdateExpression = "ADD #A :auth SET #P = #P - :p, #NA = :newattr REMOVE
#I"

API Version 2012-08-10
146

Amazon DynamoDB Developer Guide
Updating an Item

};
var response = client.UpdateItem(request);

Specifying Optional Parameters
You can also provide optional parameters using the UpdateItemRequest object as shown in the following
C# code snippet. It specifies the following optional parameters:

• ExpressionAttributeValues and ConditionExpression to specify that the price can be updated
only if the existing price is 20.00.

• ReturnValues parameter to request the updated item in the response.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new UpdateItemRequest
{
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue
 { N = "202" } } },

 // Update price only if the current price is 20.00.
 ExpressionAttributeNames = new Dictionary<string,string>()
 {
 {"#P", "Price"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":newprice",new AttributeValue {N = "22"}},
 {":currprice",new AttributeValue {N = "20"}}
 },
 UpdateExpression = "SET #P = :newprice",
 ConditionExpression = "#P = :currprice",
 TableName = tableName,
 ReturnValues = "ALL_NEW" // Return all the attributes of the updated item.
};

var response = client.UpdateItem(request);

For more information about the parameters and the API, see UpdateItem.

Atomic Counter
You can use updateItem to implement an atomic counter, where you increment or decrement the value
of an existing attribute without interfering with other write requests. To update an atomic counter, use
updateItem with an attribute of type Number in the UpdateExpression parameter, and ADD as the Action.

The following code snippet demonstrates this, incrementing the Quantity attribute by one.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new UpdateItemRequest
{
 Key = new Dictionary<string, AttributeValue>() { { "Id", new AttributeValue

API Version 2012-08-10
147

Amazon DynamoDB Developer Guide
Atomic Counter

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html

 { N = "121" } } },
 ExpressionAttributeNames = new Dictionary<string, string>()
 {
 {"#Q", "Quantity"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":incr",new AttributeValue {N = "1"}}
 },
 UpdateExpression = "SET #Q = #Q + :incr",
 TableName = tableName
};

var response = client.UpdateItem(request);

Deleting an Item
The DeleteItem method deletes an item from a table.

The following are the steps to delete an item using the low-level .NET SDK API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the DeleteItemRequest class.

To delete an item, the table name and item's primary key are required.

3. Execute the DeleteItem method by providing the DeleteItemRequest object that you created in
the preceding step.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new DeleteItemRequest
{
 TableName = tableName,
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue
 { N = "201" } } },
};

var response = client.DeleteItem(request);

Specifying Optional Parameters
You can also provide optional parameters using the DeleteItemRequest object as shown in the following
C# code snippet. It specifies the following optional parameters:

• ExpressionAttributeValues and ConditionExpression to specify that the book item can be
deleted only if it is no longer in publication (the InPublication attribute value is false).

• ReturnValues parameter to request the deleted item in the response.

var request = new DeleteItemRequest
{
 TableName = tableName,

API Version 2012-08-10
148

Amazon DynamoDB Developer Guide
Deleting an Item

 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue
 { N = "201" } } },

 // Optional parameters.
 ReturnValues = "ALL_OLD",
 ExpressionAttributeNames = new Dictionary<string, string>()
 {
 {"#IP", "InPublication"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":inpub",new AttributeValue {BOOL = false}}
 },
 ConditionExpression = "#IP = :inpub"
};

var response = client.DeleteItem(request);

For more information about the parameters and the API, see DeleteItem.

Batch Write: Putting and Deleting Multiple Items
Batch write refers to putting and deleting multiple items in a batch.The BatchWriteItem method enables
you to put and delete multiple items from one or more tables in a single API call. The following are the
steps to retrieve multiple items using the low-level .NET SDK API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Describe all the put and delete operations by creating an instance of the BatchWriteItemRequest
class.

3. Execute the BatchWriteItem method by providing the BatchWriteItemRequest object that you
created in the preceding step.

4. Process the response.You should check if there were any unprocessed request items returned in the
response. This could happen if you reach the provisioned throughput limit or some other transient
error. Also, DynamoDB limits the request size and the number of operations you can specify in a
request. If you exceed these limits, DynamoDB rejects the request. For more information, see
BatchWriteItem.

The following C# code snippet demonstrates the preceding steps. The example creates a
BatchWriteItemRequest to perform the following write operations:

• Put an item in Forum table

• Put and delete an item from Thread table

The code then executes BatchWriteItem to perform a batch operation.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

string table1Name = "Forum";
string table2Name = "Thread";

var request = new BatchWriteItemRequest
 {
 RequestItems = new Dictionary<string, List<WriteRequest>>

API Version 2012-08-10
149

Amazon DynamoDB Developer Guide
Batch Write: Putting and Deleting Multiple Items

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

 {
 {
 table1Name, new List<WriteRequest>
 {
 new WriteRequest
 {
 PutRequest = new PutRequest
 {
 Item = new Dictionary<string,AttributeValue>
 {
 { "Name", new AttributeValue { S = "Amazon S3 forum" } },
 { "Threads", new AttributeValue { N = "0" }}
 }
 }
 }
 }
 } ,
 {
 table2Name, new List<WriteRequest>
 {
 new WriteRequest
 {
 PutRequest = new PutRequest
 {
 Item = new Dictionary<string,AttributeValue>
 {
 { "ForumName", new AttributeValue { S = "Amazon S3 forum" }
},
 { "Subject", new AttributeValue { S = "My sample question" }
},
 { "Message", new AttributeValue { S = "Message Text." } },
 { "KeywordTags", new AttributeValue { SS = new List<string> {
 "Amazon S3", "Bucket" } } }
 }
 }
 },
 new WriteRequest
 {
 DeleteRequest = new DeleteRequest
 {
 Key = new Dictionary<string,AttributeValue>()
 {
 { "ForumName", new AttributeValue { S = "Some forum name" }
 },
 { "Subject", new AttributeValue { S = "Some subject" } }
 }
 }
 }
 }
 }
 }
 };
response = client.BatchWriteItem(request);

For a working example, see Example: Batch Operations Using AWS SDK for .NET Low-Level API (p. 161).

API Version 2012-08-10
150

Amazon DynamoDB Developer Guide
Batch Write: Putting and Deleting Multiple Items

Batch Get: Getting Multiple Items
The BatchGetItem method enables you to retrieve multiple items from one or more tables.

Note
To retrieve a single item you can use the GetItem method.

The following are the steps to retrieve multiple items using the low-level .NET SDK API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the BatchGetItemRequest class.

To retrieve multiple items, the table name and a list of primary key values are required.

3. Execute the BatchGetItem method by providing the BatchGetItemRequest object that you created
in the preceding step.

4. Process the response.You should check if there were any unprocessed keys, which could happen if
you reach the provisioned throughput limit or some other transient error.

The following C# code snippet demonstrates the preceding steps. The example retrieves items from two
tables, Forum and Thread. The request specifies two items in the Forum and three items in the Thread
table. The response includes items from both of the tables. The code shows how you can process the
response.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

string table1Name = "Forum";
string table2Name = "Thread";

var request = new BatchGetItemRequest
{
 RequestItems = new Dictionary<string, KeysAndAttributes>()
 {
 { table1Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue>>()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue { S = "DynamoDB" } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue { S = "Amazon S3" } }
 }
 }
 }
 },
 {
 table2Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue>>()
 {
 new Dictionary<string, AttributeValue>()
 {

API Version 2012-08-10
151

Amazon DynamoDB Developer Guide
Batch Get: Getting Multiple Items

 { "ForumName", new AttributeValue { S = "DynamoDB" } },
 { "Subject", new AttributeValue { S = "DynamoDB Thread 1" } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue { S = "DynamoDB" } },
 { "Subject", new AttributeValue { S = "DynamoDB Thread 2" } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue { S = "Amazon S3" } },
 { "Subject", new AttributeValue { S = "Amazon S3 Thread 1" } }
 }
 }
 }
 }
 }
};

var response = client.BatchGetItem(request);

// Check the response.
var result = response.BatchGetItemResult;
var responses = result.Responses; // The attribute list in the response.

var table1Results = responses[table1Name];
Console.WriteLine("Items in table {0}" + table1Name);
foreach (var item1 in table1Results.Items)
{
 PrintItem(item1);
}

var table2Results = responses[table2Name];
Console.WriteLine("Items in table {1}" + table2Name);
foreach (var item2 in table2Results.Items)
{
 PrintItem(item2);
}
// Any unprocessed keys? could happen if you exceed ProvisionedThroughput or
some other error.
Dictionary<string, KeysAndAttributes> unprocessedKeys = result.UnprocessedKeys;
foreach (KeyValuePair<string, KeysAndAttributes> pair in unprocessedKeys)
{
 Console.WriteLine(pair.Key, pair.Value);
}

Specifying Optional Parameters
You can also provide optional parameters using the BatchGetItemRequest object as shown in the
following C# code snippet. The code samples retrieves two items from the Forum table. It specifies the
following optional parameter:

• ProjectionExpression parameter to specify the attributes to retrieve.

API Version 2012-08-10
152

Amazon DynamoDB Developer Guide
Batch Get: Getting Multiple Items

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

string table1Name = "Forum";

var request = new BatchGetItemRequest
{
 RequestItems = new Dictionary<string, KeysAndAttributes>()
 {
 { table1Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue>>()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue { S = "DynamoDB" } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue { S = "Amazon S3" } }
 }
 }
 },
 // Optional - name of an attribute to retrieve.
 ProjectionExpression = "Title"
 }
 }
};

var response = client.BatchGetItem(request);

For more information about the parameters and the API, see BatchGetItem.

Example: CRUD Operations Using the AWS SDK
for .NET Low-Level API
The following C# code example illustrates CRUD operations on an item. The example adds an item to
the ProductCatalog table, retrieves it, performs various updates, and finally deletes the item. If you followed
the steps in Creating Tables and Loading Sample Data (p. 14), you already have the ProductCatalog
table created.You can also create these sample tables programmatically. For more information, see
Creating Example Tables and Uploading Data Using the AWS SDK for .NET (p. 695).

Note
This section explains the .NET SDK low-level API.The .NET SDK also provides a set of document
model classes (see .NET: Document Model (p. 445)) that wrap some of the low-level API to
simplify your coding tasks. In addition, the .NET SDK also provides a high-level object persistence
model (see .NET: Object Persistence Model (p. 476)), enabling you to map your client-side classes
to DynamoDB tables. This approach can reduce the amount of code you have to write.
For a code example that demonstrates CRUD operations using the document model classes,
see Example: CRUD Operations Using the AWS SDK for .NET Document Model (p. 454). For a
code example that demonstrates CRUD operations using the object persistence model,
see Example: CRUD Operations Using the AWS SDK for .NET Object Persistence Model (p. 496).

For step-by-step instructions to test the following sample, see Using the AWS SDK for .NET (p. 56).

API Version 2012-08-10
153

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Low-Level API

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchGetItem.html

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.Model;

using Amazon.Runtime;

using Amazon.SecurityToken;

namespace com.amazonaws.codesamples

 {

 class LowLevelItemCRUDExample

 {

 private static string tableName = "ProductCatalog";

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 CreateItem();

 RetrieveItem();

 // Perform various updates.

 UpdateMultipleAttributes();

 UpdateExistingAttributeConditionally();

 // Delete item.

 DeleteItem();

 Console.WriteLine("To continue, press Enter");

API Version 2012-08-10
154

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Low-Level API

 Console.ReadLine();

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 }

 private static void CreateItem()

 {

 var request = new PutItemRequest

 {

 TableName = tableName,

 Item = new Dictionary<string, AttributeValue>()

 {

 { "Id", new AttributeValue { N = "1000" }},

 { "Title", new AttributeValue { S = "Book 201 Title" }},

 { "ISBN", new AttributeValue { S = "11-11-11-11" }},

 { "Authors", new AttributeValue { SS = new List<string>{"Author1",
"Author2" }}},

 { "Price", new AttributeValue { N = "20.00" }},

 { "Dimensions", new AttributeValue { S = "8.5x11.0x.75" }},

 { "InPublication", new AttributeValue { BOOL = false } }

 }

 };

 client.PutItem(request);

 }

API Version 2012-08-10
155

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Low-Level API

 private static void RetrieveItem()

 {

 var request = new GetItemRequest

 {

 TableName = tableName,

 Key = new Dictionary<string, AttributeValue>()

 {

 { "Id", new AttributeValue { N = "1000" } }

 },

 ProjectionExpression = "Id, ISBN, Title, Authors",

 ConsistentRead = true

 };

 var response = client.GetItem(request);

 // Check the response.

 var attributeList = response.Item; // attribute list in the response.

 Console.WriteLine("\nPrinting item after retrieving it
............");

 PrintItem(attributeList);

 }

 private static void UpdateMultipleAttributes()

 {

 var request = new UpdateItemRequest

 {

 Key = new Dictionary<string, AttributeValue>()

 {

 { "Id", new AttributeValue { N = "1000" } }

API Version 2012-08-10
156

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Low-Level API

 },

 // Perform the following updates:

 // 1) Add two new authors to the list

 // 1) Set a new attribute

 // 2) Remove the ISBN attribute

 ExpressionAttributeNames = new Dictionary<string,string>()

 {

 {"#A","Authors"},

 {"#NA","NewAttribute"},

 {"#I","ISBN"}

 },

 ExpressionAttributeValues = new Dictionary<string, Attribute
Value>()

 {

 {":auth",new AttributeValue {SS = {"Author YY", "Author
ZZ"}}},

 {":new",new AttributeValue {S = "New Value"}}

 },

 UpdateExpression = "ADD #A :auth SET #NA = :new REMOVE #I",

 TableName = tableName,

 ReturnValues = "ALL_NEW" // Give me all attributes of the updated
 item.

 };

 var response = client.UpdateItem(request);

 // Check the response.

 var attributeList = response.Attributes; // attribute list in the
response.

 // print attributeList.

API Version 2012-08-10
157

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Low-Level API

 Console.WriteLine("\nPrinting item after multiple attribute update
");

 PrintItem(attributeList);

 }

 private static void UpdateExistingAttributeConditionally()

 {

 var request = new UpdateItemRequest

 {

 Key = new Dictionary<string, AttributeValue>()

 {

 { "Id", new AttributeValue { N = "1000" } }

 },

 ExpressionAttributeNames = new Dictionary<string,string>()

 {

 {"#P", "Price"}

 },

 ExpressionAttributeValues = new Dictionary<string, Attribute
Value>()

 {

 {":newprice",new AttributeValue {N = "22.00"}},

 {":currprice",new AttributeValue {N = "20.00"}}

 },

 // This updates price only if current price is 20.00.

 UpdateExpression = "SET #P = :newprice",

 ConditionExpression = "#P = :currprice",

 TableName = tableName,

 ReturnValues = "ALL_NEW" // Give me all attributes of the updated
 item.

 };

API Version 2012-08-10
158

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Low-Level API

 var response = client.UpdateItem(request);

 // Check the response.

 var attributeList = response.Attributes; // attribute list in the
response.

 Console.WriteLine("\nPrinting item after updating price value con
ditionally");

 PrintItem(attributeList);

 }

 private static void DeleteItem()

 {

 var request = new DeleteItemRequest

 {

 TableName = tableName,

 Key = new Dictionary<string, AttributeValue>()

 {

 { "Id", new AttributeValue { N = "1000" } }

 },

 // Return the entire item as it appeared before the update.

 ReturnValues = "ALL_OLD",

 ExpressionAttributeNames = new Dictionary<string,string>()

 {

 {"#IP", "InPublication"}

 },

 ExpressionAttributeValues = new Dictionary<string, Attribute
Value>()

 {

 {":inpub",new AttributeValue {BOOL = false}}

API Version 2012-08-10
159

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Low-Level API

 },

 ConditionExpression = "#IP = :inpub"

 };

 var response = client.DeleteItem(request);

 // Check the response.

 var attributeList = response.Attributes; // Attribute list in the
response.

 // Print item.

 Console.WriteLine("\nPrinting item that was just deleted
............");

 PrintItem(attributeList);

 }

 private static void PrintItem(Dictionary<string, AttributeValue> attrib
uteList)

 {

 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)

 {

 string attributeName = kvp.Key;

 AttributeValue value = kvp.Value;

 Console.WriteLine(

 attributeName + " " +

 (value.S == null ? "" : "S=[" + value.S + "]") +

 (value.N == null ? "" : "N=[" + value.N + "]") +

 (value.SS == null ? "" : "SS=[" + string.Join(",",
value.SS.ToArray()) + "]") +

 (value.NS == null ? "" : "NS=[" + string.Join(",",
value.NS.ToArray()) + "]")

API Version 2012-08-10
160

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Low-Level API

);

 }

 Con
sole.WriteLine("**");

 }

 }

 }

Example: Batch Operations Using AWS SDK for
.NET Low-Level API
Topics

• Example: Batch Write Operation Using the AWS SDK for .NET Low-Level API (p. 161)

• Example: Batch Get Operation Using the AWS SDK for .NET Low-Level API (p. 166)

This section provides examples of batch operations, batch write and batch get, that DynamoDB supports.

Note
This section explains the .NET SDK low-level API.The .NET SDK also provides a set of document
model classes (see .NET: Document Model (p. 445)) that wrap some of the low-level API to
simplify your coding tasks. In addition, the .NET SDK also provides a high-level object persistence
model (see .NET: Object Persistence Model (p. 476)), enabling you to map your client-side classes
to DynamoDB tables.
For code examples that demonstrate batch operations using the object persistence model,
see Batch Operations Using AWS SDK for .NET Object Persistence Model (p. 492) and Example:
Batch Write Operation Using the AWS SDK for .NET Object Persistence Model (p. 499).

Example: Batch Write Operation Using the AWS SDK for
.NET Low-Level API
The following C# code example uses the BatchWriteItem method to perform the following put and
delete operations:

• Put one item in the Forum table

• Put one item and delete one item from the Thread table.

You can specify any number of put and delete requests against one or more tables when creating your
batch write request. However, the DynamoDB BatchWriteItem API limits the size of a batch write
request and the number of put and delete operations in a single batch write operation. For more information,
see BatchWriteItem. If your request exceeds these limits, your request is rejected. If your table does not
have sufficient provisioned throughput to serve this request, the unprocessed request items are returned
in the response.

The following example checks the response to see if it has any unprocessed request items. If it does, it
loops back and resends the BatchWriteItem request with unprocessed items in the request. If you
followed the steps in Creating Tables and Loading Sample Data (p. 14), you already have the Forum and
Thread tables created.You can also create these sample tables and upload sample data programmatically.

API Version 2012-08-10
161

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

For more information, see Creating Example Tables and Uploading Data Using the AWS SDK for
.NET (p. 695).

For step-by-step instructions to test the following sample, see Using the AWS SDK for .NET (p. 56).

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.Model;

using Amazon.Runtime;

namespace com.amazonaws.codesamples

{

 class LowLevelBatchWrite

 {

 private static string table1Name = "Forum";

 private static string table2Name = "Thread";

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 TestBatchWrite();

 }

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

API Version 2012-08-10
162

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

 }

 private static void TestBatchWrite()

 {

 var request = new BatchWriteItemRequest

 {

 ReturnConsumedCapacity = "TOTAL",

 RequestItems = new Dictionary<string, List<WriteRequest>>

 {

 {

 table1Name, new List<WriteRequest>

 {

 new WriteRequest

 {

 PutRequest = new PutRequest

 {

 Item = new Dictionary<string, AttributeValue>

 {

 { "Name", new AttributeValue { S = "S3 forum" } },

 { "Threads", new AttributeValue { N = "0" }}

 }

 }

 }

 }

 },

 {

 table2Name, new List<WriteRequest>

 {

 new WriteRequest

API Version 2012-08-10
163

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

 {

 PutRequest = new PutRequest

 {

 Item = new Dictionary<string, AttributeValue>

 {

 { "ForumName", new AttributeValue { S = "S3 forum" } },

 { "Subject", new AttributeValue { S = "My sample question"
 } },

 { "Message", new AttributeValue { S = "Message Text." }
},

 { "KeywordTags", new AttributeValue { SS = new List<string>
 { "S3", "Bucket" } } }

 }

 }

 },

 new WriteRequest

 {

 // For the operation to delete an item, if you provide a primary
 key value

 // that does not exist in the table, there is no error, it is
 just a no-op.

 DeleteRequest = new DeleteRequest

 {

 Key = new Dictionary<string, AttributeValue>()

 {

 { "ForumName", new AttributeValue { S = "Some hash attr
value" } },

 { "Subject", new AttributeValue { S = "Some range attr
value" } }

 }

 }

 }

API Version 2012-08-10
164

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

 }

 }

 }

 };

 CallBatchWriteTillCompletion(request);

 }

 private static void CallBatchWriteTillCompletion(BatchWriteItemRequest
 request)

 {

 BatchWriteItemResponse response;

 int callCount = 0;

 do

 {

 Console.WriteLine("Making request");

 response = client.BatchWriteItem(request);

 callCount++;

 // Check the response.

 var tableConsumedCapacities = response.ConsumedCapacity;

 var unprocessed = response.UnprocessedItems;

 Console.WriteLine("Per-table consumed capacity");

 foreach (var tableConsumedCapacity in tableConsumedCapacities)

 {

 Console.WriteLine("{0} - {1}", tableConsumedCapacity.Table
Name, tableConsumedCapacity.CapacityUnits);

API Version 2012-08-10
165

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

 }

 Console.WriteLine("Unprocessed");

 foreach (var unp in unprocessed)

 {

 Console.WriteLine("{0} - {1}", unp.Key, unp.Value.Count);

 }

 Console.WriteLine();

 // For the next iteration, the request will have unprocessed
items.

 request.RequestItems = unprocessed;

 } while (response.UnprocessedItems.Count > 0);

 Console.WriteLine("Total # of batch write API calls made: {0}",
callCount);

 }

 }

}

Example: Batch Get Operation Using the AWS SDK for .NET
Low-Level API
The following C# code example uses the BatchGetItem method to retrieve multiple items from the
Forum and the Thread tables.The BatchGetItemRequest specifies the table names and a list of primary
keys for each table. The example processes the response by printing the items retrieved.

Note
This section explains the .NET SDK low-level API.The .NET SDK also provides a set of document
model classes (see .NET: Document Model (p. 445)) that wrap some of the low-level API to
simplify your coding tasks. In addition, the .NET SDK also provides a high-level object persistence
model (see .NET: Object Persistence Model (p. 476)), enabling you to map your client-side classes
to DynamoDB tables. The individual object instances then map to items in a table.

API Version 2012-08-10
166

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

For code examples that demonstrate batch operations using the object persistence model,
see Batch Operations Using AWS SDK for .NET Object Persistence Model (p. 492) and Example:
Batch Write Operation Using the AWS SDK for .NET Object Persistence Model (p. 499).

If you followed the steps in Creating Tables and Loading Sample Data (p. 14), you already have these
tables created with sample data.You can also create these sample tables and upload sample data
programmatically. For more information, see Creating Example Tables and Uploading Data Using the
AWS SDK for .NET (p. 695).

For step-by-step instructions to test the following sample, see Using the AWS SDK for .NET (p. 56).

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.Model;

using Amazon.Runtime;

namespace com.amazonaws.codesamples

{

 class LowLevelBatchGet

 {

 private static string table1Name = "Forum";

 private static string table2Name = "Thread";

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 RetrieveMultipleItemsBatchGet();

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

API Version 2012-08-10
167

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 }

 private static void RetrieveMultipleItemsBatchGet()

 {

 var request = new BatchGetItemRequest

 {

 RequestItems = new Dictionary<string, KeysAndAttributes>()

 {

 { table1Name,

 new KeysAndAttributes

 {

 Keys = new List<Dictionary<string, AttributeValue>>()

 {

 new Dictionary<string, AttributeValue>()

 {

 { "Name", new AttributeValue { S = "Amazon DynamoDB" } }

 },

 new Dictionary<string, AttributeValue>()

 {

 { "Name", new AttributeValue { S = "Amazon S3" } }

 }

 }

 }

 },

 {

 table2Name,

 new KeysAndAttributes

API Version 2012-08-10
168

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

 {

 Keys = new List<Dictionary<string, AttributeValue>>()

 {

 new Dictionary<string, AttributeValue>()

 {

 { "ForumName", new AttributeValue { S = "Amazon DynamoDB" }
},

 { "Subject", new AttributeValue { S = "DynamoDB Thread 1" }
}

 },

 new Dictionary<string, AttributeValue>()

 {

 { "ForumName", new AttributeValue { S = "Amazon DynamoDB" }
},

 { "Subject", new AttributeValue { S = "DynamoDB Thread 2" }
}

 },

 new Dictionary<string, AttributeValue>()

 {

 { "ForumName", new AttributeValue { S = "Amazon S3" } },

 { "Subject", new AttributeValue { S = "S3 Thread 1" } }

 }

 }

 }

 }

 }

 };

 BatchGetItemResponse response;

 do

 {

API Version 2012-08-10
169

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

 Console.WriteLine("Making request");

 response = client.BatchGetItem(request);

 // Check the response.

 var responses = response.Responses; // Attribute list in the
response.

 foreach (var tableResponse in responses)

 {

 var tableResults = tableResponse.Value;

 Console.WriteLine("Items retrieved from table {0}", ta
bleResponse.Key);

 foreach (var item1 in tableResults)

 {

 PrintItem(item1);

 }

 }

 // Any unprocessed keys? could happen if you exceed Provisioned
Throughput or some other error.

 Dictionary<string, KeysAndAttributes> unprocessedKeys = re
sponse.UnprocessedKeys;

 foreach (var unprocessedTableKeys in unprocessedKeys)

 {

 // Print table name.

 Console.WriteLine(unprocessedTableKeys.Key);

 // Print unprocessed primary keys.

 foreach (var key in unprocessedTableKeys.Value.Keys)

 {

 PrintItem(key);

 }

API Version 2012-08-10
170

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

 }

 request.RequestItems = unprocessedKeys;

 } while (response.UnprocessedKeys.Count > 0);

 }

 private static void PrintItem(Dictionary<string, AttributeValue> attrib
uteList)

 {

 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)

 {

 string attributeName = kvp.Key;

 AttributeValue value = kvp.Value;

 Console.WriteLine(

 attributeName + " " +

 (value.S == null ? "" : "S=[" + value.S + "]") +

 (value.N == null ? "" : "N=[" + value.N + "]") +

 (value.SS == null ? "" : "SS=[" + string.Join(",",
value.SS.ToArray()) + "]") +

 (value.NS == null ? "" : "NS=[" + string.Join(",",
value.NS.ToArray()) + "]")

);

 }

 Con
sole.WriteLine("**");

 }

 }

}

API Version 2012-08-10
171

Amazon DynamoDB Developer Guide
Example: Batch Operations - .NET Low-Level API

Example: Handling Binary Type Attributes Using
the AWS SDK for .NET Low-Level API
The following C# code example illustrates the handling of binary type attributes. The example adds an
item to the Reply table. The item includes a binary type attribute (ExtendedMessage) that stores
compressed data. The example then retrieves the item and prints all the attribute values. For illustration,
the example uses the GZipStream class to compress a sample stream and assigns it to the
ExtendedMessage attribute, and decompresses it when printing the attribute value.

Note
This section explains the .NET SDK low-level API.The .NET SDK also provides a set of document
model classes (see .NET: Document Model (p. 445)) that wrap some of the low-level API to
simplify your coding tasks. In addition, the .NET SDK also provides a high-level object persistence
model (see .NET: Object Persistence Model (p. 476)), enabling you to map your client-side classes
to DynamoDB tables.

If you followed the steps in Creating Tables and Loading Sample Data (p. 14), you already have the Reply
table created.You can also create these sample tables programmatically. For more information, see
Creating Example Tables and Uploading Data Using the AWS SDK for .NET (p. 695).

For step-by-step instructions to test the following sample, see Using the AWS SDK for .NET (p. 56).

using System;

using System.Collections.Generic;

using System.IO;

using System.IO.Compression;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.Model;

using Amazon.Runtime;

namespace com.amazonaws.codesamples

{

 class LowLevelItemBinaryExample

 {

 private static string tableName = "Reply";

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

API Version 2012-08-10
172

Amazon DynamoDB Developer Guide
Example: Handling Binary Type Attributes - .NET

Low-Level API

 // Reply table primary key.

 string replyIdHashAttribute = "Amazon DynamoDB#DynamoDB Thread 1";

 string replyDateTimeRangeAttribute = Convert.ToString(Date
Time.UtcNow);

 try

 {

 CreateItem(replyIdHashAttribute, replyDateTimeRangeAttribute);

 RetrieveItem(replyIdHashAttribute, replyDateTimeRangeAttribute);

 // Delete item.

 DeleteItem(replyIdHashAttribute, replyDateTimeRangeAttribute);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 }

 private static void CreateItem(string hashAttribute, string rangeAttrib
ute)

 {

 MemoryStream compressedMessage = ToGzipMemoryStream("Some long ex
tended message to compress.");

 var request = new PutItemRequest

 {

 TableName = tableName,

API Version 2012-08-10
173

Amazon DynamoDB Developer Guide
Example: Handling Binary Type Attributes - .NET

Low-Level API

 Item = new Dictionary<string, AttributeValue>()

 {

 { "Id", new AttributeValue { S = hashAttribute }},

 { "ReplyDateTime", new AttributeValue { S = rangeAttribute }},

 { "Subject", new AttributeValue { S = "Binary type " }},

 { "Message", new AttributeValue { S = "Some message about the binary
 type" }},

 { "ExtendedMessage", new AttributeValue { B = compressedMessage }}

 }

 };

 client.PutItem(request);

 }

 private static void RetrieveItem(string hashAttribute, string rangeAt
tribute)

 {

 var request = new GetItemRequest

 {

 TableName = tableName,

 Key = new Dictionary<string, AttributeValue>()

 {

 { "Id", new AttributeValue { S = hashAttribute } },

 { "ReplyDateTime", new AttributeValue { S = rangeAttribute } }

 },

 ConsistentRead = true

 };

 var response = client.GetItem(request);

 // Check the response.

 var attributeList = response.Item; // attribute list in the response.

API Version 2012-08-10
174

Amazon DynamoDB Developer Guide
Example: Handling Binary Type Attributes - .NET

Low-Level API

 Console.WriteLine("\nPrinting item after retrieving it
............");

 PrintItem(attributeList);

 }

 private static void DeleteItem(string hashAttribute, string rangeAttrib
ute)

 {

 var request = new DeleteItemRequest

 {

 TableName = tableName,

 Key = new Dictionary<string, AttributeValue>()

 {

 { "Id", new AttributeValue { S = hashAttribute } },

 { "ReplyDateTime", new AttributeValue { S = rangeAttribute } }

 }

 };

 var response = client.DeleteItem(request);

 }

 private static void PrintItem(Dictionary<string, AttributeValue> attrib
uteList)

 {

 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)

 {

 string attributeName = kvp.Key;

 AttributeValue value = kvp.Value;

 Console.WriteLine(

API Version 2012-08-10
175

Amazon DynamoDB Developer Guide
Example: Handling Binary Type Attributes - .NET

Low-Level API

 attributeName + " " +

 (value.S == null ? "" : "S=[" + value.S + "]") +

 (value.N == null ? "" : "N=[" + value.N + "]") +

 (value.SS == null ? "" : "SS=[" + string.Join(",",
value.SS.ToArray()) + "]") +

 (value.NS == null ? "" : "NS=[" + string.Join(",",
value.NS.ToArray()) + "]") +

 (value.B == null ? "" : "B=[" + FromGzipMemoryStream(value.B)
 + "]")

);

 }

 Con
sole.WriteLine("**");

 }

 private static MemoryStream ToGzipMemoryStream(string value)

 {

 MemoryStream output = new MemoryStream();

 using (GZipStream zipStream = new GZipStream(output, Compression
Mode.Compress, true))

 using (StreamWriter writer = new StreamWriter(zipStream))

 {

 writer.Write(value);

 }

 return output;

 }

 private static string FromGzipMemoryStream(MemoryStream stream)

 {

 using (GZipStream zipStream = new GZipStream(stream, Compression
Mode.Decompress))

 using (StreamReader reader = new StreamReader(zipStream))

API Version 2012-08-10
176

Amazon DynamoDB Developer Guide
Example: Handling Binary Type Attributes - .NET

Low-Level API

 {

 return reader.ReadToEnd();

 }

 }

 }

}

Working with Items Using the AWS SDK for PHP
Low-Level API

Topics

• Putting an Item (p. 177)

• Getting an Item (p. 179)

• Batch Write: Putting and Deleting Multiple Items (p. 180)

• Batch Get: Getting Multiple Items (p. 182)

• Updating an Item (p. 183)

• Atomic Counter (p. 185)

• Deleting an Item (p. 186)

• Example: CRUD Operations Using the AWS SDK for PHP Low-Level API (p. 187)

• Example: Batch Operations Using AWS SDK for PHP (p. 190)

You can use AWS SDK for PHP API to perform typical create, read, update, and delete (CRUD) operations
on an item in a table. The PHP API for item operations map to the underlying the DynamoDB API. For
more information, see Using the DynamoDB API (p. 512).

The following are the common steps that you follow to perform data CRUD operations using the PHP
API.

1. Create an instance of the DynamoDbClient client.

2. Provide the parameters for a DynamoDB operation to the client instance, including any optional
parameters.

3. Load the response from DynamoDB into a local variable for your application.

Putting an Item
The PHP putItem function uploads an item to a table. If the item exists, it replaces the entire item.
Instead of replacing the entire item, if you want to update only specific attributes, you can use the
updateItem function. For more information, see Updating an Item (p. 183).

The following are the steps to upload an item to DynamoDB using the AWS SDK for PHP.

API Version 2012-08-10
177

Amazon DynamoDB Developer Guide
Working with Items - PHP Low-Level API

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the putItem operation to the client instance.

You must provide the table name and the item attributes, including primary key values.

3. Load the response into a local variable, such as $response to use in your application.

The following PHP code snippet demonstrates the preceding tasks. The code uploads an item to the
ProductCatalog table.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for PHP (p. 713) topic.
For step-by-step instructions to run the following example, see Running PHP Examples (p. 59).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->putItem(array(
 'TableName' => 'ProductCatalog',
 'Item' => array(
 'Id' => array('N' => 104), // Primary Key
 'Title' => array('S' => 'Book 104 Title'),
 'ISBN' => array('S' => '111-1111111111'),
 'Price' => array('N' => 25),
 'Authors' => array('SS' => array('Author1', 'Author2'))
)
));

Specifying Optional Parameters
Along with the required parameters, you can also specify optional parameters to the putItem function.
For example, the following PHP code snippet uses an optional parameter to specify a condition for
uploading the item. If the condition you specify is not met, then the AWS PHP SDK throws an
ConditionalCheckFailedException. The code specifies the following optional parameters in for
putItem:

• A ConditionExpression parameter that define conditions for the request, such as the condition that
the existing item is replaced only if it has an ISBN attribute that equals a specific value.

• The ALL_OLD value for the ReturnValue parameter that provides all the attribute values for the item
before the PutItem operation. In this case, the older item only had two authors and the new item values
include three authors.

$client = DynamoDbClient::factory(array(
 "profile" => "default",
 "region" => "us-west-2" #replace with your desired region
));

$tableName = "ProductCatalog";

API Version 2012-08-10
178

Amazon DynamoDB Developer Guide
Putting an Item

$result = $client->putItem (array (
 "TableName" => $tableName,
 "Item" => array (
 "Id" => array (
 "N" => 104
), // Primary Key
 "Title" => array (
 "S" => "Book 104 Title"
),
 "ISBN" => array (
 "S" => "333-3333333333"
),
 "Price" => array (
 "N" => 2000
),
 "Authors" => array (
 "SS" => array (
 "Author1",
 "Author2",
 "Author3"
)
)
),
 "ExpressionAttributeNames" => array (
 "#I" => "ISBN") ,

 "ExpressionAttributeValues" => array (
 ":val1" => array("S" => "333-3333333333")) ,
 "ConditionExpression" => "#I = :val1",
 "ReturnValues" => "ALL_OLD"
));

print_r ($result);

For more information, see PutItem.

Getting an Item
The getItem function retrieves a single item.To retrieve multiple items, you can use the batchGetItem
method (see Batch Get: Getting Multiple Items (p. 182)).

The following are the steps to retrieve an item.

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the getItem operation to the client instance.

You must provide the table name and primary key values.

3. Load the response into a local variable, such as $response to use in your application.

The following PHP code snippet demonstrates the preceding steps. The code gets the item that has the
specified hash primary key.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.

API Version 2012-08-10
179

Amazon DynamoDB Developer Guide
Getting an Item

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for PHP (p. 713) topic.
For step-by-step instructions to run the following example, see Running PHP Examples (p. 59).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->getItem(array(
 'TableName' => 'ProductCatalog',
 'Key' => array(
 'Id' => array('N' => 104)
)
));

print_r ($response['Item']);

Specifying Optional Parameters
Along with the required parameters, you can also specify optional parameters for the getItem function.
For example, the following PHP code snippet uses an optional method to retrieve only a specific list of
attributes, and requests a strongly consistent return value. The code specifies the following optional
parameters:

• A specific list of attribute names, including the Id and Authors.

• A Boolean value that requests a strongly consistent read value. Read results are eventually consistent
by default.You can request read results to be strongly consistent.To learn more about read consistency,
see Data Read and Consistency Considerations (p. 10).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->getItem(array(
 'TableName' => 'ProductCatalog',
 'Key' => array(
 'Id' => array('N' => 104),
),
 'ProjectionExpression' => 'Id, Authors',
 'ConsistentRead' => true
));

print_r ($response['Item']);

For more information about the parameters and the API, see GetItem.

Batch Write: Putting and Deleting Multiple Items
The AWS SDK for PHP batchWriteItem function enables you to put or delete several items from
multiple tables in a single request.

API Version 2012-08-10
180

Amazon DynamoDB Developer Guide
Batch Write: Putting and Deleting Multiple Items

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html

The following are the common steps that you follow to get multiple items.

1. Create an instance of the DynamoDbClient class.

2. Execute the batchWriteItem operation by providing the associative array parameter with the list of
put and write requests.

The following PHP code snippet demonstrates the preceding steps.The code performs the following write
operations:

• Put an item in the Forum table.

• Put and delete an item from the Thread table.

Note that the key:value pair specified in the array parameter to the batchWriteItem uses syntax
required by the underlying DynamoDB API. For more information, see BatchWriteItem.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for PHP (p. 713) topic.
For step-by-step instructions to run the following example, see Running PHP Examples (p. 59).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$tableNameOne = "Forum";
$tableNameTwo = "Thread";

$response = $client->batchWriteItem(array(
 "RequestItems" => array(
 $tableNameOne => array(
 array(
 "PutRequest" => array(
 "Item" => array(
 "Name" => array('S' => "Amazon S3 Forum"),
 "Threads" => array('N' => 0)
))
)
),
 $tableNameTwo => array(
 array(
 "PutRequest" => array(
 "Item" => array(
 "ForumName" => array('S' => "Amazon S3 Forum"),
 "Subject" => array('S' => "My sample question"),
 "Message"=> array('S' => "Message Text."),
 "KeywordTags"=>array('SS' => array("Amazon S3", "Buck
et"))
))
),
 array(
 "DeleteRequest" => array(
 "Key" => array(

API Version 2012-08-10
181

Amazon DynamoDB Developer Guide
Batch Write: Putting and Deleting Multiple Items

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

 "ForumName" =>array('S' => "Some hash value"),
 "Subject" => array('S' => "Some range key")
))
)
)
)
));

Batch Get: Getting Multiple Items
The AWS SDK for PHP batchGetItem function enables you to retrieve multiple items from one or more
tables. To retrieve a single item, you can use the getItem method.

The following are the common steps that you follow to get multiple items.

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the batchGetItem operation to the client instance as RequestItems.

You must provide the table names and primary key values.

3. Load the response into a local variable, such as $response to use in your application.

The following PHP code snippet demonstrates the preceding steps. The code retrieves two items from
the Forum table and three items from the Thread table.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for PHP (p. 713) topic.
For step-by-step instructions to run the following example, see Running PHP Examples (p. 59).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

date_default_timezone_set("UTC");
$sevenDaysAgo = date("Y-m-d H:i:s", strtotime("-7 days"));
$twentyOneDaysAgo = date("Y-m-d H:i:s", strtotime("-21 days"));

$response = $client->batchGetItem(array(
 "RequestItems" => array(
 "Forum" => array(
 "Keys" => array(
 array(// Key #2
 "Name" => array('S' => "DynamoDB")
)
)
),
 "Reply" => array(
 "Keys" => array(
 array(// Key #1
 "Id" => array('S' => "DynamoDB#DynamoDB Thread 2"),
 "ReplyDateTime" => array('S' => $sevenDaysAgo),

API Version 2012-08-10
182

Amazon DynamoDB Developer Guide
Batch Get: Getting Multiple Items

),
 array(// Key #2
 "Id" => array('S' => "DynamoDB#DynamoDB Thread 2"),
 "ReplyDateTime" => array('S' => $twentyOneDaysAgo),
),
)
)
)
));

print_r($response['Responses']);

Specifying Optional Parameters
Along with the required parameters, you can also specify optional parameters for the batchGetItem
function. For example, you can specify a list of attributes to retrieve as shown in the following PHP code
snippet. The code retrieves two items from the Forum table and uses the ProjectionExpression
parameter to retrieve the count of threads in each table:

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->batchGetItem(array(
 "RequestItems" => array(
 "Forum" => array(
 "Keys" => array(
 array(// Key #1
 "Name" => array('S' => "Amazon S3")
),
 array(// Key #2
 "Name" => array('S' => "DynamoDB")
)
),
 "ProjectionExpression" => "Threads"
),
)
));

print_r($response);

For more information about the parameters and the API, see BatchGetItem.

Updating an Item
Use the updateItem function to update existing attribute values, add new attributes to the existing
collection, or delete attributes from the existing collection.

The updateItem function uses the following guidelines:

• If an item does not exist, the updateItem function adds a new item using the primary key that is
specified in the input.

• If an item exists, the updateItem function applies the updates as follows:

API Version 2012-08-10
183

Amazon DynamoDB Developer Guide
Updating an Item

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchGetItem.html

• Replaces the existing attribute values with the values in the update.

• If the attribute you provide in the input does not exist, it adds a new attribute to the item.

• If you use ADD for the Action, you can add values to an existing set (string or number set), or
mathematically add (use a positive number) or subtract (use a negative number) from the existing
numeric attribute value.

Note
The putItem function (Putting an Item (p. 177)) also updates items. For example, if you use
putItem to upload an item and the primary key exists, the operation replaces the entire item.
If there are attributes in the existing item and those attributes are not specified in the input, the
putItem operation deletes those attributes. However, the updateItem API only updates the
specified input attributes so that any other existing attributes of that item remain unchanged.

The following are the steps to update an existing item using the AWS SDK for PHP.

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the updateItem operation to the client instance as an UpdateExpression.

You must provide the table name, primary key, and attribute names and values to update.

3. Load the response into a local variable, such as $response to use in your application.

The following PHP code snippet demonstrates the preceding tasks. The example updates a book item
in the ProductCatalog table. It adds a new author to the Authors multi-valued attribute and deletes the
existing ISBN attribute. It also reduces the price by one.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for PHP (p. 713) topic.
For step-by-step instructions to run the following example, see Running PHP Examples (p. 59).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->updateItem(array(
 'TableName' => 'ProductCatalog',
 'Key' => array(
 'Id' => array(
 'N' => 201
)
),
 'ExpressionAttributeValues' => array (
 ':val1' => array(
 'S' => 'Author YY',
 'S' => 'Author ZZ'),
 ':val2' => array('N' => '1')
) ,
 'UpdateExpression' => 'set Authors = :val1, Price = Price - :val2 remove
ISBN'
));

print_r($response);

API Version 2012-08-10
184

Amazon DynamoDB Developer Guide
Updating an Item

Specifying Optional Parameters
Along with the required parameters, you can also specify optional parameters for the updateItem function
including an expected value that an attribute must have if the update is to occur. If the condition you
specify is not met, then the AWS SDK for PHP throws a ConditionalCheckFailedException. For
example, the following PHP code snippet conditionally updates a book item price to 25. It specifies the
following optional parameters:

• A ConditionExpression parameter that sets the condition that the price should be updated only if
the existing price is 20.00.

• A ALL_NEW value for the ReturnValues parameter that specifies the response should include all of
the item's current attribute values after the update.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->updateItem(array(
 'TableName' => 'ProductCatalog',
 'Key' => array(
 'Id' => array(
 'N' => 201
)
),
 'ExpressionAttributeValues' => array (
 ':val1' => array('N' => 22),
 ':val2' => array('N' => 20)
) ,
 'UpdateExpression' => 'set Price = :val1',
 'ConditionExpression' => 'Price = :val2',
 'ReturnValues' => 'ALL_NEW'
));

print_r($response);

For more information about the parameters and the API, see UpdateItem>.

Atomic Counter
You can use updateItem to implement an atomic counter, where you increment or decrement the value
of an existing attribute without interfering with other write requests. To update an atomic counter, use
updateItem with an appropriate UpdateExpression.

The following code snippet demonstrates this, incrementing the Quantity attribute by one.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->updateItem(array(

API Version 2012-08-10
185

Amazon DynamoDB Developer Guide
Atomic Counter

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html

 "TableName" => "ProductCatalog",
 "Key" => array(
 "Id" => array(
 'N' => 201
)
),
 "ExpressionAttributeValues" => array (
 ":val1" => array('N' => '1')
) ,
 "UpdateExpression" => "set Quantity = Quantity + :val1",
 "ReturnValues" => 'ALL_NEW'
));

print_r($response["Attributes"]);

Deleting an Item
The deleteItem function deletes an item from a table.

The following are the common steps that you follow to delete an item using the AWS SDK for PHP.

1. Create an instance of the DynamoDbClient class (the client).

2. Provide the parameters for the deleteItem operation to the client instance.

You must provide the table name and primary key values.

3. Load the response into a local variable, such as $response to use in your application.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for PHP (p. 713) topic.
For step-by-step instructions to run the following example, see Running PHP Examples (p. 59).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->deleteItem(array(
 'TableName' => 'ProductCatalog',
 'Key' => array(
 'Id' => array(
 'N' => 101
)
)
));

Specifying Optional Parameters
Along with the required parameters, you can also specify optional parameters for the deleteItem
function. For example, the following PHP code snippet specifies the following optional parameters:

API Version 2012-08-10
186

Amazon DynamoDB Developer Guide
Deleting an Item

• An Expected parameter specifying that the Book item with Id value "103" in the ProductCatalog table
be deleted only if the book is no longer in publication. Specifically, delete the book if the InPublication
attribute is false.

• A RETURN_ALL_OLD enumeration value for the ReturnValues parameter requests that the response
include the item that was deleted and its attributes before the deletion.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$tableName = "ProductCatalog";

$response = $client->deleteItem (array (
 'TableName' => $tableName,
 'Key' => array (
 'Id' => array (
 'N' => 103
)
),
 'ExpressionAttributeValues' => array(
 ':val1' => array('BOOL' => false)
),
 'ConditionExpression' => 'InPublication = :val1',
 'ReturnValues' => 'ALL_OLD'
));

For more information about the parameters and the API, see DeleteItem.

Example: CRUD Operations Using the AWS SDK
for PHP Low-Level API
The following PHP code example illustrates CRUD (create, read, update, and delete) operations on an
item. The example creates an item, retrieves it, performs various updates, and finally deletes the item.
However, the delete operation is commented-out so you can keep the data until you are ready to delete
it.

Note
For step-by-step instructions to test the following code example, see Running PHP
Examples (p. 59).

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 "profile" => "default",
 "region" => "us-west-2" // replace with your desired region
));

$tableName = "ProductCatalog";

// ###

API Version 2012-08-10
187

Amazon DynamoDB Developer Guide
Example: CRUD Operations - PHP Low-Level API

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html

// Adding data to the table

echo "# Adding data to table $tableName..." . PHP_EOL;

$response = $client->putItem(array(
 "TableName" => $tableName,
 "Item" => array(
 "Id" => array("N" => "120"),
 "Title" => array("S" => "Book 120 Title"),
 "ISBN" => array("S" => "120-1111111111"),
 "Authors" => array("SS" => array("Author12", "Author22")),
 "Price" => array("N" => "20"),
 "Category" => array("S" => "Book"),
 "Dimensions" => array("S" => "8.5x11.0x.75"),
 "InPublication" => array("BOOL" => false),
),
 "ReturnConsumedCapacity" => "TOTAL"
));

echo "Consumed capacity: " . $response ["ConsumedCapacity"] ["CapacityUnits"]
. PHP_EOL;

$response = $client->putItem(array(
 "TableName" => $tableName,
 "Item" => array(
 "Id" => array("N" => "121"),
 "Title" => array("S" => "Book 121 Title"),
 "ISBN" => array("S" => "121-1111111111"),
 "Authors" => array("SS" => array("Author21", "Author22")),
 "Price" => array("N" => "20"),
 "Category" => array("S" => "Book"),
 "Dimensions" => array("S" => "8.5x11.0x.75"),
 "InPublication" => array("BOOL" => true),
),
 "ReturnConsumedCapacity" => "TOTAL"
));

echo "Consumed capacity: " . $response ["ConsumedCapacity"] ["CapacityUnits"]
. PHP_EOL;

// ###
// Getting an item from the table

echo PHP_EOL . PHP_EOL;
echo "# Getting an item from table $tableName..." . PHP_EOL;

$response = $client->getItem (array (
 "TableName" => $tableName,
 "ConsistentRead" => true,
 "Key" => array (
 "Id" => array (
 "N" => "120"
)
),
 "ProjectionExpression" => "Id, ISBN, Title, Authors"
));
print_r ($response ["Item"]);

API Version 2012-08-10
188

Amazon DynamoDB Developer Guide
Example: CRUD Operations - PHP Low-Level API

// ###
// Updating item attributes

echo PHP_EOL . PHP_EOL;
echo "# Updating an item and returning the whole new item in table $tableName..."
 . PHP_EOL;

$response = $client->updateItem (array (
 "TableName" => $tableName,
 "Key" => array (
 "Id" => array (
 "N" => 120 //was 121
)
),
 "ExpressionAttributeNames" => array (
 "#NA" => "NewAttribute",
 "#A" => "Authors"
),
 "ExpressionAttributeValues" => array (
 ":val1" => array("S" => "Some Value"),
 ":val2" => array("SS" => array("Author YY","Author ZZ"))
) ,
 "UpdateExpression" => "set #NA = :val1, #A = :val2",
 "ReturnValues" => "ALL_NEW"
));
print_r ($response ["Attributes"]);

// ###
// Conditionally updating the Price attribute, only if it has not changed.

echo PHP_EOL . PHP_EOL;
echo "# Updating an item attribute only if it has not changed in table $table
Name..." . PHP_EOL;

$response = $client->updateItem (array (
 "TableName" => $tableName,
 "Key" => array (
 "Id" => array (
 "N" => "121"
)
),
 "ExpressionAttributeNames" => array (
 "#P" => "Price"
),
 "ExpressionAttributeValues" => array(
 ":val1" => array("N" => "25"),
 ":val2" => array("N" => "20"),
),
 "UpdateExpression" => "set #P = :val1",
 "ConditionExpression" => "#P = :val2",
 "ReturnValues" => "ALL_NEW"
));

print_r ($response ["Attributes"]);

// ###
// Deleting an item

API Version 2012-08-10
189

Amazon DynamoDB Developer Guide
Example: CRUD Operations - PHP Low-Level API

echo PHP_EOL . PHP_EOL;
echo "# Deleting an item and returning its previous values from in table
$tableName..." . PHP_EOL;

$response = $client->deleteItem (array (
 "TableName" => $tableName,
 "Key" => array (
 "Id" => array (
 "N" => "121"
)
),
 "ReturnValues" => "ALL_OLD"
));
print_r ($response ["Attributes"]);

?>

Example: Batch Operations Using AWS SDK for
PHP

Example: Batch Write Operation Using the AWS SDK for
PHP
The following PHP code example uses batch write API to perform the following tasks:

• Put an item in the Forum table.

• Put and delete an item from the Thread table.

To learn more about the batch write operation, see Batch Write: Putting and Deleting Multiple Items (p. 180).

This code example assumes that you have followed the steps in Creating Tables and Loading Sample
Data (p. 14) and have created the Forum and Thread tables. Alternatively, you can load the data
programmatically using the instructions in the Creating Example Tables and Uploading Data Using the
AWS SDK for PHP (p. 713) topic.

Note
For step-by-step instructions to test the following code example, see Running PHP
Examples (p. 59).

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 "profile" => "default",
 "region" => "us-west-2" // replace with your desired region
));

$tableNameOne = "Forum";
$tableNameTwo = "Thread";

$response = $client->batchWriteItem(array(

API Version 2012-08-10
190

Amazon DynamoDB Developer Guide
Example: Batch Operations-PHP SDK

 "RequestItems" => array(
 $tableNameOne => array(
 array(
 "PutRequest" => array(
 "Item" => array(
 "Name" => array("S" => "Amazon S3 Forum"),

 "Threads" => array("N" => "0")
))
)
),
 $tableNameTwo => array(
 array(
 "PutRequest" => array(
 "Item" => array(
 "ForumName" => array("S" => "Amazon S3 Forum"),

 "Subject" => array("S" => "My sample question"),
 "Message"=> array("S" => "Message Text."),
 "KeywordTags"=>array("SS" => array("Amazon S3", "Buck
et"))
))
),
 array(
 "DeleteRequest" => array(
 "Key" => array(
 "ForumName" =>array("S" => "Some hash value"),
 "Subject" => array("S" => "Some range key")
))
)
)
)
));

print_r($response);

?>

API Version 2012-08-10
191

Amazon DynamoDB Developer Guide
Example: Batch Operations-PHP SDK

Query and Scan Operations in
DynamoDB

Topics

• Query (p. 192)

• Scan (p. 194)

• Filtering the Results from a Query or a Scan (p. 194)

• Capacity Units Consumed by Query and Scan (p. 194)

• Paginating the Results (p. 195)

• Count and ScannedCount (p. 195)

• Limit (p. 196)

• Read Consistency (p. 196)

• Query and Scan Performance (p. 196)

• Parallel Scan (p. 197)

• Guidelines for Query and Scan (p. 198)

• Querying in DynamoDB (p. 202)

• Scanning in DynamoDB (p. 222)

In addition to using primary keys to access items, Amazon DynamoDB also provides two APIs for searching
the data: Query and Scan.

Tip
You can query or scan a secondary index in the same way that you query a table. To do this,
you must provide IndexName and TableName as parameters to the Query or Scan API. For
more information, see Improving Data Access with Secondary Indexes in DynamoDB (p. 248).

Query
A Query operation finds items in a table or a secondary index using only primary key attribute values.
You must provide a hash key attribute name and a distinct value to search for.You can optionally provide
a range key attribute name and value, and use a comparison operator to refine the search results. By
default, a Query operation returns all of the data attributes for items with the specified primary key(s);

API Version 2012-08-10
192

Amazon DynamoDB Developer Guide
Query

however, you can use the ProjectionExpression parameter so that the Query operation only returns
some of the attributes, rather than all of them.

In a Query operation, you use the KeyConditionExpression parameter to determine the items to be
read from the table or index.You must specify the hash key attribute name and value as an equality
condition.You can optionally provide a second condition for the range key attribute (if present).The range
key condition must use one of the following comparison operators:

• a = b — true if the attribute a is equal to the value b

• a < b — true if a is less than b

• a <= b — true if a is less than or equal to b

• a > b — true if a is greater than b

• a >= b — true if a is greater than or equal to b

• a BETWEEN b AND c — true if a is greater than or equal to b, and less than or equal to c.

The following function is also supported:

• begins_with (a, substr)— true if the value of attribute a begins with a particular substring.

Following are some examples of key condition expressions. Note that these expressions use placeholders
(such as :name and :subj) instead of actual values. For more information, see Expression Attribute
Names (p. 101) and Expression Attribute Values (p. ?).

• Query the Thread table for a particular ForumName (hash key). All of the items with that ForumName
value will be read by the query, because the range key (Subject) is not included in
KeyConditionExpression.

ForumName = :name

• Query the Thread table for a particular ForumName (hash key), but this time return only the items with
a given Subject (range key).

Forum = :name and Subject = :subj

• Query the Reply table for a particular Id (hash key), but return only those items whose ReplyDateTime
(range key) begins with certain characters.

Id = :id and begins_with(ReplyDateTime, :dt)

You can use any attribute name in a key condition expression, provided that the first character is a-z or
A-Z and the second character (if present) is a-z, A-Z, or 0-9. In addition, the attribute name must not
be a DynamoDB reserved word. (For a complete list of these, see Reserved Words in DynamoDB (p. 721).)
If an attribute name does not meet these requirements, you will need to define an expression attribute
name as a placeholder. For more information, see Expression Attribute Names (p. 101).

For items with a given hash key, DynamoDB stores these items close together, in sorted order by range
key. In a Query operation, DynamoDB retrieves the items in sorted order, and then processes the items
using KeyConditionExpression and any FilterExpression that might be present. Only then are
the Query results sent back to the client.

A Query operation always returns a result set. If no matching items are found, the result set will be empty.

Query results are always sorted by the range key. If the data type of the range key is Number, the results
are returned in numeric order; otherwise, the results are returned in order of ASCII character code values.
By default, the sort order is ascending. To reverse the order, set the ScanIndexForward parameter to
false.

API Version 2012-08-10
193

Amazon DynamoDB Developer Guide
Query

A single Query request can retrieve a maximum of 1 MB of data; DynamoDB can optionally apply a filter
expression to this data, narrowing the results before they are returned to the user. (For more information
on filters, see Filtering the Results from a Query or a Scan (p. 194).)

Scan
A Scan operation reads every item in a table or a secondary index. By default, a Scan operation returns
all of the data attributes for every item in the table or index.You can use the ProjectionExpression
parameter so that Scan only returns some of the attributes, rather than all of them.

Scan always returns a result set. If no matching items are found, the result set will be empty.

A single Scan request can retrieve a maximum of 1 MB of data; DynamoDB can optionally apply a filter
expression to this data, narrowing the results before they are returned to the user. (For more information
on filters, see Filtering the Results from a Query or a Scan (p. 194).)

Filtering the Results from a Query or a Scan
With a Query or a Scan operation, you can provide an optional filter expression to refine the results
returned to you. A filter expression lets you apply conditions to the data after it is queried or scanned, but
before it is returned to you. Only the items that meet your conditions are returned.

Following are some examples of filter expressions. Note that these expressions use placeholders (such
as :num and :name) instead of actual values. For more information, see Expression Attribute Names (p.101)
and Expression Attribute Values (p. ?).

• Query the Thread table for a particular ForumName (hash key) and Subject (range key). Of the items
that are found, return only the most popular discussion threads—for example, those threads with more
than a certain number of Views.

#V > :num

Note that Views is a reserved word in DynamoDB (see Reserved Words in DynamoDB (p. 721)), so we
use an expression attribute name as a substitution.

• Scan the Thread table and return only the items that were last posted to by a particular user.

LastPostedBy = :name

Note
The syntax for FilterExpression is identical to that of ConditionExpression. In addition,
FilterExpression uses the same comparators, functions, and logical operators as
ConditionExpression. For more information, see Condition Expression Reference (p. 104).

A single Query or Scan operation can retrieve a maximum of 1 MB of data. This limit applies before any
filter expression is applied to the results.

Capacity Units Consumed by Query and Scan
When you create a table, you specify your read and write capacity unit requirements. If you add a global
secondary index to the table, you must also provide the throughput requirements for that index.

API Version 2012-08-10
194

Amazon DynamoDB Developer Guide
Scan

You can use Query and Scan operations on secondary indexes in the same way that you use these
operations on a table. If you use Query or Scan on a local secondary index, then capacity units are
consumed from the table's provisioned throughput. However, if you perform these operations on a global
secondary index, capacity units are consumed from the provisioned throughput of the index. This is
because a global secondary index has its own provisioned throughput settings, separate from those of
its table.

For more information about how DynamoDB computes the capacity units consumed by your operation,
see Capacity Units Calculations for Various Operations (p. 64).

Note
For Query and Scan operations, DynamoDB calculates the amount of consumed provisioned
throughput based on item size, not on the amount of data that is returned to an application. For
this reason, the number of capacity units consumed will be the same whether you request all of
the attributes (the default behavior) or just some of them using the ProjectionExpression
parameter.
The number of capacity units consumed will also be the same whether or not you specify a
FilterExpression operation.

Paginating the Results
DynamoDB paginates the results from Query and Scan operations. With pagination, Query and Scan
results are divided into distinct pieces; an application can process the first page of results, then the second
page, and so on. The data returned from a Query or Scan operation is limited to 1 MB; this means that
if the result set exceeds 1 MB of data, you'll need to perform another Query or Scan operation to retrieve
the next 1 MB of data.

If you query or scan for specific attributes that match values that amount to more than 1 MB of data, you'll
need to perform another Query or Scan request for the next 1 MB of data. To do this, take the
LastEvaluatedKey value from the previous request, and use that value as the ExclusiveStartKey
in the next request.This approach will let you progressively query or scan for new data in 1 MB increments.

When the entire result set from a Query or Scan has been processed, LastEvaluatedKey is null.
This indicates that the result set is complete (that is, the operation processed the “last page” of data).

If LastEvaluatedKey is anything other than null, this does not necessarily mean that there is more
data in the result set. The only way to know when you have reached the end of the result set is when
LastEvaluatedKey is null.

Count and ScannedCount
The DynamoDB Query and Scan APIs use the Count parameter.Count is used for two distinct purposes:

• In a request, set the Count parameter to true if you want DynamoDB to provide the total number of
items that match the filter expression, instead of a list of the matching items.

• In a response, DynamoDB returns a Count value for the number of matching items in a request. If the
matching items for a filter expression or query condition is over 1 MB, Count contains a partial count
of the total number of items that match the request. To get the full count of items that match, take the
LastEvaluatedKey value from the previous request, and use that value as the ExclusiveStartKey
in the next request. Repeat this until DynamoDB no longer returns a LastEvaluatedKey.

Query and Scan operations also return a ScannedCount value. The ScannedCount value is the total
number of items that were queried or scanned, before any filter expression was applied to the results.

API Version 2012-08-10
195

Amazon DynamoDB Developer Guide
Paginating the Results

Limit
The DynamoDB Query and Scan APIs allow a Limit value to restrict the size of the results.

In a request, set the Limit parameter to the number of items that you want DynamoDB to process before
returning results.

In a response, DynamoDB returns all the matching results within the scope of the Limit value. For
example, if you issue a Query or a Scan request with a Limit value of 6 and without a filter expression,
DynamoDB returns the first six items in the table that match the specified key conditions in the request
(or just the first six items in the case of a Scan with no filter). If you also supply a FilterExpression
value, DynamoDB will return the items in the first six that also match the filter requirements (the number
of results returned will be less than or equal to 6).

For either a Query or Scan operation, DynamoDB might return a LastEvaluatedKey value if the
operation did not return all matching items in the table. To get the full count of items that match, take the
LastEvaluatedKey value from the previous request and use it as the ExclusiveStartKey value in
the next request. Repeat this until DynamoDB no longer returns a LastEvaluatedKey value.

Read Consistency

Read Consistency for Query
A Query result is an eventually consistent read, but you can request a strongly consistent read instead.
An eventually consistent read might not reflect the results of a recently completed PutItem or UpdateItem
operation. For more information, see Data Read and Consistency Considerations (p. 10).

Read Consistency for Scan
When you issue a Scan request, DynamoDB uses eventually consistent reads.This means that changes
to data in the table immediately before the scan takes place might not be included in the scan results. If
you need a consistent copy of the data, as of the time that the Scan begins, you can set the
ConsistentRead parameter to true.This will ensure that all of the write operations that completed before
the Scan began will be included in the Scan response. This is useful in table backup or replication
scenarios, in conjunction with DynamoDB Streams:You first use Scan with ConsistentRead set to
true, in order to obtain a consistent copy of the data in the table. During the Scan, DynamoDB Streams
records any additional write activity that occurs on the table. After the Scan completes, you can apply
the write activity from Streams to the table.

Note that a Scan operation with ConsistentRead set to true will consume twice as many read capacity
units, as compared to leaving ConsistentRead at its default value (false).

Query and Scan Performance
Generally, a Query operation is more efficient than a Scan operation.

A Scan operation always scans the entire table or secondary index, then filters out values to provide the
desired result, essentially adding the extra step of removing data from the result set. Avoid using a Scan
operation on a large table or index with a filter that removes many results, if possible. Also, as a table or
index grows, the Scan operation slows.The Scan operation examines every item for the requested values,
and can use up the provisioned throughput for a large table or index in a single operation. For faster

API Version 2012-08-10
196

Amazon DynamoDB Developer Guide
Limit

./Streams.html

response times, design your tables and indexes so that your applications can use Query instead of Scan.
(For tables, you can also consider using the GetItem and BatchGetItem APIs.).

Alternatively, design your application to use Scan operations in a way that minimizes the impact on your
request rate. For more information, see Guidelines for Query and Scan (p. 198).

A Query operation searches for a specific range of keys that satisfy a given set of key conditions. If you
specify a filter expression, then DynamoDB must perform the extra step of removing data from the result
set. A Query operation seeks the specified composite primary key, or range of keys, until one of the
following events occurs:

• The result set is exhausted.

• The number of items retrieved reaches the value of the Limit parameter, if specified.

• The amount of data retrieved reaches the maximum result set size limit of 1 MB.

Query performance depends on the amount of data retrieved, rather than the overall number of primary
keys in a table or secondary index.The parameters for a Query operation (and consequently the number
of matching keys) determine the performance of the query. For example, a query on a table that contains
a large set of range key elements for a single hash key element can be more efficient than a query on
another table that has fewer range key elements per hash key element, if the number of matching keys
in the first table is fewer than in the second. The total number of primary keys, in either table, does not
determine the efficiency of a Query operation. A filter expression can also have an impact on the efficiency
of a Query operation, because the items that don't match the filter must be removed from the result set.
Avoid using a Query operation on a large table or secondary index with a filter that removes many results,
if possible.

If a specific hash key element has a large range key element set, and the results cannot be retrieved in
a single Query request, the ExclusiveStartKey continuation parameter allows you to submit a new
query request from the last retrieved item without reprocessing the data already retrieved.

Parallel Scan
By default, the Scan operation processes data sequentially. DynamoDB returns data to the application
in 1 MB increments, and an application performs additional Scan operations to retrieve the next 1 MB of
data.

The larger the table or index being scanned, the more time the Scan will take to complete. In addition, a
sequential Scan might not always be able to fully utilize the provisioned read throughput capacity: Even
though DynamoDB distributes a large table's data across multiple physical partitions, a Scan operation
can only read one partition at a time. For this reason, the throughput of a Scan is constrained by the
maximum throughput of a single partition.

To address these issues, the Scan operation can logically divide a table or secondary index into multiple
segments, with multiple application workers scanning the segments in parallel. Each worker can be a
thread (in programming languages that support multithreading) or an operating system process. To
perform a parallel scan, each worker issues its own Scan request with the following parameters:

• Segment — A segment to be scanned by a particular worker. Each worker should use a different value
for Segment.

• TotalSegments — The total number of segments for the parallel scan. This value must be the same
as the number of workers that your application will use.

The following diagram shows how a multithreaded application performs a parallel Scan with three degrees
of parallelism:

API Version 2012-08-10
197

Amazon DynamoDB Developer Guide
Parallel Scan

In this diagram, the application spawns three threads and assigns each thread a number. (Segments are
zero-based, so the first number is always 0.) Each thread issues a Scan request, setting Segment to its
designated number and setting TotalSegments to 3. Each thread scans its designated segment, retrieving
data 1 MB at a time, and returns the data to the application's main thread.

The values for Segment and TotalSegments apply to individual Scan requests, and you can use different
values at any time.You might need to experiment with these values, and the number of workers you use,
until your application achieves its best performance.

Note
A parallel scan with a large number of workers can easily consume all of the provisioned
throughput for the table or index being scanned. It is best to avoid such scans if the table or
index is also incurring heavy read or write activity from other applications.
To control the amount of data returned per request, use the Limit parameter. This can help
prevent situations where one worker consumes all of the provisioned throughput, at the expense
of all other workers. For more information, see "Reduce Page Size" in Avoid Sudden Bursts of
Read Activity (p. 199).

Guidelines for Query and Scan
This section covers some best practices for query and scan operations.

API Version 2012-08-10
198

Amazon DynamoDB Developer Guide
Guidelines for Query and Scan

Avoid Sudden Bursts of Read Activity
When you create a table, you set its read and write capacity unit requirements. For reads, the capacity
units are expressed as the number of strongly consistent 4 KB data read requests per second. For
eventually consistent reads, a read capacity unit is two 4 KB read requests per second. A Scan operation
performs eventually consistent reads by default, and it can return up to 1 MB (one page) of data.Therefore,
a single Scan request can consume (1 MB page size / 4 KB item size) / 2 (eventually consistent reads)
= 128 read operations. If you were to request strongly consistent reads instead, the Scan operation would
consume twice as much provisioned throughput—256 read operations.

This represents a sudden burst of usage, compared to the configured read capacity for the table. This
usage of capacity units by a scan prevents other potentially more important requests for the same table
from using the available capacity units. As a result, you likely get a ProvisionedThroughputExceeded
exception for those requests.

Note that it is not just the burst of capacity units the Scan uses that is a problem. It is also because the
scan is likely to consume all of its capacity units from the same partition because the scan requests read
items that are next to each other on the partition.This means that the request is hitting the same partition,
causing all of its capacity units to be consumed, and throttling other requests to that partition. If the request
to read data had been spread across multiple partitions, then the operation would not have throttled a
specific partition.

The following diagram illustrates the impact of a sudden burst of capacity unit usage by Query and Scan
operations, and its impact on your other requests against the same table.

API Version 2012-08-10
199

Amazon DynamoDB Developer Guide
Avoid Sudden Bursts of Read Activity

Instead of using a large Scan operation, you can use the following techniques to minimize the impact of
a scan on a table's provisioned throughput.

• Reduce Page Size
Because a Scan operation reads an entire page (by default, 1 MB), you can reduce the impact of the
scan operation by setting a smaller page size. The Scan operation provides a Limit parameter that you
can use to set the page size for your request. Each Scan or Query request that has a smaller page
size uses fewer read operations and creates a "pause" between each request. For example, if each
item is 4 KB and you set the page size to 40 items, then a Query request would consume only 40
strongly consistent read operations or 20 eventually consistent read operations. A larger number of
smaller Scan or Query operations would allow your other critical requests to succeed without throttling.

• Isolate Scan Operations

API Version 2012-08-10
200

Amazon DynamoDB Developer Guide
Avoid Sudden Bursts of Read Activity

DynamoDB is designed for easy scalability. As a result, an application can create tables for distinct
purposes, possibly even duplicating content across several tables.You want to perform scans on a
table that is not taking "mission-critical" traffic. Some applications handle this load by rotating traffic
hourly between two tables – one for critical traffic, and one for bookkeeping. Other applications can do
this by performing every write on two tables: a "mission-critical" table, and a "shadow" table.

You should configure your application to retry any request that receives a response code that indicates
you have exceeded your provisioned throughput, or increase the provisioned throughput for your table
using the UpdateTable operation. If you have temporary spikes in your workload that cause your throughput
to exceed, occasionally, beyond the provisioned level, retry the request with exponential backoff. For
more information about implementing exponential backoff, see Error Retries and Exponential
Backoff (p. 522).

Take Advantage of Parallel Scans
Many applications can benefit from using parallel Scan operations rather than sequential scans. For
example, an application that processes a large table of historical data can perform a parallel scan much
faster than a sequential one. Multiple worker threads in a background "sweeper" process could scan a
table at a low priority without affecting production traffic. In each of these examples, a parallel Scan is
used in such a way that it does not starve other applications of provisioned throughput resources.

Although parallel scans can be beneficial, they can place a heavy demand on provisioned throughput.
With a parallel scan, your application will have multiple workers that are all running Scan operations
concurrently, which can very quickly consume all of your table's provisioned read capacity. In that case,
other applications that need to access the table might be throttled.

A parallel scan can be the right choice if the following conditions are met:

• The table size is 20 GB or larger.

• The table's provisioned read throughput is not being fully utilized.

• Sequential Scan operations are too slow.

Choosing TotalSegments
The best setting for TotalSegments depends on your specific data, the table's provisioned throughput
settings, and your performance requirements.You will probably need to experiment to get it right. We
recommend that you begin with a simple ratio, such as one segment per 2 GB of data. For example, for
a 30 GB table, you could set TotalSegments to 15 (30 GB / 2 GB).Your application would then use
fifteen workers, with each worker scanning a different segment.

You can also choose a value for TotalSegments that is based on client resources.You can set
TotalSegments to any number from 1 to 1000000, and DynamoDB will allow you to scan that number
of segments. If, for example, your client limits the number of threads that can run concurrently, you can
gradually increase TotalSegments until you get the best Scan performance with your application.

You will need to monitor your parallel scans to optimize your provisioned throughput utilization, while also
making sure that your other applications aren't starved of resources. Increase the value for TotalSegments
if you do not consume all of your provisioned throughput but still experience throttling in your Scan
requests. Reduce the value for TotalSegments if the Scan requests consume more provisioned
throughput than you want to use.

API Version 2012-08-10
201

Amazon DynamoDB Developer Guide
Take Advantage of Parallel Scans

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html

Querying in DynamoDB
Topics

• Querying Using the AWS SDK for Java Document API (p. 202)

• Querying Using the AWS SDK for .NET Low-Level API (p. 208)

• Querying Tables Using the AWS SDK for PHP Low-Level API (p. 219)

This section shows basic queries and their results.

Querying Using the AWS SDK for Java Document
API
The Query API enables you to query a table or a secondary index.You must provide a hash key value
and an equality condition. If the table or index has a range key, you can refine the results by providing a
range key value and a condition.

Note
This section explains the AWS SDK for Java Document API.The AWS SDK for Java also provides
a high-level object persistence model, enabling you to map your client-side classes to DynamoDB
tables. This approach can reduce the amount of code you have to write. For more information,
see Java: Object Persistence Model.

The following are the steps to retrieve an item using the AWS SDK for Java Document API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class to represent the table you want to work with.

3. Call the query method of the Table instance.You must specify the hash key of the item(sK) that you
want to retrieve, along with any optional query parameters.

The response includes an ItemCollection object that provides all items returned by the query.

The following Java code snippet demonstrates the preceding tasks. The snippet assumes you have a
Reply table that stores replies for forum threads. For more information, see Example Tables and
Data (p. 681).

Reply (Id, ReplyDateTime, ...)

Each forum thread has a unique ID and can have zero or more replies. Therefore, the Id attribute of the
Reply table is composed of both the forum name and forum subject.The Id and the ReplyDateTime make
up the composite hash-and-range primary key for the table.

The following query retrieves all replies for a specific thread subject. The query requires both the table
name and the Subject value.

DynamoDB dynamoDB = new DynamoDB(
 new AmazonDynamoDBClient(new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("Reply");

Map<String, Object> valueMap = new HashMap<String, Object>();
valueMap.put(":v_id", "Amazon DynamoDB#DynamoDB Thread 1");

API Version 2012-08-10
202

Amazon DynamoDB Developer Guide
Querying

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaSDKHighLevel.html

QuerySpec spec = new QuerySpec()
 .withKeyConditionExpression("Id = :v_id")
 .withValueMap(new ValueMap()
 .withString(":v_id", "Amazon DynamoDB#DynamoDB Thread 1"));

ItemCollection<QueryOutcome> items = table.query(spec);

Iterator<Item> iterator = items.iterator();
Item item = null;
while (iterator.hasNext()) {
 item = iterator.next();
 System.out.println(item.toJSONPretty());
}

Specifying Optional Parameters
The query method supports several optional parameters. For example, you can optionally narrow the
results from the preceding query to return replies in the past two weeks by specifying a condition. The
condition is called a range condition because DynamoDB evaluates the query condition that you specify
against the range attribute of the primary key.You can specify other optional parameters to retrieve only
a specific list of attributes from items in the query result.

The following Java code snippet retrieves forum thread replies posted in the past 15 days. The snippet
specifies optional parameters using:

• A KeyConditionExpression to retrieve the replies from a specific discussion forum (hash key) and,
within that set of items, replies that were posted within the last 15 days (range key).

• A FilterExpression to return only the replies from a specific user. The filter is applied after the
query is processed, but before the results are returned to the user.

• A ValueMap to define the actual values for the KeyConditionExpression placeholders.

• A ConsistentRead setting of true, to request a strongly consistent read. To learn more about read
consistency, see DynamoDB Data Model (p. 3).

This snippet uses a QuerySpec object which gives access to all of the low-level Query input parameters.

Table table = dynamoDB.getTable("Reply");

long twoWeeksAgoMilli = (new Date()).getTime() - (15L*24L*60L*60L*1000L);
Date twoWeeksAgo = new Date();
twoWeeksAgo.setTime(twoWeeksAgoMilli);
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'");
String twoWeeksAgoStr = df.format(twoWeeksAgo);

QuerySpec spec = new QuerySpec()
 .withKeyConditionExpression("Id = :v_id and ReplyDateTime > :v_reply_dt_tm")

 .withFilterExpression("PostedBy = :v_posted_by")
 .withValueMap(new ValueMap()
 .withString(":v_id", "Amazon DynamoDB#DynamoDB Thread 1")
 .withString(":v_reply_dt_tm", twoWeeksAgoStr)
 .withString(":v_posted_by", "User B"))
 .withConsistentRead(true);

ItemCollection<QueryOutcome> items = table.query(spec);

API Version 2012-08-10
203

Amazon DynamoDB Developer Guide
Querying —Java Document API

Iterator<Item> iterator = items.iterator();
while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
}

You can also optionally limit the number of items per page by using the withMaxPageSize method.
When time you call the query method, you get an ItemCollection that contains the resulting items.
You can then step through the results, processing one page at a time, until there are no more pages.

The following Java code snippet modifies the query specification shown above.This time, the query spec
uses the withMaxPageSize method.The Page class provides an Iterator that allows the code to process
the items on each page.

spec.withMaxPageSize(10);

ItemCollection<QueryOutcome> items = table.query(spec);

// Process each page of results
int pageNum = 0;
for (Page<Item, QueryOutcome> page : items.pages()) {

 System.out.println("\nPage: " + ++pageNum);

 // Process each item on the current page
 Iterator<Item> item = page.iterator();
 while (item.hasNext()) {
 System.out.println(item.next().toJSONPretty());
 }
}

Example - Query Using Java
The following tables store information about a collection of forums. For more information about table
schemas, see Example Tables and Data (p. 681).

Note
This section explains the AWS SDK for Java Document API.The AWS SDK for Java also provides
a high-level object persistence model, enabling you to map your client-side classes to DynamoDB
tables. This approach can reduce the amount of code you have to write. For more information,
see Java: Object Persistence Model.
For a code example that demonstrates query operations using the object persistence model,
see Example: Query and Scan (p. 437).

Forum (Name, ...)
Thread (ForumName, Subject, Message, LastPostedBy, LastPostDateTime, ...)
Reply (Id, ReplyDateTime, Message, PostedBy, ...)

In this Java code example, you execute variations of finding replies for a thread 'DynamoDB Thread 1'
in forum 'DynamoDB'.

• Find replies for a thread.

API Version 2012-08-10
204

Amazon DynamoDB Developer Guide
Querying —Java Document API

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaSDKHighLevel.html

• Find replies for a thread, specifying a limit on the number of items per page of results. If the number
of items in the result set exceeds the page size, you get only the first page of results.This coding pattern
ensures your code processes all the pages in the query result.

• Find replies in the last 15 days.

• Find replies in a specific date range.

Both the preceding two queries shows how you can specify range key conditions to narrow the query
results and use other optional query parameters.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for Java (p. 687) topic.
For step-by-step instructions to run the following example, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Iterator;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.ItemCollection;
import com.amazonaws.services.dynamodbv2.document.Page;
import com.amazonaws.services.dynamodbv2.document.QueryOutcome;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.spec.QuerySpec;
import com.amazonaws.services.dynamodbv2.document.utils.ValueMap;

public class DocumentAPIQuery {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(new Pro
fileCredentialsProvider()));

 static String tableName = "Reply";

 public static void main(String[] args) throws Exception {

 String forumName = "Amazon DynamoDB";
 String threadSubject = "DynamoDB Thread 1";

 findRepliesForAThread(forumName, threadSubject);
 findRepliesForAThreadSpecifyOptionalLimit(forumName, threadSubject);
 findRepliesInLast15DaysWithConfig(forumName, threadSubject);
 findRepliesPostedWithinTimePeriod(forumName, threadSubject);
 findRepliesUsingAFilterExpression(forumName, threadSubject);
 }

 private static void findRepliesForAThread(String forumName, String thread

API Version 2012-08-10
205

Amazon DynamoDB Developer Guide
Querying —Java Document API

Subject) {

 Table table = dynamoDB.getTable(tableName);

 String replyId = forumName + "#" + threadSubject;

 QuerySpec spec = new QuerySpec()
 .withKeyConditionExpression("Id = :v_id")
 .withValueMap(new ValueMap()
 .withString(":v_id", replyId));

 ItemCollection<QueryOutcome> items = table.query(spec);

 System.out.println("\nfindRepliesForAThread results:");

 Iterator<Item> iterator = items.iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }

 }

 private static void findRepliesForAThreadSpecifyOptionalLimit(String forum
Name, String threadSubject) {

 Table table = dynamoDB.getTable(tableName);

 String replyId = forumName + "#" + threadSubject;

 QuerySpec spec = new QuerySpec()
 .withKeyConditionExpression("Id = :v_id")
 .withValueMap(new ValueMap()
 .withString(":v_id", replyId))
 .withMaxPageSize(1);

 ItemCollection<QueryOutcome> items = table.query(spec);

 System.out.println("\nfindRepliesForAThreadSpecifyOptionalLimit res
ults:");

 // Process each page of results
 int pageNum = 0;
 for (Page<Item, QueryOutcome> page : items.pages()) {

 System.out.println("\nPage: " + ++pageNum);

 // Process each item on the current page
 Iterator<Item> item = page.iterator();
 while (item.hasNext()) {
 System.out.println(item.next().toJSONPretty());
 }
 }
 }

 private static void findRepliesInLast15DaysWithConfig(String forumName,
String threadSubject) {

 Table table = dynamoDB.getTable(tableName);

API Version 2012-08-10
206

Amazon DynamoDB Developer Guide
Querying —Java Document API

 long twoWeeksAgoMilli = (new Date()).getTime() - (15L*24L*60L*60L*1000L);

 Date twoWeeksAgo = new Date();
 twoWeeksAgo.setTime(twoWeeksAgoMilli);
 SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");
 String twoWeeksAgoStr = df.format(twoWeeksAgo);

 String replyId = forumName + "#" + threadSubject;

 QuerySpec spec = new QuerySpec()
 .withProjectionExpression("Message, ReplyDateTime, PostedBy")
 .withKeyConditionExpression("Id = :v_id and ReplyDateTime <=
:v_reply_dt_tm")
 .withValueMap(new ValueMap()
 .withString(":v_id", replyId)
 .withString(":v_reply_dt_tm", twoWeeksAgoStr));

 ItemCollection<QueryOutcome> items = table.query(spec);

 System.out.println("\nfindRepliesInLast15DaysWithConfig results:");
 Iterator<Item> iterator = items.iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }

 }

 private static void findRepliesPostedWithinTimePeriod(String forumName,
String threadSubject) {

 Table table = dynamoDB.getTable(tableName);

 long startDateMilli = (new Date()).getTime() - (15L*24L*60L*60L*1000L);

 long endDateMilli = (new Date()).getTime() - (5L*24L*60L*60L*1000L);

 java.text.SimpleDateFormat df = new java.text.SimpleDateFormat("yyyy-
MM-dd'T'HH:mm:ss.SSS'Z'");
 String startDate = df.format(startDateMilli);
 String endDate = df.format(endDateMilli);

 String replyId = forumName + "#" + threadSubject;

 QuerySpec spec = new QuerySpec()
 .withProjectionExpression("Message, ReplyDateTime, PostedBy")
 .withKeyConditionExpression("Id = :v_id and ReplyDateTime between
:v_start_dt and :v_end_dt")
 .withValueMap(new ValueMap()
 .withString(":v_id", replyId)
 .withString(":v_start_dt", startDate)
 .withString(":v_end_dt", endDate));

 ItemCollection<QueryOutcome> items = table.query(spec);

 System.out.println("\nfindRepliesPostedWithinTimePeriod results:");
 Iterator<Item> iterator = items.iterator();

API Version 2012-08-10
207

Amazon DynamoDB Developer Guide
Querying —Java Document API

 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }
 }

 private static void findRepliesUsingAFilterExpression(String forumName,
String threadSubject) {

 Table table = dynamoDB.getTable(tableName);

 String replyId = forumName + "#" + threadSubject;

 QuerySpec spec = new QuerySpec()
 .withProjectionExpression("Message, ReplyDateTime, PostedBy")
 .withKeyConditionExpression("Id = :v_id")
 .withFilterExpression("PostedBy = :v_postedby")
 .withValueMap(new ValueMap()
 .withString(":v_id", replyId)
 .withString(":v_postedby", "User B"));

 ItemCollection<QueryOutcome> items = table.query(spec);

 System.out.println("\nfindRepliesUsingAFilterExpression results:");
 Iterator<Item> iterator = items.iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }
 }

}

Querying Using the AWS SDK for .NET Low-Level
API
The Query API enables you to query a table or a secondary index.You must provide a hash key value
and an equality condition. If the table or index has a range key, you can refine the results by providing a
range key value and a condition.

Note
This section explains the .NET SDK low-level API.The .NET SDK also provides a set of document
model classes (see .NET: Document Model (p. 445)) that wrap some of the low-level API to
simplify your coding tasks. In addition, the .NET SDK also provides a high-level object persistence
model (see .NET: Object Persistence Model (p. 476)), enabling you to map your client-side classes
to DynamoDB tables.

The following are the steps to query a table using low-level .NET SDK API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the QueryRequest class and provide query operation parameters.

3. Execute the Query method and provide the QueryRequest object that you created in the preceding
step.

The response includes the QueryResult object that provides all items returned by the query.

API Version 2012-08-10
208

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

The following C# code snippet demonstrates the preceding tasks.The snippet assumes you have a Reply
table stores replies for forum threads. For more information, see Example Tables and Data (p. 681).

Reply (Id, ReplyDateTime, ...)

Each forum thread has a unique ID and can have zero or more replies. Therefore, the primary key is
composed of both the Id (hash attribute) and ReplyDateTime (range attribute).

The following query retrieves all replies for a specific thread subject. The query requires both the table
name and the Subject value.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

var request = new QueryRequest
{
 TableName = "Reply",
 KeyConditionExpression = "Id = :v_Id",
 ExpressionAttributeValues = new Dictionary<string, AttributeValue> {
 {":v_Id", new AttributeValue { S = "Amazon DynamoDB#DynamoDB Thread
1" }}}
};

var response = client.Query(request);

foreach (Dictionary<string, AttributeValue> item in response.Items)
{
 // Process the result.
 PrintItem(item);
}

Specifying Optional Parameters
The Query method supports several optional parameters. For example, you can optionally narrow the
query result in the preceding query to return replies in the past two weeks by specifying a condition. The
condition is called a range condition because Amazon DynamoDB evaluates the query condition that you
specify against the range attribute of the primary key.You can specify other optional parameters to retrieve
only a specific list of attributes from items in the query result. For more information about the parameters
and the API, see Query.

The following C# code snippet retrieves forum thread replies posted in the past 15 days. The snippet
specifies the following optional parameters:

• A KeyConditionExpression to retrieve only the replies in the past 15 days.

• A ProjectionExpression parameter to specify a list of attributes to retrieve for items in the query
result.

• A ConsistentRead parameter to perform a strongly consistent read. To learn more about read
consistency, see DynamoDB Data Model (p. 3).

DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);
string twoWeeksAgoString = twoWeeksAgoDate.ToString(AWSSDKUtils.ISO8601Date
Format);

var request = new QueryRequest
{

API Version 2012-08-10
209

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

 TableName = "Reply",
 KeyConditionExpression = "Id = :v_Id and ReplyDateTime > :v_twoWeeksAgo",
 ExpressionAttributeValues = new Dictionary<string, AttributeValue> {
 {":v_Id", new AttributeValue { S = "Amazon DynamoDB#DynamoDB Thread
2" }},
 {":v_twoWeeksAgo", new AttributeValue { S = twoWeeksAgoString }}
 },
 ProjectionExpression = "Subject, ReplyDateTime, PostedBy",
 ConsistentRead = true
};

var response = client.Query(request);

foreach (Dictionary<string, AttributeValue> item in response.Items)
{
 // Process the result.
 PrintItem(item);
}

You can also optionally limit the page size, or the number of items per page, by adding the optional Limit
parameter. Each time you execute the Query method, you get one page of results that has the specified
number of items. To fetch the next page, you execute the Query method again by providing the primary
key value of the last item in the previous page so that the method can return the next set of items.You
provide this information in the request by setting the ExclusiveStartKey property. Initially, this property
can be null. To retrieve subsequent pages, you must update this property value to the primary key of the
last item in the preceding page.

The following C# code snippet queries the Reply table. In the request, it specifies the Limit and
ExclusiveStartKey optional parameters.The do/while loop continues to scan one page at time until
the LastEvaluatedKey returns a null value.

Dictionary<string,AttributeValue> lastKeyEvaluated = null;

do
{
 var request = new QueryRequest
 {
 TableName = "Reply",
 KeyConditionExpression = "Id = :v_Id",
 ExpressionAttributeValues = new Dictionary<string, AttributeValue> {
 {":v_Id", new AttributeValue { S = "Amazon DynamoDB#DynamoDB Thread
 2" }}
 },

 // Optional parameters.
 Limit = 1,
 ExclusiveStartKey = lastKeyEvaluated
 };

 var response = client.Query(request);

 // Process the query result.
 foreach (Dictionary<string, AttributeValue> item in response.Items)
 {
 PrintItem(item);
 }

API Version 2012-08-10
210

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

 lastKeyEvaluated = response.LastEvaluatedKey;

} while (lastKeyEvaluated != null && lastKeyEvaluated.Count != 0);

Example - Querying Using the AWS SDK for .NET
The following tables store information about a collection of forums. For more information about table
schemas, see Example Tables and Data (p. 681).

Forum (Name, ...)
Thread (ForumName, Subject, Message, LastPostedBy, LastPostDateTime, ...)
Reply (Id, ReplyDateTime, Message, PostedBy, ...)

In this C# code example, you execute variations of "Find replies for a thread "DynamoDB Thread 1" in
forum "DynamoDB".

• Find replies for a thread.

• Find replies for a thread. Specify the Limit query parameter to set page size.

This function illustrate the use of pagination to process multipage result. Amazon DynamoDB has a
page size limit and if your result exceeds the page size, you get only the first page of results. This
coding pattern ensures your code processes all the pages in the query result.

• Find replies in the last 15 days.

• Find replies in a specific date range.

Both of the preceding two queries shows how you can specify range key conditions to narrow query
results and use other optional query parameters.

Note
This section explains the .NET SDK low-level API.The .NET SDK also provides a set of document
model classes (see .NET: Document Model (p. 445)) that wrap some of the low-level API to
simplify your coding tasks. In addition, the .NET SDK also provides a high-level object persistence
model (see .NET: Object Persistence Model (p. 476)), enabling you to map your client-side classes
to DynamoDB tables. The individual object instances then map to items in a table.
For a code example that demonstrates query operations using the document model,
see Table.Query Method in the AWS SDK for .NET (p. 464). For a code example that demonstrates
query operations using the object persistence model, see Example: Query and Scan in DynamoDB
Using the AWS SDK for .NET Object Persistence Model (p. 505).

For step-by-step instructions to test the following sample, see Using the AWS SDK for .NET (p. 56).

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.Model;

using Amazon.Runtime;

using Amazon.Util;

API Version 2012-08-10
211

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

namespace com.amazonaws.codesamples

 {

 class LowLevelQuery

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 // Query a specific forum and thread.

 string forumName = "Amazon DynamoDB";

 string threadSubject = "DynamoDB Thread 1";

 FindRepliesForAThread(forumName, threadSubject);

 FindRepliesForAThreadSpecifyOptionalLimit(forumName,
threadSubject);

 FindRepliesInLast15DaysWithConfig(forumName, threadSubject);

 FindRepliesPostedWithinTimePeriod(forumName, threadSubject);

 Console.WriteLine("Example complete. To continue, press
Enter");

 Console.ReadLine();

 }

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
 Console.ReadLine(); }

 catch (AmazonServiceException e) { Console.WriteLine(e.Message);
 Console.ReadLine(); }

API Version 2012-08-10
212

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

 catch (Exception e) { Console.WriteLine(e.Message); Console.Read
Line(); }

 }

 private static void FindRepliesPostedWithinTimePeriod(string forumName,
 string threadSubject)

 {

 Console.WriteLine("*** Executing FindRepliesPostedWithinTimePeriod()
 ***");

 string replyId = forumName + "#" + threadSubject;

 // You must provide date value based on your test data.

 DateTime startDate = DateTime.UtcNow - TimeSpan.FromDays(21);

 string start = startDate.ToString(AWSSDKUtils.ISO8601DateFormat);

 // You provide date value based on your test data.

 DateTime endDate = DateTime.UtcNow - TimeSpan.FromDays(5);

 string end = endDate.ToString(AWSSDKUtils.ISO8601DateFormat);

 var request = new QueryRequest

 {

 TableName = "Reply",

 ReturnConsumedCapacity = "TOTAL",

 KeyConditionExpression = "Id = :v_replyId and ReplyDateTime
between :v_start and :v_end",

 ExpressionAttributeValues = new Dictionary<string, Attribute
Value> {

 {":v_replyId", new AttributeValue { S = replyId }},

 {":v_start", new AttributeValue { S = start }},

 {":v_end", new AttributeValue { S = end }}

 }

 };

API Version 2012-08-10
213

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

 var response = client.Query(request);

 Console.WriteLine("\nNo. of reads used (by query in FindRepliesPos
tedWithinTimePeriod) {0}",

 response.ConsumedCapacity.CapacityUnits);

 foreach (Dictionary<string, AttributeValue> item

 in response.Items)

 {

 PrintItem(item);

 }

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 private static void FindRepliesInLast15DaysWithConfig(string forumName,
 string threadSubject)

 {

 Console.WriteLine("*** Executing FindRepliesInLast15DaysWithConfig()
 ***");

 string replyId = forumName + "#" + threadSubject;

 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);

 string twoWeeksAgoString =

 twoWeeksAgoDate.ToString(AWSSDKUtils.ISO8601DateFormat);

 var request = new QueryRequest

 {

 TableName = "Reply",

 ReturnConsumedCapacity = "TOTAL",

API Version 2012-08-10
214

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

 KeyConditionExpression = "Id = :v_replyId and ReplyDateTime >
:v_interval",

 ExpressionAttributeValues = new Dictionary<string, Attribute
Value> {

 {":v_replyId", new AttributeValue { S = replyId }},

 {":v_interval", new AttributeValue { S = twoWeek
sAgoString }}

 },

 // Optional parameter.

 ProjectionExpression = "Id, ReplyDateTime, PostedBy",

 // Optional parameter.

 ConsistentRead = true

 };

 var response = client.Query(request);

 Console.WriteLine("No. of reads used (by query in FindRepliesIn
Last15DaysWithConfig) {0}",

 response.ConsumedCapacity.CapacityUnits);

 foreach (Dictionary<string, AttributeValue> item

 in response.Items)

 {

 PrintItem(item);

 }

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 private static void FindRepliesForAThreadSpecifyOptionalLimit(string
forumName, string threadSubject)

 {

API Version 2012-08-10
215

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

 Console.WriteLine("*** Executing FindRepliesForAThreadSpecifyOption
alLimit() ***");

 string replyId = forumName + "#" + threadSubject;

 Dictionary<string, AttributeValue> lastKeyEvaluated = null;

 do

 {

 var request = new QueryRequest

 {

 TableName = "Reply",

 ReturnConsumedCapacity = "TOTAL",

 KeyConditionExpression = "Id = :v_replyId",

 ExpressionAttributeValues = new Dictionary<string, Attrib
uteValue> {

 {":v_replyId", new AttributeValue { S = replyId }}

 },

 Limit = 2, // The Reply table has only a few sample items.
 So the page size is smaller.

 ExclusiveStartKey = lastKeyEvaluated

 };

 var response = client.Query(request);

 Console.WriteLine("No. of reads used (by query in FindReplies
ForAThreadSpecifyLimit) {0}\n",

 response.ConsumedCapacity.CapacityUnits);

 foreach (Dictionary<string, AttributeValue> item

 in response.Items)

 {

 PrintItem(item);

 }

API Version 2012-08-10
216

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

 lastKeyEvaluated = response.LastEvaluatedKey;

 } while (lastKeyEvaluated != null && lastKeyEvaluated.Count !=
 0);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 private static void FindRepliesForAThread(string forumName, string
threadSubject)

 {

 Console.WriteLine("*** Executing FindRepliesForAThread() ***");

 string replyId = forumName + "#" + threadSubject;

 var request = new QueryRequest

 {

 TableName = "Reply",

 ReturnConsumedCapacity = "TOTAL",

 KeyConditionExpression = "Id = :v_replyId",

 ExpressionAttributeValues = new Dictionary<string, Attribute
Value> {

 {":v_replyId", new AttributeValue { S = replyId }}

 }

 };

 var response = client.Query(request);

 Console.WriteLine("No. of reads used (by query in FindRepliesForATh
read) {0}\n",

API Version 2012-08-10
217

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

 response.ConsumedCapacity.CapacityUnits);

 foreach (Dictionary<string, AttributeValue> item in response.Items)

 {

 PrintItem(item);

 }

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 private static void PrintItem(

 Dictionary<string, AttributeValue> attributeList)

 {

 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)

 {

 string attributeName = kvp.Key;

 AttributeValue value = kvp.Value;

 Console.WriteLine(

 attributeName + " " +

 (value.S == null ? "" : "S=[" + value.S + "]") +

 (value.N == null ? "" : "N=[" + value.N + "]") +

 (value.SS == null ? "" : "SS=[" + string.Join(",",
value.SS.ToArray()) + "]") +

 (value.NS == null ? "" : "NS=[" + string.Join(",",
value.NS.ToArray()) + "]")

);

 }

 Con
sole.WriteLine("**");

API Version 2012-08-10
218

Amazon DynamoDB Developer Guide
Querying —.NET Low-Level API

 }

 }

 }

Querying Tables Using the AWS SDK for PHP
Low-Level API
The query function enables you to query a table or a secondary index.You must provide a hash key
value and an equality condition. If the table or index has a range key, you can refine the results by providing
a range key value and a condition.

The following steps guide you through querying using the AWS SDK for PHP.

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the query operation to the client instance.

You must provide the table name, any desired item's primary key values, and any optional query
parameters.You can set up a condition as part of the query if you want to find a range of values that
meet specific comparison results.You can limit the results to a subset to provide pagination of the
results. Read results are eventually consistent by default. If you want, you can request that read results
be strongly consistent instead.

3. Load the response into a local variable, such as $response, for use in your application.

Consider the following Reply table that stores replies for forum threads.

Reply (Id, ReplyDateTime, ...)

Each forum thread has a unique ID and can have zero or more replies. Therefore, the primary key is
made of both the Id (hash attribute) and ReplyDateTime (range attribute).

The following query retrieves all replies for a specific thread subject. The query requires the table name
and the Subject value.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for PHP (p. 713) topic.
For step-by-step instructions to run the following example, see Running PHP Examples (p. 59).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

API Version 2012-08-10
219

Amazon DynamoDB Developer Guide
Querying Tables—PHP Low-Level API

$response = $client->query(array(
 'TableName' => 'Reply',
 'KeyConditionExpression' => 'Id = :v_id',
 'ExpressionAttributeValues' => array (
 ':v_id' => array('S' => 'Amazon DynamoDB#DynamoDB Thread 1')
)
));

print_r($response['Items']);

Specifying Optional Parameters
The query function supports several optional parameters. For example, you can optionally narrow the
query result in the preceding query to return replies in the past two weeks by specifying a range condition.
The condition is called a range condition because DynamoDB evaluates the query condition you specify
against the range attribute of the primary key.You can specify other optional parameters to retrieve a
specific list of attributes from items in the query result. For more information about the parameters, see
Query.

The following PHP example retrieves forum thread replies posted in the past 7 days.The sample specifies
the following optional parameters:

• The range key attribute in the KeyConditionExpression parameter to retrieve only the replies within
the last 7 days.

The condition specifies ReplyDateTime value and a comparison operator to use for comparing dates.

• ProjectionExpression to specify the attributes to retrieve for items in the query results

• ConsistentRead parameter to perform a strongly consistent read.This overrides the default behavior
of perform an eventually consistent reads. To learn more about read consistency, see Data Read and
Consistency Considerations (p. 10).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

date_default_timezone_set("UTC");
$sevenDaysAgo = date('Y-m-d H:i:s', strtotime('-7 days'));

$response = $client->query(array(
 'TableName' => 'Reply',
 'KeyConditionExpression' => 'Id = :v_id and ReplyDateTime >= :v_reply_dt',

 'ExpressionAttributeValues' => array (
 ':v_id' => array('S' => 'Amazon DynamoDB#DynamoDB Thread 2'),
 ':v_reply_dt' => array('S' => $sevenDaysAgo)
),
 // optional parameters
 'ProjectionExpression' => 'Subject, ReplyDateTime, PostedBy',
 'ConsistentRead' => true
));

print_r($response['Items']);

API Version 2012-08-10
220

Amazon DynamoDB Developer Guide
Querying Tables—PHP Low-Level API

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

You can also optionally limit the page size, the number of items per page, by adding the Limit parameter.
Each time you execute the query function, you get one page of results with the specified number of
items. To fetch the next page you execute the query function again by providing primary key value of
the last item in the previous page so the method can return the next set of items.You provide this
information in the request by setting the ExclusiveStartKey property. Initially this property can be null.
For retrieving subsequent pages you must update this property value to the primary key of the last item
in the preceding page.

The following PHP example queries the Reply table for entries that are more than 14 days old. In the
request it specifies the Limit and ExclusiveStartKey optional parameters.

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

date_default_timezone_set('UTC');

$fourteenDaysAgo = date('Y-m-d H:i:s', strtotime('-14 days'));
$tableName = 'Reply';

The Query API is paginated. Issue the Query request multiple times.
do {
 echo "Querying table $tableName" . PHP_EOL;

 $request = array(
 'TableName' => $tableName,
 'KeyConditionExpression' => 'Id = :v_id and ReplyDateTime >=
:v_reply_dt',
 'ExpressionAttributeValues' => array (
 ':v_id' => array('S' => 'Amazon DynamoDB#DynamoDB Thread 2'),
 ':v_reply_dt' => array('S' => $fourteenDaysAgo)
),
 'ProjectionExpression' => 'Id, ReplyDateTime, Message, PostedBy',
 'ConsistentRead' => true,
 'Limit' => 1
);

 # Add the ExclusiveStartKey if we got one back in the previous response
 if(isset($response) && isset($response['LastEvaluatedKey'])) {
 $request['ExclusiveStartKey'] = $response['LastEvaluatedKey'];
 }

 $response = $client->query($request);

 foreach ($response['Items'] as $key => $value) {
 echo 'Id: ' . $value['Id']['S'] . PHP_EOL;
 echo 'ReplyDateTime: ' . $value['ReplyDateTime']['S'] . PHP_EOL;
 echo 'Message: ' . $value['Message']['S'] . PHP_EOL;
 echo 'PostedBy: ' . $value['PostedBy']['S'] . PHP_EOL;
 echo PHP_EOL;
 }

If there is no LastEvaluatedKey in the response, then

API Version 2012-08-10
221

Amazon DynamoDB Developer Guide
Querying Tables—PHP Low-Level API

there are no more items matching this Query
} while(isset($response['LastEvaluatedKey']));

?>

Scanning in DynamoDB
Topics

• Scanning Using the AWS SDK for Java Document API (p. 222)

• Scanning Using the AWS SDK for .NET Low-Level API (p. 230)

• Scanning Using the AWS SDK for PHP Low-Level API (p. 240)

This section shows basic scans and their results.

Scanning Using the AWS SDK for Java Document
API
The Scan API reads all of the items in a table or index. To learn more about performance related to scan
and query operations, see Query and Scan Operations in DynamoDB (p. 192).

Note
This section explains the AWS SDK for Java Document API.The AWS SDK for Java also provides
a high-level object persistence model, enabling you to map your client-side classes to DynamoDB
tables. This approach can reduce the amount of code you have to write. For more information,
see Java: Object Persistence Model.

The following are the steps to scan a table using the AWS SDK for Java Document API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the ScanRequest class and provide scan parameter.

The only required parameter is the table name.

3. Execute the scan method and provide the ScanRequest object that you created in the preceding
step.

The following Reply table stores replies for forum threads.

Reply (Id, ReplyDateTime, Message, PostedBy)

The table maintains all the replies for various forum threads. Therefore, the primary key is composed of
both the Id (hash attribute) and ReplyDateTime (range attribute). The following Java code snippet scans
the entire table. The ScanRequest instance specifies the name of the table to scan.

AmazonDynamoDBClient client = new AmazonDynamoDBClient(
 new ProfileCredentialsProvider());

ScanRequest scanRequest = new ScanRequest()
 .withTableName("Reply");

API Version 2012-08-10
222

Amazon DynamoDB Developer Guide
Scanning

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaSDKHighLevel.html

ScanResult result = client.scan(scanRequest);
for (Map<String, AttributeValue> item : result.getItems()){
 printItem(item);
}

Specifying Optional Parameters
The scan method supports several optional parameters. For example, you can optionally use a filter
expression to filter the scan result. In a filter expression, you can specify a condition and attribute names
and values on which you want the condition evaluated. For more information about the parameters and
the API, see Scan.

The following Java snippet scans the ProductCatalog table to find items that are priced less than 0. The
snippet specifies the following optional parameters:

• A filter expression to retrieve only the items priced less than 0 (error condition).

• A list of attributes to retrieve for items in the query results.

Map<String, AttributeValue> expressionAttributeValues =
 new HashMap<String, AttributeValue>();
expressionAttributeValues.put(":val", new AttributeValue().withN("0"));

ScanRequest scanRequest = new ScanRequest()
 .withTableName("ProductCatalog")
 .withFilterExpression("Price < :val")
 .withProjectionExpression("Id")
 .withExpressionAttributeValues(expressionAttributeValues);

ScanResult result = client.scan(scanRequest);
for (Map<String, AttributeValue> item : result.getItems()) {
 printItem(item);
}

You can also optionally limit the page size, or the number of items per page, by using the withLimit
method of the scan request. Each time you execute the scan method, you get one page of results that
has the specified number of items. To fetch the next page, you execute the scan method again by
providing the primary key value of the last item in the previous page so that the scan method can return
the next set of items.You provide this information in the request by using the withExclusiveStartKey
method. Initially, the parameter of this method can be null.To retrieve subsequent pages, you must update
this property value to the primary key of the last item in the preceding page.

The following Java code snippet scans the ProductCatalog table. In the request, the withLimit and
withExclusiveStartKey methods are used. The do/while loop continues to scan one page at time
until the getLastEvaluatedKey method of the result returns a value of null.

Map<String, AttributeValue> lastKeyEvaluated = null;
do {
 ScanRequest scanRequest = new ScanRequest()
 .withTableName("ProductCatalog")
 .withLimit(10)

API Version 2012-08-10
223

Amazon DynamoDB Developer Guide
Scanning —Java Document API

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html

 .withExclusiveStartKey(lastKeyEvaluated);

 ScanResult result = client.scan(scanRequest);
 for (Map<String, AttributeValue> item : result.getItems()){
 printItem(item);
 }
 lastKeyEvaluated = result.getLastEvaluatedKey();
} while (lastKeyEvaluated != null);

Example - Scan Using Java
The following Java code example provides a working sample that scans the ProductCatalog table to find
items that are priced less than 100.

Note
This section explains the AWS SDK for Java Document API.The AWS SDK for Java also provides
a high-level object persistence model, enabling you to map your client-side classes to DynamoDB
tables. This approach can reduce the amount of code you have to write. For more information,
see Java: Object Persistence Model.
For a code example that demonstrates scan operations using the object persistence model, see
Example: Query and Scan (p. 437).

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for Java (p. 687) topic.
For step-by-step instructions to run the following example, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.ItemCollection;
import com.amazonaws.services.dynamodbv2.document.ScanOutcome;
import com.amazonaws.services.dynamodbv2.document.Table;

public class DocumentAPIScan {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(new Pro
fileCredentialsProvider()));
 static String tableName = "ProductCatalog";

 public static void main(String[] args) throws Exception {

 findProductsForPriceLessThanZero();
 }

API Version 2012-08-10
224

Amazon DynamoDB Developer Guide
Scanning —Java Document API

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaSDKHighLevel.html

 private static void findProductsForPriceLessThanZero() {

 Table table = dynamoDB.getTable(tableName);

 Map<String, Object> expressionAttributeValues = new HashMap<String,
Object>();
 expressionAttributeValues.put(":pr", 100);

 ItemCollection<ScanOutcome> items = table.scan(
 "Price < :pr", //FilterExpression
 "Id, Title, ProductCategory, Price", //ProjectionExpression
 null, //ExpressionAttributeNames - not used in this example
 expressionAttributeValues);

 System.out.println("Scan of " + tableName + " for items with a price
less than 100.");
 Iterator<Item> iterator = items.iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }
 }

}

Example - Parallel Scan Using Java
The following Java code example demonstrates a parallel scan. The program deletes and re-creates a
table named ParallelScanTest, and then loads the table with data. When the data load is finished, the
program spawns multiple threads and issues parallel Scan requests.The program prints run time statistics
for each parallel request.

Note
This section explains the AWS SDK for Java Document API.The AWS SDK for Java also provides
a high-level object persistence model, enabling you to map your client-side classes to DynamoDB
tables. This approach can reduce the amount of code you have to write. For more information,
see Java: Object Persistence Model.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for Java (p. 687) topic.
For step-by-step instructions to run the following example, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;

API Version 2012-08-10
225

Amazon DynamoDB Developer Guide
Scanning —Java Document API

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaSDKHighLevel.html

import java.util.Iterator;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.ItemCollection;
import com.amazonaws.services.dynamodbv2.document.ScanOutcome;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.spec.ScanSpec;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;

public class DocumentAPIParallelScan {

 // total number of sample items
 static int scanItemCount = 300;

 // number of items each scan request should return
 static int scanItemLimit = 10;

 // number of logical segments for parallel scan
 static int parallelScanThreads = 16;

 // table that will be used for scanning
 static String parallelScanTestTableName = "ParallelScanTest";

 static DynamoDB dynamoDB = new DynamoDB(
 new AmazonDynamoDBClient(new ProfileCredentialsProvider()));

 public static void main(String[] args) throws Exception {
 try {

 // Clean up the table
 deleteTable(parallelScanTestTableName);
 createTable(parallelScanTestTableName, 10L, 5L, "Id", "N");

 // Upload sample data for scan
 uploadSampleProducts(parallelScanTestTableName, scanItemCount);

 // Scan the table using multiple threads
 parallelScan(parallelScanTestTableName, scanItemLimit, parallelSc
anThreads);
 }
 catch (AmazonServiceException ase) {
 System.err.println(ase.getMessage());
 }
 }

API Version 2012-08-10
226

Amazon DynamoDB Developer Guide
Scanning —Java Document API

 private static void parallelScan(String tableName, int itemLimit, int num
berOfThreads) {
 System.out.println("Scanning " + tableName + " using " + numberOfThreads

 + " threads " + itemLimit + " items at a time");
 ExecutorService executor = Executors.newFixedThreadPool(numberOfThreads);

 // Divide DynamoDB table into logical segments
 // Create one task for scanning each segment
 // Each thread will be scanning one segment
 int totalSegments = numberOfThreads;
 for (int segment = 0; segment < totalSegments; segment++) {
 // Runnable task that will only scan one segment
 ScanSegmentTask task = new ScanSegmentTask(tableName, itemLimit,
totalSegments, segment);

 // Execute the task
 executor.execute(task);
 }

 shutDownExecutorService(executor);
 }

 // Runnable task for scanning a single segment of a DynamoDB table
 private static class ScanSegmentTask implements Runnable {

 // DynamoDB table to scan
 private String tableName;

 // number of items each scan request should return
 private int itemLimit;

 // Total number of segments
 // Equals to total number of threads scanning the table in parallel
 private int totalSegments;

 // Segment that will be scanned with by this task
 private int segment;

 public ScanSegmentTask(String tableName, int itemLimit, int totalSeg
ments, int segment) {
 this.tableName = tableName;
 this.itemLimit = itemLimit;
 this.totalSegments = totalSegments;
 this.segment = segment;
 }

 @Override
 public void run() {
 System.out.println("Scanning " + tableName + " segment " + segment
 + " out of " + totalSegments + " segments " + itemLimit + " items at a
time...");
 int totalScannedItemCount = 0;

 Table table = dynamoDB.getTable(tableName);

 try {

API Version 2012-08-10
227

Amazon DynamoDB Developer Guide
Scanning —Java Document API

 ScanSpec spec = new ScanSpec()
 .withMaxResultSize(itemLimit)
 .withTotalSegments(totalSegments)
 .withSegment(segment);

 ItemCollection<ScanOutcome> items = table.scan(spec);
 Iterator<Item> iterator = items.iterator();

 Item currentItem = null;
 while (iterator.hasNext()) {
 totalScannedItemCount++;
 currentItem = iterator.next();
 System.out.println(currentItem.toString());
 }

 } catch (Exception e) {
 System.err.println(e.getMessage());
 } finally {
 System.out.println("Scanned " + totalScannedItemCount
 + " items from segment " + segment + " out of "
 + totalSegments + " of " + tableName);
 }
 }
 }

 private static void uploadSampleProducts(String tableName, int itemCount)
{
 System.out.println("Adding " + itemCount + " sample items to " +
tableName);
 for (int productIndex = 0; productIndex < itemCount; productIndex++) {

 uploadProduct(tableName, productIndex);
 }
 }

 private static void uploadProduct(String tableName, int productIndex) {

 Table table = dynamoDB.getTable(tableName);

 try {
 System.out.println("Processing record #" + productIndex);

 Item item = new Item()
 .withPrimaryKey("Id", productIndex)
 .withString("Title", "Book " + productIndex + " Title")
 .withString("ISBN", "111-1111111111")
 .withStringSet(
 "Authors",
 new HashSet<String>(Arrays.asList("Author1")))
 .withNumber("Price", 2)
 .withString("Dimensions", "8.5 x 11.0 x 0.5")
 .withNumber("PageCount", 500)
 .withBoolean("InPublication", true)
 .withString("ProductCategory", "Book");
 table.putItem(item);

 } catch (Exception e) {

API Version 2012-08-10
228

Amazon DynamoDB Developer Guide
Scanning —Java Document API

 System.err.println("Failed to create item " + productIndex + " in
" + tableName);
 System.err.println(e.getMessage());
 }
 }

 private static void deleteTable(String tableName){
 try {

 Table table = dynamoDB.getTable(tableName);
 table.delete();
 System.out.println("Waiting for " + tableName
 + " to be deleted...this may take a while...");
 table.waitForDelete();

 } catch (Exception e) {
 System.err.println("Failed to delete table " + tableName);
 e.printStackTrace(System.err);
 }
 }

 private static void createTable(
 String tableName, long readCapacityUnits, long writeCapacityUnits,
 String hashKeyName, String hashKeyType) {

 createTable(tableName, readCapacityUnits, writeCapacityUnits,
 hashKeyName, hashKeyType, null, null);
 }

 private static void createTable(
 String tableName, long readCapacityUnits, long writeCapacityUnits,
 String hashKeyName, String hashKeyType,
 String rangeKeyName, String rangeKeyType) {

 try {
 System.out.println("Creating table " + tableName);

 List<KeySchemaElement> keySchema = new ArrayList<KeySchemaElement>();

 keySchema.add(new KeySchemaElement()
 .withAttributeName(hashKeyName)
 .withKeyType(KeyType.HASH));

 List<AttributeDefinition> attributeDefinitions = new ArrayList<At
tributeDefinition>();
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName(hashKeyName)
 .withAttributeType(hashKeyType));

 if (rangeKeyName != null){
 keySchema.add(new KeySchemaElement()
 .withAttributeName(rangeKeyName)
 .withKeyType(KeyType.RANGE));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName(rangeKeyName)
 .withAttributeType(rangeKeyType));
 }

API Version 2012-08-10
229

Amazon DynamoDB Developer Guide
Scanning —Java Document API

 Table table = dynamoDB.createTable(tableName,
 keySchema,
 attributeDefinitions,
 new ProvisionedThroughput()
 .withReadCapacityUnits(readCapacityUnits)
 .withWriteCapacityUnits(writeCapacityUnits));
 System.out.println("Waiting for " + tableName
 + " to be created...this may take a while...");
 table.waitForActive();

 } catch (Exception e) {
 System.err.println("Failed to create table " + tableName);
 e.printStackTrace(System.err);
 }
 }

 private static void shutDownExecutorService(ExecutorService executor) {
 executor.shutdown();
 try {
 if (!executor.awaitTermination(10, TimeUnit.SECONDS)) {
 executor.shutdownNow();
 }
 } catch (InterruptedException e) {
 executor.shutdownNow();

 // Preserve interrupt status
 Thread.currentThread().interrupt();
 }
 }
}

Scanning Using the AWS SDK for .NET Low-Level
API
The Scan API reads all of the items in a table or index. To learn more about performance related to scan
and query operations, see Query and Scan Operations in DynamoDB (p. 192).

Note
This section explains the .NET SDK low-level API.The .NET SDK also provides a set of document
model classes (see .NET: Document Model (p. 445)) that wrap some of the low-level API to
simplify your coding tasks. In addition, the .NET SDK also provides a high-level object persistence
model (see .NET: Object Persistence Model (p. 476)), enabling you to map your client-side classes
to DynamoDB tables.

The following are the steps to scan a table using the AWS SDK for NET low-level API:

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the ScanRequest class and provide scan operation parameters.

The only required parameter is the table name.

3. Execute the Scan method and provide the QueryRequest object that you created in the preceding
step.

API Version 2012-08-10
230

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

The following Reply table stores replies for forum threads.

Reply (Id, ReplyDateTime, Message, PostedBy)

The table maintains all the replies for various forum threads. Therefore, the primary key is composed of
both the Id (hash attribute) and ReplyDateTime (range attribute). The following C# code snippet scans
the entire table. The ScanRequest instance specifies the name of the table to scan.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

var request = new ScanRequest
{
 TableName = "Reply",
};

var response = client.Scan(request);
var result = response.ScanResult;

foreach (Dictionary<string, AttributeValue> item in response.ScanResult.Items)
{
 // Process the result.
 PrintItem(item);
}

Specifying Optional Parameters
The Scan method supports several optional parameters. For example, you can optionally use a scan
filter to filter the scan result. In a scan filter, you can specify a condition and an attribute name on which
you want the condition evaluated. For more information about the parameters and the API, see Scan.

The following C# code scans the ProductCatalog table to find items that are priced less than 0. The
sample specifies the following optional parameters:

• A FilterExpression parameter to retrieve only the items priced less than 0 (error condition).

• A ProjectionExpression parameter to specify the attributes to retrieve for items in the query results.

The following C# code snippet scans the ProductCatalog table to find all items priced less than 0.

var forumScanRequest = new ScanRequest
 {
 TableName = "ProductCatalog",
 // Optional parameters.
 ExpressionAttributeValues = new Dictionary<string,AttributeValue> {
 {":val", new AttributeValue { N = "0" }}
 },
 FilterExpression = "Price < :val",
 ProjectionExpression = "Id"
 };

You can also optionally limit the page size, or the number of items per page, by adding the optional Limit
parameter. Each time you execute the Scan method, you get one page of results that has the specified
number of items. To fetch the next page, you execute the Scan method again by providing the primary
key value of the last item in the previous page so that the Scan method can return the next set of items.
You provide this information in the request by setting the ExclusiveStartKey property. Initially, this

API Version 2012-08-10
231

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html

property can be null. To retrieve subsequent pages, you must update this property value to the primary
key of the last item in the preceding page.

The following C# code snippet scans the ProductCatalog table. In the request, it specifies the Limit and
ExclusiveStartKey optional parameters.The do/while loop continues to scan one page at time until
the LastEvaluatedKey returns a null value.

Dictionary<string, AttributeValue> lastKeyEvaluated = null;
do
{
 var request = new ScanRequest
 {
 TableName = "ProductCatalog",
 Limit = 10,
 ExclusiveStartKey = lastKeyEvaluated
 };

 var response = client.Scan(request);

 foreach (Dictionary<string, AttributeValue> item
 in response.Items)
 {
 PrintItem(item);
 }
 lastKeyEvaluated = response.LastEvaluatedKey;

} while (lastKeyEvaluated != null && lastKeyEvaluated.Count != 0);

Example - Scan Using .NET
The following C# code example provides a working sample that scans the ProductCatalog table to find
items priced less than 0.

Note
This section explains the .NET SDK low-level API.The .NET SDK also provides a set of document
model classes (see .NET: Document Model (p. 445)) that wrap some of the low-level API to
simplify your coding tasks. In addition, the .NET SDK also provides a high-level object persistence
model (see .NET: Object Persistence Model (p. 476)), enabling you to map your client-side classes
to DynamoDB tables. The individual object instances then map to items in a table.
For a code example that demonstrates scan operations using the document model classes,
see Example: Scan using the Table.Scan method (p. 473). For a code example that demonstrates
scan operations using the object persistence model, see Example: Query and Scan in DynamoDB
Using the AWS SDK for .NET Object Persistence Model (p. 505).

For step-by-step instructions to test the following sample, see Using the AWS SDK for .NET (p. 56).

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.Model;

using Amazon.Runtime;

API Version 2012-08-10
232

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

namespace com.amazonaws.codesamples

{

 class LowLevelScan

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 FindProductsForPriceLessThanZero();

 Console.WriteLine("Example complete. To continue, press Enter");

 Console.ReadLine();

 }

 catch (Exception e) {

 Console.WriteLine(e.Message);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 }

 private static void FindProductsForPriceLessThanZero()

 {

 Dictionary<string, AttributeValue> lastKeyEvaluated = null;

 do

 {

 var request = new ScanRequest

API Version 2012-08-10
233

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

 {

 TableName = "ProductCatalog",

 Limit = 2,

 ExclusiveStartKey = lastKeyEvaluated,

 ExpressionAttributeValues = new Dictionary<string,Attribute
Value> {

 {":val", new AttributeValue { N = "0" }}

 },

 FilterExpression = "Price < :val",

 ProjectionExpression = "Id, Title, Price"

 };

 var response = client.Scan(request);

 foreach (Dictionary<string, AttributeValue> item

 in response.Items)

 {

 Console.WriteLine("\nScanThreadTableUsePaging - print
ing.....");

 PrintItem(item);

 }

 lastKeyEvaluated = response.LastEvaluatedKey;

 } while (lastKeyEvaluated != null && lastKeyEvaluated.Count != 0);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

API Version 2012-08-10
234

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

 private static void PrintItem(

 Dictionary<string, AttributeValue> attributeList)

 {

 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)

 {

 string attributeName = kvp.Key;

 AttributeValue value = kvp.Value;

 Console.WriteLine(

 attributeName + " " +

 (value.S == null ? "" : "S=[" + value.S + "]") +

 (value.N == null ? "" : "N=[" + value.N + "]") +

 (value.SS == null ? "" : "SS=[" + string.Join(",",
value.SS.ToArray()) + "]") +

 (value.NS == null ? "" : "NS=[" + string.Join(",",
value.NS.ToArray()) + "]")

);

 }

 Con
sole.WriteLine("**");

 }

 }

}

Example - Parallel Scan Using .NET
The following C# code example demonstrates a parallel scan. The program deletes and then re-creates
the ProductCatalog table, then loads the table with data. When the data load is finished, the program
spawns multiple threads and issues parallel Scan requests. Finally, the program prints a summary of run
time statistics.

Note
This section explains the .NET SDK low-level API.The .NET SDK also provides a set of document
model classes (see .NET: Document Model (p. 445)) that wrap some of the low-level API to
simplify your coding tasks. In addition, the .NET SDK also provides a high-level object persistence

API Version 2012-08-10
235

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

model (see .NET: Object Persistence Model (p. 476)), enabling you to map your client-side classes
to DynamoDB tables. The individual object instances then map to items in a table.

For step-by-step instructions to test the following sample, see Using the AWS SDK for .NET (p. 56).

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;

namespace com.amazonaws.codesamples
{
 class LowLevelParallelScan
 {
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 private static string tableName = "ProductCatalog";
 private static int exampleItemCount = 100;
 private static int scanItemLimit = 10;
 private static int totalSegments = 5;

 static void Main(string[] args)
 {
 try
 {
 DeleteExampleTable();
 CreateExampleTable();
 UploadExampleData();
 ParallelScanExampleTable();
 }
 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }

 private static void ParallelScanExampleTable()
 {
 Console.WriteLine("\n*** Creating {0} Parallel Scan Tasks to scan
{1}", totalSegments, tableName);
 Task[] tasks = new Task[totalSegments];
 for (int segment = 0; segment < totalSegments; segment++)
 {
 int tmpSegment = segment;
 Task task = Task.Factory.StartNew(() =>
 {
 ScanSegment(totalSegments, tmpSegment);
 });

 tasks[segment] = task;

API Version 2012-08-10
236

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

 }

 Console.WriteLine("All scan tasks are created, waiting for them to
 complete.");
 Task.WaitAll(tasks);

 Console.WriteLine("All scan tasks are completed.");
 }

 private static void ScanSegment(int totalSegments, int segment)
 {
 Console.WriteLine("*** Starting to Scan Segment {0} of {1} out of
{2} total segments ***", segment, tableName, totalSegments);
 Dictionary<string, AttributeValue> lastEvaluatedKey = null;
 int totalScannedItemCount = 0;
 int totalScanRequestCount = 0;
 do
 {
 var request = new ScanRequest
 {
 TableName = tableName,
 Limit = scanItemLimit,
 ExclusiveStartKey = lastEvaluatedKey,
 Segment = segment,
 TotalSegments = totalSegments
 };

 var response = client.Scan(request);
 lastEvaluatedKey = response.LastEvaluatedKey;
 totalScanRequestCount++;
 totalScannedItemCount += response.ScannedCount;
 foreach (var item in response.Items)
 {
 Console.WriteLine("Segment: {0}, Scanned Item with Title:
{1}", segment, item["Title"].S);
 }
 } while (lastEvaluatedKey.Count != 0);

 Console.WriteLine("*** Completed Scan Segment {0} of {1}. TotalScan
RequestCount: {2}, TotalScannedItemCount: {3} ***", segment, tableName,
totalScanRequestCount, totalScannedItemCount);
 }

 private static void UploadExampleData()
 {
 Console.WriteLine("\n*** Uploading {0} Example Items to {1}
Table***", exampleItemCount, tableName);
 Console.Write("Uploading Items: ");
 for (int itemIndex = 0; itemIndex < exampleItemCount; itemIndex++)

 {
 Console.Write("{0}, ", itemIndex);
 CreateItem(itemIndex.ToString());
 }
 Console.WriteLine();
 }

 private static void CreateItem(string itemIndex)

API Version 2012-08-10
237

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

 {
 var request = new PutItemRequest
 {
 TableName = tableName,
 Item = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue { N = itemIndex }},
 { "Title", new AttributeValue { S = "Book " + itemIndex + "
Title" }},
 { "ISBN", new AttributeValue { S = "11-11-11-11" }},
 { "Authors", new AttributeValue { SS = new List<string>{"Au
thor1", "Author2" }}},
 { "Price", new AttributeValue { N = "20.00" }},
 { "Dimensions", new AttributeValue { S = "8.5x11.0x.75" }},
 { "InPublication", new AttributeValue { BOOL = false } }
 }
 };
 client.PutItem(request);
 }

 private static void CreateExampleTable()
 {
 Console.WriteLine("\n*** Creating {0} Table ***", tableName);
 var request = new CreateTableRequest
 {
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "Id",
 AttributeType = "N"
 }
 },
 KeySchema = new List<KeySchemaElement>
 {
 new KeySchemaElement
 {
 AttributeName = "Id",
 KeyType = "HASH"
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 5,
 WriteCapacityUnits = 6
 },
 TableName = tableName
 };

 var response = client.CreateTable(request);

 var result = response;
 var tableDescription = result.TableDescription;
 Console.WriteLine("{1}: {0} \t ReadsPerSec: {2} \t WritesPerSec:
{3}",
 tableDescription.TableStatus,
 tableDescription.TableName,
 tableDescription.ProvisionedThroughput.ReadCapacity

API Version 2012-08-10
238

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

Units,
 tableDescription.ProvisionedThroughput.WriteCapa
cityUnits);

 string status = tableDescription.TableStatus;
 Console.WriteLine(tableName + " - " + status);

 WaitUntilTableReady(tableName);

 }

 private static void DeleteExampleTable()
 {
 try
 {
 Console.WriteLine("\n*** Deleting {0} Table ***", tableName);
 var request = new DeleteTableRequest
 {
 TableName = tableName
 };

 var response = client.DeleteTable(request);
 var result = response;
 Console.WriteLine("{0} is being deleted...", tableName);
 WaitUntilTableDeleted(tableName);
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine("{0} Table delete failed: Table does not ex
ist", tableName);
 }
 }

 private static void WaitUntilTableReady(string tableName)
 {
 string status = null;
 // Let us wait until table is created. Call DescribeTable.
 do
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 status = res.Table.TableStatus;
 }
 catch (ResourceNotFoundException)
 {
 // DescribeTable is eventually consistent. So you might
 // get resource not found. So we handle the potential excep
tion.
 }

API Version 2012-08-10
239

Amazon DynamoDB Developer Guide
Scanning —.NET Low-Level API

 } while (status != "ACTIVE");
 }

 private static void WaitUntilTableDeleted(string tableName)
 {
 string status = null;
 // Let us wait until table is deleted. Call DescribeTable.
 do
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 status = res.Table.TableStatus;
 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine("Table name: {0} is not found. It is de
leted", tableName);
 return;
 }
 } while (status == "DELETING");
 }
 }
}

Scanning Using the AWS SDK for PHP Low-Level
API
The Scan API reads all of the items in a table or index. To learn more about performance related to scan
and query operations, see Query and Scan Operations in DynamoDB (p. 192).

The following tasks guide you through scanning a table using the AWS SDK for PHP low-level API:

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the scan operation to the client instance.

The only required parameter is the table name.You can set up a filter as part of the scan if you want
to find a set of values that meet specific comparison results.You can limit the results to a subset to
provide pagination of the results. By default, the scan operation uses eventually consistent reads.

3. Load the response into a local variable, such as $response, for use in your application.

Consider the following Reply table that stores replies for various forum threads.

Reply (Id, ReplyDateTime, Message, PostedBy)

API Version 2012-08-10
240

Amazon DynamoDB Developer Guide
Scanning —PHP Low-Level API

The table maintains all the replies for various forum threads. Therefore, the primary key is made of both
the Id (hash attribute) and ReplyDateTime (range attribute). The following PHP code snippet scans the
table.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for PHP (p. 713) topic.
For step-by-step instructions to run the following example, see Running PHP Examples (p. 59).

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->scan(array(
 'TableName' => 'Reply'
));

foreach ($response['Items'] as $key => $value) {
 echo 'Id: ' . $value['Id']['S'] . PHP_EOL;
 echo 'ReplyDateTime: ' . $value['ReplyDateTime']['S'] . PHP_EOL;
 echo 'Message: ' . $value['Message']['S'] . PHP_EOL;
 echo 'PostedBy: ' . $value['PostedBy']['S'] . PHP_EOL;
 echo PHP_EOL;
}

The scan operation response is a Guzzle\Service\Resource\Model object.You can perform operations
on the object contents. For example, the following code snippet scans the ProductCatalog table, and
prints the product Id and Title values.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));
$response = $client->scan(array(
 "TableName" => "ProductCatalog"
));

foreach ($response['Items'] as $key => $value) {
 echo "<p>Item Number:". $value['Id']['N'] . "</p>";
 echo "
Item Name: ". $value['Title']['S'] ."</p>";
}

Specifying Optional Parameters
The scan function supports several optional parameters. For example, you can optionally use a filter
expression to filter the scan result. In a filter expression you specify a condition and an attribute name on
which you want the condition evaluated. For more information about the parameters and the API, see
Scan.

The following PHP code scans the ProductCatalog table to find items that are priced less than 0. The
sample specifies the following optional parameters:

API Version 2012-08-10
241

Amazon DynamoDB Developer Guide
Scanning —PHP Low-Level API

https://docs.aws.amazon.com/aws-sdk-php/v2/api/class-Guzzle.Service.Resource.Model.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html

• FilterExpression to retrieve only the items priced less than 0 (error condition).

• ProjectionExpression to specify the attributes to retrieve for items in the query results

The following PHP code snippet scans the ProductCatalog table to find all items priced less than 0.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$response = $client->scan(array(
 'TableName' => 'ProductCatalog',
 'ProjectionExpression' => 'Id, Price',
 'ExpressionAttributeValues' => array (
 ':val1' => array('N' => '0')) ,
 'FilterExpression' => 'Price < :val1',
));

foreach ($response['Items'] as $key => $value) {
 echo 'Id: ' . $value['Id']['N'] . ' Price: ' . $value['Price']['N'] . PHP_EOL;

 echo PHP_EOL;
}

You can also optionally limit the page size, the number of items per page, by adding the optional Limit
parameter. Each time you execute the scan function, you get one page of results with a specified number
of items. To fetch the next page you execute the scan function again by providing primary key value of
the last item in the previous page so the scan function can return the next set of items.You provide this
information in the request by setting the ExclusiveStartKey property. Initially this property can be null.
For retrieving subsequent pages you must update this property value to the primary key of the last item
in the preceding page.

The following PHP code snippet scans the ProductCatalog table. In the request it specifies the Limit
and ExclusiveStartKey optional parameters.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$tableName = 'ProductCatalog';

The Scan API is paginated. Issue the Scan request multiple times.
do {
 echo "Scanning table $tableName" . PHP_EOL;
 $request = array(
 'TableName' => $tableName,
 'ExpressionAttributeValues' => array (
 ':val1' => array('N' => '201')
) ,
 'FilterExpression' => 'Price < :val1',
 'Limit' => 2
);

API Version 2012-08-10
242

Amazon DynamoDB Developer Guide
Scanning —PHP Low-Level API

 # Add the ExclusiveStartKey if we got one back in the previous response
 if(isset($response) && isset($response['LastEvaluatedKey'])) {
 $request['ExclusiveStartKey'] = $response['LastEvaluatedKey'];
 }

 $response = $client->scan($request);

 foreach ($response['Items'] as $key => $value) {
 echo 'Id: ' . $value['Id']['N'] . PHP_EOL;
 echo 'Title: ' . $value['Title']['S'] . PHP_EOL;
 echo 'Price: ' . $value['Price']['N'] . PHP_EOL;
 echo PHP_EOL;
 }

}
If there is no LastEvaluatedKey in the response, there are no more items
matching this Scan
while(isset($response['LastEvaluatedKey']));

Example - Loading Data Using PHP
The following PHP code example prepares sample data to be used by subsequent examples.The program
deletes and then re-creates the ProductCatalog table, then loads the table with data.

Note
For step-by-step instructions to run these code examples, see Running PHP Examples (p. 59).

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

$tableName = 'ProductCatalog';

// Delete an old DynamoDB table

echo "Deleting the table...\n";

$response = $client->deleteTable(array(
 'TableName' => $tableName
));

$client->waitUntilTableNotExists(array('TableName' => $tableName));

echo "The table {$tableName} has been deleted.\n";

// Create a new DynamoDB table

echo "# Creating table $tableName..." . PHP_EOL;

$response = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(

API Version 2012-08-10
243

Amazon DynamoDB Developer Guide
Scanning —PHP Low-Level API

 array(
 'AttributeName' => 'Id',
 'AttributeType' => 'N'
)
),
 'KeySchema' => array(
 array(
 'AttributeName' => 'Id',
 'KeyType' => 'HASH'
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 5,
 'WriteCapacityUnits' => 6
)
));

$client->waitUntilTableExists(array('TableName' => $tableName));

echo "Table {$tableName} has been created.\n";

// Populate DynamoDB table

echo "# Populating Items to $tableName...\n";

for ($i = 1; $i <= 100; $i++) {
 $response = $client->putItem(array(
 'TableName' => $tableName,
 'Item' => array(
 'Id' => array('N' => $i), // Primary Key
 'Title' => array('S' => "Book {$i} Title"),
 'ISBN' => array('S' => '111-1111111111'),
 'Price' => array('N' => 25),
 'Authors' => array('SS' => array('Author1', 'Author2'))
)
));

 $response = $client->getItem(array(
 'TableName' => 'ProductCatalog',
 'Key' => array(
 'Id' => array('N' => $i)
)
));

 echo "Item populated: {$response['Item']['Title']['S']}\n";
 sleep(1);
}

echo "{$tableName} is populated with items.\n";

?>

Example - Scan Using PHP
The following PHP code example performs a serial Scan on the ProductCatalog table.

API Version 2012-08-10
244

Amazon DynamoDB Developer Guide
Scanning —PHP Low-Level API

Note
Before you run this program, you will need to populate the ProductTable with data. For more
details, see Example - Loading Data Using PHP (p. 243).
For step-by-step instructions to run these code examples, see Running PHP Examples (p. 59).

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

$tableName = 'ProductCatalog';
$params = array (
 'TableName' => $tableName,
 'ExpressionAttributeValues' => array (
 ':val1' => array('S' => 'Book')
) ,
 'FilterExpression' => 'contains (Title, :val1)',
 'Limit' => 10
);

// Execute scan operations until the entire table is scanned
$count = 0;
do {
 $response = $client->scan ($params);
 $items = $response->get ('Items');
 $count = $count + count ($items);

 // Do something with the $items
 foreach ($items as $item) {
 echo "Scanned item with Title \"{$item['Title']['S']}\".\n";
 }

 // Set parameters for next scan
 $params ['ExclusiveStartKey'] = $response ['LastEvaluatedKey'];
} while ($params ['ExclusiveStartKey']);

echo "{$tableName} table scanned completely. {$count} items found.\n";

?>

Example - Parallel Scan Using PHP
The following PHP code example demonstrates a parallel scan, running multiple Scan requests at the
same time. Finally, the program prints a summary of run time statistics.

Note
Before you run this program, you will need to populate the ProductTable with data. For more
details, see Example - Loading Data Using PHP (p. 243).
For step-by-step instructions to run these code examples, see Running PHP Examples (p. 59).

API Version 2012-08-10
245

Amazon DynamoDB Developer Guide
Scanning —PHP Low-Level API

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

$tableName = 'ProductCatalog';
$totalSegments = 5;
$params = array(
 'TableName' => $tableName,
 'ExpressionAttributeValues' => array (
 ':val1' => array('S' => 'Book')
) ,
 'FilterExpression' => 'contains (Title, :val1)',
 'Limit' => 10,
 'TotalSegments' => $totalSegments
);

// Create initial scan commands for each segment
$pendingScanCommands = array();
for ($segment = 0; $segment < $totalSegments; $segment++) {
 $params['Segment'] = $segment;
 $pendingScanCommands[] = $client->getCommand('Scan', $params);
}

// Execute scan operations in parallel until the entire table is scanned
while(count($pendingScanCommands) > 0) {
 // Executes the 5 scan operations in parallel using cURL multi handles
 $completedScanCommands = $client->execute($pendingScanCommands);
 $pendingScanCommands = array();

 // Process responses of each scan command
 foreach ($completedScanCommands as $scanCommand) {
 $response = $scanCommand->getResult();
 $segment = $scanCommand->getPath('Segment');
 $items = $response->get('Items');

 // Do something with the items
 foreach($items as $item) {
 echo "Scanned item with Title \"{$item['Title']['S']}\" and Segment
 \"{$segment}\".\n";
 }

 // If LastEvaluatedKey is present we should continue scanning this
segment
 // Otherwise we've reached to end of this segment
 if ($response['LastEvaluatedKey']) {
 echo "LastEvaluatedKey found creating new scan command for Segment:
 {$segment}.\n";
 $params['Segment'] = $segment;
 $params['ExclusiveStartKey'] = $response['LastEvaluatedKey'];
 $pendingScanCommands[] = $client->getCommand('Scan', $params);
 } else {
 echo "Segment: {$segment} scanned completely!\n";
 }

API Version 2012-08-10
246

Amazon DynamoDB Developer Guide
Scanning —PHP Low-Level API

 }
}

echo "Table {$tableName} scanned completely.\n";

?>

API Version 2012-08-10
247

Amazon DynamoDB Developer Guide
Scanning —PHP Low-Level API

Improving Data Access with
Secondary Indexes in DynamoDB

Topics

• Global Secondary Indexes (p. 260)

• Local Secondary Indexes (p. 309)

For efficient access to data in a table, Amazon DynamoDB creates and maintains indexes for the primary
key attributes.This allows applications to quickly retrieve data by specifying primary key values. However,
many applications might benefit from having one or more secondary (or alternate) keys available, to allow
efficient access to data with attributes other than the primary key. To address this, you can create one
or more secondary indexes on a table, and issue Query or Scan requests against these indexes.

A secondary index is a data structure that contains a subset of attributes from a table, along with an
alternate key to support Query operations. With a secondary index, queries are no longer restricted to
the table primary key; you can also retrieve the data using the alternate key defined by the secondary
index. A table can have multiple secondary indexes, which gives your applications access to many different
query patterns.

The data in a secondary index consists of attributes that are projected, or copied, from the table into the
index. When you create a secondary index, you define the alternate key for the index, along with any
other attributes that you want to be projected in the index. DynamoDB copies these attributes into the
index, along with the primary key attributes from the table.You can then query or scan the index just as
you would query or scan a table.

Every secondary index is automatically maintained by DynamoDB.When you add, modify, or delete items
in the table, any indexes on the table are also updated to reflect these changes.

DynamoDB supports two types of secondary indexes:

• Global secondary index — an index with a hash and range key that can be different from those on
the table. A global secondary index is considered "global" because queries on the index can span all
of the data in a table, across all partitions.

• Local secondary index — an index that has the same hash key as the table, but a different range
key. A local secondary index is "local" in the sense that every partition of a local secondary index is
scoped to a table partition that has the same hash key.

API Version 2012-08-10
248

Amazon DynamoDB Developer Guide

GSI.html
LSI.html

You should consider your application's requirements when you determine which type of index to use.The
following table shows the main differences between a global secondary index and a local secondary
index:

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

The
key
of
a
loc-
al
sec-
ond-
ary
in-
dex
con-
sists
of
a
hash
key
and
a
range
key.

The key of a global secondary index can be either
a hash or a hash-and-range type key.

Key Schema

API Version 2012-08-10
249

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

The
hash
key
of
the
in-
dex
is
the
same
at-
trib-
ute
as
the
hash
key
of
the
table.
The
range
key
can
be
any
scal-
ar
table
at-
trib-
ute.

The index hash key and range key (if present) can
be any scalar table attributes.

Key Attributes

API Version 2012-08-10
250

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

For
each
hash
key,
the
total
size
of
all
in-
dexed
items
must
be
10
GB
or
less.

There are no size restrictions for global secondary
indexes.

Size Restrictions Per Hash Key

API Version 2012-08-10
251

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

Global secondary indexes can be created at the
same time that you create a table.You can also
add a new global secondary index to an existing
table, or delete an existing global secondary index.
For more information, see Managing Global Sec-
ondary Indexes (p. 268).

Online Index Operations

API Version 2012-08-10
252

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

Loc-
al
sec-
ond-
ary
in-
dexes
are
cre-
ated
at
the
same
time
that
you
cre-
ate
a
table.
You
can-
not
add
a
loc-
al
sec-
ond-
ary
in-
dex
to
an
ex-
ist-
ing
table,
nor
can
you
de-
lete
any
loc-
al
sec-
ond-
ary

API Version 2012-08-10
253

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

in-
dexes
that
cur-
rently
ex-
ist.

A
loc-
al
sec-
ond-
ary
in-
dex
lets
you
query
over
a
single
par-
ti-
tion,
as
spe-
cified
by
the
hash
key
value
in
the
query.

A global secondary index lets you query over the
entire table, across all partitions.

Queries and Partitions

API Version 2012-08-10
254

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

When
you
query
a
loc-
al
sec-
ond-
ary
in-
dex,
you
can
choose
either
even-
tu-
al
con-
sist-
ency
or
strong
con-
sist-
ency.

Queries on global secondary indexes support
eventual consistency only.

Read Consistency

API Version 2012-08-10
255

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

Every global secondary index has its own provi-
sioned throughput settings for read and write
activity. Queries or scans on a global secondary
index consume capacity units from the index, not
from the table. The same holds true for global
secondary index updates due to table writes.

Provisioned Throughput Consumption

API Version 2012-08-10
256

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

Quer-
ies
or
scans
on
a
loc-
al
sec-
ond-
ary
in-
dex
con-
sume
read
ca-
pa-
city
units
from
the
table.
When
you
write
to
a
table,
its
loc-
al
sec-
ond-
ary
in-
dexes
are
also
up-
dated;
these
up-
dates
con-
sume
write
ca-
pa-

API Version 2012-08-10
257

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

city
units
from
the
table.

API Version 2012-08-10
258

Amazon DynamoDB Developer Guide

Loc-
al
Sec-
ond-
ary
In-
dex

Global Secondary IndexCharacteristic

If
you
query
or
scan
a
loc-
al
sec-
ond-
ary
in-
dex,
you
can
re-
quest
at-
trib-
utes
that
are
not
pro-
jec-
ted
in
to
the
in-
dex.
Dy-
namoDB
will
auto-
mat-
ic-
ally
fetch
those
at-
trib-
utes
from
the
table.

With global secondary index queries or scans, you
can only request the attributes that are projected
into the index. DynamoDB will not fetch any attrib-
utes from the table.

Projected Attributes

API Version 2012-08-10
259

Amazon DynamoDB Developer Guide

If you want to create more than one table with secondary indexes, you must do so sequentially. For
example, you would create the first table and wait for it to become ACTIVE, create the next table and wait
for it to become ACTIVE, and so on. If you attempt to concurrently create more than one table with a
secondary index, DynamoDB will return a LimitExceededException.

For each secondary index, you must specify the following:

• The type of index to be created – either a global secondary index or a local secondary index.

• A name for the index. The naming rules for indexes are the same as those for tables, as listed in Limits
in DynamoDB (p. 667).The name must be unique for the table it is associated with, but you can use the
same name for indexes that are associated with different tables.

• The key schema for the index. Every attribute in the index key schema must be a top-level attribute of
type String, Number, or Binary. Nested attributes and multi-valued sets are not allowed. Other
requirements for the key schema depend on the type of index:

• For a global secondary index, the hash key can be any table attribute. A range key is optional, and
it too can be any table attribute.

• For a local secondary index, the hash key must be the same as the table's hash key, and the range
key must be a non-key table attribute.

• Additional attributes, if any, to project from the table into the index. These attributes are in addition to
the table key attributes, which are automatically projected into every index.You can project attributes
of any data type, including scalar data types and multi-valued sets.

• The provisioned throughput settings for the index, if necessary:

• For a global secondary index, you must specify read and write capacity unit settings.These provisioned
throughput settings are independent of the table's settings.

• For a local secondary index, you do not need to specify read and write capacity unit settings. Any
read and write operations on a local secondary index draw from the provisioned throughput settings
of its parent table.

For maximum query flexibility, you can create up to 5 global secondary indexes and up to 5 local secondary
indexes per table.

To get a detailed listing of secondary indexes on a table, use the DescribeTable action. DescribeTable
will return the name, storage size and item counts for every secondary index on the table. These values
are not updated in real time, but they are refreshed approximately every six hours.

You can access the data in a secondary index using either the Query or Scan operation.You must specify
the name of the table and the name of the index that you want to use, the attributes to be returned in the
results, and any condition expressions or filters that you want to apply. DynamoDB can return the results
in ascending or descending order.

When you delete the table, all of the indexes associated with that table are also deleted.

Global Secondary Indexes
Topics

• Attribute Projections (p. 263)

• Querying a Global Secondary Index (p. 265)

• Scanning a Global Secondary Index (p. 265)

• Data Synchronization Between Tables and Global Secondary Indexes (p. 265)

• Provisioned Throughput Considerations for Global Secondary Indexes (p. 266)

• Storage Considerations for Global Secondary Indexes (p. 267)

API Version 2012-08-10
260

Amazon DynamoDB Developer Guide
Global Secondary Indexes

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

• Managing Global Secondary Indexes (p. 268)

• Guidelines for Global Secondary Indexes (p. 278)

• Working with Global Secondary Indexes Using the AWS SDK for Java Document API (p. 280)

• Working with Global Secondary Indexes Using the AWS SDK for .NET Low-Level API (p. 288)

• Working with Global Secondary Indexes Using the AWS SDK for PHP Low-Level API (p. 299)

Some applications might need to perform many kinds of queries, using a variety of different attributes as
query criteria. To support these requirements, you can create one or more global secondary indexes and
issue Query requests against these indexes. To illustrate, consider a table named GameScores that
keeps track of users and scores for a mobile gaming application. Each item in GameScores is identified
by a hash key (UserId) and a range key (GameTitle). The following diagram shows how the items in the
table would be organized. (Not all of the attributes are shown)

Now suppose that you wanted to write a leaderboard application to display top scores for each game. A
query that specified the key attributes (UserId and GameTitle) would be very efficient; however, if the
application needed to retrieve data from GameScores based on GameTitle only, it would need to use a
Scan operation. As more items are added to the table, scans of all the data would become slow and
inefficient, making it difficult to answer questions such as these:

• What is the top score ever recorded for the game Meteor Blasters?

• Which user had the highest score for Galaxy Invaders?

• What was the highest ratio of wins vs. losses?

To speed up queries on non-key attributes, you can create a global secondary index. A global secondary
index contains a selection of attributes from the table, but they are organized by a primary key that is
different from that of the table. The index key does not need to have any of the key attributes from the
table; it doesn't even need to have the same key schema as a table.

For example, you could create a global secondary index named GameTitleIndex, with a hash key of
GameTitle and a range key of TopScore. Since the table's primary key attributes are always projected
into an index, the UserId attribute is also present. The following diagram shows what GameTitleIndex
index would look like:

API Version 2012-08-10
261

Amazon DynamoDB Developer Guide
Global Secondary Indexes

Now you can query GameTitleIndex and easily obtain the scores for Meteor Blasters. The results are
ordered by the range key, TopScore. If you set the ScanIndexForward parameter to false, the results
are returned in descending order, so the highest score is returned first.

Every global secondary index must have a hash key, and can have an optional range key. The index key
schema can be different from the table schema; you could have a table with a hash type primary key,
and create a global secondary index with a hash-and-range index key — or vice-versa. The index key
attributes can consist of any attributes from the table, as long as the data types are scalar rather than
multi-value sets.

You can project other table attributes into the index if you want. When you query the index, DynamoDB
can retrieve these projected attributes efficiently; however, global secondary index queries cannot fetch
attributes from the parent table. For example, if you queried GameTitleIndex, as shown in the diagram
above, the query would not be able to access any attributes other than GameTitle and TopScore.

In a DynamoDB table, each key value must be unique. However, the key values in a global secondary
index do not need to be unique. To illustrate, suppose that a game named Comet Quest is especially
difficult, with many new users trying but failing to get a score above zero. Here is some data that we could
use to represent this:

TopScoreGameTitleUserId

0Comet Quest123

0Comet Quest201

0Comet Quest301

When this data is added to the GameScores table, DynamoDB will propagate it to GameTitleIndex. If we
then query the index using Comet Quest for GameTitle and 0 for TopScore, the following data is returned:

API Version 2012-08-10
262

Amazon DynamoDB Developer Guide
Global Secondary Indexes

Only the items with the specified key values appear in the response; within that set of data, the items are
in no particular order.

A global secondary index only keeps track of data items where its key attribute(s) actually exist. For
example, suppose that you added another new item to the GameScores table, but only provided the
required primary key attributes:

GameTitleUserId

Comet Quest400

Because you didn't specify the TopScore attribute, DynamoDB would not propagate this item to
GameTitleIndex. Thus, if you queried GameScores for all the Comet Quest items, you would get the
following four items:

A similar query on GameTitleIndex would still return three items, rather than four. This is because the
item with the nonexistent TopScore is not propagated to the index:

Attribute Projections
A projection is the set of attributes that is copied from a table into a secondary index.The hash and range
keys of the table are always projected into the index; you can project other attributes to support your
application's query requirements.When you query an index, Amazon DynamoDB can access any attribute
in the projection as if those attributes were in a table of their own.

When you create a secondary index, you need to specify the attributes that will be projected into the
index. DynamoDB provides three different options for this:

• KEYS_ONLY – Each item in the index consists only of the table hash and range key values, plus the
index key values. The KEYS_ONLY option results in the smallest possible secondary index.

API Version 2012-08-10
263

Amazon DynamoDB Developer Guide
Attribute Projections

• INCLUDE – In addition to the attributes described in KEYS_ONLY, the secondary index will include other
non-key attributes that you specify.

• ALL – The secondary index includes all of the attributes from the source table. Because all of the table
data is duplicated in the index, an ALL projection results in the largest possible secondary index.

In the diagram above, GameTitleIndex does not have any additional projected attributes. An application
can use GameTitle and TopScore in queries; however, it is not possible to efficiently determine which
user has the highest score for a particular game, or the highest ratio of wins vs. losses.The most efficient
way to support queries on this data would be to project these attributes from the table into the global
secondary index, as shown in this diagram:

Because the non-key attributes Wins and Losses are projected into the index, an application can determine
the wins vs. losses ratio for any game, or for any combination of game and user ID.

When you choose the attributes to project into a global secondary index, you must consider the tradeoff
between provisioned throughput costs and storage costs:

• If you need to access just a few attributes with the lowest possible latency, consider projecting only
those attributes into a global secondary index. The smaller the index, the less that it will cost to store
it, and the less your write costs will be.

• If your application will frequently access some non-key attributes, you should consider projecting those
attributes into a global secondary index. The additional storage costs for the global secondary index
will offset the cost of performing frequent table scans.

• If you need to access most of the non-key attributes on a frequent basis, you can project these
attributes—or even the entire source table— into a global secondary index.This will give you maximum
flexibility; however, your storage cost would increase, or even double.

• If your application needs to query a table infrequently, but must perform many writes or updates against
the data in the table, consider projecting KEYS_ONLY.The global secondary index would be of minimal
size, but would still be available when needed for query activity.

API Version 2012-08-10
264

Amazon DynamoDB Developer Guide
Attribute Projections

Querying a Global Secondary Index
You can use the Query operation to access one or more items in a global secondary index. The query
must specify the name of the table and the name of the index that you want to use, the attributes to be
returned in the query results, and any query conditions that you want to apply. DynamoDB can return the
results in ascending or descending order.

Consider the following data returned from a Query that requests gaming data for a leaderboard application:

{
 "TableName": "GameScores",
 "IndexName": "GameTitleIndex",
 "KeyConditionExpression": "GameTitle = :v_title",
 "ExpressionAttributeValues": {
 ":v_title": {"S": "Meteor Blasters"}
 },
 "ProjectionExpression": "UserId, TopScore",
 "ScanIndexForward": false
}

In this query:

• DynamoDB accesses GameTitleIndex, using the GameTitle hash key to locate the index items for
Meteor Blasters. All of the index items with this key are stored adjacent to each other for rapid retrieval.

• Within this game, DynamoDB uses the index to access all of the user IDs and top scores for this game.

• The results are returned, sorted in descending order because the ScanIndexForward parameter is
set to false.

Scanning a Global Secondary Index
You can use the Scan API to retrieve all of the data from a global secondary index.You must provide
the table name and the index name in the request. With a Scan, DynamoDB reads all of the data in the
index and returns it to the application.You can also request that only some of the data be returned, and
that the remaining data should be discarded. To do this, use the FilterExpression parameter of the
Scan API. For more information, see Filtering the Results from a Query or a Scan (p. 194).

Data Synchronization Between Tables and Global
Secondary Indexes
DynamoDB automatically synchronizes each global secondary index with its parent table. When an
application writes or deletes items in a table, any global secondary indexes on that table are updated
asynchronously, using an eventually consistent model. Applications never write directly to an index.
However, it is important that you understand the implications of how DynamoDB maintains these indexes.

When you create a global secondary index, you specify one or more index key attributes and their data
types. This means that whenever you write an item to the table, the data types for those attributes must
match the index key schema's data types. In the case of GameTitleIndex, the GameTitle hash key in the
index is defined as a String data type, and the TopScore range key in the index is of type Number. If you
attempt to add an item to the GameScores table and specify a different data type for either GameTitle or
TopScore, DynamoDB will return a ValidationException because of the data type mismatch.

API Version 2012-08-10
265

Amazon DynamoDB Developer Guide
Querying a Global Secondary Index

When you put or delete items in a table, the global secondary indexes on that table are updated in an
eventually consistent fashion. Changes to the table data are propagated to the global secondary indexes
within a fraction of a second, under normal conditions. However, in some unlikely failure scenarios, longer
propagation delays might occur. Because of this, your applications need to anticipate and handle situations
where a query on a global secondary index returns results that are not up-to-date.

If you write an item to a table, you don't have to specify the attributes for any global secondary index
range key. Using GameTitleIndex as an example, you would not need to specify a value for the TopScore
attribute in order to write a new item to the GameScores table. In this case, Amazon DynamoDB does
not write any data to the index for this particular item.

A table with many global secondary indexes will incur higher costs for write activity than tables with fewer
indexes. For more information, see Provisioned Throughput Considerations for Global Secondary
Indexes (p. 266).

Provisioned Throughput Considerations for Global
Secondary Indexes
When you create a global secondary index, you must specify read and write capacity units for the expected
workload on that index. The provisioned throughput settings of a global secondary index are separate
from those of its parent table. A Query operation on a global secondary index consumes read capacity
units from the index, not the table. When you put, update or delete items in a table, the global secondary
indexes on that table are also updated; these index updates consume write capacity units from the index,
not from the table.

For example, if you Query a global secondary index and exceed its provisioned read capacity, your
request will be throttled. If you perform heavy write activity on the table, but a global secondary index on
that table has insufficient write capacity, then the write activity on the table will be throttled.

To view the provisioned throughput settings for a global secondary index, use the DescribeTable
operation; detailed information about all of the table's global secondary indexes will be returned.

Read Capacity Units
Global secondary indexes support eventually consistent reads, each of which consume one half of a read
capacity unit. This means that a single global secondary index query can retrieve up to 2 × 4 KB = 8 KB
per read capacity unit.

For global secondary index queries, DynamoDB calculates the provisioned read activity in the same way
as it does for queries against tables. The only difference is that the calculation is based on the sizes of
the index entries, rather than the size of the item in the table. The number of read capacity units is the
sum of all projected attribute sizes across all of the items returned; the result is then rounded up to the
next 4 KB boundary. For more information on how DynamoDB calculates provisioned throughput usage,
see Specifying Read and Write Requirements for Tables (p. 62).

The maximum size of the results returned by a Query operation is 1 MB; this includes the sizes of all the
attribute names and values across all of the items returned.

For example, consider a global secondary index where each item contains 2000 bytes of data. Now
suppose that you Query this index and, that the query returns 8 items. The total size of the matching
items is 2000 bytes × 8 items = 16,000 bytes; this is then rounded up to the nearest 4 KB boundary. Since
global secondary index queries are eventually consistent, the total cost is 0.5 × (16 KB / 4 KB), or 2 read
capacity units.

API Version 2012-08-10
266

Amazon DynamoDB Developer Guide
Provisioned Throughput Considerations for Global

Secondary Indexes

Write Capacity Units
When an item in a table is added, updated, or deleted, and a global secondary index is affected by this,
then the global secondary index will consume provisioned write capacity units for the operation.The total
provisioned throughput cost for a write consists of the sum of write capacity units consumed by writing
to the table and those consumed by updating the global secondary indexes. Note that if a write to a table
does not require a global secondary index update, then no write capacity is consumed from the index.

In order for a table write to succeed, the provisioned throughput settings for the table and all of its global
secondary indexes must have enough write capacity to accommodate the write; otherwise, the write to
the table will be throttled. Even if no data needs to be written to a particular global secondary index, the
table write will be throttled if that index has insufficient write capacity.

The cost of writing an item to a global secondary index depends on several factors:

• If you write a new item to the table that defines an indexed attribute, or you update an existing item to
define a previously undefined indexed attribute, one write operation is required to put the item into the
index.

• If an update to the table changes the value of an indexed key attribute (from A to B), two writes are
required, one to delete the previous item from the index and another write to put the new item into the
index.

• If an item was present in the index, but a write to the table caused the indexed attribute to be deleted,
one write is required to delete the old item projection from the index.

• If an item is not present in the index before or after the item is updated, there is no additional write cost
for the index.

• If an update to the table only changes the value of projected attributes in the index key schema, but
does not change the value of any indexed key attribute, then one write is required to update the values
of the projected attributes into the index.

All of these factors assume that the size of each item in the index is less than or equal to the 1 KB item
size for calculating write capacity units. Larger index entries will require additional write capacity units.
You can minimize your write costs by considering which attributes your queries will need to return and
projecting only those attributes into the index.

Storage Considerations for Global Secondary
Indexes
When an application writes an item to a table, DynamoDB automatically copies the correct subset of
attributes to any global secondary indexes in which those attributes should appear.Your AWS account
is charged for storage of the item in the table and also for storage of attributes in any global secondary
indexes on that table.

The amount of space used by an index item is the sum of the following:

• The size in bytes of the table primary key (hash and range key attributes)

• The size in bytes of the index key attribute

• The size in bytes of the projected attributes (if any)

• 100 bytes of overhead per index item

To estimate the storage requirements for a global secondary index, you can estimate the average size
of an item in the index and then multiply by the number of items in the table that have the global secondary
index key attributes.

API Version 2012-08-10
267

Amazon DynamoDB Developer Guide
Storage Considerations for Global Secondary Indexes

If a table contains an item where a particular attribute is not defined, but that attribute is defined as an
index hash key or range key, then DynamoDB does not write any data for that item to the index.

Managing Global Secondary Indexes
This section describes how to create, modify, and delete global secondary indexes.

Topics

• Creating a Table With Global Secondary Indexes (p. 268)

• Describing the Global Secondary Indexes on a Table (p. 268)

• Adding a Global Secondary Index To an Existing Table (p. 269)

• Modifying an Index Creation (p. 271)

• Deleting a Global Secondary Index From a Table (p. 271)

• Detecting and Correcting Index Key Violations (p. 271)

Creating a Table With Global Secondary Indexes
To create a table with one or more global secondary indexes, use the CreateTable operation with the
GlobalSecondaryIndexUpdates parameter. For maximum query flexibility, you can create up to 5
global secondary indexes per table.

You must specify one attribute for the index hash key; you can optionally specify another attribute for the
index range key. It is not necessary for either of these key attributes to be the same as a key attribute in
the table. For example, in the GameScores table (see Global Secondary Indexes (p. 260)), neither TopScore
nor TopScoreDateTime are key attributes; you could create a global secondary index with a hash key of
TopScore and a range key of TopScoreDateTime.You might use such an index to determine whether
there is a correlation between high scores and the time of day a game is played.

Each index key attribute must be a scalar data type, not a multi-value set.You can project attributes of
any data type into a global secondary index; this includes scalar data types and multi-valued sets. For a
complete list of data types, see DynamoDB Data Types (p. 6).

You must provide ProvisionedThroughput settings for the index, consisting of ReadCapacityUnits
and WriteCapacityUnits.These provisioned throughput settings are separate from those of the table,
but behave in similar ways. For more information, see Provisioned Throughput Considerations for Global
Secondary Indexes (p. 266).

Describing the Global Secondary Indexes on a Table
To view the status of all the global secondary indexes on a table, use the DescribeTable operation. The
GlobalSecondaryIndexes portion of the response shows all of the indexes on the table, along with
the current status of each (IndexStatus).

The IndexStatus for a global secondary index will be one of the following:

• CREATING—The index is currently being created, and is not yet available for use.

• ACTIVE—The index is ready for use, and applications can perform Query operations on the index

• UPDATING—The provisioned throughput settings of the index are being changed.

• DELETING—The index is currently being deleted, and can no longer be used.

When DynamoDB has finished building a global secondary index, the index status changes from CREATING
to ACTIVE.

API Version 2012-08-10
268

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

Adding a Global Secondary Index To an Existing Table
To add a global secondary index to an existing table, use the UpdateTable operation with the
GlobalSecondaryIndexes parameter.You must provide the following:

• An index name. The name must be unique among all the indexes on the table.

• The key schema of the index.You must specify one attribute for the index hash key; you can optionally
specify another attribute for the index range key. It is not necessary for either of these key attributes
to be the same as a key attribute in the table.The data types for each schema attribute must be scalar:
String, Number, or Binary.

• The attributes to be projected from the table into the index:

• KEYS_ONLY – Each item in the index consists only of the table hash and range key values, plus the
index key values.

• INCLUDE – In addition to the attributes described in KEYS_ONLY, the secondary index will include
other non-key attributes that you specify.

• ALL – The index includes all of the attributes from the source table.

• The provisioned throughput settings for the index, consisting of ReadCapacityUnits
and WriteCapacityUnits. These provisioned throughput settings are separate from those of the
table.

You can only create or delete one global secondary index per UpdateTable operation. However, if you
run multiple UpdateTable operations simultaneously, you can create multiple indexes at a time.You
can run up to five of these UpdateTable operations on a table at once, and each operation can create
exactly one index.

Note
You cannot cancel an in-flight global secondary index creation.

Phases of Index Creation

When you add a new global secondary index to an existing table, the table continues to be available while
the index is being built. However, the new index is not available for Query operations until its status
changes from CREATING to ACTIVE.

Behind the scenes, DynamoDB builds the index in two phases:

Resource Allocation
DynamoDB allocates the compute and storage resources that will be needed for building the index.

During the resource allocation phase, the IndexStatus attribute is CREATING and the Backfilling
attribute is false. Use the DescribeTable operation to retrieve the status of a table and all of its
secondary indexes.

While the index is in the resource allocation phase, you cannot delete its parent table; nor can you
modify the provisioned throughput of the index or the table.You cannot add or delete other indexes
on the table; however, you can modify the provisioned throughput of these other indexes.

Backfilling
For each item in the table, DynamoDB determines which set of attributes to write to the index based
on its projection (KEYS_ONLY, INCLUDE, or ALL). It then writes these attributes to the index. During
the backfill phase, DynamoDB keeps track of items that are being added, deleted, or updated in the
table.The attributes from these items are also added, deleted, or updated in the index as appropriate.

During the backfilling phase, the IndexStatus attribute is CREATING and the Backfilling attribute
is true. Use the DescribeTable operation to retrieve the status of a table and all of its secondary
indexes.
While the index is backfilling, you cannot delete its parent table. However, you can still modify the
provisioned throughput of the table and any of its global secondary indexes.

API Version 2012-08-10
269

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

Note
During the backfilling phase, some writes of violating items may succeed while others will
be rejected. After backfilling, all writes to items that violate the new index's key schema will
be rejected. We recommend that you run the Violation Detector tool after the backfill phase
completes, to detect and resolve any key violations that may have occurred. For more
information, see Detecting and Correcting Index Key Violations (p. 271).

While the resource allocation and backfilling phases are in progress, the index is in the CREATING state.
During this time, DynamoDB performs read operations on the table; you will not be charged for this read
activity.

When the index build is complete, its status changes to ACTIVE.You will not be able to Query or Scan
the index until it is ACTIVE.

Note
In some cases, DynamoDB will not be able to write data from the table to the index due to index
key violations. This can occur if the data type of an attribute value does not match the data type
of an index key schema data type, or if the size of an attribute exceeds the maximum length for
an index key attribute. Index key violations do not interfere with global secondary index creation;
however, when the index becomes ACTIVE, the violating keys will not be present in the index.
DynamoDB provides a standalone tool for finding and resolving these issues. For more
information, see Detecting and Correcting Index Key Violations (p. 271).

Adding a Global Secondary Index To a Large Table

The time required for building a global secondary index depends on several factors, such as:

• The size of the table

• The number of items in the table that qualify for inclusion in the index

• The number of attributes projected into the index

• The provisioned write capacity of the index

• Write activity on the main table during index builds.

If you are adding a global secondary index to a very large table, it might take a long time for the creation
process to complete. To monitor progress and determine whether the index has sufficient write capacity,
consult the following Amazon CloudWatch metrics:

• OnlineIndexPercentageProgress

• OnlineIndexConsumedWriteCapacity

• OnlineIndexThrottleEvents

Note
For more information on CloudWatch metrics related to DynamoDB, see DynamoDB
Metrics (p. 582).

If the provisioned write throughput setting on the index is too low, the index build will take longer to
complete. To shorten the time it takes to build a new global secondary index, you can increase its
provisioned write capacity temporarily.

Note
As a general rule, we recommend setting the provisioned write capacity of the index to 1.5 times
the write capacity of the table. This is a good setting for many use cases; however, your actual
requirements may be higher or lower.

API Version 2012-08-10
270

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

While an index is being backfilled, DynamoDB uses internal system capacity to read from the table. This
is to minimize the impact of the index creation and to assure that your table does not run out of read
capacity.

However, it is possible that the volume of incoming write activity might exceed the provisioned write
capacity of the index. This is a bottleneck scenario, in which the index creation takes more time because
the write activity to the index is throttled. During the index build, we recommend that you monitor the
Amazon CloudWatch metrics for the index to determine whether its consumed write capacity is exceeding
its provisioned capacity. In a bottleneck scenario, you should increase the provisioned write capacity on
the index to avoid write throttling during the backfill phase.

After the index has been created, you should set its provisioned write capacity to reflect the normal usage
of your application.

Modifying an Index Creation
While an index is being built, you can use the DescribeTable operation to determine what phase it is
in.The description for the index includes a Boolean attribute, Backfilling, to indicate whether DynamoDB
is currently loading the index with items from the table. If Backfilling is true, then the resource allocation
phase is complete and the index is now backfilling.

While the backfill is proceeding, you can update the provisioned throughput parameters for the index.
You might decide to do this in order to speed up the index build:You can increase the write capacity of
the index while it is being built, and then decrease it afterward. To modify the provisioned throughput
settings of the index, use the UpdateTable operation. The index status will change to UPDATING, and
Backfilling will be true until the index is ready for use.

During the backfilling phase, you cannot add or delete other indexes on the table.

Note
For indexes that were created as part of a CreateTable operation, the Backfilling attribute
does not appear in the DescribeTable output. For more information, see Phases of Index
Creation (p. 269).

Deleting a Global Secondary Index From a Table
If you no longer need a global secondary index, you can delete it using the UpdateTable operation.

You can only delete one global secondary index per UpdateTable operation. However, you can delete
more than one index at a time by running multiple UpdateTable operations simultaneously.You can
run up to five of these UpdateTable operations on a table at once, and each operation can delete exactly
one index.

While the global secondary index, is being deleted, there is no effect on any read or write activity in the
parent table.You will not be able to add or delete other indexes on the table until the deletion is complete;
however, you can still modify the provisioned throughput on other indexes.

Note
When you delete a table using the DeleteTable action, all of the global secondary indexes on
that table are also deleted.

Detecting and Correcting Index Key Violations
During the backfill phase of global secondary index creation, DynamoDB examines each item in the table
to determine whether it is eligible for inclusion in the index. Some items might not be eligible because
they would cause index key violations. In these cases, the items will remain in the table, but the index
will not have a corresponding entry for that item.

An index key violation occurs if:

API Version 2012-08-10
271

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

• There is a data type mismatch between an attribute value and the index key schema data type. For
example, suppose one of the items in the GameScores table had a TopScore value of type String. If
you added a global secondary index with a hash key of TopScore, of type Number, the item from the
table would violate the index key.

• An attribute value from the table exceeds the maximum length for an index key attribute.The maximum
length of a hash key is 2048 bytes, and the maximum length of a range key is 1024 bytes. If any of the
corresponding attribute values in the table exceed these limits, the item from the table would violate
the index key.

If an index key violation occurs, the backfill phase continues without interruption; however, any violating
items are not included in the index. After the backfill phase completes, all writes to items that violate the
new index's key schema will be rejected.

To identify and fix attribute values in a table that violate an index key, use the Violation Detector tool. To
run Violation Detector, you create a configuration file that specifies the name of a table to be scanned,
the names and data types of the global secondary index hash and range keys, and what actions to take
if any index key violations are found. Violation Detector can run in one of two different modes:

• Detection mode—detect index key violations. Use detection mode to report the items in the table that
would cause key violations in a global secondary index. (You can optionally request that these violating
table items be deleted immediately when they are found.) The output from detection mode is written
to a file, which you can use for further analysis.

• Correction mode— correct index key violations. In correction mode, Violation Detector reads an input
file with the same format as the output file from detection mode. Correction mode reads the records
from the input file and, for each record, it either deletes or updates the corresponding items in the table.
(Note that if you choose to update the items, you must edit the input file and set appropriate values for
these updates.)

Downloading and Running Violation Detector

Violation Detector is available as an executable Java archive (.jar file), and will run on Windows, Mac,
or Linux computers. Violation Detector requires Java 1.7 (or above) and Maven.

• https://github.com/awslabs/dynamodb-online-index-violation-detector

Follow the instructions in the README.md file to download and install Violation Detector using Maven

To start Violation Detector, go to the directory where you have built ViolationDetector.java and
enter the following command:

java -jar ViolationDetector.jar [options]

The Violation Detector command line accepts the following options:

• -h | --help — Prints a usage summary and options for Violation Detector.

• -p | --configFilePath value — The fully qualified name of a Violation Detector configuration
file. For more information, see The Violation Detector Configuration File (p. 273) .

• -t | --detect value — Detect index key violations in the table, and write them to the Violation
Detector output file. If the value of this parameter is set to keep, items with key violations will not be
modified. If the value is set to delete, items with key violations will be deleted from the table.

• -c | --correct value — Read index key violations from an input file, and take corrective actions
on the items in the table. If the value of this parameter is set to update, items with key violations will
be updated with new, non-violating values. If the value is set to delete, items with key violations will
be deleted from the table.

API Version 2012-08-10
272

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

https://github.com/awslabs/dynamodb-online-index-violation-detector

The Violation Detector Configuration File

At runtime, the Violation Detector tool requires a configuration file. The parameters in this file determine
which DynamoDB resources that Violation Detector can access, and how much provisioned throughput
it can consume. The following table describes these parameters.

Re-
quired?

DescriptionParameter Name

YesThe fully qualified name of a file containing your
AWS credentials.The credentials file must be in the
following format:

accessKey = access_key_id_goes_here
secretKey = secret_key_goes_here

awsCredentialsFile

YesThe AWS region in which the table resides. For ex-
ample: us-west-2.

dynamoDBRegion

YesThe name of the DynamoDB table to be scanned.tableName

YesThe name of the index hash key attribute.gsiHashKeyName

YesThe data type of the index hash key attrib-
ute—String, Number, or Binary:

S | N | B

gsiHashKeyType

NoThe name of the index range key attribute. Do not
specify this parameter if the index only has a hash
key.

gsiRangeKeyName

NoThe data type of the index range key attrib-
ute—String, Number, or Binary:

S | N | B

Do not specify this parameter if the index only has
a hash key.

gsiRangeKeyType

NoWhether to write the full details of index key viola-
tions to the output file. If set to true (the default),
full information about the violating items are repor-
ted. If set to false, only the number of violations is
reported.

recordDetails

NoWhether to write the values of the violating index
keys to the output file. If set to true (default), the
key values are reported. If set to false, the key
values are not reported.

recordGsiValueInViolationRecord

API Version 2012-08-10
273

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

Re-
quired?

DescriptionParameter Name

NoThe full path of the Violation Detector output file.
This parameter supports writing to a local directory
or to Amazon Simple Storage Service (Amazon S3).
The following are examples:

detectionOutputPath = //local/path/file-
name.csv

detectionOutputPath = s3://bucket/file-
name.csv

Information in the output file appears in CSV format
(comma-separated values). If you do not set detec-
tionOutputPath, then the output file is named
violation_detection.csv and is written to your
current working directory.

detectionOutputPath

NoThe number of parallel scan segments to be used
when Violation Detector scans the table.The default
value is 1, meaning that the table will be scanned
in a sequential manner. If the value is 2 or higher,
then Violation Detector will divide the table into that
many logical segments and an equal number of scan
threads.

The maximum setting for numOfSegments is 4096.

For larger tables, a parallel scan is generally faster
than a sequential scan. In addition, if the table is
large enough to span multiple partitions, a parallel
scan will distribute its read activity evenly across
multiple partitions.
For more information on parallel scans in Dy-
namoDB, see Parallel Scan (p. 197).

numOfSegments

NoThe upper limit of index key violations to write to the
output file. If set to -1 (the default), the entire table
will be scanned. If set to a positive integer, then Vi-
olation Detector will stop after it encounters that
number of violations.

numOfViolations

NoThe number of items in the table to be scanned. If
set to -1 (the default), the entire table will be
scanned. If set to a positive integer, then Violation
Detector will stop after it scans that many items in
the table.

numOfRecords

NoRegulates the percentage of provisioned read capa-
city units that are consumed during the table scan.
Valid values range from 1 to 100. The default value
(25) means that Violation Detector will consume no
more than 25% of the table's provisioned read
throughput.

readWriteIOPSPercent

API Version 2012-08-10
274

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

Re-
quired?

DescriptionParameter Name

NoThe full path of the Violation Detector correction in-
put file. If you run Violation Detector in correction
mode, the contents of this file are used to modify or
delete data items in the table that violate the global
secondary index.

The format of the correctionInputPath file is
the same as that of the detectionOutputPath
file. This lets you process the output from detection
mode as input in correction mode.

correctionInputPath

NoThe full path of the Violation Detector correction
output file.This file is created only if there are update
errors.

This parameter supports writing to a local directory
or to Amazon Simple Storage Service (Amazon S3).
The following are examples:

correctionOutputPath = //local/path/fi-
lename.csv

correctionOutputPath = s3://bucket/file-
name.csv

Information in the output file appears in CSV format
(comma-separated values). If you do not set cor-
rectionOutputPath, then the output file is named
violation_update_errors.csv and is written
to your current working directory.

correctionOutputPath

Detection

To detect index key violations, use Violation Detector with the --detect command line option. To show
how this option works, consider the ProductCatalog table shown in Example Tables and Data (p. 681).
The following is a list of items in the table; only the primary key (Id) and the Price attribute are shown.

PriceId (Primary Key)

-2101

20102

200103

100201

200202

300203

400204

500205

API Version 2012-08-10
275

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

Note that all of the values for Price are of type Number. However, because DynamoDB is schemaless,
it is possible to add an item with a non-numeric Price. For example, suppose that we add another item
to the ProductCatalog table:

PriceId (Primary Key)

"Hello"999

The table now has a total of nine items.

Now we will add a new global secondary index to the table: PriceIndex. This index has a primary hash
key of Price, which is of type Number. After the index has been built, it will contain eight items—but the
ProductCatalog table has nine items. The reason for this discrepancy is that the value "Hello" is of
type String, but PriceIndex has a primary key of type Number. The String value violates the global
secondary index key, so it is not present in the index.

To use Violation Detector in this scenario, you first create a configuration file such as the following:

Properties file for violation detection tool configuration.
Parameters that are not specified will use default values.

awsCredentialsFile = /home/alice/credentials.txt
dynamoDBRegion = us-west-2
tableName = ProductCatalog
gsiHashKeyName = Price
gsiHashKeyType = N
recordDetails = true
recordGsiValueInViolationRecord = true
detectionOutputPath = ./gsi_violation_check.csv
correctionInputPath = ./gsi_violation_check.csv
numOfSegments = 1
readWriteIOPSPercent = 40

Next, you run Violation Detector as in this example:

$ java -jar ViolationDetector.jar --configFilePath config.txt --detect keep

Violation detection started: sequential scan, Table name: ProductCatalog, GSI
name: PriceIndex
Progress: Items scanned in total: 9, Items scanned by this thread: 9, Violations
 found by this thread: 1, Violations deleted by this thread: 0
Violation detection finished: Records scanned: 9, Violations found: 1, Violations
 deleted: 0, see results at: ./gsi_violation_check.csv

If the recordDetails config parameter is set to true, then Violation Detector writes details of each
violation to the output file, as in the following example:

Table Hash Key,GSI Hash Key Value,GSI Hash Key Violation Type,GSI Hash Key Vi
olation Description,GSI Hash Key Update Value(FOR USER),Delete Blank Attributes
 When Updating?(Y/N)

999,"{""S"":""Hello""}",Type Violation,Expected: N Found: S,,

API Version 2012-08-10
276

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

The output file is in comma-separated value format (CSV). The first line in the file is a header, followed
by one record per item that violates the index key. The fields of these violation records are as follows:

• Table Hash Key—the hash key value of the item in the table.

• Table Range Key—the range key value of the item in the table.

• GSI Hash Key Value—the hash key value of the global secondary index

• GSI Hash Key Violation Type—either Type Violation or Size Violation.

• GSI Hash Key Violation Description—the cause of the violation.

• GSI Hash Key Update Value(FOR USER)—in correction mode, a new user-supplied value for the
attribute.

• GSI Range Key Value—the range key value of the global secondary index

• GSI Range Key Violation Type—either Type Violation or Size Violation.

• GSI Range Key Violation Description—the cause of the violation.

• GSI Range Key Update Value(FOR USER)—in correction mode, a new user-supplied value for the
attribute.

• Delete Blank Attribute When Updating(Y/N)—in correction mode, determines whether to delete (Y)
or keep (N) the violating item in the table—but only if either of the following fields are blank:

• GSI Hash Key Update Value(FOR USER)

• GSI Range Key Update Value(FOR USER)

If either of these fields are non-blank, then Delete Blank Attribute When Updating(Y/N) has
no effect.

Note
The output format might vary, depending on the configuration file and command line options.
For example, if the table does not have a range key attribute, no range key fields will be present
in the output.
The violation records in the file might not be in sorted order.

Correction

To correct index key violations, use Violation Detector with the --correct command line option. In
correction mode, Violation Detector reads the input file specified by the correctionInputPath parameter.
This file has the same format as the detectionOutputPath file, so that you can use the output from
detection as input for correction.

Violation Detector provides two different ways to correct index key violations:

• Delete violations—delete the table items that have violating attribute values.

• Update violations—update the table items, replacing the violating attributes with non-violating values.

In either case, you can use the output file from detection mode as input for correction mode.

Continuing with our ProductCatalog example, suppose that we want to delete the violating item from
the table. To do this, we use the following command line:

$ java -jar ViolationDetector.jar --configFilePath config.txt --correct delete

At this point, you are asked to confirm whether you want to delete the violating items.

API Version 2012-08-10
277

Amazon DynamoDB Developer Guide
Managing Global Secondary Indexes

Are you sure to delete all violations on the table?y/n
y
Confirmed, will delete violations on the table...
Violation correction from file started: Reading records from file: ./gsi_viola
tion_check.csv, will delete these records from table.
Violation correction from file finished: Violations delete: 1, Violations Update:
 0

Now both ProductCatalog and PriceIndex have the same number of items.

Guidelines for Global Secondary Indexes
Topics

• Choose a Key That Will Provide Uniform Workloads (p. 278)

• Take Advantage of Sparse Indexes (p. 278)

• Use a Global Secondary Index For Quick Lookups (p. 279)

• Create an Eventually Consistent Read Replica (p. 279)

This section covers some best practices for global secondary indexes.

Choose a Key That Will Provide Uniform Workloads
When you create a DynamoDB table, it's important to distribute the read and write activity evenly across
the entire table. To do this, you choose attributes for the hash and range keys so that the data is evenly
spread across multiple partitions.

This same guidance is true for global secondary indexes. Choose hash and range keys that have a high
number of values relative to the number of items in the index. In addition, remember that global secondary
indexes do not enforce uniqueness, so you need to understand the cardinality of your key attributes.
Cardinality refers to the distinct number of values in a particular attribute, relative to the number of items
that you have.

For example, suppose you have an Employee table with attributes such as Name, Title, Address,
PhoneNumber, Salary, and PayLevel. Now suppose that you had a global secondary index named
PayLevelIndex, with PayLevel as the hash key. Many companies only have a very small number of pay
codes, often fewer than ten, even for companies with hundreds of thousands of employees. Such an
index would not provide much benefit, if any, for an application.

Another problem with PayLevelIndex is the uneven distribution of distinct values. For example, there may
be only a few top executives in the company, but a very large number of hourly workers. Queries on
PayLevelIndex will not be very efficient because the read activity will not be evenly distributed across
partitions.

Take Advantage of Sparse Indexes
For any item in a table, DynamoDB will only write a corresponding entry to a global secondary index if
the index key value is present in the item. For global secondary indexes, this is the index hash key and
its range key (if present). If the index key value(s) do not appear in every table item, the index is said to
be sparse.

You can use a sparse global secondary index to efficiently locate table items that have an uncommon
attribute. To do this, you take advantage of the fact that table items that do not contain global secondary
index attribute(s) are not indexed at all. For example, in the GameScores table, certain players might

API Version 2012-08-10
278

Amazon DynamoDB Developer Guide
Guidelines for Global Secondary Indexes

have earned a particular achievement for a game - such as "Champ" - but most players have not. Rather
than scanning the entire GameScores table for Champs, you could create a global secondary index with
a hash key of Champ and a range key of UserId. This would make it easy to find all the Champs by
querying the index instead of scanning the table.

Such a query can be very efficient, because the number of items in the index will be significantly fewer
than the number of items in the table. In addition, the fewer table attributes you project into the index, the
fewer read capacity units you will consume from the index.

Use a Global Secondary Index For Quick Lookups
You can create a global secondary index using any table attributes for the index hash and range keys.
You can even create an index that has exactly the same key attributes as that of the table, and project
just a subset of non-key attributes.

One use case for a global secondary index with a duplicate key schema is for quick lookups of table data,
with minimal provisioned throughput. If the table has a large number of attributes, and those attributes
themselves are large, then every query on that table might consume a large amount of read capacity. If
most of your queries do not require that much data to be returned, you can create a global secondary
index with a bare minimum of projected attributes - including no projected attributes at all, other than the
table's key. This lets you query a much smaller global secondary index, and if you really require the
additional attributes, you can then query the table using the same key values.

Create an Eventually Consistent Read Replica
You can create a global secondary index that has the same key schema as the table, with some (or all)
of the non-key attributes projected into the index. In your application, you can direct some (or all) read
activity to this index, rather than to the table. This lets you avoid having to modify the provisioned read
capacity on the table, in response to increased read activity. Note that there will be a short propagation
delay between a write to the table and the time that the data appears in the index; your applications should
expect eventual consistency when reading from the index.

You can create as many global secondary indexes as you need to support your application's characteristics.
For example, suppose that you have two applications with very different read characteristics — a
high-priority app that requires the highest levels of read performance, and a low-priority app that can
tolerate occasional throttling of read activity. If both of these apps read from the same table, there is a
chance that they could interfere with each other: A heavy read load from the low-priority app could consume
all of the available read capacity for the table, which would in turn cause the high-priority app's read
activity to be throttled. If you create two global secondary indexes — one with a high provisioned read
throughput setting, and the other with a lower setting — you can effectively disentangle these two different
workloads, with read activity from each application being redirected to its own index. This approach lets
you tailor the amount of provisioned read throughput to each application's read characteristics.

In some situations, you might want to restrict the applications that can read from the table. For example,
you might have an application that captures clickstream activity from a website, with frequent writes to a
DynamoDB table.You might decide to isolate this table by preventing read access by most applications.
(For more information, see Fine-Grained Access Control for DynamoDB (p. 600).) However, if you have
other apps that need to perform ad hoc queries on the data, you can create one or more global secondary
indexes for that purpose. When you create the index(es), be sure to project only the attributes that your
applications actually require. The apps can then read more data while consuming less provisioned read
capacity, instead of having to read large items from the table. This can result in a significant cost savings
over time.

API Version 2012-08-10
279

Amazon DynamoDB Developer Guide
Guidelines for Global Secondary Indexes

Working with Global Secondary Indexes Using the
AWS SDK for Java Document API
You can use the AWS SDK for Java Document API to create a table with one or more global secondary
indexes, describe the indexes on the table and perform queries using the indexes.

The following are the common steps for table operations.

1. Create an instance of the DynamoDB class.

2. Provide the required and optional parameters for the operation by creating the corresponding request
objects.

3. Call the appropriate method provided by the client that you created in the preceding step.

Create a Table With a Global Secondary Index
You can create global secondary indexes at the same time that you create a table. To do this, use the
CreateTable API and provide your specifications for one or more global secondary indexes.The following
Java code snippet creates a table to hold information about weather data. The hash key is Location and
the range key is Date. A global secondary index named PrecipIndex allows fast access to precipitation
data for various locations.

The following are the steps to create a table with a global secondary index, using the DynamoDB document
API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the CreateTableRequest class to provide the request information.

You must provide the table name, its primary key, and the provisioned throughput values. For the
global secondary index, you must provide the index name, its provisioned throughput settings, the
attribute definitions for the index range key, the key schema for the index, and the attribute projection.

3. Call the createTable method by providing the request object as a parameter.

The following Java code snippet demonstrates the preceding steps. The snippet creates a table
(WeatherData) with a global secondary index (PrecipIndex). The index hash key is Date and its range
key is Precipitation. All of the table attributes are projected into the index. Users can query this index to
obtain weather data for a particular date, optionally sorting the data by precipitation amount.

Note that since Precipitation is not a key attribute for the table, it is not required; however, WeatherData
items without Precipitation will not appear in PrecipIndex.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

// Attribute definitions
ArrayList<AttributeDefinition> attributeDefinitions = new ArrayList<Attrib
uteDefinition>();

attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Location")
 .withAttributeType("S"));
attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Date")

API Version 2012-08-10
280

Amazon DynamoDB Developer Guide
Global Secondary Indexes - Java Document API

 .withAttributeType("S"));
attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Precipitation")
 .withAttributeType("N"));

// Table key schema
ArrayList<KeySchemaElement> tableKeySchema = new ArrayList<KeySchemaElement>();
tableKeySchema.add(new KeySchemaElement()
 .withAttributeName("Location")
 .withKeyType(KeyType.HASH));
tableKeySchema.add(new KeySchemaElement()
 .withAttributeName("Date")
 .withKeyType(KeyType.RANGE));

// PrecipIndex
GlobalSecondaryIndex precipIndex = new GlobalSecondaryIndex()
 .withIndexName("PrecipIndex")
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits((long) 10)
 .withWriteCapacityUnits((long) 1))
 .withProjection(new Projection().withProjectionType(ProjectionType.ALL));

ArrayList<KeySchemaElement> indexKeySchema = new ArrayList<KeySchemaElement>();

indexKeySchema.add(new KeySchemaElement()
 .withAttributeName("Date")
 .withKeyType(KeyType.HASH));
indexKeySchema.add(new KeySchemaElement()
 .withAttributeName("Precipitation")
 .withKeyType(KeyType.RANGE));

precipIndex.setKeySchema(indexKeySchema);

CreateTableRequest createTableRequest = new CreateTableRequest()
 .withTableName("WeatherData")
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits((long) 5)
 .withWriteCapacityUnits((long) 1))
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(tableKeySchema)
 .withGlobalSecondaryIndexes(precipIndex);

Table table = dynamoDB.createTable(createTableRequest);
System.out.println(table.getDescription());

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that, you can
begin putting data items into the table.

Describe a Table With a Global Secondary Index
To get information about global secondary indexes on a table, use the DescribeTable API. For each
index, you can access its name, key schema, and projected attributes.

The following are the steps to access global secondary index information a table using the API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class to represent the index you want to work with.

API Version 2012-08-10
281

Amazon DynamoDB Developer Guide
Global Secondary Indexes - Java Document API

3. Call the describe method on the Table object.

The following Java code snippet demonstrates the preceding steps.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("WeatherData");
TableDescription tableDesc = table.describe();

Iterator<GlobalSecondaryIndexDescription> gsiIter = tableDesc.getGlobalSecond
aryIndexes().iterator();
while (gsiIter.hasNext()) {
 GlobalSecondaryIndexDescription gsiDesc = gsiIter.next();
 System.out.println("Info for index "
 + gsiDesc.getIndexName() + ":");

 Iterator<KeySchemaElement> kseIter = gsiDesc.getKeySchema().iterator();
 while (kseIter.hasNext()) {
 KeySchemaElement kse = kseIter.next();
 System.out.printf("\t%s: %s\n", kse.getAttributeName(), kse.getKey
Type());
 }
 Projection projection = gsiDesc.getProjection();
 System.out.println("\tThe projection type is: "
 + projection.getProjectionType());
 if (projection.getProjectionType().toString().equals("INCLUDE")) {
 System.out.println("\t\tThe non-key projected attributes are: "
 + projection.getNonKeyAttributes());
 }
}

Query a Global Secondary Index
You can use the Query API on a global secondary index, in much the same way you Query a table.You
need to specify the index name, the query criteria for the index hash key and range key (if present), and
the attributes that you want to return. In this example, the index is PrecipIndex, which has a hash key of
Date and a range key of Precipitation. The index query returns all of the weather data for a particular
date, where the precipitation is greater than zero.

The following are the steps to query a global secondary index using the AWS SDK for Java Document
API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class to represent the index you want to work with.

3. Create an instance of the Index class for the index you want to query.

4. Call the query method on the Index object.

The attribute name Date is a DynamoDB reserved word.Therefore, we must use an expression attribute
name as a placeholder in the KeyConditionExpression.

The following Java code snippet demonstrates the preceding steps.

API Version 2012-08-10
282

Amazon DynamoDB Developer Guide
Global Secondary Indexes - Java Document API

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("WeatherData");
Index index = table.getIndex("PrecipIndex");

QuerySpec spec = new QuerySpec()
 .withKeyConditionExpression("#d = :v_date and Precipitation = :v_precip")
 .withNameMap(new NameMap()
 .with("#d", "Date"))
 .withValueMap(new ValueMap()
 .withString(":v_date","2013-08-10")
 .withNumber(":v_precip",0));

ItemCollection<QueryOutcome> items = index.query(spec);
Iterator<Item> iter = items.iterator();
while (iter.hasNext()) {
 System.out.println(iter.next().toJSONPretty());
}

Example: Global Secondary Indexes Using the AWS SDK
for Java Document API
The following Java code example shows how to work with global secondary indexes.The example creates
a table named Issues, which might be used in a simple bug tracking system for software development.
The hash key attribute is IssueId and the range key is Title.There are three global secondary indexes
on this table:

• CreateDateIndex—the hash key is CreateDate and the range key is IssueId. In addition to the table
keys, the attributes Description and Status are projected into the index.

• TitleIndex—the hash key is IssueId and the range key is Title. No attributes other than the table
keys are projected into the index.

• DueDateIndex—the hash key is DueDate, and there is no range key. All of the table attributes are
projected into the index.

After the Issues table is created, the program loads the table with data representing software bug reports,
and then queries the data using the global secondary indexes. Finally, the program deletes the Issues
table.

For step-by-step instructions to test the following sample, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.util.ArrayList;
import java.util.Iterator;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Index;

API Version 2012-08-10
283

Amazon DynamoDB Developer Guide
Global Secondary Indexes - Java Document API

import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.ItemCollection;
import com.amazonaws.services.dynamodbv2.document.QueryOutcome;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.spec.QuerySpec;
import com.amazonaws.services.dynamodbv2.document.utils.ValueMap;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.GlobalSecondaryIndex;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.Projection;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;

public class DocumentAPIGlobalSecondaryIndexExample {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

 public static String tableName = "Issues";

 public static void main(String[] args) throws Exception {

 createTable();
 loadData();

 queryIndex("CreateDateIndex");
 queryIndex("TitleIndex");
 queryIndex("DueDateIndex");

 deleteTable(tableName);

 }

 public static void createTable() {

 // Attribute definitions
 ArrayList<AttributeDefinition> attributeDefinitions = new ArrayList<At
tributeDefinition>();

 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("IssueId")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Title")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("CreateDate")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("DueDate")
 .withAttributeType("S"));

 // Key schema for table
 ArrayList<KeySchemaElement> tableKeySchema = new ArrayList<KeySchemaEle
ment>();

API Version 2012-08-10
284

Amazon DynamoDB Developer Guide
Global Secondary Indexes - Java Document API

 tableKeySchema.add(new KeySchemaElement()
 .withAttributeName("IssueId")
 .withKeyType(KeyType.HASH));
 tableKeySchema.add(new KeySchemaElement()
 .withAttributeName("Title")
 .withKeyType(KeyType.RANGE));

 // Initial provisioned throughput settings for the indexes
 ProvisionedThroughput ptIndex = new ProvisionedThroughput()
 .withReadCapacityUnits(1L)
 .withWriteCapacityUnits(1L);

 // CreateDateIndex
 GlobalSecondaryIndex createDateIndex = new GlobalSecondaryIndex()
 .withIndexName("CreateDateIndex")
 .withProvisionedThroughput(ptIndex)
 .withKeySchema(new KeySchemaElement()
 .withAttributeName("CreateDate")
 .withKeyType(
 KeyType.HASH),
 new KeySchemaElement()
 .withAttributeName("IssueId")
 .withKeyType(KeyType.RANGE))
 .withProjection(new Projection()
 .withProjectionType("INCLUDE")
 .withNonKeyAttributes("Description", "Status"));

 // TitleIndex
 GlobalSecondaryIndex titleIndex = new GlobalSecondaryIndex()
 .withIndexName("TitleIndex")
 .withProvisionedThroughput(ptIndex)
 .withKeySchema(new KeySchemaElement()
 .withAttributeName("Title")
 .withKeyType(KeyType.HASH),
 new KeySchemaElement()
 .withAttributeName("IssueId")
 .withKeyType(KeyType.RANGE))
 .withProjection(new Projection()
 .withProjectionType("KEYS_ONLY"));

 // DueDateIndex
 GlobalSecondaryIndex dueDateIndex = new GlobalSecondaryIndex()
 .withIndexName("DueDateIndex")
 .withProvisionedThroughput(ptIndex)
 .withKeySchema(new KeySchemaElement()
 .withAttributeName("DueDate")
 .withKeyType(KeyType.HASH))
 .withProjection(new Projection()
 .withProjectionType("ALL"));

 CreateTableRequest createTableRequest = new CreateTableRequest()
 .withTableName(tableName)
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits((long) 1)
 .withWriteCapacityUnits((long) 1))
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(tableKeySchema)
 .withGlobalSecondaryIndexes(createDateIndex, titleIndex, dueDateIn

API Version 2012-08-10
285

Amazon DynamoDB Developer Guide
Global Secondary Indexes - Java Document API

dex);

 System.out.println("Creating table " + tableName + "...");
 dynamoDB.createTable(createTableRequest);

 // Wait for table to become active
 System.out.println("Waiting for " + tableName + " to become ACTIVE...");

 try {
 Table table = dynamoDB.getTable(tableName);
 table.waitForActive();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 public static void queryIndex(String indexName) {

 Table table = dynamoDB.getTable(tableName);

 System.out.println
 ("\n***\n");
 System.out.print("Querying index " + indexName + "...");

 Index index = table.getIndex(indexName);

 ItemCollection<QueryOutcome> items = null;

 QuerySpec querySpec = new QuerySpec();

 if (indexName == "CreateDateIndex") {
 System.out.println("Issues filed on 2013-11-01");
 querySpec.withKeyConditionExpression("CreateDate = :v_date and be
gins_with(IssueId, :v_issue)")
 .withValueMap(new ValueMap()
 .withString(":v_date","2013-11-01")
 .withString(":v_issue","A-"));
 items = index.query(querySpec);
 } else if (indexName == "TitleIndex") {
 System.out.println("Compilation errors");
 querySpec.withKeyConditionExpression("Title = :v_title and be
gins_with(IssueId, :v_issue)")
 .withValueMap(new ValueMap()
 .withString(":v_title","Compilation error")
 .withString(":v_issue","A-"));
 items = index.query(querySpec);
 } else if (indexName == "DueDateIndex") {
 System.out.println("Items that are due on 2013-11-30");
 querySpec.withKeyConditionExpression("DueDate = :v_date")
 .withValueMap(new ValueMap()
 .withString(":v_date","2013-11-30"));
 items = index.query(querySpec);
 } else {
 System.out.println("\nNo valid index name provided");
 return;
 }

 Iterator<Item> iterator = items.iterator();

API Version 2012-08-10
286

Amazon DynamoDB Developer Guide
Global Secondary Indexes - Java Document API

 System.out.println("Query: printing results...");

 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }

 }

 public static void deleteTable(String tableName) {

 System.out.println("Deleting table " + tableName + "...");

 Table table = dynamoDB.getTable(tableName);
 table.delete();

 // Wait for table to be deleted
 System.out.println("Waiting for " + tableName + " to be deleted...");
 try {
 table.waitForDelete();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 public static void loadData() {

 System.out.println("Loading data into table " + tableName + "...");

 // IssueId, Title,
 // Description,
 // CreateDate, LastUpdateDate, DueDate,
 // Priority, Status

 putItem("A-101","Compilation error",
 "Can't compile Project X - bad version number. What does this mean?",

 "2013-11-01", "2013-11-02", "2013-11-10",
 1, "Assigned");

 putItem("A-102","Can't read data file",
 "The main data file is missing, or the permissions are incorrect",

 "2013-11-01", "2013-11-04", "2013-11-30",
 2, "In progress");

 putItem("A-103", "Test failure",
 "Functional test of Project X produces errors",
 "2013-11-01", "2013-11-02", "2013-11-10",
 1, "In progress");

 putItem("A-104", "Compilation error",
 "Variable 'messageCount' was not initialized.",
 "2013-11-15", "2013-11-16", "2013-11-30",
 3, "Assigned");

 putItem("A-105", "Network issue",

API Version 2012-08-10
287

Amazon DynamoDB Developer Guide
Global Secondary Indexes - Java Document API

 "Can't ping IP address 127.0.0.1. Please fix this.",
 "2013-11-15", "2013-11-16", "2013-11-19",
 5, "Assigned");

 }

 public static void putItem(

 String issueId, String title, String description, String createDate,
 String lastUpdateDate, String dueDate, Integer priority,
 String status) {

 Table table = dynamoDB.getTable(tableName);

 Item item = new Item()
 .withPrimaryKey("IssueId", issueId)
 .withString("Title", title)
 .withString("Description", description)
 .withString("CreateDate", createDate)
 .withString("LastUpdateDate", lastUpdateDate)
 .withString("DueDate", dueDate)
 .withNumber("Priority", priority)
 .withString("Status", status);

 table.putItem(item);
 }

}

Working with Global Secondary Indexes Using the
AWS SDK for .NET Low-Level API
Topics

• Create a Table With a Global Secondary Index (p. 289)

• Describe a Table With a Global Secondary Index (p. 290)

• Query a Global Secondary Index (p. 291)

• Example: Global Secondary Indexes Using the AWS SDK for .NET Low-Level API (p. 292)

You can use the AWS SDK for .NET low-level API (protocol-level API) to create a table with one or more
global secondary indexes, describe the indexes on the table, and perform queries using the indexes.
These operations map to the corresponding DynamoDB API. For more information, see Using the
DynamoDB API (p. 512).

The following are the common steps for table operations using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required and optional parameters for the operation by creating the corresponding request
objects.

For example, create a CreateTableRequest object to create a table and QueryRequest object to
query a table or an index.

3. Execute the appropriate method provided by the client that you created in the preceding step.

API Version 2012-08-10
288

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

Create a Table With a Global Secondary Index
You can create global secondary indexes at the same time that you create a table. To do this, use the
CreateTable API and provide your specifications for one or more global secondary indexes.The following
C# code snippet creates a table to hold information about weather data. The hash key is Location and
the range key is Date. A global secondary index named PrecipIndex allows fast access to precipitation
data for various locations.

The following are the steps to create a table with a global secondary index, using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the CreateTableRequest class to provide the request information.

You must provide the table name, its primary key, and the provisioned throughput values. For the
global secondary index, you must provide the index name, its provisioned throughput settings, the
attribute definitions for the index range key, the key schema for the index, and the attribute projection.

3. Execute the CreateTable method by providing the request object as a parameter.

The following C# code snippet demonstrates the preceding steps. The snippet creates a table
(WeatherData) with a global secondary index (PrecipIndex). The index hash key is Date and its range
key is Precipitation. All of the table attributes are projected into the index. Users can query this index to
obtain weather data for a particular date, optionally sorting the data by precipitation amount.

Note that since Precipitation is not a key attribute for the table, it is not required; however, WeatherData
items without Precipitation will not appear in PrecipIndex.

client = new AmazonDynamoDBClient();
string tableName = "WeatherData";

// Attribute definitions
var attributeDefinitions = new List<AttributeDefinition>()
{
 {new AttributeDefinition{
 AttributeName = "Location",
 AttributeType = "S"}},
 {new AttributeDefinition{
 AttributeName = "Date",
 AttributeType = "S"}},
 {new AttributeDefinition(){
 AttributeName = "Precipitation",
 AttributeType = "N"}
 }
};

// Table key schema
var tableKeySchema = new List<KeySchemaElement>()
{
 {new KeySchemaElement {
 AttributeName = "Location",
 KeyType = "HASH"}},
 {new KeySchemaElement {
 AttributeName = "Date",
 KeyType = "RANGE"}
 }
};

API Version 2012-08-10
289

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

// PrecipIndex
var precipIndex = new GlobalSecondaryIndex
{
 IndexName = "PrecipIndex",
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = (long)10,
 WriteCapacityUnits = (long)1
 },
 Projection = new Projection { ProjectionType = "ALL" }
};

var indexKeySchema = new List<KeySchemaElement> {
 {new KeySchemaElement { AttributeName = "Date", KeyType = "HASH"}},
 {new KeySchemaElement{AttributeName = "Precipitation",KeyType = "RANGE"}}
};

precipIndex.KeySchema = indexKeySchema;

CreateTableRequest createTableRequest = new CreateTableRequest
{
 TableName = tableName,
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = (long)5,
 WriteCapacityUnits = (long)1
 },
 AttributeDefinitions = attributeDefinitions,
 KeySchema = tableKeySchema,
 GlobalSecondaryIndexes = { precipIndex }
};

CreateTableResponse response = client.CreateTable(createTableRequest);
Console.WriteLine(response.CreateTableResult.TableDescription.TableName);
Console.WriteLine(response.CreateTableResult.TableDescription.TableStatus);

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that, you can
begin putting data items into the table.

Describe a Table With a Global Secondary Index
To get information about global secondary indexes on a table, use the DescribeTable API. For each
index, you can access its name, key schema, and projected attributes.

The following are the steps to access global secondary index information a table using the .NET low-level
API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the DescribeTableRequest class to provide the request information.You
must provide the table name.

3. Execute the describeTable method by providing the request object as a parameter.

The following C# code snippet demonstrates the preceding steps.

API Version 2012-08-10
290

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

client = new AmazonDynamoDBClient();
string tableName = "WeatherData";

DescribeTableResponse response = client.DescribeTable(new DescribeTableRequest
 { TableName = tableName});

List<GlobalSecondaryIndexDescription> globalSecondaryIndexes =
response.DescribeTableResult.Table.GlobalSecondaryIndexes;

// This code snippet will work for multiple indexes, even though
// there is only one index in this example.

foreach (GlobalSecondaryIndexDescription gsiDescription in globalSecondaryIn
dexes) {
 Console.WriteLine("Info for index " + gsiDescription.IndexName + ":");

 foreach (KeySchemaElement kse in gsiDescription.KeySchema) {
 Console.WriteLine("\t" + kse.AttributeName + ": key type is " +
kse.KeyType);
 }

 Projection projection = gsiDescription.Projection;
 Console.WriteLine("\tThe projection type is: " + projection.Projection
Type);

 if (projection.ProjectionType.ToString().Equals("INCLUDE")) {
 Console.WriteLine("\t\tThe non-key projected attributes are: "
 + projection.NonKeyAttributes);
 }
}

Query a Global Secondary Index
You can use the Query API on a global secondary index, in much the same way you Query a table.You
need to specify the index name, the query criteria for the index hash key and range key (if present), and
the attributes that you want to return. In this example, the index is PrecipIndex, which has a hash key of
Date and a range key of Precipitation. The index query returns all of the weather data for a particular
date, where the precipitation is greater than zero.

The following are the steps to query a global secondary index using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the QueryRequest class to provide the request information.

3. Execute the query method by providing the request object as a parameter.

The attribute name Date is a DynamoDB reserved word.Therefore, we must use an expression attribute
name as a placeholder in the KeyConditionExpression.

The following C# code snippet demonstrates the preceding steps.

client = new AmazonDynamoDBClient();

QueryRequest queryRequest = new QueryRequest
{

API Version 2012-08-10
291

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

 TableName = "WeatherData",
 IndexName = "PrecipIndex",
 KeyConditionExpression = "#dt = :v_date and Precipitation > :v_precip",
 ExpressionAttributeNames = new Dictionary<String, String> {
 {"#dt", "Date"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue> {
 {":v_date", new AttributeValue { S = "2013-08-01" }},
 {":v_precip", new AttributeValue { N = "0" }}
 },
 ScanIndexForward = true
};

var result = client.Query(queryRequest);

var items = result.Items;
foreach (var currentItem in items)
{
 foreach (string attr in currentItem.Keys)
 {
 Console.Write(attr + "---> ");
 if (attr == "Precipitation")
 {
 Console.WriteLine(currentItem[attr].N);
 }
 else
 {
 Console.WriteLine(currentItem[attr].S);
 }

 }
 Console.WriteLine();
}

Example: Global Secondary Indexes Using the AWS SDK
for .NET Low-Level API
The following C# code example shows how to work with global secondary indexes. The example creates
a table named Issues, which might be used in a simple bug tracking system for software development.
The hash key attribute is IssueId and the range key is Title. There are three global secondary indexes
on this table:

• CreateDateIndex—the hash key is CreateDate and the range key is IssueId. In addition to the table
keys, the attributes Description and Status are projected into the index.

• TitleIndex—the hash key is IssueId and the range key is Title. No attributes other than the table keys
are projected into the index.

• DueDateIndex—the hash key is DueDate, and there is no range key. All of the table attributes are
projected into the index.

After the Issues table is created, the program loads the table with data representing software bug reports,
and then queries the data using the global secondary indexes. Finally, the program deletes the Issues
table.

For step-by-step instructions to test the following sample, see Running .NET Examples for
DynamoDB (p. 57).

API Version 2012-08-10
292

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

using System;
using System.Collections.Generic;
using System.Linq;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;
using Amazon.DynamoDBv2.DocumentModel;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;
using Amazon.SecurityToken;

namespace com.amazonaws.codesamples
 {
 class LowLevelGlobalSecondaryIndexExample
 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 public static String tableName = "Issues";

 public static void Main(string[] args)
 {

 CreateTable();
 LoadData();

 QueryIndex("CreateDateIndex");
 QueryIndex("TitleIndex");
 QueryIndex("DueDateIndex");

 DeleteTable(tableName);

 Console.WriteLine("To continue, press enter");
 Console.Read();
 }

 private static void CreateTable()
 {

 // Attribute definitions
 var attributeDefinitions = new List<AttributeDefinition>()
 {
 {new AttributeDefinition {AttributeName = "IssueId", Attribute
Type = "S"}},
 {new AttributeDefinition {AttributeName = "Title", AttributeType
 = "S"}},
 {new AttributeDefinition {AttributeName = "CreateDate", Attrib
uteType = "S"}},
 {new AttributeDefinition {AttributeName = "DueDate", Attribute
Type = "S"}}
 };

 // Key schema for table
 var tableKeySchema = new List<KeySchemaElement>() {
 {
 new KeySchemaElement {
 AttributeName= "IssueId",
 KeyType = "HASH"
 }

API Version 2012-08-10
293

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

 },
 {
 new KeySchemaElement {
 AttributeName = "Title",
 KeyType = "RANGE"
 }
 }
 };

 // Initial provisioned throughput settings for the indexes
 var ptIndex = new ProvisionedThroughput
 {
 ReadCapacityUnits = 1L,
 WriteCapacityUnits = 1L
 };

 // CreateDateIndex
 var createDateIndex = new GlobalSecondaryIndex()
 {
 IndexName = "CreateDateIndex",
 ProvisionedThroughput = ptIndex,
 KeySchema = {
 new KeySchemaElement {
 AttributeName = "CreateDate", KeyType = "HASH"
 },
 new KeySchemaElement {
 AttributeName = "IssueId", KeyType = "RANGE"
 }
 },
 Projection = new Projection
 {
 ProjectionType = "INCLUDE",
 NonKeyAttributes = { "Description", "Status" }
 }
 };

 // TitleIndex
 var titleIndex = new GlobalSecondaryIndex()
 {
 IndexName = "TitleIndex",
 ProvisionedThroughput = ptIndex,
 KeySchema = {
 new KeySchemaElement {
 AttributeName = "Title", KeyType = "HASH"
 },
 new KeySchemaElement {
 AttributeName = "IssueId", KeyType = "RANGE"
 }
 },
 Projection = new Projection
 {
 ProjectionType = "KEYS_ONLY"
 }
 };

 // DueDateIndex
 var dueDateIndex = new GlobalSecondaryIndex()
 {

API Version 2012-08-10
294

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

 IndexName = "DueDateIndex",
 ProvisionedThroughput = ptIndex,
 KeySchema = {
 new KeySchemaElement {
 AttributeName = "DueDate",
 KeyType = "HASH"
 }
 },
 Projection = new Projection
 {
 ProjectionType = "ALL"
 }
 };

 var createTableRequest = new CreateTableRequest
 {
 TableName = tableName,
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = (long)1,
 WriteCapacityUnits = (long)1
 },
 AttributeDefinitions = attributeDefinitions,
 KeySchema = tableKeySchema,
 GlobalSecondaryIndexes = { createDateIndex, titleIndex, dueD
ateIndex }
 };

 Console.WriteLine("Creating table " + tableName + "...");
 client.CreateTable(createTableRequest);

 WaitUntilTableReady(tableName);

 }

 private static void LoadData()
 {

 Console.WriteLine("Loading data into table " + tableName + "...");

 // IssueId, Title,
 // Description,
 // CreateDate, LastUpdateDate, DueDate,
 // Priority, Status

 putItem("A-101", "Compilation error",
 "Can't compile Project X - bad version number. What does this mean?",

 "2013-11-01", "2013-11-02", "2013-11-10",
 1, "Assigned");

 putItem("A-102", "Can't read data file",
 "The main data file is missing, or the permissions are incor
rect",
 "2013-11-01", "2013-11-04", "2013-11-30",

API Version 2012-08-10
295

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

 2, "In progress");

 putItem("A-103", "Test failure",
 "Functional test of Project X produces errors",
 "2013-11-01", "2013-11-02", "2013-11-10",
 1, "In progress");

 putItem("A-104", "Compilation error",
 "Variable 'messageCount' was not initialized.",
 "2013-11-15", "2013-11-16", "2013-11-30",
 3, "Assigned");

 putItem("A-105", "Network issue",
 "Can't ping IP address 127.0.0.1. Please fix this.",
 "2013-11-15", "2013-11-16", "2013-11-19",
 5, "Assigned");

 }

 private static void putItem(
 String issueId, String title,
 String description,
 String createDate, String lastUpdateDate, String dueDate,
 Int32 priority, String status)
 {

 Dictionary<String, AttributeValue> item = new Dictionary<string,
AttributeValue>();

 item.Add("IssueId", new AttributeValue { S = issueId });
 item.Add("Title", new AttributeValue { S = title });
 item.Add("Description", new AttributeValue { S = description });
 item.Add("CreateDate", new AttributeValue { S = createDate });
 item.Add("LastUpdateDate", new AttributeValue { S = lastUpdateDate
 });
 item.Add("DueDate", new AttributeValue { S = dueDate });
 item.Add("Priority", new AttributeValue { N = priority.ToString()
});
 item.Add("Status", new AttributeValue { S = status });

 try
 {

 client.PutItem(new PutItemRequest
 {
 TableName = tableName,
 Item = item
 });

 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }

 private static void QueryIndex(string indexName)
 {

API Version 2012-08-10
296

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

 Console.WriteLine
 ("\n***\n");
 Console.WriteLine("Querying index " + indexName + "...");

 QueryRequest queryRequest = new QueryRequest
 {
 TableName = tableName,
 IndexName = indexName,
 ScanIndexForward = true
 };

 String keyConditionExpression;
 Dictionary<string, AttributeValue> expressionAttributeValues = new
 Dictionary<string, AttributeValue>();

 if (indexName == "CreateDateIndex")
 {
 Console.WriteLine("Issues filed on 2013-11-01\n");

 keyConditionExpression = "CreateDate = :v_date and begins_with(Is
sueId, :v_issue)";
 expressionAttributeValues.Add(":v_date", new AttributeValue {
S = "2013-11-01" });
 expressionAttributeValues.Add(":v_issue", new AttributeValue {
 S = "A-" });

 }
 else if (indexName == "TitleIndex")
 {
 Console.WriteLine("Compilation errors\n");

 keyConditionExpression = "Title = :v_title and begins_with(Is
sueId, :v_issue)";
 expressionAttributeValues.Add(":v_title", new AttributeValue {
 S = "Compilation error" });
 expressionAttributeValues.Add(":v_issue", new AttributeValue {
 S = "A-" });

 // Select
 queryRequest.Select = "ALL_PROJECTED_ATTRIBUTES";

 }
 else if (indexName == "DueDateIndex")
 {
 Console.WriteLine("Items that are due on 2013-11-30\n");

 keyConditionExpression = "DueDate = :v_date";
 expressionAttributeValues.Add(":v_date", new AttributeValue {
S = "2013-11-30" });

 // Select
 queryRequest.Select = "ALL_PROJECTED_ATTRIBUTES";

 }
 else
 {
 Console.WriteLine("\nNo valid index name provided");

API Version 2012-08-10
297

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

 return;
 }

 queryRequest.KeyConditionExpression = keyConditionExpression;
 queryRequest.ExpressionAttributeValues = expressionAttributeValues;

 var result = client.Query(queryRequest);
 var items = result.Items;
 foreach (var currentItem in items)
 {
 foreach (string attr in currentItem.Keys)
 {
 if (attr == "Priority")
 {
 Console.WriteLine(attr + "---> " + currentItem[attr].N);

 }
 else
 {
 Console.WriteLine(attr + "---> " + currentItem[attr].S);

 }
 }
 Console.WriteLine();
 }

 }

 private static void DeleteTable(string tableName)
 {
 Console.WriteLine("Deleting table " + tableName + "...");
 client.DeleteTable(new DeleteTableRequest { TableName = tableName
});
 WaitForTableToBeDeleted(tableName);
 }

 private static void WaitUntilTableReady(string tableName)
 {
 string status = null;
 // Let us wait until table is created. Call DescribeTable.
 do
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 status = res.Table.TableStatus;
 }

API Version 2012-08-10
298

Amazon DynamoDB Developer Guide
Global Secondary Indexes - .NET Low-Level API

 catch (ResourceNotFoundException)
 {
 // DescribeTable is eventually consistent. So you might
 // get resource not found. So we handle the potential excep
tion.
 }
 } while (status != "ACTIVE");
 }

 private static void WaitForTableToBeDeleted(string tableName)
 {
 bool tablePresent = true;

 while (tablePresent)
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 }
 catch (ResourceNotFoundException)
 {
 tablePresent = false;
 }
 }
 }

 }
 }

Working with Global Secondary Indexes Using the
AWS SDK for PHP Low-Level API
Topics

• Create a Table With a Global Secondary Index (p. 300)

• Describe a Table With a Global Secondary Index (p. 301)

• Query a Global Secondary Index (p. 302)

• Example: Global Secondary Indexes Using the AWS SDK for PHP Low-Level API (p. 303)

You can use the AWS SDK for PHP Low-Level API to create a table with one or more global secondary
indexes, describe the indexes on the table, and perform queries using the indexes. These operations
map to the corresponding DynamoDB API. For more information, see Using the DynamoDB API (p. 512).

The following are the common steps for table operations using the PHP low-level API.

1. Create an instance of the DynamoDbClient class (the client).

API Version 2012-08-10
299

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

2. Provide the parameters for the query operation to the client instance.

You must provide the table name, index name, any desired item's primary key values, and any optional
query parameters.You can set up a condition as part of the query if you want to find a range of values
that meet specific comparison results.You can limit the results to a subset to provide pagination of the
results. Read results from a global secondary index are always eventually consistent.

3. Load the response into a local variable, such as $response, for use in your application.

Create a Table With a Global Secondary Index
You can create global secondary indexes at the same time that you create a table. To do this, use the
CreateTable API and provide your specifications for one or more global secondary indexes.The following
PHP code snippet creates a table to hold information about weather data. The hash key is Location and
the range key is Date. A global secondary index named PrecipIndex allows fast access to precipitation
data for various locations.

The following are the steps to create a table with a global secondary index, using the PHP low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the parameters for the createTable operation to the client instance.

You must provide the table name, its primary key, and the provisioned throughput values. For the
global secondary index, you must provide the index name, its provisioned throughput settings, the
attribute definitions for the index range key, the key schema for the index, and the attribute projection.

The following PHP code snippet demonstrates the preceding steps. The snippet creates a table
(WeatherData) with a global secondary index (PrecipIndex). The index hash key is Date and its range
key is Precipitation. All of the table attributes are projected into the index. Users can query this index to
obtain weather data for a particular date, optionally sorting the data by precipitation amount.

Note that since Precipitation is not a key attribute for the table, it is not required; however, WeatherData
items without Precipitation will not appear in PrecipIndex.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$tableName = 'WeatherData';

$result = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(
 array(
 'AttributeName' => 'Location',
 'AttributeType' => 'S'
),
 array(
 'AttributeName' => 'Date',
 'AttributeType' => 'S'
),
 array(
 'AttributeName' => 'Precipitation',
 'AttributeType' => 'N'
)

API Version 2012-08-10
300

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

),
 'KeySchema' => array(
 array(
 'AttributeName' => 'Location',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'Date',
 'KeyType' => 'RANGE'
)
),
 'GlobalSecondaryIndexes' => array(
 array(
 'IndexName' => 'PrecipIndex',
 'ProvisionedThroughput' => array (
 'ReadCapacityUnits' => 5,
 'WriteCapacityUnits' => 5
),
 'KeySchema' => array(
 array(
 'AttributeName' => 'Date',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'Precipitation',
 'KeyType' => 'RANGE'
)
),
 'Projection' => array(
 'ProjectionType' => 'ALL'
)
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 5,
 'WriteCapacityUnits' => 5
)
));

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that, you can
begin putting data items into the table.

Describe a Table With a Global Secondary Index
To get information about global secondary indexes on a table, use the DescribeTable API. For each
index, you can access its name, key schema, and projected attributes.

The following are the steps to access global secondary index information a table using the PHP low-level
API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the TableName parameter for the createTable operation to the client instance.

The following PHP code snippet demonstrates the preceding steps.

API Version 2012-08-10
301

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$tableName = 'WeatherData';

$result = $client->describeTable(array(
 'TableName' => $tableName
));

foreach ($result['Table']['GlobalSecondaryIndexes'] as $key => $value) {
 echo "Info for index " . $value['IndexName'] . ':' . PHP_EOL;
 foreach ($value['KeySchema'] as $attribute => $keyschema) {
 echo "\t" .
 $value['KeySchema'][$attribute]['AttributeName'] . ': ' .
 $value['KeySchema'][$attribute]['KeyType'] . PHP_EOL;
 }
 echo "\tThe projection type is: " . $value['Projection']['ProjectionType']
 . PHP_EOL;
}

Query a Global Secondary Index
You can use the Query API on a global secondary index, in much the same way you Query a table.You
need to specify the index name, the query criteria for the index hash key and range key (if present), and
the attributes that you want to return. In this example, the index is PrecipIndex, which has a hash key of
Date and a range key of Precipitation. The index query returns all of the weather data for a particular
date, where the precipitation is greater than zero.

The following are the steps to query a global secondary index using the PHP low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the parameters for the query operation to the client instance.

You must provide the table name, the index name, the key conditions for the query, and the attributes
that you want returned.

The attribute name Date is a DynamoDB reserved word.Therefore, we must use an expression attribute
name as a placeholder in the KeyConditionExpression.

The following PHP code snippet demonstrates the preceding steps.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$tableName = 'WeatherData';

$response = $client->query(array(
 'TableName' => $tableName,
 'IndexName' => 'PrecipIndex',
 'KeyConditionExpression' => '#dt = :v_dt and Precipitation > :v_precip',

API Version 2012-08-10
302

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

 'ExpressionAttributeNames' => array (
 '#dt' => 'Date'),
 'ExpressionAttributeValues' => array (
 ':v_dt' => array('S' => '2014-08-01'),
 ':v_precip' => array('N' => 0)
),
 'Select' => 'ALL_ATTRIBUTES',
 'ScanIndexForward' => true,
));

foreach ($response['Items'] as $item) {
 echo "Date ---> " . $item['Date']['S'] . PHP_EOL;
 echo "Location ---> " . $item['Location']['S'] . PHP_EOL;
 echo "Precipitation ---> " . $item['Precipitation']['N'] . PHP_EOL;
 echo PHP_EOL;
}

Example: Global Secondary Indexes Using the AWS SDK
for PHP Low-Level API
The following PHP code example shows how to work with global secondary indexes.The example creates
a table named Issues, which might be used in a simple bug tracking system for software development.
The hash key attribute is IssueId and the range key is Title. There are three global secondary indexes
on this table:

• CreateDateIndex—the hash key is CreateDate and the range key is IssueId. In addition to the table
keys, the attributes Description and Status are projected into the index.

• TitleIndex—the hash key is IssueId and the range key is Title. No attributes other than the table keys
are projected into the index.

• DueDateIndex—the hash key is DueDate, and there is no range key. All of the table attributes are
projected into the index.

After the Issues table is created, the program loads the table with data representing software bug reports,
and then queries the data using the global secondary indexes. Finally, the program deletes the Issues
table.

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

$tableName = 'Issues';

echo "# Creating table $tableName..." . PHP_EOL;

$response = $client->createTable (array (
 'TableName' => $tableName,
 'AttributeDefinitions' => array (
 array (
 'AttributeName' => 'IssueId',

API Version 2012-08-10
303

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

 'AttributeType' => 'S'
),
 array (
 'AttributeName' => 'Title',
 'AttributeType' => 'S'
),
 array (
 'AttributeName' => 'CreateDate',
 'AttributeType' => 'S'
),
 array (
 'AttributeName' => 'DueDate',
 'AttributeType' => 'S'
)
),
 'KeySchema' => array (
 array (
 'AttributeName' => 'IssueId',
 'KeyType' => 'HASH'
),
 array (
 'AttributeName' => 'Title',
 'KeyType' => 'RANGE'
)
),
 'GlobalSecondaryIndexes' => array (
 array (
 'IndexName' => 'CreateDateIndex',
 'KeySchema' => array (
 array (
 'AttributeName' => 'CreateDate',
 'KeyType' => 'HASH'
),
 array (
 'AttributeName' => 'IssueId',
 'KeyType' => 'RANGE'
)
),
 'Projection' => array (
 'ProjectionType' => 'INCLUDE',
 'NonKeyAttributes' => array (
 'Description',
 'Status'
)
),
 'ProvisionedThroughput' => array (
 'ReadCapacityUnits' => 1,
 'WriteCapacityUnits' => 1
)
),
 array (
 'IndexName' => 'TitleIndex',
 'KeySchema' => array (
 array (
 'AttributeName' => 'Title',
 'KeyType' => 'HASH'
),
 array (

API Version 2012-08-10
304

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

 'AttributeName' => 'IssueId',
 'KeyType' => 'RANGE'
)
),
 'Projection' => array (
 'ProjectionType' => 'KEYS_ONLY'
),
 'ProvisionedThroughput' => array (
 'ReadCapacityUnits' => 1,
 'WriteCapacityUnits' => 1
)
),
 array (
 'IndexName' => 'DueDateIndex',
 'KeySchema' => array (
 array (
 'AttributeName' => 'DueDate',
 'KeyType' => 'HASH'
)
),
 'Projection' => array (
 'ProjectionType' => 'ALL'
),
 'ProvisionedThroughput' => array (
 'ReadCapacityUnits' => 1,
 'WriteCapacityUnits' => 1
)
)
),
 'ProvisionedThroughput' => array (
 'ReadCapacityUnits' => 1,
 'WriteCapacityUnits' => 1
)
));

echo " Waiting for table $tableName to be created." . PHP_EOL;
$client->waitUntilTableExists (array (
 'TableName' => $tableName
));
echo " Table $tableName has been created." . PHP_EOL;

// ##
// Add items to the table

echo "# Loading data into $tableName..." . PHP_EOL;

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'IssueId' => array (
 'S' => 'A-101'
),
 'Title' => array (
 'S' => 'Compilation error'
),
 'Description' => array (
 'S' => 'Can\'t compile Project X - bad version number. What does
this mean?'

API Version 2012-08-10
305

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

),
 'CreateDate' => array (
 'S' => '2014-11-01'
),
 'LastUpdateDate' => array (
 'S' => '2014-11-02'
),
 'DueDate' => array (
 'S' => '2014-11-10'
),
 'Priority' => array (
 'N' => '1'
),
 'Status' => array (
 'S' => 'Assigned'
)
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'IssueId' => array (
 'S' => 'A-102'
),
 'Title' => array (
 'S' => 'Can\'t read data file'
),
 'Description' => array (
 'S' => 'The main data file is missing, or the permissions are incor
rect'
),
 'CreateDate' => array (
 'S' => '2014-11-01'
),
 'LastUpdateDate' => array (
 'S' => '2014-11-04'
),
 'DueDate' => array (
 'S' => '2014-11-30'
),
 'Priority' => array (
 'N' => '2'
),
 'Status' => array (
 'S' => 'In progress'
)
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'IssueId' => array (
 'S' => 'A-103'
),
 'Title' => array (
 'S' => 'Test failure'

API Version 2012-08-10
306

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

),
 'Description' => array (
 'S' => 'Functional test of Project X produces errors.'
),
 'CreateDate' => array (
 'S' => '2014-11-01'
),
 'LastUpdateDate' => array (
 'S' => '2014-11-02'
),
 'DueDate' => array (
 'S' => '2014-11-10'
),
 'Priority' => array (
 'N' => '1'
),
 'Status' => array (
 'S' => 'In progress'
)
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'IssueId' => array (
 'S' => 'A-104'
),
 'Title' => array (
 'S' => 'Compilation error'
),
 'Description' => array (
 'S' => 'Variable "messageCount" was not initialized.'
),
 'CreateDate' => array (
 'S' => '2014-11-15'
),
 'LastUpdateDate' => array (
 'S' => '2014-11-16'
),
 'DueDate' => array (
 'S' => '2014-11-30'
),
 'Priority' => array (
 'N' => '3'
),
 'Status' => array (
 'S' => 'Assigned'
)
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'IssueId' => array (
 'S' => 'A-105'
),

API Version 2012-08-10
307

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

 'Title' => array (
 'S' => 'Network issue'
),
 'Description' => array (
 'S' => 'Can\'t ping IP address 127.0.0.1. Please fix this.'
),
 'CreateDate' => array (
 'S' => '2014-11-15'
),
 'LastUpdateDate' => array (
 'S' => '2014-11-16'
),
 'DueDate' => array (
 'S' => '2014-11-19'
),
 'Priority' => array (
 'N' => '5'
),
 'Status' => array (
 'S' => 'Assigned'
)
)
));

// ##
// Query for issues filed on 2014-11-01

$response = $client->query (array (
 'TableName' => $tableName,
 'IndexName' => 'CreateDateIndex',
 'KeyConditionExpression' => 'CreateDate = :v_dt and begins_with(IssueId,
:v_issue)',
 'ExpressionAttributeValues' => array (
 ':v_dt' => array('S' => '2014-11-01'),
 ':v_issue' => array('S' => 'A-')
)
));

echo '# Query for issues filed on 2014-11-01:' . PHP_EOL;
foreach ($response ['Items'] as $item) {
 echo ' - ' . $item ['CreateDate'] ['S'] . ' ' . $item ['IssueId'] ['S'] .
' '
 . $item ['Description'] ['S'] . ' ' . $item ['Status'] ['S'] .
PHP_EOL;
}

print PHP_EOL;

// ##
// Query for issues that are 'Compilation errors'

$response = $client->query (array (
 'TableName' => $tableName,
 'IndexName' => 'TitleIndex',
 'KeyConditionExpression' => 'Title = :v_title and IssueId >= :v_issue',
 'ExpressionAttributeValues' => array (
 ':v_title' => array('S' => 'Compilation error'),
 ':v_issue' => array('S' => 'A-')

API Version 2012-08-10
308

Amazon DynamoDB Developer Guide
Global Secondary Indexes - PHP Low-Level API

)
));

echo '# Query for issues that are compilation errors: ' . PHP_EOL;

foreach ($response ['Items'] as $item) {
 echo ' - ' . $item ['Title'] ['S'] . ' ' . $item ['IssueId'] ['S'] . PHP_EOL;
}

print PHP_EOL;

// ##
// Query for items that are due on 2014-11-30

$response = $client->query (array (
 'TableName' => $tableName,
 'IndexName' => 'DueDateIndex',
 'KeyConditionExpression' => 'DueDate = :v_dt',
 'ExpressionAttributeValues' => array (
 ':v_dt' => array('S' => '2014-11-30')
)
));

echo '# Querying for items that are due on 2014-11-30:' . PHP_EOL;
foreach ($response ['Items'] as $item) {

 echo ' - ' . $item ['DueDate'] ['S'] . ' ' . $item ['IssueId'] ['S'] . ' '
 .
 $item ['Title'] ['S'] . ' ' . $item ['Description'] ['S'] . ' ' .
 $item ['CreateDate'] ['S'] . ' ' . $item ['LastUpdateDate'] ['S'] . ' ' .

 $item ['Priority'] ['N'] . ' ' . $item ['Status'] ['S'] . PHP_EOL;
}

print PHP_EOL;

// ##
// Delete the table

echo "# Deleting table $tableName..." . PHP_EOL;
$client->deleteTable (array (
 'TableName' => $tableName
));

$client->waitUntilTableNotExists (array (
 'TableName' => $tableName
));
echo " Deleted table $tableName" . PHP_EOL;

?>

Local Secondary Indexes
Topics

• Attribute Projections (p. 312)

API Version 2012-08-10
309

Amazon DynamoDB Developer Guide
Local Secondary Indexes

• Creating a Local Secondary Index (p. 313)

• Querying a Local Secondary Index (p. 314)

• Scanning a Local Secondary Index (p. 315)

• Item Writes and Local Secondary Indexes (p. 315)

• Provisioned Throughput Considerations for Local Secondary Indexes (p. 315)

• Storage Considerations for Local Secondary Indexes (p. 317)

• Item Collections (p. 317)

• Guidelines for Local Secondary Indexes (p. 320)

• Working with Local Secondary Indexes Using the Java Document API (p. 322)

• Working with Local Secondary Indexes Using the AWS SDK for .NET Low-Level API (p. 332)

• Working with Local Secondary Indexes Using the AWS SDK for PHP Low-Level API (p. 346)

Some applications only need to query data using the table's primary key; however, there may be situations
where an alternate range key would be helpful. To give your application a choice of range keys, you can
create one or more local secondary indexes on a table and issue Query or Scan requests against these
indexes.

For example, consider the Thread table that is defined in Example Tables and Data (p. 681). This table is
useful for an application such as the AWS Discussion Forums. The following diagram shows how the
items in the table would be organized. (Not all of the attributes are shown.)

DynamoDB stores all of the items with the same hash key contiguously. In this example, given a particular
ForumName, a Query operation could immediately locate all of the threads for that forum. Within a group
of items with the same hash key, the items are sorted by range key. If the range key (Subject) is also
provided in the query, DynamoDB can narrow down the results that are returned—for example, returning
all of the threads in the "S3" forum that have a Subject beginning with the letter "a".

Some requests might require more complex data access patterns. For example:

• Which forum threads get the most views and replies?

• Which thread in a particular forum has the largest number of messages?

• How many threads were posted in a particular forum within a particular time period?

API Version 2012-08-10
310

Amazon DynamoDB Developer Guide
Local Secondary Indexes

https://forums.aws.amazon.com/

To answer these questions, the Query action would not be sufficient. Instead, you would have to Scan
the entire table. For a table with millions of items, this would consume a large amount of provisioned read
throughput and take a long time to complete.

However, you can specify one or more local secondary indexes on non-key attributes, such as Replies
or LastPostDateTime.

A local secondary index maintains an alternate range key for a given hash key. A local secondary index
also contains a copy of some or all of the attributes from the table; you specify which attributes are
projected into the local secondary index when you create the table. The data in a local secondary index
is organized by the same hash key as the table, but with a different range key. This lets you access data
items efficiently across this different dimension. For greater query or scan flexibility, you can create up
to five local secondary indexes per table.

Suppose that an application needs to find all of the threads that have been posted within the last three
months. Without a local secondary index, the application would have to Scan the entire Thread table and
discard any posts that were not within the specified time frame. With a local secondary index, a Query
operation could use LastPostDateTime as a range key and find the data quickly.

The following diagram shows a local secondary index named LastPostIndex. Note that the hash key is
the same as that of the Thread table, but the range key is LastPostDateTime.

Every local secondary index must meet the following conditions:

• The hash key is the same as that of the source table.

• The range key consists of a single attribute.

• The range key attribute of the source table is projected into the index, where it acts as a non-key
attribute.

In this example, the hash key is ForumName and the range key of the local secondary index is
LastPostDateTime. In addition, the range key value from the source table (in this example, Subject) is
projected into the index, but it is not a part of the index key. If an application needs a list that is based on
ForumName and LastPostDateTime, it can issue a Query request against LastPostIndex. The query
results are sorted by LastPostDateTime, and can be returned in ascending or descending order. The
query can also apply key conditions, such as returning only items that have a LastPostDateTime within
a particular time span.

API Version 2012-08-10
311

Amazon DynamoDB Developer Guide
Local Secondary Indexes

Every local secondary index automatically contains the hash and range attributes from its parent table;
you can optionally project non-key attributes into the index. When you query the index, DynamoDB can
retrieve these projected attributes efficiently. When you query a local secondary index, the query can
also retrieve attributes that are not projected into the index. DynamoDB will automatically fetch these
attributes from the table, but at a greater latency and with higher provisioned throughput costs.

For any local secondary index, you can store up to 10 GB of data per distinct hash key value. This figure
includes all of the items in the table, plus all of the items in the indexes, that have the same hash key.
For more information, see Item Collections (p. 317).

Attribute Projections
With LastPostIndex, an application could use ForumName and LastPostDateTime as query criteria;
however, to retrieve any additional attributes, DynamoDB would need to perform additional read operations
against the Thread table.These extra reads are known as fetches, and they can increase the total amount
of provisioned throughput required for a query.

Suppose that you wanted to populate a web page with a list of all the threads in "S3" and the number of
replies for each thread, sorted by the last reply date/time beginning with the most recent reply.To populate
this list, you would need the following attributes:

• Subject

• Replies

• LastPostDateTime

The most efficient way to query this data, and to avoid fetch operations, would be to project the Replies
attribute from the table into the local secondary index, as shown in this diagram:

A projection is the set of attributes that is copied from a table into a secondary index.The hash and range
keys of the table are always projected into the index; you can project other attributes to support your
application's query requirements.When you query an index, Amazon DynamoDB can access any attribute
in the projection as if those attributes were in a table of their own.

When you create a secondary index, you need to specify the attributes that will be projected into the
index. DynamoDB provides three different options for this:

API Version 2012-08-10
312

Amazon DynamoDB Developer Guide
Attribute Projections

• KEYS_ONLY – Each item in the index consists only of the table hash and range key values, plus the
index key values. The KEYS_ONLY option results in the smallest possible secondary index.

• INCLUDE – In addition to the attributes described in KEYS_ONLY, the secondary index will include other
non-key attributes that you specify.

• ALL – The secondary index includes all of the attributes from the source table. Because all of the table
data is duplicated in the index, an ALL projection results in the largest possible secondary index.

In the previous diagram, the non-key attribute Replies is projected into LastPostIndex. An application can
query LastPostIndex instead of the full Thread table to populate a web page with Subject, Replies and
LastPostDateTime. If any other non-key attributes are requested, DynamoDB would need to fetch those
attributes from the Thread table.

From an application's point of view, fetching additional attributes from the table is automatic and transparent,
so there is no need to rewrite any application logic. However, note that such fetching can greatly reduce
the performance advantage of using a local secondary index.

When you choose the attributes to project into a local secondary index, you must consider the tradeoff
between provisioned throughput costs and storage costs:

• If you need to access just a few attributes with the lowest possible latency, consider projecting only
those attributes into a local secondary index. The smaller the index, the less that it will cost to store it,
and the less your write costs will be. If there are attributes that you occasionally need to fetch, the cost
for provisioned throughput may well outweigh the longer-term cost of storing those attributes.

• If your application will frequently access some non-key attributes, you should consider projecting those
attributes into a local secondary index. The additional storage costs for the local secondary index will
offset the cost of performing frequent table scans.

• If you need to access most of the non-key attributes on a frequent basis, you can project these
attributes—or even the entire source table— into a local secondary index. This will give you maximum
flexibility and lowest provisioned throughput consumption, because no fetching would be required;
however, your storage cost would increase, or even double if you are projecting all attributes.

• If your application needs to query a table infrequently, but must perform many writes or updates against
the data in the table, consider projecting KEYS_ONLY. The local secondary index would be of minimal
size, but would still be available when needed for query activity.

Creating a Local Secondary Index
To create one or more local secondary indexes on a table, use the LocalSecondaryIndexes parameter
of the CreateTable operation. Local secondary indexes on a table are created when the table is created.
When you delete a table, any local secondary indexes on that table are also deleted.

You must specify one non-key attribute for the range key of the local secondary index. The attribute that
you choose must be a scalar data type, not a multi-value set. For a complete list of data types, see
DynamoDB Data Types (p. 6).

Important
For tables with local secondary indexes, there is a 10 GB size limit per hash key. A table with
local secondary indexes can store any number of items, as long as the total size for any one
hash key does not exceed 10 GB. For more information, see Item Collection Size Limit (p. 319).

You can project attributes of any data type into a local secondary index. This includes scalar data types
and multi-valued sets. For a complete list of data types, see DynamoDB Data Types (p. 6).

For an example CreateTable request that includes a local secondary index, see CreateTable in the
Amazon DynamoDB API Reference.

API Version 2012-08-10
313

Amazon DynamoDB Developer Guide
Creating a Local Secondary Index

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html

Querying a Local Secondary Index
In a DynamoDB table, the combined hash key and range key value for each item must be unique. However,
in a local secondary index, the range key value does not need to be unique for a given hash key value.
If there are multiple items in the local secondary index that have the same range key value, a Query
operation will return all of the items that have the same hash key value. In the response, the matching
items are not returned in any particular order.

You can query a local secondary index using either eventually consistent or strongly consistent reads.
To specify which type of consistency you want, use the ConsistentRead parameter of the Query operation.
A strongly consistent read from a local secondary index will always return the latest updated values. If
the query needs to fetch additional attributes from the table, then those attributes will be consistent with
respect to the index.

Example

Consider the following data returned from a Query that requests data from the discussion threads in a
particular forum:

{
 "TableName": "Thread",
 "IndexName": "LastPostIndex",
 "ConsistentRead": false,
 "ProjectionExpression": "Subject, LastPostDateTime, Replies, Tags",
 "KeyConditionExpression":
 "ForumName = :v_forum and LastPostDateTime between :v_start and :v_end",

 "ExpressionAttributeValues": {
 ":v_start": {"S": "2012-08-31T00:00:00.000Z"},
 ":v_end": {"S": "2012-11-31T00:00:00.000Z"},
 ":v_forum": {"S": "EC2"}
 }
}

In this query:

• DynamoDB accesses LastPostIndex, using the ForumName hash key to locate the index items for
"EC2". All of the index items with this key are stored adjacent to each other for rapid retrieval.

• Within this forum, DynamoDB uses the index to look up the keys that match the specified
LastPostDateTime condition.

• Because the Replies attribute is projected into the index, DynamoDB can retrieve this attribute without
consuming any additional provisioned throughput.

• The Tags attribute is not projected into the index, so DynamoDB must access the Thread table and
fetch this attribute.

• The results are returned, sorted by LastPostDateTime. The index entries are sorted by hash key and
then by range key, and Query returns them in the order they are stored. (You can use the
ScanIndexForward parameter to return the results in descending order.)

Because the Tags attribute is not projected into the local secondary index, DynamoDB must consume
additional read capacity units to fetch this attribute from the table. If you need to run this query often, you
should project Tags into LastPostIndex to avoid fetching from the table; however, if you needed to access
Tags only occasionally, then the additional storage cost for projecting Tags into the index might not be
worthwhile.

API Version 2012-08-10
314

Amazon DynamoDB Developer Guide
Querying a Local Secondary Index

Scanning a Local Secondary Index
You can use the Scan API to retrieve all of the data from a local secondary index.You must provide the
table name and the index name in the request. With a Scan, DynamoDB reads all of the data in the index
and returns it to the application.You can also request that only some of the data be returned, and that
the remaining data should be discarded. To do this, use the FilterExpression parameter of the Scan
API. For more information, see Filtering the Results from a Query or a Scan (p. 194).

Item Writes and Local Secondary Indexes
DynamoDB automatically keeps all local secondary indexes synchronized with their respective tables.
Applications never write directly to an index. However, it is important that you understand the implications
of how DynamoDB maintains these indexes.

When you create a local secondary index, you specify an attribute to serve as the range key for the index.
You also specify a data type for that attribute. This means that whenever you write an item to the table,
if the item defines an index key attribute, its type must match the index key schema's data type. In the
case of LastPostIndex, the LastPostDateTime range key in the index is defined as a String data type. If
you attempt to add an item to the Thread table and specify a different data type for LastPostDateTime
(such as Number), DynamoDB will return a ValidationException because of the data type mismatch.

If you write an item to a table, you don't have to specify the attributes for any local secondary index range
key. Using LastPostIndex as an example, you would not need to specify a value for the LastPostDateTime
attribute in order to write a new item to the Thread table. In this case, DynamoDB does not write any data
to the index for this particular item.

There is no requirement for a one-to-one relationship between the items in a table and the items in a local
secondary index; in fact, this behavior can be advantageous for many applications. For more information,
see Take Advantage of Sparse Indexes (p. 321).

A table with many local secondary indexes will incur higher costs for write activity than tables with fewer
indexes. For more information, see Provisioned Throughput Considerations for Local Secondary
Indexes (p. 315).

Important
For tables with local secondary indexes, there is a 10 GB size limit per hash key. A table with
local secondary indexes can store any number of items, as long as the total size for any one
hash key does not exceed 10 GB. For more information, see Item Collection Size Limit (p. 319).

Provisioned Throughput Considerations for Local
Secondary Indexes
When you create a table in DynamoDB, you provision read and write capacity units for the table's expected
workload. That workload includes read and write activity on the table's local secondary indexes.

To view the current rates for provisioned throughput capacity, go to http://aws.amazon.com/dynamodb/
pricing.

Read Capacity Units
When you query a local secondary index, the number of read capacity units consumed depends on how
the data is accessed.

As with table queries, an index query can use either eventually consistent or strongly consistent reads
depending on the value of ConsistentRead. One strongly consistent read consumes one read capacity

API Version 2012-08-10
315

Amazon DynamoDB Developer Guide
Scanning a Local Secondary Index

http://aws.amazon.com/dynamodb/pricing
http://aws.amazon.com/dynamodb/pricing

unit; an eventually consistent read consumes only half of that. Thus, by choosing eventually consistent
reads, you can reduce your read capacity unit charges.

For index queries that request only index keys and projected attributes, DynamoDB calculates the
provisioned read activity in the same way as it does for queries against tables. The only difference is that
the calculation is based on the sizes of the index entries, rather than the size of the item in the table. The
number of read capacity units is the sum of all projected attribute sizes across all of the items returned;
the result is then rounded up to the next 4 KB boundary. For more information on how DynamoDB
calculates provisioned throughput usage, see Specifying Read and Write Requirements for Tables (p. 62).

For index queries that read attributes that are not projected into the local secondary index, DynamoDB
will need to fetch those attributes from the table, in addition to reading the projected attributes from the
index. These fetches occur when you include any non-projected attributes in the Select or
ProjectionExpression parameters of the Query operation. Fetching causes additional latency in
query responses, and it also incurs a higher provisioned throughput cost: In addition to the reads from
the local secondary index described above, you are charged for read capacity units for every table item
fetched. This charge is for reading each entire item from the table, not just the requested attributes.

The maximum size of the results returned by a Query operation is 1 MB; this includes the sizes of all the
attribute names and values across all of the items returned. However, if a Query against a local secondary
index causes DynamoDB to fetch item attributes from the table, the maximum size of the data in the
results might be lower. In this case, the result size is the sum of:

• The size of the matching items in the index, rounded up to the next 4 KB.

• The size of each matching item in the table, with each item individually rounded up to the next 4 KB.

Using this formula, the maximum size of the results returned by a Query operation is still 1 MB.

For example, consider a table where the size of each item is 300 bytes. There is a local secondary index
on that table, but only 200 bytes of each item is projected into the index. Now suppose that you Query
this index, that the query requires table fetches for each item, and that the query returns 4 items.
DynamoDB sums up the following:

• The size of the matching items in the index: 200 bytes × 4 items = 800 bytes; this is then rounded up
to 4 KB.

• The size of each matching item in the table: (300 bytes, rounded up to 4 KB) × 4 items = 16 KB.

The total size of the data in the result is therefore 20 KB.

Write Capacity Units
When an item in a table is added, updated, or deleted, updating the local secondary indexes will consume
provisioned write capacity units for the table. The total provisioned throughput cost for a write is the sum
of write capacity units consumed by writing to the table and those consumed by updating the local
secondary indexes.

The cost of writing an item to a local secondary index depends on several factors:

• If you write a new item to the table that defines an indexed attribute, or you update an existing item to
define a previously undefined indexed attribute, one write operation is required to put the item into the
index.

• If an update to the table changes the value of an indexed key attribute (from A to B), two writes are
required, one to delete the previous item from the index and another write to put the new item into the
index.

• If an item was present in the index, but a write to the table caused the indexed attribute to be deleted,
one write is required to delete the old item projection from the index.

API Version 2012-08-10
316

Amazon DynamoDB Developer Guide
Provisioned Throughput Considerations for Local

Secondary Indexes

• If an item is not present in the index before or after the item is updated, there is no additional write cost
for the index.

All of these factors assume that the size of each item in the index is less than or equal to the 1 KB item
size for calculating write capacity units. Larger index entries will require additional write capacity units.
You can minimize your write costs by considering which attributes your queries will need to return and
projecting only those attributes into the index.

Storage Considerations for Local Secondary
Indexes
When an application writes an item to a table, DynamoDB automatically copies the correct subset of
attributes to any local secondary indexes in which those attributes should appear.Your AWS account is
charged for storage of the item in the table and also for storage of attributes in any local secondary indexes
on that table.

The amount of space used by an index item is the sum of the following:

• The size in bytes of the table primary key (hash and range key attributes)

• The size in bytes of the index key attribute

• The size in bytes of the projected attributes (if any)

• 100 bytes of overhead per index item

To estimate the storage requirements for a local secondary index, you can estimate the average size of
an item in the index and then multiply by the number of items in the table.

If a table contains an item where a particular attribute is not defined, but that attribute is defined as an
index range key, then DynamoDB does not write any data for that item to the index. For more information
about this behavior, see Take Advantage of Sparse Indexes (p. 321).

Item Collections
Note
The following section pertains only to tables that have local secondary indexes.

In DynamoDB, an item collection is any group of items that have the same hash key, in a table and all of
its local secondary indexes. In the examples used throughout this section, the hash key for the Thread
table is ForumName, and the hash key for LastPostIndex is also ForumName. All the table and index
items with the same ForumName are part of the same item collection. For example, in the Thread table
and the LastPostIndex local secondary index, there is an item collection for forum EC2 and a different
item collection for forum RDS.

The following diagram shows the item collection for forum S3:

API Version 2012-08-10
317

Amazon DynamoDB Developer Guide
Storage Considerations for Local Secondary Indexes

In this diagram, the item collection consists of all the items in Thread and LastPostIndex where the
ForumName hash key is "S3". If there were other local secondary indexes on the table, then any items
in those indexes with ForumName equal to "S3" would also be part of the item collection.

You can use any of the following operations in DynamoDB to return information about item collections:

• BatchWriteItem

• DeleteItem

• PutItem

• UpdateItem

Each of these operations support the ReturnItemCollectionMetrics parameter. When you set this
parameter to SIZE, you can view information about the size of each item collection in the index.

API Version 2012-08-10
318

Amazon DynamoDB Developer Guide
Item Collections

Example

Here is a snippet from the output of an UpdateItem operation on the Thread table, with
ReturnItemCollectionMetrics set to SIZE. The item that was updated had a ForumName value of
"EC2", so the output includes information about that item collection.

{
 ItemCollectionMetrics: {
 ItemCollectionKey: {
 ForumName: "EC2"
 },
 SizeEstimateRangeGB: [0.0, 1.0]
 }
}

The SizeEstimateRangeGB object shows that the size of this item collection is between 0 and 1 gigabyte.
DynamoDB periodically updates this size estimate, so the numbers might be different next time the item
is modified.

Item Collection Size Limit
The maximum size of any item collection is 10 GB. This limit does not apply to tables without local
secondary indexes; only tables that have one or more local secondary indexes are affected.

If an item collection exceeds the 10 GB limit, DynamoDB will return an
ItemCollectionSizeLimitExceededException and you won't be able to add more items to the
item collection or increase the sizes of items that are in the item collection. (Read and write operations
that shrink the size of the item collection are still allowed.) You will still be able to add items to other item
collections.

To reduce the size of an item collection, you can do one of the following:

• Delete any unnecessary items with the hash key in question. When you delete these items from the
table, DynamoDB will also remove any index entries that have the same hash key.

• Update the items by removing attributes or by reducing the size of the attributes. If these attributes are
projected into any local secondary indexes, DynamoDB will also reduce the size of the corresponding
index entries.

• Create a new table with the same hash and range key, and then move items from the old table to the
new table. This might be a good approach if a table has historical data that is infrequently accessed.
You might also consider archiving this historical data to Amazon Simple Storage Service (Amazon S3).

When the total size of the item collection drops below 10 GB, you will once again be able to add items
with the same hash key.

We recommend as a best practice that you instrument your application to monitor the sizes of your item
collections. One way to do so is to set the ReturnItemCollectionMetrics parameter to SIZE whenever
you use BatchWriteItem, DeleteItem, PutItem or UpdateItem.Your application should examine
the ReturnItemCollectionMetrics object in the output and log an error message whenever an item
collection exceeds a user-defined limit (8 GB, for example). Setting a limit that is less than 10 GB would
provide an early warning system so you know that an item collection is approaching the limit in time to
do something about it.

Item Collections and Partitions
The table and index data for each item collection is stored in a single partition. Referring to the Thread
table example, all of the table and index items with the same ForumName attribute would be stored in

API Version 2012-08-10
319

Amazon DynamoDB Developer Guide
Item Collections

the same partition. The "S3" item collection would be stored on one partition, "EC2" in another partition,
and "RDS" in a third partition.

You should design your applications so that table data is evenly distributed across distinct hash key
values. For tables with local secondary indexes, your applications should not create "hot spots" of read
and write activity within a single item collection on a single partition.

Guidelines for Local Secondary Indexes
Topics

• Use Indexes Sparingly (p. 320)

• Choose Projections Carefully (p. 320)

• Optimize Frequent Queries To Avoid Fetches (p. 321)

• Take Advantage of Sparse Indexes (p. 321)

• Watch For Expanding Item Collections (p. 321)

This section covers some best practices for local secondary indexes.

Use Indexes Sparingly
Don't create local secondary indexes on attributes that you won't often query. Creating and maintaining
multiple indexes makes sense for tables that are updated infrequently and are queried using many different
criteria. Unused indexes, however, contribute to increased storage and I/O costs, and they do nothing
for application performance.

Avoid indexing tables, such as those used in data capture applications, that experience heavy write
activity. The cost of I/O operations required to maintain the indexes can be significant. If you need to
index the data in such a table, copy the data to another table with any necessary indexes, and query it
there.

Choose Projections Carefully
Because local secondary indexes consume storage and provisioned throughput, you should keep the
size of the index as small as possible. Additionally, the smaller the index, the greater the performance
advantage compared to querying the full table. If your queries usually return only a small subset of
attributes and the total size of those attributes is much smaller than the whole item, project only the
attributes that you will regularly request.

If you expect a lot of write activity on a table, compared to reads:

• Consider projecting fewer attributes, which will minimize the size of items written to the index. However,
if these items are smaller than a single write capacity unit (1 KB), then there won't be any savings in
terms of write capacity units. For example, if the size of an index entry is only 200 bytes, DynamoDB
rounds this up to 1 KB. In other words, as long as the index items are small, you can project more
attributes at no extra cost.

• If you know that some attributes of that table will rarely be used in queries, then there is no reason to
project those attributes. If you subsequently update an attribute that is not in the index, you won't incur
the extra cost of updating the index.You can still retrieve non-projected attributes in a Query, but at a
higher provisioned throughput cost.

Specify ALL only if you want your queries to return the entire table item but you want to sort the table by
a different range key. Indexing all attributes will eliminate the need for table fetches, but in most cases it
will double your costs for storage and write activity.

API Version 2012-08-10
320

Amazon DynamoDB Developer Guide
Guidelines for Local Secondary Indexes

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html#GuidelinesForTables.UniformWorkload
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html#GuidelinesForTables.UniformWorkload

Optimize Frequent Queries To Avoid Fetches
To get the fastest queries with the lowest possible latency, project all of the attributes that you expect
those queries to return. If you query an index, but the attributes that you requests are not projected,
DynamoDB will fetch the requested attributes from the table. To do so, DynamoDB must read the entire
item from the table, which introduces latency and additional I/O operations.

If you only issue certain queries only occasionally, and you don't see the need to project all the requested
attributes, keep in mind that these "occasional" queries can often turn into "essential" queries! You might
regret not projecting those attributes after all.

For more information about table fetches, see Provisioned Throughput Considerations for Local Secondary
Indexes (p. 315).

Take Advantage of Sparse Indexes
For any item in a table, DynamoDB will only write a corresponding index entry if the index range key
attribute value is present in the item. If the range key attribute does not appear in every table item, the
index is said to be sparse.

Sparse indexes can be beneficial for queries on attributes that don't appear in most table items. For
example, suppose that you have a CustomerOrders table that stores all of your orders.The key attributes
for the table would be as follows:

• Hash key: CustomerId

• Range key: OrderId

If you want to track only orders that are open, you can have an attribute named IsOpen. If you are waiting
to receive an order, your application can define IsOpen by writing an "X" (or any other value) for that
particular item in the table. When the order arrives, your application can delete the IsOpen attribute to
signify that the order has been fulfilled.

To track open orders, you can create an index on CustomerId (hash) and IsOpen (range). Only those
orders in the table with IsOpen defined will appear in the index.Your application can then quickly and
efficiently find the orders that are still open by querying the index. If you had thousands of orders, for
example, but only a small number that are open, the application can query the index and return the OrderId
of each open order.Your application will perform significantly fewer reads than it would take to scan the
entire CustomerOrders table.

Instead of writing an arbitrary value into the IsOpen attribute, you can use a different attribute that will
result in a useful sort order in the index. To do this, you can create an OrderOpenDate attribute and set
it to the date on which the order was placed (and still delete the attribute once the order is fulfilled), and
create the OpenOrders index with the schema CustomerId (hash) and OrderOpenDate (range).This way
when you query your index, the items will be returned in a more useful sort order.

Watch For Expanding Item Collections
An item collection is all the items in a table and its indexes that have the same hash key. An item collection
cannot exceed 10 GB, so it's possible to run out of space for a particular hash key.

When you add or update a table item, DynamoDB will update any local secondary indexes that are
affected. If the indexed attributes are defined in the table, the indexes will grow with the table.

When you create an index, think about how much data will be written to the index, and how much of that
data will have the same hash key. If you expect that the sum of table and index items for a particular hash
key will exceed 10 GB, you should consider whether you could avoid creating the index.

API Version 2012-08-10
321

Amazon DynamoDB Developer Guide
Guidelines for Local Secondary Indexes

If you cannot avoid creating the index, then you will need to anticipate the item collection size limit and
take action before you exceed it. For strategies on working within the limit and taking corrective action,
see Item Collection Size Limit (p. 319).

Working with Local Secondary Indexes Using the
Java Document API
Topics

• Create a Table With a Local Secondary Index (p. 322)

• Describe a Table With a Local Secondary Index (p. 324)

• Query a Local Secondary Index (p. 324)

• Example: Local Secondary Indexes Using the Java Document API (p. 325)

You can use the AWS SDK for Java Document API to create a table with one or more local secondary
indexes, describe the indexes on the table, and perform queries using the indexes.

The following are the common steps for table operations using the AWS SDK for Java Document API.

1. Create an instance of the DynamoDB class.

2. Provide the required and optional parameters for the operation by creating the corresponding request
objects.

3. Call the appropriate method provided by the client that you created in the preceding step.

Create a Table With a Local Secondary Index
Local secondary indexes must be created at the same time you create a table. To do this, use the
createTable method and provide your specifications for one or more local secondary indexes. The
following Java code snippet creates a table to hold information about songs in a music collection. The
hash key is Artist and the range key is SongTitle. A secondary index, AlbumTitleIndex, facilitates queries
by album title.

The following are the steps to create a table with a local secondary index, using the DynamoDB document
API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the CreateTableRequest class to provide the request information.

You must provide the table name, its primary key, and the provisioned throughput values. For the local
secondary index, you must provide the index name, the attribute definitions for the index range key,
the key schema for the index, and the attribute projection.

3. Call the createTable method by providing the request object as a parameter.

The following Java code snippet demonstrates the preceding steps. The snippet creates a table (Music)
with a secondary index on the AlbumTitle attribute. The table hash and range key, plus the index range
key, are the only attributes projected into the index.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

String tableName = "Music";

API Version 2012-08-10
322

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

CreateTableRequest createTableRequest = new CreateTableRequest().withTable
Name(tableName);

//ProvisionedThroughput
createTableRequest.setProvisionedThroughput(new ProvisionedThroughput().with
ReadCapacityUnits((long)5).withWriteCapacityUnits((long)5));

//AttributeDefinitions
ArrayList<AttributeDefinition> attributeDefinitions= new ArrayList<AttributeDefin
ition>();
attributeDefinitions.add(new AttributeDefinition().withAttribute
Name("Artist").withAttributeType("S"));
attributeDefinitions.add(new AttributeDefinition().withAttributeName("Song
Title").withAttributeType("S"));
attributeDefinitions.add(new AttributeDefinition().withAttributeName("Album
Title").withAttributeType("S"));

createTableRequest.setAttributeDefinitions(attributeDefinitions);

//KeySchema
ArrayList<KeySchemaElement> tableKeySchema = new ArrayList<KeySchemaElement>();
tableKeySchema.add(new KeySchemaElement().withAttributeName("Artist").withKey
Type(KeyType.HASH));
tableKeySchema.add(new KeySchemaElement().withAttributeName("SongTitle").withKey
Type(KeyType.RANGE));

createTableRequest.setKeySchema(tableKeySchema);

ArrayList<KeySchemaElement> indexKeySchema = new ArrayList<KeySchemaElement>();
indexKeySchema.add(new KeySchemaElement().withAttributeName("Artist").withKey
Type(KeyType.HASH));
indexKeySchema.add(new KeySchemaElement().withAttributeName("AlbumTitle").withKey
Type(KeyType.RANGE));

Projection projection = new Projection().withProjectionType(ProjectionType.IN
CLUDE);
ArrayList<String> nonKeyAttributes = new ArrayList<String>();
nonKeyAttributes.add("Genre");
nonKeyAttributes.add("Year");
projection.setNonKeyAttributes(nonKeyAttributes);

LocalSecondaryIndex localSecondaryIndex = new LocalSecondaryIndex()
 .withIndexName("AlbumTitleIndex").withKeySchema(indexKeySchema).withProjec
tion(projection);

ArrayList<LocalSecondaryIndex> localSecondaryIndexes = new ArrayList<LocalSec
ondaryIndex>();
localSecondaryIndexes.add(localSecondaryIndex);
createTableRequest.setLocalSecondaryIndexes(localSecondaryIndexes);

Table table = dynamoDB.createTable(createTableRequest);
System.out.println(table.getDescription());

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that, you can
begin putting data items into the table.

API Version 2012-08-10
323

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

Describe a Table With a Local Secondary Index
To get information about local secondary indexes on a table, use the describeTable method. For each
index, you can access its name, key schema, and projected attributes.

The following are the steps to access local secondary index information a table using the AWS SDK for
Java Document API

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class.You must provide the table name.

3. Call the describeTable method on the Table object.

The following Java code snippet demonstrates the preceding steps.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

String tableName = "Music";

Table table = dynamoDB.getTable(tableName);

TableDescription tableDescription = table.describe();

List<LocalSecondaryIndexDescription> localSecondaryIndexes
 = tableDescription.getLocalSecondaryIndexes();

// This code snippet will work for multiple indexes, even though
// there is only one index in this example.

Iterator<LocalSecondaryIndexDescription> lsiIter = localSecondaryIndexes.iter
ator();
while (lsiIter.hasNext()) {

 LocalSecondaryIndexDescription lsiDescription = lsiIter.next();
 System.out.println("Info for index " + lsiDescription.getIndexName() + ":");
 Iterator<KeySchemaElement> kseIter = lsiDescription.getKeySchema().iterator();

 while (kseIter.hasNext()) {
 KeySchemaElement kse = kseIter.next();
 System.out.printf("\t%s: %s\n", kse.getAttributeName(), kse.getKeyType());
 }
 Projection projection = lsiDescription.getProjection();
 System.out.println("\tThe projection type is: " + projection.getProjection
Type());
 if (projection.getProjectionType().toString().equals("INCLUDE")) {
 System.out.println("\t\tThe non-key projected attributes are: " + projec
tion.getNonKeyAttributes());
 }
}

Query a Local Secondary Index
You can use the Query API on a local secondary index, in much the same way you Query a table.You
need to specify the index name, the query criteria for the index range key, and the attributes that you
want to return. In this example, the index is AlbumTitleIndex and the index range key is AlbumTitle.

API Version 2012-08-10
324

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

The only attributes returned are those that have been projected into the index.You could modify this
query to select non-key attributes too, but this would require table fetch activity that is relatively expensive.
For more information about table fetches, see Attribute Projections (p. 312).

The following are the steps to query a local secondary index using the AWS SDK for Java Document
API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class.You must provide the table name.

3. Create an instance of the Index class.You must provide the index name.

4. Call the query method of the Index class.

The following Java code snippet demonstrates the preceding steps.

DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

String tableName = "Music";

Table table = dynamoDB.getTable(tableName);
Index index = table.getIndex("AlbumTitleIndex");

QuerySpec spec = new QuerySpec()
 .withKeyConditionExpression("Artist = :v_artist and AlbumTitle = :v_title")

 .withValueMap(new ValueMap()
 .withString(":v_artist", "Acme Band")
 .withString(":v_title", "Songs About Life"));

ItemCollection<QueryOutcome> items = index.query(spec);

Iterator<Item> itemsIter = items.iterator();

while (itemsIter.hasNext()) {
 Item item = itemsIter.next();
 System.out.println(item.toJSONPretty());
}

Example: Local Secondary Indexes Using the Java Document
API
The following Java code example shows how to work with local secondary indexes. The example creates
a table named CustomerOrders with a hash key attribute of CustomerId and a range key attribute of
OrderId. There are two local secondary indexes on this table:

• OrderCreationDateIndex—the range key is OrderCreationDate, and the following attributes are projected
into the index:

• ProductCategory

• ProductName

• OrderStatus

• ShipmentTrackingId

• IsOpenIndex—the range key is IsOpen, and all of the table attributes are projected into the index.

API Version 2012-08-10
325

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

After the CustomerOrders table is created, the program loads the table with data representing customer
orders, and then queries the data using the local secondary indexes. Finally, the program deletes the
CustomerOrders table.

For step-by-step instructions to test the following sample, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.document;

import java.util.ArrayList;
import java.util.Iterator;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Index;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.ItemCollection;
import com.amazonaws.services.dynamodbv2.document.PutItemOutcome;
import com.amazonaws.services.dynamodbv2.document.QueryOutcome;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.spec.QuerySpec;
import com.amazonaws.services.dynamodbv2.document.utils.ValueMap;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.LocalSecondaryIndex;
import com.amazonaws.services.dynamodbv2.model.Projection;
import com.amazonaws.services.dynamodbv2.model.ProjectionType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.ReturnConsumedCapacity;
import com.amazonaws.services.dynamodbv2.model.Select;

public class DocumentAPILocalSecondaryIndexExample {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

 public static String tableName = "CustomerOrders";

 public static void main(String[] args) throws Exception {

 createTable();
 loadData();

 query(null);
 query("IsOpenIndex");
 query("OrderCreationDateIndex");

 deleteTable(tableName);

 }

 public static void createTable() {

API Version 2012-08-10
326

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

 CreateTableRequest createTableRequest = new CreateTableRequest()
 .withTableName(tableName)
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits((long) 1)
 .withWriteCapacityUnits((long) 1));

 // Attribute definitions for table hash and range key
 ArrayList<AttributeDefinition> attributeDefinitions = new ArrayList<At
tributeDefinition>();
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("CustomerId")
 .withAttributeType("S"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("OrderId")
 .withAttributeType("N"));

 // Attribute definition for index range keys
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("OrderCreationDate")
 .withAttributeType("N"));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("IsOpen")
 .withAttributeType("N"));

 createTableRequest.setAttributeDefinitions(attributeDefinitions);

 // Key schema for table
 ArrayList<KeySchemaElement> tableKeySchema = new ArrayList<KeySchemaEle
ment>();
 tableKeySchema.add(new KeySchemaElement()
 .withAttributeName("CustomerId")
 .withKeyType(KeyType.HASH));
 tableKeySchema.add(new KeySchemaElement()
 .withAttributeName("OrderId")
 .withKeyType(KeyType.RANGE));

 createTableRequest.setKeySchema(tableKeySchema);

 ArrayList<LocalSecondaryIndex> localSecondaryIndexes = new ArrayList<Loc
alSecondaryIndex>();

 // OrderCreationDateIndex
 LocalSecondaryIndex orderCreationDateIndex = new LocalSecondaryIndex()

 .withIndexName("OrderCreationDateIndex");

 // Key schema for OrderCreationDateIndex
 ArrayList<KeySchemaElement> indexKeySchema = new ArrayList<KeySchemaEle
ment>();
 indexKeySchema.add(new KeySchemaElement()
 .withAttributeName("CustomerId")
 .withKeyType(KeyType.HASH));
 indexKeySchema.add(new KeySchemaElement()
 .withAttributeName("OrderCreationDate")
 .withKeyType(KeyType.RANGE));

 orderCreationDateIndex.setKeySchema(indexKeySchema);

API Version 2012-08-10
327

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

 // Projection (with list of projected attributes) for
 // OrderCreationDateIndex
 Projection projection = new Projection()
 .withProjectionType(ProjectionType.INCLUDE);
 ArrayList<String> nonKeyAttributes = new ArrayList<String>();
 nonKeyAttributes.add("ProductCategory");
 nonKeyAttributes.add("ProductName");
 projection.setNonKeyAttributes(nonKeyAttributes);

 orderCreationDateIndex.setProjection(projection);

 localSecondaryIndexes.add(orderCreationDateIndex);

 // IsOpenIndex
 LocalSecondaryIndex isOpenIndex = new LocalSecondaryIndex()
 .withIndexName("IsOpenIndex");

 // Key schema for IsOpenIndex
 indexKeySchema = new ArrayList<KeySchemaElement>();
 indexKeySchema.add(new KeySchemaElement()
 .withAttributeName("CustomerId")
 .withKeyType(KeyType.HASH));
 indexKeySchema.add(new KeySchemaElement()
 .withAttributeName("IsOpen")
 .withKeyType(KeyType.RANGE));

 // Projection (all attributes) for IsOpenIndex
 projection = new Projection()
 .withProjectionType(ProjectionType.ALL);

 isOpenIndex.setKeySchema(indexKeySchema);
 isOpenIndex.setProjection(projection);

 localSecondaryIndexes.add(isOpenIndex);

 // Add index definitions to CreateTable request
 createTableRequest.setLocalSecondaryIndexes(localSecondaryIndexes);

 System.out.println("Creating table " + tableName + "...");
 System.out.println(dynamoDB.createTable(createTableRequest));

 // Wait for table to become active
 System.out.println("Waiting for " + tableName + " to become ACTIVE...");

 try {
 Table table = dynamoDB.getTable(tableName);
 table.waitForActive();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 public static void query(String indexName) {

 Table table = dynamoDB.getTable(tableName);

 System.out

API Version 2012-08-10
328

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

.println("\n***\n");
 System.out.println("Querying table " + tableName + "...");

 QuerySpec querySpec = new QuerySpec()
 .withConsistentRead(true)
 .withScanIndexForward(true)
 .withReturnConsumedCapacity(ReturnConsumedCapacity.TOTAL);

 if (indexName == "IsOpenIndex") {

 System.out.println("\nUsing index: '" + indexName
 + "': Bob's orders that are open.");
 System.out.println(
 "Only a user-specified list of attributes are returned\n");
 Index index = table.getIndex(indexName);

 querySpec.withKeyConditionExpression("CustomerId = :v_custid and
IsOpen = :v_isopen")
 .withValueMap(new ValueMap()
 .withString(":v_custid", "bob@example.com")
 .withNumber(":v_isopen", 1));

 querySpec.withProjectionExpression(
 "OrderCreationDate, ProductCategory, ProductName, OrderStatus");

 ItemCollection<QueryOutcome> items = index.query(querySpec);
 Iterator<Item> iterator = items.iterator();

 System.out.println("Query: printing results...");

 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }

 } else if (indexName == "OrderCreationDateIndex") {
 System.out.println("\nUsing index: '" + indexName
 + "': Bob's orders that were placed after 01/31/2013.");
 System.out.println("Only the projected attributes are returned\n");

 Index index = table.getIndex(indexName);

 querySpec.withKeyConditionExpression("CustomerId = :v_custid and
OrderCreationDate >= :v_orddate")
 .withValueMap(new ValueMap()
 .withString(":v_custid", "bob@example.com")
 .withNumber(":v_orddate", 20130131));

 querySpec.withSelect(Select.ALL_PROJECTED_ATTRIBUTES);

 ItemCollection<QueryOutcome> items = index.query(querySpec);
 Iterator<Item> iterator = items.iterator();

 System.out.println("Query: printing results...");

 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }

API Version 2012-08-10
329

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

 } else {
 System.out.println("\nNo index: All of Bob's orders, by OrderId:\n");

 querySpec.withKeyConditionExpression("CustomerId = :v_custid")
 .withValueMap(new ValueMap()
 .withString(":v_custid", "bob@example.com"));

 ItemCollection<QueryOutcome> items = table.query(querySpec);
 Iterator<Item> iterator = items.iterator();

 System.out.println("Query: printing results...");

 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }

 }

 }

 public static void deleteTable(String tableName) {

 Table table = dynamoDB.getTable(tableName);
 System.out.println("Deleting table " + tableName + "...");
 table.delete();

 // Wait for table to be deleted
 System.out.println("Waiting for " + tableName + " to be deleted...");
 try {
 table.waitForDelete();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 public static void loadData() {

 Table table = dynamoDB.getTable(tableName);

 System.out.println("Loading data into table " + tableName + "...");

 Item item = new Item()
 .withPrimaryKey("CustomerId", "alice@example.com")
 .withNumber("OrderId", 1)
 .withNumber("IsOpen", 1)
 .withNumber("OrderCreationDate", 20130101)
 .withString("ProductCategory", "Book")
 .withString("ProductName", "The Great Outdoors")
 .withString("OrderStatus", "PACKING ITEMS");
 // no ShipmentTrackingId attribute

 PutItemOutcome putItemOutcome = table.putItem(item);

 item = new Item()
 .withPrimaryKey("CustomerId", "alice@example.com")
 .withNumber("OrderId", 2)

API Version 2012-08-10
330

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

 .withNumber("IsOpen", 1)
 .withNumber("OrderCreationDate", 20130221)
 .withString("ProductCategory", "Bike")
 .withString("ProductName", "Super Mountain")
 .withString("OrderStatus", "ORDER RECEIVED");
 // no ShipmentTrackingId attribute

 putItemOutcome = table.putItem(item);

 item = new Item()
 .withPrimaryKey("CustomerId", "alice@example.com")
 .withNumber("OrderId", 3)
 // no IsOpen attribute
 .withNumber("OrderCreationDate", 20130304)
 .withString("ProductCategory", "Music")
 .withString("ProductName", "A Quiet Interlude")
 .withString("OrderStatus", "IN TRANSIT")
 .withString("ShipmentTrackingId", "176493");

 putItemOutcome = table.putItem(item);

 item = new Item()
 .withPrimaryKey("CustomerId", "bob@example.com")
 .withNumber("OrderId", 1)
 // no IsOpen attribute
 .withNumber("OrderCreationDate", 20130111)
 .withString("ProductCategory", "Movie")
 .withString("ProductName", "Calm Before The Storm")
 .withString("OrderStatus", "SHIPPING DELAY")
 .withString("ShipmentTrackingId", "859323");

 putItemOutcome = table.putItem(item);

 item = new Item()
 .withPrimaryKey("CustomerId", "bob@example.com")
 .withNumber("OrderId", 2)
 // no IsOpen attribute
 .withNumber("OrderCreationDate", 20130124)
 .withString("ProductCategory", "Music")
 .withString("ProductName", "E-Z Listening")
 .withString("OrderStatus", "DELIVERED")
 .withString("ShipmentTrackingId", "756943");

 putItemOutcome = table.putItem(item);

 item = new Item()
 .withPrimaryKey("CustomerId", "bob@example.com")
 .withNumber("OrderId", 3)
 // no IsOpen attribute
 .withNumber("OrderCreationDate", 20130221)
 .withString("ProductCategory", "Music")
 .withString("ProductName", "Symphony 9")
 .withString("OrderStatus", "DELIVERED")
 .withString("ShipmentTrackingId", "645193");

 putItemOutcome = table.putItem(item);

 item = new Item().withPrimaryKey("CustomerId", "bob@example.com")

API Version 2012-08-10
331

Amazon DynamoDB Developer Guide
Local Secondary Indexes - Java Document API

 .withNumber("OrderId", 4).withNumber("IsOpen", 1)
 .withNumber("OrderCreationDate", 20130222)
 .withString("ProductCategory", "Hardware")
 .withString("ProductName", "Extra Heavy Hammer")
 .withString("OrderStatus", "PACKING ITEMS");
 // no ShipmentTrackingId attribute

 putItemOutcome = table.putItem(item);

 item = new Item().withPrimaryKey("CustomerId", "bob@example.com")
 .withNumber("OrderId", 5)
 /* no IsOpen attribute */
 .withNumber("OrderCreationDate", 20130309)
 .withString("ProductCategory", "Book")
 .withString("ProductName", "How To Cook")
 .withString("OrderStatus", "IN TRANSIT")
 .withString("ShipmentTrackingId", "440185");

 putItemOutcome = table.putItem(item);

 item = new Item()
 .withPrimaryKey("CustomerId", "bob@example.com")
 .withNumber("OrderId", 6)
 // no IsOpen attribute
 .withNumber("OrderCreationDate", 20130318)
 .withString("ProductCategory", "Luggage")
 .withString("ProductName", "Really Big Suitcase")
 .withString("OrderStatus", "DELIVERED")
 .withString("ShipmentTrackingId", "893927");

 putItemOutcome = table.putItem(item);

 item = new Item().withPrimaryKey("CustomerId", "bob@example.com")
 .withNumber("OrderId", 7)
 /* no IsOpen attribute */
 .withNumber("OrderCreationDate", 20130324)
 .withString("ProductCategory", "Golf")
 .withString("ProductName", "PGA Pro II")
 .withString("OrderStatus", "OUT FOR DELIVERY")
 .withString("ShipmentTrackingId", "383283");

 putItemOutcome = table.putItem(item);
 assert putItemOutcome != null;
 }

}

Working with Local Secondary Indexes Using the
AWS SDK for .NET Low-Level API
Topics

• Create a Table With a Local Secondary Index (p. 333)

• Describe a Table With a Local Secondary Index (p. 335)

• Query a Local Secondary Index (p. 336)

• Example: Local Secondary Indexes Using the AWS SDK for .NET Low-Level API (p. 336)

API Version 2012-08-10
332

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

You can use the AWS SDK for .NET low-level API (protocol-level API) to create a table with one or more
local secondary indexes, describe the indexes on the table, and perform queries using the indexes.These
operations map to the corresponding DynamoDB API. For more information, see Using the DynamoDB
API (p. 512).

The following are the common steps for table operations using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required and optional parameters for the operation by creating the corresponding request
objects.

For example, create a CreateTableRequest object to create a table and an QueryRequest object
to query a table or an index.

3. Execute the appropriate method provided by the client that you created in the preceding step.

Create a Table With a Local Secondary Index
Local secondary indexes must be created at the same time you create a table. To do this, use the
CreateTable API and provide your specifications for one or more local secondary indexes.The following
C# code snippet creates a table to hold information about songs in a music collection. The hash key is
Artist and the range key is SongTitle. A secondary index, AlbumTitleIndex, facilitates queries by album
title.

The following are the steps to create a table with a local secondary index, using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the CreateTableRequest class to provide the request information.

You must provide the table name, its primary key, and the provisioned throughput values. For the local
secondary index, you must provide the index name, the attribute definitions for the index range key,
the key schema for the index, and the attribute projection.

3. Execute the CreateTable method by providing the request object as a parameter.

The following C# code snippet demonstrates the preceding steps. The snippet creates a table (Music)
with a secondary index on the AlbumTitle attribute. The table hash and range key, plus the index range
key, are the only attributes projected into the index.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "Music";

CreateTableRequest createTableRequest = new CreateTableRequest()
{
 TableName = tableName
};

//ProvisionedThroughput
createTableRequest.ProvisionedThroughput = new ProvisionedThroughput()
{
 ReadCapacityUnits = (long)5,
 WriteCapacityUnits = (long)5
};

//AttributeDefinitions
List<AttributeDefinition> attributeDefinitions = new List<AttributeDefinition>();

API Version 2012-08-10
333

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

attributeDefinitions.Add(new AttributeDefinition()
{
 AttributeName = "Artist",
 AttributeType = "S"
});

attributeDefinitions.Add(new AttributeDefinition()
 {
 AttributeName = "SongTitle",
 AttributeType = "S"
 });

attributeDefinitions.Add(new AttributeDefinition()
 {
 AttributeName = "AlbumTitle",
 AttributeType = "S"
 });

createTableRequest.AttributeDefinitions = attributeDefinitions;

//KeySchema
List<KeySchemaElement> tableKeySchema = new List<KeySchemaElement>();

tableKeySchema.Add(new KeySchemaElement() { AttributeName = "Artist", KeyType
= "HASH" });
tableKeySchema.Add(new KeySchemaElement() { AttributeName = "SongTitle", KeyType
 = "RANGE" });

createTableRequest.KeySchema = tableKeySchema;

List<KeySchemaElement> indexKeySchema = new List<KeySchemaElement>();
indexKeySchema.Add(new KeySchemaElement() { AttributeName = "Artist", KeyType
= "HASH" });
indexKeySchema.Add(new KeySchemaElement() { AttributeName = "AlbumTitle", KeyType
 = "RANGE" });

Projection projection = new Projection() { ProjectionType = "INCLUDE" };

List<string> nonKeyAttributes = new List<string>();
nonKeyAttributes.Add("Genre");
nonKeyAttributes.Add("Year");
projection.NonKeyAttributes = nonKeyAttributes;

LocalSecondaryIndex localSecondaryIndex = new LocalSecondaryIndex()
{
 IndexName = "AlbumTitleIndex",
 KeySchema = indexKeySchema,
 Projection = projection
};

List<LocalSecondaryIndex> localSecondaryIndexes = new List<LocalSecondaryIn
dex>();
localSecondaryIndexes.Add(localSecondaryIndex);
createTableRequest.LocalSecondaryIndexes = localSecondaryIndexes;

CreateTableResponse result = client.CreateTable(createTableRequest);
Console.WriteLine(result.CreateTableResult.TableDescription.TableName);

API Version 2012-08-10
334

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

Console.WriteLine(result.CreateTableResult.TableDescription.TableStatus);

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that, you can
begin putting data items into the table.

Describe a Table With a Local Secondary Index
To get information about local secondary indexes on a table, use the DescribeTable API. For each
index, you can access its name, key schema, and projected attributes.

The following are the steps to access local secondary index information a table using the .NET low-level
API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the DescribeTableRequest class to provide the request information.You
must provide the table name.

3. Execute the describeTable method by providing the request object as a parameter.

The following C# code snippet demonstrates the preceding steps.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "Music";

DescribeTableResponse response = client.DescribeTable(new DescribeTableRequest()
 { TableName = tableName });
List<LocalSecondaryIndexDescription> localSecondaryIndexes =
 response.DescribeTableResult.Table.LocalSecondaryIndexes;

// This code snippet will work for multiple indexes, even though
// there is only one index in this example.
foreach (LocalSecondaryIndexDescription lsiDescription in localSecondaryIndexes)
{
 Console.WriteLine("Info for index " + lsiDescription.IndexName + ":");

 foreach (KeySchemaElement kse in lsiDescription.KeySchema)
 {
 Console.WriteLine("\t" + kse.AttributeName + ": key type is " +
kse.KeyType);
 }

 Projection projection = lsiDescription.Projection;

 Console.WriteLine("\tThe projection type is: " + projection.ProjectionType);

 if (projection.ProjectionType.ToString().Equals("INCLUDE"))
 {
 Console.WriteLine("\t\tThe non-key projected attributes are:");

 foreach (String s in projection.NonKeyAttributes)
 {
 Console.WriteLine("\t\t" + s);
 }

API Version 2012-08-10
335

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

 }
}

Query a Local Secondary Index
You can use the Query API on a local secondary index, in much the same way you Query a table.You
need to specify the index name, the query criteria for the index range key, and the attributes that you
want to return. In this example, the index is AlbumTitleIndex and the index range key is AlbumTitle.

The only attributes returned are those that have been projected into the index.You could modify this
query to select non-key attributes too, but this would require table fetch activity that is relatively expensive.
For more information about table fetches, see Attribute Projections (p. 312)

The following are the steps to query a local secondary index using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the QueryRequest class to provide the request information.

3. Execute the query method by providing the request object as a parameter.

The following C# code snippet demonstrates the preceding steps.

QueryRequest queryRequest = new QueryRequest
{
 TableName = "MusicCollection",
 IndexName = "AlbumTitleIndex",
 Select = "ALL_ATTRIBUTES",
 ScanIndexForward = true,
 KeyConditionExpression = "Artist = :v_artist and AlbumTitle = :v_title",
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":v_artist",new AttributeValue {S = "Acme Band"}},
 {":v_title",new AttributeValue {S = "Songs About Life"}}
 },
};

QueryResponse response = client.Query(queryRequest);

foreach (var attribs in response.Items)
{
 foreach (var attrib in attribs)
 {
 Console.WriteLine(attrib.Key + " ---> " + attrib.Value.S);
 }
 Console.WriteLine();
}

Example: Local Secondary Indexes Using the AWS SDK for
.NET Low-Level API
The following C# code example shows how to work with local secondary indexes. The example creates
a table named CustomerOrders with a hash key attribute of CustomerId and a range key attribute of
OrderId. There are two local secondary indexes on this table:

API Version 2012-08-10
336

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

• OrderCreationDateIndex—the range key is OrderCreationDate, and the following attributes are projected
into the index:

• ProductCategory

• ProductName

• OrderStatus

• ShipmentTrackingId

• IsOpenIndex—the range key is IsOpen, and all of the table attributes are projected into the index.

After the CustomerOrders table is created, the program loads the table with data representing customer
orders, and then queries the data using the local secondary indexes. Finally, the program deletes the
CustomerOrders table.

For step-by-step instructions to test the following sample, see Running .NET Examples for
DynamoDB (p. 57).

using System;
using System.Collections.Generic;
using System.Linq;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;
using Amazon.DynamoDBv2.DocumentModel;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;
using Amazon.SecurityToken;

namespace com.amazonaws.codesamples
 {

 class LowLevelLocalSecondaryIndexExample
 {
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 private static string tableName = "CustomerOrders";

 static void Main(string[] args)
 {
 try
 {
 CreateTable();
 LoadData();

 Query(null);
 Query("IsOpenIndex");
 Query("OrderCreationDateIndex");

 DeleteTable(tableName);

 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }
 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }
 }

API Version 2012-08-10
337

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

 private static void CreateTable()
 {
 var createTableRequest =
 new CreateTableRequest()
 {
 TableName = tableName,
 ProvisionedThroughput =
 new ProvisionedThroughput()
 {
 ReadCapacityUnits = (long)1,
 WriteCapacityUnits = (long)1
 }
 };

 var attributeDefinitions = new List<AttributeDefinition>()
 {
 // Attribute definitions for table hash and range key
 { new AttributeDefinition() {AttributeName = "CustomerId", Attrib
uteType = "S"} },
 { new AttributeDefinition() {AttributeName = "OrderId", Attribute
Type = "N"} },
 // Attribute definition for index range keys
 { new AttributeDefinition() {AttributeName = "OrderCreationDate",
 AttributeType = "N"} },
 { new AttributeDefinition() {AttributeName = "IsOpen", Attribute
Type = "N" }}
 };

 createTableRequest.AttributeDefinitions = attributeDefinitions;

 // Key schema for table
 var tableKeySchema = new List<KeySchemaElement>()
 {
 { new KeySchemaElement() {AttributeName = "CustomerId", KeyType
= "HASH"} },
 { new KeySchemaElement() {AttributeName = "OrderId", KeyType =
"RANGE"} }
 };

 createTableRequest.KeySchema = tableKeySchema;

 var localSecondaryIndexes = new List<LocalSecondaryIndex>();

 // OrderCreationDateIndex
 LocalSecondaryIndex orderCreationDateIndex = new LocalSecondaryIn
dex()
 {
 IndexName = "OrderCreationDateIndex"
 };

 // Key schema for OrderCreationDateIndex
 var indexKeySchema = new List<KeySchemaElement>()
 {
 { new KeySchemaElement() {AttributeName = "CustomerId", KeyType
 = "HASH"} },
 { new KeySchemaElement() {AttributeName = "OrderCreationDate",
 KeyType = "RANGE"} }

API Version 2012-08-10
338

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

 };

 orderCreationDateIndex.KeySchema = indexKeySchema;

 // Projection (with list of projected attributes) for
 // OrderCreationDateIndex
 var projection = new Projection() { ProjectionType = "INCLUDE" };

 var nonKeyAttributes = new List<string>()
 {
 "ProductCategory",
 "ProductName"
 };
 projection.NonKeyAttributes = nonKeyAttributes;

 orderCreationDateIndex.Projection = projection;

 localSecondaryIndexes.Add(orderCreationDateIndex);

 // IsOpenIndex
 LocalSecondaryIndex isOpenIndex
 = new LocalSecondaryIndex() { IndexName = "IsOpenIndex" };

 // Key schema for IsOpenIndex
 indexKeySchema = new List<KeySchemaElement>()
 {
 { new KeySchemaElement() {AttributeName = "CustomerId", KeyType
 = "HASH" }},
 { new KeySchemaElement() {AttributeName = "IsOpen", KeyType =
"RANGE" }}
 };

 // Projection (all attributes) for IsOpenIndex
 projection = new Projection() { ProjectionType = "ALL" };

 isOpenIndex.KeySchema = indexKeySchema;
 isOpenIndex.Projection = projection;

 localSecondaryIndexes.Add(isOpenIndex);

 // Add index definitions to CreateTable request
 createTableRequest.LocalSecondaryIndexes = localSecondaryIndexes;

 Console.WriteLine("Creating table " + tableName + "...");
 client.CreateTable(createTableRequest);
 WaitUntilTableReady(tableName);
 }

 public static void Query(string indexName)
 {
 Con
sole.WriteLine("\n***\n");

 Console.WriteLine("Querying table " + tableName + "...");

 QueryRequest queryRequest = new QueryRequest()
 {
 TableName = tableName,

API Version 2012-08-10
339

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

 ConsistentRead = true,
 ScanIndexForward = true,
 ReturnConsumedCapacity = "TOTAL"
 };

 String keyConditionExpression = "CustomerId = :v_customerId";
 Dictionary<string, AttributeValue> expressionAttributeValues = new
 Dictionary<string, AttributeValue> {
 {":v_customerId", new AttributeValue { S = "bob@example.com"
}}
 };

 if (indexName == "IsOpenIndex")
 {
 Console.WriteLine("\nUsing index: '" + indexName
 + "': Bob's orders that are open.");
 Console.WriteLine("Only a user-specified list of attributes are
 returned\n");
 queryRequest.IndexName = indexName;

 keyConditionExpression += " and IsOpen = :v_isOpen";
 expressionAttributeValues.Add(":v_isOpen", new AttributeValue
{ N = "1" });

 // ProjectionExpression
 queryRequest.ProjectionExpression = "OrderCreationDate, Product
Category, ProductName, OrderStatus";

 }
 else if (indexName == "OrderCreationDateIndex")
 {
 Console.WriteLine("\nUsing index: '" + indexName
 + "': Bob's orders that were placed after 01/31/2013.");
 Console.WriteLine("Only the projected attributes are re
turned\n");
 queryRequest.IndexName = indexName;

 keyConditionExpression += " and OrderCreationDate > :v_Date";
 expressionAttributeValues.Add(":v_Date", new AttributeValue {
N = "20130131" });

 // Select
 queryRequest.Select = "ALL_PROJECTED_ATTRIBUTES";
 }
 else
 {
 Console.WriteLine("\nNo index: All of Bob's orders, by Or
derId:\n");
 }
 queryRequest.KeyConditionExpression = keyConditionExpression;
 queryRequest.ExpressionAttributeValues = expressionAttributeValues;

 var result = client.Query(queryRequest);
 var items = result.Items;
 foreach (var currentItem in items)

API Version 2012-08-10
340

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

 {
 foreach (string attr in currentItem.Keys)
 {
 if (attr == "OrderId" || attr == "IsOpen"
 || attr == "OrderCreationDate")
 {
 Console.WriteLine(attr + "---> " + currentItem[attr].N);

 }
 else
 {
 Console.WriteLine(attr + "---> " + currentItem[attr].S);

 }
 }
 Console.WriteLine();
 }
 Console.WriteLine("\nConsumed capacity: " + result.ConsumedCapa
city.CapacityUnits + "\n");
 }

 private static void DeleteTable(string tableName)
 {
 Console.WriteLine("Deleting table " + tableName + "...");
 client.DeleteTable(new DeleteTableRequest() { TableName = tableName
 });
 WaitForTableToBeDeleted(tableName);
 }

 public static void LoadData()
 {
 Console.WriteLine("Loading data into table " + tableName + "...");

 Dictionary<string, AttributeValue> item = new Dictionary<string,
AttributeValue>();

 item["CustomerId"] = new AttributeValue { S = "alice@example.com"
};
 item["OrderId"] = new AttributeValue { N = "1" };
 item["IsOpen"] = new AttributeValue { N = "1" };
 item["OrderCreationDate"] = new AttributeValue { N = "20130101" };

 item["ProductCategory"] = new AttributeValue { S = "Book" };
 item["ProductName"] = new AttributeValue { S = "The Great Outdoors"
 };
 item["OrderStatus"] = new AttributeValue { S = "PACKING ITEMS" };
 /* no ShipmentTrackingId attribute */
 PutItemRequest putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue { S = "alice@example.com"

API Version 2012-08-10
341

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

};
 item["OrderId"] = new AttributeValue { N = "2" };
 item["IsOpen"] = new AttributeValue { N = "1" };
 item["OrderCreationDate"] = new AttributeValue { N = "20130221" };

 item["ProductCategory"] = new AttributeValue { S = "Bike" };
 item["ProductName"] = new AttributeValue { S = "Super Mountain" };

 item["OrderStatus"] = new AttributeValue { S = "ORDER RECEIVED" };

 /* no ShipmentTrackingId attribute */
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue { S = "alice@example.com"
};
 item["OrderId"] = new AttributeValue { N = "3" };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue { N = "20130304" };

 item["ProductCategory"] = new AttributeValue { S = "Music" };
 item["ProductName"] = new AttributeValue { S = "A Quiet Interlude"
 };
 item["OrderStatus"] = new AttributeValue { S = "IN TRANSIT" };
 item["ShipmentTrackingId"] = new AttributeValue { S = "176493" };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue { S = "bob@example.com" };

 item["OrderId"] = new AttributeValue { N = "1" };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue { N = "20130111" };

 item["ProductCategory"] = new AttributeValue { S = "Movie" };
 item["ProductName"] = new AttributeValue { S = "Calm Before The
Storm" };
 item["OrderStatus"] = new AttributeValue { S = "SHIPPING DELAY" };

 item["ShipmentTrackingId"] = new AttributeValue { S = "859323" };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };

API Version 2012-08-10
342

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue { S = "bob@example.com" };

 item["OrderId"] = new AttributeValue { N = "2" };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue { N = "20130124" };

 item["ProductCategory"] = new AttributeValue { S = "Music" };
 item["ProductName"] = new AttributeValue { S = "E-Z Listening" };
 item["OrderStatus"] = new AttributeValue { S = "DELIVERED" };
 item["ShipmentTrackingId"] = new AttributeValue { S = "756943" };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue { S = "bob@example.com" };

 item["OrderId"] = new AttributeValue { N = "3" };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue { N = "20130221" };

 item["ProductCategory"] = new AttributeValue { S = "Music" };
 item["ProductName"] = new AttributeValue { S = "Symphony 9" };
 item["OrderStatus"] = new AttributeValue { S = "DELIVERED" };
 item["ShipmentTrackingId"] = new AttributeValue { S = "645193" };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue { S = "bob@example.com" };

 item["OrderId"] = new AttributeValue { N = "4" };
 item["IsOpen"] = new AttributeValue { N = "1" };
 item["OrderCreationDate"] = new AttributeValue { N = "20130222" };

 item["ProductCategory"] = new AttributeValue { S = "Hardware" };
 item["ProductName"] = new AttributeValue { S = "Extra Heavy Hammer"
 };
 item["OrderStatus"] = new AttributeValue { S = "PACKING ITEMS" };
 /* no ShipmentTrackingId attribute */
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };

API Version 2012-08-10
343

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue { S = "bob@example.com" };

 item["OrderId"] = new AttributeValue { N = "5" };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue { N = "20130309" };

 item["ProductCategory"] = new AttributeValue { S = "Book" };
 item["ProductName"] = new AttributeValue { S = "How To Cook" };
 item["OrderStatus"] = new AttributeValue { S = "IN TRANSIT" };
 item["ShipmentTrackingId"] = new AttributeValue { S = "440185" };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue { S = "bob@example.com" };

 item["OrderId"] = new AttributeValue { N = "6" };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue { N = "20130318" };

 item["ProductCategory"] = new AttributeValue { S = "Luggage" };
 item["ProductName"] = new AttributeValue { S = "Really Big Suitcase"
 };
 item["OrderStatus"] = new AttributeValue { S = "DELIVERED" };
 item["ShipmentTrackingId"] = new AttributeValue { S = "893927" };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue { S = "bob@example.com" };

 item["OrderId"] = new AttributeValue { N = "7" };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue { N = "20130324" };

 item["ProductCategory"] = new AttributeValue { S = "Golf" };
 item["ProductName"] = new AttributeValue { S = "PGA Pro II" };
 item["OrderStatus"] = new AttributeValue { S = "OUT FOR DELIVERY"
};
 item["ShipmentTrackingId"] = new AttributeValue { S = "383283" };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"

API Version 2012-08-10
344

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

 };
 client.PutItem(putItemRequest);
 }

 private static void WaitUntilTableReady(string tableName)
 {
 string status = null;
 // Let us wait until table is created. Call DescribeTable.
 do
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 status = res.Table.TableStatus;
 }
 catch (ResourceNotFoundException)
 {
 // DescribeTable is eventually consistent. So you might
 // get resource not found. So we handle the potential excep
tion.
 }
 } while (status != "ACTIVE");
 }

 private static void WaitForTableToBeDeleted(string tableName)
 {
 bool tablePresent = true;

 while (tablePresent)
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 }
 catch (ResourceNotFoundException)
 {
 tablePresent = false;
 }
 }
 }
 }
 }

API Version 2012-08-10
345

Amazon DynamoDB Developer Guide
Local Secondary Indexes - .NET Low-Level API

Working with Local Secondary Indexes Using the
AWS SDK for PHP Low-Level API
Topics

• Create a Table With a Local Secondary Index (p. 346)

• Query a Local Secondary Index (p. 348)

• Example: Local Secondary Indexes Using the AWS SDK for PHP Low-Level API (p. 348)

You can use the AWS SDK for PHP Low-Level API to create a table with one or more local secondary
indexes, describe the indexes on the table, and perform queries using the indexes. These operations
map to the corresponding DynamoDB API. For more information, see Using the DynamoDB API (p. 512).

The following are the common steps for table operations using the PHP low-level API.

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the query operation to the client instance.

You must provide the table name, index name, any desired item's primary key values, and any optional
query parameters.You can set up a condition as part of the query if you want to find a range of values
that meet specific comparison results.You can limit the results to a subset to provide pagination of the
results. Read results are eventually consistent by default. If you want, you can request that read results
be strongly consistent instead.

3. Load the response into a local variable, such as $response, for use in your application.

Create a Table With a Local Secondary Index
Local secondary indexes must be created at the same time you create a table. To do this, use the
CreateTable API and provide your specifications for one or more local secondary indexes.The following
PHP code snippet creates a table to hold information about songs in a music collection. The hash key is
Artist and the range key is SongTitle. A secondary index, AlbumTitleIndex, facilitates queries by album
title.

The following are the steps to create a table with a local secondary index, using the PHP low-level API.

1. Create an instance of the DynamoDbClient class.

2. Provide the parameters for the createTable operation to the client instance.

You must provide the table name, its primary key, and the provisioned throughput values. For the local
secondary index, you must provide the index name, the attribute definitions for the index range key,
the key schema for the index, and the attribute projection.

The following PHP code snippet demonstrates the preceding steps. The snippet creates a table (Music)
with a secondary index on the AlbumTitle attribute. The table hash and range key, plus the index range
key, are the only attributes projected into the index.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$tableName = 'Music';

API Version 2012-08-10
346

Amazon DynamoDB Developer Guide
Local Secondary Indexes - PHP Low-Level API

$result = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(
 array(
 'AttributeName' => 'Artist',
 'AttributeType' => 'S'
),
 array(
 'AttributeName' => 'SongTitle',
 'AttributeType' => 'S'
),
 array(
 'AttributeName' => 'AlbumTitle',
 'AttributeType' => 'S'
)
),
 'KeySchema' => array(
 array(
 'AttributeName' => 'Artist',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'SongTitle',
 'KeyType' => 'RANGE'
)
),
 'LocalSecondaryIndexes' => array(
 array(
 'IndexName' => 'AlbumTitleIndex',
 'KeySchema' => array(
 array(
 'AttributeName' => 'Artist',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'AlbumTitle',
 'KeyType' => 'RANGE'
)
),
 'Projection' => array(
 'ProjectionType' => 'INCLUDE',
 'NonKeyAttributes' => array('Genre', 'Year')
)
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 5,
 'WriteCapacityUnits' => 5
)
));

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that, you can
begin putting data items into the table.

API Version 2012-08-10
347

Amazon DynamoDB Developer Guide
Local Secondary Indexes - PHP Low-Level API

Query a Local Secondary Index
You can use the Query API on a local secondary index, in much the same way you Query a table.You
need to specify the index name, the query criteria for the index range key, and the attributes that you
want to return. In this example, the index is AlbumTitleIndex and the index range key is AlbumTitle.

The only attributes returned are those that have been projected into the index.You could modify this
query to select non-key attributes too, but this would require table fetch activity that is relatively expensive.
For more information about table fetches, see Attribute Projections (p. 312)

The following are the steps to query a local secondary index using the P low-level API.

1. Create an instance of the DynamoDbClient class (the client).

2. Provide the parameters for the query operation to the client instance.

You must provide the table name, the index name, the key conditions for the query, and the attributes
that you want returned.

The following PHP code snippet demonstrates the preceding steps.

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' #replace with your desired region
));

$tableName='Music';

$response = $client->query(array(
 'TableName' => $tableName,
 'IndexName' => 'AlbumTitleIndex',

 'KeyConditionExpression' => 'Artist = :v_artist and AlbumTitle >= :v_title',

 'ExpressionAttributeValues' => array (
 ':v_artist' => array('S' => 'Acme Band'),
 ':v_title' => array('S' => 'Songs About Life')
),
 'Select' => 'ALL_ATTRIBUTES'
));

echo "Acme Band's Songs About Life:" . PHP_EOL;
foreach($response['Items'] as $item) {
 echo " - " . $item['SongTitle']['S'] . PHP_EOL;
}

Example: Local Secondary Indexes Using the AWS SDK for
PHP Low-Level API
The following PHP code example shows how to work with local secondary indexes. The example creates
a table named CustomerOrders with a hash key attribute of CustomerId and a range key attribute of
OrderId. There are two local secondary indexes on this table:

• OrderCreationDateIndex—the range key is OrderCreationDate, and the following attributes are projected
into the index:

API Version 2012-08-10
348

Amazon DynamoDB Developer Guide
Local Secondary Indexes - PHP Low-Level API

• ProductCategory

• ProductName

• OrderStatus

• ShipmentTrackingId

• IsOpenIndex—the range key is IsOpen, and all of the table attributes are projected into the index.

After the CustomerOrders table is created, the program loads the table with data representing customer
orders, and then queries the data using the local secondary indexes. Finally, the program deletes the
CustomerOrders table.

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

$tableName = 'CustomerOrders';
echo "# Creating table $tableName..." . PHP_EOL;

$response = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(
 array(
 'AttributeName' => 'CustomerId',
 'AttributeType' => 'S'
),
 array(
 'AttributeName' => 'OrderId',
 'AttributeType' => 'N'
),
 array(
 'AttributeName' => 'OrderCreationDate',
 'AttributeType' => 'N'
),
 array(
 'AttributeName' => 'IsOpen',
 'AttributeType' => 'N'
)
),
 'KeySchema' => array(
 array(
 'AttributeName' => 'CustomerId',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'OrderId',
 'KeyType' => 'RANGE'
)
),
 'LocalSecondaryIndexes' => array(
 array(
 'IndexName' => 'OrderCreationDateIndex',
 'KeySchema' => array(

API Version 2012-08-10
349

Amazon DynamoDB Developer Guide
Local Secondary Indexes - PHP Low-Level API

 array(
 'AttributeName' => 'CustomerId',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'OrderCreationDate',
 'KeyType' => 'RANGE'
)
),
 'Projection' => array(
 'ProjectionType' => 'INCLUDE',
 'NonKeyAttributes' => array('ProductCategory', 'ProductName')
)
),
 array(
 'IndexName' => 'IsOpenIndex',
 'KeySchema' => array(
 array(
 'AttributeName' => 'CustomerId',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'IsOpen',
 'KeyType' => 'RANGE'
)
),
 'Projection' => array(
 'ProjectionType' => 'ALL'
)
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 5,
 'WriteCapacityUnits' => 5
)
));

echo " Waiting for table $tableName to be created." . PHP_EOL;
$client->waitUntilTableExists(array('TableName' => $tableName));
echo " Table $tableName has been created." . PHP_EOL;

###
Add items to the table

echo "# Loading data into $tableName..." . PHP_EOL;

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'CustomerId' => array ('S' => 'alice@example.com'),
 'OrderId' => array ('N' => '1'),
 'IsOpen' => array ('N' => '1'),
 'OrderCreationDate' => array ('N' => '20140101'),
 'ProductCategory' => array ('S' => 'Book'),
 'ProductName' => array ('S' => 'The Great Outdoors'),
 'OrderStatus' => array ('S' => 'PACKING ITEMS')
)
));

API Version 2012-08-10
350

Amazon DynamoDB Developer Guide
Local Secondary Indexes - PHP Low-Level API

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'CustomerId' => array ('S' => 'alice@example.com'),
 'OrderId' => array ('N' => '2'),
 'IsOpen' => array ('N' => '1'),
 'OrderCreationDate' => array ('N' => '20140221'),
 'ProductCategory' => array ('S' => 'Bike'),
 'ProductName' => array ('S' => 'Super Mountain'),
 'OrderStatus' => array ('S' => 'ORDER RECEIVED')
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'CustomerId' => array ('S' => 'alice@example.com'),
 'OrderId' => array ('N' => '3'),
 // no IsOpen attribute
 'OrderCreationDate' => array ('N' => '20140304'),
 'ProductCategory' => array ('S' => 'Music'),
 'ProductName' => array ('S' => 'A Quiet Interlude'),
 'OrderStatus' => array ('S' => 'IN TRANSIT'),
 'ShipmentTrackingId' => array ('N' => '176493')
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'CustomerId' => array ('S' => 'bob@example.com'),
 'OrderId' => array ('N' => '1'),
 // no IsOpen attribute
 'OrderCreationDate' => array ('N' => '20140111'),
 'ProductCategory' => array ('S' => 'Movie'),
 'ProductName' => array ('S' => 'Calm Before The Storm'),
 'OrderStatus' => array ('S' => 'SHIPPING DELAY'),
 'ShipmentTrackingId' => array ('N' => '859323')
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'CustomerId' => array ('S' => 'bob@example.com'),
 'OrderId' => array ('N' => '2'),
 // no IsOpen attribute
 'OrderCreationDate' => array ('N' => '20140124'),
 'ProductCategory' => array ('S' => 'Music'),
 'ProductName' => array ('S' => 'E-Z Listening'),
 'OrderStatus' => array ('S' => 'DELIVERED'),
 'ShipmentTrackingId' => array ('N' => '756943')
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,

API Version 2012-08-10
351

Amazon DynamoDB Developer Guide
Local Secondary Indexes - PHP Low-Level API

 'Item' => array (
 'CustomerId' => array ('S' => 'bob@example.com'),
 'OrderId' => array ('N' => '3'),
 // no IsOpen attribute
 'OrderCreationDate' => array ('N' => '20140221'),
 'ProductCategory' => array ('S' => 'Music'),
 'ProductName' => array ('S' => 'Symphony 9'),
 'OrderStatus' => array ('S' => 'DELIVERED'),
 'ShipmentTrackingId' => array ('N' => '645193')
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'CustomerId' => array ('S' => 'bob@example.com'),
 'OrderId' => array ('N' => '4'),
 'IsOpen' => array ('N' => '1'),
 'OrderCreationDate' => array ('N' => '20140222'),
 'ProductCategory' => array ('S' => 'Hardware'),
 'ProductName' => array ('S' => 'Extra Heavy Hammer'),
 'OrderStatus' => array ('S' => 'PACKING ITEMS')
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'CustomerId' => array ('S' => 'bob@example.com'),
 'OrderId' => array ('N' => '5'),
 // no IsOpen attribute
 'OrderCreationDate' => array ('N' => '20140309'),
 'ProductCategory' => array ('S' => 'Book'),
 'ProductName' => array ('S' => 'How To Cook'),
 'OrderStatus' => array ('S' => 'IN TRANSIT'),
 'ShipmentTrackingId' => array ('N' => '440185')
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'CustomerId' => array ('S' => 'bob@example.com'),
 'OrderId' => array ('N' => '6'),
 // no IsOpen attribute
 'OrderCreationDate' => array ('N' => '20140318'),
 'ProductCategory' => array ('S' => 'Luggage'),
 'ProductName' => array ('S' => 'Really Big Suitcase'),
 'OrderStatus' => array ('S' => 'DELIVERED'),
 'ShipmentTrackingId' => array ('N' => '893927')
)
));

$response = $client->putItem (array (
 'TableName' => $tableName,
 'Item' => array (
 'CustomerId' => array ('S' => 'bob@example.com'),
 'OrderId' => array ('N' => '7'),

API Version 2012-08-10
352

Amazon DynamoDB Developer Guide
Local Secondary Indexes - PHP Low-Level API

 // no IsOpen attribute
 'OrderCreationDate' => array ('N' => '20140324'),
 'ProductCategory' => array ('S' => 'Golf'),
 'ProductName' => array ('S' => 'PGA Pro II'),
 'OrderStatus' => array ('S' => 'OUT FOR DELIVERY'),
 'ShipmentTrackingId' => array ('N' => '383283')
)
));

###
Query for Bob's 5 most recent orders in 2014, retrieving attributes which are
 projected into the index

$response = $client->query(array(
 'TableName' => $tableName,
 'IndexName' => 'OrderCreationDateIndex',
 'KeyConditionExpression' => 'CustomerId = :v_id and OrderCreationDate >=
:v_dt',
 'ExpressionAttributeValues' => array (
 ':v_id' => array('S' => 'bob@example.com'),
 ':v_dt' => array('N' => '20140101')
),
 'Select' => 'ALL_PROJECTED_ATTRIBUTES',
 'ScanIndexForward' => false,
 'ConsistentRead' => true,
 'Limit' => 5,
 'ReturnConsumedCapacity' => 'TOTAL'
));

echo "# Querying for Bob's 5 most recent orders in 2014:" . PHP_EOL;
foreach($response['Items'] as $item) {
 echo ' - ' . $item['CustomerId']['S']. ' ' . $item['OrderCreationDate']['N']
 . ' '
 . $item['ProductName']['S'] . ' ' . $item['ProductCategory']['S'] .
PHP_EOL;
}
echo ' Provisioned Throughput Consumed: ' . $response['ConsumedCapacity']['Ca
pacityUnits'] . PHP_EOL;

###
Query for Bob's 5 most recent orders in 2014, retrieving some attributes which
 are not projected into the index

$response = $client->query(array(
 'TableName' => $tableName,
 'IndexName' => 'OrderCreationDateIndex',
 'KeyConditionExpression' => 'CustomerId = :v_id and OrderCreationDate >=
:v_dt',
 'ExpressionAttributeValues' => array (
 ':v_id' => array('S' => 'bob@example.com'),
 ':v_dt' => array('N' => '20140101')
),
 'Select' => 'SPECIFIC_ATTRIBUTES',
 'ProjectionExpression' => 'CustomerId, OrderCreationDate, ProductName,
ProductCategory, OrderStatus',
 'ScanIndexForward' => false,
 'ConsistentRead' => true,

API Version 2012-08-10
353

Amazon DynamoDB Developer Guide
Local Secondary Indexes - PHP Low-Level API

 'Limit' => 5,
 'ReturnConsumedCapacity' => 'TOTAL'
));

echo "# Querying for Bob's 5 most recent orders in 2014:" . PHP_EOL;
foreach($response['Items'] as $item) {
 echo ' - ' . $item['CustomerId']['S']. ' ' . $item['OrderCreationDate']['N']
 . ' '
 . $item['ProductName']['S'] . ' ' . $item['ProductCategory']['S'] . ' '
 . $item['OrderStatus']['S'] . PHP_EOL;
}
echo ' Provisioned Throughput Consumed: ' . $response['ConsumedCapacity']['Ca
pacityUnits'] . PHP_EOL;

###
Query for Alice's open orders, fetching all attributes (which are already
projected into the index)

$response = $client->query(array(
 'TableName' => $tableName,
 'IndexName' => 'IsOpenIndex',
 'KeyConditionExpression' => 'CustomerId = :v_id',
 'ExpressionAttributeValues' => array (
 ':v_id' => array('S' => 'alice@example.com')
),
 'Select' => 'ALL_ATTRIBUTES',
 'ScanIndexForward' => false,
 'ConsistentRead' => true,
 'Limit' => 5,
 'ReturnConsumedCapacity' => 'TOTAL'
));

echo "# Querying for Alice's open orders:" . PHP_EOL;
foreach($response['Items'] as $item) {
 echo ' - ' . $item['CustomerId']['S']. ' ' . $item['OrderCreationDate']['N']
 . ' '
 . $item['ProductName']['S'] . ' ' . $item['ProductCategory']['S'] . ' '
 . $item['OrderStatus']['S'] . PHP_EOL;
}
echo ' Provisioned Throughput Consumed: ' . $response['ConsumedCapacity']['Ca
pacityUnits'] . PHP_EOL;

###
Delete the table

echo "# Deleting table $tableName..." . PHP_EOL;
$client->deleteTable(array('TableName' => $tableName));

$client->waitUntilTableNotExists(array('TableName' => $tableName));
echo " Deleted table $tableName..." . PHP_EOL;

?>

API Version 2012-08-10
354

Amazon DynamoDB Developer Guide
Local Secondary Indexes - PHP Low-Level API

Best Practices for DynamoDB

This section is a summary of best practices for working with Amazon DynamoDB. Use this as a reference
to quickly find recommendations for maximizing performance and minimizing throughput costs.

Table Best Practices
DynamoDB tables are distributed across multiple partitions. For best results, design your tables and
applications so that read and write activity is spread evenly across all of the items in your tables, and
avoid I/O "hot spots" that can degrade performance.

• Design For Uniform Data Access Across Items In Your Tables (p. 66)

• Understand Partition Behavior (p. 68)

• Use Burst Capacity Sparingly (p. 69)

• Distribute Write Activity During Data Upload (p. 70)

• Understand Access Patterns for Time Series Data (p. 71)

• Cache Popular Items (p. 71)

• Consider Workload Uniformity When Adjusting Provisioned Throughput (p. 72)

• Test Your Application At Scale (p. 72)

Item Best Practices
DynamoDB items are limited in size (see Limits in DynamoDB (p. 667)). However, there is no limit on the
number of items in a table. Rather than storing large data attribute values in an item, consider one or
more of these application design alternatives.

• Use One-to-Many Tables Instead Of Large Set Attributes (p. 116)

• Use Multiple Tables to Support Varied Access Patterns (p. 116)

• Compress Large Attribute Values (p. 118)

• Store Large Attribute Values in Amazon S3 (p. 118)

• Break Up Large Attributes Across Multiple Items (p. 118)

API Version 2012-08-10
355

Amazon DynamoDB Developer Guide
Table Best Practices

Query and Scan Best Practices
Sudden, unexpected read activity can quickly consume the provisioned read capacity of a table or a global
secondary index. In addition, such activity can be inefficient if it is not evenly spread across table partitions.

• Avoid Sudden Bursts of Read Activity (p. 199)

• Take Advantage of Parallel Scans (p. 201)

Local Secondary Index Best Practices
Local secondary indexes let you define alternate range keys on a table.You can then issue Query requests
against those range keys, in addition to the table's hash key. Before using local secondary indexes, you
should be aware of the inherent tradeoffs in terms of provisioned throughput costs, storage costs, and
query efficiency.

• Use Indexes Sparingly (p. 320)

• Choose Projections Carefully (p. 320)

• Optimize Frequent Queries To Avoid Fetches (p. 321)

• Take Advantage of Sparse Indexes (p. 321)

• Watch For Expanding Item Collections (p. 321)

Global Secondary Index Best Practices
Global secondary indexes let you define alternate key attributes for a table; these attributes don't have
to be the same as the table's key attributes.You can issue Query requests against the global secondary
index key fields, just as you would when querying a table. As with local secondary indexes, global
secondary indexes also present tradeoffs that you need to consider when designing your applications.

• Choose a Key That Will Provide Uniform Workloads (p. 278)

• Take Advantage of Sparse Indexes (p. 278)

• Use a Global Secondary Index For Quick Lookups (p. 279)

• Create an Eventually Consistent Read Replica (p. 279)

API Version 2012-08-10
356

Amazon DynamoDB Developer Guide
Query and Scan Best Practices

Capturing Table Activity with
DynamoDB Streams

Many applications can benefit from the ability to capture changes to items stored in a DynamoDB table,
at the point in time when such changes occur. Here are some example use cases:

• An application in one AWS region modifies the data in a DynamoDB table. A second application in
another AWS region reads these data modifications and writes the data to another table, creating a
replica that stays in sync with the original table.

• A popular mobile app modifies data in a DynamoDB table, at the rate of thousands of updates per
second. Another application captures and stores data about these updates, providing near real time
usage metrics for the mobile app.

• A global multi-player game has a multi-master topology, storing data in multiple AWS regions. Each
master stays in sync by consuming and replaying the changes that occur in the remote regions.

• An application automatically sends notifications to the mobile devices of all friends in a group as soon
as one friend uploads a new picture.

• A new customer adds data to a DynamoDB table. This event invokes another application that sends a
welcome email to the new customer.

DynamoDB Streams enables solutions such as these, and many others. DynamoDB Streams captures
a time-ordered sequence of item-level modifications in any DynamoDB table, and stores this information
in a log for up to 24 hours. Applications can access this log and view the data items as they appeared
before and after they were modified, in near real time.

A DynamoDB stream is an ordered flow of information about changes to items in an Amazon DynamoDB
table. When you enable a stream on a table, DynamoDB captures information about every modification
to data items in the table.

Whenever an application creates, updates, or deletes items in the table, DynamoDB Streams writes a
stream record with the primary key attribute(s) of the items that were modified. A stream record contains
information about a data modification to a single item in a DynamoDB table.You can configure the stream
so that the stream records capture additional information, such as the "before" and "after" images of
modified items.

DynamoDB Streams guarantees the following:

• Each stream record appears exactly once in the stream.

API Version 2012-08-10
357

Amazon DynamoDB Developer Guide

• For each item that is modified in a DynamoDB table, the stream records appear in the same sequence
as the actual modifications to the item.

DynamoDB Streams writes stream records in near real time, so that you can build applications that
consume these streams and take action based on the contents.

Note
AWS maintains separate endpoints for DynamoDB and DynamoDB Streams. To work with
database tables and indexes, your application will need to access a DynamoDB endpoint. To
read and process DynamoDB Streams records, your application will need to access a DynamoDB
Streams endpoint in the same region.
The naming convention for Streams endpoints is
streams.<dynamodb-region>.amazonaws.com. For example, if you use the endpoint
dynamodb.us-west-2.amazonaws.com to access DynamoDB, you would use the endpoint
streams.dynamodb.us-west-2.amazonaws.com to access DynamoDB Streams.
For a complete list of DynamoDB and Streams regions and endpoints, go to Regions and
Endpoints in the AWS General Reference.

Enabling a Stream
You can enable a stream on a new table when you create it.You can also enable or disable a stream on
an existing table, or change the settings of a stream.The StreamSpecification parameter determines
how the stream is configured:

• StreamEnabled—specifies whether a stream is enabled (true) or disabled (false) for the table.

• StreamViewType—specifies the information that will be written to the stream whenever data in the
table is modified:

• KEYS_ONLY—only the key attributes of the modified item.

• NEW_IMAGE—the entire item, as it appears after it was modified.

• OLD_IMAGE—the entire item, as it appeared before it was modified.

• NEW_AND_OLD_IMAGES—both the new and the old images of the item.

DynamoDB Streams operates asynchronously, so there is no performance impact on a table if you enable
a stream.

You can enable or disable a stream at any time. However, note that you will receive a
ResourceInUseException if you attempt to enable a stream on a table that already has a stream, and
you will receive a ValidationException if you attempt to disable a stream on a table which does not have
a stream.

When you set StreamEnabled to true, DynamoDB creates a new stream with a unique stream descriptor
assigned to it. If you disable and then re-enable a stream on the table, a new stream will be created with
a different stream descriptor.

Every stream is uniquely identified by an Amazon Resource Name (ARN). Here is an example ARN for
a stream on a DynamoDB table named TestTable:

arn:aws:dynamodb:us-west-2:111122223333:table/TestTable/stream/2015-05-
11T21:21:33.291

To determine the latest stream descriptor for a table, issue a DynamoDB DescribeTable request and
look for the LatestStreamArn element in the response.

API Version 2012-08-10
358

Amazon DynamoDB Developer Guide
Enabling a Stream

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

Reading and Processing a Stream
To read and process a stream, your application will need to connect to a DynamoDB Streams endpoint
and issue API requests.

A stream consists of stream records. Each stream record represents a single data modification in the
DynamoDB table to which the stream belongs. Each stream record is assigned a sequence number,
reflecting the order in which the record was published to the stream.

Stream records are organized into groups, or shards. Each shard acts as a container for multiple stream
records, and contains information on accessing and iterating through the records.

Shards are ephemeral: They are created automatically, and they are removed automatically after 24
hours. Any shard can also split into multiple new shards; this also occurs automatically. (Note that it is
also possible for a parent shard to have just one child shard.) A shard might split in response to high
levels of write activity on its parent table, so that applications can process records from multiple shards
in parallel.

If you disable a stream, any shards that are open will be closed.

Because shards have a lineage (parent and children), applications must always process a parent shard
before it processes a child shard. This will ensure that the stream records are also processed in the
correct order. (If you use the DynamoDB Streams Kinesis Adapter, this is handled for you:Your application
will processes the shards and stream records in the correct order, and automatically handle new or expired
shards, as well as shards that split while the application is running. For more information, see Using the
DynamoDB Streams Kinesis Adapter to Process Stream Records (p. 368).)

The following diagram shows the relationship between a stream, shards in the stream, and stream records
in the shards.

Note
If you perform a PutItem or UpdateItem operation that does not change any data in an item,
then DynamoDB Streams will not write a stream record for that operation.

API Version 2012-08-10
359

Amazon DynamoDB Developer Guide
Reading and Processing a Stream

To access a stream and process the stream records within, you must do the following:

• Determine the unique Amazon Resource Name (ARN) of the stream that you want to access.

• Determine which shard(s) in the stream contain the stream records that you are interested in.

• Access the shard(s) and retrieve the stream records that you want.

Note
No more than 2 processes at most should be reading from the same Streams shard at the same
time. Having more than 2 readers per shard may result in throttling.

The DynamoDB Streams API provides the following actions for use by application programs:

• ListStreams—returns a list of stream descriptors for the current account and endpoint.You can
optionally request just the stream descriptors for a particular table name.

• DescribeStream—returns detailed information about a given stream. The output includes a list of
shards associated with the stream, including the shard IDs.

• GetShardIterator—returns a shard iterator, which describes a location within a shard.You can
request that the iterator provide access to the oldest point, the newest point, or a particular point in the
stream.

• GetRecords—returns the stream records from within a given shard.You must provide the shard iterator
returned from a GetShardIterator request.

For complete descriptions of these API actions, including example requests and responses, go to the
Amazon DynamoDB Streams API Reference.

Data Retention Limit for DynamoDB Streams
All data in DynamoDB Streams is subject to a 24 hour lifetime.You can retrieve and analyze the last 24
hours of activity for any given table; however, data older than 24 hours is susceptible to trimming (removal)
at any moment.

If you disable a stream on a table, the data in the stream will continue to be readable for 24 hours. After
this time, the data expires and the stream records are automatically deleted. Note that there is no
mechanism for manually deleting an existing stream; you just need to wait until the retention limit expires
(24 hours), and all the stream records will be deleted.

Walkthrough: DynamoDB Streams Low-Level
API

This section is a walkthrough of a Java program that shows DynamoDB Streams in action. For the source
code, see Complete Program: Low-Level Streams API (p. 364).

The program does the following:

1. Creates a DynamoDB table with a stream enabled.

2. Describes the stream settings for this table.

3. Modify data in the table.

4. Describe the shards in the stream.

5. Read the stream records from the shards.

6. Clean up.

API Version 2012-08-10
360

Amazon DynamoDB Developer Guide
Data Retention Limit for DynamoDB Streams

http://docs.aws.amazon.com/dynamodbstreams/latest/APIReference/API_ListStreams.html
http://docs.aws.amazon.com/dynamodbstreams/latest/APIReference/API_DescribeStream.html
http://docs.aws.amazon.com/dynamodbstreams/latest/APIReference/API_GetShardIterator.html
http://docs.aws.amazon.com/dynamodbstreams/latest/APIReference/API_GetRecords.html
http://docs.aws.amazon.com/dynamodbstreams/latest/APIReference/

These steps are described in the following sections, and the complete application is shown at the end of
the walkthrough.

Topics

• Step 1: Create a Table with a Stream Enabled (p. 361)

• Step 2: Describe the Streams Settings For The Table (p. 361)

• Step 3: Modify data in the table (p. 362)

• Step 4: Describe the Shards in the Stream (p. 362)

• Step 5: Read the Stream Records (p. 363)

• Step 6: Clean Up (p. 363)

• Complete Program: Low-Level Streams API (p. 364)

Step 1: Create a Table with a Stream Enabled
The first step is to create a table in DynamoDB, as in the following code snippet. The table has a stream
enabled, which will capture the NEW_AND_OLD_IMAGES of each item that is modified.

ArrayList<AttributeDefinition> attributeDefinitions =
 new ArrayList<AttributeDefinition>();

attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Id")
 .withAttributeType("N"));

ArrayList<KeySchemaElement> keySchema = new ArrayList<KeySchemaElement>();
keySchema.add(new KeySchemaElement()
 .withAttributeName("Id")
 .withKeyType(KeyType.HASH));

StreamSpecification streamSpecification = new StreamSpecification();
streamSpecification.setStreamEnabled(true);
streamSpecification.setStreamViewType(StreamViewType.NEW_AND_OLD_IMAGES);

CreateTableRequest createTableRequest = new CreateTableRequest()
 .withTableName(tableName)
 .withKeySchema(keySchema)
 .withAttributeDefinitions(attributeDefinitions)
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits(1L)
 .withWriteCapacityUnits(1L))
 .withStreamSpecification(streamSpecification);

Step 2: Describe the Streams Settings For The
Table
The DescribeTable API lets you view the current Streams settings for a table. The following code
snippet helps confirm that the stream is enabled, and that it will capture the correct data.

DescribeTableResult describeTableResult = dynamoDBClient.describeTable(table

API Version 2012-08-10
361

Amazon DynamoDB Developer Guide
Step 1: Create a Table with a Stream Enabled

Name);

String myStreamArn = describeTableResult.getTable().getLatestStreamArn();
StreamSpecification myStreamSpec =
 describeTableResult.getTable().getStreamSpecification();

System.out.println("Current stream ARN for " + tableName + ": "+ myStreamArn);
System.out.println("Stream enabled: "+ myStreamSpec.getStreamEnabled());
System.out.println("Update view type: "+ myStreamSpec.getStreamViewType());

Step 3: Modify data in the table
The next step is to make some changes to the data in the table. The following code snippet adds a new
item to the table, updates an attribute in that item, and then deletes the item.

// Add a new item

int numChanges = 0;
System.out.println("Making some changes to table data");
Map<String, AttributeValue> item = new HashMap<String, AttributeValue>();
item.put("Id", new AttributeValue().withN("101"));
item.put("Message", new AttributeValue().withS("New item!"));
dynamoDBClient.putItem(tableName, item);
numChanges++;

// Update the item

Map<String, AttributeValue> key = new HashMap<String, AttributeValue>();
key.put("Id", new AttributeValue().withN("101"));
Map<String, AttributeValueUpdate> attributeUpdates =
 new HashMap<String, AttributeValueUpdate>();
attributeUpdates.put("Message", new AttributeValueUpdate()
 .withAction(AttributeAction.PUT)
 .withValue(new AttributeValue().withS("This item has changed")));
dynamoDBClient.updateItem(tableName, key, attributeUpdates);
numChanges++;

// Delete the item

dynamoDBClient.deleteItem(tableName, key);
numChanges++;

Step 4: Describe the Shards in the Stream
The data modifications in the table will result in stream records being written to the table's stream.

In Step 2: Describe the Streams Settings For The Table (p. 361), we determined the current stream ARN
and assigned it to the variable myStreamArn. We can use this with the DescribeStream action to obtain
the shards in the stream.

Because we did not modify very much data in the DynamoDB table, there will only be one shard in the
list. The following code snippet shows how to obtain this information.

API Version 2012-08-10
362

Amazon DynamoDB Developer Guide
Step 3: Modify data in the table

DescribeStreamResult describeStreamResult =
 streamsClient.describeStream(new DescribeStreamRequest()
 .withStreamArn(myStreamArn));
String streamArn =
 describeStreamResult.getStreamDescription().getStreamArn();
List<Shard> shards =
 describeStreamResult.getStreamDescription().getShards();

Step 5: Read the Stream Records
For each shard in the list, we obtain a shard iterator, and then use the iterator to obtain the stream records
and print them.

The following code snippet uses a loop to process the shard list, even though there is only one shard.

for (Shard shard : shards) {
 String shardId = shard.getShardId();
 System.out.println(
 "Processing " + shardId + " from stream "+ streamArn);

 // Get an iterator for the current shard

 GetShardIteratorRequest getShardIteratorRequest = new GetShardIteratorRe
quest()
 .withStreamArn(myStreamArn)
 .withShardId(shardId)
 .withShardIteratorType(ShardIteratorType.TRIM_HORIZON);
 GetShardIteratorResult getShardIteratorResult =
 streamsClient.getShardIterator(getShardIteratorRequest);
 String nextItr = getShardIteratorResult.getShardIterator();

 while (nextItr != null && numChanges > 0) {

 // Use the iterator to read the data records from the shard

 GetRecordsResult getRecordsResult =
 streamsClient.getRecords(new GetRecordsRequest().
 withShardIterator(nextItr));
 List<Record> records = getRecordsResult.getRecords();
 System.out.println("Getting records...");
 for (Record record : records) {
 System.out.println(record);
 numChanges--;
 }
 nextItr = getRecordsResult.getNextShardIterator();
 }

Step 6: Clean Up
The demo is complete, so we can delete the table. Note that the stream associated with this table will
remain available for reading, even though the table is deleted. The stream will be automatically deleted
after 24 hours.

API Version 2012-08-10
363

Amazon DynamoDB Developer Guide
Step 5: Read the Stream Records

dynamoDBClient.deleteTable(tableName);

Complete Program: Low-Level Streams API
Here is a complete Java program that performs the tasks described in this walkthrough. When you run
it, you will see each stream record in its entirety:

Issuing CreateTable request for TestTableForStreams
Waiting for TestTableForStreams to be created...
Current stream ARN for TestTableForStreams: arn:aws:dynamodb:us-west-
2:111122223333:table/TestTableForStreams/stream/2015-05-19T23:03:50.641
Stream enabled: true
Update view type: NEW_AND_OLD_IMAGES
Making some changes to table data
Processing shardId-00000001415575208348-98d954b6 from stream arn:aws:dynamodb:us-
west-2:111122223333:table/TestTableForStreams/stream/2015-05-19T23:03:50.641
Getting records...
{eventID: 7f6ba6f037b9fdd5a43af22cb726f0cd,eventName: INSERT,eventVersion:
1.0,eventSource: aws:dynamodb,awsRegion: us-west-2,dynamodb: {Keys: {Id={N:
101,}},NewImage: {Message={S: New item!,}, Id={N: 101,}},SequenceNumber:
100000000000000507337,SizeBytes: 26,StreamViewType: NEW_AND_OLD_IMAGES}}
{eventID: 8f546e78ab6183d1441c0680ec03dcfc,eventName: MODIFY,eventVersion:
1.0,eventSource: aws:dynamodb,awsRegion: us-west-2,dynamodb: {Keys: {Id={N:
101,}},NewImage: {Message={S: This item has changed,}, Id={N: 101,}},OldImage:
 {Message={S: New item!,}, Id={N: 101,}},SequenceNumber:
200000000000000507338,SizeBytes: 59,StreamViewType: NEW_AND_OLD_IMAGES}}
{eventID: d9bb1e7a1684dfd66c8a3fb8ca2f6977,eventName: REMOVE,eventVersion:
1.0,eventSource: aws:dynamodb,awsRegion: us-west-2,dynamodb: {Keys: {Id={N:
101,}},OldImage: {Message={S: This item has changed,}, Id={N: 101,}},SequenceNum
ber: 300000000000000507339,SizeBytes: 38,StreamViewType: NEW_AND_OLD_IMAGES}}
Deleting the table...
Demo complete

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.gsg;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBStreamsClient;
import com.amazonaws.services.dynamodbv2.model.AttributeAction;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.AttributeValueUpdate;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.DescribeStreamRequest;
import com.amazonaws.services.dynamodbv2.model.DescribeStreamResult;
import com.amazonaws.services.dynamodbv2.model.DescribeTableResult;

API Version 2012-08-10
364

Amazon DynamoDB Developer Guide
Complete Program: Low-Level Streams API

import com.amazonaws.services.dynamodbv2.model.GetRecordsRequest;
import com.amazonaws.services.dynamodbv2.model.GetRecordsResult;
import com.amazonaws.services.dynamodbv2.model.GetShardIteratorRequest;
import com.amazonaws.services.dynamodbv2.model.GetShardIteratorResult;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.Record;
import com.amazonaws.services.dynamodbv2.model.Shard;
import com.amazonaws.services.dynamodbv2.model.ShardIteratorType;
import com.amazonaws.services.dynamodbv2.model.StreamSpecification;
import com.amazonaws.services.dynamodbv2.model.StreamViewType;
import com.amazonaws.services.dynamodbv2.util.Tables;

public class StreamsLowLevelDemo {

 private static AmazonDynamoDBClient dynamoDBClient =
 new AmazonDynamoDBClient(new ProfileCredentialsProvider());

 private static AmazonDynamoDBStreamsClient streamsClient =
 new AmazonDynamoDBStreamsClient(new ProfileCredentialsProvider());

 public static void main(String args[]) {

 dynamoDBClient.setEndpoint("DYNAMODB_ENDPOINT_GOES_HERE");

 streamsClient.setEndpoint("STREAMS_ENDPOINT_GOES_HERE");

 // Create the table
 String tableName = "TestTableForStreams";

 ArrayList<AttributeDefinition> attributeDefinitions =
 new ArrayList<AttributeDefinition>();

 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Id")
 .withAttributeType("N"));

 ArrayList<KeySchemaElement> keySchema = new ArrayList<KeySchemaEle
ment>();
 keySchema.add(new KeySchemaElement()
 .withAttributeName("Id")
 .withKeyType(KeyType.HASH));

 StreamSpecification streamSpecification = new StreamSpecification();
 streamSpecification.setStreamEnabled(true);
 streamSpecification.setStreamViewType(StreamViewType.NEW_AND_OLD_IMAGES);

 CreateTableRequest createTableRequest = new CreateTableRequest()
 .withTableName(tableName)
 .withKeySchema(keySchema)
 .withAttributeDefinitions(attributeDefinitions)
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits(1L)
 .withWriteCapacityUnits(1L))
 .withStreamSpecification(streamSpecification);

API Version 2012-08-10
365

Amazon DynamoDB Developer Guide
Complete Program: Low-Level Streams API

 System.out.println("Issuing CreateTable request for " + tableName);
 dynamoDBClient.createTable(createTableRequest);

 System.out.println("Waiting for " + tableName + " to be created...");
 try {
 Tables.awaitTableToBecomeActive(dynamoDBClient, tableName);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Determine the Streams settings for the table

 DescribeTableResult describeTableResult = dynamoDBClient.de
scribeTable(tableName);

 String myStreamArn = describeTableResult.getTable().getLatestStreamArn();

 StreamSpecification myStreamSpec =
 describeTableResult.getTable().getStreamSpecification();

 System.out.println("Current stream ARN for " + tableName + ": "+ myS
treamArn);
 System.out.println("Stream enabled: "+ myStreamSpec.getStreamEnabled());

 System.out.println("Update view type: "+ myStreamSpec.getStreamView
Type());

 // Add a new item

 int numChanges = 0;
 System.out.println("Making some changes to table data");
 Map<String, AttributeValue> item = new HashMap<String, AttributeValue>();

 item.put("Id", new AttributeValue().withN("101"));
 item.put("Message", new AttributeValue().withS("New item!"));
 dynamoDBClient.putItem(tableName, item);
 numChanges++;

 // Update the item

 Map<String, AttributeValue> key = new HashMap<String, AttributeValue>();

 key.put("Id", new AttributeValue().withN("101"));
 Map<String, AttributeValueUpdate> attributeUpdates =
 new HashMap<String, AttributeValueUpdate>();
 attributeUpdates.put("Message", new AttributeValueUpdate()
 .withAction(AttributeAction.PUT)
 .withValue(new AttributeValue().withS("This item has changed")));
 dynamoDBClient.updateItem(tableName, key, attributeUpdates);
 numChanges++;

 // Delete the item

 dynamoDBClient.deleteItem(tableName, key);
 numChanges++;

 // Get the shards in the stream

API Version 2012-08-10
366

Amazon DynamoDB Developer Guide
Complete Program: Low-Level Streams API

 DescribeStreamResult describeStreamResult =
 streamsClient.describeStream(new DescribeStreamRequest()
 .withStreamArn(myStreamArn));
 String streamArn =
 describeStreamResult.getStreamDescription().getStreamArn();
 List<Shard> shards =
 describeStreamResult.getStreamDescription().getShards();

 // Process each shard

 for (Shard shard : shards) {
 String shardId = shard.getShardId();
 System.out.println(
 "Processing " + shardId + " from stream "+ streamArn);

 // Get an iterator for the current shard

 GetShardIteratorRequest getShardIteratorRequest = new GetShardIter
atorRequest()
 .withStreamArn(myStreamArn)
 .withShardId(shardId)
 .withShardIteratorType(ShardIteratorType.TRIM_HORIZON);
 GetShardIteratorResult getShardIteratorResult =
 streamsClient.getShardIterator(getShardIteratorRequest);
 String nextItr = getShardIteratorResult.getShardIterator();

 while (nextItr != null && numChanges > 0) {

 // Use the iterator to read the data records from the shard

 GetRecordsResult getRecordsResult =
 streamsClient.getRecords(new GetRecordsRequest().
 withShardIterator(nextItr));
 List<Record> records = getRecordsResult.getRecords();
 System.out.println("Getting records...");
 for (Record record : records) {
 System.out.println(record);
 numChanges--;
 }
 nextItr = getRecordsResult.getNextShardIterator();
 }

 // Delete the table

 System.out.println("Deleting the table...");
 dynamoDBClient.deleteTable(tableName);

 System.out.println("Demo complete");
 }
 }
}

API Version 2012-08-10
367

Amazon DynamoDB Developer Guide
Complete Program: Low-Level Streams API

Using the DynamoDB Streams Kinesis Adapter
to Process Stream Records

The DynamoDB Streams API is intentionally similar to that of Amazon Kinesis, a service for real-time
processing of streaming data at massive scale. In both services, data streams are composed of shards,
which are containers for stream records. Both services' APIs contain ListStreams, DescribeStream,
GetShards, and GetShardIterator actions. (Even though these Streams actions are similar to their
Amazon Kinesis counterparts, they are not identical.)

You can write applications for Amazon Kinesis using the Amazon Kinesis Client Library (KCL). The KCL
simplifies coding by providing useful abstractions above the low-level Amazon Kinesis API. For more
information on the KCL, go to the Amazon Kinesis Developer Guide.

As a DynamoDB Streams user, you can leverage the design patterns found within the KCL to process
Streams shards and stream records. To do this, you use the DynamoDB Streams Kinesis Adapter. The
Kinesis Adapter implements the Amazon Kinesis interface so that the KCL can be used for consuming
and processing records from DynamoDB Streams.

The following diagram shows how these libraries interact with one another.

API Version 2012-08-10
368

Amazon DynamoDB Developer Guide
Using the DynamoDB Streams Kinesis Adapter to

Process Stream Records

http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-record-processor-app.html

With the DynamoDB Streams Kinesis Adapter in place, you can begin developing against the KCL
interface, with the API calls seamlessly directed at the Streams endpoint.

When your application starts, it calls the KCL to instantiate a worker.You must provide the worker with
configuration information for the application, such as the stream descriptor and AWS credentials, and the
name of a record processor class that you provide. As it runs the code in the record processor, the worker
performs the following tasks:

• Connects to the stream.

• Enumerates the shards within the stream.

• Coordinates shard associations with other workers (if any).

• Instantiates a record processor for every shard it manages.

• Pulls records from the stream.

• Pushes the records to the corresponding record processor.

• Checkpoints processed records.

API Version 2012-08-10
369

Amazon DynamoDB Developer Guide
Using the DynamoDB Streams Kinesis Adapter to

Process Stream Records

• Balances shard-worker associations when the worker instance count changes.

• Balances shard-worker associations when shards are split.

Note
For a description of the KCL concepts listed above, go to Building an Amazon Kinesis Application
in the Amazon Kinesis Developer Guide.

Walkthrough: DynamoDB Streams Kinesis Adapter
This section is a walkthrough of a Java application that uses the Kinesis Client Library and the DynamoDB
Streams Kinesis Adapter.The application shows an example of data replication, where write activity from
one table is applied to a second table, with both tables' contents staying in sync. For the source code,
see Complete Program: DynamoDB Streams Kinesis Adapter (p. 373).

The program does the following:

1. Creates two DynamoDB tables named KCL-Demo-src and KCL-Demo-dst. Each of these tables has
a stream enabled on it.

2. Generates update activity in the source table by adding, updating, and deleting items. This causes
data to be written to the table's stream.

3. Reads the records from the stream, reconstructs them as DynamoDB requests, and applies the requests
to the destination table.

4. Scans the source and destination tables to ensure their contents are identical.

5. Cleans up by deleting the tables.

These steps are described in the following sections, and the complete application is shown at the end of
the walkthrough.

Topics

• Step 1: Create DynamoDB Tables (p. 370)

• Step 2: Generate Update Activity in Source Table (p. 371)

• Step 3: Process the Streams (p. 371)

• Step 4: Ensure Both Tables Have Identical Contents (p. 372)

• Step 5: Clean Up (p. 372)

• Complete Program: DynamoDB Streams Kinesis Adapter (p. 373)

Step 1: Create DynamoDB Tables
The first step is to create two DynamoDB tables—a source table and a destination table. The
StreamViewType on the source table's stream is NEW_IMAGE, meaning that whenever an item is modified
in this table, the item's "after" image is written to the stream. In this way, the stream keeps track of all
write activity on the table.

The following code snippet shows the code used for creating both tables.

java.util.List<AttributeDefinition> attributeDefinitions = new ArrayList<Attrib
uteDefinition>();
attributeDefinitions.add(new AttributeDefinition().withAttributeName("Id").withAt
tributeType("N"));

API Version 2012-08-10
370

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-record-processor-app.html

java.util.List<KeySchemaElement> keySchema = new ArrayList<KeySchemaElement>();
keySchema.add(new KeySchemaElement().withAttributeName("Id").withKeyType(Key
Type.HASH));

ProvisionedThroughput provisionedThroughput = new ProvisionedThroughput()
 .withReadCapacityUnits(2L).withWriteCapacityUnits(2L);

StreamSpecification streamSpecification = new StreamSpecification();
streamSpecification.setStreamEnabled(true);
streamSpecification.setStreamViewType(StreamViewType.NEW_IMAGE);
CreateTableRequest createTableRequest = new CreateTableRequest()
 .withTableName(tableName)
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(keySchema)
 .withProvisionedThroughput(provisionedThroughput)
 .withStreamSpecification(streamSpecification);

Step 2: Generate Update Activity in Source Table
The next step is to generate some write activity on the source table. While this activity is taking place,
the source table's stream is also updated in near real time.

The application defines a helper class with methods that call the PutItem, UpdateItem, and DeleteItem
API actions for writing the data. The following code snippet shows how these methods are used.

StreamsAdapterDemoHelper.putItem(dynamoDBClient, tableName, "101", "test1");
StreamsAdapterDemoHelper.updateItem(dynamoDBClient, tableName, "101", "test2");
StreamsAdapterDemoHelper.deleteItem(dynamoDBClient, tableName, "101");
StreamsAdapterDemoHelper.putItem(dynamoDBClient, tableName, "102", "demo3");
StreamsAdapterDemoHelper.updateItem(dynamoDBClient, tableName, "102", "demo4");
StreamsAdapterDemoHelper.deleteItem(dynamoDBClient, tableName, "102");

Step 3: Process the Streams
Now the program begins processing the stream. The DynamoDB Streams Kinesis Adapter acts as a
transparent layer between the KCL and the DynamoDB Streams endpoint, so that the code can fully
leverage KCL rather than having to make low-level DynamoDB Streams calls. The program performs the
following tasks:

• It defines a record processor class, StreamsRecordProcessor, with methods that comply with the
KCL interface definition: initialize, processRecords, and shutdown. The processRecords
method contains the logic required for reading from the source table's stream and writing to the
destination table.

• It defines a class factory for the record processor class (StreamsRecordProcessorFactory). This
is required for Java programs that use the KCL.

• It instantiates a new KCL Worker, which is associated with the class factory.

• It shuts down the Worker when record processing is complete.

To learn more about the KCL interface definition, go to Building an Amazon Kinesis Application in the
Amazon Kinesis Developer Guide.

API Version 2012-08-10
371

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-record-processor-app.html

The following code snippet shows the main loop in StreamsRecordProcessor. The case statement
determines what action to perform, based on the OperationType that appears in the stream record.

for(Record record : records) {
 String data = new String(record.getData().array(), Charset.forName("UTF-
8"));
 System.out.println(data);
 if(record instanceof RecordAdapter) {
 com.amazonaws.services.dynamodbv2.model.Record streamRecord = ((RecordAd
apter) record).getInternalObject();

 switch(streamRecord.getEventName()) {
 case "INSERT" : case "MODIFY" :
 StreamsAdapterDemoHelper.putItem(dynamoDBClient, tableName,
streamRecord.getDynamodb().getNewImage());
 break;
 case "REMOVE" :
 StreamsAdapterDemoHelper.deleteItem(dynamoDBClient, tableName,
 streamRecord.getDynamodb().getKeys().get("Id").getN());
 }
 }
 checkpointCounter += 1;
 if(checkpointCounter % 10 == 0) {
 try {
 checkpointer.checkpoint();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }
}

Step 4: Ensure Both Tables Have Identical Contents
At this point, the source and destination tables' contents are in sync.The application issues Scan requests
against both tables to verify that their contents are, in fact, identical.

The DemoHelper class contains a ScanTable method that calls the low-level Scan API. The following
code snippet shows how this is used.

if(StreamsAdapterDemoHelper.scanTable(dynamoDBClient,
srcTable).getItems().equals(StreamsAdapterDemoHelper.scanTable(dynamoDBClient,
 destTable).getItems())) {
 System.out.println("Scan result is equal.");
} else {
 System.out.println("Tables are different!");
}

Step 5: Clean Up
The demo is complete, so the application deletes the source and destination tables. See the following
code snippet.

API Version 2012-08-10
372

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

Even after the tables are deleted, their streams remain available for up to 24 hours, after which they are
automatically deleted.

dynamoDBClient.deleteTable(new DeleteTableRequest().withTableName(srcTable));
dynamoDBClient.deleteTable(new DeleteTableRequest().withTableName(destTable));

Complete Program: DynamoDB Streams Kinesis Adapter
Here is the complete Java program that performs the tasks described in this walkthrough. When you run
it, you should see output similar to the following:

Creating table KCL-Demo-src
Creating table KCL-Demo-dest
Table is active.
Creating worker for stream: arn:aws:dynamodb:us-west-2:111122223333:table/KCL-
Demo-src/stream/2015-05-19T22:48:56.601
Starting worker...
Scan result is equal.
Done.

The source code consists of four .java files.

StreamsAdapterDemo.java

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.gsg;

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentialsProvider;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClient;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.model.DeleteTableRequest;
import com.amazonaws.services.dynamodbv2.model.DescribeTableResult;
import com.amazonaws.services.dynamodbv2.streamsadapter.AmazonDynamoDBStreamsAd
apterClient;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessor
Factory;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.InitialPosition
InStream;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.KinesisClientLib
Configuration;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.Worker;

public class StreamsAdapterDemo {

 private static Worker worker;
 private static KinesisClientLibConfiguration workerConfig;
 private static IRecordProcessorFactory recordProcessorFactory;

 private static AmazonDynamoDBStreamsAdapterClient adapterClient;
 private static AWSCredentialsProvider streamsCredentials;

API Version 2012-08-10
373

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

 private static AmazonDynamoDBClient dynamoDBClient;
 private static AWSCredentialsProvider dynamoDBCredentials;

 private static AmazonCloudWatchClient cloudWatchClient;

 private static String serviceName = "dynamodb";
 private static String dynamodbEndpoint = "DYNAMODB_ENDPOINT_GOES_HERE";
 private static String streamsEndpoint = "STREAMS_ENDPOINT_GOES_HERE";
 private static String tablePrefix = "KCL-Demo";
 private static String streamArn;

 /**
 * @param args
 */
 public static void main(String[] args) throws Exception {
 System.out.println("Starting demo...");

 String srcTable = tablePrefix + "-src";
 String destTable = tablePrefix + "-dest";
 streamsCredentials = new ProfileCredentialsProvider();
 dynamoDBCredentials = new ProfileCredentialsProvider();
 recordProcessorFactory = new StreamsRecordProcessorFactory(dynamoDBCre
dentials, dynamodbEndpoint, serviceName, destTable);

 /* ===== REQUIRED =====
 * Users will have to explicitly instantiate and configure the adapter,
 then pass it to
 * the KCL worker.
 */
 adapterClient = new AmazonDynamoDBStreamsAdapterClient(streamsCreden
tials, new ClientConfiguration());
 adapterClient.setEndpoint(streamsEndpoint);

 dynamoDBClient = new AmazonDynamoDBClient(dynamoDBCredentials, new
ClientConfiguration());
 dynamoDBClient.setEndpoint(dynamodbEndpoint);

 cloudWatchClient = new AmazonCloudWatchClient(dynamoDBCredentials, new
 ClientConfiguration());

 setUpTables();

 workerConfig = new KinesisClientLibConfiguration("streams-adapter-demo",

 streamArn, streamsCredentials, "streams-demo-worker")
 .withMaxRecords(1000)
 .withIdleTimeInMillis(500)
 .withInitialPositionInStream(InitialPositionInStream.TRIM_HORIZON);

 System.out.println("Creating worker for stream: " + streamArn);
 worker = new Worker(recordProcessorFactory, workerConfig, adapterClient,
 dynamoDBClient, cloudWatchClient);
 System.out.println("Starting worker...");
 Thread t = new Thread(worker);
 t.start();

API Version 2012-08-10
374

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

 Thread.sleep(25000);
 worker.shutdown();
 t.join();

 if(StreamsAdapterDemoHelper.scanTable(dynamoDBClient,
srcTable).getItems().equals(StreamsAdapterDemoHelper.scanTable(dynamoDBClient,
 destTable).getItems())) {
 System.out.println("Scan result is equal.");
 } else {
 System.out.println("Tables are different!");
 }

 System.out.println("Done.");
 cleanupAndExit(0);
 }

 private static void setUpTables() {
 String srcTable = tablePrefix + "-src";
 String destTable = tablePrefix + "-dest";
 streamArn = StreamsAdapterDemoHelper.createTable(dynamoDBClient,
srcTable);
 StreamsAdapterDemoHelper.createTable(dynamoDBClient, destTable);

 awaitTableCreation(srcTable);

 performOps(srcTable);
 }

 private static void awaitTableCreation(String tableName) {
 Integer retries = 0;
 Boolean created = false;
 while(!created && retries < 100) {
 DescribeTableResult result = StreamsAdapterDemoHelper.de
scribeTable(dynamoDBClient, tableName);
 created = result.getTable().getTableStatus().equals("ACTIVE");
 if (created) {
 System.out.println("Table is active.");
 return;
 } else {
 retries++;
 try {
 Thread.sleep(1000);
 } catch(InterruptedException e) {
 // do nothing
 }
 }
 }
 System.out.println("Timeout after table creation. Exiting...");
 cleanupAndExit(1);
 }

 private static void performOps(String tableName) {
 StreamsAdapterDemoHelper.putItem(dynamoDBClient, tableName, "101", "test1");

 StreamsAdapterDemoHelper.updateItem(dynamoDBClient, tableName, "101",
"test2");
 StreamsAdapterDemoHelper.deleteItem(dynamoDBClient, tableName, "101");

API Version 2012-08-10
375

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

 StreamsAdapterDemoHelper.putItem(dynamoDBClient, tableName, "102",
"demo3");
 StreamsAdapterDemoHelper.updateItem(dynamoDBClient, tableName, "102",
"demo4");
 StreamsAdapterDemoHelper.deleteItem(dynamoDBClient, tableName, "102");

 }

 private static void cleanupAndExit(Integer returnValue) {
 String srcTable = tablePrefix + "-src";
 String destTable = tablePrefix + "-dest";
 dynamoDBClient.deleteTable(new DeleteTableRequest().withTable
Name(srcTable));
 dynamoDBClient.deleteTable(new DeleteTableRequest().withTableName(dest
Table));
 System.exit(returnValue);
 }

}

StreamsRecordProcessor.java

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.gsg;

import java.nio.charset.Charset;
import java.util.List;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.streamsadapter.model.RecordAdapter;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessor;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordPro
cessorCheckpointer;
import com.amazonaws.services.kinesis.clientlibrary.types.ShutdownReason;
import com.amazonaws.services.kinesis.model.Record;

public class StreamsRecordProcessor implements IRecordProcessor {

 private Integer checkpointCounter;

 private final AmazonDynamoDBClient dynamoDBClient;
 private final String tableName;

 public StreamsRecordProcessor(AmazonDynamoDBClient dynamoDBClient, String
tableName) {
 this.dynamoDBClient = dynamoDBClient;
 this.tableName = tableName;
 }

 @Override
 public void initialize(String shardId) {
 checkpointCounter = 0;
 }

API Version 2012-08-10
376

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

 @Override
 public void processRecords(List<Record> records,
 IRecordProcessorCheckpointer checkpointer) {
 for(Record record : records) {
 String data = new String(record.getData().array(), Charset.for
Name("UTF-8"));
 System.out.println(data);
 if(record instanceof RecordAdapter) {
 com.amazonaws.services.dynamodbv2.model.Record streamRecord =
((RecordAdapter) record).getInternalObject();

 switch(streamRecord.getEventName()) {
 case "INSERT" : case "MODIFY" :
 StreamsAdapterDemoHelper.putItem(dynamoDBClient, tableName,
 streamRecord.getDynamodb().getNewImage());
 break;
 case "REMOVE" :
 StreamsAdapterDemoHelper.deleteItem(dynamoDBClient, table
Name, streamRecord.getDynamodb().getKeys().get("Id").getN());
 }
 }
 checkpointCounter += 1;
 if(checkpointCounter % 10 == 0) {
 try {
 checkpointer.checkpoint();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }

 }

 @Override
 public void shutdown(IRecordProcessorCheckpointer checkpointer,
 ShutdownReason reason) {
 if(reason == ShutdownReason.TERMINATE) {
 try {
 checkpointer.checkpoint();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

}

StreamsRecordProcessorFactory.java

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.gsg;

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;

API Version 2012-08-10
377

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

import com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessor;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessor
Factory;

public class StreamsRecordProcessorFactory implements
 IRecordProcessorFactory {

 private final AWSCredentialsProvider dynamoDBCredentials;
 private final String dynamoDBEndpoint;
 private final String tableName;

 public StreamsRecordProcessorFactory(
 AWSCredentialsProvider dynamoDBCredentials,
 String dynamoDBEndpoint,
 String serviceName,
 String tableName) {
 this.dynamoDBCredentials = dynamoDBCredentials;
 this.dynamoDBEndpoint = dynamoDBEndpoint;
 this.tableName = tableName;
 }

 @Override
 public IRecordProcessor createProcessor() {
 AmazonDynamoDBClient dynamoDBClient = new AmazonDynamoDBClient(dynamoD
BCredentials, new ClientConfiguration());
 dynamoDBClient.setEndpoint(dynamoDBEndpoint);
 return new StreamsRecordProcessor(dynamoDBClient, tableName);
 }

}

StreamsAdapterDemoHelper.java

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.gsg;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.model.AttributeAction;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.AttributeValueUpdate;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.CreateTableResult;
import com.amazonaws.services.dynamodbv2.model.DeleteItemRequest;
import com.amazonaws.services.dynamodbv2.model.DescribeTableRequest;
import com.amazonaws.services.dynamodbv2.model.DescribeTableResult;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.PutItemRequest;
import com.amazonaws.services.dynamodbv2.model.ResourceInUseException;

API Version 2012-08-10
378

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

import com.amazonaws.services.dynamodbv2.model.ScanRequest;
import com.amazonaws.services.dynamodbv2.model.ScanResult;
import com.amazonaws.services.dynamodbv2.model.StreamSpecification;
import com.amazonaws.services.dynamodbv2.model.StreamViewType;
import com.amazonaws.services.dynamodbv2.model.UpdateItemRequest;

public class StreamsAdapterDemoHelper {

 /**
 * @return StreamArn
 */
 public static String createTable(AmazonDynamoDBClient client, String
tableName) {
 java.util.List<AttributeDefinition> attributeDefinitions = new ArrayL
ist<AttributeDefinition>();
 attributeDefinitions.add(new AttributeDefinition().withAttribute
Name("Id").withAttributeType("N"));

 java.util.List<KeySchemaElement> keySchema = new ArrayList<KeySchemaEle
ment>();
 keySchema.add(new KeySchemaElement().withAttributeName("Id").withKey
Type(KeyType.HASH));

 ProvisionedThroughput provisionedThroughput = new ProvisionedThroughput()

 .withReadCapacityUnits(2L).withWriteCapacityUnits(2L);

 StreamSpecification streamSpecification = new StreamSpecification();
 streamSpecification.setStreamEnabled(true);
 streamSpecification.setStreamViewType(StreamViewType.NEW_IMAGE);
 CreateTableRequest createTableRequest = new CreateTableRequest()
 .withTableName(tableName)
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(keySchema)
 .withProvisionedThroughput(provisionedThroughput)
 .withStreamSpecification(streamSpecification);

 try {
 System.out.println("Creating table " + tableName);
 CreateTableResult result = client.createTable(createTableRequest);

 return result.getTableDescription().getLatestStreamArn();
 } catch(ResourceInUseException e) {
 System.out.println("Table already exists.");
 return describeTable(client, tableName).getTable().getLatest
StreamArn();
 }
 }

 public static DescribeTableResult describeTable(AmazonDynamoDBClient client,
 String tableName) {
 return client.describeTable(new DescribeTableRequest().withTable
Name(tableName));
 }

 public static ScanResult scanTable(AmazonDynamoDBClient client, String
tableName) {

API Version 2012-08-10
379

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

 return client.scan(new ScanRequest().withTableName(tableName));
 }

 public static void putItem(AmazonDynamoDBClient client, String tableName,
String id, String val) {
 java.util.Map<String, AttributeValue> item = new HashMap<String, Attrib
uteValue>();
 item.put("Id", new AttributeValue().withN(id));
 item.put("attribute-1", new AttributeValue().withS(val));

 PutItemRequest putItemRequest = new PutItemRequest()
 .withTableName(tableName)
 .withItem(item);
 client.putItem(putItemRequest);
 }

 public static void putItem(AmazonDynamoDBClient client, String tableName,
java.util.Map<String, AttributeValue> items) {
 PutItemRequest putItemRequest = new PutItemRequest()
 .withTableName(tableName)
 .withItem(items);
 client.putItem(putItemRequest);
 }

 public static void updateItem(AmazonDynamoDBClient client, String tableName,
 String id, String val) {
 java.util.Map<String, AttributeValue> key = new HashMap<String, Attrib
uteValue>();
 key.put("Id", new AttributeValue().withN(id));

 Map<String, AttributeValueUpdate> attributeUpdates = new HashMap<String,
 AttributeValueUpdate>();
 AttributeValueUpdate update = new AttributeValueUpdate()
 .withAction(AttributeAction.PUT)
 .withValue(new AttributeValue().withS(val));
 attributeUpdates.put("attribute-2", update);

 UpdateItemRequest updateItemRequest = new UpdateItemRequest()
 .withTableName(tableName)
 .withKey(key)
 .withAttributeUpdates(attributeUpdates);
 client.updateItem(updateItemRequest);
 }

 public static void deleteItem(AmazonDynamoDBClient client, String tableName,
 String id) {
 java.util.Map<String, AttributeValue> key = new HashMap<String, Attrib
uteValue>();
 key.put("Id", new AttributeValue().withN(id));

 DeleteItemRequest deleteItemRequest = new DeleteItemRequest()
 .withTableName(tableName)
 .withKey(key);
 client.deleteItem(deleteItemRequest);
 }

}

API Version 2012-08-10
380

Amazon DynamoDB Developer Guide
Walkthrough: DynamoDB Streams Kinesis Adapter

Cross-Region Replication Using DynamoDB
Streams

DynamoDB cross-region replication is a client-side solution for maintaining identical copies of DynamoDB
tables across different AWS regions, in near real time.You can use cross-region replication to back up
DynamoDB tables, or to provide low-latency access to data where users are geographically distributed.

Cross-region replication supports a single-master model. In this model, you create a master table with
DynamoDB Streams enabled, and one or more replica tables. Each replica can reside in a different AWS
region. When you modify data in the master table, the cross-region replication solution transparently
updates all of the replicas, so that all of the tables in the replication group are kept in sync.

The replica tables are intended to serve as read-only copies of the data; however, it is possible to write
data to a replica table. If you write data to a replica, those changes will not be propagated to the master,
or to any other replicas. In addition, if you modify an item in the master table, that item will overwrite the
same item in all of the replicas.

Topics

• Overview (p. 381)

• Walkthrough: Setting Up Replication Using the Cross Region Replication Console (p. 383)

• Troubleshooting (p. 388)

• Cross-Region Replication Library (p. 392)

Overview
The following diagram provides an overview of a cross-region replication setup.

API Version 2012-08-10
381

Amazon DynamoDB Developer Guide
Cross-Region Replication Using DynamoDB Streams

Cross-Region Replication Overview

You launch a preconfigured AWS CloudFormation stack. This is a one-time operation that
takes approximately 20 minutes to complete.

1

The AWS CloudFormation stack uses AWS Elastic Beanstalk to launch the Replication
Coordinator and DynamoDB Connector into the Amazon EC2 Container Service (Amazon
ECS).

2

You use the Cross Region Replication Console to create a replication group.3

The Replication Coordinator allocates all of the necessary resources, including metadata
tables and replica tables in other regions. This operation can take up to 30 minutes to
complete.

4

The DynamoDB Connector reads and processes incoming records from the stream on the
master table in DynamoDB.

5

The DynamoDB Connector updates the replica table(s).6

After the initial setup, the following components are used to perform the replication tasks.

• Cross Region Replication Console—a standalone web application that resembles the AWS
Management Console. This application allows you to:

• Define a replication group, consisting of a master table and at least one replica. The master and the
replica(s) must have the same key schema and attribute definition. A replica can be located in the
same AWS region as the master, or in a different region.

• Launch the replication group. The Cross Region Replication Console communicates with the
Replication Coordinator to perform create, delete, and update operations for the replication group.

• Monitor the performance of replication groups and their members.

• Add and remove replicas from a replication group, or delete a replication group.

• Replication Coordinator—an application running on Amazon EC2 Container Service that does the
following:

• Responds to user requests from the Cross Region Replication Console.

• Manages replication states and physical copies of a table.

• Creates and maintains the following DynamoDB tables:

• One metadata table that keeps track of replication activity and enables recovery from failures.

• One KCL checkpoint table for tracking Kinesis Client Library (KCL) processing.

• An additional KCL checkpoint table per replication path. For example, if you have a replication
group with three replicas, the Replication Coordinator will create three additional KCL checkpoint
table. Each additional KCL checkpoint table is created in the same AWS region as its corresponding
replica.

Amazon Web Services provides a prewritten AWS CloudFormation template that launches the Replication
Coordinator on a customer-provided Amazon ECS cluster.

• DynamoDB Connector—an application that contains the low-level processing logic for replication from
a source table to a destination table. The DynamoDB Connector does the following:

• Reads incoming Streams records for the source table, using the Kinesis Client Library (KCL) and
the DynamoDB Streams Kinesis Adapter libraries.

• Analyzes each Streams record to determine whether that record is necessary for the current replication
tasks.

• Groups related records into batches, based on primary key values. Duplicate records are removed.

• Issues asynchronous conditional write requests to the replica table, in parallel.

API Version 2012-08-10
382

Amazon DynamoDB Developer Guide
Overview

Walkthrough: Setting Up Replication Using the
Cross Region Replication Console
In this walkthrough, you will create a DynamoDB table in the US East (N.Virginia).This will be the master
table for this exercise. Next, you will use a AWS CloudFormation to launch all of the cross region replication
components. After that, you will use the Cross Region Replication Console to define a replica table in the
US West (Oregon).You will then add data to the master table in us-east-1, and the data will be propagated
to the replica in us-west-2. Finally, you will clean up by deleting the replication environment and the
DynamoDB tables.

Steps in This Walkthrough
• Step 1: Create a Source Table (p. 383)

• Step 2: Launch an AWS CloudFormation Stack (p. 384)

• Step 3: Create a Replication Group (p. 386)

• Step 4: Test Your Replication Setup (p. 387)

• (Optional) Step 5: Clean Up (p. 387)

Step 1: Create a Source Table
In this step, you will create a DynamoDB table with DynamoDB Streams enabled. This will be the source
table: Writes to this table will be replicated to another AWS region.

You will create the source table in the US East (N. Virginia).

To create the source table

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. In the upper right corner of the window, choose US East (N. Virginia) from the region selector.

3. Click Create Table.

4. On the Create Table page, enter the following settings:

a. Table Name—SourceTable

b. Primary Key Type—Hash

c. Hash attribute data type—Number

d. Hash Attribute Name—Id

Click Continue.

API Version 2012-08-10
383

Amazon DynamoDB Developer Guide
Walkthrough: Setting Up Replication Using the Cross

Region Replication Console

https://console.aws.amazon.com/dynamodb/

5. On the Add Indexes page, click Continue.You will not need any indexes for this exercise.

6. On the Provisioned Throughput page, click Continue.

7. On the Additional Options page, do the following:

a. Select the Enable Streams option. Set the View Type to New and Old Images.

b. Deselect the Use Basic Alarms option.You will not need alarms for this exercise.

When you are ready, click Continue.

8. On the Summary page, click Create.

The source table will be created within a few minutes.

Step 2: Launch an AWS CloudFormation Stack (p. 384)

Step 2: Launch an AWS CloudFormation Stack
In this step, you will use the AWS Management Console to launch an AWS CloudFormation stack from
a prewritten template. When you launch the stack, itcalls AWS Elastic Beanstalk, which in turn launches
the Replication Coordinator and the DynamoDB Connector in to Amazon EC2 Container Service. The
following resources are also created:

• An Amazon EC2 security group to control access to Amazon ECS instances.

• An Auto Scaling group to automatically adjust Amazon ECS capacity.

• Two Amazon SQS queues—one for processing Replication Coordinator events, and a "dead letter"
queue for messages that can't be processed.

• Amazon CloudWatch alarms and metrics for these resources.

• An AWS Identity and Access Management role that assigns privileges to the DynamoDB Replication
Coordinator.

Important
Do not delete individual components used by cross region replication. If you do, your replication
environment will not function correctly.
If you want to remove cross region replication entirely, see (Optional) Step 5: Clean Up (p. 387).

To launch the AWS CloudFormation stack

1. Click the following link to view the AWS CloudFormation template:

View Template

2. When you are ready to launch the stack, click this button:

3. On the Select Template page, click Next.

For this walkthrough, you will use the default settings. However, note that this page lets you customize
the name of the AWS CloudFormation stack, or use a different template.

4. On the Specify Parameters page, click Next.

For this walkthrough, you will use the default settings. However, note that this page lets you customize
the settings for Amazon ECS instance(s), and the name and region of the DynamoDB metadata
table.

5. On the Options page, click Next.

API Version 2012-08-10
384

Amazon DynamoDB Developer Guide
Walkthrough: Setting Up Replication Using the Cross

Region Replication Console

https://dynamodb-cross-region.s3.amazonaws.com/dynamodb-replication-coordinator.template
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#cstack=sn~DynamoDBReplicationCoordinator|turl~https://dynamodb-cross-region.s3.amazonaws.com/dynamodb-replication-coordinator.template

For this walkthrough, you will use the default settings.

6. On the Review page, do the following:

a. Select "I acknowledge that this template might cause AWS CloudFormation to create IAM
resources."

b. Click Create.

While the stack is deploying, you can monitor its progress by going to the AWS CloudFormation
console and viewing the Status column for the Replication Coordinator and the Elastic Beanstalk
environment.

You can proceed to the next step after the Status for both of these environments is
UPDATE_COMPLETE.

Note
This AWS CloudFormation template creates an Amazon SQS queue that permits access
to DynamoDB tables and other resources needed for replication. Click here to review the
AWS CloudFormation template.
If you adapt this cross-region replication solution for your own use, you should create an
AWS Identity and Access Management role with access to the Amazon SQS queue, and
then attach that role to IAM users that require access to this application. For more information,
go to Amazon SQS Policy Examples in the Amazon Simple Queue Service Developer Guide.

7. If you launch the above stack in one of the following regions, please skip this step:

• us-east-1

• us-west-2

• eu-west-1

• ap-northeast-1

• ap-southeast-2

Otherwise, you will need to launch a second stack because the cross-region replication application
relies on Amazon EC2 Container Service, which is currently not available in certain AWS regions.
Please use the following template to launch a second stack in a specified region, according to our
recommendation:

https://dynamodb-cross-region.s3.amazonaws.com/dynamodb-replication-ecs-cluster.template

Regions

Launch buttons2nd Stack RegionOrignal Stack Region

us-west-2us-west-1

eu-west-1eu-central-1

ap-southeast-2ap-southeast-1

us-east-1sa-east-1

You should wait for the stack to change status to CREATE_COMPLETE, before moving onto Step 3 of this
walkthrough.

API Version 2012-08-10
385

Amazon DynamoDB Developer Guide
Walkthrough: Setting Up Replication Using the Cross

Region Replication Console

https://dynamodb-cross-region.s3.amazonaws.com/dynamodb-replication-coordinator.template
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSExamples.html
https://dynamodb-cross-region.s3.amazonaws.com/dynamodb-replication-ecs-cluster.template
https://console.aws.amazon.com/cloudformation/home?region=us-west-2#cstack=sn~DynamoDBCrossRegionReplicationECSStack|turl~https://dynamodb-cross-region.s3.amazonaws.com/dynamodb-replication-ecs-cluster.template
https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#cstack=sn~DynamoDBCrossRegionReplicationECSStack|turl~https://dynamodb-cross-region.s3.amazonaws.com/dynamodb-replication-ecs-cluster.template
https://console.aws.amazon.com/cloudformation/home?region=ap-southeast-2#cstack=sn~DynamoDBCrossRegionReplicationECSStack|turl~https://dynamodb-cross-region.s3.amazonaws.com/dynamodb-replication-ecs-cluster.template
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#cstack=sn~DynamoDBCrossRegionReplicationECSStack|turl~https://dynamodb-cross-region.s3.amazonaws.com/dynamodb-replication-ecs-cluster.template

Step 3: Create a Replication Group (p. 386)

Step 3: Create a Replication Group
In this step, you will use the Cross Region Replication Console to create a replication group. After gathering
your inputs, the console will invoke the Replication Coordinator to configure and manage the replication
group.

To create a replication group

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

2. Select the stack with the following description: DynamoDB Cross Region Replication
Coordinator

3. Click the Outputs tab, where you should see the following:

• Key—ReplicationConsoleURL

• Value—a system-generated URL

• Description—a link to the Cross Region Replication Console

4. Click the link shown in the Value. This will launch the Cross Region Replication Console.

5. Enter your AWS access key ID and secret key when you are prompted to do so, and then click
Confirm.

6. In the Cross Region Replication Console, on the Replication Group page, click Create.

7. On the Create Replication Group page, do the following:

a. For the Replication Group Name, enter MyReplGroup

b. For Select a master table, enter the following:

• Region—us-east-1

• Table—SourceTable

c. For Select a replica table, enter the following:

• Region—us-west-2

• Select Create New Table

• New Table Name—ReplicaTable

Leave the other settings at their default values.

Click Next Step.

8. On the Review page, click Confirm and Create.

Note
You should allow 30 minutes for the replication group to be fully configured.You can monitor
progress by going to the Cross Region Replication Console, selecting your replication group,
and clicking Status. When the status is ACTIVE, you can proceed to the next step.

Step 4: Test Your Replication Setup (p. 387)

API Version 2012-08-10
386

Amazon DynamoDB Developer Guide
Walkthrough: Setting Up Replication Using the Cross

Region Replication Console

https://console.aws.amazon.com/cloudformation/

Step 4:Test Your Replication Setup
In this step, you will determine whether your replication setup is working. To do this, you will add, update,
and delete data in the source table in us-east-1, and verify that the replica table in us-west-2 stays in
sync with the source.

To test your replication setup

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. In the upper right corner of the window, choose US East (N. Virginia) from the region selector.

3. In the list of tables, double click SourceTable.

4. Click New Item and add the following data:

• Id—1

• Message—First item

Click PutItem.

5. Repeat the previous step to add two more data items:

• Id—2 and Message—Second item

• Id—3 and Message—Third item

6. In the upper right corner of the window, choose US West (Oregon) from the region selector.

7. In the list of tables, double-click ReplicaTable.

8. Verify that the data in ReplicaTable is the same as that in SourceTable.

9. (Optional) Go back to the SourceTable in us-east-1 and do the following:

• Update item 2. Set the Message to Hello from us-east-1!

• Delete item 3.

Go to us-west-2 and verify that the data in ReplicaTable is the same as that in SourceTable.

(Optional) Step 5: Clean Up (p. 387)

(Optional) Step 5: Clean Up
In this step, you will stop the Replication Coordinator and remove all of its resources.

Note that this step is optional. If you want to continue working with cross-region replication, you can keep
your existing Cross-Region Replication Coordinator instead of deleting it.

To delete the Replication Coordinator

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

2. Select the stack with the following description: DynamoDB Cross Region Replication
Coordinator

3. Click Delete Stack.

4. In the confirmation box, click Yes, Delete.

Note
You should allow 15 minutes for the stack to be deleted.

API Version 2012-08-10
387

Amazon DynamoDB Developer Guide
Walkthrough: Setting Up Replication Using the Cross

Region Replication Console

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/cloudformation/

Deleting the Replication Coordinator does not delete any of the DynamoDB tables. If you want
to delete the master, replica(s), or metadata tables, you will need to wait until the AWS
CloudFormation stack is deleted, and then delete the tables using the AWS Management Console
for DynamoDB.

Troubleshooting
This section covers some basic failure modes and troubleshooting for DynamoDB cross-region replication.

Topics

• Access Your Amazon CloudWatch Logs (p. 388)

• Problems Creating a Replication Group (p. 388)

• Replication Group Stuck in CREATING Status (p. 390)

• Narrowing the Scope of a User's IAM Policy (p. 391)

Access Your Amazon CloudWatch Logs
DynamoDB cross-region replication writes logging data to Amazon CloudWatch Logs. If you are diagnosing
an error, it is best to look at the CloudWatch Logs first.

To access your CloudWatch Logs

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, on the left side, select Logs.

Note
Be sure to check all of the relevant AWS regions for CloudWatch Logs. For cross-region
replication, the logs are published to the local region of the EC2 instance hosting the replication
process.
To choose a different AWS region, go to the upper right corner of the console window and click
the region selector.

Following are the replication-related log groups and the events recorded in each:

• DynamoDBCrossRegionReplicationServer—Requests that are sent by the replication console, such
as creating a replication group, adding a replication member, etc.

• DynamoDBCrossRegionReplicationCoordinator—Launches or deletions of replication-related
resources, such as starting a table copy, DynamoDB connector activity (replicating live updates), etc.

• DynamoDBCrossRegionReplicationTableCopy—Events that are related to the table copy process,
which replicates existing items in the master table to the replica table(s).

• DynamoDBCrossRegionReplicationConnectors—Events in the live update replication process,
where real-time writes to the master table are copied to the replica table(s).

Problems Creating a Replication Group
If any errors occur when you are trying to create a replication group, the Cross Region Replication Console
will usually display an error message. In some cases, a newly-created replication group will not be shown
in the console display. These are usually symptoms of an error delivering a "create replication group"
message to the Replication Coordinator. Within the AWS CloudFormation stack, the potential points of
failure are:

1. The Replication Coordinator

2. The Amazon SQS message queue

API Version 2012-08-10
388

Amazon DynamoDB Developer Guide
Troubleshooting

https://console.aws.amazon.com/cloudwatch/

Both of these are hosted by AWS Elastic Beanstalk. To resolve the issue, you can rebuild the Elastic
Beanstalk environment

1. Open the Elastic Beanstalk console at https://console.aws.amazon.com/elasticbeanstalk/.

2. In the All Applications section, select the environment associated with the DynamoDB Replication
Coordinator application.

3. From the Actions menu in the upper right-hand corner, choose Rebuild Environment.

API Version 2012-08-10
389

Amazon DynamoDB Developer Guide
Troubleshooting

https://console.aws.amazon.com/elasticbeanstalk/

4. A warning message appears, informing you that the rebuild will take several minutes. Click Rebuild
to proceed.

You can monitor the progress by monitoring the Recent Events section of the Elastic Beanstalk console.
When the message Successfully rebuilt environment appears, the rebuild is complete.

At this point, you can go to the AWS CloudFormation console and view the
DynamoDBReplicationCoordinator stack. When its status reaches UPDATE_COMPLETE, you can go to
the Cross Region Replication Console (using the ReplicationConsoleUrl link in the Outputs tab) and
create your replication group.

Following these steps should ensure that the Replication Coordinator and the SQS queue are working
properly. If you are still having trouble creating a replication group, or if the replication group shows up
in the Cross Region Replication Console with a "failure" status, you should consult your CloudWatch Logs
for the latest diagnostic messages. For more information, see Access Your Amazon CloudWatch
Logs (p. 388).

Replication Group Stuck in CREATING Status
If you are creating a replication group, the group might remain in the CREATING status for a long time. If
this happens, you should check the status of the individual replication connections.

To do this in the Cross Region Replication Console, go to the replication group in question and then click
Edit to enter the detailed group view. For the replication connections, the most likely errors you will
encounter are CREATE_FAILED or BOOTSTRAP_FAILED.You will need to review your CloudWatch Logs
for additional details and error messages regarding these errors.

One possible failure mode is a lack of available Amazon EC2 instances within your Amazon EC2 Container
Service setup. The more replication processes you have for a replication group, the more EC2 instances
you will require.

To increase the number of Amazon EC2 instances available for Amazon ECS tasks

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. Select the DynamoDBReplicationCoordinator stack.

3. Click Update Stack.

4. On the Select Template page, click Next.

5. On the Specify Parameters page, change the value of the EcsClusterSize from 1 to a larger
number. (For guidance on choosing an appropriate value for EcsClusterSize, see the note following
this procedure.)

Click Next to continue.

6. On the Options page, click Next.

7. On the Review page, Select "I acknowledge that this template might cause AWS CloudFormation
to create IAM resources."

8. Click Update.

Note
As a rule of thumb, each replication connection (from one table to another) requires 512 MB of
memory and 512 CPU units. For example, if you have two replication paths (one master replicating
to two replica tables), you would need either two t1.micro instances, or one t2.micro instance.
To optimize cost, the default Amazon EC2 instance type is t1.micro. Instead of increasing the
cluster size, you can try using a larger instance type. To do this, follow the procedure above, but
this time adjust the EcsInstanceType parameter from t1.micro to t2.micro.

API Version 2012-08-10
390

Amazon DynamoDB Developer Guide
Troubleshooting

https://console.aws.amazon.com/cloudwatch/

The new parameter setting(s) for your DynamoDBReplicationCoordinator stack will take effect when
stack's status changes from UPDATE_IN_PROGRESS to UPDATE_COMPLETE.You must wait for the
UPDATE_COMPLETE status before you attempt to access the Cross Region Replication Console (using
the ReplicationConsoleUrl link in the Outputs tab). Before you try to re-create the replication groups
using your new Amazon EC2 parameters, make sure that you delete any failed replication groups first.

Narrowing the Scope of a User's IAM Policy
When you access the Cross Region Replication Console, you are prompted for your AWS credentials. It
is possible to narrow the scope of a user's IAM policy so that the policy contains only a minimal set of
permissions for use with cross-region replication.

In order to use the Cross Region Replication Console, a user requires the following permissions:

• Read access to the replication metadata table (the table name specified when you launched the AWS
CloudFormation stack for replication).

• Read and write access to the Amazon SQS message queues, in order to deliver replication requests.

You can find the names of these resources in the system-generated link in the AWS CloudFormation
console (the ReplicationConsoleUrl link in the Outputs tab). If you examine this link, you can determine
name of the replication metadata table and the SQS message queues.You can then write an IAM policy
that allows access to only those resources.

Following is an example of a system-generated link to access the Cross Region Replication Console:

https://dynamodb-cross-region-replication-console.s3.amazonaws.com/in
dex.html#/?AccountId=123456789123
 &SQSUrl=https://sqs.us-east-1.amazonaws.com/123456789123/awseb-e-gdhsk6d5jk-
stack-AWSEBWorkerQueue-9FASHEYAJMQH
 &SQSDeadLetterUrl=https://queue.amazonaws.com/123456789123/awseb-e-
gdhsk6d5jk-stack-AWSEBWorkerDeadLetterQueue-UV6KA9IWJLA1
 &SQSRegion=us-east-1
 &MetadataTableName=CoordinatorMetadata
 &MetadataTableRegion=us-east-1

Based on the information in this link, here is a sample IAM policy that would allowing minimal permissions
for Cross Region Replication Console access:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1436394463022",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Effect": "Allow",
 "Resource": "arn:aws:dynamodb:us-east-1:123456789123:table/Coordin
atorMetadata"
 },

API Version 2012-08-10
391

Amazon DynamoDB Developer Guide
Troubleshooting

 {
 "Sid": "Stmt1436394552396",
 "Action": [
 "cloudwatch:DescribeAlarmHistory",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DescribeAlarmsForMetric",
 "cloudwatch:GetMetricStatistics"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "Stmt1436394630482",
 "Action": [
 "sqs:DeleteMessage",
 "sqs:ReceiveMessage"
],
 "Effect": "Allow",
 "Resource": "arn:aws:sqs:us-east-1:123456789123:awseb-e-gdhsk6d5jk-
stack-AWSEBWorkerDeadLetterQueue-UV6KA9IWJLA1"
 },
 {
 "Sid": "Stmt1436394673542",
 "Action": ["sqs:SendMessage"],
 "Effect": "Allow",
 "Resource": "arn:aws:sqs:us-east-1:123456789123:awseb-e-gdhsk6d5jk-
stack-AWSEBWorkerQueue-9FASHEYAJMQH"
 },
 {
 "Sid": "Stmt1436394762899",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:ListTables"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Cross-Region Replication Library
The DynamoDB cross-region replication solution uses the Amazon DynamoDB Cross-Region Replication
Library. This library uses DynamoDB Streams to keep DynamoDB tables in sync across multiple regions
in near real time. When you write to a DynamoDB table in one region, those changes are automatically
propagated by the Cross-Region Replication Library to your tables in other regions.

You can leverage the Cross-Region Replication Library in your own applications, to build your own
replication solutions with DynamoDB Streams. Streams. For more information, and to download the
source code, go to the following GitHub repository:

• https://github.com/awslabs/dynamodb-cross-region-library

API Version 2012-08-10
392

Amazon DynamoDB Developer Guide
Cross-Region Replication Library

https://github.com/awslabs/dynamodb-cross-region-library

Amazon DynamoDB Triggers
Amazon DynamoDB is integrated with AWS Lambda, so that you can create triggers—pieces of code
that quickly and automatically respond to events in DynamoDB Streams. With triggers, you can build
applications that react to data modifications in DynamoDB tables.

If you enable DynamoDB Streams on a table, you can associate the stream ARN with a Lambda function
that you write. Whenever an item in the table is modified, a new stream record appears in the table's
stream, which in turn triggers the Lambda function and causes it to execute.

The Lambda function can perform any actions that you specify, such as sending a notification or initiating
a workflow. For example, you can write a Lambda function to simply copy each stream record to persistent
storage, such as Amazon Simple Storage Service (Amazon S3), to create a permanent audit trail of write
activity in your table. As another example, suppose that you have a mobile gaming app that writes to a
GameScores table. Whenever the TopScore attribute of the GameScores table is updated, a
corresponding stream record is written to the table's stream. This event could then trigger a Lambda
function that posts a congratulatory message on a social media network. (The function would simply
ignore any stream records that are not updates to GameScores, or that do not modify the TopScore
attribute.)

Note
For more information on AWS Lambda, go to the AWS Lambda Developer Guide.

Topics

• Walkthrough: Using the AWS Management Console to Create a DynamoDB Trigger (p. 393)

Walkthrough: Using the AWS Management
Console to Create a DynamoDB Trigger
In this walkthrough, you will use the AWS Management Console to create and manage a DynamoDB
trigger.This walkthrough shows a very basic use case, with an AWS Lambda function that ingests records
from a stream and writes data to Amazon CloudWatch Logs.

You will begin by creating a DynamoDB table with a stream enabled. Next, you will create a simple
Lambda function that outputs the contents of a single Streams record. After that, you will make changes
to data in the table.This will cause new Streams records to be written, and trigger execution of the Lambda
function. Finally, you will view the output from the function in CloudWatch Logs.

Steps in This Walkthrough
• Step 1: Create a DynamoDB Table With a Stream Enabled (p. 393)

• Step 2: Create a Lambda Function (p. 394)

• Step 3: Generate Activity in the DynamoDB Table (p. 395)

• Step 4: View The Lambda Function Output in CloudWatch Logs (p. 395)

Step 1: Create a DynamoDB Table With a Stream Enabled
In this step, you will create a new DynamoDB table with a stream enabled. Later in this walkthrough, you
will create a Lambda function that will be triggered by changes to the DynamoDB table.

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. On the toolbar at the top, choose Create Table.

API Version 2012-08-10
393

Amazon DynamoDB Developer Guide
Amazon DynamoDB Triggers

http://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/dynamodb/

3. In the Primary Key window, do the following:

• In the Table Name box, type StreamsLambdaTable. (This is the name of the table that we will
use in this walkthrough.)

• For Primary Key, choose Hash.

• In the Hash Attribute name box, enter Id. Leave the data type at its default setting: String.

Choose Continue.

4. In the Add Indexes window, choose Continue. This will skip creating indexes on the table.

5. In the Provisioned Throughput Capacity window, choose Continue.This will use default provisioned
throughput settings for the table.

6. In the Additional Options window, do the following:

• Select Enable Streams.

• For View Type, choose New and Old Images.

• Deselect the Use Basic Alarms option.

Choose Continue.

7. In the Review window, review all of your settings to ensure each value is what you want, and then
choose Create.

DynamoDB will begin creating the table.You will need to wait until the table status becomes ACTIVE.

Step 2: Create a Lambda Function (p. 394)

Step 2: Create a Lambda Function
In this step, you will create a very simple AWS Lambda function to read Streams records and echo their
contents to Amazon CloudWatch Logs.You will associated this Lambda function with the stream on the
DynamoDB table that you created in Step 1, so that changes to data in that table will trigger the Lambda
function.

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. If this is your first time using the AWS Lambda console, choose Get Started Now. Otherwise, choose
Create a Lambda function.

3. In the Select Blueprint section, choose dynamodb-process-stream.

In Configure event sources, in the DynamoDB table field, choose StreamsLambdaTable.

Choose Next

4. In the Configure function section, do the following:

• In the Name field, type StreamsLambdaFunction. (This is the name of the function that we will
use for this walkthrough.)

• Leave the Runtime field at its default setting: Node.js .

5. Do not modify any fields in the Lambda function code section.You will use the pre-provided Node.js
code.

API Version 2012-08-10
394

Amazon DynamoDB Developer Guide
Walkthrough: Using the AWS Management Console to

Create a DynamoDB Trigger

https://console.aws.amazon.com/lambda/

6. In the Lambda function handler and role section, do the following:

• Leave the Handler field at its default setting: index.handler.

• In the Role field, select DynamoDB event stream role. A new window appears, asking for
confirmation that you want to create a new IAM role, lambda_dynamo_streams, that will be used
when invoking your Lambda function. Choose Allow to create the role and dismiss the window.

• Back in the Lambda console, leave all of the other settings on the page at their default values, and
choose Next.

7. On the Review page, go to Enable event source and choose Enable now.

Leave all of the other settings on this page their default values, and then choose Create function.

Step 3: Generate Activity in the DynamoDB Table (p. 395)

Step 3: Generate Activity in the DynamoDB Table
In this step, you will generate write activity in the DynamoDB table.This will cause new records to appear
in that table's stream, which will in turn trigger execution of the Lambda function.

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. In the list of tables, choose StreamsLambdaTable.

3. On the toolbar at the top, choose Explore Table.

4. In the Explore Table window, choose New and then do the following:

• Type an Id key value of your choice, and add any additional attributes you want.

• Choose Save.

• In the confirmation window, choose OK.

Repeat these steps at least two more times, in order to write more data items to the table.

5. In the Explore Table window, select Scan and then choose Go to view the contents of the table.

6. Select one of the items, choose Edit, and then do the following:

• Type an Id key value of your choice, and add any additional attributes you want.

• Choose Save.

• In the confirmation window, choose OK.

Repeat these steps at least two more times, in order to update the items in the table.

7. In the Explore Table window, select Scan and then choose Go to view the contents of the table.

8. Select one of the items and choose Delete. In the confirmation window, choose OK.This will remove
one of the items from the table.

Step 4: View The Lambda Function Output in CloudWatch Logs (p. 395)

Step 4: View The Lambda Function Output in CloudWatch
Logs
In this step, you will view the results of the Lambda function execution. By default, the Lambda function
writes its results to CloudWatch Logs.

API Version 2012-08-10
395

Amazon DynamoDB Developer Guide
Walkthrough: Using the AWS Management Console to

Create a DynamoDB Trigger

https://console.aws.amazon.com/dynamodb/

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. In the list of functions, choose StreamsLambdaFunction.

3. Choose the Monitoring tab to view CloudWatch graphs that show runtime metrics for your Lambda
function.

4. Choose View logs in CloudWatch.

5. In the Log Streams list, choose the log stream corresponding to your Lambda function and view the
output from your Lambda function. Verify that the write activity you generated in
StreamsLambdaTable has been captured in CloudWatch Logs.

API Version 2012-08-10
396

Amazon DynamoDB Developer Guide
Walkthrough: Using the AWS Management Console to

Create a DynamoDB Trigger

https://console.aws.amazon.com/lambda/

DynamoDB Console

Topics

• Working with Items and Attributes (p. 399)

• Monitoring Tables (p. 405)

• Setting Up CloudWatch Alarms (p. 405)

• Exporting and Importing Data (p. 406)

The AWS Management Console for Amazon DynamoDB is available at https://console.aws.amazon.com/
dynamodb/home. The console enables you to do the following:

• Create, update, and delete tables. The throughput calculator provides you with estimates of how many
capacity units you will need to request based on the usage information you provide.

• View items stored in a tables, add, update, and delete items.

• Query a table.

• Set up alarms to monitor your table's capacity usage.

• View your table's top monitoring metrics on real-time graphs from CloudWatch.

• View alarms configured for each table and create custom alarms.

If your account doesn't already have tables in DynamoDB, the console displays an introductory screen
that prompts you to create your first table. This screen also provides an overview of the process for
creating a table, and links to relevant documentation and resources.

API Version 2012-08-10
397

Amazon DynamoDB Developer Guide

https://console.aws.amazon.com/dynamodb/home
https://console.aws.amazon.com/dynamodb/home

You can find detailed steps for creating your first table in the console in Creating Tables and Loading
Sample Data (p. 14). Once you have one or more tables, the console displays the tables as a list.You
can select a table from the list to see additional information in the lower pane. In the lower pane, you also
have the option to set up alarms and view CloudWatch metrics for the table.

The Explore Table option enables you to view existing items in a table, add new items, update items, or
delete items.You can also query the table. For more information, see Working with Items and
Attributes (p. 399).

API Version 2012-08-10
398

Amazon DynamoDB Developer Guide

Working with Items and Attributes
Topics

• Adding an Item (p. 399)

• Deleting an Item (p. 402)

• Updating an Item (p. 402)

• Copying an Item (p. 403)

You can use the DynamoDB console to manipulate items and attributes in a table.

Adding an Item
You can upload a large number of items programmatically. However, the console provides a way for you
to upload an item without having to write any code.

To add an item

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. Select the Reply table and click Explore Table.

3. On the Browse Items tab, click New.

API Version 2012-08-10
399

Amazon DynamoDB Developer Guide
Working with Items and Attributes

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

4. The Put Item tab shows data entry fields for you to enter the required primary key attribute values.
If the table has any secondary indexes, then the console also shows data entry fields for index key
values.

The following screen shot shows the primary key attributes of the Reply table (Id and ReplyDateTime)
and PostedByIndex (PostedBy).

5. If you want to add more attributes, click the action menu to the left of PostedBy. In the action menu,
click Append, and then click the data type you want.

API Version 2012-08-10
400

Amazon DynamoDB Developer Guide
Adding an Item

Type the new attribute name and value in the fields provided.

Repeat this step as often as needed if you want to add more attributes.

6. When the item is as you want it, click Save to add the new item to the table.

API Version 2012-08-10
401

Amazon DynamoDB Developer Guide
Adding an Item

Deleting an Item
You can delete one item at a time using the console.

To delete an item

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the Tables pane, select a table and click Explore Table.

3. In the Browse Items tab, click on the item in the table that you want to remove, and click the Delete
Item button.

4. In the Delete Item? dialog box, click Yes, Delete.

Updating an Item
You can update an item through the DynamoDB console using the Browse Items tab.

API Version 2012-08-10
402

Amazon DynamoDB Developer Guide
Deleting an Item

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

To update an item

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the Tables pane, select a table and click Explore Table.

3. In the Browse Items tab, click on the item in the table that you want to update, and click the Edit
Item button.

4. Change the desired attributes or values, and click Save.

You will be returned to the Browse Items tab. To view the data that you updated, you will need to
refresh the display; to do this, click the Scan radio button and then click Go. Be aware that the
operation will consume the same number of throughput capacity units that any other full-table scan
consumes.

Copying an Item
You can use an existing item to create a new item through the DynamoDB console.

To copy and save a new item

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the Tables pane, select a table and click Explore Table.

API Version 2012-08-10
403

Amazon DynamoDB Developer Guide
Copying an Item

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

3. In the Browse Items tab, click on the item in the table that you want to copy, and click the Copy to
New button.

4. Change the hash and/or range key to avoid overwriting the original item, and change other attributes
or values as desired. When you are ready to add the new item to the table, click Save.

If you forget to update the hash and/or range keys, you'll see a warning that you're about to overwrite
the original item. Click Cancel, update the keys, and click Save to save the changes.

API Version 2012-08-10
404

Amazon DynamoDB Developer Guide
Copying an Item

Monitoring Tables
The console for DynamoDB displays some metrics for your table in the lower pane. If you need to see
other metrics, you can use the console for DynamoDB to set parameters for CloudWatch to display
information about your table.

To see the CloudWatch metrics for your table, with your table selected, click the Monitoring tab.You
can expand the CloudWatch alarms and Alarm History sections to see more details about alarms that
have been triggered. Also, you can view your CloudWatch metrics on this tab in convenient, real-time
graphs.

Note
CloudWatch metrics do appear in real-time in the console. However, DynamoDB updates the
Storage Size value approximately only every six hours. Recent changes might not be reflected
in this value.

For more information about CloudWatch metrics for DynamoDB, see Monitoring DynamoDB with
CloudWatch (p. 580).

Setting Up CloudWatch Alarms
When you create a table in the console, you have the option to set up a provisioned throughput alarm
while the table is being created. Once a table is created, you can add more CloudWatch alarms using
the lower pane of the console.

To add more alarms to your table, click the Alarm Setup tab.

API Version 2012-08-10
405

Amazon DynamoDB Developer Guide
Monitoring Tables

When you make a selection in the "Advanced CloudWatch Alarms" section of the Alarm Setup tab, you
are redirected to the CloudWatch console. For more information about setting up alarms, see the
CloudWatch Help in the CloudWatch console, or go to the CloudWatch Documentation.

Exporting and Importing Data
You can use the AWS Management Console to export data from DynamoDB into Amazon S3, and to
import data from Amazon S3 into DynamoDB.The work of performing the exports and imports are offloaded
to AWS Data Pipeline and Amazon Elastic MapReduce, while the AWS Management Console gives you
an intuitive interface for moving data among tables.

For more information, see Using the AWS Management Console to Export and Import Data (p. 621).

API Version 2012-08-10
406

Amazon DynamoDB Developer Guide
Exporting and Importing Data

http://aws.amazon.com/documentation/cloudwatch

API Version 2012-08-10
407

Amazon DynamoDB Developer Guide
Exporting and Importing Data

Higher-Level Programming
Interfaces for DynamoDB

The AWS SDKs provide applications with low-level interfaces for working with Amazon DynamoDB.These
client-side API classes and methods correspond directly to the DynamoDB server-side API. However,
many developers experience a sense of disconnect, or "impedance mismatch", when they need to map
complex data types to items in a database table. With a low-level database API, developers must write
methods for reading or writing object data to database tables, and vice-versa. The amount of extra code
required for each combination of object type and database table can seem overwhelming.

To simplify development, the AWS SDKs for Java and .NET provide additional APIs with higher levels of
abstraction, in addition to the low-level APIs. The higher-level interfaces for DynamoDB let you define
the relationships between objects in your program and the database tables that store those objects' data.
After you define this mapping, you call simple object methods such as save, load, or delete, and the
underlying low-level DynamoDB APIs are automatically invoked on your behalf. This allows you to write
object-centric code, rather than database-centric code.

The higher-level programming interfaces for DynamoDB are available in the AWS SDKs for Java and
.NET.

Java

• Java: Object Persistence Model (p. 408)

.NET

• .NET: Document Model (p. 445)

• .NET: Object Persistence Model (p. 476)

Java: Object Persistence Model
Topics

• Supported Data Types (p. 411)

• Java Annotations for DynamoDB (p. 412)

• The DynamoDBMapper Class (p. 416)

API Version 2012-08-10
408

Amazon DynamoDB Developer Guide
Java: Object Persistence Model

• Optimistic Locking With Version Number (p. 425)

• Mapping Arbitrary Data (p. 427)

• Example: CRUD Operations (p. 430)

• Example: Batch Write Operations (p. 432)

• Example: Query and Scan (p. 437)

The AWS SDK for Java provides a high-level object persistence model, enabling you to map your client-side
classes to DynamoDB tables. The individual object instances then map to items in a table. The object
persistence model provides a DynamoDBMapper class, which provides an entry point to DynamoDB.The
DynamoDBMapper class provides you with a connection to the DynamoDB database and enables you to
access your tables, perform various create, read, update and delete (CRUD) operations, and execute
queries.

Note
The object persistence model lets you query database tables and perform item operations such
as saving, updating, or deleting. However, the object persistence model does not provide APIs
to create, update, or delete tables. To perform those tasks, use AWS SDK for Java Document
API instead. For more information, see Working with Tables Using the AWS SDK for Java
Document API (p. 73).

The AWS SDK for Java provides a set of annotation types, so that you can map your classes to tables.
For example, consider a ProductCatalog table that has Id as the hash primary key.

ProductCatalog(Id, ...)

You can map a class in your client application to the ProductCatalog table as shown in the following Java
code. This code snippet defines a Plain Old Java Object (POJO) named CatalogItem, which uses
annotation types to map object fields to DynamoDB attribute names:

package com.amazonaws.codesamples;

import java.util.Set;

import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBIgnore;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;

@DynamoDBTable(tableName="ProductCatalog")
public class CatalogItem {

 private Integer id;
 private String title;
 private String ISBN;
 private Set<String> bookAuthors;
 private String someProp;

 @DynamoDBHashKey(attributeName="Id")
 public Integer getId() { return id;}
 public void setId(Integer id) {this.id = id;}

 @DynamoDBAttribute(attributeName="Title")
 public String getTitle() {return title; }
 public void setTitle(String title) { this.title = title; }

API Version 2012-08-10
409

Amazon DynamoDB Developer Guide
Java: Object Persistence Model

 @DynamoDBAttribute(attributeName="ISBN")
 public String getISBN() { return ISBN; }
 public void setISBN(String ISBN) { this.ISBN = ISBN; }

 @DynamoDBAttribute(attributeName = "Authors")
 public Set<String> getBookAuthors() { return bookAuthors; }
 public void setBookAuthors(Set<String> bookAuthors) { this.bookAuthors =
bookAuthors; }

 @DynamoDBIgnore
 public String getSomeProp() { return someProp;}
 public void setSomeProp(String someProp) {this.someProp = someProp;}
}

In the preceding code, the @DynamoDBTable annotation type maps the CatalogItem class to the
ProductCatalog table.You can store individual class instances as items in the table. In the class definition,
the @DynamoDBHashKey annotation type maps the Id property to the primary key.

By default, the class properties map to the same name attributes in the table. The properties Title and
ISBN map to the same name attributes in the table. If you define a class property name that does not
match a corresponding item attribute name, then you must explicitly add the @DynamoDBAttribute
annotation type to specify the mapping. In the preceding example, the @DynamoDBAttribute annotation
type is added to each property to ensure that the property names match exactly with the tables created
in Creating Tables and Loading Sample Data (p. 14), and to be consistent with the attribute names used
in other code examples in this guide.

Your class definition can have properties that don't map to any attributes in the table.You identify these
properties by adding the @DynamoDBIgnore annotation type. In the preceding example, the SomeProp
property is marked with the @DynamoDBIgnore annotation type. When you upload a CatalogItem
instance to the table, your DynamoDBMapper instance does not include SomeProp property. In addition,
the mapper does not return this attribute when you retrieve an item from the table.

After you have defined your mapping class, you can use DynamoDBMapper methods to write an instance
of that class to a corresponding item in the Catalog table. The following code snippet demonstrates this
technique:

AmazonDynamoDBClient client = new AmazonDynamoDBClient(new ProfileCredentialsPro
vider());

DynamoDBMapper mapper = new DynamoDBMapper(client);

CatalogItem item = new CatalogItem();
item.setId(102);
item.setTitle("Book 102 Title");
item.setISBN("222-2222222222");
item.setBookAuthors(new HashSet<String>(Arrays.asList("Author 1", "Author 2")));
item.setSomeProp("Test");

mapper.save(item);

The following code snippet shows how to retrieve the item and access some of its attributes:

CatalogItem hashKeyValues = new CatalogItem();

hashKeyValues.setId(102);
DynamoDBQueryExpression<CatalogItem> queryExpression = new DynamoDBQueryExpres

API Version 2012-08-10
410

Amazon DynamoDB Developer Guide
Java: Object Persistence Model

sion<CatalogItem>()
 .withHashKeyValues(hashKeyValues);

List<CatalogItem> itemList = mapper.query(CatalogItem.class, queryExpression);

for (int i = 0; i < itemList.size(); i++) {
 System.out.println(itemList.get(i).getTitle());
 System.out.println(itemList.get(i).getBookAuthors());
}

The object persistence model offers an intuitive, natural way of working with DynamoDB data within Java.
It also provides a number of built-in features such as optimistic locking, auto-generated hash and range
keys, and object versioning.

Supported Data Types
This section describes the supported primitive Java data types, collections, and arbitrary data types.

DynamoDB supports the following primitive data types and primitive wrapper classes.

• String

• Boolean, boolean

• Byte, byte

• Date (as ISO8601 millisecond-precision string, shifted to UTC)

• Calendar (as ISO8601 millisecond-precision string, shifted to UTC)

• Long, long

• Integer, int

• Double, double

• Float, float

• BigDecimal

• BigInteger

DynamoDB supports the Java Set collection types. If your mapped collection property is not a Set, then
an exception is thrown.

The following table summarizes how the preceding Java types map to the DynamoDB types.

DynamoDB typeJava type

N (number type)All number types

S (string type)Strings

N (number type), 0 or 1.boolean

B (binary type)ByteBuffer

S (string type).The Date values are stored as ISO-8601 formatted strings.Date

SS (string set) type, NS (number set) type, or BS (binary set) type.Set collection types

API Version 2012-08-10
411

Amazon DynamoDB Developer Guide
Supported Data Types

http://docs.oracle.com/javase/6/docs/api/java/util/Set.html
http://docs.oracle.com/javase/6/docs/api/java/util/Set.html

In addition, DynamoDB supports arbitrary data types. For example, you can define your own complex
types on the client.You use the DynamoDBMarshaller interface and the @DynamoDBMarhsalling
annotation type for the complex type to describe the mapping (Mapping Arbitrary Data (p. 427)).

Java Annotations for DynamoDB
The following table describes the annotations that are available for mapping your classes and properties
to tables and attributes.

For the corresponding Javadoc documentation, see Annotation Types Summary in the AWS SDK for
Java API Reference.

Note
In the following table, only the DynamoDBTable and the DynamoDBHashKey are the required
tags.

DescriptionDeclarative Tag (Annotation)

Identifies the target table in DynamoDB. For example, the following
Java code snippet defines a class Developer and maps it to the
People table in DynamoDB.

@DynamoDBTable(tableName="People")
public class Developer { ...}

This annotation can be inherited or overridden.

• The @DynamoDBTable annotation can be inherited. Any new
class that inherits from the Developer class also maps to the
People table. For example, assume that you create a Lead
class that inherits from the Developer class. Because you
mapped the Developer class to the People table, the Lead
class objects are also stored in the same table.

• The @DynamoDBTable can also be overridden. Any new class
that inherits from the Developer class by default maps to the
same People table. However, you can override this default
mapping. For example, if you create a class that inherits from
the Developer class, you can explicitly map it to another table
by adding the @DynamoDBTable annotation as shown in the
following Java code snippet.

@DynamoDBTable(tableName="Managers")
public class Manager : Developer { ...}

@DynamoDBTable

Indicates to the DynamoDBMapper instance that the associated
property should be ignored. When saving data to the table, the
DynamoDBMapper does not save this property to the table.

@DynamoDBIgnore

API Version 2012-08-10
412

Amazon DynamoDB Developer Guide
Java Annotations for DynamoDB

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/package-summary.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/

DescriptionDeclarative Tag (Annotation)

Maps a property to a table attribute. By default, each class property
maps to an item attribute with the same name. However, if the
names are not the same, using this tag you can map a property
to the attribute. In the following Java snippet, the DynamoDBAt-
tribute maps the BookAuthors property to the Authors attribute
name in the table.

@DynamoDBAttribute(attributeName = "Authors")
public List<String> getBookAuthors() { return
BookAuthors; }
public void setBookAuthors(List<String> BookAu
thors) { this.BookAuthors = BookAuthors; }

The DynamoDBMapper uses Authors as the attribute name when
saving the object to the table.

@DynamoDBAttribute

Maps a class property to the hash attribute of the table. The
property must be one of the scalar string, number or binary types;
it cannot be a collection type.

Assume that you have a table, ProductCatalog, that has Id as the
primary key. The following Java code snippet defines a Cata-
logItem class and maps its Id property to the primary key of the
ProductCatalog table using the @DynamoDBHashKey tag.

@DynamoDBTable(tableName="ProductCatalog")
public class CatalogItem {
 private String Id;
 @DynamoDBHashKey(attributeName="Id")
 public String getId() {
 return Id;
 }
 public void setId(String Id) {
 this.Id = Id;
 }
 // Additional properties go here.
}

@DynamoDBHashKey

API Version 2012-08-10
413

Amazon DynamoDB Developer Guide
Java Annotations for DynamoDB

DescriptionDeclarative Tag (Annotation)

Maps a class property to the range key attribute of the table. The
property must be one of the scalar string, number or binary types;
it cannot be a collection type.

If the primary key is made of both the hash and range key attrib-
utes, you can use this tag to map your class field to the range at-
tribute. For example, assume that you have a Reply table that
stores replies for forum threads. Each thread can have many
replies. So the primary key of this table is both the ThreadId and
ReplyDateTime.The ThreadId is the hash attribute and ReplyDat-
eTime is the range attribute. The following Java code snippet
defines a Reply class and maps it to the Reply table. It uses both
the @DynamoDBHashKey and @DynamoDBRangeKey tags to
identify class properties that map to the primary key.

@DynamoDBTable(tableName="Reply")
public class Reply {
 private String id;
 private String replyDateTime;

 @DynamoDBHashKey(attributeName="Id")
 public String getId() { return id; }
 public void setId(String id) { this.id = id;
 }

 @DynamoDBRangeKey(attributeName="ReplyDate
Time")
 public String getReplyDateTime() { return
replyDateTime; }
 public void setReplyDateTime(String replyDat
eTime) { this.replyDateTime = replyDateTime; }

 // Additional properties go here.
}

@DynamoDBRangeKey

API Version 2012-08-10
414

Amazon DynamoDB Developer Guide
Java Annotations for DynamoDB

DescriptionDeclarative Tag (Annotation)

Marks a hash key or range key property as being auto-generated.
The object persistence model will generate a random UUID when
saving these attributes. Only String properties can be marked as
auto-generated keys.

The following snippet demonstrates using auto-generated keys.

@DynamoDBTable(tableName="AutoGeneratedKey
sExample")
public class AutoGeneratedKeys {
 private String id;
 private String payload;

 @DynamoDBHashKey(attributeName = "Id")
 @DynamoDBAutoGeneratedKey
 public String getId() { return id; }
 public void setId(String id) { this.id = id;
 }

 @DynamoDBAttribute(attributeName="payload")
 public String getPayload() { return this.pay
load };
 public String setPayload(String payload) {
this.payload = payload };

 public static void saveItem() {
 AutoGeneratedKeys obj = new AutoGener
atedKeys();
 obj.setPayload("abc123");

 // id field is null at this point
 DynamoDBMapper mapper = new DynamoDBMap
per(dynamoDBClient);
 mapper.save(obj);

 System.out.println("Object was saved with
 id " + obj.getId());
 }
}

@DynamoDBAutoGeneratedKey

Identifies a class property for storing an optimistic locking version
number. DynamoDBMapper assigns a version number to this
property when it saves a new item, and increments it each time
you update the item. Only number scalar types are supported.
For more information about data type, see DynamoDB Data
Types (p. 6). For more information about versioning, see Optim-
istic Locking With Version Number (p. 425).

@DynamoDBVersionAttribute

API Version 2012-08-10
415

Amazon DynamoDB Developer Guide
Java Annotations for DynamoDB

http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html

DescriptionDeclarative Tag (Annotation)

Maps a class property to the hash attribute of a global secondary
index. The property must be one of the scalar string, number or
binary types; it cannot be a collection type.

Use this annotation type if you need to Query a global secondary
index.You must specify the index name (globalSecondaryIn-
dexName). If the name of the class property is different from the
index hash key attribute, you must also specify the name of that
index attribute (attributeName).

@DynamoDBIndexHashKey

Maps a class property to the range attribute of a global secondary
index or a local secondary index. The property must be one of
the scalar string, number or binary types; it cannot be a collection
type.

Use this annotation type if you need to Query a local secondary
index or a global secondary index and want to refine your results
using the index range key.You must specify the index name
(either globalSecondaryIndexName or localSecondaryIn-
dexName). If the name of the class property is different from the
index range key attribute, you must also specify the name of that
index attribute (attributeName).

@DynamoDBIndexRangeKey

Identifies a class property that uses a custom marshaller. When
used with the DynamoDBMarshaller class, this annotation lets
you map your own arbitrary data types to a data type that is nat-
ively supported by DynamoDB. For more information, see Mapping
Arbitrary Data (p. 427).

@DynamoDBMarshalling

The DynamoDBMapper Class
The DynamoDBMapper class is the entry point to DynamoDB. It provides a connection to DynamoDB and
enables you to access your data in various tables, perform various CRUD operations on items, and
execute queries and scans against tables. This class provides the following key operations for you to
work with DynamoDB.

For the corresponding Javadoc documentation, see DynamoDBMapper in the AWS SDK for Java API
Reference.

API Version 2012-08-10
416

Amazon DynamoDB Developer Guide
The DynamoDBMapper Class

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/

DescriptionMethod

Saves the specified object to the table. The object that you wish to save is the only re-
quired parameter for this method.You can provide optional configuration parameters
using the DynamoDBMapperConfig object.

If an item that has the same primary key does not exist, this method creates a new item
in the table. If an item that has the same primary key exists, it updates the existing item.
String hash and range keys annotated with @DynamoDBAutoGeneratedKey are given
a random universally unique identifier (UUID) if left uninitialized.Version fields annotated
with @DynamoDBVersionAttribute will be incremented by one. Additionally, if a version
field is updated or a key generated, the object passed in is updated as a result of the
operation.

By default, only attributes corresponding to mapped class properties are updated; any
additional existing attributes on an item are unaffected. However, if you specify Save-
Behavior.CLOBBER, you can force the item to be completely overwritten.

mapper.save(obj, new DynamoDBMapperConfig(DynamoDBMapperConfig.Save
Behavior.CLOBBER));

If you have versioning enabled, then the client-side and server-side item versions must
match. However, the version does not need to match if the SaveBehavior.CLOBBER
option is used. For more information about versioning, see Optimistic Locking With Version
Number (p. 425).

save

Retrieves an item from a table.You must provide the primary key of the item that you
wish to retrieve.You can provide optional configuration parameters using the DynamoD-
BMapperConfig object. For example, you can optionally request strongly consistent
reads to ensure that this method retrieves only the latest item values as shown in the
following Java statement.

CatalogItem item = mapper.load(CatalogItem.class, item.getId(),
 new DynamoDBMapperConfig(DynamoDBMapperConfig.Con
sistentReads.CONSISTENT));

By default, DynamoDB returns the item that has values that are eventually consistent.
For information about the eventual consistency model of DynamoDB, see Data Read
and Consistency Considerations (p. 10).

load

Deletes an item from the table.You must pass in an object instance of the mapped class.

If you have versioning enabled, then the client-side and server-side item versions must
match. However, the version does not need to match if the SaveBehavior.CLOBBER
option is used. For more information about versioning, see Optimistic Locking With Version
Number (p. 425).

delete

API Version 2012-08-10
417

Amazon DynamoDB Developer Guide
The DynamoDBMapper Class

DescriptionMethod

query

API Version 2012-08-10
418

Amazon DynamoDB Developer Guide
The DynamoDBMapper Class

DescriptionMethod

Queries a table.You can query a table only if its primary key is made of both a hash and
a range attribute.This method requires you to provide a hash attribute value and a query
filter that is applied on the range attribute. A filter expression includes a condition and a
value.

Assume that you have a table, Reply, that stores forum thread replies. Each thread
subject can have 0 or more replies. The primary key of the Reply table consists of the
Id and ReplyDateTime fields, where Id is the hash attribute and ReplyDateTime is the
range attribute of the primary key.

Reply (Id, ReplyDateTime, ...)

Now, assume that you created an object persistence model that includes a Reply class
that maps to the table.

The following Java code snippet uses the DynamoDBMapper instance to query the table
to find all replies in the past two weeks for a specific thread subject.

String forumName = "DynamoDB";
String forumSubject = "DynamoDB Thread 1";
String hashKey = forumName + "#" + forumSubject;

long twoWeeksAgoMilli = (new Date()).getTime() -
(14L*24L*60L*60L*1000L);
Date twoWeeksAgo = new Date();
twoWeeksAgo.setTime(twoWeeksAgoMilli);
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");
String twoWeeksAgoStr = df.format(twoWeeksAgo);

Condition rangeKeyCondition = new Condition()
 .withComparisonOperator(ComparisonOperator.GT.toString())
 .withAttributeValueList(new AttributeValue().withS(twoWeek
sAgoStr.toString()));

Reply replyKey = new Reply();
replyKey.setId(hashKey);

DynamoDBQueryExpression<Reply> queryExpression = new DynamoDBQuery
Expression<Reply>()
 .withHashKeyValues(replyKey)
 .withRangeKeyCondition("ReplyDateTime", rangeKeyCondition);

List<Reply> latestReplies = mapper.query(Reply.class, queryExpres
sion);

The query returns a collection of Reply objects.

Note
If your table's primary key is made of only a hash attribute, then you cannot use
the query method. Instead, you can use the load method and provide the hash
attribute to retrieve the item.

By default, the

API Version 2012-08-10
419

Amazon DynamoDB Developer Guide
The DynamoDBMapper Class

DescriptionMethod

query method returns a "lazy-loaded" collection. It initially returns only one page of
results, and then makes a service call for the next page if needed. To obtain all the
matching items, you only need to iterate over the latestReplies collection.

Queries a table and returns a single page of matching results. As with the query method,
you must specify a hash attribute value and a query filter that is applied on the range
attribute. However, queryPage will only return the first "page" of data - that is, the amount
of data that will fit within 1 MB

queryPage

Scans an entire table.You can optionally specify one or more Condition instances to
filter the result set, and you can specify a filter expression for any item attributes.

Assume that you have a table, Thread, that stores forum thread information including
Subject (part of the composite primary key) and if the thread is answered.

Thread (ForumName, Subject, ..., Answered)

If you have an object persistence model for this table, then you can use the DynamoD-
BMapper to scan the table. For example, the following Java code snippet filters the
Thread table to retrieve all the unanswered threads. The scan condition identifies the
attribute and a condition.

DynamoDBScanExpression scanExpression = new DynamoDBScanExpres
sion();

Map<String, Condition> scanFilter = new HashMap<String, Condi
tion>();
Condition scanCondition = new Condition()
 .withComparisonOperator(ComparisonOperator.EQ.toString())
 .withAttributeValueList(new AttributeValue().withN("0"));

scanFilter.put("Answered", scanCondition);

scanExpression.setScanFilter(scanFilter);

List<Thread> unansweredThreads = mapper.scan(Thread.class, scanEx
pression);

By default, the scan method returns a "lazy-loaded" collection. It initially returns only
one page of results, and then makes a service call for the next page if needed. To obtain
all the matching items, you only need to iterate over the unansweredThreads collection.

scan

Scans a table and returns a single page of matching results. As with the scan method,
you can optionally specify one or more Condition instances to filter the result set, and
you can specify a filter expression for any item attributes. However, scanPage will only
return the first "page" of data - that is, the amount of data that will fit within 1 MB

scanPage

API Version 2012-08-10
420

Amazon DynamoDB Developer Guide
The DynamoDBMapper Class

DescriptionMethod

Performs a parallel scan of an entire table.You specify a number of logical segments
for the table, along with a scan expression to filter the results.The parallelScan divides
the scan task among multiple workers, one for each logical segment; the workers process
the data in parallel and return the results.

The following Java code snippet performs a parallel scan on the Product table.

int numberOfThreads = 4;

DynamoDBScanExpression scanExpression = new DynamoDBScanExpres
sion();
scanExpression.addFilterCondition("Price",
 new Condition()
 .withComparisonOperator(ComparisonOperator.GT)

 .withAttributeValueList(new Attribute
Value().withN("100")));

List<Product> scanResult = mapper.parallelScan(Product.class,
scanExpression, numberOfThreads);

For a Java code sample illustrating usage of parallelScan, see Example: Query and
Scan (p. 437).

parallelS-
can

Saves objects to one or more tables using one or more calls to the AmazonDy-
namoDB.batchWriteItem method. This method does not provide transaction guaran-
tees.

The following Java code snippet saves two items (books) to the ProductCatalog table.

Book book1 = new Book();
book1.id = 901;
book1.productCategory = "Book";
book1.title = "Book 901 Title";

Book book2 = new Book();
book2.id = 902;
book2.productCategory = "Book";
book2.title = "Book 902 Title";

mapper.batchSave(Arrays.asList(book1, book2));

batchSave

API Version 2012-08-10
421

Amazon DynamoDB Developer Guide
The DynamoDBMapper Class

DescriptionMethod

Retrieves multiple items from one or more tables using their primary keys.

The following Java code snippet retrieves two items from two different tables.

ArrayList<Object> itemsToGet = new ArrayList<Object>();

ForumItem forumItem = new ForumItem();
forumItem.setForumName("Amazon DynamoDB");
itemsToGet.add(forumItem);

ThreadItem threadItem = new ThreadItem();
threadItem.setForumName("Amazon DynamoDB");
threadItem.setSubject("Amazon DynamoDB thread 1 message text");
itemsToGet.add(threadItem);

Map<String, List<Object>> items = mapper.batchLoad(itemsToGet);

batchLoad

Deletes objects from one or more tables using one or more calls to the AmazonDy-
namoDB.batchWriteItem method. This method does not provide transaction guaran-
tees.

The following Java code snippet deletes two items (books) from the ProductCatalog
table.

Book book1 = mapper.load(Book.class, 901);
Book book2 = mapper.load(Book.class, 902);
mapper.batchDelete(Arrays.asList(book1, book2));

batchDe-
lete

Saves objects to and deletes objects from one or more tables using one or more calls
to the AmazonDynamoDB.batchWriteItem method. This method does not provide
transaction guarantees or support versioning (conditional puts or deletes).

The following Java code snippet writes a new item to the Forum table, writes a new item
to the Thread table, and deletes an item from the ProductCatalog table.

// Create a Forum item to save
Forum forumItem = new Forum();
forumItem.name = "Test BatchWrite Forum";

// Create a Thread item to save
Thread threadItem = new Thread();
threadItem.forumName = "AmazonDynamoDB";
threadItem.subject = "My sample question";

// Load a ProductCatalog item to delete
Book book3 = mapper.load(Book.class, 903);

List<Object> objectsToWrite = Arrays.asList(forumItem, threadItem);
List<Book> objectsToDelete = Arrays.asList(book3);

mapper.batchWrite(objectsToWrite, objectsToDelete);

batch-
Write

API Version 2012-08-10
422

Amazon DynamoDB Developer Guide
The DynamoDBMapper Class

DescriptionMethod

Evaluates the specified scan expression and returns the count of matching items. No
item data is returned.

count

Parses a POJO class that represents a DynamoDB table, and returns a CreateTable-
Request for that table.

generate-
CreateTa-
bleRe-
quest

Creates a link to an object in Amazon S3.You must specify a bucket name and a key
name, which uniquely identifies the object in the bucket.

To use createS3Link, your mapper class must define getter and setter methods. The
following code snippet illustrates this by adding a new attribute and getter/setter methods
to the CatalogItem class:

@DynamoDBTable(tableName="ProductCatalog")
public class CatalogItem {

 ...

 public S3Link productImage;

 @DynamoDBAttribute(attributeName = "ProductImage")
 public S3Link getProductImage() {
 return productImage;
 }

 public void setProductImage(S3Link productImage) {
 this.productImage = productImage;
 }

...
}

The following Java code defines a new item to be written to the Product table. The item
includes a link to a product image; the image data is uploaded to Amazon S3.

CatalogItem item = new CatalogItem();

item.id = 150;
item.title = "Book 150 Title";

String myS3Bucket = "myS3bucket";
String myS3Key = "productImages/book_150_cover.jpg";
item.setProductImage(mapper.createS3Link(myS3Bucket, myS3Key));

item.getProductImage().uploadFrom(new
File("/file/path/book_150_cover.jpg"));

mapper.save(item);

The S3Link class provides many other methods for manipulating objects in Amazon
S3. For more information, see the Javadocs for S3Link.

cre-
ateS3Link

API Version 2012-08-10
423

Amazon DynamoDB Developer Guide
The DynamoDBMapper Class

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/S3Link.html

DescriptionMethod

Returns the underlying S3ClientCache for accessing Amazon S3. An S3ClientCache
is a smart Map for AmazonS3Client objects. If you have multiple clients, then an
S3ClientCache can help you keep the clients organized by region, and can create new
Amazon S3 clients on demand.

getS3Cli-
entCache

DynamoDBMapperConfig: Optional Configuration Settings
for DynamoDBMapper
The object persistence model provides the DynamoDBMapper for you to communicate with DynamoDB.
When you create a mapper instance, it has certain default behaviors; you can override these defaults by
using the DynamoDBMapperConfig class.

The following code snippet creates a DynamoDBMapper with custom settings:

ClasspathPropertiesFileCredentialsProvider cp =
 new ClasspathPropertiesFileCredentialsProvider();

AmazonDynamoDBClient client = new AmazonDynamoDBClient(cp);

DynamoDBMapperConfig mapperConfig = new DynamoDBMapperConfig(
 DynamoDBMapperConfig.SaveBehavior.CLOBBER,
 DynamoDBMapperConfig.ConsistentReads.CONSISTENT,
 null, //TableNameOverride - leaving this at default setting
 DynamoDBMapperConfig.PaginationLoadingStrategy.EAGER_LOADING
);

DynamoDBMapper mapper = new DynamoDBMapper(client, mapperConfig, cp);

For more information, see DynamoDBMapperConfig in the AWS SDK for Java API Reference.

You can use the following arguments for an instance of DynamoDBMapperConfig:

• A DynamoDBMapperConfig.ConsistentReads enumeration value:

• EVENTUAL—the mapper instance uses an eventually consistent read request.

• CONSISTENT—the mapper instance uses a strongly consistent read request.You can use this optional
setting with load, query, or scan operations. Strongly consistent reads have implications for
performance and billing; see the DynamoDB product detail page for more information.

If you do not specify a read consistency setting for your mapper instance, the default is EVENTUAL.

• A DynamoDBMapperConfig.PaginationLoadingStrategy enumeration value—Controls how the
mapper instance processes a paginated list of data, such as the results from a query or scan:

• LAZY_LOADING— the mapper instance loads data when possible, and keep all loaded results in
memory.

• EAGER_LOADING—the mapper instance loads the data as soon as the list is initialized.

• ITERATION_ONLY—you can only use an Iterator to read from the list. During the iteration, the list
will clear all the previous results before loading the next page, so that the list will keep at most one
page of the loaded results in memory.This also means the list can only be iterated once.This strategy
is recommended when handling large items, in order to reduce memory overhead.

If you do not specify a pagination loading strategy for your mapper instance, the default is
LAZY_LOADING.

API Version 2012-08-10
424

Amazon DynamoDB Developer Guide
The DynamoDBMapper Class

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
http://docs.aws.amazon.com/dynamodb

• A DynamoDBMapperConfig.SaveBehavior enumeration value - Specifies how the mapper instance
should deal with attributes during save operations:

• UPDATE—during a save operation, all modeled attributes are updated, and unmodeled attributes are
unaffected. Primitive number types (byte, int, long) are set to 0. Object types are set to null.

• CLOBBER—clears and replaces all attributes, included unmodeled ones, during a save operation.
This is done be deleting the item and re-creating it. Versioned field constraints are also disregarded.

If you do not specify the save behavior for your mapper instance, the default is UPDATE.

• A DynamoDBMapperConfig.TableNameOverride object—Instructs the mapper instance to ignore
the table name specified by a class's DynamoDBTable annotation, and instead use a different table
name that you supply. This is useful when partitioning your data into multiple tables at run time.

You can override the default configuration object for DynamoDBMapper per operation, as needed.

Optimistic Locking With Version Number
Optimistic locking is a strategy to ensure that the client-side item that you are updating (or deleting) is
the same as the item in DynamoDB. If you use this strategy, then your database writes are protected
from being overwritten by the writes of others — and vice-versa.

With optimistic locking, each item has an attribute that acts as a version number. If you retrieve an item
from a table, the application records the version number of that item.You can update the item, but only
if the version number on the server side has not changed. If there is a version mismatch, it means that
someone else has modified the item before you did; the update attempt fails, because you have a stale
version of the item. If this happens, you simply try again by retrieving the item and then attempting to
update it. Optimistic locking prevents you from accidentally overwriting changes that were made by others;
it also prevents others from accidentally overwriting your changes.

To support optimistic locking, the AWS SDK for Java provides the @DynamoDBVersionAttribute
annotation type. In the mapping class for your table, you designate one property to store the version
number, and mark it using this annotation type. When you save an object, the corresponding item in the
DynamoDB table will have an attribute that stores the version number. The DynamoDBMapper assigns
a version number when you first save the object, and it automatically increments the version number
each time you update the item.Your update or delete requests will succeed only if the client-side object
version matches the corresponding version number of the item in the DynamoDB table.

For example, the following Java code snippet defines a CatalogItem class that has several properties.
The Version property is tagged with the @DynamoDBVersionAttribute annotation type.

@DynamoDBTable(tableName="ProductCatalog")
public class CatalogItem {

 private Integer id;
 private String title;
 private String ISBN;
 private Set<String> bookAuthors;
 private String someProp;
 private Long version;

 @DynamoDBHashKey(attributeName="Id")
 public Integer getId() { return id; }
 public void setId(Integer Id) { this.id = Id; }

 @DynamoDBAttribute(attributeName="Title")
 public String getTitle() { return title; }

API Version 2012-08-10
425

Amazon DynamoDB Developer Guide
Optimistic Locking With Version Number

 public void setTitle(String title) { this.title = title; }

 @DynamoDBAttribute(attributeName="ISBN")
 public String getISBN() { return ISBN; }
 public void setISBN(String ISBN) { this.ISBN = ISBN;}

 @DynamoDBAttribute(attributeName = "Authors")
 public Set<String> getBookAuthors() { return bookAuthors; }
 public void setBookAuthors(Set<String> bookAuthors) { this.bookAuthors =
bookAuthors; }

 @DynamoDBIgnore
 public String getSomeProp() { return someProp;}
 public void setSomeProp(String someProp) {this.someProp = someProp;}

 @DynamoDBVersionAttribute
 public Long getVersion() { return version; }
 public void setVersion(Long version) { this.version = version;}
}

You can apply the @DynamoDBVersion annotation to nullable types provided by the primitive wrappers
classes such as Long and Integer, or you can use the primitive types int and long. We recommend
that you use Integer and Long whenever possible.

Optimistic locking has the following impact on these DynamoDBMapper methods:

• save — For a new item, the DynamoDBMapper assigns an initial version number 1. If you retrieve an
item, update one or more of its properties and attempt to save the changes, the save operation succeeds
only if the version number on the client-side and the server-side match. The DynamoDBMapper
increments the version number automatically.

• delete — The delete method takes an object as parameter and the DynamoDBMapper performs a
version check before deleting the item. The version check can be disabled if
DynamoDBMapperConfig.SaveBehavior.CLOBBER is specified in the request.

Note that the internal implementation of optimistic locking in the object persistence code uses the
conditional update and the conditional delete API support in DynamoDB.

Disabling Optimistic Locking
To disable optimistic locking, you can change the DynamoDBMapperConfig.SaveBehavior enumeration
value from UPDATE to CLOBBER.You can do this by creating a DynamoDBMapperConfig instance that
skips version checking and use this instance for all your requests. For information about
DynamoDBMapperConfig.SaveBehavior and other optional DynamoDBMapper parameters, see
DynamoDBMapperConfig: Optional Configuration Settings for DynamoDBMapper (p. 424).

You can also set locking behavior for a specific operation only. For example, the following Java snippet
uses the DynamoDBMapper to save a catalog item. It specifies DynamoDBMapperConfig.SaveBehavior
by adding the optional DynamoDBMapperConfig parameter to the save method.

DynamoDBMapper mapper = new DynamoDBMapper(client);

// Load a catalog item.
CatalogItem item = mapper.load(CatalogItem.class, 101);
item.setTitle("This is a new title for the item");
...

API Version 2012-08-10
426

Amazon DynamoDB Developer Guide
Optimistic Locking With Version Number

// Save the item.
mapper.save(item,
 new DynamoDBMapperConfig(
 DynamoDBMapperConfig.SaveBehavior.CLOBBER));

Mapping Arbitrary Data
In addition to the supported Java types (see Supported Data Types (p. 411)), you can use types in your
application for which there is no direct mapping to the DynamoDB types. To map these types, you must
provide an implementation that converts your complex type to an instance of String and vice-versa, and
annotate the complex type accessor method using the @DynamoDBMarshalling annotation type. The
converter code transforms data when objects are saved or loaded. It is also used for all operations that
consume complex types. Note that when comparing data during query and scan operations, the
comparisons are made against the data stored in DynamoDB.

For example, consider the following CatalogItem class that defines a property, Dimension, that is of
DimensionType.This property stores the item dimensions, as height, width, and thickness. Assume that
you decide to store these item dimensions as a string (such as 8.5x11x.05) in DynamoDB. The following
example provides converter code that converts the DimensionType object to a string and a string to the
DimensionType.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for Java (p. 687) topic.
For step-by-step instructions to run the following example, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.datamodeling;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMarshaller;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMarshalling;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;

public class ObjectPersistenceMappingExample {

 static AmazonDynamoDBClient client;

 public static void main(String[] args) throws IOException {

 AmazonDynamoDBClient client = new AmazonDynamoDBClient(new ProfileCre
dentialsProvider());

API Version 2012-08-10
427

Amazon DynamoDB Developer Guide
Mapping Arbitrary Data

 DimensionType dimType = new DimensionType();
 dimType.setHeight("8.00");
 dimType.setLength("11.0");
 dimType.setThickness("1.0");

 Book book = new Book();
 book.setId(502);
 book.setTitle("Book 502");
 book.setISBN("555-5555555555");
 book.setBookAuthors(new HashSet<String>(Arrays.asList("Author1", "Au
thor2")));
 book.setDimensions(dimType);

 System.out.println(book);

 DynamoDBMapper mapper = new DynamoDBMapper(client);
 mapper.save(book);

 Book bookRetrieved = mapper.load(Book.class, 502);

 System.out.println(bookRetrieved);

 bookRetrieved.getDimensions().setHeight("9.0");
 bookRetrieved.getDimensions().setLength("12.0");
 bookRetrieved.getDimensions().setThickness("2.0");

 mapper.save(bookRetrieved);

 bookRetrieved = mapper.load(Book.class, 502);
 System.out.println(bookRetrieved);

 }

 @DynamoDBTable(tableName="ProductCatalog")
 public static class Book {
 private int id;
 private String title;
 private String ISBN;
 private Set<String> bookAuthors;
 private DimensionType dimensionType;

 @DynamoDBHashKey(attributeName = "Id")
 public int getId() { return id; }
 public void setId(int id) { this.id = id; }

 @DynamoDBAttribute(attributeName = "Title")
 public String getTitle() { return title; }
 public void setTitle(String title) { this.title = title; }

 @DynamoDBAttribute(attributeName="ISBN")
 public String getISBN() { return ISBN; }
 public void setISBN(String ISBN) { this.ISBN = ISBN;}

 @DynamoDBAttribute(attributeName = "Authors")
 public Set<String> getBookAuthors() { return bookAuthors; }
 public void setBookAuthors(Set<String> bookAuthors) { this.bookAuthors
 = bookAuthors; }

API Version 2012-08-10
428

Amazon DynamoDB Developer Guide
Mapping Arbitrary Data

 @DynamoDBMarshalling(marshallerClass = DimensionTypeConverter.class)
 public DimensionType getDimensions() { return dimensionType; }
 public void setDimensions(DimensionType dimensionType) { this.dimension
Type = dimensionType; }

 @Override
 public String toString() {
 return "Book [ISBN=" + ISBN + ", bookAuthors=" + bookAuthors
 + ", dimensionType=" + dimensionType + ", Id=" + id
 + ", Title=" + title + "]";
 }
 }
 static public class DimensionType {

 private String length;
 private String height;
 private String thickness;

 public String getLength() { return length; }
 public void setLength(String length) { this.length = length; }

 public String getHeight() { return height; }
 public void setHeight(String height) { this.height = height; }

 public String getThickness() { return thickness; }
 public void setThickness(String thickness) { this.thickness = thickness;
 }
 }

 // Converts the complex type DimensionType to a string and vice-versa.
 static public class DimensionTypeConverter implements DynamoDBMarshaller<Di
mensionType> {

 @Override
 public String marshall(DimensionType value) {
 DimensionType itemDimensions = (DimensionType)value;
 String dimension = null;
 try {
 if (itemDimensions != null) {
 dimension = String.format("%s x %s x %s",
 itemDimensions.getLength(),
 itemDimensions.getHeight(),
 itemDimensions.getThickness());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return dimension;
 }

 @Override
 public DimensionType unmarshall(Class<DimensionType> dimensionType,
String value) {

 DimensionType itemDimension = new DimensionType();
 try {
 if (value != null && value.length() !=0) {

API Version 2012-08-10
429

Amazon DynamoDB Developer Guide
Mapping Arbitrary Data

 String[] data = value.split("x");
 itemDimension.setLength(data[0].trim());
 itemDimension.setHeight(data[1].trim());
 itemDimension.setThickness(data[2].trim());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

 return itemDimension;
 }
 }
}

Example: CRUD Operations
The following Java code example declares a CatalogItem class that has Id, Title, ISBN and Authors
properties. It uses the annotations to map these properties to the ProductCatalog table in DynamoDB.
The code example then uses the DynamoDBMapper to save a book object, retrieve it, update it and delete
the book item.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for Java (p. 687) topic.
For step-by-step instructions to run the following example, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.datamodeling;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapperConfig;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;

public class ObjectPersistenceCRUDExample {

 static AmazonDynamoDBClient client = new AmazonDynamoDBClient(new ProfileCre
dentialsProvider());

 public static void main(String[] args) throws IOException {
 testCRUDOperations();

API Version 2012-08-10
430

Amazon DynamoDB Developer Guide
Example: CRUD Operations

 System.out.println("Example complete!");
 }

 @DynamoDBTable(tableName="ProductCatalog")
 public static class CatalogItem {
 private Integer id;
 private String title;
 private String ISBN;
 private Set<String> bookAuthors;

 @DynamoDBHashKey(attributeName="Id")
 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }

 @DynamoDBAttribute(attributeName="Title")
 public String getTitle() { return title; }
 public void setTitle(String title) { this.title = title; }

 @DynamoDBAttribute(attributeName="ISBN")
 public String getISBN() { return ISBN; }
 public void setISBN(String ISBN) { this.ISBN = ISBN;}

 @DynamoDBAttribute(attributeName = "Authors")
 public Set<String> getBookAuthors() { return bookAuthors; }
 public void setBookAuthors(Set<String> bookAuthors) { this.bookAuthors
 = bookAuthors; }
 @Override
 public String toString() {
 return "Book [ISBN=" + ISBN + ", bookAuthors=" + bookAuthors
 + ", id=" + id + ", title=" + title + "]";
 }
 }

 private static void testCRUDOperations() {

 CatalogItem item = new CatalogItem();
 item.setId(601);
 item.setTitle("Book 601");
 item.setISBN("611-1111111111");
 item.setBookAuthors(new HashSet<String>(Arrays.asList("Author1", "Au
thor2")));

 // Save the item (book).
 DynamoDBMapper mapper = new DynamoDBMapper(client);
 mapper.save(item);

 // Retrieve the item.
 CatalogItem itemRetrieved = mapper.load(CatalogItem.class, 601);
 System.out.println("Item retrieved:");
 System.out.println(itemRetrieved);

 // Update the item.
 itemRetrieved.setISBN("622-2222222222");
 itemRetrieved.setBookAuthors(new HashSet<String>(Arrays.asList("Author1",
 "Author3")));
 mapper.save(itemRetrieved);
 System.out.println("Item updated:");
 System.out.println(itemRetrieved);

API Version 2012-08-10
431

Amazon DynamoDB Developer Guide
Example: CRUD Operations

 // Retrieve the updated item.
 DynamoDBMapperConfig config = new DynamoDBMapperConfig(DynamoDBMapper
Config.ConsistentReads.CONSISTENT);
 CatalogItem updatedItem = mapper.load(CatalogItem.class, 601, config);

 System.out.println("Retrieved the previously updated item:");
 System.out.println(updatedItem);

 // Delete the item.
 mapper.delete(updatedItem);

 // Try to retrieve deleted item.
 CatalogItem deletedItem = mapper.load(CatalogItem.class, updatedItem.get
Id(), config);
 if (deletedItem == null) {
 System.out.println("Done - Sample item is deleted.");
 }
 }
}

Example: Batch Write Operations
The following Java code example declares Book, Forum, Thread, and Reply classes and maps them to
the DynamoDB tables using the object persistence model attributes.

The code example then uses the DynamoDBMapper to illustrate the following batch write operations.

• batchSave to put book items in the ProductCatalog table.

• batchDelete to delete items from the ProductCatalog table.

• batchWrite to put and delete items from the Forum and the Thread tables.

For more information about the tables used in this example, see Example Tables and Data (p. 681). For
step-by-step instructions to test the following sample, see Using the AWS SDK for Java (p. 53).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.datamodeling;

import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapperConfig;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBRangeKey;

API Version 2012-08-10
432

Amazon DynamoDB Developer Guide
Example: Batch Write Operations

import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;

public class ObjectPersistenceBatchWriteExample {

 static AmazonDynamoDBClient client = new AmazonDynamoDBClient(new ProfileCre
dentialsProvider());
 static SimpleDateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");

 public static void main(String[] args) throws Exception {
 try {

 DynamoDBMapper mapper = new DynamoDBMapper(client);

 testBatchSave(mapper);
 testBatchDelete(mapper);
 testBatchWrite(mapper);

 System.out.println("Example complete!");

 } catch (Throwable t) {
 System.err.println("Error running the ObjectPersistenceBatchWrit
eExample: " + t);
 t.printStackTrace();
 }
 }

 private static void testBatchSave(DynamoDBMapper mapper) {

 Book book1 = new Book();
 book1.id = 901;
 book1.inPublication = true;
 book1.ISBN = "902-11-11-1111";
 book1.pageCount = 100;
 book1.price = 10;
 book1.productCategory = "Book";
 book1.title = "My book created in batch write";

 Book book2 = new Book();
 book2.id = 902;
 book2.inPublication = true;
 book2.ISBN = "902-11-12-1111";
 book2.pageCount = 200;
 book2.price = 20;
 book2.productCategory = "Book";
 book2.title = "My second book created in batch write";

 Book book3 = new Book();
 book3.id = 903;
 book3.inPublication = false;
 book3.ISBN = "902-11-13-1111";
 book3.pageCount = 300;
 book3.price = 25;
 book3.productCategory = "Book";
 book3.title = "My third book created in batch write";

 System.out.println("Adding three books to ProductCatalog table.");
 mapper.batchSave(Arrays.asList(book1, book2, book3));

API Version 2012-08-10
433

Amazon DynamoDB Developer Guide
Example: Batch Write Operations

 }

 private static void testBatchDelete(DynamoDBMapper mapper) {

 Book book1 = mapper.load(Book.class, 901);
 Book book2 = mapper.load(Book.class, 902);
 System.out.println("Deleting two books from the ProductCatalog table.");

 mapper.batchDelete(Arrays.asList(book1, book2));
 }

 private static void testBatchWrite(DynamoDBMapper mapper) {

 // Create Forum item to save
 Forum forumItem = new Forum();
 forumItem.name = "Test BatchWrite Forum";
 forumItem.threads = 0;
 forumItem.category = "Amazon Web Services";

 // Create Thread item to save
 Thread threadItem = new Thread();
 threadItem.forumName = "AmazonDynamoDB";
 threadItem.subject = "My sample question";
 threadItem.message = "BatchWrite message";
 List<String> tags = new ArrayList<String>();
 tags.add("batch operations");
 tags.add("write");
 threadItem.tags = new HashSet<String>(tags);

 // Load ProductCatalog item to delete
 Book book3 = mapper.load(Book.class, 903);

 List<Object> objectsToWrite = Arrays.asList(forumItem, threadItem);
 List<Book> objectsToDelete = Arrays.asList(book3);

 DynamoDBMapperConfig config = new DynamoDBMapperConfig(DynamoDBMapper
Config.SaveBehavior.CLOBBER);
 mapper.batchWrite(objectsToWrite, objectsToDelete, config);
 }

 @DynamoDBTable(tableName="ProductCatalog")
 public static class Book {
 private int id;
 private String title;
 private String ISBN;
 private int price;
 private int pageCount;
 private String productCategory;
 private boolean inPublication;

 @DynamoDBHashKey(attributeName="Id")
 public int getId() { return id; }
 public void setId(int id) { this.id = id; }

 @DynamoDBAttribute(attributeName="Title")
 public String getTitle() { return title; }
 public void setTitle(String title) { this.title = title; }

API Version 2012-08-10
434

Amazon DynamoDB Developer Guide
Example: Batch Write Operations

 @DynamoDBAttribute(attributeName="ISBN")
 public String getISBN() { return ISBN; }
 public void setISBN(String ISBN) { this.ISBN = ISBN; }

 @DynamoDBAttribute(attributeName="Price")
 public int getPrice() { return price; }
 public void setPrice(int price) { this.price = price; }

 @DynamoDBAttribute(attributeName="PageCount")
 public int getPageCount() { return pageCount; }
 public void setPageCount(int pageCount) { this.pageCount = pageCount;}

 @DynamoDBAttribute(attributeName="ProductCategory")
 public String getProductCategory() { return productCategory; }
 public void setProductCategory(String productCategory) { this.product
Category = productCategory; }

 @DynamoDBAttribute(attributeName="InPublication")
 public boolean getInPublication() { return inPublication; }
 public void setInPublication(boolean inPublication) { this.inPublication
 = inPublication; }

 @Override
 public String toString() {
 return "Book [ISBN=" + ISBN + ", price=" + price
 + ", product category=" + productCategory + ", id=" + id
 + ", title=" + title + "]";
 }

 }

 @DynamoDBTable(tableName="Reply")
 public static class Reply {
 private String id;
 private String replyDateTime;
 private String message;
 private String postedBy;

 @DynamoDBHashKey(attributeName="Id")
 public String getId() { return id; }
 public void setId(String id) { this.id = id; }

 @DynamoDBRangeKey(attributeName="ReplyDateTime")
 public String getReplyDateTime() { return replyDateTime; }
 public void setReplyDateTime(String replyDateTime) { this.replyDateTime
 = replyDateTime; }

 @DynamoDBAttribute(attributeName="Message")
 public String getMessage() { return message; }
 public void setMessage(String message) { this.message = message; }

 @DynamoDBAttribute(attributeName="PostedBy")
 public String getPostedBy() { return postedBy; }
 public void setPostedBy(String postedBy) { this.postedBy = postedBy;}

 }

API Version 2012-08-10
435

Amazon DynamoDB Developer Guide
Example: Batch Write Operations

 @DynamoDBTable(tableName="Thread")
 public static class Thread {
 private String forumName;
 private String subject;
 private String message;
 private String lastPostedDateTime;
 private String lastPostedBy;
 private Set<String> tags;
 private int answered;
 private int views;
 private int replies;

 @DynamoDBHashKey(attributeName="ForumName")
 public String getForumName() { return forumName; }
 public void setForumName(String forumName) { this.forumName = forumName;
 }

 @DynamoDBRangeKey(attributeName="Subject")
 public String getSubject() { return subject; }
 public void setSubject(String subject) { this.subject = subject; }

 @DynamoDBAttribute(attributeName="Message")
 public String getMessage() { return message; }
 public void setMessage(String message) { this.message = message; }

 @DynamoDBAttribute(attributeName="LastPostedDateTime")
 public String getLastPostedDateTime() { return lastPostedDateTime; }

 public void setLastPostedDateTime(String lastPostedDateTime) {
this.lastPostedDateTime = lastPostedDateTime; }

 @DynamoDBAttribute(attributeName="LastPostedBy")
 public String getLastPostedBy() { return lastPostedBy; }
 public void setLastPostedBy(String lastPostedBy) { this.lastPostedBy =
 lastPostedBy;}

 @DynamoDBAttribute(attributeName="Tags")
 public Set<String> getTags() { return tags; }
 public void setTags(Set<String> tags) { this.tags = tags; }

 @DynamoDBAttribute(attributeName="Answered")
 public int getAnswered() { return answered; }
 public void setAnswered(int answered) { this.answered = answered; }

 @DynamoDBAttribute(attributeName="Views")
 public int getViews() { return views; }
 public void setViews(int views) { this.views = views; }

 @DynamoDBAttribute(attributeName="Replies")
 public int getReplies() { return replies; }
 public void setReplies(int replies) { this.replies = replies; }

 }

 @DynamoDBTable(tableName="Forum")
 public static class Forum {
 private String name;

API Version 2012-08-10
436

Amazon DynamoDB Developer Guide
Example: Batch Write Operations

 private String category;
 private int threads;

 @DynamoDBHashKey(attributeName="Name")
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 @DynamoDBAttribute(attributeName="Category")
 public String getCategory() { return category; }
 public void setCategory(String category) { this.category = category; }

 @DynamoDBAttribute(attributeName="Threads")
 public int getThreads() { return threads; }
 public void setThreads(int threads) { this.threads = threads;}

 }
}

Example: Query and Scan
The Java example in this section defines the following classes and maps them to the tables in DynamoDB.
For more information about creating sample tables, see Example Tables and Data (p. 681).

• Book class maps to ProductCatalog table

• Forum, Thread and Reply classes maps to the same name tables.

The example then executes the follow query and scan operations using a DynamoDBMapper instance.

• Get a book by Id.
The ProductCatalog table has Id as its primary key. It does not have a range attribute as part of its
primary key. Therefore, you cannot query the table.You can get an item using its id value.

• Execute the following queries against the Reply table.
The Reply table's primary key is composed of Id and ReplyDateTime attributes. The ReplyDateTime
is a range attribute. Therefore, you can query this table.

• Find replies to a forum thread posted in the last 15 days

• Find replies to a forum thread posted in a specific date range

• Scan ProductCatalog table to find books whose price is less than a specified value.

For performance reasons, you should use query instead of the scan operation. However, there are
times you might need to scan a table. Suppose there was a data entry error and one of the book prices
was set to less than 0. This example scans the ProductCategory table to find book items
(ProductCategory is book) and price is less than 0.

• Perform a parallel scan of the ProductCatalog table to find bicycles of a specific type.

Note
This code example assumes that you have already loaded data into DynamoDB for your account
by following the instructions in the Creating Tables and Loading Sample Data (p. 14) section.
Alternatively, you can load the data programmatically using the instructions in the Creating
Example Tables and Uploading Data Using the AWS SDK for Java (p. 687) topic.

API Version 2012-08-10
437

Amazon DynamoDB Developer Guide
Example: Query and Scan

For step-by-step instructions to run the following example, see Running Java Examples for
DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples.datamodeling;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.List;
import java.util.Set;
import java.util.TimeZone;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBQueryExpression;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBRangeKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBScanExpression;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.ComparisonOperator;
import com.amazonaws.services.dynamodbv2.model.Condition;

public class ObjectPersistenceQueryScanExample {

 static AmazonDynamoDBClient client = new AmazonDynamoDBClient(new ProfileCre
dentialsProvider());

 public static void main(String[] args) throws Exception {
 try {

 DynamoDBMapper mapper = new DynamoDBMapper(client);

 // Get a book - Id=101
 GetBook(mapper, 101);
 // Sample forum and thread to test queries.
 String forumName = "Amazon DynamoDB";
 String threadSubject = "DynamoDB Thread 1";
 // Sample queries.
 FindRepliesInLast15Days(mapper, forumName, threadSubject);
 FindRepliesPostedWithinTimePeriod(mapper, forumName, threadSubject);

 // Scan a table and find book items priced less than specified
value.
 FindBooksPricedLessThanSpecifiedValue(mapper, "20");

 // Scan a table with multiple threads and find bicycle items with
a specified bicycle type
 int numberOfThreads = 16;
 FindBicyclesOfSpecificTypeWithMultipleThreads(mapper, numberOf
Threads, "Road");

 System.out.println("Example complete!");

API Version 2012-08-10
438

Amazon DynamoDB Developer Guide
Example: Query and Scan

 } catch (Throwable t) {
 System.err.println("Error running the ObjectPersistenceQuery
ScanExample: " + t);
 t.printStackTrace();
 }
 }

 private static void GetBook(DynamoDBMapper mapper, int id) throws Exception
 {
 System.out.println("GetBook: Get book Id='101' ");
 System.out.println("Book table has no range key attribute, so you Get
(but no query).");
 Book book = mapper.load(Book.class, 101);
 System.out.format("Id = %s Title = %s, ISBN = %s %n", book.getId(),
book.getTitle(), book.getISBN());
 }

 private static void FindRepliesInLast15Days(DynamoDBMapper mapper,
 String forumName,
 String threadSubject) throws
Exception {
 System.out.println("FindRepliesInLast15Days: Replies within last 15
days.");

 String hashKey = forumName + "#" + threadSubject;

 long twoWeeksAgoMilli = (new Date()).getTime() - (15L*24L*60L*60L*1000L);

 Date twoWeeksAgo = new Date();
 twoWeeksAgo.setTime(twoWeeksAgoMilli);
 SimpleDateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");
 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));
 String twoWeeksAgoStr = dateFormatter.format(twoWeeksAgo);

 Condition rangeKeyCondition = new Condition()
 .withComparisonOperator(ComparisonOperator.GT.toString())
 .withAttributeValueList(new AttributeValue().withS(twoWeeksAgoStr.to
String()));

 Reply replyKey = new Reply();
 replyKey.setId(hashKey);

 DynamoDBQueryExpression<Reply> queryExpression = new DynamoDBQueryEx
pression<Reply>()
 .withHashKeyValues(replyKey)
 .withRangeKeyCondition("ReplyDateTime", rangeKeyCondition);

 List<Reply> latestReplies = mapper.query(Reply.class, queryExpression);

 for (Reply reply : latestReplies) {
 System.out.format("Id=%s, Message=%s, PostedBy=%s %n, ReplyDate
Time=%s %n",
 reply.getId(), reply.getMessage(), reply.getPostedBy(),
reply.getReplyDateTime());

API Version 2012-08-10
439

Amazon DynamoDB Developer Guide
Example: Query and Scan

 }
 }

 private static void FindRepliesPostedWithinTimePeriod(
 DynamoDBMapper mapper,
 String forumName,
 String threadSubject) throws Exception {
 String hashKey = forumName + "#" + threadSubject;

 System.out.println("FindRepliesPostedWithinTimePeriod: Find replies for
 thread Message = 'DynamoDB Thread 2' posted within a period.");
 long startDateMilli = (new Date()).getTime() - (14L*24L*60L*60L*1000L);
 // Two weeks ago.
 long endDateMilli = (new Date()).getTime() - (7L*24L*60L*60L*1000L);
 // One week ago.
 SimpleDateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");
 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));
 String startDate = dateFormatter.format(startDateMilli);
 String endDate = dateFormatter.format(endDateMilli);

 Condition rangeKeyCondition = new Condition()
 .withComparisonOperator(ComparisonOperator.BETWEEN.toString())
 .withAttributeValueList(new AttributeValue().withS(startDate),
 new AttributeValue().withS(endDate));

 Reply replyKey = new Reply();
 replyKey.setId(hashKey);

 DynamoDBQueryExpression<Reply> queryExpression = new DynamoDBQueryEx
pression<Reply>()
 .withHashKeyValues(replyKey)
 .withRangeKeyCondition("ReplyDateTime", rangeKeyCondition);

 List<Reply> betweenReplies = mapper.query(Reply.class, queryExpression);

 for (Reply reply : betweenReplies) {
 System.out.format("Id=%s, Message=%s, PostedBy=%s %n, PostedDate
Time=%s %n",
 reply.getId(), reply.getMessage(), reply.getPostedBy(),
reply.getReplyDateTime());
 }

 }

 private static void FindBooksPricedLessThanSpecifiedValue(
 DynamoDBMapper mapper,
 String value) throws Exception {

 System.out.println("FindBooksPricedLessThanSpecifiedValue: Scan Product
Catalog.");

 DynamoDBScanExpression scanExpression = new DynamoDBScanExpression();
 scanExpression.addFilterCondition("Price",
 new Condition()
 .withComparisonOperator(ComparisonOperator.LT)
 .withAttributeValueList(new AttributeValue().withN(value)));

API Version 2012-08-10
440

Amazon DynamoDB Developer Guide
Example: Query and Scan

 scanExpression.addFilterCondition("ProductCategory",
 new Condition()
 .withComparisonOperator(ComparisonOperator.EQ)
 .withAttributeValueList(new AttributeValue().withS("Book")));

 List<Book> scanResult = mapper.scan(Book.class, scanExpression);

 for (Book book : scanResult) {
 System.out.println(book);
 }
 }

 private static void FindBicyclesOfSpecificTypeWithMultipleThreads(
 DynamoDBMapper mapper,
 int numberOfThreads,
 String bicycleType) throws Exception {

 System.out.println("FindBicyclesOfSpecificTypeWithMultipleThreads: Scan
 ProductCatalog With Multiple Threads.");

 DynamoDBScanExpression scanExpression = new DynamoDBScanExpression();
 scanExpression.addFilterCondition("ProductCategory",
 new Condition()
 .withComparisonOperator(ComparisonOperator.EQ)
 .withAttributeValueList(new AttributeValue().withS("Bi
cycle")));
 scanExpression.addFilterCondition("BicycleType",
 new Condition()
 .withComparisonOperator(ComparisonOperator.EQ)
 .withAttributeValueList(new AttributeValue().withS(bicycle
Type)));
 List<Bicycle> scanResult = mapper.parallelScan(Bicycle.class, scanEx
pression, numberOfThreads);
 for (Bicycle bicycle : scanResult) {
 System.out.println(bicycle);
 }
 }

 @DynamoDBTable(tableName="ProductCatalog")
 public static class Book {
 private int id;
 private String title;
 private String ISBN;
 private int price;
 private int pageCount;
 private String productCategory;
 private boolean inPublication;

 @DynamoDBHashKey(attributeName="Id")
 public int getId() { return id; }
 public void setId(int id) { this.id = id; }

 @DynamoDBAttribute(attributeName="Title")
 public String getTitle() { return title; }
 public void setTitle(String title) { this.title = title; }

 @DynamoDBAttribute(attributeName="ISBN")

API Version 2012-08-10
441

Amazon DynamoDB Developer Guide
Example: Query and Scan

 public String getISBN() { return ISBN; }
 public void setISBN(String ISBN) { this.ISBN = ISBN; }

 @DynamoDBAttribute(attributeName="Price")
 public int getPrice() { return price; }
 public void setPrice(int price) { this.price = price; }

 @DynamoDBAttribute(attributeName="PageCount")
 public int getPageCount() { return pageCount; }
 public void setPageCount(int pageCount) { this.pageCount = pageCount;}

 @DynamoDBAttribute(attributeName="ProductCategory")
 public String getProductCategory() { return productCategory; }
 public void setProductCategory(String productCategory) { this.product
Category = productCategory; }

 @DynamoDBAttribute(attributeName="InPublication")
 public boolean getInPublication() { return inPublication; }
 public void setInPublication(boolean inPublication) { this.inPublication
 = inPublication; }

 @Override
 public String toString() {
 return "Book [ISBN=" + ISBN + ", price=" + price
 + ", product category=" + productCategory + ", id=" + id
 + ", title=" + title + "]";
 }

 }

 @DynamoDBTable(tableName="ProductCatalog")
 public static class Bicycle {
 private int id;
 private String title;
 private String description;
 private String bicycleType;
 private String brand;
 private int price;
 private String gender;
 private Set<String> color;
 private String productCategory;

 @DynamoDBHashKey(attributeName="Id")
 public int getId() { return id; }
 public void setId(int id) { this.id = id; }

 @DynamoDBAttribute(attributeName="Title")
 public String getTitle() { return title; }
 public void setTitle(String title) { this.title = title; }

 @DynamoDBAttribute(attributeName="Description")
 public String getDescription() { return description; }
 public void setDescription(String description) { this.description =
description; }

 @DynamoDBAttribute(attributeName="BicycleType")
 public String getBicycleType() { return bicycleType; }

API Version 2012-08-10
442

Amazon DynamoDB Developer Guide
Example: Query and Scan

 public void setBicycleType(String bicycleType) { this.bicycleType =
bicycleType; }

 @DynamoDBAttribute(attributeName="Brand")
 public String getBrand() { return brand; }
 public void setBrand(String brand) { this.brand = brand; }

 @DynamoDBAttribute(attributeName="Price")
 public int getPrice() { return price; }
 public void setPrice(int price) { this.price = price; }

 @DynamoDBAttribute(attributeName="Gender")
 public String getGender() { return gender; }
 public void setGender(String gender) { this.gender = gender; }

 @DynamoDBAttribute(attributeName="Color")
 public Set<String> getColor() { return color; }
 public void setColor(Set<String> color) { this.color = color; }

 @DynamoDBAttribute(attributeName="ProductCategory")
 public String getProductCategory() { return productCategory; }
 public void setProductCategory(String productCategory) { this.product
Category = productCategory; }

 @Override
 public String toString() {
 return "Bicycle [Type=" + bicycleType + ", color=" + color + ",
price=" + price
 + ", product category=" + productCategory + ", id=" + id
 + ", title=" + title + "]";
 }

 }

 @DynamoDBTable(tableName="Reply")
 public static class Reply {
 private String id;
 private String replyDateTime;
 private String message;
 private String postedBy;

 @DynamoDBHashKey(attributeName="Id")
 public String getId() { return id; }
 public void setId(String id) { this.id = id; }

 @DynamoDBRangeKey(attributeName="ReplyDateTime")
 public String getReplyDateTime() { return replyDateTime; }
 public void setReplyDateTime(String replyDateTime) { this.replyDateTime
 = replyDateTime; }

 @DynamoDBAttribute(attributeName="Message")
 public String getMessage() { return message; }
 public void setMessage(String message) { this.message = message; }

 @DynamoDBAttribute(attributeName="PostedBy")
 public String getPostedBy() { return postedBy; }
 public void setPostedBy(String postedBy) { this.postedBy = postedBy;}

API Version 2012-08-10
443

Amazon DynamoDB Developer Guide
Example: Query and Scan

 }

 @DynamoDBTable(tableName="Thread")
 public static class Thread {
 private String forumName;
 private String subject;
 private String message;
 private String lastPostedDateTime;
 private String lastPostedBy;
 private Set<String> tags;
 private int answered;
 private int views;
 private int replies;

 @DynamoDBHashKey(attributeName="ForumName")
 public String getForumName() { return forumName; }
 public void setForumName(String forumName) { this.forumName = forumName;
 }

 @DynamoDBRangeKey(attributeName="Subject")
 public String getSubject() { return subject; }
 public void setSubject(String subject) { this.subject = subject; }

 @DynamoDBAttribute(attributeName="Message")
 public String getMessage() { return message; }
 public void setMessage(String message) { this.message = message; }

 @DynamoDBAttribute(attributeName="LastPostedDateTime")
 public String getLastPostedDateTime() { return lastPostedDateTime; }

 public void setLastPostedDateTime(String lastPostedDateTime) {
this.lastPostedDateTime = lastPostedDateTime; }

 @DynamoDBAttribute(attributeName="LastPostedBy")
 public String getLastPostedBy() { return lastPostedBy; }
 public void setLastPostedBy(String lastPostedBy) { this.lastPostedBy =
 lastPostedBy;}

 @DynamoDBAttribute(attributeName="Tags")
 public Set<String> getTags() { return tags; }
 public void setTags(Set<String> tags) { this.tags = tags; }

 @DynamoDBAttribute(attributeName="Answered")
 public int getAnswered() { return answered; }
 public void setAnswered(int answered) { this.answered = answered; }

 @DynamoDBAttribute(attributeName="Views")
 public int getViews() { return views; }
 public void setViews(int views) { this.views = views; }

 @DynamoDBAttribute(attributeName="Replies")
 public int getReplies() { return replies; }
 public void setReplies(int replies) { this.replies = replies; }

 }

 @DynamoDBTable(tableName="Forum")
 public static class Forum {

API Version 2012-08-10
444

Amazon DynamoDB Developer Guide
Example: Query and Scan

 private String name;
 private String category;
 private int threads;

 @DynamoDBHashKey(attributeName="Name")
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 @DynamoDBAttribute(attributeName="Category")
 public String getCategory() { return category; }
 public void setCategory(String category) { this.category = category; }

 @DynamoDBAttribute(attributeName="Threads")
 public int getThreads() { return threads; }
 public void setThreads(int threads) { this.threads = threads;}

 }
}

.NET: Document Model
Topics

• Operations Not Supported by the Document Model (p. 445)

• Working with Items in DynamoDB Using the AWS SDK for .NET Document Model (p. 446)

• Getting an Item - Table.GetItem (p. 449)

• Deleting an Item - Table.DeleteItem (p. 450)

• Updating an Item - Table.UpdateItem (p. 451)

• Batch Write - Putting and Deleting Multiple Items (p. 453)

• Example: CRUD Operations Using the AWS SDK for .NET Document Model (p. 454)

• Example: Batch Operations Using AWS SDK for .NET Document Model API (p. 460)

• Querying Tables in DynamoDB Using the AWS SDK for .NET Document Model (p. 464)

The AWS SDK for .NET provides document model classes that wrap some of the low-level API (see
Working with Items Using the AWS SDK for .NET Low-Level API (p. 142)) functionality to further simplify
your coding. In the document model, the primary classes are Table and Document. The Table class
provides data operation methods such as PutItem, GetItem, and DeleteItem. It also provides the
Query and the Scan methods. The Document class represents a single item in a table. For information
about tables and items, see DynamoDB Data Model (p. 3).

The preceding document model classes are available in the Amazon.DynamoDBv2.DocumentModel
namespace.

Operations Not Supported by the Document Model
You cannot use the document model classes to create, update, and delete tables. The document model
does support most common data operations, however.

API Version 2012-08-10
445

Amazon DynamoDB Developer Guide
.NET: Document Model

Working with Items in DynamoDB Using the AWS
SDK for .NET Document Model
Topics

• Putting an Item - Table.PutItem Method (p. 447)

• Specifying Optional Parameters (p. 448)

To perform data operations using the document model, you must first call the Table.LoadTable method,
which creates an instance of the Table class that represents a specific table. The following C# snippet
creates a Table object that represents the ProductCatalog table in DynamoDB.

Table table = Table.LoadTable(client, "ProductCatalog");

Note
In general, you use the LoadTable method once at the beginning of your application because
it makes a remote DescribeTable API call that adds to the round trip to DynamoDB.

You can then use the table object to perform various data operations. Each of these data operations have
two types of overloads; one that takes the minimum required parameters and another that also takes
operation specific optional configuration information. For example, to retrieve an item, you must provide
the table's primary key value in which case you can use the following GetItem overload:

// Get the item from a table that has a primary key that is composed of only a
 hash attribute.
Table.GetItem(Primitive hashAttribute);
// Get the item from a table whose primary key is composed of both a hash and
range attribute.
Table.GetItem(Primitive hashAttribute, Primitive rangeAttribute);

You can also pass optional parameters to these methods. For example, the preceding GetItem returns
the entire item including all its attributes.You can optionally specify a list of attributes to retrieve. In this
case, you use the following GetItem overload that takes in the operation specific configuration object
parameter:

// Configuration object that specifies optional parameters.
GetItemOperationConfig config = new GetItemOperationConfig()
{
 AttributesToGet = new List<string>() { "Id", "Title" },
};
// Pass in the configuration to the GetItem method.
// 1. Table that has only a hash attribute as primary key.
Table.GetItem(Primitive hashAttribute, GetItemOperationConfig config);
// 2. Table that has both a hash and range attribute as a primary key.
Table.GetItem(Primitive hashAttribute, Primitive rangeAttribute, GetItemOpera
tionConfig config);

You can use the configuration object to specify several optional parameters such as request a specific
list of attributes or specify the page size (number of items per page). Each data operation method has its
own configuration class. For example, the GetItemOperationConfig class enables you to provide

API Version 2012-08-10
446

Amazon DynamoDB Developer Guide
Working with Items - .NET Document Model

options for the GetItem operation and the PutItemOperationConfig class enables you to provide
optional parameters for the PutItem operation.

The following sections discuss each of the data operations that are supported by the Table class.

Putting an Item - Table.PutItem Method
The PutItem method uploads the input Document instance to the table. If an item that has a primary
key that is specified in the input Document exists in the table, then the PutItem operation replaces the
entire existing item. The new item will be identical to the Document object that you provided to the
PutItem method. Note that this means that if your original item had any extra attributes, they are no
longer present in the new item. The following are the steps to put a new item into a table using the AWS
SDK for .NET document model.

1. Execute the Table.LoadTable method that provides the table name in which you want to put an
item.

2. Create a Document object that has a list of attribute names and their values.

3. Execute Table.PutItem by providing the Document instance as a parameter.

The following C# code snippet demonstrates the preceding tasks. The example uploads an item to the
ProductCatalog table.

Table table = Table.LoadTable(client, "ProductCatalog");

var book = new Document();
book["Id"] = 101;
book["Title"] = "Book 101 Title";
book["ISBN"] = "11-11-11-11";
book["Authors"] = new List<string> { "Author 1", "Author 2" };
book["InStock"] = new DynamoDBBool(true);
book["QuantityOnHand"] = new DynamoDBNull();

table.PutItem(book);

In the preceding example, the Document instance creates an item that has Number, String, String Set,
Boolean, and Null attributes. (Null is used to indicate that the QuantityOnHand for this product is unknown.)
For Boolean and Null, use the constructor methods DynamoDBBool and DynamoDBNull.

In DynamoDB, the List and Map data types can contain elements composed of other data types. Here is
how to map these data types to the document model API:.

• List — use the DynamoDBList constructor.

• Map — use the Document constructor.

You can modify the preceding example to add a List attribute to the item.To do this, use a DynamoDBList
constructor, as shown in the following code snippet:

Table table = Table.LoadTable(client, "ProductCatalog");

var book = new Document();
book["Id"] = 101;

API Version 2012-08-10
447

Amazon DynamoDB Developer Guide
Working with Items - .NET Document Model

/*other attributes omitted for brevity...*/

var relatedItems = new DynamoDBList();
relatedItems.Add(341);
relatedItems.Add(472);
relatedItems.Add(649);
item.Add("RelatedItems", relatedItems);

table.PutItem(book);

To add a Map attribute to the book, you define another Document. The following code snippet illustrates
how to do this.

Table table = Table.LoadTable(client, "ProductCatalog");

var book = new Document();
book["Id"] = 101;

/*other attributes omitted for brevity...*/

var pictures = new Document();
pictures.Add("FrontView", "http://example.com/products/101_front.jpg");
pictures.Add("RearView", "http://example.com/products/101_rear.jpg");

item.Add("Pictures", pictures);

table.PutItem(book);

These examples are based on the item shown in Case Study: A ProductCatalog Item (p. 98).The document
model lets you create complex nested attributes, such as the ProductReviews attribute shown in the
case study.

Specifying Optional Parameters
You can configure optional parameters for the PutItem operation by adding the
PutItemOperationConfig parameter. For a complete list of optional parameters, see PutItem. The
following C# code snippet puts an item in the ProductCatalog table. It specifies the following optional
parameter:

• The ConditionalExpression parameter to make this a conditional put request.The example creates
an expression that specifies the ISBN attribute must have a specific value that has to be present in the
item that you are replacing.

Table table = Table.LoadTable(client, "ProductCatalog");

var book = new Document();
book["Id"] = 555;
book["Title"] = "Book 555 Title";
book["Price"] = "25.00";
book["ISBN"] = "55-55-55-55";
book["Name"] = "Item 1 updated";
book["Authors"] = new List<string> { "Author x", "Author y" };

API Version 2012-08-10
448

Amazon DynamoDB Developer Guide
Working with Items - .NET Document Model

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

book["InStock"] = new DynamoDBBool(true);
book["QuantityOnHand"] = new DynamoDBNull();

// Create a condition expression for the optional conditional put operation.
Expression expr = new Expression();
expr.ExpressionStatement = "ISBN = :val";
expr.ExpressionAttributeValues[":val"] = "55-55-55-55";

PutItemOperationConfig config = new PutItemOperationConfig()
{
 // Optional parameter.
 ConditionalExpression = expr
};

table.PutItem(book, config);

Getting an Item - Table.GetItem
The GetItem operation retrieves an item as a Document instance.You must provide the primary key of
the item that you want to retrieve as shown in the following C# code snippet:

Table table = Table.LoadTable(client, "ProductCatalog");
Document document = table.GetItem(101); // Primary key 101.

The GetItem operation returns all the attributes of the item and performs an eventually consistent read
(see Data Read and Consistency Considerations (p. 10)) by default.

Specifying Optional Parameters
You can configure additional options for the GetItem operation by adding the GetItemOperationConfig
parameter. For a complete list of optional parameters, see GetItem. The following C# code snippet
retrieves an item from the ProductCatalog table. It specifies the GetItemOperationConfig to provide
the following optional parameters:

• The AttributesToGet parameter to retrieve only the specified attributes.

• The ConsistentRead parameter to request the latest values for all the specified attributes. To learn
more about data consistency, see Data Read and Consistency Considerations (p. 10).

Table table = Table.LoadTable(client, "ProductCatalog");

GetItemOperationConfig config = new GetItemOperationConfig()
{
 AttributesToGet = new List<string>() { "Id", "Title", "Authors", "InStock",
"QuantityOnHand" },
 ConsistentRead = true
};
Document doc = table.GetItem(101, config);

When you retrieve an item using the document model API, you can access individual elements within the
Document object is returned:

API Version 2012-08-10
449

Amazon DynamoDB Developer Guide
Getting an Item - Table.GetItem

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html

int id = doc["Id"].AsInt();
string title = doc["Title"].AsString();
List<string> authors = doc["Authors"].AsListOfString();
bool inStock = doc["InStock"].AsBoolean();
DynamoDBNull quantityOnHand = doc["QuantityOnHand"].AsDynamoDBNull();

For attributes that are of type List or Map, here is how to map these attributes to the document model
API:

• List — use the AsDynamoDBList method.

• Map — use the AsDocument method.

The following code snippet shows how to retrieve a List (RelatedItems) and a Map (Pictures) from the
Document object:

DynamoDBList relatedItems = doc["RelatedItems"].AsDynamoDBList();

Document pictures = doc["Pictures"].AsDocument();

Deleting an Item - Table.DeleteItem
The DeleteItem operation deletes an item from a table.You can either pass the item's primary key as
a parameter or if you have already read an item and have the corresponding Document object, you can
pass it as a parameter to the DeleteItem method as shown in the following C# code snippet.

Table table = Table.LoadTable(client, "ProductCatalog");

// Retrieve a book (a Document instance)
Document document = table.GetItem(111);

// 1) Delete using the Document instance.
 table.DeleteItem(document);

// 2) Delete using the primary key.
int hashKey = 222;
table.DeleteItem(hashKey)

Specifying Optional Parameters
You can configure additional options for the Delete operation by adding the
DeleteItemOperationConfig parameter. For a complete list of optional parameters, see DeleteTable.
The following C# code snippet specifies the two following optional parameters:

• The ConditionalExpression parameter to ensure that the book item being deleted has a specific
value for the ISBN attribute.

• The ReturnValues parameter to request that the Delete method return the item that it deleted.

API Version 2012-08-10
450

Amazon DynamoDB Developer Guide
Deleting an Item - Table.DeleteItem

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteTable.html

Table table = Table.LoadTable(client, "ProductCatalog");
int hashKey = 111; // Primary key.

Expression expr = new Expression();
expr.ExpressionStatement = "ISBN = :val";
expr.ExpressionAttributeValues[":val"] = "11-11-11-11";

// Specify optional parameters for Delete operation.
DeleteItemOperationConfig config = new DeleteItemOperationConfig
{
 ConditionalExpression = expr,
 ReturnValues = ReturnValues.AllOldAttributes // This is the only supported
 value when using the document model.
};

// Delete the book.
Document d = table.DeleteItem(hashKey, config);

Updating an Item - Table.UpdateItem
The UpdateItem operation updates an existing item if it is present. If the item that has the specified
primary key is not found, the UpdateItem operation adds a new item.

You can use the UpdateItem operation to update existing attribute values, add new attributes to the
existing collection, or delete attributes from the existing collection.You provide these updates by creating
a Document instance that describes the updates you wish to perform.

The UpdateItem API uses the following guidelines:

• If the item does not exist, the UpdateItem API adds a new item using the primary key that is specified
in the input.

• If the item exists, the UpdateItem API applies the updates as follows:

• Replaces the existing attribute values with the values in the update.

• If an attribute that you provide in the input does not exist, it adds a new attribute to the item.

• If the input attribute value is null, it deletes the attributes, if it is present.

Note
This mid-level UpdateItem operation does not support the Add action (see UpdateItem)
supported by the underlying API.

Note
The PutItem operation (Putting an Item - Table.PutItem Method (p. 447)) can also can perform
an update. If you call PutItem to upload an item and the primary key exists, the PutItem
operation replaces the entire item. Note that, if there are attributes in the existing item and those
attributes are not specified on the Document that is being put, the PutItem operation deletes
those attributes. However, the UpdateItem API only updates the specified input attributes. Any
other existing attributes of that item will remain unchanged.

The following are the steps to update an item using the AWS SDK for .NET document model.

1. Execute the Table.LoadTable method by providing the name of the table in which you want to
perform the update operation.

2. Create a Document instance by providing all the updates that you wish to perform.
To delete an existing attribute, specify the attribute value as null.

API Version 2012-08-10
451

Amazon DynamoDB Developer Guide
Updating an Item - Table.UpdateItem

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html

3. Call the Table.UpdateItem method and provide the Document instance as an input parameter.
You must provide the primary key either in the Document instance or explicitly as a parameter.

The following C# code snippet demonstrates the preceding tasks. The code sample updates an item in
the Book table. The UpdateItem operation updates the existing Authors multivalued attribute, deletes
the PageCount attribute, and adds a new attribute XYZ. The Document instance includes the primary
key of the book to update.

Table table = Table.LoadTable(client, "ProductCatalog");

var book = new Document();

// Set the attributes that you wish to update.
book["Id"] = 111; // Primary key.
// Replace the authors attribute.
book["Authors"] = new List<string> { "Author x", "Author y" };
// Add a new attribute.
book["XYZ"] = 12345;
// Delete the existing PageCount attribute.
book["PageCount"] = null;

table.Update(book);

Specifying Optional Parameters
You can configure additional options for the UpdateItem operation by adding the
UpdateItemOperationConfig parameter. For a complete list of optional parameters, see UpdateItem.

The following C# code snippet updates a book item price to 25. It specifies the two following optional
parameters:

• The ConditionalExpression parameter that identifies the Price attribute with value 20 that you
expect to be present.

• The ReturnValues parameter to request the UpdateItem operation to return the item that is updated.

Table table = Table.LoadTable(client, "ProductCatalog");
string hashKey = "111";

var book = new Document();
book["Id"] = hashKey;
book["Price"] = 25;

Expression expr = new Expression();
expr.ExpressionStatement = "Price = :val";
expr.ExpressionAttributeValues[":val"] = 20";

UpdateOperationConfig config = new UpdateOperationConfig()
{
 ConditionalExpression = expr,
 ReturnValues = ReturnValues.AllOldAttributes
};

API Version 2012-08-10
452

Amazon DynamoDB Developer Guide
Updating an Item - Table.UpdateItem

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html

Document d1 = table.Update(book, config);

Batch Write - Putting and Deleting Multiple Items
Batch write refers to putting and deleting multiple items in a batch. The operation enables you to put and
delete multiple items from one or more tables in a single API call. The following are the steps to put or
delete multiple items from a table using the AWS SDK for .NET document model API.

1. Create a Table object by executing the Table.LoadTable method by providing the name of the table
in which you want to perform the batch operation.

2. Execute the CreateBatchWrite method on the table instance you created in the preceding step and
create DocumentBatchWrite object.

3. Use DocumentBatchWrite object methods to specify documents you wish to upload or delete.

4. Call the DocumentBatchWrite.Execute method to execute the batch operation.

When using the document model API, you can specify any number of operations in a batch. However,
note that DynamoDB limits the number of operations in a batch and the total size of the batch in a
batch operation. For more information about the specific limits, see BatchWriteItem. If the document
model API detects your batch write request exceeded the number of allowed write requests or the
HTTP payload size of a batch exceeded the limit the API allows, it breaks the batch in to several smaller
batches. Additionally, if a response to a batch write returns unprocessed items, the document model
API will automatically send another batch request with those unprocessed items.

The following C# code snippet demonstrates the preceding steps. The code snippet uses batch write
operation to perform two writes; upload a book item and delete another book item.

Table productCatalog = Table.LoadTable(client, "ProductCatalog");
var batchWrite = productCatalog.CreateBatchWrite();

var book1 = new Document();
book1["Id"] = 902;
book1["Title"] = "My book1 in batch write using .NET document model";
book1["Price"] = 10;
book1["Authors"] = new List<string> { "Author 1", "Author 2", "Author 3" };
book1["InStock"] = new DynamoDBBool(true);
book1["QuantityOnHand"] = 5;

batchWrite.AddDocumentToPut(book1);
// specify delete item using overload that takes PK.
batchWrite.AddKeyToDelete(12345);

batchWrite.Execute();

For a working example, see Example: Batch Operations Using AWS SDK for .NET Document Model
API (p. 460).

You can use the batch write operation to perform put and delete operations on multiple tables. The
following are the steps to put or delete multiple items from multiple table using the AWS SDK for .NET
document model.

1. You create DocumentBatchWrite instance for each table in which you want to put or delete multiple
items as described in the preceding procedure.

API Version 2012-08-10
453

Amazon DynamoDB Developer Guide
Batch Write - Putting and Deleting Multiple Items

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

2. Create an instance of the MultiTableDocumentBatchWrite and add the individual
DocumentBatchWrite objects in it.

3. Execute the MultiTableDocumentBatchWrite.Execute method.

The following C# code snippet demonstrates the preceding steps. The code snippet uses batch write
operation to perform the following write operations:

• Put a new item in the Forum table item

• Put an item in the Thread table and delete an item from the same table.

// 1. Specify item to add in the Forum table.
Table forum = Table.LoadTable(client, "Forum");
var forumBatchWrite = forum.CreateBatchWrite();

var forum1 = new Document();
forum1["Name"] = "Test BatchWrite Forum";
forum1["Threads"] = 0;
forumBatchWrite.AddDocumentToPut(forum1);

// 2a. Specify item to add in the Thread table.
Table thread = Table.LoadTable(client, "Thread");
var threadBatchWrite = thread.CreateBatchWrite();

var thread1 = new Document();
thread1["ForumName"] = "Amazon S3 forum";
thread1["Subject"] = "My sample question";
thread1["Message"] = "Message text";
thread1["KeywordTags"] = new List<string>{ "Amazon S3", "Bucket" };
threadBatchWrite.AddDocumentToPut(thread1);

// 2b. Specify item to delete from the Thread table.
threadBatchWrite.AddKeyToDelete("someForumName", "someSubject");

// 3. Create multi-table batch.
var superBatch = new MultiTableDocumentBatchWrite();
superBatch.AddBatch(forumBatchWrite);
superBatch.AddBatch(threadBatchWrite);

superBatch.Execute();

Example: CRUD Operations Using the AWS SDK
for .NET Document Model
The following C# code example performs the following actions:

• Create a book item in the ProductCatalog table.

• Retrieve the book item.

• Update the book item.The code example shows a normal update that adds new attributes and updates
existing attributes. It also shows a conditional update which updates the book price only if the existing
price value is as specified in the code.

• Delete the book item.

API Version 2012-08-10
454

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Document Model

For step-by-step instructions to test the following sample, see Using the AWS SDK for .NET (p. 56).

using System;

using System.Collections.Generic;

using System.Linq;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DocumentModel;

using Amazon.Runtime;

namespace com.amazonaws.codesamples

{

 class MidlevelItemCRUD

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 private static string tableName = "ProductCatalog";

 // The sample uses the following id PK value to add book item.

 private static int sampleBookId = 555;

 static void Main(string[] args)

 {

 try

 {

 Table productCatalog = Table.LoadTable(client, tableName);

 CreateBookItem(productCatalog);

 RetrieveBook(productCatalog);

 // Couple of sample updates.

 UpdateMultipleAttributes(productCatalog);

 UpdateBookPriceConditionally(productCatalog);

 // Delete.

API Version 2012-08-10
455

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Document Model

 DeleteBook(productCatalog);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 }

 // Creates a sample book item.

 private static void CreateBookItem(Table productCatalog)

 {

 Console.WriteLine("\n*** Executing CreateBookItem() ***");

 var book = new Document();

 book["Id"] = sampleBookId;

 book["Title"] = "Book " + sampleBookId;

 book["Price"] = 19.99;

 book["ISBN"] = "111-1111111111";

 book["Authors"] = new List<string> { "Author 1", "Author 2", "Author
 3" };

 book["PageCount"] = 500;

 book["Dimensions"] = "8.5x11x.5";

 book["InPublication"] = new DynamoDBBool(true);

 book["InStock"] = new DynamoDBBool(false);

 book["QuantityOnHand"] = 0;

 productCatalog.PutItem(book);

 }

API Version 2012-08-10
456

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Document Model

 private static void RetrieveBook(Table productCatalog)

 {

 Console.WriteLine("\n*** Executing RetrieveBook() ***");

 // Optional configuration.

 GetItemOperationConfig config = new GetItemOperationConfig

 {

 AttributesToGet = new List<string> { "Id", "ISBN", "Title",
"Authors", "Price" },

 ConsistentRead = true

 };

 Document document = productCatalog.GetItem(sampleBookId, config);

 Console.WriteLine("RetrieveBook: Printing book retrieved...");

 PrintDocument(document);

 }

 private static void UpdateMultipleAttributes(Table productCatalog)

 {

 Console.WriteLine("\n*** Executing UpdateMultipleAttributes() ***");

 Console.WriteLine("\nUpdating multiple attributes....");

 int hashKey = sampleBookId;

 var book = new Document();

 book["Id"] = hashKey;

 // List of attribute updates.

 // The following replaces the existing authors list.

 book["Authors"] = new List<string> { "Author x", "Author y" };

 book["newAttribute"] = "New Value";

 book["ISBN"] = null; // Remove it.

API Version 2012-08-10
457

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Document Model

 // Optional parameters.

 UpdateItemOperationConfig config = new UpdateItemOperationConfig

 {

 // Get updated item in response.

 ReturnValues = ReturnValues.AllNewAttributes

 };

 Document updatedBook = productCatalog.UpdateItem(book, config);

 Console.WriteLine("UpdateMultipleAttributes: Printing item after
updates ...");

 PrintDocument(updatedBook);

 }

 private static void UpdateBookPriceConditionally(Table productCatalog)

 {

 Console.WriteLine("\n*** Executing UpdateBookPriceConditionally()
***");

 int hashKey = sampleBookId;

 var book = new Document();

 book["Id"] = hashKey;

 book["Price"] = 29.99;

 // For conditional price update, creating a condition expression.

 Expression expr = new Expression();

 expr.ExpressionStatement = "Price = :val";

 expr.ExpressionAttributeValues[":val"] = 19.00;

API Version 2012-08-10
458

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Document Model

 // Optional parameters.

 UpdateItemOperationConfig config = new UpdateItemOperationConfig

 {

 ConditionalExpression = expr,

 ReturnValues = ReturnValues.AllNewAttributes

 };

 Document updatedBook = productCatalog.UpdateItem(book, config);

 Console.WriteLine("UpdateBookPriceConditionally: Printing item whose
 price was conditionally updated");

 PrintDocument(updatedBook);

 }

 private static void DeleteBook(Table productCatalog)

 {

 Console.WriteLine("\n*** Executing DeleteBook() ***");

 // Optional configuration.

 DeleteItemOperationConfig config = new DeleteItemOperationConfig

 {

 // Return the deleted item.

 ReturnValues = ReturnValues.AllOldAttributes

 };

 Document document = productCatalog.DeleteItem(sampleBookId, config);

 Console.WriteLine("DeleteBook: Printing deleted just deleted...");

 PrintDocument(document);

 }

 private static void PrintDocument(Document updatedDocument)

 {

 foreach (var attribute in updatedDocument.GetAttributeNames())

API Version 2012-08-10
459

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Document Model

 {

 string stringValue = null;

 var value = updatedDocument[attribute];

 if (value is Primitive)

 stringValue = value.AsPrimitive().Value.ToString();

 else if (value is PrimitiveList)

 stringValue = string.Join(",", (from primitive

 in value.AsPrimitiveL
ist().Entries

 select primitive.Value).ToAr
ray());

 Console.WriteLine("{0} - {1}", attribute, stringValue);

 }

 }

 }

}

Example: Batch Operations Using AWS SDK for
.NET Document Model API
Topics

• Example: Batch Write Using AWS SDK for .NET Document Model (p. 460)

Example: Batch Write Using AWS SDK for .NET Document
Model
The following C# code example illustrates single table and multi-table batch write operations.The example
performs the following tasks:

• To illustrate a single table batch write, it adds two items to the ProductCatalog table.

• To illustrate a multi-table batch write, it adds an item to both the Forum and Thread tables and deletes
and item from the Thread table.

If you followed the steps in Creating Tables and Loading Sample Data (p. 14), you already have the
ProductCatalog, Forum and Thread tables created.You can also create these sample tables
programmatically. For more information, see Creating Example Tables and Uploading Data Using the
AWS SDK for .NET (p. 695). For step-by-step instructions to test the following sample, see Using the AWS
SDK for .NET (p. 56).

API Version 2012-08-10
460

Amazon DynamoDB Developer Guide
Example: Batch Operations-.NET Document Model API

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DocumentModel;

using Amazon.Runtime;

namespace com.amazonaws.codesamples

{

 class MidLevelBatchWriteItem

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 SingleTableBatchWrite();

 MultiTableBatchWrite();

 }

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 private static void SingleTableBatchWrite()

 {

API Version 2012-08-10
461

Amazon DynamoDB Developer Guide
Example: Batch Operations-.NET Document Model API

 Table productCatalog = Table.LoadTable(client, "ProductCatalog");

 var batchWrite = productCatalog.CreateBatchWrite();

 var book1 = new Document();

 book1["Id"] = 902;

 book1["Title"] = "My book1 in batch write using .NET helper classes";

 book1["ISBN"] = "902-11-11-1111";

 book1["Price"] = 10;

 book1["ProductCategory"] = "Book";

 book1["Authors"] = new List<string> { "Author 1", "Author 2", "Author
 3" };

 book1["Dimensions"] = "8.5x11x.5";

 book1["InStock"] = new DynamoDBBool(true);

 book1["QuantityOnHand"] = new DynamoDBNull(); //Quantity is unknown
 at this time

 batchWrite.AddDocumentToPut(book1);

 // Specify delete item using overload that takes PK.

 batchWrite.AddKeyToDelete(12345);

 Console.WriteLine("Performing batch write in SingleTableBatch
Write()");

 batchWrite.Execute();

 }

 private static void MultiTableBatchWrite()

 {

 // 1. Specify item to add in the Forum table.

 Table forum = Table.LoadTable(client, "Forum");

 var forumBatchWrite = forum.CreateBatchWrite();

API Version 2012-08-10
462

Amazon DynamoDB Developer Guide
Example: Batch Operations-.NET Document Model API

 var forum1 = new Document();

 forum1["Name"] = "Test BatchWrite Forum";

 forum1["Threads"] = 0;

 forumBatchWrite.AddDocumentToPut(forum1);

 // 2a. Specify item to add in the Thread table.

 Table thread = Table.LoadTable(client, "Thread");

 var threadBatchWrite = thread.CreateBatchWrite();

 var thread1 = new Document();

 thread1["ForumName"] = "S3 forum";

 thread1["Subject"] = "My sample question";

 thread1["Message"] = "Message text";

 thread1["KeywordTags"] = new List<string> { "S3", "Bucket" };

 threadBatchWrite.AddDocumentToPut(thread1);

 // 2b. Specify item to delete from the Thread table.

 threadBatchWrite.AddKeyToDelete("someForumName", "someSubject");

 // 3. Create multi-table batch.

 var superBatch = new MultiTableDocumentBatchWrite();

 superBatch.AddBatch(forumBatchWrite);

 superBatch.AddBatch(threadBatchWrite);

 Console.WriteLine("Performing batch write in MultiTableBatch
Write()");

 superBatch.Execute();

 }

 }

API Version 2012-08-10
463

Amazon DynamoDB Developer Guide
Example: Batch Operations-.NET Document Model API

}

Querying Tables in DynamoDB Using the AWS
SDK for .NET Document Model
Topics

• Table.Query Method in the AWS SDK for .NET (p. 464)

• Table.Scan Method in the AWS SDK for .NET (p. 471)

Table.Query Method in the AWS SDK for .NET
The Query method enables you to query your tables.You can only query the tables that have a primary
key that is composed of both a hash and range attribute. If your table's primary key is made of only a
hash attribute, then the Query operation is not supported. By default, the API internally performs queries
that are eventually consistent. To learn about the consistency model, see Data Read and Consistency
Considerations (p. 10).

The Query method provides two overloads.The minimum required parameters to the Query method are
a hash key value and a range filter.You can use the following overload to provide these minimum required
parameters.

Query(Primitive hashKey, RangeFilter Filter);

For example, the following C# code snippet queries for all forum replies that were posted in the last 15
days.

string tableName = "Reply";
Table table = Table.LoadTable(client, tableName);

DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);
RangeFilter filter = new RangeFilter(QueryOperator.GreaterThan, twoWeeksAgoDate);
Search search = table.Query("DynamoDB Thread 2", filter);

This creates a Search object.You can now call the Search.GetNextSet method iteratively to retrieve
one page of results at a time as shown in the following C# code snippet. The code prints the attribute
values for each item that the query returns.

List<Document> documentSet = new List<Document>();
do
{
 documentSet = search.GetNextSet();
 foreach (var document in documentSet)
 PrintDocument(document);
} while (!search.IsDone);

 private static void PrintDocument(Document document)
{

API Version 2012-08-10
464

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

 Console.WriteLine();
 foreach (var attribute in document.GetAttributeNames())
 {
 string stringValue = null;
 var value = document[attribute];
 if (value is Primitive)
 stringValue = value.AsPrimitive().Value;
 else if (value is PrimitiveList)
 stringValue = string.Join(",", (from primitive
 in value.AsPrimitiveList().Entries
 select primitive.Value).ToArray());
 Console.WriteLine("{0} - {1}", attribute, stringValue);
 }
}

Specifying Optional Parameters

You can also specify optional parameters for Query, such as specifying a list of attributes to retrieve,
strongly consistent reads, page size, and the number of items returned per page. For a complete list of
parameters, see Query. To specify optional parameters, you must use the following overload in which
you provide the QueryOperationConfig object.

Query(QueryOperationConfig config);

Assume that you want to execute the query in the preceding example (retrieve forum replies posted in
the last 15 days). However, assume that you want to provide optional query parameters to retrieve only
specific attributes and also request a strongly consistent read. The following C# code snippet constructs
the request using the QueryOperationConfig object.

Table table = Table.LoadTable(client, "Reply");
DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);
QueryOperationConfig config = new QueryOperationConfig()
{
 HashKey = "DynamoDB Thread 2",
 AttributesToGet = new List<string> { "Subject", "ReplyDateTime",
 "PostedBy" },
 ConsistentRead = true,
 Filter = new RangeFilter(QueryOperator.GreaterThan, twoWeeksAgoDate)
};

Search search = table.Query(config);

Example: Query using the Table.Query method

The following C# code example uses the Table.Query method to execute the following sample queries:

• The following queries are executed against the Reply table.

• Find forum thread replies that were posted in the last 15 days.
This query is executed twice. In the first Table.Query call, the example provides only the required
query parameters. In the second Table.Query call, you provide optional query parameters to request
a strongly consistent read and a list of attributes to retrieve.

• Find forum thread replies posted during a period of time.
This query uses the Between query operator to find replies posted in between two dates.

API Version 2012-08-10
465

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

• Get a product from the ProductCatalog table.

Because the ProductCatalog table has a primary key that is only a hash attribute, you can only get
items; you cannot query the table. The example retrieves a specific product item using the item Id.

using System;

using System.Collections.Generic;

using System.Linq;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DocumentModel;

using Amazon.Runtime;

using Amazon.SecurityToken;

namespace com.amazonaws.codesamples

{

 class MidLevelQueryAndScan

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 // Query examples.

 Table replyTable = Table.LoadTable(client, "Reply");

 string forumName = "Amazon DynamoDB";

 string threadSubject = "DynamoDB Thread 2";

 FindRepliesInLast15Days(replyTable, forumName, threadSubject);

 FindRepliesInLast15DaysWithConfig(replyTable, forumName,
threadSubject);

 FindRepliesPostedWithinTimePeriod(replyTable, forumName,

API Version 2012-08-10
466

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

threadSubject);

 // Get Example.

 Table productCatalogTable = Table.LoadTable(client, "Product
Catalog");

 int productId = 101;

 GetProduct(productCatalogTable, productId);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 }

 private static void GetProduct(Table tableName, int productId)

 {

 Console.WriteLine("*** Executing GetProduct() ***");

 Document productDocument = tableName.GetItem(productId);

 if (productDocument != null) {

 PrintDocument(productDocument);

 } else {

 Console.WriteLine("Error: product " + productId + " does not
exist");

 }

 }

 private static void FindRepliesInLast15Days(Table table, string forum
Name, string threadSubject)

API Version 2012-08-10
467

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

 {

 string hashAttribute = forumName + "#" + threadSubject;

 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);

 QueryFilter filter = new QueryFilter("Id", QueryOperator.Equal,
hashAttribute);

 filter.AddCondition("ReplyDateTime", QueryOperator.GreaterThan,
twoWeeksAgoDate);

 // Use Query overloads that takes the minimum required query para
meters.

 Search search = table.Query(filter);

 List<Document> documentSet = new List<Document>();

 do

 {

 documentSet = search.GetNextSet();

 Console.WriteLine("\nFindRepliesInLast15Days: printing
............");

 foreach (var document in documentSet)

 PrintDocument(document);

 } while (!search.IsDone);

 }

 private static void FindRepliesPostedWithinTimePeriod(Table table,
string forumName, string threadSubject)

 {

 DateTime startDate = DateTime.UtcNow.Subtract(new TimeSpan(21, 0,
0, 0));

 DateTime endDate = DateTime.UtcNow.Subtract(new TimeSpan(1, 0, 0,
0));

API Version 2012-08-10
468

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

 QueryFilter filter = new QueryFilter("Id", QueryOperator.Equal,
forumName + "#" + threadSubject);

 filter.AddCondition("ReplyDateTime", QueryOperator.Between,
startDate, endDate);

 QueryOperationConfig config = new QueryOperationConfig()

 {

 Limit = 2, // 2 items/page.

 Select = SelectValues.SpecificAttributes,

 AttributesToGet = new List<string> { "Message",

 "ReplyDateTime",

 "PostedBy" },

 ConsistentRead = true,

 Filter = filter

 };

 Search search = table.Query(config);

 List<Document> documentList = new List<Document>();

 do

 {

 documentList = search.GetNextSet();

 Console.WriteLine("\nFindRepliesPostedWithinTimePeriod: printing
 replies posted within dates: {0} and {1}", startDate, endDate);

 foreach (var document in documentList)

 {

 PrintDocument(document);

 }

 } while (!search.IsDone);

API Version 2012-08-10
469

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

 }

 private static void FindRepliesInLast15DaysWithConfig(Table table,
string forumName, string threadName)

 {

 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);

 QueryFilter filter = new QueryFilter("Id", QueryOperator.Equal,
forumName + "#" + threadName);

 filter.AddCondition("ReplyDateTime", QueryOperator.GreaterThan,
twoWeeksAgoDate);

 // You are specifying optional parameters so use QueryOperationCon
fig.

 QueryOperationConfig config = new QueryOperationConfig()

 {

 Filter = filter,

 // Optional parameters.

 Select = SelectValues.SpecificAttributes,

 AttributesToGet = new List<string> { "Message", "ReplyDateTime",

 "PostedBy" },

 ConsistentRead = true

 };

 Search search = table.Query(config);

 List<Document> documentSet = new List<Document>();

 do

 {

 documentSet = search.GetNextSet();

 Console.WriteLine("\nFindRepliesInLast15DaysWithConfig: printing
");

 foreach (var document in documentSet)

API Version 2012-08-10
470

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

 PrintDocument(document);

 } while (!search.IsDone);

 }

 private static void PrintDocument(Document document)

 {

 // count++;

 Console.WriteLine();

 foreach (var attribute in document.GetAttributeNames())

 {

 string stringValue = null;

 var value = document[attribute];

 if (value is Primitive)

 stringValue = value.AsPrimitive().Value.ToString();

 else if (value is PrimitiveList)

 stringValue = string.Join(",", (from primitive

 in value.AsPrimitiveL
ist().Entries

 select primit
ive.Value).ToArray());

 Console.WriteLine("{0} - {1}", attribute, stringValue);

 }

 }

 }

}

Table.Scan Method in the AWS SDK for .NET
The Scan method performs a full table scan. It provides two overloads. The only parameter required by
the Scan method is the scan filter which you can provide using the following overload.

Scan(ScanFilter filter);

API Version 2012-08-10
471

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

For example, assume that you maintain a table of forum threads tracking information such as thread
subject (primary), the related message, forum Id to which the thread belongs, Tags, a multivalued attribute
for keywords, and other information. Assume that the subject is the primary key.

Thread(Subject, Message, ForumId, Tags, LastPostedDateTime,)

This is a simplified version of forums and threads that you see on AWS forums (see Discussion Forums).
The following C# code snippet queries all threads in a specific forum (ForumId = 101) that are tagged
"rangekey". Because the ForumId is not a primary key, the example scans the table. The ScanFilter
includes two conditions. Query returns all the threads that satisfy both of the conditions.

string tableName = "Thread";
Table ThreadTable = Table.LoadTable(client, tableName);

ScanFilter scanFilter = new ScanFilter();
scanFilter.AddCondition("ForumId", ScanOperator.Equal, 101);
scanFilter.AddCondition("Tags", ScanOperator.Contains, "rangekey");

Search search = ThreadTable.Scan(scanFilter);

Specifying Optional Parameters

You can also specify optional parameters to Scan, such as a specific list of attributes to retrieve or whether
to perform a strongly consistent read. To specify optional parameters, you must create a
ScanOperationConfig object that includes both the required and optional parameters and use the
following overload.

Scan(ScanOperationConfig config);

The following C# code snippet executes the same preceding query (find forum threads in which the
ForumId is 101 and the Tag attribute contains the "rangekey" keyword). However, this time assume that
you want to add an optional parameter to retrieve only a specific attribute list. In this case, you must create
a ScanOperationConfig object by providing all the parameters, required and optional as shown in the
following code example.

string tableName = "Thread";
Table ThreadTable = Table.LoadTable(client, tableName);

ScanFilter scanFilter = new ScanFilter();
scanFilter.AddCondition("ForumId", ScanOperator.Equal, forumId);
scanFilter.AddCondition("Tags", ScanOperator.Contains, "rangekey");

ScanOperationConfig config = new ScanOperationConfig()
{
 AttributesToGet = new List<string> { "Subject", "Message" } ,
 Filter = scanFilter
};

Search search = ThreadTable.Scan(config);

API Version 2012-08-10
472

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

https://forums.aws.amazon.com/

Example: Scan using the Table.Scan method

The Scan operation performs a full table scan making it a potentially expensive operation.You should
use queries instead. However, there are times when you might need to execute a scan against a table.
For example, you might have a data entry error in the product pricing and you must scan the table as
shown in the following C# code example. The example scans the ProductCatalog table to find products
for which the price value is less than 0.The example illustrates the use of the two Table.Scan overloads.

• Table.Scan that takes the ScanFilter object as a parameter.
You can pass the ScanFilter parameter when passing in only the required parameters.

• Table.Scan that takes the ScanOperationConfig object as a parameter.
You must use the ScanOperationConfig parameter if you want to pass any optional parameters to
the Scan method.

using System;

using System.Collections.Generic;

using System.Linq;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DocumentModel;

namespace com.amazonaws.codesamples

{

 class MidLevelScanOnly

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 Table productCatalogTable = Table.LoadTable(client, "ProductCata
log");

 // Scan example.

 FindProductsWithNegativePrice(productCatalogTable);

 FindProductsWithNegativePriceWithConfig(productCatalogTable);

 Console.WriteLine("To continue, press Enter");

API Version 2012-08-10
473

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

 Console.ReadLine();

 }

 private static void FindProductsWithNegativePrice(Table productCatalogT
able)

 {

 // Assume there is a price error. So we scan to find items priced
< 0.

 ScanFilter scanFilter = new ScanFilter();

 scanFilter.AddCondition("Price", ScanOperator.LessThan, 0);

 Search search = productCatalogTable.Scan(scanFilter);

 List<Document> documentList = new List<Document>();

 do

 {

 documentList = search.GetNextSet();

 Console.WriteLine("\nFindProductsWithNegativePrice: printing
............");

 foreach (var document in documentList)

 PrintDocument(document);

 } while (!search.IsDone);

 }

 private static void FindProductsWithNegativePriceWithConfig(Table pro
ductCatalogTable)

 {

 // Assume there is a price error. So we scan to find items priced
< 0.

 ScanFilter scanFilter = new ScanFilter();

 scanFilter.AddCondition("Price", ScanOperator.LessThan, 0);

API Version 2012-08-10
474

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

 ScanOperationConfig config = new ScanOperationConfig()

 {

 Filter = scanFilter,

 Select = SelectValues.SpecificAttributes,

 AttributesToGet = new List<string> { "Title", "Id" }

 };

 Search search = productCatalogTable.Scan(config);

 List<Document> documentList = new List<Document>();

 do

 {

 documentList = search.GetNextSet();

 Console.WriteLine("\nFindProductsWithNegativePriceWithConfig:
printing");

 foreach (var document in documentList)

 PrintDocument(document);

 } while (!search.IsDone);

 }

 private static void PrintDocument(Document document)

 {

 // count++;

 Console.WriteLine();

 foreach (var attribute in document.GetAttributeNames())

 {

 string stringValue = null;

 var value = document[attribute];

 if (value is Primitive)

API Version 2012-08-10
475

Amazon DynamoDB Developer Guide
Querying Tables - .NET Document Model

 stringValue = value.AsPrimitive().Value.ToString();

 else if (value is PrimitiveList)

 stringValue = string.Join(",", (from primitive

 in value.AsPrimitiveL
ist().Entries

 select primitive.Value).ToAr
ray());

 Console.WriteLine("{0} - {1}", attribute, stringValue);

 }

 }

 }

}

.NET: Object Persistence Model
Topics

• DynamoDB Attributes (p. 478)

• DynamoDBContext Class (p. 480)

• Supported Data Types (p. 485)

• Optimistic Locking Using Version Number with DynamoDB Using the AWS SDK for .NET Object
Persistence Model (p. 486)

• Mapping Arbitrary Data with DynamoDB Using the AWS SDK for .NET Object Persistence Model (p.488)

• Batch Operations Using AWS SDK for .NET Object Persistence Model (p. 492)

• Example: CRUD Operations Using the AWS SDK for .NET Object Persistence Model (p. 496)

• Example: Batch Write Operation Using the AWS SDK for .NET Object Persistence Model (p. 499)

• Example: Query and Scan in DynamoDB Using the AWS SDK for .NET Object Persistence
Model (p. 505)

The AWS SDK for .NET provides an object persistence model that enables you to map your client-side
classes to the DynamoDB tables. Each object instance then maps to an item in the corresponding tables.
To save your client-side objects to the tables the object persistence model provides the DynamoDBContext
class, an entry point to DynamoDB.This class provides you a connection to DynamoDB and enables you
to access tables, perform various CRUD operations, and execute queries.

The object persistence model provides a set of attributes to map client-side classes to tables, and
properties/fields to table attributes.

Note
The object persistence model does not provide an API to create, update, or delete tables. It
provides only data operations.You can use only the AWS SDK for .NET low-level API to create,
update, and delete tables. For more information, see Working with Tables Using the AWS SDK
for .NET Low-Level API (p. 79).

API Version 2012-08-10
476

Amazon DynamoDB Developer Guide
.NET: Object Persistence Model

To show you how the object persistence model works, let's walk through an example. We'll start with the
ProductCatalog table. It has Id as the primary key.

ProductCatalog(Id, ...)

Suppose you have a Book class with Title, ISBN, and Authors properties.You can map the Book class
to the ProductCatalog table by adding the attributes defined by the object persistence model, as shown
in the following C# code snippet.

[DynamoDBTable("ProductCatalog")]
 public class Book
 {
 [DynamoDBHashKey]
 public int Id { get; set; }

 public string Title { get; set; }
 public int ISBN { get; set; }

 [DynamoDBProperty("Authors")]
 public List<string> BookAuthors { get; set; }

 [DynamoDBIgnore]
 public string CoverPage { get; set; }
 }

In the preceding example, the DynamoDBTable attribute maps the Book class to the ProductCatalog
table.

The object persistence model supports both the explicit and default mapping between class properties
and table attributes.

• Explicit mapping—To map a property to a primary key, you must use the DynamoDBHashKey and
DynamoDBRangeKey object persistence model attributes. Additionally, for the non-primary key attributes,
if a property name in your class and the corresponding table attribute to which you want to map it are
not the same, then you must define the mapping by explicitly adding the DynamoDBProperty attribute.

In the preceding example, Id property maps to the primary key with the same name and the
BookAuthors property maps to the Authors attribute in the ProductCatalog table.

• Default mapping—By default, the object persistence model maps the class properties to the attributes
with the same name in the table.

In the preceding example, the properties Title and ISBN map to the attributes with the same name
in the ProductCatalog table.

You don't have to map every single class property.You identify these properties by adding the
DynamoDBIgnore attribute. When you save a Book instance to the table, the DynamoDBContext does
not include the CoverPage property. It also does not return this property when you retrieve the book
instance.

You can map properties of .NET primitive types such as int and string.You can also map any arbitrary
data types as long as you provide an appropriate converter to map the arbitrary data to one of the
DynamoDB types. To learn about mapping arbitrary types, see Mapping Arbitrary Data with DynamoDB
Using the AWS SDK for .NET Object Persistence Model (p. 488).

API Version 2012-08-10
477

Amazon DynamoDB Developer Guide
.NET: Object Persistence Model

The object persistence model supports optimistic locking. During an update operation this ensures you
have the latest copy of the item you are about to update. For more information, see Optimistic Locking
Using Version Number with DynamoDB Using the AWS SDK for .NET Object Persistence Model (p. 486).

DynamoDB Attributes
The following table lists the attributes the object persistence model offers so you can map your classes
and properties to DynamoDB tables and attributes.

Note
In the following table, only DynamoDBTable and DynamoDBHashKey are required tags.

DescriptionDeclarative Tag (attrib-
ute)

Maps a class property to the hash key attribute of a global secondary index.
Use this attribute if you need to Query a global secondary index.

DynamoDBGlobalSec-
ondaryIndex-
HashKey

Maps a class property to the range key attribute of a global secondary index.
Use this attribute if you need to Query a global secondary index and want to
refine your results using the index range key.

DynamoDBGlobalSec-
ondaryIn-
dexRangeKey

Maps a class property to the hash attribute of the table's primary key. The
primary key attributes cannot be a collection type.

The following C# code examples maps the Book class to the ProductCatalog
table, and the Id property to the table's primary key hash attribute.

[DynamoDBTable("ProductCatalog")]
 public class Book {

 [DynamoDBHashKey]
 public int Id { get; set; }

 // Additional properties go here.
}

DynamoDBHashKey

Indicates that the associated property should be ignored. If you don't want to
save any of your class properties you can add this attribute to instruct DynamoD-
BContext not to include this property when saving objects to the table.

DynamoDBIgnore

Maps a class property to the range key attribute of a local secondary index.
Use this attribute if you need to Query a local secondary index and want to
refine your results using the index range key.

DynamoDBLocalSec-
ondaryIn-
dexRangeKey

Maps a class property to a table attribute. If the class property maps to the
same name table attribute, then you don't need to specify this attribute. How-
ever, if the names are not the same, you can use this tag to provide the map-
ping. In the following C# statement the DynamoDBProperty maps the
BookAuthors property to the Authors attribute in the table.

[DynamoDBProperty("Authors")]
public List<string> BookAuthors { get; set; }

DynamoDBContext uses this mapping information to create the Authors attrib-
ute when saving object data to the corresponding table.

DynamoDBProperty

API Version 2012-08-10
478

Amazon DynamoDB Developer Guide
DynamoDB Attributes

DescriptionDeclarative Tag (attrib-
ute)

Specifies an alternative name for a class property. This is useful if you are
writing a custom converter for mapping arbitrary data to a DynamoDB table
where the name of a class property is different from a table attribute.

DynamoDBRenamable

Maps a class property to the range attribute of the table's primary key. If the
table's primary key is made of both the hash and range attributes, you must
specify both the DynamoDBHashKey and DynamoDBRangeKey attributes in
your class mapping.

For example, the sample table Reply has a primary key made of the Id hash
attribute and Replenishment range attribute. The following C# code example
maps the Reply class to the Reply table. The class definition also indicates
that two of its properties map to the primary key.

For more information about sample tables, see Example Tables and
Data (p. 681).

[DynamoDBTable("Reply")]
public class Reply {
 [DynamoDBHashKey]
 public int ThreadId { get; set; }
 [DynamoDBRangeKey]
 public string Replenishment { get; set; }
 // Additional properties go here.
}

DynamoDBRangeKey

API Version 2012-08-10
479

Amazon DynamoDB Developer Guide
DynamoDB Attributes

DescriptionDeclarative Tag (attrib-
ute)

Identifies the target table in DynamoDB to which the class maps. For example,
the following C# code example maps the Developer class to the People table
in DynamoDB.

[DynamoDBTable("People")]
public class Developer { ...}

This attribute can be inherited or overridden.

• The DynamoDBTable attribute can be inherited. In the preceding example,
if you add a new class, Lead, that inherits from the Developer class, it also
maps to the People table. Both the Developer and Lead objects are stored
in the People table.

• The DynamoDBTable attribute can also be overridden. In the following C#
code example, the Manager class inherits from the Developer class,
however the explicit addition of the DynamoDBTable attribute maps the
class to another table (Managers).

[DynamoDBTable("Managers")]
public class Manager : Developer { ...}

You can add the optional parameter, LowerCamelCaseProperties, to re-
quest DynamoDB to lower case the first letter of the property name when
storing the objects to a table as shown in the following C# snippet.

[DynamoDBTable("People", LowerCamelCaseProperties=true)]
public class Developer {
 string DeveloperName;
 ...}

When saving instances of the Developer class, DynamoDBContext saves
the DeveloperName property as the developerName.

DynamoDBTable

Identifies a class property for storing the item version number.To more inform-
ation about versioning, see Optimistic Locking Using Version Number with
DynamoDB Using the AWS SDK for .NET Object Persistence Model (p. 486).

DynamoDBVersion

DynamoDBContext Class
The DynamoDBContext class is the entry point to the DynamoDB database. It provides a connection to
DynamoDB and enables you to access your data in various tables, perform various CRUD operations,
and execute queries. The DynamoDBContext class provides the following methods:

API Version 2012-08-10
480

Amazon DynamoDB Developer Guide
DynamoDBContext Class

DescriptionMethod

Creates a MultiTableBatchGet object, composed of multiple individual BatchGet
objects. Each of these BatchGet objects can be used for retrieving items from a single
DynamoDB table.

To retrieve the items from the table(s), use the ExecuteBatchGet method, passing
the MultiTableBatchGet object as a parameter.

CreateMul-
tiTable
BatchGet

Creates a MultiTableBatchWrite object, composed of multiple individual Batch-
Write objects. Each of these BatchWrite objects can be used for writing or deleting
items in a single DynamoDB table.

To write to the table(s), use the ExecuteBatchWrite method, passing the MultiT-
ableBatchWrite object as a parameter.

CreateMul-
tiTable
BatchWrite

Creates a BatchGet object that you can use to retrieve multiple items from a table. For
more information, see Batch Get: Getting Multiple Items (p. 494).

Create
BatchGet

Creates a BatchWrite object that you can use to put multiple items into a table, or to
delete multiple items from a table. For more information, see Batch Write: Putting and
Deleting Multiple Items (p. 492).

Create
BatchWrite

Deletes an item from the table. The method requires the primary key of the item you
want to delete.You can provide either the primary key value or a client-side object
containing a primary key value as a parameter to this method.

• If you specify a client-side object as a parameter and you have enabled optimistic
locking, the delete succeeds only if the client-side and the server-side versions of the
object match.

• If you specify only the primary key value as a parameter, the delete succeeds regard-
less of whether you have enabled optimistic locking or not.

Note
To perform this operation in the background, use the DeleteAsync method
instead.

Delete

Disposes of all managed and unmanaged resources.Dispose

Reads data from one or more tables, processing all of the BatchGet objects in a Mul-
tiTableBatchGet.

Note
To perform this operation in the background, use the ExecuteBatchGetAsync
method instead.

Execute
BatchGet

Writes or deletes data in one or more tables, processing all of the BatchWrite objects
in a MultiTableBatchWrite.

Note
To perform this operation in the background, use the ExecuteBatchWriteA-
sync method instead.

Execute
BatchWrite

API Version 2012-08-10
481

Amazon DynamoDB Developer Guide
DynamoDBContext Class

DescriptionMethod

Given an instance of a Document, the FromDocument method returns an instance of
a client-side class.

This is helpful if you want to use the document model classes along with the object
persistence model to perform any data operations. For more information about the
document model classes provided by the AWS SDK for .NET, see .NET: Document
Model (p. 445).

Suppose you have a Document object named doc, containing a representation of a
Forum item. (To see how to construct this object, see the description for the ToDocument
method below.) You can use FromDocument to retrieve the Forum item from the Doc-
ument as shown in the following C# code snippet.

forum101 = context.FromDocument<Forum>(101);

Note
If your Document object implements the IEnumerable interface, you can use
the FromDocuments method instead. This will allow you to iterate over all of
the class instances in the Document.

FromDocu-
ment

Executes a Query operation, with the query parameters defined in a QueryOperation-
Config object.

Note
To perform this operation in the background, use the FromQueryAsync
method instead.

FromQuery

Executes a Scan operation, with the scan parameters defined in a ScanOperation-
Config object.

Note
To perform this operation in the background, use the FromScanAsync method
instead.

FromScan

Retrieves the target table for the specified type.This is useful if you are writing a custom
converter for mapping arbitrary data to a DynamoDB table and need to determine which
table is associated with a custom data type.

GetTarget
Table

Retrieves an item from a table. The method requires only the primary key of the item
you want to retrieve.

By default, DynamoDB returns the item with values that are eventually consistent. For
information on the eventual consistency model, see Data Read and Consistency Con-
siderations (p. 10).

Note
To perform this operation in the background, use the LoadAsync method in-
stead.

Load

API Version 2012-08-10
482

Amazon DynamoDB Developer Guide
DynamoDBContext Class

DescriptionMethod

Queries a table based on query parameters you provide.

You can query a table only if its primary key is composed of both the hash and the range
attributes.When querying, you must specify a hash attribute and a condition that applies
to the range attribute.

Suppose you have a client-side Reply class mapped to the Reply table in DynamoDB.
The following C# code snippet queries the Reply table to find forum thread replies
posted in the past 15 days. The Reply table has a primary key that has the Id hash at-
tribute and the ReplyDateTime range attribute. For more information about the Reply
table, see Example Tables and Data (p. 681).

DynamoDBContext context = new DynamoDBContext(client);

string replyId = "DynamoDB#DynamoDB Thread 1"; // Hash value.
DateTime twoWeeksAgoDate = DateTime.UtcNow.Subtract(new
TimeSpan(14, 0, 0, 0)); // Date to compare.
IEnumerable<Reply> latestReplies = context.Query<Reply>(replyId,
QueryOperator.GreaterThan, twoWeeksAgoDate);

This returns a collection of Reply objects.

The Query method returns a "lazy-loaded" IEnumerable collection. It initially returns
only one page of results, and then makes a service call for the next page if needed. To
obtain all the matching items, you only need to iterate over the IEnumerable.

If your table's primary key consists of only a hash attribute, then you cannot use the
Query method. Instead, you can use the Load method and provide the hash attribute
to retrieve the item.

Note
To perform this operation in the background, use the QueryAsync method
instead.

Query

Saves the specified object to the table. If the primary key specified in the input object
does not exist in the table, the method adds a new item to the table. If primary key exists,
the method updates the existing item.

If you have optimistic locking configured, the update succeeds only if the client and the
server side versions of the item match. For more information, see Optimistic Locking
Using Version Number with DynamoDB Using the AWS SDK for .NET Object Persistence
Model (p. 486).

Note
To perform this operation in the background, use the SaveAsync method in-
stead.

Save

API Version 2012-08-10
483

Amazon DynamoDB Developer Guide
DynamoDBContext Class

DescriptionMethod

Performs an entire table scan.

You can filter scan result by specifying a scan condition.The condition can be evaluated
on any attributes in the table. Suppose you have a client-side class Book mapped to
the ProductCatalog table in DynamoDB. The following C# snippet scans the table and
returns only the book items priced less than 0.

IEnumerable<Book> itemsWithWrongPrice = context.Scan<Book>(
 new ScanCondition("Price", ScanOperat
or.LessThan, price),
 new ScanCondition("ProductCategory", ScanOper
ator.Equal, "Book")
);

The Scan method returns a "lazy-loaded" IEnumerable collection. It initially returns only
one page of results, and then makes a service call for the next page if needed.To obtain
all the matching items, you only need to iterate over the IEnumerable.

For performance reasons you should query your tables and avoid a table scan.

Note
To perform this operation in the background, use the ScanAsync method in-
stead.

Scan

Returns an instance of the Document document model class from your class instance.

This is helpful if you want to use the document model classes along with the object
persistence model to perform any data operations. For more information about the
document model classes provided by the AWS SDK for .NET, see .NET: Document
Model (p. 445).

Suppose you have a client-side class mapped to the sample Forum table.You can then
use a DynamoDBContext to get an item, as a Document object, from the Forum table
as shown in the following C# code snippet.

DynamoDBContext context = new DynamoDBContext(client);

Forum forum101 = context.Load<Forum>(101); // Retrieve a forum by
 primary key.
Document doc = context.ToDocument<Forum>(forum101);

ToDocument

Specifying Optional Parameters for DynamoDBContext
When using the object persistence model, you can specify the following optional parameters for the
DynamoDBContext.

• ConsistentRead—When retrieving data using the Load, Query or Scan operations you can optionally
add this parameter to request the latest values for the data. For more information about read consistency,
see DynamoDB Data Model (p. 3).

• IgnoreNullValues—This parameter informs DynamoDBContext to ignore null values on attributes
during a Save operation. If this parameter is false (or if it is not set), then a null value is interpreted as
directives to delete the specific attribute.

API Version 2012-08-10
484

Amazon DynamoDB Developer Guide
DynamoDBContext Class

• SkipVersionCheck— - This parameter informs DynamoDBContext to not compare versions when
saving or deleting an item. For more information about versioning, see Optimistic Locking Using Version
Number with DynamoDB Using the AWS SDK for .NET Object Persistence Model (p. 486).

• TableNamePrefix— - Prefixes all table names with a specific string. If this parameter is null (or if it is
not set), then no prefix is used.

The following C# snippet creates a new DynamoDBContext by specifying two of the preceding optional
parameters.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
...
DynamoDBContext context =
 new DynamoDBContext(client, new DynamoDBContextConfig { ConsistentRead
= true, SkipVersionCheck = true});

DynamoDBContext includes these optional parameters with each request you send using this context.

Instead of setting these parameters at the DynamoDBContext level, you can specify them for individual
operations you execute using DynamoDBContext as shown in the following C# code snippet.The example
loads a specific book item. The Load method of DynamoDBContext specifies the preceding optional
parameters.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
...
DynamoDBContext context = new DynamoDBContext(client);
Book bookItem = context.Load<Book>(productId,new DynamoDBContextConfig{ Consist
entRead = true, SkipVersionCheck = true });

In this case DynamoDBContext includes these parameters only when sending the Get request.

Supported Data Types
The object persistence model supports a set of primitive .NET data types, collections, and arbitrary data
types. The model supports the following primitive data types.

• bool

• byte

• char

• DateTime

• decimal

• double

• float

• Int16

• Int32

• Int64

• SByte

• string

• UInt16

• UInt32

• UInt64

API Version 2012-08-10
485

Amazon DynamoDB Developer Guide
Supported Data Types

The object persistence model also supports the .NET collection types with the following limitations:

• Collection type must implement ICollection interface.

• Collection type must be composed of the supported primitive types. For example,
ICollection<string>, ICollection<bool>.

• Collection type must provide a parameter-less constructor.

The following table summarizes the mapping of the preceding .NET types to the DynamoDB types.

DynamoDB type.NET primitive type

N (number type)All number types

S (string type)All string types

B (binary type)MemoryStream, byte[]

N (number type), 0 represents false and 1 represents true.bool

BS (binary set) type, SS (string set) type, and NS (number set) typeCollection types

S (string type). The DateTime values are stored as ISO-8601 formatted
strings.

DateTime

The object persistence model also supports arbitrary data types. However, you must provide converter
code to map the complex types to the DynamoDB types.

Optimistic Locking Using Version Number with
DynamoDB Using the AWS SDK for .NET Object
Persistence Model
The optimistic locking support in the object persistence model ensures that the item version for your
application is same as the item version on the server-side before updating or deleting the item. Suppose
you retrieve an item for update. However, before you send your updates back, some other application
updates the same item. Now your application has a stale copy of the item. Without optimistic locking, any
update you perform will overwrite the update made by the other application.

The optimistic locking feature of the object persistence model provides the DynamoDBVersion tag that
you can use to enable optimistic locking. To use this feature you add a property to your class for storing
the version number.You add the DynamoDBVersion attribute on the property. When you first save the
object, the DynamoDBContext assigns a version number and increments this value each time you update
the item.

Your update or delete request succeeds only if the client-side object version matches the corresponding
version number of the item on the server-side. If your application has a stale copy, it must get the latest
version from the server before it can update or delete that item.

The following C# code snippet defines a Book class with object persistence attributes mapping it to the
ProductCatalog table.The VersionNumber property in the class decorated with the DynamoDBVersion
attribute stores the version number value.

[DynamoDBTable("ProductCatalog")]
 public class Book

API Version 2012-08-10
486

Amazon DynamoDB Developer Guide
Optimistic Locking Using Version Number

 {
 [DynamoDBHashKey] // Hash key.
 public int Id { get; set; }
 [DynamoDBProperty]
 public string Title { get; set; }
 [DynamoDBProperty]
 public string ISBN { get; set; }
 [DynamoDBProperty("Authors")]
 public List<string> BookAuthors { get; set; }
 [DynamoDBVersion]
 public int? VersionNumber { get; set; }
 }

Note
You can apply the DynamoDBVersion attribute only to a nullable numeric primitive type (such
as int?).

Optimistic locking has the following impact on DynamoDBContext operations:

• Save—For a new item, DynamoDBContext assigns initial version number 0. If you retrieve an existing
item, and then update one or more of its properties and attempt to save the changes, the save operation
succeeds only if the version number on the client-side and the server-side match. The
DynamoDBContext increments the version number.You don't need to set the version number.

• Delete—The Delete method provides overloads that can take either a primary key value or an object
as parameter as shown in the following C# code snippet.

DynamoDBContext context = new DynamoDBContext(client);
...
// Load a book.
Book book = context.Load<ProductCatalog>(111);
// Do other operations.
// Delete 1 - Pass in the book object.
context.Delete<ProductCatalog>(book);

// Delete 2 - pass in the Id (primary key)
context.Delete<ProductCatalog>(222);

If you provide an object as the parameter, then the delete succeeds only if the object version matches
the corresponding server-side item version. However, if you provide a primary key value as the
parameter, the DynamoDBContext is unaware of any version numbers and it deletes the item without
making the version check.

Note that the internal implementation of optimistic locking in the object persistence model code uses
the conditional update and the conditional delete API actions in DynamoDB.

Disabling Optimistic Locking
To disable optimistic locking you use the SkipVersionCheck configuration property.You can set this
property when creating DynamoDBContext. In this case, optimistic locking is disabled for any requests
you make using the context. For more information, see Specifying Optional Parameters for
DynamoDBContext (p. 484).

Instead of setting the property at the context level, you can disable optimistic locking for a specific operation
as shown in the following C# code snippet. The code example uses the context to delete a book item.
The Delete method sets the optional SkipVersionCheck property to true, disabling version check.

API Version 2012-08-10
487

Amazon DynamoDB Developer Guide
Optimistic Locking Using Version Number

DynamoDBContext context = new DynamoDBContext(client);
// Load a book.
Book book = context.Load<ProductCatalog>(111);
...
// Delete the book.
context.Delete<Book>(book, new DynamoDBContextConfig { SkipVersionCheck = true
 });

Mapping Arbitrary Data with DynamoDB Using the
AWS SDK for .NET Object Persistence Model
In addition to the supported .NET types (see Supported Data Types (p. 485)), you can use types in your
application for which there is no direct mapping to the DynamoDB types. The object persistence model
supports storing data of arbitrary types as long as you provide the converter to convert data from the
arbitrary type to the DynamoDB type and vice-versa.The converter code transforms data during both the
saving and loading of the objects.

You can create any types on the client-side, however the data stored in the tables is one of the DynamoDB
types and during query and scan any data comparisons made are against the data stored in DynamoDB.

The following C# code example defines a Book class with Id, Title, ISBN, and Dimension properties.
The Dimension property is of the DimensionType that describes Height, Width, and Thickness
properties.The example code provides the converter methods, ToEntry and FromEntry to convert data
between the DimensionType and the DynamoDB string types. For example, when saving a Book instance,
the converter creates a book Dimension string such as "8.5x11x.05", and when you retrieve a book, it
converts the string to a DimensionType instance.

The example maps the Book type to the ProductCatalog table. For illustration, it saves a sample Book
instance, retrieves it, updates its dimensions and saves the updated Book again.

For step-by-step instructions on how to test the following sample, see Using the AWS SDK for .NET (p. 56).

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DataModel;

using Amazon.DynamoDBv2.DocumentModel;

using Amazon.Runtime;

using Amazon.SecurityToken;

namespace com.amazonaws.codesamples

{

 class HighLevelMappingArbitraryData

 {

API Version 2012-08-10
488

Amazon DynamoDB Developer Guide
Mapping Arbitrary Data

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 DynamoDBContext context = new DynamoDBContext(client);

 // 1. Create a book.

 DimensionType myBookDimensions = new DimensionType()

 {

 Length = 8M,

 Height = 11M,

 Thickness = 0.5M

 };

 Book myBook = new Book

 {

 Id = 501,

 Title = "AWS SDK for .NET Object Persistence Model Handling
 Arbitrary Data",

 ISBN = "999-9999999999",

 BookAuthors = new List<string> { "Author 1", "Author 2" },

 Dimensions = myBookDimensions

 };

 context.Save(myBook);

API Version 2012-08-10
489

Amazon DynamoDB Developer Guide
Mapping Arbitrary Data

 // 2. Retrieve the book.

 Book bookRetrieved = context.Load<Book>(501);

 // 3. Update property (book dimensions).

 bookRetrieved.Dimensions.Height += 1;

 bookRetrieved.Dimensions.Length += 1;

 bookRetrieved.Dimensions.Thickness += 0.2M;

 // Update the book.

 context.Save(bookRetrieved);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 }

 }

 [DynamoDBTable("ProductCatalog")]

 public class Book

 {

 [DynamoDBHashKey] // hash key

 public int Id { get; set; }

 [DynamoDBProperty]

 public string Title { get; set; }

 [DynamoDBProperty]

 public string ISBN { get; set; }

 // Multi-valued (set type) attribute.

API Version 2012-08-10
490

Amazon DynamoDB Developer Guide
Mapping Arbitrary Data

 [DynamoDBProperty("Authors")]

 public List<string> BookAuthors { get; set; }

 // Arbitrary type, with a converter to map it to DynamoDB type.

 [DynamoDBProperty(typeof(DimensionTypeConverter))]

 public DimensionType Dimensions { get; set; }

 }

 public class DimensionType

 {

 public decimal Length { get; set; }

 public decimal Height { get; set; }

 public decimal Thickness { get; set; }

 }

 // Converts the complex type DimensionType to string and vice-versa.

 public class DimensionTypeConverter : IPropertyConverter

 {

 public DynamoDBEntry ToEntry(object value)

 {

 DimensionType bookDimensions = value as DimensionType;

 if (bookDimensions == null) throw new ArgumentOutOfRangeException();

 string data = string.Format("{1}{0}{2}{0}{3}", " x ",

 bookDimensions.Length, bookDimensions.Height, bookDimensions.Thick
ness);

 DynamoDBEntry entry = new Primitive { Value = data };

 return entry;

 }

API Version 2012-08-10
491

Amazon DynamoDB Developer Guide
Mapping Arbitrary Data

 public object FromEntry(DynamoDBEntry entry)

 {

 Primitive primitive = entry as Primitive;

 if (primitive == null || !(primitive.Value is String) ||
string.IsNullOrEmpty((string)primitive.Value))

 throw new ArgumentOutOfRangeException();

 string[] data = ((string)(primitive.Value)).Split(new string[] { "
 x " }, StringSplitOptions.None);

 if (data.Length != 3) throw new ArgumentOutOfRangeException();

 DimensionType complexData = new DimensionType

 {

 Length = Convert.ToDecimal(data[0]),

 Height = Convert.ToDecimal(data[1]),

 Thickness = Convert.ToDecimal(data[2])

 };

 return complexData;

 }

 }

}

Batch Operations Using AWS SDK for .NET Object
Persistence Model

Batch Write: Putting and Deleting Multiple Items
To put or delete multiple objects from a table in a single request, do the following:

• Execute CreateBatchWrite method of the DynamoDBContext and create an instance of the
BatchWrite class.

• Specify the items you want to put or delete.

• To put one or more items, use either the AddPutItem or the AddPutItems method.

API Version 2012-08-10
492

Amazon DynamoDB Developer Guide
Batch Operations

• To delete one or more items, you can either specify the primary key of the item or a client-side object
that maps to the item you want to delete. Use the AddDeleteItem, AddDeleteItems, and the
AddDeleteKey methods to specify the list of items to delete.

• Call the BatchWrite.Execute method to put and delete all the specified items from the table.

Note
When using object persistence model, you can specify any number of operations in a batch.
However, note that DynamoDB limits the number of operations in a batch and the total size of
the batch in a batch operation. For more information about the specific limits, see BatchWriteItem.
If the API detects your batch write request exceeded the allowed number of write requests or
exceeded the maximum allowed HTTP payload size, it breaks the batch in to several smaller
batches. Additionally, if a response to a batch write returns unprocessed items, the API will
automatically send another batch request with those unprocessed items.

Suppose that you have defined a C# class Book class that maps to the ProductCatalog table in DynamoDB.
The following C# code snippet uses the BatchWrite object to upload two items and delete one item
from the ProductCatalog table.

DynamoDBContext context = new DynamoDBContext(client);
var bookBatch = context.CreateBatchWrite<Book>();

// 1. Specify two books to add.
Book book1 = new Book
{
 Id = 902,
 ISBN = "902-11-11-1111",
 ProductCategory = "Book",
 Title = "My book3 in batch write"
};
Book book2 = new Book
{
 Id = 903,
 ISBN = "903-11-11-1111",
 ProductCategory = "Book",
 Title = "My book4 in batch write"
};

bookBatch.AddPutItems(new List<Book> { book1, book2 });

// 2. Specify one book to delete.
bookBatch.AddDeleteKey(111);

bookBatch.Execute();

To put or delete objects from multiple tables, do the following:

• Create one instance of the BatchWrite class for each type and specify the items you want to put or
delete as described in the preceding section.

• Create an instance of MultiTableBatchWrite using one of the following methods:

• Execute the Combine method on one of the BatchWrite objects that you created in the preceding
step.

• Create an instance of the MultiTableBatchWrite type by providing a list of BatchWrite objects.

• Execute the CreateMultiTableBatchWrite method of DynamoDBContext and pass in your list
of BatchWrite objects.

API Version 2012-08-10
493

Amazon DynamoDB Developer Guide
Batch Operations

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

• Call the Execute method of MultiTableBatchWrite, which performs the specified put and delete
operations on various tables.

Suppose that you have defined Forum and Thread C# classes that map to the Forum and Thread tables
in DynamoDB. Also, suppose that the Thread class has versioning enabled. Because versioning is not
supported when using batch operations, you must explicitly disable versioning as shown in the following
C# code snippet. The code snippet uses the MultiTableBatchWrite object to perform a multi-table
update.

DynamoDBContext context = new DynamoDBContext(client);
// Create BatchWrite objects for each of the Forum and Thread classes.
var forumBatch = context.CreateBatchWrite<Forum>();

DynamoDBOperationConfig config = new DynamoDBOperationConfig();
config.SkipVersionCheck = true;
var threadBatch = context.CreateBatchWrite<Thread>(config);

// 1. New Forum item.
Forum newForum = new Forum
{
 Name = "Test BatchWrite Forum",
 Threads = 0
};
forumBatch.AddPutItem(newForum);

// 2. Specify a forum to delete by specifying its primary key.
forumBatch.AddDeleteKey("Some forum");

// 3. New Thread item.
Thread newThread = new Thread
{
 ForumName = "Amazon S3 forum",
 Subject = "My sample question",
 KeywordTags = new List<string> { "Amazon S3", "Bucket" },
 Message = "Message text"
};

threadBatch.AddPutItem(newThread);

// Now execute multi-table batch write.
var superBatch = new MultiTableBatchWrite(forumBatch, threadBatch);
superBatch.Execute();

For a working example, see Example: Batch Write Operation Using the AWS SDK for .NET Object
Persistence Model (p. 499).

Note
DynamoDB batch API limits the number of writes in batch and also limits the size of the batch.
For more information, see BatchWriteItem. When using the .NET object persistence model API,
you can specify any number of operations. However, if either the number of operations in a batch
or size exceed the limit, the .NET API breaks the batch write request into smaller batches and
sends multiple batch write requests to DynamoDB.

Batch Get: Getting Multiple Items
To retrieve multiple items from a table in a single request, do the following:

API Version 2012-08-10
494

Amazon DynamoDB Developer Guide
Batch Operations

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

• Create an instance of the CreateBatchGet class.

• Specify a list of primary keys to retrieve.

• Call the Execute method. The response returns the items in the Results property.

The following C# code sample retrieves three items from the ProductCatalog table.The items in the result
are not necessarily in the same order in which you specified the primary keys.

DynamoDBContext context = new DynamoDBContext(client);
var bookBatch = context.CreateBatchGet<ProductCatalog>();
bookBatch.AddKey(101);
bookBatch.AddKey(102);
bookBatch.AddKey(103);
bookBatch.Execute();
// Process result.
Console.WriteLine(devBatch.Results.Count);
Book book1 = bookBatch.Results[0];
Book book2 = bookBatch.Results[1];
Book book3 = bookBatch.Results[2];

To retrieve objects from multiple tables, do the following:

• For each type, create an instance of the CreateBatchGet type and provide the primary key values
you want to retrieve from each table.

• Create an instance of the MultiTableBatchGet class using one of the following methods:

• Execute the Combine method on one of the BatchGet objects you created in the preceding step.

• Create an instance of the MultiBatchGet type by providing a list of BatchGet objects.

• Execute the CreateMultiTableBatchGet method of DynamoDBContext and pass in your list of
BatchGet objects.

• Call the Execute method of MultiTableBatchGet which returns the typed results in the individual
BatchGet objects.

The following C# code snippet retrieves multiple items from the Order and OrderDetail tables using the
CreateBatchGet method.

var orderBatch = context.CreateBatchGet<Order>();
orderBatch.AddKey(101);
orderBatch.AddKey(102);

var orderDetailBatch = context.CreateBatchGet<OrderDetail>();
orderDetailBatch.AddKey(101, "P1");
orderDetailBatch.AddKey(101, "P2");
orderDetailBatch.AddKey(102, "P3");
orderDetailBatch.AddKey(102, "P1");

var orderAndDetailSuperBatch = orderBatch.Combine(orderDetailBatch);
orderAndDetailSuperBatch.Execute();

Console.WriteLine(orderBatch.Results.Count);
Console.WriteLine(orderDetailBatch.Results.Count);

Order order1 = orderBatch.Results[0];
Order order2 = orderDetailBatch.Results[1];
OrderDetail orderDetail1 = orderDetailBatch.Results[0];

API Version 2012-08-10
495

Amazon DynamoDB Developer Guide
Batch Operations

Example: CRUD Operations Using the AWS SDK
for .NET Object Persistence Model
The following C# code example declares a Book class with Id, title, ISBN, and Authors properties. It uses
the object persistence attributes to map these properties to the ProductCatalog table in DynamoDB. The
code example then uses the DynamoDBContext to illustrate typical CRUD operations. The example
creates a sample Book instance and saves it to the ProductCatalog table. The example then retrieves
the book item, and updates its ISBN and Authors properties. Note that the update replaces the existing
authors list. The example finally deletes the book item.

For more information about the ProductCatalog table used in this example, see Example Tables and
Data (p. 681). For step-by-step instructions to test the following sample, see Using the AWS SDK for
.NET (p. 56).

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DataModel;

using Amazon.Runtime;

namespace com.amazonaws.codesamples

{

 class HighLevelItemCRUD

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 DynamoDBContext context = new DynamoDBContext(client);

 TestCRUDOperations(context);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

API Version 2012-08-10
496

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Object Persistence

Model

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 }

 private static void TestCRUDOperations(DynamoDBContext context)

 {

 int bookID = 1001; // Some unique value.

 Book myBook = new Book

 {

 Id = bookID,

 Title = "object persistence-AWS SDK for.NET SDK-Book 1001",

 ISBN = "111-1111111001",

 BookAuthors = new List<string> { "Author 1", "Author 2" },

 };

 // Save the book.

 context.Save(myBook);

 // Retrieve the book.

 Book bookRetrieved = context.Load<Book>(bookID);

 // Update few properties.

 bookRetrieved.ISBN = "222-2222221001";

 bookRetrieved.BookAuthors = new List<string> { " Author 1", "Author
 x" }; // Replace existing authors list with this.

 context.Save(bookRetrieved);

 // Retrieve the updated book. This time add the optional Consisten
tRead parameter using DynamoDBContextConfig object.

API Version 2012-08-10
497

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Object Persistence

Model

 Book updatedBook = context.Load<Book>(bookID, new DynamoDBContextCon
fig { ConsistentRead = true });

 // Delete the book.

 context.Delete<Book>(bookID);

 // Try to retrieve deleted book. It should return null.

 Book deletedBook = context.Load<Book>(bookID, new DynamoDBContextCon
fig { ConsistentRead = true });

 if (deletedBook == null)

 Console.WriteLine("Book is deleted");

 }

 }

 [DynamoDBTable("ProductCatalog")]

 public class Book

 {

 [DynamoDBHashKey] // Hash key.

 public int Id { get; set; }

 [DynamoDBProperty]

 public string Title { get; set; }

 [DynamoDBProperty]

 public string ISBN { get; set; }

 [DynamoDBProperty("Authors")] // Multi-valued (set type) attribute.

 public List<string> BookAuthors { get; set; }

 }

}

API Version 2012-08-10
498

Amazon DynamoDB Developer Guide
Example: CRUD Operations - .NET Object Persistence

Model

Example: Batch Write Operation Using the AWS
SDK for .NET Object Persistence Model
The following C# code example declares Book, Forum, Thread, and Reply classes and maps them to
the DynamoDB tables using the object persistence model attributes.

The code example then uses the DynamoDBContext to illustrate the following batch write operations.

• BatchWrite object to put and delete book items from the ProductCatalog table.

• MultiTableBatchWrite object to put and delete items from the Forum and the Thread tables.

For more information about the tables used in this example, see Example Tables and Data (p. 681). For
step-by-step instructions to test the following sample, see Using the AWS SDK for .NET (p. 56).

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DataModel;

using Amazon.Runtime;

using Amazon.SecurityToken;

namespace com.amazonaws.codesamples

{

 class HighLevelBatchWriteItem

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 DynamoDBContext context = new DynamoDBContext(client);

 SingleTableBatchWrite(context);

 MultiTableBatchWrite(context);

API Version 2012-08-10
499

Amazon DynamoDB Developer Guide
Example: Batch Write Operation

 }

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 private static void SingleTableBatchWrite(DynamoDBContext context)

 {

 Book book1 = new Book

 {

 Id = 902,

 InPublication = true,

 ISBN = "902-11-11-1111",

 PageCount = "100",

 Price = 10,

 ProductCategory = "Book",

 Title = "My book3 in batch write"

 };

 Book book2 = new Book

 {

 Id = 903,

 InPublication = true,

 ISBN = "903-11-11-1111",

 PageCount = "200",

 Price = 10,

 ProductCategory = "Book",

 Title = "My book4 in batch write"

API Version 2012-08-10
500

Amazon DynamoDB Developer Guide
Example: Batch Write Operation

 };

 var bookBatch = context.CreateBatchWrite<Book>();

 bookBatch.AddPutItems(new List<Book> { book1, book2 });

 Console.WriteLine("Performing batch write in SingleTableBatch
Write().");

 bookBatch.Execute();

 }

 private static void MultiTableBatchWrite(DynamoDBContext context)

 {

 // 1. New Forum item.

 Forum newForum = new Forum

 {

 Name = "Test BatchWrite Forum",

 Threads = 0

 };

 var forumBatch = context.CreateBatchWrite<Forum>();

 forumBatch.AddPutItem(newForum);

 // 2. New Thread item.

 Thread newThread = new Thread

 {

 ForumName = "S3 forum",

 Subject = "My sample question",

 KeywordTags = new List<string> { "S3", "Bucket" },

 Message = "Message text"

 };

API Version 2012-08-10
501

Amazon DynamoDB Developer Guide
Example: Batch Write Operation

 DynamoDBOperationConfig config = new DynamoDBOperationConfig();

 config.SkipVersionCheck = true;

 var threadBatch = context.CreateBatchWrite<Thread>(config);

 threadBatch.AddPutItem(newThread);

 threadBatch.AddDeleteKey("some hash attr", "some range attr");

 var superBatch = new MultiTableBatchWrite(forumBatch, threadBatch);

 Console.WriteLine("Performing batch write in MultiTableBatch
Write().");

 superBatch.Execute();

 }

 }

 [DynamoDBTable("Reply")]

 public class Reply

 {

 [DynamoDBHashKey] // Hash key.

 public string Id { get; set; }

 [DynamoDBRangeKey] // Range key.

 public DateTime ReplyDateTime { get; set; }

 // Properties included implicitly.

 public string Message { get; set; }

 // Explicit property mapping with object persistence model attributes.

 [DynamoDBProperty("LastPostedBy")]

 public string PostedBy { get; set; }

API Version 2012-08-10
502

Amazon DynamoDB Developer Guide
Example: Batch Write Operation

 // Property to store version number for optimistic locking.

 [DynamoDBVersion]

 public int? Version { get; set; }

 }

 [DynamoDBTable("Thread")]

 public class Thread

 {

 // PK mapping.

 [DynamoDBHashKey]

 public string ForumName { get; set; }

 [DynamoDBRangeKey]

 public String Subject { get; set; }

 // Implicit mapping.

 public string Message { get; set; }

 public string LastPostedBy { get; set; }

 public int Views { get; set; }

 public int Replies { get; set; }

 public bool Answered { get; set; }

 public DateTime LastPostedDateTime { get; set; }

 // Explicit mapping (property and table attribute names are different.

 [DynamoDBProperty("Tags")]

 public List<string> KeywordTags { get; set; }

 // Property to store version number for optimistic locking.

 [DynamoDBVersion]

 public int? Version { get; set; }

 }

API Version 2012-08-10
503

Amazon DynamoDB Developer Guide
Example: Batch Write Operation

 [DynamoDBTable("Forum")]

 public class Forum

 {

 [DynamoDBHashKey]

 public string Name { get; set; }

 // All the following properties are explicitly mapped,

 // only to show how to provide mapping.

 [DynamoDBProperty]

 public int Threads { get; set; }

 [DynamoDBProperty]

 public int Views { get; set; }

 [DynamoDBProperty]

 public string LastPostBy { get; set; }

 [DynamoDBProperty]

 public DateTime LastPostDateTime { get; set; }

 [DynamoDBProperty]

 public int Messages { get; set; }

 }

 [DynamoDBTable("ProductCatalog")]

 public class Book

 {

 [DynamoDBHashKey] // Hash key.

 public int Id { get; set; }

 public string Title { get; set; }

 public string ISBN { get; set; }

 public int Price { get; set; }

 public string PageCount { get; set; }

 public string ProductCategory { get; set; }

API Version 2012-08-10
504

Amazon DynamoDB Developer Guide
Example: Batch Write Operation

 public bool InPublication { get; set; }

 }

}

Example: Query and Scan in DynamoDB Using the
AWS SDK for .NET Object Persistence Model
The C# example in this section defines the following classes and maps them to the tables in DynamoDB.
For more information about creating sample tables, see Example Tables and Data (p. 681).

• Book class maps to ProductCatalog table

• Forum, Thread, and Reply classes maps to the same name tables.

The example then executes the following query and scan operations using the DynamoDBContext.

• Get a book by Id.
The ProductCatalog table has Id as its primary key. It does not have a range attribute as part of its
primary key. Therefore, you cannot query the table.You can get an item using its Id value.

• Execute the following queries against the Reply table (the Reply table's primary key is composed of Id
and ReplyDateTime attributes. The ReplyDateTime is a range attribute. Therefore, you can query this
table).

• Find replies to a forum thread posted in the last 15 days.

• Find replies to a forum thread posted in a specific date range.

• Scan ProductCatalog table to find books whose price is less than zero.

For performance reasons, you should use a query instead of a scan operation. However, there are
times you might need to scan a table. Suppose there was a data entry error and one of the book prices
is set to less than 0.This example scans the ProductCategory table to find book items (ProductCategory
is book) at price of less than 0.

For instructions to create a working sample, see Using the AWS SDK for .NET (p. 56).

using System;

using System.Collections.Generic;

using System.Configuration;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DataModel;

using Amazon.DynamoDBv2.DocumentModel;

using Amazon.Runtime;

namespace com.amazonaws.codesamples

API Version 2012-08-10
505

Amazon DynamoDB Developer Guide
Example: Query and Scan - .NET Object Persistence

Model

{

 class HighLevelQueryAndScan

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

 try

 {

 DynamoDBContext context = new DynamoDBContext(client);

 // Get item.

 GetBook(context, 101);

 // Sample forum and thread to test queries.

 string forumName = "Amazon DynamoDB";

 string threadSubject = "DynamoDB Thread 1";

 // Sample queries.

 FindRepliesInLast15Days(context, forumName, threadSubject);

 FindRepliesPostedWithinTimePeriod(context, forumName, threadSub
ject);

 // Scan table.

 FindProductsPricedLessThanZero(context);

 Console.WriteLine("To continue, press Enter");

 Console.ReadLine();

 }

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message);
}

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

API Version 2012-08-10
506

Amazon DynamoDB Developer Guide
Example: Query and Scan - .NET Object Persistence

Model

 catch (Exception e) { Console.WriteLine(e.Message); }

 }

 private static void GetBook(DynamoDBContext context, int productId)

 {

 Book bookItem = context.Load<Book>(productId);

 Console.WriteLine("\nGetBook: Printing result.....");

 Console.WriteLine("Title: {0} \n No.Of threads:{1} \n No. of mes
sages: {2}",

 bookItem.Title, bookItem.ISBN, bookItem.Page
Count);

 }

 private static void FindRepliesInLast15Days(DynamoDBContext context,

 string forumName,

 string threadSubject)

 {

 string replyId = forumName + "#" + threadSubject;

 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);

 IEnumerable<Reply> latestReplies =

 context.Query<Reply>(replyId, QueryOperator.GreaterThan,
twoWeeksAgoDate);

 Console.WriteLine("\nFindRepliesInLast15Days: Printing result.....");

 foreach (Reply r in latestReplies)

 Console.WriteLine("{0}\t{1}\t{2}\t{3}", r.Id, r.PostedBy,
r.Message, r.ReplyDateTime);

 }

 private static void FindRepliesPostedWithinTimePeriod(DynamoDBContext
context,

API Version 2012-08-10
507

Amazon DynamoDB Developer Guide
Example: Query and Scan - .NET Object Persistence

Model

 string forumName,

 string threadSub
ject)

 {

 string forumId = forumName + "#" + threadSubject;

 Console.WriteLine("\nFindRepliesPostedWithinTimePeriod: Printing
result.....");

 DateTime startDate = DateTime.UtcNow - TimeSpan.FromDays(30);

 DateTime endDate = DateTime.UtcNow - TimeSpan.FromDays(1);

 IEnumerable<Reply> repliesInAPeriod = context.Query<Reply>(forumId,

 QueryOp
erator.Between, startDate, endDate);

 foreach (Reply r in repliesInAPeriod)

 Console.WriteLine("{0}\t{1}\t{2}\t{3}", r.Id, r.PostedBy,
r.Message, r.ReplyDateTime);

 }

 private static void FindProductsPricedLessThanZero(DynamoDBContext
context)

 {

 int price = 0;

 IEnumerable<Book> itemsWithWrongPrice = context.Scan<Book>(

 new ScanCondition("Price", ScanOperator.LessThan, price),

 new ScanCondition("ProductCategory", ScanOperator.Equal,
"Book")

);

 Console.WriteLine("\nFindProductsPricedLessThanZero: Printing res
ult.....");

 foreach (Book r in itemsWithWrongPrice)

API Version 2012-08-10
508

Amazon DynamoDB Developer Guide
Example: Query and Scan - .NET Object Persistence

Model

 Console.WriteLine("{0}\t{1}\t{2}\t{3}", r.Id, r.Title, r.Price,
 r.ISBN);

 }

 }

 [DynamoDBTable("Reply")]

 public class Reply

 {

 [DynamoDBHashKey] // Hash key.

 public string Id { get; set; }

 [DynamoDBRangeKey] // Range key.

 public DateTime ReplyDateTime { get; set; }

 // Properties included implicitly.

 public string Message { get; set; }

 // Explicit property mapping with object persistence model attributes.

 [DynamoDBProperty("LastPostedBy")]

 public string PostedBy { get; set; }

 // Property to store version number for optimistic locking.

 [DynamoDBVersion]

 public int? Version { get; set; }

 }

 [DynamoDBTable("Thread")]

 public class Thread

 {

 // PK mapping.

 [DynamoDBHashKey]

API Version 2012-08-10
509

Amazon DynamoDB Developer Guide
Example: Query and Scan - .NET Object Persistence

Model

 public string ForumName { get; set; }

 [DynamoDBRangeKey]

 public DateTime Subject { get; set; }

 // Implicit mapping.

 public string Message { get; set; }

 public string LastPostedBy { get; set; }

 public int Views { get; set; }

 public int Replies { get; set; }

 public bool Answered { get; set; }

 public DateTime LastPostedDateTime { get; set; }

 // Explicit mapping (property and table attribute names are different.

 [DynamoDBProperty("Tags")]

 public List<string> KeywordTags { get; set; }

 // Property to store version number for optimistic locking.

 [DynamoDBVersion]

 public int? Version { get; set; }

 }

 [DynamoDBTable("Forum")]

 public class Forum

 {

 [DynamoDBHashKey]

 public string Name { get; set; }

 // All the following properties are explicitly mapped,

 // only to show how to provide mapping.

 [DynamoDBProperty]

 public int Threads { get; set; }

 [DynamoDBProperty]

 public int Views { get; set; }

API Version 2012-08-10
510

Amazon DynamoDB Developer Guide
Example: Query and Scan - .NET Object Persistence

Model

 [DynamoDBProperty]

 public string LastPostBy { get; set; }

 [DynamoDBProperty]

 public DateTime LastPostDateTime { get; set; }

 [DynamoDBProperty]

 public int Messages { get; set; }

 }

 [DynamoDBTable("ProductCatalog")]

 public class Book

 {

 [DynamoDBHashKey] // Hash key.

 public int Id { get; set; }

 public string Title { get; set; }

 public string ISBN { get; set; }

 public int Price { get; set; }

 public string PageCount { get; set; }

 public string ProductCategory { get; set; }

 public bool InPublication { get; set; }

 }

}

API Version 2012-08-10
511

Amazon DynamoDB Developer Guide
Example: Query and Scan - .NET Object Persistence

Model

Using the DynamoDB API

Topics

• Using JSON Data Format with DynamoDB (p. 512)

• Making HTTP Requests to DynamoDB (p. 514)

• Handling Errors in DynamoDB Operations (p. 517)

• Operations in DynamoDB (p. 523)

Using JSON Data Format with DynamoDB
Amazon DynamoDB uses JavaScript Object Notation format (JSON) to send and receive formatted data.
JSON presents data in a hierarchy so that both data values and data structure are conveyed
simultaneously. Name-value pairs are defined in the format name:value. The data hierarchy is defined
by nested brackets of name-value pairs.

For example, the following shows a table named "Users" with a composite primary key based on the
attributes user and time.

{
 "Table": {
 "AttributeDefinitions": [
 {
 "AttributeName": "User",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Time",
 "AttributeType": "N"
 }
],
 "TableName": "Users",
 "KeySchema": [
 {
 "AttributeName": "User",
 "KeyType": "HASH"
 },
 {

API Version 2012-08-10
512

Amazon DynamoDB Developer Guide
JSON Data Format

 "AttributeName": "Time",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "ACTIVE",
 "CreationDateTime": Mon Mar 25 09:46:00 PDT 2013,
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 10
 },
 "TableSizeBytes": 949,
 "ItemCount": 23
 }
}

In the low-level JSON wire protocol used by DynamoDB, the following abbreviations are used to denote
data types:

• S—String

• N—Number

• B—Binary

• BOOL—Boolean

• NULL—Null

• SS—String set

• NS—Number set

• BS—Binary set

• L—List

• M—Map

For more information about data types, see DynamoDB Data Types (p. 6).

JSON Is Used as a Transport Protocol Only
DynamoDB uses JSON only as a transport protocol.You use JSON notation to send data, and DynamoDB
responds with JSON notation, but the data is not being stored "on-disk" in the JSON data format.

Applications that use DynamoDB must either implement their own JSON parsing or use a library like one
of the AWS SDKs to do this parsing for them.

Many libraries support the JSON Number type by using the data types int, long and double. However,
because DynamoDB provides a numeric type that does not map exactly to these other data types, these
type distinctions can cause conflicts.

Unfortunately, many JSON libraries do not handle fixed-precision numeric values, and they automatically
infer a double data type for digit sequences that contain a decimal point.

To solve these problems, DynamoDB provides a single numeric type with no data loss.To avoid unwanted
implicit conversions to a double value, it uses strings for the data transfer of numeric values.This approach
provides flexibility for updating attribute values while maintaining proper sorting semantics, such as putting
the values "01", "2", and "03" in the proper sequence.

API Version 2012-08-10
513

Amazon DynamoDB Developer Guide
JSON Is Used as a Transport Protocol Only

If number precision is important to your application, convert number values to strings before you pass
them to DynamoDB.

Note
DynamoDB limits numbers to 38 digits. More than 38 digits will cause an error.

Transferring Binary Data Type Values in JSON
DynamoDB supports binary attributes. However, JSON does not natively support encoding binary data.
To send binary data over the wire, you will need to encode it as base64-encoded text. Upon receiving
the payload DynamoDB decodes the payload back to binary.

For more information about the base64 encoding, go to http://tools.ietf.org/html/rfc4648. However, note
the following DynamoDB specific restrictions:

• The base64 encoding may not include characters that are outside of the base64 character set,
whitespaces, or line separators.

• The encoded data must include the correct number of padding characters as required by the base64
encoding guidelines.

• The DynamoDB base64 encoding uses the characters '/' and '+', as illustrated in table 1 in the preceding
RFC.

Making HTTP Requests to DynamoDB
If you don't use one of the AWS SDKs, you can perform DynamoDB operations over HTTP using the
POST request method. The POST method requires you to specify the operation in the header of the
request and provide the data for the operation in JSON format in the body of the request.

HTTP Header Contents
DynamoDB requires the following information in the header of an HTTP request:

• host The DynamoDB endpoint. For more information about endpoints, see Accessing
DynamoDB (p. 12).

• x-amz-dateYou must provide the time stamp in either the HTTP Date header or the AWS x-amz-date
header. (Some HTTP client libraries don't let you set the Date header.) When an x-amz-date header
is present, the system ignores any Date header during the request authentication.

The x-amz-date header must be specified in ISO 8601 basic format. For example:

• 20130315T092054Z

• Authorization The set of authorization parameters that AWS uses to ensure the validity and
authenticity of the request. For more information about constructing this header, go to Signature Version
4 Signing Process.

• x-amz-target The destination service of the request and the operation for the data, in the format

<<serviceName>>_<<API version>>.<<operationName>>

For example, DynamoDB_20120810.CreateTable

• content-type Specifies JSON and the version. For example, Content-Type:
application/x-amz-json-1.0

The following is an example header for an HTTP request to create a table.

API Version 2012-08-10
514

Amazon DynamoDB Developer Guide
Transferring Binary Data Type Values in JSON

http://tools.ietf.org/html/rfc4648
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

POST / HTTP/1.1
host: dynamodb.us-west-2.amazonaws.com
x-amz-date: 20130112T092034Z
x-amz-target: DynamoDB_20120810.CreateTable
Authorization: AWS4-HMAC-SHA256 Credential=AccessKeyID/20130112/us-west-2/dy
namodb/aws4_request,SignedHeaders=host;x-amz-date;x-amz-target,Signa
ture=145b1567ab3c50d929412f28f52c45dbf1e63ec5c66023d232a539a4afd11fd9
content-type: application/x-amz-json-1.0
content-length: 23
connection: Keep-Alive

HTTP Body Content
The body of an HTTP request contains the data for the operation specified in the header of the HTTP
request. The data must be formatted according to the JSON data schema for each DynamoDB API. The
DynamoDB JSON data schema defines the types of data and parameters (such as comparison operators
and enumeration constants) available for each operation.

Note
DynamoDB uses JSON as a transport protocol, and it parses the data for storage. However,
data is not stored natively in JSON format. For more information, see Using JSON Data Format
with DynamoDB (p. 512).

DynamoDB does not serialize null values. If you are using a JSON parser set to serialize null values for
requests, DynamoDB ignores them.

Formatting the Body of HTTP requests
Use the JSON data format to convey data values and data structure, simultaneously. Elements can be
nested within other elements by using bracket notation.The following example shows a request for several
items from a table named "highscores".

{"RequestItems": {
 "highscores": {
 "Keys": [
 {"name":{"S":"Dave"}},
 {"name":{"S":"John"}},
 {"name":{"S":"Jane"}},
],
 "ProjectionExpression": "score"
 }
 }
}

Handling HTTP Responses
Here are some important headers in the HTTP response, and how you should handle them in your
application:

• HTTP/1.1—This header is followed by a status code. A code value of 200 indicates a successful
operation. For information on error codes, see API Error Codes (p. 517).

• x-amzn-RequestId—This header contains a request ID that you can use if you need to troubleshoot
a request with DynamoDB. An example of a request ID is
K2QH8DNOU907N97FNA2GDLL8OBVV4KQNSO5AEMVJF66Q9ASUAAJG.

API Version 2012-08-10
515

Amazon DynamoDB Developer Guide
HTTP Body Content

• x-amz-crc32—DynamoDB calculates a CRC32 checksum of the UTF-8 encoded bytes in the HTTP
response payload, and returns this checksum in the x-amz-crc32 header. We recommend that you
compute your own CRC32 checksum on the client side and compare it with the x-amz-crc32 header;
if the checksums do not match, it might indicate that the data was corrupted in transit. If this happens,
you should retry your request.

AWS SDK users do not need to manually perform this verification, because the SDKs compute the
checksum of each reply from DynamoDB and automatically retry if a mismatch is detected.

Sample DynamoDB JSON Request and Response
The following examples show a request for the item in a table where the hash key (Name) is "Back To
The Future" and the range key (Year) is 1985. Then it shows the DynamoDB response, including all
the attributes of that item.

HTTP POST Request:

POST / HTTP/1.1
Host: dynamodb.us-west-2.amazonaws.com
x-amz-target: DynamoDB_20120810.GetItem
x-amz-date: 20130116T175052Z
Authorization: AWS4-HMAC-SHA256 Credential=AccessKeyID/20130116/us-west-2/dy
namodb/aws4_request,SignedHeaders=host;x-amz-date;x-amz-target,Signa
ture=ccb4ee48bcb506aaa7e412a7f2f5dceef338666e2478b34acf6631623d377d51
Date: Wed, 16 Jan 2013 17:50:52 GMT
Content-Type: application/x-amz-json-1.0
Content-Length: 135
Connection: Keep-Alive

{
 "TableName": "my-table",
 "Key": {
 "Name": {"S": "Back To The Future"},
 "Year": {"S": "1985"}
 }
}

DynamoDB Response:

HTTP/1.1 200
x-amzn-RequestId: K2QH8DNOU907N97FNA2GDLL8OBVV4KQNSO5AEMVJF66Q9ASUAAJG
x-amz-crc32: 2215946753
Content-Type: application/x-amz-json-1.0
Content-Length: 144
Date: Mon, 16 Jan 2012 17:50:53 GMT

{
 "Item": {
 "Year": {"S": "1985"},
 "Fans": {"SS": ["Fox","Lloyd"]},
 "Name": {"S": "Back To The Future"},
 "Rating": {"S": "****"}
 }
}

API Version 2012-08-10
516

Amazon DynamoDB Developer Guide
Sample DynamoDB JSON Request and Response

For more request and response examples using various API operations, see the Amazon DynamoDB
API Reference.

Handling Errors in DynamoDB Operations
Topics

• Error Types (p. 517)

• API Error Codes (p. 517)

• Catching Errors (p. 521)

• Error Retries and Exponential Backoff (p. 522)

• Batch Operations and Error Handling (p. 523)

This section describes how to handle client and server errors. For information on specific error messages,
see API Error Codes (p. 517).

Error Types
While interacting with DynamoDB programmatically, you might encounter errors of two types: client errors
and server errors. Each error has a status code (such as 400), an error code (such as
ValidationException), and an error message (such as Supplied AttributeValue is empty,
must contain exactly one of the supported data types).

Client Errors
Client errors are indicated by a 4xx HTTP response code.

Client errors indicate that DynamoDB found a problem with the client request, such as an authentication
failure, missing required parameters, or exceeding the table's provisioned throughput. Fix the issue in
the client application before submitting the request again.

Server Errors
Server errors are indicated by a 5xx HTTP response code, and need to be resolved by Amazon.You can
resubmit/retry the request until it succeeds.

API Error Codes
HTTP status codes indicate whether an operation is successful or not.There are two types of error codes,
client (4xx) and server (5xx).

A response code of 200 indicates the operation was successful.

The following table lists the errors returned by DynamoDB. Some errors are resolved if you simply retry
the same request. The table indicates which errors are likely to be resolved with successive retries. If the
Retry column contains a "Y", submit the same request again. If the Retry column contains an "N", fix the
problem on the client side before submitting a new request. For more information about retrying requests,
see Error Retries and Exponential Backoff (p. 522).

API Version 2012-08-10
517

Amazon DynamoDB Developer Guide
Handling Errors

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

RetryCauseMessageError codeHTTP
Status
Code

NGeneral authentica-
tion failure. The cli-
ent did not cor-
rectly sign the re-
quest. Consult the
signing documenta-
tion.

Access denied.AccessDeniedException400

NExample: The ex-
pected value did
not match what
was stored in the
system.

The conditional re-
quest failed.

ConditionalCheckFailedException400

NThe signature in
the request did not
include all of the
required compon-
ents. See HTTP
Header Con-
tents (p. 514).

The request signature
does not conform to
AWS standards.

IncompleteSignatureException400

YFor a table with a
local secondary in-
dex, a group of
items with the
same hash key has
exceeded the max-
imum size limit of
10 GB. For more
information on item
collections, see
Item Collec-
tions (p. 317).

Collection size ex-
ceeded.

ItemCollectionSizeLimitExceededExcep-
tion

400

NExample: The
number of concur-
rent table requests
(cumulative num-
ber of tables in the
CREATING, DELET-
ING or UPDATING
state) exceeds the
maximum allowed
of 10.The total lim-
it of tables (cur-
rently in the ACT-
IVE state) is 250.

Too many operations
for a given subscriber.

LimitExceededException400

API Version 2012-08-10
518

Amazon DynamoDB Developer Guide
API Error Codes

RetryCauseMessageError codeHTTP
Status
Code

NThe request did not
include the re-
quired x-amz-se-
curity-token.
See Making HTTP
Requests to Dy-
namoDB (p. 514).

Request must contain
a valid (registered)
AWS Access Key ID.

MissingAuthenticationTokenException400

YExample:Your re-
quest rate is too
high. The AWS
SDKs for Dy-
namoDB automatic-
ally retry requests
that receive this
exception.Your re-
quest is eventually
successful, unless
your retry queue is
too large to finish.
Reduce the fre-
quency of re-
quests, using Error
Retries and Expo-
nential Back-
off (p. 522). Or, see
Specifying Read
and Write Require-
ments for
Tables (p. 62) for
other strategies.

You exceeded your
maximum allowed
provisioned through-
put for a table or for
one or more global
secondary indexes.To
view performance
metrics for provisioned
throughput vs. con-
sumed throughput, go
to the Amazon Cloud-
Watch console.

ProvisionedThroughputExceededExcep-
tion

400

NExample:You tried
to recreate an exist-
ing table, or delete
a table currently in
the CREATING
state.

The resource which
you are attempting to
change is in use.

ResourceInUseException400

NExample: Table
which is being re-
quested does not
exist, or is too early
in the CREATING
state.

Requested resource
not found.

ResourceNotFoundException400

API Version 2012-08-10
519

Amazon DynamoDB Developer Guide
API Error Codes

https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home

RetryCauseMessageError codeHTTP
Status
Code

YThis exception
might be returned
if the following API
operations are re-
quested too rap-
idly: Creat-
eTable; Updat-
eTable; De-
leteTable

Rate of requests ex-
ceeds the allowed
throughput.

ThrottlingException400

YThe request signa-
ture is incorrect.
The most likely
cause is an invalid
AWS access key
ID or secret key.

The Access Key ID or
security token is inval-
id.

UnrecognizedClientException400

NThis error can oc-
cur for several
reasons, such as a
required parameter
that is missing, a
value that is out
range, or mis-
matched data
types. The error
message contains
details about the
specific part of the
request that
caused the error.

The request could not
be processed.

ValidationException400

NMaximum request
size of 1 MB ex-
ceeded.

Request Entity Too
Large.

(n/a)413

YThe server en-
countered an error
while processing
your request.

The server en-
countered an internal
error trying to fulfill the
request.

InternalFailure500

YThe server en-
countered an error
while processing
your request.

The server en-
countered an internal
error trying to fulfill the
request.

InternalServerError500

YThere was an unex-
pected error on the
server while pro-
cessing your re-
quest.

The service is cur-
rently unavailable or
busy.

ServiceUnavailableException503

API Version 2012-08-10
520

Amazon DynamoDB Developer Guide
API Error Codes

Sample Error Response
The following is an HTTP response indicating the request exceeded the provisioned throughput limit for
the table. The Error codes listed in the previous table appear after the pound sign (#) in the body of the
response.When handling errors in an HTTP response, you only need to parse the content after the pound
sign (#) .

HTTP/1.1 400 Bad Request
x-amzn-RequestId: LDM6CJP8RMQ1FHKSC1RBVJFPNVV4KQNSO5AEMF66Q9ASUAAJG
Content-Type: application/x-amz-json-1.0
Content-Length: 240
Date: Thu, 15 Mar 2012 23:56:23 GMT

{"__type":"com.amazonaws.dynamodb.v20111205#ProvisionedThroughputExceededExcep
tion",
"message":"The level of configured provisioned throughput for the table was
exceeded.
Consider increasing your provisioning level with the UpdateTable API"}

Catching Errors
For your application to run smoothly, you need to build logic into the application to catch and respond to
errors. One typical approach is to implement your request within a try block or if-then statement.

The AWS SDKs perform their own retries and error checking. If you encounter an error while using one
of the AWS SDKs, you should see the error code and description.You should also see a Request ID
value. The Request ID value can help troubleshoot problems with DynamoDB support.

The following example uses the AWS SDK for Java to delete an item within a try block and uses a catch
block to respond to the error (in this case, it warns the user that the request failed). The example uses
the AmazonServiceException class to retrieve information about any operation errors, including the
Request ID. The example also uses the AmazonClientException class in case the request is not
successful for other reasons.

try {
 DeleteItemRequest request = new DeleteItemRequest(tableName, key);
 DeleteItemResult result = dynamoDB.deleteItem(request);
 System.out.println("Result: " + result);
 // Get error information from the service while trying to run the operation

 } catch (AmazonServiceException ase) {
 System.err.println("Failed to delete item in " + tableName);
 // Get specific error information
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.getStatusCode());
 System.out.println("AWS Error Code: " + ase.getErrorCode());
 System.out.println("Error Type: " + ase.getErrorType());
 System.out.println("Request ID: " + ase.getRequestId());
 // Get information in case the operation is not successful for other reasons

 } catch (AmazonClientException ace) {
 System.out.println("Caught an AmazonClientException, which means"+
 " the client encountered " +
 "an internal error while trying to " +
 "communicate with DynamoDB, " +

API Version 2012-08-10
521

Amazon DynamoDB Developer Guide
Catching Errors

 "such as not being able to access the network.");
 System.out.println("Error Message: " + ace.getMessage());
 }

Error Retries and Exponential Backoff
Numerous components on a network, such as DNS servers, switches, load-balancers, and others can
generate errors anywhere in the life of a given request.

The usual technique for dealing with these error responses in a networked environment is to implement
retries in the client application. This technique increases the reliability of the application and reduces
operational costs for the developer.

Each AWS SDK supporting DynamoDB implements retry logic, automatically. The AWS SDK for Java
automatically retries requests, and you can configure the retry settings using the ClientConfiguration
class. For example, in some cases, such as a web page making a request with minimal latency and no
retries, you might want to turn off the retry logic. Use the ClientConfiguration class and provide a
maxErrorRetry value of 0 to turn off the retries. For more information, see Using the AWS SDKs with
DynamoDB (p. 53).

If you're not using an AWS SDK, you should retry original requests that receive server errors (5xx).
However, client errors (4xx, other than a ThrottlingException or a
ProvisionedThroughputExceededException) indicate you need to revise the request itself to correct
the problem before trying again.

In addition to simple retries, we recommend using an exponential backoff algorithm for better flow control.
The concept behind exponential backoff is to use progressively longer waits between retries for consecutive
error responses. For example, up to 50 milliseconds before the first retry, up to 100 milliseconds before
the second, up to 200 milliseconds before third, and so on. However, after a minute, if the request has
not succeeded, the problem might be the request size exceeding your provisioned throughput, and not
the request rate. Set the maximum number of retries to stop around one minute. If the request is not
successful, investigate your provisioned throughput options. For more information, see Guidelines for
Working with Tables (p. 66).

Following is a workflow showing retry logic. The workflow logic first determines if the error is a server
error (5xx). Then, if the error is a server error, the code retries the original request.

currentRetry = 0
DO
 set retry to false

 execute DynamoDB request

 IF Exception.errorCode = ProvisionedThroughputExceededException
 set retry to true
 ELSE IF Exception.httpStatusCode = 500
 set retry to true
 ELSE IF Exception.httpStatusCode = 400
 set retry to false
 fix client error (4xx)

 IF retry = true
 wait for (2^currentRetry * 50) milliseconds
 currentRetry = currentRetry + 1

WHILE (retry = true AND currentRetry < MaxNumberOfRetries) // limit retries

API Version 2012-08-10
522

Amazon DynamoDB Developer Guide
Error Retries and Exponential Backoff

Batch Operations and Error Handling
DynamoDB supports batch operations for reads and writes. The BatchGetItem API reads items from
one or more tables, and the BatchWriteItem API puts or deletes items in one or more tables. These
batch APIs are implemented as wrappers around other non-batch DynamoDB operations.BatchGetItem
invokes the GetItem for each item in the batch.BatchWriteItem calls either DeleteItem or PutItem,
as appropriate, for each item in the batch.

A batch operation can tolerate the failure of individual requests in the batch. For example, consider a
BatchGetItem request to read five items. Even if some of the underlying GetItem requests should fail,
this will not cause the BatchGetItem to fail. On the other hand, if all five of the reads should fail, then
the entire BatchGetItem will fail.

The batch operations return information about individual requests that fail, so that you can diagnose the
problem and retry the operation. For BatchGetItem, the tables and primary keys in question are returned
in the UnprocessedKeys parameter of the request. For BatchWriteItem, similar information is returned
in UnprocessedItems.

The most likely cause of a failed read or a failed write is throttling. For BatchGetItem, one or more of
the tables in the batch request does not have enough provisioned read capacity to support the operation.
For BatchWriteItem, one or more of the tables does not have enough provisioned write capacity.

If DynamoDB returns any unprocessed items, you should retry the batch operation on those items.
However, we strongly recommend that you use an exponential backoff algorithm. If you retry the batch
operation immediately, the underlying read or write requests can still fail due to throttling on the individual
tables. If you delay the batch operation using exponential backoff, the individual requests in the batch
are much more likely to succeed.

Operations in DynamoDB
The DynamoDB API supports the following operations:

• BatchGetItem

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• ListTables

• PutItem

• Query

• Scan

• UpdateItem

• UpdateTable

For more information, see the Amazon DynamoDB API Reference.

Note
For backward compatibility with existing applications, DynamoDB also supports the previous
API version (2011-12-05). For more information, see Previous API Version (2011-12-05) (p. 740).

API Version 2012-08-10
523

Amazon DynamoDB Developer Guide
Batch Operations and Error Handling

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchGetItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_ListTables.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

New applications should use the current API version (2012-08-10). For more information on
the current API, see the Amazon DynamoDB API Reference.

API Version 2012-08-10
524

Amazon DynamoDB Developer Guide
Operations in DynamoDB

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

DynamoDB Example Application
Using AWS SDK for Python (Boto):
Tic-Tac-Toe

Topics

• Step 1: Deploy and Test Locally Using DynamoDB Local (p. 526)

• Step 2: Examine the Data Model and Implementation Details (p. 529)

• Step 3: Deploy in Production Using the DynamoDB Service (p. 536)

• Step 4: Clean Up Resources (p. 542)

The Tic-Tac-Toe game is an example web application built on Amazon DynamoDB. The application uses
the AWS SDK for Python (Boto) to make the necessary DynamoDB API calls to store game data in a
DynamoDB table, and the Python web framework Flask to illustrate end-to-end application development
in DynamoDB, including how to model data. It also demonstrates best practices when it comes to modeling
data in DynamoDB, including the table you create for the game application, the primary key you define,
additional indexes you need based on your query requirements, and the use of composite value attributes.

You play the Tic-Tac-Toe application on the web as follows:

1. You log in to the application home page (for example, as user1).

2. User1 then invites another user (for example, user2) to play the game.

Until the opponent accepts the invitation, the game status remains as PENDING. After the opponent
accepts the invite, the game status changes to IN_PROGRESS.

3. The game begins after user2 logs in and accepts the invite.

4. The application stores all game moves and status information in a DynamoDB table.

5. The game ends with a win or a draw, which sets the game status to FINISHED.

The end-to-end application building exercise is described in steps:

• Step 1: Deploy and Test Locally Using DynamoDB Local (p. 526) – In this section, you download,
deploy, and test the application on your local computer.You will use DynamoDB Local to create the
required tables.

API Version 2012-08-10
525

Amazon DynamoDB Developer Guide

• Step 2: Examine the Data Model and Implementation Details (p. 529) – This section first describes
in detail the data model, including the indexes and the use of the composite value attribute. Then the
section explains how the application works.

• Step 3: Deploy in Production Using the DynamoDB Service (p. 536) – This section focuses on
deployment considerations in production. In this step, you create a table using the Amazon DynamoDB
service and deploy the application using AWS Elastic Beanstalk. When you have the application in
production, you also grant appropriate permissions so the application can access the DynamoDB table.
The instructions in this section walk you through the end-to-end production deployment.

• Step 4: Clean Up Resources (p. 542) – This section highlights areas that are not covered by this
example. The section also provides steps for you to remove the AWS resources you created in the
preceding steps so that you avoid incurring any charges.

Step 1: Deploy and Test Locally Using
DynamoDB Local

Topics

• 1.1: Download and Install Required Packages (p. 526)

• 1.2: Test the Game Application (p. 527)

In this step you download, deploy, and test the Tic-Tac-Toe game application on your local computer.
Instead of using the Amazon DynamoDB service, you will use DynamoDB Local to create the required
table locally on your computer.

1.1: Download and Install Required Packages
You will need the following to test this application locally using DynamoDB Local:

• Python

• Flask (a microframework for Python)

• AWS SDK for Python (Boto)

• DynamoDB Local

• Git

To get these tools, do the following:

1. Install Python. For step-by-step instructions, go to Download Python.

The Tic-Tac-Toe application has been tested using Python version 2.7.

2. Install Flask and AWS SDK for Python (Boto) using the Python Package Installer (PIP):

• Install PIP.

For instructions, go to Install PIP. On the installation page, click the get-pip.py link, and then save
the file. Then open a command terminal as an administrator, and type the following at the command
prompt:

python.exe get-pip.py

On Linux, you don't specify the .exe extension.You only specify python get-pip.py.

• Using PIP, install the Flask and Boto packages using the following code:

API Version 2012-08-10
526

Amazon DynamoDB Developer Guide
Step 1: Deploy and Test Locally Using DynamoDB Local

https://www.python.org/downloads/
http://pip.readthedocs.org/en/latest/installing.html

pip install Flask
pip install boto

3. Download DynamoDB Local. For instructions on how to run it, see DynamoDB Local.

4. Download the Tic-Tac-Toe application:

a. Install Git. For instructions, go to git Downloads.

b. Execute the following code to download the application:

git clone https://github.com/awslabs/dynamodb-tictactoe-example-app.git

1.2:Test the Game Application
To test the Tic-Tac-Toe application, you need DynamoDB Local running locally on your computer.

To run the Tic-Tac-Toe application

1. Start DynamoDB Local.

2. Start the web server for the Tic-Tac-Toe application.

To do so, open a command terminal, navigate to the folder where you downloaded the Tic-Tac-Toe
application, and run the application locally using the following code:

python.exe application.py --mode local --serverPort 5000 --port 8000

On Linux, you don't specify the .exe extension.

3. Open your web browser, and type the following:

http://localhost:5000/

The browser shows the home page:

4. Type user1 in the Log in box to log in as user1.

Note
This example application does not perform any user authentication.The user ID is only used
to identify players. If two players log in with the same alias, the application works as if you
are playing in two different browsers.

5. If this is your first time playing the game, a page appears requesting you to create the required table
(Games) in DynamoDB Local. Click CREATE TABLE.

API Version 2012-08-10
527

Amazon DynamoDB Developer Guide
1.2:Test the Game Application

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html
http://git-scm.com/downloads

6. Click CREATE to create the first tic-tac-toe game.

7. Type user2 in the Choose an Opponent box, and click Create Game!

Doing this creates the game by adding an item in the Games table. It sets the game status to PENDING.

8. Open another browser window, and type the following.

http://localhost:5000/

The browser passes information through cookies, so you should use incognito mode or private
browsing so that your cookies don't carry over.

9. Log in as user2.

A page appears that shows a pending invitation from user1.

10. Click accept to accept the invitation.

API Version 2012-08-10
528

Amazon DynamoDB Developer Guide
1.2:Test the Game Application

The game page appears with an empty tic-tac-toe grid.The page also shows relevant game information
such as the game ID, whose turn it is, and game status.

11. Play the game.

For each user move, the web service sends a request to DynamoDB to conditionally update the game
item in the Games table. For example, the conditions ensure the move is valid, the square the user clicked
is available, and it was the turn of the user who made the move. For a valid move, the update operation
adds a new attribute corresponding to the click on the board. The update operation also sets the value
of the existing attribute to the user who can make the next move.

On the game page, the application makes asynchronous JavaScript calls every second, for up to five
minutes, to check if the game state in DynamoDB has changed. If it has, the application updates the page
with new information. After five minutes, the application stops making the requests and you need to refresh
the page to get updated information.

Step 2: Examine the Data Model and
Implementation Details

Topics

• 2.1: Basic Data Model (p. 529)

• 2.2: Application in Action (Code Walkthrough) (p. 531)

2.1: Basic Data Model
This example application highlights the following DynamoDB data model concepts:

• Table – In DynamoDB, a table is a collection of items (that is, records), and each item is a collection
of name-value pairs called attributes. For more information on the DynamoDB data model, see
DynamoDB Data Model (p. 3).

In this Tic-Tac-Toe example, the application stores all game data in a table, Games. The application
creates one item in the table per game and stores all game data as attributes. A tic-tac-toe game can
have up to nine moves. Because DynamoDB tables do not have a schema in cases where only the
primary key is the required attribute, the application can store varying number of attributes per game
item.

API Version 2012-08-10
529

Amazon DynamoDB Developer Guide
Step 2: Examine the Data Model and Implementation

Details

The Games table has a hash-type primary key made of the one attribute, GameId, of string type. The
application assigns a unique ID to each game. For more information on DynamoDB primary keys, see
Primary Key (p. 5).

When a user initiates a tic-tac-toe game by inviting another user to play, the application creates a new
item in the Games table with attributes storing game metadata, such as the following:

• HostId, the user who initiated the game.

• Opponent, the user who was invited to play.

• The user whose turn it is to play. The user who initiated the game plays first.

• The user who uses the O symbol on the board.The user who initiates the games uses the O symbol.

In addition, the application creates a StatusDate composite attribute, marking the initial game state
as PENDING.The following screenshot shows an example item as it appears in the DynamoDB console:

As the game progresses, the application adds one attribute to the table for each game move. The
attribute name is the board position, for example TopLeft or BottomRight. For example, a move
might have a TopLeft attribute with the value O, a TopRight attribute with the value O, and a
BottomRight attribute with the value X. The attribute value is either O or X, depending on which user
made the move. For example, consider the following board:

• Composite value attributes – The StatusDate attribute illustrates a composite value attribute. In
this approach, instead of creating separate attributes to store game status (PENDING, IN_PROGRESS,
and FINISHED) and date (when the last move was made), you combine them as single attribute, for
example IN_PROGRESS_2014-04-30 10:20:32.

The application then uses the StatusDate attribute in creating secondary indexes by specifying
StatusDate as a range attribute of the index key. The benefit of using the StatusDate composite
value attribute is further illustrated in the indexes discussed next.

• Global secondary indexes – You can use the table's primary key, GameId, to efficiently query the
table to find a game item. To query the table on attributes other than the primary key attributes,
DynamoDB supports the creation of secondary indexes. In this example application, you build the
following two secondary indexes:

API Version 2012-08-10
530

Amazon DynamoDB Developer Guide
2.1: Basic Data Model

• hostStatusDate. This index has HostId as a hash key and StatusDate as a range key.You can
use this index to query on HostId, for example to find games hosted by a particular user.

• opponentStatusDate. This index has Opponent as a hash key and StatusDate as a range key.
You can use this index to query on Opponent, for example to find games where a particular user is
the opponent.

These indexes are called global secondary indexes because the hash key attribute in these indexes
is not the same the hash key attribute GameId, used in the primary key of the table.

Note that both the indexes specify StatusDate, a composite range attribute. Doing this enables the
following:

• You can query using the BEGINS_WITH comparison operator. For example, you can find all games
with the IN_PROGRESS attribute hosted by a particular user. In this case, the BEGINS_WITH operator
checks for the StatusDate value that begins with IN_PROGRESS.

• DynamoDB keeps items in the index sorted by range attribute. So if all status prefixes are the same
(for example, IN_PROGRESS), the ISO format used for the date part will have items sorted from oldest
to the newest. This approach enables certain queries to be performed efficiently, for example the
following:

• Retrieve up to 10 of the most recent IN_PROGRESS games hosted by the user who is logged in.
For this query, you specify the hostStatusDate index.

• Retrieve up to 10 of the most recent IN_PROGRESS games where the user logged in is the opponent.
For this query, you specify the opponentStatusDate index.

For more information about secondary indexes, see Improving Data Access with Secondary Indexes in
DynamoDB (p. 248).

2.2: Application in Action (Code Walkthrough)
This application has two main pages:

• Home page – This page provides the user a simple login, a CREATE button to create a new tic-tac-toe
game, a list of games in progress, game history, and any active pending game invitations.

The home page is not refreshed automatically; you must refresh the page to refresh the lists.

• Game page – This page shows the tic-tac-toe grid where users play.

The application updates the game page automatically every second. The JavaScript in your browser
calls the Python web server every second to query the Games table whether the game items in the
table have changed. If they have, JavaScript triggers a page refresh so that the user sees the updated
board.

Let us see in detail how the application works.

API Version 2012-08-10
531

Amazon DynamoDB Developer Guide
2.2: Application in Action (Code Walkthrough)

Home Page
After the user logs in, the application displays the following three lists of information:

• Invitations – This list shows up to the 10 most recent invitations from others that are pending acceptance
by the user who is logged in. In the preceding screenshot, user1 has invitations from user5 and user2
pending.

• Games In-Progress – This list shows up to the 10 most recent games that are in progress. These are
games that the user is actively playing, which have the status IN_PROGRESS. In the screenshot, user1
is actively playing a tic-tac-toe game with user3 and user4.

• Recent History – This list shows up to the 10 most recent games that the user finished, which have
the status FINISHED. In game shown in the screenshot, user1 has previously played with user2. For
each completed game, the list shows the game result.

In the code, the index function (in application.py) makes the following three calls to retrieve game
status information:

inviteGames = controller.getGameInvites(session["username"])
inProgressGames = controller.getGamesWithStatus(session["username"], "IN_PRO
GRESS")
finishedGames = controller.getGamesWithStatus(session["username"], "FINISHED")

Each of these calls return a list of items from DynamoDB that are wrapped by the Game objects. It is easy
to extract data from these objects in the view. The index function passes these object lists to the view to
render the HTML.

return render_template("index.html",
 user=session["username"],
 invites=inviteGames,
 inprogress=inProgressGames,
 finished=finishedGames)

The Tic-Tac-Toe application defines the Game class primarily to store game data retrieved from DynamoDB.
These functions return lists of Game objects that enable you to isolate the rest of the application from code
related to Amazon DynamoDB items.Thus, these functions help you decouple your application code from
the details of the data store layer.

The architectural pattern described here is also referred as the model-view-controller (MVC) UI pattern.
In this case, the Game object instances (representing data) are the model, and the HTML page is the
view. The controller is divided into two files. The application.py file has the controller logic for the

API Version 2012-08-10
532

Amazon DynamoDB Developer Guide
2.2: Application in Action (Code Walkthrough)

Flask framework, and the business logic is isolated in the gameController.py file.That is, the application
stores everything that has to do with DynamoDB SDK in its own separate file in the dynamodb folder.

Let us review the three functions and how they query the Games table using global secondary indexes
to retrieve relevant data.

Using getGameInvites to Get the List of Pending Game Invitations

The getGameInvites function retrieves the list of the 10 most recent pending invitations. These games
have been created by users, but the opponents have not accepted the game invitations. For these games,
the status remains PENDING until the opponent accepts the invite. If the opponent declines the invite, the
application remove the corresponding item from the table.

The function specifies the query as follows:

• It specifies the opponentStatusDate index to use with the following index key values and comparison
operators:

• The hash attribute is OpponentId and takes the index key user ID.

• The range attribute is StatusDate and takes the comparison operator and index key value
beginswith="PENDING_".

You use the opponentStatusDate index to retrieve games to which the logged-in user is invited—that
is, where the logged-in user is the opponent.

• The query limits the result to 10 items.

gameInvitesIndex = self.cm.getGamesTable().query(
 Opponent__eq=user,
 StatusDate__beginswith="PENDING_",

 index="opponentStatusDate",
 limit=10)

In the index, for each OpponentId (the hash attribute) DynamoDB keeps items sorted by StatusDate
(the range attribute). Therefore, the games that the query returns will be the 10 most recent games.

Using getGamesWithStatus to Get the List of Games with a Specific Status

After an opponent accepts a game invitation, the game status changes to IN_PROGRESS. After the game
completes, the status changes to FINISHED.

Queries to find games that are either in progress or finished are the same except for the different status
value. Therefore, the application defines the getGamesWithStatus function, which takes the status
value as a parameter.

inProgressGames = controller.getGamesWithStatus(session["username"], "IN_PRO
GRESS")
finishedGames = controller.getGamesWithStatus(session["username"], "FINISHED")

The following section discusses in-progress games, but the same description also applies to finished
games.

A list of in-progress games for a given user includes both the following:

• In-progress games hosted by the user

API Version 2012-08-10
533

Amazon DynamoDB Developer Guide
2.2: Application in Action (Code Walkthrough)

• In-progress games where the user is the opponent

The getGamesWithStatus function runs the following two queries, each time using the appropriate
secondary index.

• The function queries the Games table using the hostStatusDate index. For the index, the query
specifies primary key values—both the hash attribute (HostId) and range attribute (StatusDate)
values, along with comparison operators.

hostGamesInProgress = self.cm.getGamesTable ().query(HostId__eq=user,
 StatusDate__beginswith=status,

 index="hostStatusDate",
 limit=10)

Note the Python syntax for comparison operators:

• HostId__eq=user specifies the equality comparison operator.

• StatusDate__beginswith=status specifies the BEGINS_WITH comparison operator.

• The function queries the Games table using the opponentStatusDate index.

oppGamesInProgress = self.cm.getGamesTable().query(Opponent__eq=user,
 StatusDate__beginswith=status,
 index="opponentStatusDate",
 limit=10)

• The function then combines the two lists, sorts, and for the first 0 to 10 items creates a list of the Game
objects and returns the list to the calling function (that is, the index).

games = self.mergeQueries(hostGamesInProgress,
 oppGamesInProgress)
return games

Game Page
The game page is where the user plays tic-tac-toe games. It shows the game grid along with game-relevant
information. The following screenshot shows an example game in progress:

API Version 2012-08-10
534

Amazon DynamoDB Developer Guide
2.2: Application in Action (Code Walkthrough)

The application displays the game page in the following situations:

• The user creates a game inviting another user to play.

In this case, the page shows the user as host and the game status as PENDING, waiting for the opponent
to accept.

• The user accepts one of the pending invitations on the home page.

In this case, the page show the user as the opponent and game status as IN_PROGRESS.

A user click on the board generates a form POST request to the application. That is, Flask calls the
selectSquare function (in application.py) with the HTML form data. This function, in turn, calls the
updateBoardAndTurn function (in gameController.py) to update the game item as follows:

• It adds a new attribute specific to the move.

• It updates the Turn attribute value to the user whose turn is next.

controller.updateBoardAndTurn(item, value, session["username"])

The function returns true if the item update was successful; otherwise, it returns false. Note the following
about the updateBoardAndTurn function:

• The AWS SDK for Python API function calls are to low-level functions and not to mid-level functions
as in other parts of the code. Use of the low-level API lets the application have full control over the
request it sends to perform the update.

The mid-level API requires you to get an item first in order to update it using the UpdateItem API
operation. For information about the mid-level Python API for DynamoDB, go to DynamoDB API. Note
that these mid-level API functions are referred to as high-level in the SDK.

• The function calls the update_item function of the AWS SDK for Python to make a finite set of updates
to an existing item. The function maps to the UpdateItem DynamoDB API operation. For more
information, see UpdateItem.

Note
The difference between the UpdateItem and PutItem operations is that PutItem replaces
the entire item. For more information, see PutItem.

For the update_item call, the code identifies the following:

• The primary key of the Games table (that is, ItemId).

key = { "GameId" : { "S" : gameId } }

• The new attribute to add, specific to the current user move, and its value (for example, TopLeft="X").

 attributeUpdates = {
 position : {
 "Action" : "PUT",
 "Value" : { "S" : representation }
 }
 }

• Conditions that must be true for the update to take place:

API Version 2012-08-10
535

Amazon DynamoDB Developer Guide
2.2: Application in Action (Code Walkthrough)

http://boto.readthedocs.org/en/latest/ref/dynamodb2.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

• The game must be in progress. That is, the StatusDate attribute value must begin with
IN_PROGRESS.

• The current turn must be a valid user turn as specified by the Turn attribute.

• The square that the user clicked must be available.That is, the attribute corresponding to the square
must not exist.

expectations = {"StatusDate" : {"AttributeValueList": [{"S" : "IN_PROGRESS_"}],

 "ComparisonOperator": "BEGINS_WITH"},
 "Turn" : {"Value" : {"S" : current_player}},
 position : {"Exists" : False}}

Now the function calls update_item to update the item.

 self.cm.db.update_item("Games", key=key,
 attribute_updates=attributeUpdates,
 expected=expectations)

After the function returns, the selectSquare function calls redirect as shown in the following example:

redirect("/game="+gameId)

This call causes the browser to refresh. As part of this refresh, the application checks to see if the game
has ended in a win or draw. If it has, the application will update the game item accordingly.

Step 3: Deploy in Production Using the
DynamoDB Service

Topics

• 3.1: Create an IAM Role for Amazon EC2 (p. 537)

• 3.2: Create the Games Table in Amazon DynamoDB (p. 538)

• 3.3: Bundle and Deploy Tic-Tac-Toe Application Code (p. 538)

• 3.4: Set Up the AWS Elastic Beanstalk Environment (p. 539)

In the preceding sections, you deployed and tested the Tic-Tac-Toe application locally on your computer
using DynamoDB Local. Now, you deploy the application in production as follows:

• Deploy the application using Elastic Beanstalk, an easy-to-use service for deploying and scaling web
applications and services. For more information, go to Deploying a Flask Application to AWS Elastic
Beanstalk.

Elastic Beanstalk will launch one or more Amazon Elastic Compute Cloud (Amazon EC2) instances,
which you configure through Elastic Beanstalk, on which your Tic-Tac-Toe application will run.

• Using the Amazon DynamoDB service, create a Games table that exists on AWS rather than locally
on your computer.

API Version 2012-08-10
536

Amazon DynamoDB Developer Guide
Step 3: Deploy in Production

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Python_flask.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Python_flask.html

In addition, you also have to configure permissions. Any AWS resources you create, such as the Games
table in DynamoDB, are private by default. Only the resource owner, that is the AWS account that created
the Games table, can access this table. Thus, by default your Tic-Tac-Toe application cannot update the
Games table.

To grant necessary permissions, you will create an AWS Identity and Access Management (IAM) role
and grant this role permissions to access the Games table.Your Amazon EC2 instance first assumes
this role. In response, AWS returns temporary security credentials that the Amazon EC2 instance can
use to update the Games table on behalf of the Tic-Tac-Toe application. When you configure your Elastic
Beanstalk application, you specify the IAM role that the Amazon EC2 instance or instances can assume.
For more information about IAM roles, go to IAM Roles for Amazon EC2 in the Amazon EC2 User Guide
for Linux Instances.

Note
Before you create Amazon EC2 instances for the Tic-Tac-Toe application, you must first decide
the AWS region where you want Elastic Beanstalk to create the instances. After you create the
Elastic Beanstalk application, you provide the same region name and endpoint in a configuration
file. The Tic-Tac-Toe application uses information in this file to create the Games table and send
subsequent requests in a specific AWS region. Both the DynamoDB Games table and the
Amazon EC2 instances that Elastic Beanstalk launches must be in the same AWS region. For
a list of available regions, go to Amazon DynamoDB in the Amazon Web Services General
Reference.

In summary, you do the following to deploy the Tic-Tac-Toe application in production:

1. Create an IAM role using the AWS IAM service.You will attach a policy to this role granting permissions
for DynamoDB actions to access the Games table.

2. Bundle the Tic-Tac-Toe application code and a configuration file, and create a .zip file.You use this
.zip file to give the Tic-Tac-Toe application code to Elastic Beanstalk to put on your servers. For more
information on creating a bundle, go to Creating an Application Source Bundle in the AWS Elastic
Beanstalk Developer Guide.

In the configuration file (beanstalk.config), you provide AWS region and endpoint information.The
Tic-Tac-Toe application uses this information to determine which DynamoDB region to talk to.

3. Set up the Elastic Beanstalk environment. Elastic Beanstalk will launch an Amazon EC2 instance or
instances and deploy your Tic-Tac-Toe application bundle on them. After the Elastic Beanstalk
environment is ready, you provide the configuration file name by adding the CONFIG_FILE environment
variable.

4. Create the DynamoDB table. Using the Amazon DynamoDB service, you create the Games table on
AWS, rather than locally on your computer. Remember, this table has a hash-type primary key made
of the GameId hash attribute of string type.

5. Test the game in production.

3.1: Create an IAM Role for Amazon EC2
Creating an IAM role of the Amazon EC2 type will allow the Amazon EC2 instance that is running your
Tic-Tac-Toe application to assume the correct IAM role and make application requests to access the
Games table.When creating the role, choose the Custom Policy option and copy and paste the following
policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Action":[

API Version 2012-08-10
537

Amazon DynamoDB Developer Guide
3.1: Create an IAM Role for Amazon EC2

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#ddb_region
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deployment.source.html

 "dynamodb:ListTables"
],
 "Effect":"Allow",
 "Resource":"*"
 },
 {
 "Action":[
 "dynamodb:*"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:dynamodb:us-west-2:922852403271:table/Games"
]
 }
]
}

For further instructions, go to Creating a Role for an AWS Service (AWS Management Console) in IAM
User Guide.

3.2: Create the Games Table in Amazon DynamoDB
The Games table in DynamoDB stores game data. If the table does not exist, the application will create
the table for you. In this case, we will let the application create the Games table.

3.3: Bundle and Deploy Tic-Tac-Toe Application
Code
If you followed this example's steps, then you already have the downloaded the Tic-Tac-Toe application.
If not, download the application and extract all the files to a folder on your local computer. For instructions,
see Step 1: Deploy and Test Locally Using DynamoDB Local (p. 526).

After you extract all files, note that you will have a code folder.To hand off this folder to Electric Beanstalk,
you will bundle the contents of this folder as a .zip file. First, you need to add a configuration file to that
folder.Your application will use the region and endpoint information to create a DynamoDB table in the
specified region and make subsequent table operation requests using the specified endpoint.

1. Switch to the folder where you downloaded the Tic-Tac-Toe application.

2. In the root folder of the application, create a text file named beanstalk.config with the following
content:

[dynamodb]
region=<AWS region>
endpoint=<DynamoDB endpoint>

For example, you might use the following content:

[dynamodb]
region=us-west-2
endpoint=dynamodb.us-west-2.amazonaws.com

For a list of available regions, go to Amazon DynamoDB in the Amazon Web Services General
Reference.

API Version 2012-08-10
538

Amazon DynamoDB Developer Guide
3.2: Create the Games Table in Amazon DynamoDB

http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#ddb_region

Important
The region specified in the configuration file is the location where the Tic-Tac-Toe application
creates the Games table in DynamoDB.You must create the Elastic Beanstalk application
discussed in the next section in the same region.

Note
When you create your Elastic Beanstalk application, you will request to launch an environment
where you can choose the environment type. To test the Tic-Tac-Toe example application,
you can choose the Single Instance environment type, skip the following, and go to the
next step.
However, note that the Load balancing, autoscaling environment type provides a highly
available and scalable environment, something you should consider when you create and
deploy other applications. If you choose this environment type, you will also need to generate
a UUID and add it to the configuration file as shown following:

[dynamodb]
region=us-west-2
endpoint=dynamodb.us-west-2.amazonaws.com
[flask]
secret_key= 284e784d-1a25-4a19-92bf-8eeb7a9example

In client-server communication when the server sends response, for security's sake the
server sends a signed cookie that the client sends back to the server in the next request.
When there is only one server, the server can locally generate an encryption key when it
starts. When there are many servers, they all need to know the same encryption key;
otherwise, they won't be able to read cookies set by the peer servers. By adding secret_key
to the configuration file, we tell all servers to use this encryption key.

3. Zip the content of the root folder of the application (which includes the beanstalk.config file)—for
example, TicTacToe.zip.

4. Upload the .zip file to an Amazon Simple Storage Service (Amazon S3) bucket. In the next section,
you provide this .zip file to Elastic Beanstalk to upload on the server or servers.

For instructions on how to upload to an Amazon S3 bucket, go to the Create a Bucket and Add an
Object to a Bucket topics in the Amazon Simple Storage Service Getting Started Guide.

3.4: Set Up the AWS Elastic Beanstalk Environment
In this step, you create an Elastic Beanstalk application, which is a collection of components including
environments. For this example, you will launch one Amazon EC2 instance to deploy and run your
Tic-Tac-Toe application.

Now the game page will appear.

API Version 2012-08-10
539

Amazon DynamoDB Developer Guide
3.4: Set Up the AWS Elastic Beanstalk Environment

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html

Both testuser1 and testuser2 can play the game. For each move, the application will save the move in
the corresponding item in the Games table.

1. Type the following custom URL to set up an Elastic Beanstalk console to set up the environment:

https://console.aws.amazon.com/elasticbeanstalk/?region=<AWS-Region>#/newAp
plication
?applicationName=TicTacToeyour-name
&solutionStackName=Python
&sourceBundleUrl=https://s3.amazonaws.com/<bucket-name>/TicTacToe.zip
&environmentType=SingleInstance
&instanceType=t1.micro

For more information about custom URLs, go to Constructing a Launch Now URL in the AWS Elastic
Beanstalk Developer Guide. For the URL, note the following:

• You will need to provide an AWS region name (the same as the one you provided in the
configuration file), an Amazon S3 bucket name, and the object name.

• For testing, the URL requests the SingleInstance environment type, and t1.micro as the instance
type.

• The application name must be unique. Thus, in the preceding URL, we suggest you prepend your
name to the applicationName.

Doing this opens the Elastic Beanstalk console. In some cases, you might need to sign in.

2. In the Elastic Beanstalk console, click Review and Launch, and then click Launch.

3. Note the URL for future reference. This URL opens your Tic-Tac-Toe application home page.

4. Configure the Tic-Tac-Toe application so it knows the location of the configuration file.

API Version 2012-08-10
540

Amazon DynamoDB Developer Guide
3.4: Set Up the AWS Elastic Beanstalk Environment

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/launch-now-url.html

After Elastic Beanstalk creates the application, click Configuration.

a. Click the gear box next to Software Configuration, as shown in the following screenshot.

b. At the end of the Environment Properties section, type CONFIG_FILE and its value
beanstalk.config, and then click Save.

It might take a few minutes for this environment update to complete.

After the update completes, you can play the game.

5. In the browser, type the URL you copied in the previous step, as shown in the following example.

http://<pen-name>.elasticbeanstalk.com

Doing this will open the application home page.

6. Log in as testuser1, and click CREATE to start a new tic-tac-toe game.

7. Type testuser2 in the Choose an Opponent box.

API Version 2012-08-10
541

Amazon DynamoDB Developer Guide
3.4: Set Up the AWS Elastic Beanstalk Environment

8. Open another browser window.

Make sure that you clear all cookies in your browser window so you won't be logged in as same user.

9. Type the same URL to open the application home page, as shown in the following example:

http://<env-name>.elasticbeanstalk.com

10. Log in as testuser2.

11. For the invitation from testuser1 in the list of pending invitations, click accept.

Step 4: Clean Up Resources
Now you have completed the Tic-Tac-Toe application deployment and testing. The application covers
end-to-end web application development on Amazon DynamoDB, except for user authentication. The
application uses the login information on the home page only to add a player name when creating a game.
In a production application, you would add the necessary code to perform user login and authentication.

If you are done testing, you can remove the resources you created to test the Tic-Tac-Toe application to
avoid incurring any charges.

To remove resources you created

1. Remove the Games table you created in DynamoDB.

2. Terminate the Elastic Beanstalk environment to free up the Amazon EC2 instances.

3. Delete the IAM role you created.

4. Remove the object you created in Amazon S3.

API Version 2012-08-10
542

Amazon DynamoDB Developer Guide
Step 4: Clean Up Resources

Additional Tools and Resources
For DynamoDB

Topics

• DynamoDB Local (p. 543)

• JavaScript Shell for DynamoDB Local (p. 547)

• Amazon DynamoDB Storage Backend for Titan (p. 551)

• Logstash Plugin for Amazon DynamoDB (p. 572)

• AWS Command Line Interface for DynamoDB (p. 578)

This section describes some additional tools and resources for application development with Amazon
DynamoDB.

Tip
For more best practices, how-to guides and tools, be sure to check the DynamoDB Developer
Resources page:

• http://aws.amazon.com/dynamodb/developer-resources/

DynamoDB Local
Topics

• Downloading and Running DynamoDB Local (p. 544)

• Setting the Endpoint (p. 545)

• Usage Notes (p. 545)

• Differences Between DynamoDB Local and DynamoDB (p. 546)

DynamoDB Local is a small client-side database and server that mimics the DynamoDB service. DynamoDB
Local enables you to write applications that use the DynamoDB API, without actually manipulating any
tables or data in DynamoDB. Instead, all of the API actions are rerouted to DynamoDB Local. When your
application creates a table or modifies data, those changes are written to a local database. This lets you
save on provisioned throughput, data storage, and data transfer fees.

API Version 2012-08-10
543

Amazon DynamoDB Developer Guide
DynamoDB Local

http://aws.amazon.com/dynamodb/developer-resources/

DynamoDB Local is compatible with the DynamoDB API. When you are ready to deploy your application,
you simply redirect it to DynamoDB, without having to modify your application code. In addition, you do
not need to have an Internet connection to use DynamoDB Local.You can develop applications without
having to be connected to the network.

Note
DynamoDB Local also includes the JavaScript Shell, an interactive browser-based interface for
DynamoDB Local.To learn more about the JavaScript Shell, see JavaScript Shell for DynamoDB
Local (p. 547).

Downloading and Running DynamoDB Local
DynamoDB Local is available as an executable .jar file. It will run on Windows, Linux, Mac OS X, and
other platforms that support Java. Follow the steps in this procedure to download and run DynamoDB
Local.

1. Download DynamoDB Local for free using one of these links:

• .tar.gz format: http://dynamodb-local.s3-website-us-west-2.amazonaws.com/
dynamodb_local_latest.tar.gz

• .zip format: http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest.zip

Important
DynamoDB Local supports the Java Runtime Engine (JRE) version 6.x or newer; it will not
run on older JRE versions.

2. After you have downloaded the archive to your computer, extract the contents and copy the extracted
directory to a location of your choice.

3. To start DynamoDB Local, open a command prompt window, navigate to the directory where you
extracted DynamoDBLocal.jar, and enter the following command:

java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -
sharedDb

The DynamoDB Local command line accepts the following options:

• -cors value — Enable CORS support (cross-origin resource sharing) for JavaScript.You must
provide a comma-separated "allow" list of specific domains. The default setting for -cors is an
asterisk (*), which allows public access.

• -dbPath value — The directory where DynamoDB Local will write its database file. If you do not
specify this option, the file will be written to the current directory. Note that you cannot specify both
--dbPath and --inMemory at once.

• -delayTransientStatuses — Causes DynamoDB Local to introduce delays for certain
operations. DynamoDB Local can perform some tasks almost instantaneously, such as
create/update/delete operations on tables and indexes; however, the actual DynamoDB service
requires more time for these tasks. Setting this parameter helps DynamoDB Local simulate the
behavior of DynamoDB more closely. (Currently, this parameter introduces delays only for global
secondary indexes that are in either CREATING or DELETING status.)

• -help — Prints a usage summary and options for DynamoDB Local .

• -inMemory — DynamoDB Local will run in memory, instead of using a database file. When you
stop DynamoDB Local, none of the data will be saved. Note that you cannot specify both --dbPath
and --inMemory at once.

• -optimizeDbBeforeStartup — Optimizes the underlying database tables before starting up
the DynamoDB Local server.You must also specify -dbPath when you use this parameter.

API Version 2012-08-10
544

Amazon DynamoDB Developer Guide
Downloading and Running DynamoDB Local

http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest.tar.gz
http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest.tar.gz
http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest.zip

• -port value — The port number that DynamoDB Local will use to communicate with your
application. If you do not specify this option, the default port is 8000.

Note
DynamoDB Local uses port 8000 by default. If port 8000 is unavailable, this command
will throw an exception.You can use the -port option to specify a different port number.
For a complete list of DynamoDB Local runtime options, including -port , type this
command:
java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar
-help

• -sharedDb — DynamoDB Local will use a single database file, instead of using separate files for
each credential and region. If you specify -sharedDb, all DynamoDB Local clients will interact
with the same set of tables regardless of their region and credential configuration.

DynamoDB Local will process incoming requests until you stop it. To stop DynamoDB Local, type
Ctrl+C in the command prompt window.

Setting the Endpoint
To run an application with DynamoDB Local, you will need to modify your client object so that it can find
the endpoint for DynamoDB Local. The way that you do this depends on what programming language
and AWS software development kit (SDK) you are using. The following code snippets show examples of
setting the endpoint to the default URL for DynamoDB Local (http://localhost:8000).

Java

client = new AmazonDynamoDBClient(credentials);
client.setEndpoint("http://localhost:8000");

.NET

var config = new AmazonDynamoDBConfig();
config.ServiceURL = "http://localhost:8000";
client = new AmazonDynamoDBClient(config);

PHP

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2', #replace with your desired region
 'endpoint' => 'http://localhost:8000'
));

When you run your program, you should see diagnostic messages in the window where DynamoDB Local
is running, indicating that DynamoDB Local is processing requests from your code.

Usage Notes
Except for the endpoint, applications that work with DynamoDB Local should also work with the DynamoDB
service. However, you should be aware of the following:

API Version 2012-08-10
545

Amazon DynamoDB Developer Guide
Setting the Endpoint

• If you use the -sharedDb option, DynamoDB Local creates a single database file named
shared-local-instance.db. Every program that connects to DynamoDB Local will access this file. If you
delete the file, you will lose any data you have stored in it.

• If you omit -sharedDb, the database file will be named myaccesskeyid_region.db, with the AWS access
key ID and region as they appear in your application configuration. If you delete the file, you will lose
any data you have stored in it.

• If you use the -inMemory option, DynamoDB Local does not write any database files at all. Instead,
all data is written to memory, and the data is not saved when you terminate DynamoDB Local.

• If you use the -optimizeDbBeforeStartup option, you must also specify the -dbPath parameter
so that DynamoDB Local will be able to find its database file.

Differences Between DynamoDB Local and
DynamoDB
DynamoDB Local attempts to emulate the actual DynamoDB service as closely as possible; however,
there are several differences:

• Regions and distinct AWS accounts are not supported at the client level.

• DynamoDB Local ignores provisioned throughput settings, even though the API requires them. For
CreateTable, you can specify any numbers you want for provisioned read and write throughput, even
though these numbers will not be used.You can call UpdateTable as many times as you like per day;
however, any changes to provisioned throughput values are ignored.

• DynamoDB Local does not throttle read or write activity. CreateTable, UpdateTable and
DeleteTable operations occur immediately, and table state is always ACTIVE. The speed of read
and write operations on table data are limited only by the speed of your computer.

• DynamoDB Local does not throttle read or write activity. The speed of read and write operations on
table data are limited only by the speed of your computer.CreateTable and DeleteTable operations
will occur immediately, and table state is always ACTIVE. UpdateTable operations that only change
the provisioned throughput settings on tables and/or global secondary indexes will occur immediately.
If an UpdateTable operation creates or deletes any global secondary indexes, then those indexes
transition through normal states (such as CREATING and DELETING, respectively) before they become
ACTIVE state. The table remains ACTIVE during this time.

• Read operations in DynamoDB Local are eventually consistent. However, due to the speed of DynamoDB
Local, most reads will actually appear to be strongly consistent.

• DynamoDB Local does not keep track of consumed capacity. In API responses, nulls are returned
instead of capacity units.

• DynamoDB Local does not keep track of item collection metrics; nor does it support item collection
sizes. In API responses, nulls are returned instead of item collection metrics.

• In the DynamoDB API, there is a 1 MB limit on data returned per result set. The DynamoDB service
enforces this limit, and so does DynamoDB Local. However, when querying an index, DynamoDB only
calculates the size of the projected key and attributes. By contrast, DynamoDB Local calculates the
size of the entire item.

• If you are leveraging DynamoDB Streams, the rate at which shards are created might differ: In
DynamoDB, shard creation behavior is partially influenced by table partition activity; however, in
DynamoDB Local, there is no table partitioning. In either case, shards are ephemeral, so your application
should not be dependent on shard behavior.

API Version 2012-08-10
546

Amazon DynamoDB Developer Guide
Differences Between DynamoDB Local and DynamoDB

JavaScript Shell for DynamoDB Local
The JavaScript Shell for DynamoDB Local can help jump-start your usage of DynamoDB, all within an
interactive, hands-on environment. The JavaScript Shell is bundled with DynamoDB Local, and provides
an easy-to-use environment for prototyping and application development.

To get started with the JavaScript Shell, do the following:

• Download the latest version of DynamoDB Local, and then run it on your computer. For details on how
to do this, see Downloading and Running DynamoDB Local (p. 544).

• Open a web browser on your computer and go to the following URL: http://localhost:8000/shell

Note
We recommend that you run the DynamoDB Local JavaScript shell on Firefox or Chrome. If
you run the JavaScript shell in other browsers, errors may occur.

Tutorial
If this is your first time using the JavaScript Shell, we recommend that you take advantage of the built-in
tutorial.The tutorial gives you a guided tour of the JavaScript Shell, and shows you how to build a working
JavaScript application that runs on top of DynamoDB Local.

To launch the tutorial, go to the right side of the screen and type tutorial.start() as shown below:

API Version 2012-08-10
547

Amazon DynamoDB Developer Guide
JavaScript Shell for DynamoDB Local

http://localhost:8000/shell

Use the arrows at the bottom of the window to navigate to different sections within the tutorial.

API Version 2012-08-10
548

Amazon DynamoDB Developer Guide
Tutorial

Code Editor
After you complete the tutorial, you can interact with DynamoDB Local using the code editor on the left
side of the screen. The JavaScript Shell uses the JavaScript API for DynamoDB, so that you can issue
API calls and see the results immediately. In addition, the code editor is preloaded with JavaScript snippets
and macros for listing tables, issuing queries, manipulating data, and much more. Type Ctrl+Space in
the editor for a complete list.

The following screen shots show the editor in action. We begin by typing describeTable and then entering
Ctrl+Space, as shown below.

API Version 2012-08-10
549

Amazon DynamoDB Developer Guide
Code Editor

The autocompletion feature displays the matching snippets. For this exercise, we select the
describeTable snippet. The editor expands the snippet in the editor window, where it is ready for
editing.

To describe a table, we replace the placeholder TableName: with an actual table name, and then click
the Run button as shown below.

The results of describeTable are displayed in the right side of the window.

API Version 2012-08-10
550

Amazon DynamoDB Developer Guide
Code Editor

Tip
Use the toolbar in the upper right corner of the window to access other features of the JavaScript
Shell. If you need help, click the question mark button (?).

Amazon DynamoDB Storage Backend for Titan
The DynamoDB Storage Backend for Titan package is a storage backend for the Titan graph database
implemented on top of Amazon DynamoDB. Titan is a scalable graph database optimized for storing and
querying graphs. The DynamoDB Storage Backend for Titan package is available on GitHub. The Titan:
Distributed Graph Database is also available on GitHub: Titan Version 0.4.4 and Titan Version 0.5.4.

The following sections describe graph databases, some use cases for graph databases, and how to use
the Titan: Distributed Graph Database with the DynamoDB Storage Backend.

Topics

• Working with Graph Databases (p. 552)

• Titan with the DynamoDB Storage Backend for Titan (p. 553)

• Titan Features (p. 553)

• Getting Started with the DynamoDB Storage Backend for Titan (p. 555)

• Titan Graph Modeling in DynamoDB (p. 561)

• DynamoDB Storage Backend for Titan Metrics (p. 567)

API Version 2012-08-10
551

Amazon DynamoDB Developer Guide
Amazon DynamoDB Storage Backend for Titan

https://github.com/awslabs/dynamodb-titan-storage-backend
https://github.com/thinkaurelius/titan/tree/0.4.4
https://github.com/thinkaurelius/titan/tree/0.5.4

Working with Graph Databases
A graph database is a store of vertices and directed edges that connect those vertices. Both vertices and
edges can have properties stored as key-value pairs.

A graph database uses adjacency lists or matrices for storing edges to allow simple traversal. A graph
in a graph database can be traversed along specific edge types, or across the entire graph.

Graph databases can represent how entities relate by using actions, ownership, parentage, and so on.
Whenever connections or relationships between entities are at the core of the data you are trying to
model, a graph database is a natural choice. Therefore, graph databases are useful for modeling and
querying social networks, business relationships, dependencies, shipping movements, and similar items.

You can use edges in a graph database to show typed relationships between entities (also called vertices
or nodes). Edges can describe parent-child relationships, actions, product recommendations, purchases,
and so on. A relationship, or edge, is a connection between two vertices that always has a start node,
end node, type, and direction. An important rule of graph databases is that no broken links are allowed.
Every link describes a relationship between two nodes. Deleting a node will delete all its incident
relationships (that is, relationships that begin or end in the node that is being deleted).

Following is an example of a social network graph.

This example models a group of friends and their hobbies as a graph.

Note
Each edge has a direction, indicated by the arrow, but the edge information is still stored in both
the "in" and the "out" nodes.

A simple traversal of this graph can tell you what Justin's friends like.

API Version 2012-08-10
552

Amazon DynamoDB Developer Guide
Working with Graph Databases

Titan with the DynamoDB Storage Backend for
Titan
Titan has a plugin architecture that allows it to use one of many storage backends for a graph. The
DynamoDB Storage Backend for Titan is one of these plugins. The following table adds DynamoDB
Storage Backend to the parity matrix available on the Titan Storage Backend Overview page.

Storage Backend Comparison

PersistenceReplicationScalabilityAvailabilityConsistencyStorage
Backend
Configura-
tion Value

Name

SSD, man-
aged

yes, man-
aged

linear scalabil-
ity, managed

highly avail-
able, man-
aged

eventually
consistent,
managed

com.amazon.ti-
tan.diskstor-
age.dy-
namodb.Dy-
namoDB-
StoreMan-
ager

DynamoDB

diskyeslinear scalabil-
ity

highly avail-
able

eventually
consistent

cassandraCassandra

diskyeslinear scalabil-
ity

failover re-
covery

vertex consist-
ent

hbaseHBase

diskHA mode
available

single ma-
chine

single point
of failure

ACIDberkeleyjeBerkeleyDB

disknonesingle ma-
chine

single point
of failure

ACIDpersistitPersistit

nonenonesingle ma-
chine

single point
of failure

ACIDinmemoryInMemory

Using DynamoDB for graph storage gives you a highly scalable distributed graph database without the
burden of managing database clusters. DynamoDB can scale to any size, provides fast, predictable
performance, and is highly available with automatic data replication across three Availability Zones in an
AWS region. It also provides AWS-managed authentication and multiple graphs in a single account and
region by prepending prefixes to Titan graph tables.

Titan Features
The DynamoDB Storage Backend for Titan plugin supports Titan versions 0.4.4 and 0.5.4. Titan offers
the following:

• Fast traversals and arbitrary traversals along specified edge types

• Directed, typed edges

• Stored relationships

Titan 0.4.4 supports the Tinkerpop 2.4 stack by implementing the Blueprints API. Tinkerpop includes the
following components:

API Version 2012-08-10
553

Amazon DynamoDB Developer Guide
Titan with the DynamoDB Storage Backend for Titan

https://github.com/thinkaurelius/titan/wiki/Storage-Backend-Overview
https://github.com/thinkaurelius/titan/wiki/Using-Cassandra
https://github.com/thinkaurelius/titan/wiki/Using-HBase
https://github.com/thinkaurelius/titan/wiki/Using-BerkeleyDB
https://github.com/thinkaurelius/titan/wiki/Using-Persistit
http://s3.thinkaurelius.com/docs/titan/0.5.4/inmemorystorage.html

• The Rexster graph server

• Furnace graph algorithms

• The Frames object-graph mapper

• The Gremlin traversal language

• Pipes dataflows

• The Blueprints generic graph API

For information on the Tinkerpop stack, including Gremlin, Rexster, Furnace, Frames, and Blueprints, go
to the Tinkerpop home page.

Titan version 0.5.4 provides several important changes and additions:

• Support for the Tinkerpop 2.5 stack

• Support for vertex partitioning

• Support for vertex labels

• User-defined transaction logs

• Two new system transaction log tables: txlog and systemlog

• edgeindex and vertexindex are merged into a single graphindex table

The Titan version 0.5.4 features are a superset of the Titan version 0.4.4 features. For more information
on Titan changes, see the changelog on the Titan Release Notes page. For more information on Titan
features, go to the Titan documentation page.

As with other Titan storage backends, you can work with Titan graphs using the Gremlin shell and the
Groovy language in addition to using the Java native API or Blueprints API.

The following tables compare the features available in Titan storage backends.

in memory
(0.5.4 only)

persistit
(0.4.4 only)

hbaseberkeleyjecassandradynamodbFeature
name

NoNoYesNoYesYesbatchMuta-
tion

NoNoYesNoYesYesdistributed

Depends on
config

NoDepends on
config

NoYesYeskeyConsist-
ent

YesYesYesYesDepends on
partitioner

NokeyOrdered

NoNoNoNoDepends on
partitioner

NolocalKeyPar-
tition

NoYesNoYesNoYeslocking

NoNoYesNoYes, except
cassandra-
embedded

YesmultiQuery

YesYesYesYesDepends on
partitioner

NoorderedScan

NoYesNoYesNoNotransactional

API Version 2012-08-10
554

Amazon DynamoDB Developer Guide
Titan Features

https://github.com/tinkerpop
http://s3.thinkaurelius.com/docs/titan/0.5.4/changelog.html
http://s3.thinkaurelius.com/docs/titan/current/

YesNoYesNoDepends on
partitioner

Yesunordered-
Scan

YesYesNoYesYesoptimist-
icLocking
(0.5.4 only)

NoNoNoYesNocellTTL
(0.5.4 only)

NoYesNoNoNostoreTTL
(0.5.4 only)

MILLIpreferred-
Timestamps
(0.5.4 only)

NoYesNoYesNotimestamps
(0.5.4 only)

NoNoNoNoNovisibility
(0.5.4 only)

Cassandra Partitioners

BYTEORDERRANDOMPartitioner

YesNokeyOrdered / localKeyPartition

YesNoorderedScan

NoYesunorderedScan

Next Step
• Getting Started with the DynamoDB Storage Backend for Titan (p. 555)

Getting Started with the DynamoDB Storage
Backend for Titan
To get started with the DynamoDB Storage Backend for Titan, you can follow the instructions in either of
the first two topics in this section to do the following:

• Download, install, and run Titan with the DynamoDB Storage Backend for Titan (p. ?)

• Launch DynamoDB Storage Backend for Titan with Rexster on Amazon EC2 (p. 559)

The Storage in DynamoDB Local vs. the Amazon DynamoDB Service (p. 560) topic in this section shows
you how to switch the DynamoDB Storage Backend for Titan from storing in DynamoDB Local, which is
best used for initial testing, to storing in the Amazon DynamoDB service for production use.

Topics

• Installing and Running the DynamoDB Storage Backend for Titan (p. 556)

API Version 2012-08-10
555

Amazon DynamoDB Developer Guide
Getting Started with the DynamoDB Storage Backend

for Titan

• Launch DynamoDB Storage Backend for Titan with Rexster on Amazon EC2 by using a AWS
CloudFormation template (p. 559)

• Storage in DynamoDB Local vs. the Amazon DynamoDB Service (p. 560)

Installing and Running the DynamoDB Storage Backend for
Titan
The DynamoDB Storage Backend for Titan is available as an Apache Maven project on GitHub, and will
run on Windows, Mac, or Linux computers. The DynamoDB Storage Backend for Titan requires Java 1.7
(or later) and Apache Maven. To get Java, go to http://java.com/download/. To get Apache Maven, go to
http://maven.apache.org/. Follow the steps below to install the DynamoDB Storage Backend for Titan in
your local Maven repository and test the installation.

The first example uses the Marvel Universe Social Graph. This graph has comic book characters as
vertices, with edges to each comic book they appear in. For more information about the Marvel Universe
Social Graph, go to the Marvel Universe Social Graph dataset webpage.

To load a subset of the Marvel Universe Social Graph

1. In the folder where you want to set up the Git project, run the following command to clone the Git
project.

git clone https://github.com/awslabs/dynamodb-titan-storage-backend.git

Note
This git command is for Titan Version 0.5.4. For the Titan 0.4.4 git command, see the
README.md file for Titan 0.4.4.

2. Change into the dynamodb-titan-storage-backend folder, and then type the following command
to install the package using Maven.

mvn install

When you install Maven, it downloads the additional dependencies from the Maven repository,
including the Titan package.

3. Open another command-prompt window, and then type the following command to start DynamoDB
Local (for testing the graph database).

mvn test -Pstart-dynamodb-local

4. In the previous command-prompt window, then typ the following command to run the Gremlin shell.

mvn test -Pstart-gremlin

5. Type the following to open a graph using the DynamoDB Storage Backend for Titan in the Gremlin
shell.

conf = new BaseConfiguration()
conf.setProperty("storage.backend", "com.amazon.titan.diskstorage.dynamodb.Dy
namoDBStoreManager")
conf.setProperty("storage.dynamodb.client.endpoint", "http://localhost:4567")
conf.setProperty("index.search.backend", "elasticsearch")

API Version 2012-08-10
556

Amazon DynamoDB Developer Guide
Getting Started with the DynamoDB Storage Backend

for Titan

http://java.com/download/
http://maven.apache.org/
https://aws.amazon.com/datasets/5621954952932508
https://github.com/awslabs/dynamodb-titan-storage-backend/blob/0.4.4/README.md

conf.setProperty("index.search.directory", "/tmp/searchindex")
conf.setProperty("index.search.elasticsearch.client-only", "false")
conf.setProperty("index.search.elasticsearch.local-mode", "true")
conf.setProperty("index.search.elasticsearch.interface", "NODE")
g = TitanFactory.open(conf)

Note
This configuration is for Titan Version 0.5.4. For the Titan 0.4.4 configuration, see the
README.md file for Titan 0.4.4.

6. Type the following command to load the first 100 lines of the Marvel Universe Social Graph.

com.amazon.titan.example.MarvelGraphFactory.load(g, 100, false)

To increase the number of test lines and create a larger graph, raise the value of the second argument
to the MarvelGraphFactory.load() method.

7. Type the following to print the characters and the comic-books they appeared in where the characters
had a weapon that was a shield or claws.

g.V.has('weapon', T.in, ['shield','claws']).as('c').outE('ap
peared').inV.as('b').transform{e,m -> m.c.character + ' had ' + m.c.weapon
 + ' in ' + m.b['comic-book']}.order

8. Type the following to print the characters and the comic-books they appeared in where the characters
had a weapon that was not a shield or claws.

g.V.has('weapon', T.notin, ['shield','claws']).as('c').outE('ap
peared').inV.as('b').transform{e,m -> m.c.character + ' had ' + m.c.weapon
 + ' in ' + m.b['comic-book']}.order

9. Type the following to print a sorted list of the characters that appear in comic-book AVF 4.

g.V.has('comic-book', 'AVF 4').inE('appeared').outV.character.order

10. Print a sorted list of the characters that appear in comic-book AVF 4 that have a weapon that is not
a shield or claws.

g.V.has('comic-book', 'AVF 4').inE('appeared').outV.has('weapon', T.notin,
 ['shield','claws']).character.order

To load the Graph of the Gods

The Graph of the Gods is an example graph that is built into Titan and used in the Titan documentation.
This procedure shows you how to load the Graph of the Gods with the DynamoDB Storage Backend for
Titan, so you can follow the tutorial in the Titan Getting Started documentation.

1. Follow steps 1 through 5 of the Marvel graph section (p. 556).

2. Type the following to load the Graph of the Gods.

GraphOfTheGodsFactory.load(g)

API Version 2012-08-10
557

Amazon DynamoDB Developer Guide
Getting Started with the DynamoDB Storage Backend

for Titan

https://github.com/awslabs/dynamodb-titan-storage-backend/blob/0.4.4/README.md
http://s3.thinkaurelius.com/docs/titan/0.5.4/getting-started.html

3. Go to the Titan Getting Started documentation and then follow the rest of the setup process, starting
from the Global Graph Indices section.

To run Gremlin on Rexster

1. Follow steps 1 through 3 of the Marvel graph section (p. 556).

2. Type the following command to remove ol search indexes.

rm -rf /tmp/searchindex

3. Replace localhost in the base-uri tag of rexster.xml with the fully qualified domain name (FQDN) of
the host you want to run Rexster on, if you do not run it on localhost. The ec2-metadata -p
command on Amazon Linux in EC2 reveals the public FQDN of the an EC2 host.

4. Install Titan server, which includes Rexster, and then follow the instructions at the command prompt.

src/test/resources/install-rexster.sh

5. Type the following command to run Rexster.

bin/rexster.sh --start

Note
You will need to run rexster.sh with sudo if you choose 80 instead of 8182 as the Rexster
port.

6. Test that the endpoint works from the command line. There should be no vertices.

curl http://localhost:8182/graphs/marvel/vertices | python -m json.tool

7. Navigate to http://localhost:8182/ and open a graph using the DynamoDB Storage Backend for Titan
on the Gremlin shell in the Gremlin tab.

import com.thinkaurelius.titan.example.GraphOfTheGodsFactory; GraphOfThe
GodsFactory.load(g);

Next steps

Now that you have the Gremlin shell on Rexster, you can start working with Titan. Here are some options
for continuing:

Follow Titan Getting Started tutorial
Go to the Titan Getting Started documentation and then follow the rest of the setup process, starting
from the Global Graph Indices section.

Follow the Gremlin examples
To learn more about Gremlin, repeat steps 1 through 4 of this section and follow the examples in the
Gremlin documentation.

Experiment with the Marvel graph
To work with the Marvel Social Graph data, repeat steps 1 through 4 of this section and then redo
steps 6 through 10 of the Marvel graph section.

API Version 2012-08-10
558

Amazon DynamoDB Developer Guide
Getting Started with the DynamoDB Storage Backend

for Titan

http://s3.thinkaurelius.com/docs/titan/0.5.4/getting-started.html
http://localhost:8182/
http://s3.thinkaurelius.com/docs/titan/0.5.4/getting-started.html
http://gremlindocs.com

To learn more about the Rexster REST API, go to the Rexster documentation.

Next Steps

• Storage in DynamoDB Local vs. the Amazon DynamoDB Service (p. 560)

• Launch DynamoDB Storage Backend for Titan with Rexster on Amazon EC2 by using a AWS
CloudFormation template (p. 559)

Launch DynamoDB Storage Backend for Titan with Rexster
on Amazon EC2 by using a AWS CloudFormation template
You can use the AWS Management Console to launch an AWS CloudFormation stack from a template
to launch Titan with Rexster on an instance type of your choice in Amazon EC2. This stack requires a
pre-existing IAM Role that has Amazon S3 read access to your rexster.xml configuration file and DynamoDB
full access to create tables, and read and write items in these tables.

Prerequisites

• An SSH key for Amazon EC2 instances must exist in the region you plan to create the Rexster stack.

• The name and path of an IAM role in the region that has Amazon S3 Read access and DynamoDB full
access, the very minimum policies required to run this CloudFormation stack. Amazon S3 read access
is required to provide the rexster.xml file to the stack in cloud-init. DynamoDB full access is required
because the DynamoDB Storage Backend for Titan must create and delete tables, and read and write
data in those tables.

Note
The AWS CloudFormation template downloads repackaged versions of
titan-dynamodb-0.5.4-hadoop2.zip and titan-dynamodb-server-0.4.4.zip .The DynamoDB Storage
Backend for Titan and its dependencies have been added to the default distributions. They are
available for download from the following websites:

• 0.4.4: dynamodb-titan044-storage-backend-server-1.0.0.zip (SHA256 hash:
a3bbd0e5eb0b71bbadf6762def516f5836c8032c442d5f39799c56c5345cb14b)

• 0.5.4: dynamodb-titan054-storage-backend-1.0.0-hadoop2.zip (SHA256 hash:
41e8a45da86910ff7f4a3cf49ffa70df99d4230c29ccdf0453581f74353c8ea9)

To launch Rexster on Amazon EC2 using AWS CloudFormation

1. Click the following link to view the AWS CloudFormation template that creates a Rexster stack using
the DynamoDB Storage Backend for Titan:

View Version 0.4.4 Template

View Version 0.5.4 Template

2. When you are ready to launch the stack, click this button

3. On the Select Template page, click Next.

Note
This walkthrough uses the default settings. However, this page lets you customize the name
of the AWS CloudFormation stack, or use a different template.

4. On the Specify Parameters page, specify the following:

API Version 2012-08-10
559

Amazon DynamoDB Developer Guide
Getting Started with the DynamoDB Storage Backend

for Titan

https://github.com/tinkerpop/rexster/wiki/Basic-REST-API
http://s3.thinkaurelius.com/downloads/titan/titan-0.5.4-hadoop2.zip
http://s3.thinkaurelius.com/downloads/titan/titan-server-0.4.4.zip
https://s3.amazonaws.com/dynamodb-titan-us-east-1/dynamodb-titan044-storage-backend-server-1.0.0.zip
https://s3.amazonaws.com/dynamodb-titan-us-east-1/dynamodb-titan054-storage-backend-1.0.0-hadoop2.zip
https://s3.amazonaws.com/dynamodb-titan/dynamodb-titan054-storage-backend-cfn.json
https://s3.amazonaws.com/dynamodb-titan/dynamodb-titan054-storage-backend-cfn.json
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#cstack=sn~DynamoDBTitanRexster|turl~https://s3.amazonaws.com/dynamodb-titan/dynamodb-titan054-storage-backend-cfn.json

RexPro port, if you changed the value in rexster.xml from the default 8184.•

• Rexster port, if you changed the value in rexster.xml from the default 8182.

• The Amazon S3 URL to your rexster.xml file.

• The name of your pre-existing Amazon EC2 SSH key.

• The path of your IAM Role that enables Amazon S3 read permissions and DynamoDB full
permissions.

The name of your IAM Role that enables Amazon S3 read permissions and DynamoDB full
permissions.

You can change the Network whitelist and Amazon EC2 instance type.

5. On the Options page, click Next.

Note
For this walkthrough, you use the default settings.

6. On the Review page, select I acknowledge that this template might cause AWS CloudFormation
to create IAM resources, and then click Create.

Note
This AWS CloudFormation template does not create IAM resources.

7. While the stack is deploying, you can monitor its progress by going to the AWS CloudFormation
console and viewing the Status column for the Amazon EC2 instance.

8. When stack creation is complete, go to the Outputs tab of your new stack.

9. Copy the SSH tunnel command from the CloudFormation script Outputs and use it to create an SSH
tunnel from your localhost port 8182 to the Rexster port (8182) on the EC2 host after the stack
deployment is complete.

10. Continue the To run Gremlin on Rexster (p. 558) section in the previous topic starting from Step 5.

Next Step

• Titan Graph Modeling in DynamoDB (p. 561)

Storage in DynamoDB Local vs. the Amazon DynamoDB
Service
The DynamoDB Storage Backend for Titan uses DynamoDB Local for storage by default. DynamoDB
Local is a small client-side database and server that mimics the DynamoDB service. DynamoDB Local
is useful for initially testing your application with the DynamoDB Storage Backend for Titan, but we
recommend that you switch to Amazon DynamoDB early in the testing process for a more accurate
representation of performance in a production environment.

To switch the storage backend from DynamoDB Local to DynamoDB

1. In the configuration file at
src/test/resources/META-INF/dynamodb_store_manager_test.properties, or in your
rexster-dynamodb.xml file if you are using Rexster, replace the constructor-args value with
an empty string, and replace the class-name value with
com.amazonaws.auth.DefaultAWSCredentialsProviderChain. Doing so allows you to pull
credentials from Amazon EC2 metadata into your environment.

2. In the same file, change the endpoint from http://localhost:4567 to the DynamoDB endpoint
for your region. For example, if your region is US West (Oregon), use the following endpoint setting:

API Version 2012-08-10
560

Amazon DynamoDB Developer Guide
Getting Started with the DynamoDB Storage Backend

for Titan

storage.dynamodb.client.endpoint=https://dynamodb.us-west-2.amazonaws.com

For a list of available regions and endpoints, go to the Amazon DynamoDB section in the Amazon
Web Services General Reference.

You can now run Titan without DynamoDB Local. The Titan DynamoDB Storage backend will use tables
in the DynamoDB region of your endpoint instead of a DynamoDB Local instance.

Related Topics

Titan Graph Modeling in DynamoDB (p. 561)

Titan Graph Modeling in DynamoDB
Titan stores edges and properties as column-value pairs associated with a vertex and a unique key. The
DynamoDB Storage Backend for Titan stores each column-value pair in a single attribute in DynamoDB.
For information on how column-value pairs are serialized, go to the Individual Edge Layout section in the
Titan Data Model documentation.

The following sections describe graph modeling in the DynamoDB Storage Backend for Titan.

Topics

• Single Item Data Model (p. 562)

• Multiple Item Data Model (p. 563)

• Storage Changes in Titan Version 0.5.4 (p. 564)

• Limits of the DynamoDB Storage Backend for Titan (p. 565)

• Backend Data Usage (p. 565)

• Metrics (p. 566)

Titan uses the KeyColumnValueStore interface to store column-value pairs in the backend database.
The DynamoDB Storage Backend for Titan comes with the following two concrete implementations of
this interface:

DescriptionConfig PropertyImplementation Class

Stores all column-value pairs for
a key in a single item.

SINGLEDynamoDBSingleRowStore

Stores each column-value pair for
a key in a different item in a hash-
range table.

MULTIDynamoDBStore

Both implementations store information in a DynamoDB table named edgestore.

Including edgstore, the Titan version 0.4.4 uses the following DynamoDB tables for storage:

DescriptionTable

Stores all properties and edges (column-value
pairs). One item per vertex.

edgestore

Index of edges.edgeindex

API Version 2012-08-10
561

Amazon DynamoDB Developer Guide
Titan Graph Modeling in DynamoDB

http://docs.aws.amazon.com/general/latest/gr/rande.html#ddb_region
http://s3.thinkaurelius.com/docs/titan/0.5.4/data-model.html#user-content-individual-edge-layout

DescriptionTable

Index of all vertices.vertexindex

Client IDs for each instance of the plugin.titan_ids

Storage backend properties.system_properties

Titan version 0.5.4 uses different backend tables. Including edgstore, the Titan version 0.5.4 uses the
following DynamoDB tables for storage:

DescriptionTable

Stores all properties and edges (column-value
pairs). One item per vertex.

edgestore

Index of edges and vertices.graphindex

Titan system log.systemlog

Transaction log.txlog

Client IDs for each instance of the plugin.titan_ids

Storage backend properties.system_properties

Note
Titan version 0.5.4 also supports user-defined transaction logs, which are each stored in a table.

You can select either single or multiple item storage options in the DynamoDB Storage Backend for Titan
properties file. The following sections describe the two implementations.

Single Item Data Model
The single item data model stores all column-value pairs at a particular key in one DynamoDB item. The
edgestore table stores all properties and edges for a vertex in a single item where the hash key is the
key of a KeyColumnValueStore store, or KCV. For details, see KeyColumnValueStore.

The following table shows how the social network graph from the preceding Working with Graph
Databases (p. 552) section would be stored in the edgestore DynamoDB table in the single item data
model. It also shows hidden properties. Titan adds a hidden property to each node to indicate that it
exists.

Note
This is a representation of the data that is stored in a table. The actual data is serialized with
compressed metadata and is not human readable.

AttributeAttributeAttributeAttributeAttributeHash Key (hk)

Hidden Property
- Exists

Edge (out) -
Likes: Movies

Edge (out) -
Friend: Kris

Edge (out) -
Friend: Anna

Property -
Name: Justin

Vertex id 1

Hidden Prop-
erty - Exists

Edge (out) -
Likes: Books

Edge (in) -
Friend: Justin

Property -
Name: Anna

Vertex id 2

Hidden Prop-
erty - Exists

Edge (out) -
Likes: Movies

Edge (in) -
Friend: Justin

Property -
Name: Kris

Vertex id 3

API Version 2012-08-10
562

Amazon DynamoDB Developer Guide
Titan Graph Modeling in DynamoDB

https://github.com/thinkaurelius/titan/blob/0.5.4/titan-core/src/main/java/com/thinkaurelius/titan/diskstorage/keycolumnvalue/KeyColumnValueStore.java

Hidden Prop-
erty - Exists

Edge (in) -
Likes: Kris

Edge (in) -
Likes: Justin

Property -
Name: Movie

Vertex id 4

Hidden Prop-
erty - Exists

Edge (in) -
Likes: Anna

Property -
Name: Books

Vertex id 5

This table does not show all of the data that is stored in each attribute. For information about the data
and data format of edges and properties stored in attributes, see the Titan Data Model page.

A limitation of this model is that storing everything in a single item limits the number of properties and
edges incident to each vertex because DynamoDB has a 400 KB item size limit.

Multiple Item Data Model
To avoid the 400 KB item-size limitation, the DynamoDB Storage Backend for Titan provides multiple
item storage as an alternative model. If your graph has any of the following characteristics, you might
want to use multiple item storage:

• A high number of edges for each vertex

• A large number of vertex properties

• An individual property value that is sized close to the item size limit

In these cases, we recommend using the multiple-item model for at least the edgestore and the index
stores (edgeindex and vertexindex in 0.4.4, and graphindex in 0.5.4). The edgestore and index stores
are the most likely tables to be impacted by the item-size limit.

The multiple item data model stores each column-value pair in a separate DynamoDB item. Each
column-value pair is stored as an item where the hash key is the key of KCV and the range key is the
column of KCV. All of the column-value pairs at a particular key are stored in different items in the edgestore
table.

The following table shows how the social network graph from the preceding Working with Graph
Databases (p. 552) section would be stored in the edgestore DynamoDB table in the multiple item data
model. It also shows hidden properties. Titan adds a hidden property to each node to indicate that it
exists.

Note
This is a representation of the data that is stored in a table. The actual data is serialized with
compressed metadata and is not human readable.

Value (v)Range Key (rk)Hash Key (hk)

Range keyVertex id 1

Property - Name: JustinProperty idVertex id 1

Edge (out) - Friend: AnnaEdge idVertex id 1

Edge (out) - Friend: KrisEdge idVertex id 1

Edge (out) - Likes: MoviesEdge idVertex id 1

Hidden Property - ExistsProperty idVertex id 1

Range keyVertex id 2

Property - Name: AnnaProperty idVertex id 2

API Version 2012-08-10
563

Amazon DynamoDB Developer Guide
Titan Graph Modeling in DynamoDB

https://github.com/thinkaurelius/titan/wiki/Titan-Data-Model

Edge (in) - Friend: JustinEdge idVertex id 2

Edge (out) - Likes: BooksEdge idVertex id 2

Hidden Property - ExistsProperty idVertex id 2

Range keyVertex id 3

Property - Name: KrisProperty idVertex id 3

Edge (in) - Friend: JustinEdge idVertex id 3

Edge (out) - Likes: MoviesEdge idVertex id 3

Hidden Property - ExistsProperty idVertex id 3

Range keyVertex id 4

Property - Name: MoviesProperty idVertex id 4

Edge (in) - Likes: JustinEdge idVertex id 4

Edge (in) - Likes: KrisEdge idVertex id 4

Hidden Property - ExistsProperty idVertex id 4

Range keyVertex id 5

Property - Name: BooksProperty idVertex id 5

Edge (in) - Likes: AnnaEdge idVertex id 5

Hidden Property - ExistsProperty idVertex id 5

This table does not show all of the data that is stored in each attribute. For information about the data
and the data format of edges and properties stored in attributes, go to the Titan Data Model page.

Although the multiple item data model lets you avoid the 400 KB item limit, it comes with a performance
penalty. Scanning the base table to iterate over vertices in the edgestore table can take much longer in
the multiple item data model than in the single item data model.

The multiple item data model overcomes the 400 KB limit by denormalizing one entity in a store into one
item for each column at a key. This functionality means that one key appears once for each column in a
multiple item data store. The greater scan time for this model occurs because a separate item exists in
this model for each edge label, vertex property, and edge property. The edgestore_key table stores the
key and revision number of the store entry, so a scan only accesses a KCV key once with each mutating
operation. This functionality means that any mutation to a KCV store requires at least two HTTP round
trips, one for the key table and at least one for the base table, and more if the mutation only involves
deleting columns.

Storage Changes in Titan Version 0.5.4
DynamoDB Storage Backend for Titan Version 0.5.4 stores graph data in the same way as with version
0.4.4, with the following differences:

• Partitioned vertices are available. The partitions of a vertex are all read and written in parallel.

• The vertexindex and edgeindex tables are combined into a single index store named graphindex.

• Titan now supports user-defined transaction logs. Each user-defined transaction log corresponds to
an extra DynamoDB table that needs to be configured in your .properties/rexster.xml.

API Version 2012-08-10
564

Amazon DynamoDB Developer Guide
Titan Graph Modeling in DynamoDB

https://github.com/thinkaurelius/titan/wiki/Titan-Data-Model

Limits of the DynamoDB Storage Backend for Titan
DynamoDB imposes limits on the size of hash keys (2048 bytes) and range keys (1024 bytes) and on
total item size (400 KB). As such, the Titan DynamoDB BigTable implementation has some limits that
are described in the following list. BigTable is the name of the storage abstraction for Titan backends.
For details about the Titan BigTable abstraction, see BigTable.

• When using built in indexes, indexed property values are limited by the maximum size of hash keys,
2048 bytes. If there is a need to index larger values, like for example, documents, you should use a
mixed indexer (for example, Elasticsearch, Solr, or Lucene) to enable full text search.

• The maximum column value size will vary due to variable id encoding schemas and compressed object
serialization in Titan, but is limited to 400 KB in the item representation because that is the maximum
item size of DynamoDB. In the single item data model, this means that all of the columns stored at one
key (an out-vertex in the edgestore) of a KCVStore must be less than 400 KB. In the multiple item data
model, everything stored in one column (one key-column pair, for example, a vertex property, or an
edge) must be less than or equal to 400 KB in size. Because all edges coming out of a vertex are stored
in one item in the single item data model, the single item model can only be used with graphs with a
small out degree.

• Using DynamoDB table prefixes, you can have 51 graphs per region in version 0.4.4, and 42 graphs
per region in version 0.5.4, as long as there are no user-defined transaction logs. If you use user-defined
transaction logs, there will be an extra table for each log, so the number of graphs you can store in a
region will decrease. For more information, see user-defined transaction logs in the Titan documentation.
By default, the number of DynamoDB tables is limited to 256 tables per region. If you want to have
more graphs in a region, you can request an increase to your account limits. For more information
about account limits, see the Limits in DynamoDB page.

The preceding limits are in addition to the limitations of Titan. For information about the limits of Titan, go
to the Technical Limititations page in the Titan documentation.

Backend Data Usage
Provisioning for TitanDB backend storage is dependent on the graph design (for example, many vertices
vs. many properties), usage (reading vs. writing vs. updating), and the storage data model (single vs.
multiple).

In any graph, the edgestore table will have the most data and usage.

The following table can help you estimate how much to provision for the edgestore table.You need to
have estimates for how many of the following graph objects you will process (read, write, or update) each
second:

• Vertices: The number of vertices. Applies to the single and multiple item models.

• Properties per vertex: The number of properties on each vertex. Applies to the multiple item model.

• Edges out per vertex: The number of edges from a vertex to other vertices. Applies to the single and
multiple item models.

Note
Edges are bidirectional by default. Unless you create unidirectional (out only) edges, the edges
out and in will be equal.

• Edges into vertex: The number of edges coming in to the vertex.

• Hidden properties: Properties stored by Titan. Each vertex has at least an exists property. Inn Titan
version 0.4.4 there is at least 1 hidden property per vertex and in Titan 0.5.4 there is at least 2 hidden
properties per vertex.

API Version 2012-08-10
565

Amazon DynamoDB Developer Guide
Titan Graph Modeling in DynamoDB

http://s3.thinkaurelius.com/docs/titan/current/data-model.html
http://s3.thinkaurelius.com/docs/titan/current/log.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://s3.thinkaurelius.com/docs/titan/current/limitations.html

Note
In the single item data model, many of the graph objects are serialized into a single item with
the vertex, so they are not needed to estimate usage.

Update/DeleteItem calls to
edgestore, MULTI item model

Update/DeleteItem calls to
edgestore, SINGLE item model

Type

vertices * (vertexProperties +
edgesIntoVertex + edgesOutOfVer-
tex + titanHiddenProperties)

vertices * edgesOutOfVertexCreate

vertices + vertexProperties +
edgesIntoVertex + edgesOutOfVer-
tex + titanHiddenProperties

vertices * edgesOutOfVertexUpdating

vertices + vertexProperties +
edgesIntoVertex + edgesOutOfVer-
tex + titanHiddenProperties

verticesReading

The preceding table separates capacity estimations by storage model and operation type. The following
list gives more information on DynamoDB activity for different operation types, and discusses the effects
of indexes.

Loading data
Bulk loading of data is very write intensive. Loading new data into a graph requires items to be created
in the backend database. In the multiple item model creating is more intensive because each vertex,
property, and edge is written as a separate item.

Updating data
Updating data is less intensive with the multiple item storage model because it only needs to update
the items for the specific property or edge that is being updated. In the single item storage model,
the entire item must be updated.

Reading data
In the multiple item model, reading a subset of properties or edges can more efficient than in the
single model because only the items you request are read instead of the whole item.

Operations on the graphindex table
In the single item model, items in the graphindex table are keyed at unique vertex/edge property
name and value combinations, and the other item attributes (columns) represent the vertexs/edge
identifiers that have this property value. In the multiple item model, items in the graphindex are still
keyed at the property name/value combinations, but there is a separate item for each vertex/edge
that has that property name/value combination. Therefore, in the single item model, you will have
one item per property/value combination written to graphindex. In the multiple item model, you will
have vertices * vertexProperties + edges * edgeProperties items written to graphindex.

Metrics
Titan uses the Metrics-core package to record and emit metrics. Metrics-core supports reporting metrics
over JMX, HTTP, STDOUT, CSV, SLF4j, Ganglia, and Graphite. There are more reporters available as
third-party plugins.You can learn more about the Metrics-core package from the Metrics website at https://
dropwizard.github.io/metrics/3.1.0/manual/core/.

You can turn on Metrics by using the following properties:

metrics.enabled=true

API Version 2012-08-10
566

Amazon DynamoDB Developer Guide
Titan Graph Modeling in DynamoDB

https://dropwizard.github.io/metrics/3.1.0/manual/core/
https://dropwizard.github.io/metrics/3.1.0/manual/core/

prefix for metrics from titan-core. Optional. If not specified,
com.thinkaurelius.titan will be used.
Currently, the prefix for Titan system stores (system log, txlog, titan_ids,
 system_properties, and all user logs)
is set to com.thinkaurelius.titan.sys and cannot be changed.
metrics.prefix=titan

polling interval in milliseconds
metrics.csv.interval=500

the directory where to write metrics in CSV files
metrics.csv.directory=metrics

The metrics prefix in titan-dynamodb allows you to change what gets prepended
 to the codahale metric names.
#storage.dynamodb.metrics-prefix=dynamodb

Note
Properties can be set in a properties file in the classpath, directly in the Gremlin shell using a
configuration object, or in the rexster.xml file.

To set the metrics configuration properties in the Gremlin shell, type the following:

conf = new BaseConfiguration()
conf.setProperty("metrics.enabled", "true")
conf.setProperty("metrics.prefix", "titan")
conf.setProperty("metrics.csv.interval", 1000)
conf.setProperty("metrics.csv.directory", "metrics")
conf.setProperty("storage.dynamodb.metrics-prefix", "dynamodb")

Metrics core supports a variety of quantity measurements. A Timer is a Meter on the rate and a Histogram
on latency of a piece of code. Histograms measure the distribution of a particular value and emit count,
max, mean, min, stddev, p50, p75, p95, p98, p99, and p999. Meters measure a call rate (tps) and emit
count, mean_rate, m1_rate, m5_rate and m15_rate. Gauges measure a value in a different thread and
emit a value. Counters count the number of times a piece of code is called and emit a count.

Titan emits the metrics described in the table on the Titan Metrics (p. 568) page.

The Amazon DynamoDB Storage Backend for Titan emits metrics in addition to those emitted by Titan.
They relate to statistics the low-level DynamoDB APIs, and are described in the table on the Additional
Amazon DynamoDB Storage Backend for Titan Metrics (p. 571).

DynamoDB Storage Backend for Titan Metrics
Titan uses the Metrics-core package to record and emit metrics. Metrics-core supports reporting metrics
over JMX, HTTP, STDOUT, CSV, SLF4j, Ganglia, and Graphite. There are more reporters available as
third-party plugins.You can learn more about the Metrics-core package from the Metrics website at https://
dropwizard.github.io/metrics/3.1.0/manual/core/.

The DynamoDB Storage Backend for Titan generates metrics in addition to those generated by Titan.

They relate to statistics the low-level DynamoDB APIs, and are listed below.

Topics

API Version 2012-08-10
567

Amazon DynamoDB Developer Guide
Titan Metrics

https://dropwizard.github.io/metrics/3.1.0/manual/core/
https://dropwizard.github.io/metrics/3.1.0/manual/core/

• Titan Metrics (p. 568)

• Additional Amazon DynamoDB Storage Backend for Titan Metrics (p. 571)

Titan Metrics
The metrics for Titan 0.5.4 are a superset of the metrics generated by Titan 0.4.4.

Note

• <store> indicates the graph store that the metric is associated with.

Instrumentation typeScopeTitan VersionMetric name

CounterGlobal0.4.4 and 0.5.4db.getVertexByID

CounterGlobal0.4.4 and 0.5.4db.getVerticesByID

CounterGraph Store0.5.4<store>.getKeys.calls

CounterGraph Store0.5.4<store>.getKeys.iterat-
or.hasNext.calls

Timer (Histo-
gram+Meter)

Graph Store0.5.4<store>.getKeys.iterat-
or.hasNext.time

CounterGraph Store0.5.4<store>.getKeys.iterat-
or.next.calls

Timer (Histo-
gram+Meter)

Graph Store0.5.4<store>.getKeys.iterat-
or.next.time

Timer (Histo-
gram+Meter)

Graph Store0.5.4<store>.getKeys.time

CounterGraph Store0.4.4 and 0.5.4<store>.getSlice.calls

HistogramGraph Store0.4.4 and 0.5.4<store>.getSlice.entries-
histogram

CounterGraph Store0.4.4 and 0.5.4<store>.getSlice.entries-
returned

Timer (Histo-
gram+Meter)

Graph Store0.4.4 and 0.5.4<store>.getSlice.time

CounterGraph Store0.4.4 and 0.5.4<store>.acquire-
Lock.calls

Timer (Histo-
gram+Meter)

Graph Store0.4.4 and 0.5.4<store>.acquire-
Lock.time

CounterGlobal0.4.4 and 0.5.4query.graph.ex-
ecute.calls

CounterGlobal0.5.4query.graph.execute.ex-
ceptions

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4query.graph.ex-
ecute.time

API Version 2012-08-10
568

Amazon DynamoDB Developer Guide
Titan Metrics

CounterGlobal0.4.4 and 0.5.4query.graph.get-
New.calls

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4query.graph.get-
New.time

CounterGlobal0.4.4 and 0.5.4query.graph.hasDele-
tions.calls

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4query.graph.hasDele-
tions.time

CounterGlobal0.4.4 and 0.5.4query.graph.isDe-
leted.calls

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4query.graph.isDe-
leted.time

CounterGlobal0.4.4 and 0.5.4query.vertex.ex-
ecute.calls

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4query.vertex.ex-
ecute.time

CounterGlobal0.4.4 and 0.5.4query.vertex.get-
New.calls

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4query.vertex.get-
New.time

CounterGlobal0.4.4 and 0.5.4query.vertex.hasDele-
tions.calls

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4query.vertex.hasDele-
tions.time

CounterGlobal0.5.4query.vertex.isDe-
leted.calls

Timer (Histo-
gram+Meter)

Global0.5.4query.vertex.isDe-
leted.time

CounterGlobal0.5.4schemacache.name.misses

CounterGlobal0.5.4schemacache.name.re-
trievals

CounterGlobal0.5.4schemacache.rela-
tions.misses

CounterGlobal0.5.4schemacache.rela-
tions.retrievals

CounterGlobal0.4.4 and 0.5.4stores.acquireLock.calls

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4stores.acquireLock.time

CounterGlobal0.5.4stores.getKeys.calls

CounterGlobal0.5.4stores.getKeys.iterat-
or.hasNext.calls

API Version 2012-08-10
569

Amazon DynamoDB Developer Guide
Titan Metrics

Timer (Histo-
gram+Meter)

Global0.5.4stores.getKeys.iterat-
or.hasNext.time

CounterGlobal0.5.4stores.getKeys.iterat-
or.next.calls

Timer (Histo-
gram+Meter)

Global0.5.4stores.getKeys.iterat-
or.next.time

Timer (Histo-
gram+Meter)

Global0.5.4stores.getKeys.time

CounterGlobal0.4.4 and 0.5.4stores.getSlice.calls

HistogramGlobal0.4.4 and 0.5.4stores.getSlice.entries-
histogram

CounterGlobal0.4.4 and 0.5.4stores.getSlice.entries-
returned

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4stores.getSlice.time

CounterSystem Store0.4.4 and 0.5.4sys.<store>.getSlice.calls

HistogramSystem Store0.4.4 and 0.5.4sys.<store>.getSlice.entries-
histogram

CounterSystem Store0.4.4 and 0.5.4sys.<store>.getSlice.entries-
returned

Timer (Histo-
gram+Meter)

System Store0.4.4 and 0.5.4sys.<store>.getSlice.time

CounterSystem Store0.4.4 and 0.5.4sys.<store>.mutate.calls

Timer (Histo-
gram+Meter)

System Store0.4.4 and 0.5.4sys.<store>.mutate.time

CounterGlobal0.4.4 and 0.5.4sys.stores.getSlice.calls

HistogramGlobal0.4.4 and 0.5.4sys.stores.getSlice.entries-
histogram

CounterGlobal0.4.4 and 0.5.4sys.stores.getSlice.entries-
returned

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4sys.stores.getSlice.time

CounterGlobal0.4.4 and 0.5.4sys.stores.mutate.calls

Timer (Histo-
gram+Meter)

Global0.4.4 and 0.5.4sys.stores.mutate.time

CounterGlobal0.4.4 and 0.5.4tx.begin

CounterGlobal0.4.4 and 0.5.4tx.commit

CounterGlobal0.5.4tx.commit.exceptions

CounterGlobal0.5.4tx.rollback

API Version 2012-08-10
570

Amazon DynamoDB Developer Guide
Titan Metrics

Additional Amazon DynamoDB Storage Backend for Titan
Metrics

Note

• <prefix> is the table prefix configured in the properties file.

• <ddb> is the DynamoDB metrics prefix configured in the properties file.

• <store> indicates the graph store that the metric is associated with.

Instrumentation typeMetric name

Timer (Histogram+Meter)<ddb>.<prefix>_ListTablesHistogram

Timer (Histogram+Meter)<ddb>.<prefix>_mutateManyGauge

Gauge<ddb>.<prefix>_executor-queue-size

Histogram<ddb>.<prefix>_ListTablesPagesTimer

Timer (Histogram+Meter)<ddb>.CreateTable.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.DeleteItem.<prefix>_<store>

Meter<ddb>.DeleteItemConsumedCapacity.<pre-
fix>_<store>

Meter<ddb>.DeleteItemRetries.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.DeleteItemThrottling.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.DeleteTable.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.DescribeTable.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.GetItem.<prefix>_<store>

Meter<ddb>.GetItemConsumedCapacity.<pre-
fix>_<store>

Meter<ddb>.GetItemRetries.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.GetItemThrottling.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.Query.<prefix>_<store>

Meter<ddb>.QueryConsumedCapacity.<pre-
fix>_<store>

Counter<ddb>.QueryItemCountCounter.<pre-
fix>_<store>

Histogram<ddb>.QueryItemCountHistogram.<pre-
fix>_<store>

Histogram<ddb>.QueryPages.<prefix>_<store>

Meter<ddb>.QueryRetries.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.QueryThrottling.<prefix>_<store>

API Version 2012-08-10
571

Amazon DynamoDB Developer Guide
Titan Metrics

Timer (Histogram+Meter)<ddb>.Scan.<prefix>_<store>

Meter<ddb>.ScanConsumedCapacity.<pre-
fix>_<store>

Counter<ddb>.ScanItemCountCounter.<pre-
fix>_<store>

Histogram<ddb>.ScanItemCountHistogram.<pre-
fix>_<store>

Histogram<ddb>.ScanPages.<prefix>_<store>

Meter<ddb>.ScanRetries.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.ScanThrottling.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.UpdateItem.<prefix>_<store>

Histogram<ddb>.UpdateItemBytes.<prefix>_<store>

Meter<ddb>.UpdateItemConsumedCapacity.<pre-
fix>_<store>

Meter<ddb>.UpdateItemRetries.<prefix>_<store>

Timer (Histogram+Meter)<ddb>.UpdateItemThrottling.<prefix>_<store>

Logstash Plugin for Amazon DynamoDB
The Logstash plugin for Amazon DynamoDB gives you a nearly real-time view of the data in your
DynamoDB table. The Logstash plugin for DynamoDB uses DynamoDB Streams to parse and output
data as it is added to a DynamoDB table. After you install and activate the Logstash plugin for DynamoDB,
it scans the data in the specified table, and then it starts consuming your updates using Streams and
then outputs them to Elasticsearch, or a Logstash output of your choice.

Logstash is a data pipeline service that processes data, parses data, and then outputs it to a selected
location in a selected format. Elasticsearch is a distributed, full-text search server. For more information
about Logstash and Elasticsearch, go to https://www.elastic.co/products/elasticsearch.

The following sections walk you through the process to:

• Create a DynamoDB table and enable a new stream on the table.

• Download, build, and install the Logstash plugin for DynamoDB.

• Configure Logstash to output to Elasticsearch and the command line.

• Run the Logstash plugin for DynamoDB.

• Test Logstash by adding DynamoDB items to the table.

When this process is finished, you can search your data in the Elasticsearch cluster.

Topics

• Prerequisites (p. 573)

• Setting Up the Logstash Plugin for Amazon DynamoDB (p. 573)

• Running the Logstash Plugin for Amazon DynamoDB (p. 575)

• Testing the Logstash Plugin for Amazon DynamoDB (p. 577)

API Version 2012-08-10
572

Amazon DynamoDB Developer Guide
Logstash Plugin for Amazon DynamoDB

https://www.elastic.co/products/elasticsearch

Prerequisites
The following items are required to use the Logstash plugin for Amazon DynamoDB:

• Amazon Web Services (AWS) account with DynamoDB

• A running Elasticsearch cluster—To download Elasticsearch, go to https://www.elastic.co/products/
elasticsearch.

• Logstash—To download Logstash, go to https://github.com/awslabs/logstash-input-dynamodb.

• JRuby—To download JRuby, go to http://jruby.org/download.

• Git—To download Git, go to http://git-scm.com/downloads

• Apache Maven—To get Apache Maven, go to http://maven.apache.org/.

Before You Begin: Create a Source Table
In this step, you will create a DynamoDB table with DynamoDB Streams enabled. This will be the source
table and writes to this table will be processed by the Logstash plugin for DynamoDB.

To create the source table

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. Choose Create Table.

3. On the Create Table page, enter the following settings:

a. Table Name—SourceTable

b. Primary Key Type—Hash

c. Hash attribute data type—Number

d. Hash Attribute Name—Id

Choose Continue.

4. On the Add Indexes page, choose Continue.You will not need any indexes for this exercise.

5. On the Provisioned Throughput page, choose Continue.

6. On the Additional Options page, do the following:

a. Select Enable Streams, and then set the View Type to New and Old Images.

b. Clear Use Basic Alarms.You will not need alarms for this exercise.

When you are ready, choose Continue.

7. On the Summary page, choose Create.

The source table will be created within a few minutes.

Setting Up the Logstash Plugin for Amazon
DynamoDB
To use the Logstash plugin for DynamoDB, you need to build, install, run the plugin, and then you can
test it.

API Version 2012-08-10
573

Amazon DynamoDB Developer Guide
Prerequisites

https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://github.com/awslabs/logstash-input-dynamodb
http://jruby.org/download
http://git-scm.com/downloads
http://maven.apache.org/
https://console.aws.amazon.com/dynamodb/

To build the Logstash plugin for DynamoDB

1. At the command prompt, change to the directory where you want to install the Logstash plugin for
DynamoDB and demo project.

In the directory where you want the Git project, clone the Git project:

https://github.com/awslabs/logstash-input-dynamodb.git

2. Install the Bundler gem by typing the following:

gem install bundler

The Bundler gem checks dependencies for Ruby gems and installs them for you.

3. To install the dependencies for the Logstash plugin for DynamoDB, type the following command:

bundle install

4. To build the gem, type the following command:

gem build logstash-input-dynamodb.gemspec

To install the Logstash plugin for DynamoDB

Now that you have built the plugin gem, you can install it.

1. Change directories to your local Logstash directory.

2. In the Logstash directory, open the Gemfile file in a text editor.

3. At the bottom of the file, add the following line:

"logstash-input-dynamodb", "1.0.0", :path => "<full path to plugin directory>"

4. Install the Logstash plugin for DynamoDB by typing the following:

bin/plugin install –no-verify <full path to plugin directory>/logstash-input-
dynamodb-1.0.0.gem

Note
This command is formatted for the Bash shell. If you are using a different command-line
you may need to change the format. For example, in the Windows command prompt, you
must change all the slashes (/) to backslashes (\).

5. Before running the Logstash plugin for DynamoDB, verify that you have the Elasticsearch and stdout
output plugins installed.

To list all the installed plugins type the following command:

bin/plugin list

API Version 2012-08-10
574

Amazon DynamoDB Developer Guide
Setting Up the Logstash Plugin for Amazon DynamoDB

If the logstash-output-elasticsearch or logstash-output-stdout plugins are not listed
you need to install them. For instructions on installing plugins, go to the Working with Plugins page
in the Logstash documentation.

Running the Logstash Plugin for Amazon
DynamoDB
In the local Logstash directory type the following command:

bin/logstash -e 'input {
 dynamodb{endpoint => "dynamodb.us-east-1.amazonaws.com"
 streams_endpoint => "streams.dynamodb.us-east-1.amazonaws.com"
 view_type => "new_and_old_images"
 aws_access_key_id => "<access_key_id>"
 aws_secret_access_key => "<secret_key>"
 table_name => "SourceTable"} }
output {
 elasticsearch
 { host => localhost }
 stdout { } }'

Note
This is a single command formatted for the Bash shell. If you are using a different command-line
you may need to change the format. For example, in the Windows command prompt, you must
change all the slashes (/) to backslashes (\) and it must all be entered on a single line.

Important
This is an example configuration.You must replace <access_key_id> and <secret_key>
with your access key and secret key. If you have credentials saved in a credentials file, you
can omit these configuration values.
You can also change the other configuration options to match your particular use case.

The following table shows the configuration values.

DescriptionSetting

The name of the table to index. This table must
exist.

table_name

The DynamoDB endpoint to use.

If you are using DynamoDB Local, use ht-
tp://localhost:8000 as the endpoint.

endpoint

The name of a checkpoint table.This does not need
to exist prior to plugin activation.

streams_endpoint

The view type of the DynamoDB stream.

• new_and_old_images

• new_image

• old_image

• keys_only

view_type

API Version 2012-08-10
575

Amazon DynamoDB Developer Guide
Running the Logstash Plugin for Amazon DynamoDB

https://www.elastic.co/guide/en/logstash/current/working-with-plugins.html

Your AWS access key ID. This is optional if you
have credentials saved in a credentials file.

Note
If you are using DynamoDB Local, this ID
must match the access key ID that you
used to create the table. If it does not
match, the Logstash plugin will fail be-
cause DynamoDB Local partitions data
by access key ID and region.

aws_access_key_id

Your AWS access key ID.Your AWS access key
ID. This is optional if you have credentials saved
in a credentials file.

aws_secret_access_key

A boolean flag to indicate whether or not Logstash
should scan the entire table before streaming new
records.

Note
Set this option to false if your are restart-
ing the Logstash plugin.

perform_scan

A string that uniquely identifies the KCL checkpoint-
er name and CloudWatch metrics name.

This is used when one worker leaves a shard so
that another worker knows where to start again.

checkpointer

Boolean option to publish metrics to CloudWatch
using the checkpointer name.

publish_metrics

Boolean option to not automatically stream new
data into Logstash from DynamoDB streams.

perform_stream

Number of read operations per second to perform
when scanning the specified table.

read_ops

Number of threads to use when scanning the spe-
cified table.

number_of_scan_threads

Number of threads to write to the Logstash queue
when scanning the table.

number_of_write_threads

API Version 2012-08-10
576

Amazon DynamoDB Developer Guide
Running the Logstash Plugin for Amazon DynamoDB

Log transfer format.

• plain

Returns the object as a DynamoDB object.

• json_drop_binary

Translates the item format to JSON and drops
any binary attributes.

• json_binary_as_text

Translates the item format to JSON and repres-
ents any binary attributes as 64-bit encoded
binary strings.

For more information, see the JSON Data Format
topic in the DynamoDB documentation.

log_format

Testing the Logstash Plugin for Amazon
DynamoDB
The Logstash plugin for DynamoDB starts scanning the DynamoDB table and indexing the table data
when you run it. As you insert new records into the DynamoDB table, the Logstash plugin consumes the
new records from DynamoDB streams to continue indexing. To test this, you can add items to the
DynamoDB table in the AWS console, and view the output (stdout) in the command prompt window. The
items are also inserted into Elasticsearch and indexed for searching.

To test the Logstash plugin for DynamoDB

1. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

2. In the list of tables, open (double-click) SourceTable.

3. Choose New Item, add the following data, and then choose PutItem:

• Id—1

• Message—First item

4. Repeat the previous step to add the following data items:

• Id—2 and Message—Second item

• Id—3 and Message—Third item

5. Return to the command-prompt window and verify the Logstash output.

6. (Optional) Go back to the SourceTable in us-east-1 and do the following:

• Update item 2. Set the Message to Hello world!

• Delete item 3.

Go to the command-prompt window and verify the data output.

API Version 2012-08-10
577

Amazon DynamoDB Developer Guide
Testing the Logstash Plugin for Amazon DynamoDB

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataFormat.html
https://console.aws.amazon.com/dynamodb/

You can now search the DynamoDB items in Elasticsearch. For information about accessing and searching
data in Elasticsearch, see the Elasticsearch documentation.

AWS Command Line Interface for DynamoDB
Topics

• Downloading and Configuring the AWS CLI (p. 578)

• Using the AWS CLI with DynamoDB (p. 578)

• Using the AWS CLI with DynamoDB Local (p. 579)

The AWS Command Line Interface (AWS CLI) provides support for DynamoDB.You can use the AWS
CLI for ad hoc operations, such as creating a table.You can also use it to embed DynamoDB operations
within utility scripts.

Downloading and Configuring the AWS CLI
The AWS CLI is available at http://aws.amazon.com/cli, and will run on Windows, Mac, or Linux computers.
After you download the AWS CLI, go to AWS Command Line Interface User Guide and follow the setup
instructions there.

Using the AWS CLI with DynamoDB
The command line format consists of a DynamoDB API name, followed by the parameters for that API.
The AWS CLI supports a shorthand syntax for the parameter values, as well as JSON.

For example, the following command will create a table named MusicCollection. (For easier readability,
long commands in this section are broken into separate lines.)

aws dynamodb create-table
 --table-name MusicCollection
 --attribute-definitions
 AttributeName=Artist,AttributeType=S AttributeName=SongTitle,Attribute
Type=S
 --key-schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,Key
Type=RANGE
 --provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1

The following commands will add new items to the table. These example use a combination of shorthand
syntax and JSON.

aws dynamodb put-item
 --table-name MusicCollection
 --item '{
 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Call Me Today"} ,
 "AlbumTitle": {"S": "Somewhat Famous"} }'
 --return-consumed-capacity TOTAL

aws dynamodb put-item
 --table-name MusicCollection
 --item '{
 "Artist": {"S": "Acme Band"},

API Version 2012-08-10
578

Amazon DynamoDB Developer Guide
AWS Command Line Interface for DynamoDB

http://www.elastic.co/guide/
http://aws.amazon.com/cli
http://docs.aws.amazon.com/cli/latest/userguide/

 "SongTitle": {"S": "Happy Day"} ,
 "AlbumTitle": {"S": "Songs About Life"} }'
 --return-consumed-capacity TOTAL

On the command line, it can be difficult to compose valid JSON; however, the AWS CLI can read JSON
files. For example, consider the following JSON snippet which is stored in a file named key-conditions.json:

{
 "Artist": {
 "AttributeValueList": [
 {
 "S": "No One You Know"
 }
],
 "ComparisonOperator": "EQ"
 },
 "SongTitle": {
 "AttributeValueList": [
 {
 "S": "Call Me Today"
 }
],
 "ComparisonOperator": "EQ"
 }
}

You can now issue a Query request using the AWS CLI. In this example, the contents of the
key-conditions.json file are used for the --key-conditions parameter:

aws dynamodb query --table-name MusicCollection --key-conditions file://key-
conditions.json

For more documentation on using the AWS CLI with DynamoDB, go to http://docs.aws.amazon.com/cli/
latest/reference/dynamodb/index.html.

Using the AWS CLI with DynamoDB Local
The AWS CLI can interact with DynamoDB Local (p. 543), in addition to DynamoDB. To do this, add the
--endpoint-url parameter to each command:

--endpoint-url http://localhost:8000

Here is an example, using the AWS CLI to list the tables in a DynamoDB Local database:

aws dynamodb list-tables --endpoint-url http://localhost:8000

If DynamoDB Local is using a port number other than the default (8000), you will need to modify the
--endpoint-url value accordingly.

Note
At this time, the AWS CLI cannot use DynamoDB Local as a default endpoint; therefore, you
will need to specify --endpoint-url with each CLI command.

API Version 2012-08-10
579

Amazon DynamoDB Developer Guide
Using the AWS CLI with DynamoDB Local

http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html

DynamoDB Integration with Other
Services

Topics

• Monitoring DynamoDB with CloudWatch (p. 580)

• Using IAM to Control Access to DynamoDB Resources (p. 591)

• Logging DynamoDB API Calls By Using AWS CloudTrail (p. 614)

• Exporting, Importing and Transforming Data Using AWS Data Pipeline (p. 620)

• Querying and Joining Tables Using Amazon Elastic MapReduce (p. 634)

• Loading Data From DynamoDB Into Amazon Redshift (p. 665)

Amazon DynamoDB is integrated with other AWS services, letting you automate repeating tasks or build
applications that span multiple services. Here are some ways you can leverage this integration:

• Gather and analyze DynamoDB metrics using Amazon CloudWatch

• Use AWS Identity and Access Management to control access to DynamoDB tables, indexes and other
resources.

• Set up CloudTrail logging to capture data about DynamoDB API actions.

• Periodically export DynamoDB data to Amazon S3, within the same region or across regions.

• Use Amazon Elastic MapReduce to perform complex queries on DynamoDB data.

• Load data from DynamoDB into Amazon Redshift for a complete data warehousing solution.

Monitoring DynamoDB with CloudWatch
Topics

• AWS Management Console (p. 581)

• Command Line Interface (CLI) (p. 581)

• API (p. 581)

• DynamoDB Metrics (p. 582)

• Dimensions for DynamoDB Metrics (p. 591)

API Version 2012-08-10
580

Amazon DynamoDB Developer Guide
Monitoring DynamoDB with CloudWatch

Amazon DynamoDB and Amazon CloudWatch are integrated, so you can gather and analyze performance
metrics.You can monitor these metrics using the CloudWatch console, the AWS Command Line Interface,
or programmatically using the CloudWatch API. CloudWatch also allows you to set alarms when you
reach a specified threshold for a metric.

For more information about using CloudWatch and alarms, see the CloudWatch Documentation.

AWS Management Console
To view CloudWatch data for a table in DynamoDB

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, click Metrics.

3. In the CloudWatch Metrics by Category pane, under DynamoDB Metrics, select Table Metrics,
and then in the upper pane, scroll down to view the full list of metrics for your table.

The available DynamoDB metric options appear in the Viewing list.

To select or deselect an individual metric, in the results pane, select the check box next to the resource
name and metric. Graphs showing the metrics for the selected items are displayed at the bottom of the
console. To learn more about CloudWatch graphs, see the Amazon CloudWatch Developer Guide.

Command Line Interface (CLI)
To view CloudWatch data for a table in DynamoDB

1. Install the AWS Command Line Interface (AWS CLI). For instructions, see the AWS Command Line
Interface User Guide.

2. Use the AWS CLI to fetch information. The relevant CloudWatch parameters for DynamoDB are
listed in DynamoDB Metrics (p. 582).

The following example retrieves CloudWatch metrics on PutItem requests that exceeded a table's
provisioned write capacity during a specific time period.

aws cloudwatch get-metric-statistics
 --namespace AWS/DynamoDB --metric-name ThrottledRequests
 --dimensions Name=TableName,Value=TestTable Name=Operation,Value=PutItem

 --start-time 2014-05-02T00:00:00Z --end-time 2014-05-07T00:00:00Z --
period 300 --statistics=Sum

API
CloudWatch also supports a Query API so you can request information programmatically. For more
information, see the CloudWatch Query API documentation and Amazon CloudWatch API Reference.

When a CloudWatch action requires a parameter that is specific to DynamoDB monitoring, such as
MetricName, use the values listed in DynamoDB Metrics (p. 582).
The following example shows a CloudWatch API request, using the following parameters:

• Statistics.member.1 = Average

API Version 2012-08-10
581

Amazon DynamoDB Developer Guide
AWS Management Console

http://aws.amazon.com/documentation/cloudwatch
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide//graph_metrics.html
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/choosing_your_cloudwatch_interface.html#Using_Query_API
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/

• Dimensions.member.1 = Operation=PutItem,TableName=TestTable

• Namespace = AWS/DynamoDB

• StartTime = 2013-11-14T00:00:00Z

• EndTime = 2013-11-16T00:00:00Z

• Period = 300

• MetricName = SuccessfulRequestLatency

Here is what the CloudWatch request looks like. However, note that this is just to show the form of the
request; you will need to construct your own request based on your metrics and time frame.

http://monitoring.amazonaws.com/
 ?SignatureVersion=2
 &Action=SuccessfulRequestLatency
 &Version=2010-08-01
 &StartTime=2013-11-14T00:00:00
 &EndTime=2013-11-16T00:00:00
 &Period=300
 &Statistics.member.1=Average
 &Dimensions.member.1=Operation=PutItem,TableName=TestTable
 &Namespace=AWS/DynamoDB
 &MetricName=SuccessfulRequestLatency

 &Timestamp=2013-10-15T17%3A48%3A21.746Z
 &AWSAccessKeyId=<AWS Access Key ID>
 &Signature=<Signature>

DynamoDB Metrics
The following metrics are available from DynamoDB. Note that DynamoDB only sends metrics to
CloudWatch when they have a non-zero value. For example, the UserErrors metric is incremented
whenever a request generates an HTTP 400 error code; if no requests have resulted in a 400 code during
a particular time period, then no metrics for UserErrors are shown.

Note
Not all statistics, such as Average or Sum, are applicable for every metric. However, all of these
values are available through the console, API, and command line client for all services. In the
following table, each metric has a list of Valid Statistics that is applicable to that metric.
Also note that in August 2015, the base period of the following metrics changed from 5 minutes
to 1 minute:

• ConditionalCheckFailedRequests

• ConsumedReadCapacityUnits

• ConsumedWriteCapacityUnits

• ReadThrottleEvents

• ReturnedItemCount

• SuccessfulRequestLatency

• SystemErrors

• ThrottledRequests

• UserErrors

• WriteThrottleEvents

API Version 2012-08-10
582

Amazon DynamoDB Developer Guide
DynamoDB Metrics

The base period of the following metrics remains 5 minutes:

• OnlineIndexConsumedWriteCapacity

• OnlineIndexPercentageProgress

• OnlineIndexThrottleEvents

• ProvisionedReadCapacityUnits

• ProvisionedWriteCapacityUnits

DescriptionMetric

The number of failed attempts to perform conditional writes.
The PutItem, UpdateItem, and DeleteItem operations
let you provide a logical condition that must evaluate to true
before the operation can proceed. If this condition evaluates
to false, then ConditionalCheckFailedRequests is incre-
mented by one.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.
A failed conditional write will result in an HTTP 400
error (Bad Request). These events are reflected in
the ConditionalCheckFailedRequests metric,
but not in the UserErrors metric.

Units: Count

Dimensions: TableName

Valid Statistics: Minimum, Maximum, Average, Data Samples,
Sum

ConditionalCheckFailedRequests

API Version 2012-08-10
583

Amazon DynamoDB Developer Guide
DynamoDB Metrics

DescriptionMetric

The number of read capacity units consumed over the spe-
cified time period, so you can track how much of your provi-
sioned throughput is used.You can retrieve the total con-
sumed read capacity for a table and all of its global secondary
indexes, or for a particular global secondary index. For more
information, see Provisioned Throughput in Amazon Dy-
namoDB.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.
Use the Sum statistic to calculate the consumed
throughput. For example, get the Sum value over a
span of 1 minute, and divide it by the number of
seconds in a minute (60) to calculate the average
ConsumedReadCapacityUnits per second (recogniz-
ing that this average will not highlight any large but
brief spikes in read activity that occurred during that
minute).You can compare the calculated value to
the provisioned throughput value you provide Dy-
namoDB.
Also note that while valid, Minimum and Maximum
will always be 0.5 for eventually consistent reads
and 1 for strongly consistent reads, and Average will
always range from 0.5 to 1.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics: Minimum, Maximum, Average, Sum

ConsumedReadCapacityUnits

API Version 2012-08-10
584

Amazon DynamoDB Developer Guide
DynamoDB Metrics

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html

DescriptionMetric

The number of write capacity units consumed over the spe-
cified time period, so you can track how much of your provi-
sioned throughput is used.You can retrieve the total con-
sumed write capacity for a table and all of its global secondary
indexes, or for a particular global secondary index. For more
information, see Provisioned Throughput in Amazon Dy-
namoDB.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.
Use the Sum statistic to calculate the consumed
throughput. For example, get the Sum value over a
span of 1 minute, and divide it by the number of
seconds in a minute (60) to calculate the average
ConsumedWriteCapacityUnits per second (recogniz-
ing that this average will not highlight any large but
brief spikes in write activity that occurred during that
minute).You can compare the calculated value to
the provisioned throughput value you provide Dy-
namoDB.
Also note that while valid, Minimum, Maximum, and
Average will always be 1.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics: Minimum, Maximum, Average, Sum

ConsumedWriteCapacityUnits

The number of write capacity units consumed when adding
a new global secondary index to a table. If the write capacity
of the index is too low, then incoming write activity during the
backfill phase might be throttled; this can increase the time it
takes to create the index.You should monitor this statistic
while the index is being built to determine whether the write
capacity of the index is underprovisioned.

You can adjust the write capacity of the index using the Up-
dateTable operation, even while the index is still being built.

Note that the ConsumedWriteCapacityUnits metric for
the index does not include the write throughput consumed
during index creation.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics: Minimum, Maximum, Average, Sum

OnlineIndexConsumedWriteCapa-
city

API Version 2012-08-10
585

Amazon DynamoDB Developer Guide
DynamoDB Metrics

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html

DescriptionMetric

The percentage of completion when a new global secondary
index is being added to a table. DynamoDB must first allocate
resources for the new index, and then backfill attributes from
the table into the index. For large tables, this process might
take a long time.You should monitor this statistic to view the
relative progress as DynamoDB builds the index.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics: Minimum, Maximum, Average, Sum

OnlineIndexPercentageProgress

The number of write throttle events that occur when adding
a new global secondary index to a table. These events indic-
ate that the index creation will take longer to complete, be-
cause incoming write activity is exceeding the provisioned
write throughput of the index.

You can adjust the write capacity of the index using the Up-
dateTable operation, even while the index is still being built.

Note that the WriteThrotttleEvents metric for the index
does not include any throttle events that occur during index
creation.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics: Minimum, Maximum, Average, Sum

OnlineIndexThrottleEvents

The number of provisioned read capacity units for a table or
a global secondary index.
The TableName dimension returns the ProvisionedRead-
CapacityUnits for the table, but not for any global second-
ary indexes. To view ProvisionedReadCapacityUnits
for a global secondary index, you must specify both Table-
Name and GlobalSecondaryIndex.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics: Minimum, Maximum, Average, Sum

ProvisionedReadCapacityUnits

API Version 2012-08-10
586

Amazon DynamoDB Developer Guide
DynamoDB Metrics

DescriptionMetric

The number of provisioned write capacity units for a table or
a global secondary index

The TableName dimension returns the ProvisionedWrite-
CapacityUnits for the table, but not for any global second-
ary indexes. To view ProvisionedWriteCapacityUnits
for a global secondary index, you must specify both Table-
Name and GlobalSecondaryIndex.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics: Minimum, Maximum, Average, Sum

ProvisionedWriteCapacityUnits

The number of read events that exceeded the preset provi-
sioned throughput limits in the specified time period.

A single API request can result in multiple events. For ex-
ample, a BatchGetItem that reads 10 items is processed
as ten GetItem events. For each event, Read-
ThrottleEvents is incremented by 1 if that event is throttled.
The ThrottledRequests metric for the entire Batch-
GetItem is not incremented unless all ten of the GetItem
events are throttled.

The TableName dimension returns the Read-
ThrottleEvents for the table, but not for any global second-
ary indexes. To view ReadThrottleEvents for a global
secondary index, you must specify both TableName and
GlobalSecondaryIndex.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics: Sum, Data Samples

ReadThrottleEvents

The number of items returned by a Scan or Query operation.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.

Units: Count

Dimensions: TableName

Valid Statistics: Minimum, Maximum, Average, Data Samples,
Sum

ReturnedItemCount

API Version 2012-08-10
587

Amazon DynamoDB Developer Guide
DynamoDB Metrics

DescriptionMetric

The number of successful requests in the specified time
period. By default, SuccessfulRequestLatency provides
the elapsed time for successful calls.You can see statistics
for the Minimum, Maximum, or Average, over time.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.
CloudWatch also provides a Data Samples statistic:
the total number of successful calls for a sample time
period.

Units: Milliseconds (or a count for Data Samples)

Dimensions: TableName, Operation

Valid Statistics: Minimum, Maximum, Average, Data Samples

SuccessfulRequestLatency

The number of requests generating a 500 status code (likely
indicating a server error) response in the specified time period.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.

Units: Count

Dimensions: All dimensions

Valid Statistics: Sum, Data Samples

SystemErrors

API Version 2012-08-10
588

Amazon DynamoDB Developer Guide
DynamoDB Metrics

DescriptionMetric

The number of user requests that exceeded the preset provi-
sioned throughput limits in the specified time period.

ThrottledRequests is incremented by 1 if any event within
a request exceeds a provisioned throughput limit. For ex-
ample, if you update an item in a table with global secondary
indexes, there are multiple events — a write to the table, and
a write to each index. If one or more of these events are
throttled, then ThrottledRequests is incremented by 1.

Important
In a batch request, ThrottledRequests is only
incremented if every request in the batch (such as
BatchGetItem) is throttled. Individual throttle requests
in the batch result in incrementing Read-
ThrottleEvents (for GetItem events) or
WriteThrottleEvents (for PutItem and De-
leteItem events).

To gain insight into which event is throttling a request, com-
pare ThrottledRequests with the ReadThrottleEvents
and WriteThrottleEvents for the table and its indexes.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.
A throttled request will result in an HTTP 400 error
(Bad Request). These events are reflected in the
ThrottledRequests metric, but not in the UserEr-
rors metric.

Units: Count

Dimensions: TableName, Operation

Valid Statistics: Sum, Data Samples

ThrottledRequests

API Version 2012-08-10
589

Amazon DynamoDB Developer Guide
DynamoDB Metrics

DescriptionMetric

The number of requests generating an HTTP 400 status code
(likely indicating a client error) response in the specified time
period. All such events are reflected in this metric, except for
the following:

• ProvisionedThroughputExceededException — see the
ThrottledRequests metric in this section.

• ConditionalCheckFailedException — see the Condition-
alCheckFailedRequests metric in this section.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.

Units: Count

This is a region account level metric. It represents the aggreg-
ate of HTTP 400 errors for DynamoDB requests for all tables
in this region, for this AWS account.

Valid Statistics: Sum, Data Samples

UserErrors

The number of write events that exceeded the preset provi-
sioned throughput limits in the specified time period.

A single API request can result in multiple events. For ex-
ample, a PutItem request on a table with three global sec-
ondary indexes would result in four events — the table write,
and each of the three index writes. For each event, the
WriteThrottleEvents metric is incremented by 1 if that
event is throttled. For single PutItem requests, if any of the
events are throttled, ThrottledRequests is also incremen-
ted by 1. For BatchWriteItem, the ThrottledRequests
metric for the entire BatchWriteItem is not incremented
unless all of the individual PutItem or DeleteItem events
are throttled.

The TableName dimension returns the
WriteThrottleEvents for the table, but not for any global
secondary indexes. To view WriteThrottleEvents for a
global secondary index, you must specify both TableName
and GlobalSecondaryIndex.

Note
In August 2015, the base period of this metric
changed from 5 minutes to 1 minute.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics: Sum, Data Samples

WriteThrottleEvents

API Version 2012-08-10
590

Amazon DynamoDB Developer Guide
DynamoDB Metrics

Dimensions for DynamoDB Metrics
The metrics for DynamoDB are qualified by the values for the account, table name, global secondary
index name, or operation.You can use the CloudWatch console to retrieve DynamoDB data along any
of the dimensions in the table below.

DescriptionDimension

This dimension limits the data you request to a specific table. This
value can be any table name for the current account.

TableName

This dimension limits the data you request to a global secondary index
on a table. If you specify GlobalSecondaryIndexName, you must
also specify TableName.

GlobalSecondaryIndexName

The operation corresponds to the DynamoDB service API, and can
be one of the following:

• PutItem

• DeleteItem

• UpdateItem

• GetItem

• BatchGetItem

• Scan

• Query

For all of the operations in the current DynamoDB service API, see
Operations in Amazon DynamoDB.

Operation

Using IAM to Control Access to DynamoDB
Resources

Topics

• Amazon Resource Names (ARNs) for DynamoDB (p. 592)

• DynamoDB Actions (p. 593)

• Condition Types and Operators (p. 593)

• IAM Policy Keys (p. 594)

• Example Policies for API Actions and Resource Access (p. 595)

• Fine-Grained Access Control for DynamoDB (p. 600)

• Example Policies for Fine-Grained Access Control (p. 602)

• Using Web Identity Federation (p. 608)

Amazon DynamoDB integrates with AWS Identity and Access Management (IAM), a service that enables
you to do the following:

• Create users and groups under your AWS account

• Easily share your AWS resources between the users in your AWS account

• Assign unique security credentials to each user

API Version 2012-08-10
591

Amazon DynamoDB Developer Guide
Dimensions for DynamoDB Metrics

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/operationlist.html

• Control each user's access to services and resources

• Get a single bill for all users in your AWS account

For more information about IAM, see the following:

• Identity and Access Management (IAM)

• IAM Getting Started Guide

• IAM User Guide

You can use IAM to grant access to DynamoDB resources and API actions. To do this, you first write an
IAM policy, which is a document that explicitly lists the permissions you want to grant.You then attach
that policy to an IAM user or role.

For example, an IAM user named Joe could create a DynamoDB table, and then write an IAM policy to
allow read-only access to this table. Joe could then apply that policy to selected IAM users, groups or
roles in his AWS account. These recipients would then have read-only access to Joe's table.

To create and manage IAM policies, go to the IAM console at https://console.aws.amazon.com/iam/.

For examples of IAM policies that cover DynamoDB actions and resources, see:

• Example Policies for API Actions and Resource Access (p. 595)

• Example Policies for Fine-Grained Access Control (p. 602)

Amazon Resource Names (ARNs) for DynamoDB
When writing IAM policies for DynamoDB, you use Amazon Resource Names (ARNs) to refer to individual
tables and indexes. If you want to write an IAM policy for a particular table, you specify an ARN with the
table name, the region in which the table is located, and the owners' AWS account number.

Here is an example ARN for a table named Books, which is located in us-west-2 and is owned by AWS
account number 12345678012:

"Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"

Here is another example ARN for an index named TitleIndex on the Books table:

"Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books/index/TitleIn
dex"

Note
To find your AWS account number, go to the AWS Management Console and click My Account.
Your AWS account number is shown in the upper right portion of the Manage Your Account
page.The account number is formatted using dashes (for example, 1234-5678-9012); however,
if you use it in an ARN, be sure to remove the dashes (for example, 123456789012).

You can use resource-level ARNs in IAM policies for all DynamoDB actions, with the exception of
ListTables. The ListTables action returns the table names owned by the current account making the
request for the current region; it is the only DynamoDB action that does not support resource-level ARN
policies.

API Version 2012-08-10
592

Amazon DynamoDB Developer Guide
Amazon Resource Names (ARNs) for DynamoDB

http://aws.amazon.com/iam
http://docs.aws.amazon.com/IAM/latest/GettingStartedGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/
https://console.aws.amazon.com/iam/

DynamoDB Actions
In an IAM policy, you can specify any of the actions in the DynamoDB API.You must prefix each action
name with the lowercase string dynamodb:. Here are some examples:

• dynamodb:CreateTable

• dynamodb:PutItem

• dynamodb:Query

• dynamodb:UpdateItem

For a list of API actions, see the Amazon DynamoDB API Reference.

DynamoDB allows customers to purchase Reserved Capacity, as described at http://aws.amazon.com/
dynamodb/pricing. With Reserved Capacity, you pay a one-time upfront fee and commit to paying for a
minimum usage level, at significant savings, over a period of time. The following actions are available for
controlling access to Reserved Capacity management:

• dynamodb:PurchaseReservedCapacityOfferings

• dynamodb:DescribeReservedCapacityOfferings

• dynamodb:DescribeReservedCapacity

To refer to all of the DynamoDB actions, use an asterisk:

• dynamodb:*

Condition Types and Operators
In IAM, a condition is composed of a condition type and an operator. The following condition types are
available:

• String

• Numeric

• Date and time

• Boolean

• Binary

• IP address

• Amazon Resource Name (ARN)

• ...IfExists

• Existence of condition keys

The operators that are available depend on the condition type being used. For example, with a String
value, you can specify StringEquals, StringNotEquals, StringEqualsIgnoreCase,
StringNotEqualsIgnoreCase, StringLike, or StringNotLike.

You can optionally specify a set operator in a condition. The following IAM set operators are available:

• ForAnyValue — Returns true if any one of the key values matches any one of the condition values.

API Version 2012-08-10
593

Amazon DynamoDB Developer Guide
DynamoDB Actions

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
http://aws.amazon.com/dynamodb/pricing
http://aws.amazon.com/dynamodb/pricing
http://docs.aws.amazon.com/IAM/latest/UserGuide/conditions-setoperators.html

• ForAllValues — Returns true if there's a match between every one of the specified key values and
at least one condition value.

For more information about IAM condition types and operators, see the Condition section in IAM User
Guide.

IAM Policy Keys
The following IAM policy keys are available for DynamoDB and other AWS services.

Policy Keys Specific to DynamoDB

• dynamodb:LeadingKeys – Represents the first key attribute of a table. For a hash type or a
hash-and-range type primary key, LeadingKeys is just the hash key.

Note that LeadingKeys is plural, even if it is used with single-item actions. In addition, note that you
must use the ForAllValues modifier when using LeadingKeys in a condition.

• dynamodb:Select – Represents the Select parameter of a Query or Scan request. Select can be
any of the following values:

• ALL_ATTRIBUTES

• ALL_PROJECTED_ATTRIBUTES

• SPECIFIC_ATTRIBUTES

• COUNT

• dynamodb:Attributes – Represents a list of the attribute names in a request, or the attributes that
are returned from a request. The value for Attributes is expressed as the parameter name of a
DynamoDB action.

API Actions That Use This ParameterParameter Name

BatchGetItem, GetItem, Query, ScanAttributesToGet

UpdateItemAttributeUpdates

DeleteItem, PutItem, UpdateItemExpected

PutItemItem

ScanScanFilter

• dynamodb:ReturnValues – Represents the ReturnValues parameter of a request.ReturnValues
can be any of the following values:

• ALL_OLD

• UPDATED_OLD

• ALL_NEW

• UPDATED_NEW

• NONE

• dynamodb:ReturnConsumedCapacity – Represents the ReturnConsumedCapacity parameter of
a request. ReturnConsumedCapacity can be one of the following values:

• TOTAL

• NONE

API Version 2012-08-10
594

Amazon DynamoDB Developer Guide
IAM Policy Keys

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Condition
http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/

In addition to product-specific policy keys, DynamoDB supports the following keys that are common to
other AWS services that use AWS Identity and Access Management:

AWS-Wide Policy Keys

• aws:CurrentTime—To check for date/time conditions.

• aws:EpochTime—To check for date/time conditions using a date in epoch or UNIX time.

• aws:MultiFactorAuthAge—To check how long ago (in seconds) the MFA-validated security credentials
making the request were issued using Multi-Factor Authentication (MFA). Unlike other keys, if MFA is
not used, this key is not present.

• aws:principaltype—To check the type of principal (user, account, federated user, etc.) for the current
request.

• aws:SecureTransport—To check whether the request was sent using SSL. For services that use
only SSL, such as Amazon RDS and Amazon Route 53, the aws:SecureTransport key has no
meaning.

• aws:SourceArn—To check the source of the request, using the Amazon Resource Name (ARN) of
the source. (This value is available for only some services. For more information, see Amazon Resource
Name (ARN) under "Element Descriptions" in the Amazon Simple Queue Service Developer Guide.)

• aws:SourceIp—To check the IP address of the requester. Note that if you use aws:SourceIp, and
the request comes from an Amazon EC2 instance, the public IP address of the instance is evaluated.

• aws:UserAgent—To check the client application that made the request.

• aws:userid—To check the user ID of the requester.

• aws:username—To check the user name of the requester, if available.

Note
Key names are case sensitive.

For more information about AWS-wide policy keys, see Condition in IAM User Guide.

Example Policies for API Actions and Resource
Access
Topics

• Allow any DynamoDB actions on all tables (p. 595)

• Allow read-only access on items in the AWS account's tables (p. 596)

• Allow put, update, and delete operations on one table (p. 596)

• Allow access to a specific table and all of its indexes (p. 596)

• Prevent a partner from using API actions that change data (p. 597)

• Separate test and production environments (p. 597)

• Allow access to the DynamoDB console (p. 599)

• Disallow purchasing of Reserved Capacity offerings (p. 600)

This section shows several policies for controlling user access to DynamoDB API actions, and resources
such as tables and indexes. For additional policies that address web identity federation and fine-grained
access control, see Example Policies for Fine-Grained Access Control (p. 602).

Allow any DynamoDB actions on all tables
In this example, we create a policy that lets the recipient use any DynamoDB API action on any of the
AWS account's tables.

API Version 2012-08-10
595

Amazon DynamoDB Developer Guide
Example Policies for API Actions and Resource Access

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN
http://docs.aws.amazon.com/IAM/latest/UserGuide//AccessPolicyLanguage_ElementDescriptions.html#Condition
http://docs.aws.amazon.com/IAM/latest/UserGuide/

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect":"Allow",
 "Action":"dynamodb:*",
 "Resource":"*"
 }
]
}

Allow read-only access on items in the AWS account's tables
In this example, we create a policy that lets the recipient use only the GetItem and BatchGetItem
actions with any of the AWS account's tables.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem"
],
 "Resource": "*"
 }
]
}

Allow put, update, and delete operations on one table
In this example, we create a policy that lets the recipient use the PutItem, UpdateItem and DeleteItem
actions with a table named "Books", which is owned by AWS account number 123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

Allow access to a specific table and all of its indexes
You may want to limit access of one of your users to a specific table and its indexes.

API Version 2012-08-10
596

Amazon DynamoDB Developer Guide
Example Policies for API Actions and Resource Access

In this example, we create a policy that gives access to all actions on the table named "Books" and all of
its indexes. To test this policy in your own environment, you will need to replace the example account ID
"123456789012" with your AWS account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:*"],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/Books",
 "arn:aws:dynamodb:us-west-2:123456789012:table/Books/index/*"
]
 }
]
}

Prevent a partner from using API actions that change data
IAM Roles provide a way to share a table with another AWS account. For details on creating a role and
granting access to another AWS account, see Roles in the IAM documentation.

In this example, we create an IAM role for the partner, and create a policy for the role that gives access
to all the actions except those that edit data; essentially, they have read-only access. Attach the following
policy to the IAM role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:ListTables",
 "dynamodb:DescribeTable",
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "*"
 }
]
}

Note
This example uses an Allow action and enumerates each of the "read" actions supported by
DynamoDB. An alternative approach could use a Deny action and enumerate each of the "write"
actions. However, the illustrated Allow approach is recommended because new "write" actions
may be added to DynamoDB in the future, which could result in unintended access with the
Deny approach.

Separate test and production environments
Suppose you maintain separate test and production environments where each environment maintains
its own version of a table named ProductCatalog . If you create these tables from the same AWS account,

API Version 2012-08-10
597

Amazon DynamoDB Developer Guide
Example Policies for API Actions and Resource Access

http://docs.aws.amazon.com/IAM/latest/UserGuide//WorkingWithRoles.html

testing work might affect the production environment, because, for example, the limits on concurrent
create and delete actions are set at the AWS account level. As a result, each action in the test environment
reduces the number of actions that are available in your production environment. There is also a risk that
the code in your test environment might accidentally access tables in the production environment. To
prevent these issues, you might consider creating separate AWS accounts for the production and testing.

Suppose further that you have two developers, Bob and Alice, who are testing the ProductCatalog table.
Instead of creating a separate AWS account for every developer, your developers can share the same
test account.You might create a copy of the same table for each developer, such as Bob_ProductCatalog
and Alice_ProductCatalog . In this case, you can create IAM users Bob and Alice in the AWS account
that you created for the test environment.You can then allow these users to perform DynamoDB actions
on to the tables that they own.You have the following policy options to grant the user permissions:

• Create a separate policy for each user and attach the policy to the users separately. For example, you
can attach the following policy to user Alice to allow her access to all DynamoDB actions on the
Alice_ProductCatalog table.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:*"],
 "Resource": "arn:aws:dynamodb:us-west-
2:123456789012:table/Alice_ProductCatalog"
 }
]
}

You would then create a similar policy with a different resource (Bob_ProductCatalog table) for user
Bob.

To test these policies in your own environment, you will need to replace the example account ID
"123456789012" with your AWS account ID. If you want to test them on the DynamoDB management
console, the console requires permission for additional DynamoDB, CloudWatch, and Amazon Simple
Notification Service actions, as shown in the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:*"],
 "Resource": "arn:aws:dynamodb:us-west-
2:123456789012:table/Alice_ProductCatalog"
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:ListTables",
 "dynamodb:DescribeTable",
 "cloudwatch:*",
 "sns:*"
],
 "Resource": "*"
 }

API Version 2012-08-10
598

Amazon DynamoDB Developer Guide
Example Policies for API Actions and Resource Access

]
}

• Instead of attaching policies to individual users, you can use IAM policy variables to write a single policy
and attach it a group.You will need to create a group and, for this example, add both users Alice and
user Bob to the group. The following example allows all DynamoDB actions on the
${aws:username}_ProductCatalog table. The policy variable ${aws:username} is replaced by
the requester's user name when the policy is evaluated. For example, if Alice sends a request to add
an item, the action is allowed only if Alice is adding item to the Alice_ProductCatalog table.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:*"],
 "Resource": "arn:aws:dynamodb:us-west-
2:123456789012:table/${aws:username}_ProductCatalog"
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:ListTables",
 "dynamodb:DescribeTable",
 "cloudwatch:*",
 "sns:*"
],
 "Resource": "*"
 }
]
}

Note
When using IAM policy variables, you must explicitly specify version 2012-10-17 in the policy.
The default version of the access policy language, 2008-10-17, does not support policy variables.

Note that, instead of identifying a specific table as a resource, you could use a wild card (*) to grant
permissions on all tables whose name is prefixed with the name of the IAM user who is logged making
the request.

"Resource":"arn:aws:dynamodb:us-west-2:123456789012:table/${aws:username}_*"

Allow access to the DynamoDB console
In this example, we create a policy that lets the recipient work with the DynamoDB console.

Even if you grant access to individual DynamoDB tables, members of the group will not be able to list all
the tables or view CloudWatch metrics in the DynamoDB console. The following policy provides minimal
permissions for using the console, but does not allow access to any data in the DynamoDB tables.

{
 "Version": "2012-10-17",

API Version 2012-08-10
599

Amazon DynamoDB Developer Guide
Example Policies for API Actions and Resource Access

 "Statement": [
 {
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:ListTables",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:ListMetrics"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Disallow purchasing of Reserved Capacity offerings
In this example, we create a policy to prevent users from purchasing Reserved Capacity offerings.

Recipients of this policy can still view existing Reserved Capacity purchases using the DynamoDB console;
however, they won't be able to purchase any new Reserved Capacity for DynamoDB.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect”:"Deny",
 "Action":"dynamodb:PurchaseReservedCapacityOfferings",
 "Resource":"*"
 }
]
}

Fine-Grained Access Control for DynamoDB
In addition to controlling access to DynamoDB API actions, you can also control access to individual data
items and attributes. Fine-grained access control is the ability to determine who can access individual
data items and attributes in DynamoDB tables and indexes, and the actions that can be performed on
them.

To implement fine-grained access control, you write an AWS Identity and Access Management (IAM)
policy that specifies conditions for accessing security credentials and the associated permissions.You
then apply the policy to IAM users, groups or roles that you create using the IAM console.Your IAM policy
can restrict access to individual items in a table, access to the attributes in those items, or both at the
same time.

You can optionally use web identity federation to control access by users who are authenticated by Login
with Amazon, Facebook, or Google. For more information, see Using Web Identity Federation (p. 608)

Here are some possible use cases for fine-grained access control:

• An app that displays flight data for nearby airports, based on the user's location. Airline names, arrival
and departure times, and flight numbers are all displayed; however, attributes such as pilot names or
the number of passengers are restricted.

• A social networking app for games, where all users' saved game data is stored in a single table, but
no user can access data items that they do not own.

API Version 2012-08-10
600

Amazon DynamoDB Developer Guide
Fine-Grained Access Control for DynamoDB

• An app for targeted advertising that stores data about ad impressions and click tracking. The app can
only write data items for the current user, and can only retrieve targeted ad recommendations for that
user.

An IAM Condition element is the central feature of a fine-grained access control policy. By adding a
Condition to a policy, you can allow or deny access to items and attributes in DynamoDB tables and
indexes, based upon your particular business requirements.

Using fine-grained access control, you can "hide" information in a DynamoDB table in a horizontal fashion
by matching primary key values:

To hide information vertically, you can control which attributes are visible by listing those values in a policy
document:

You can also implement horizontal and vertical information hiding in the same policy.

To show how fine-grained access control works, consider a mobile gaming app. This app lets players
select from and play a variety of different games. The app uses a DynamoDB table named GameScores
to keeps track of high scores and other user data. Each item in the table is uniquely identified by a user
ID and the name of the game that the user played. Users should only have access to game data associated
with their user ID.

Here is the primary key for GameScores:

Range Attribute Name
and Type

Hash Attribute Name
and Type

Primary Key TypeTable Name

Attribute Name: Game-
Title

Type: String

Attribute Name: UserId

Type: String

Hash and RangeGameScores (UserId,
GameTitle, ...)

A user that wants to play a game must belong to an IAM role named GameRole, which has a security
policy attached to it. Here is the policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {

API Version 2012-08-10
601

Amazon DynamoDB Developer Guide
Fine-Grained Access Control for DynamoDB

 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": ["${www.amazon.com:user_id}"],
 "dynamodb:Attributes": [
 "UserId","GameTitle","Wins","Losses",
 "TopScore","TopScoreDateTime"
]
 },
 "StringEqualsIfExists": {"dynamodb:Select": "SPECIFIC_ATTRIB
UTES"}
 }
 }
]
}

The Condition clause implements fine-grained access control, hiding information both horizontally and
vertically:

• The dynamodb:LeadingKeys policy key lets a user access items where the hash key value matches
their user identifier. This identifier is provided by the ${www.amazon.com:user_id} substitution
variable. (More information about such substitution variables is presented in Using Web Identity
Federation (p. 608).)

• The dynamodb:Attributes policy key allows access to only a subset of attributes in any item. No
other attributes are returned by any of the listed actions. In addition, the StringEqualsIfExists
clause ensures that the app must always provide a list of specific attributes to act upon. It is not possible
to request all attributes.

When an IAM policy is evaluated, the result will always be true (access is allowed) or false (access is
denied). If any part of the Condition element is false, then the entire policy evaluates to false and access
is denied.

Important
If you use dynamodb:Attributes, you must specify the names of all of the primary key and
index key attributes, for the table and any secondary indexes that are listed the policy. Otherwise,
DynamoDB will not be able to use these key attributes to perform the requested action.
The attribute names and leading key names in an IAM policy cannot have any characters other
than TAB, CR, LF, SPACE, and ASCII codes 33 (0x21) through 255 (0xFF). Please refer to the
ASCII table at http://www.asciitable.com.

Example Policies for Fine-Grained Access Control
This section shows several policies for implementing fine-grained access control on DynamoDB tables.

API Version 2012-08-10
602

Amazon DynamoDB Developer Guide
Example Policies for Fine-Grained Access Control

http://www.asciitable.com

Many of these policies allow users to access only those items in a table where the hash key value matches
the user identifier. The IAM substitution variables ${www.amazon.com:user_id},
${graph.facebook.com:id}, and ${accounts.google.com:sub} contain user identifiers for Login
with Amazon, Facebook, and Google.To learn how an application logs in to one of these identity providers
and obtains these identifiers, see Using Web Identity Federation (p. 608).

Note
In each of these examples, we set the Effect clause to Allow and specify only the actions,
resources and parameters that will be allowed. Access is permitted only to what is explicitly listed
in the IAM policy.
In some cases, it is possible to rewrite these policies so that they are deny-based — that is,
setting the Effect clause to Deny and inverting all of the logic in the policy. However, we
recommend that you avoid using deny-based policies with DynamoDB because they are difficult
to write correctly, compared to allow-based policies. In addition, future changes to the DynamoDB
API (or changes to existing API inputs) can render a deny-based policy ineffective.

Limit access to items with a specific hash key value
In this example, we create a policy that allows an authenticated user to perform DynamoDB actions on
GameScores, but only on the items whose hash key values match the Login with Amazon unique user
ID for this app. Note that Scan is not included in the list of actions, because Scan would provide access
to all of the leading keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": ["arn:aws:dynamodb:us-west-
2:123456789012:table/GameScores"],
 "Condition": {
 "ForAllValues:StringEquals": {"dynamodb:LeadingKeys":
["${www.amazon.com:user_id}"]}
 }
 }
]
}

Note
When using policy variables, you must explicitly specify version 2012-10-17 in the policy. The
default version of the access policy language, 2008-10-17, does not support policy variables.

If we wanted to implement read-only access, we could remove any actions that could modify the data. In
the following policy, only those actions that provide read-only access are included in the condition.

{
 "Version": "2012-10-17",
 "Statement": [

API Version 2012-08-10
603

Amazon DynamoDB Developer Guide
Example Policies for Fine-Grained Access Control

 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query"
],
 "Resource": ["arn:aws:dynamodb:us-west-
2:123456789012:table/GameScores"],
 "Condition": {
 "ForAllValues:StringEquals": {"dynamodb:LeadingKeys":
["${www.amazon.com:user_id}"]}
 }
 }
]
}

We can also filter the data items that are returned, so that the user only sees specific attributes. In the
following policy, only GameTitle and TopScore will be returned.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query"
],
 "Resource": ["arn:aws:dynamodb:us-west-
2:123456789012:table/GameScores"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": ["${www.amazon.com:user_id}"],
 "dynamodb:Attributes": ["GameTitle","TopScore"]
 },
 "StringEquals": {"dynamodb:Select": "SPECIFIC_ATTRIBUTES"}
 }
 }
]
}

Important
If you use dynamodb:Attributes, you must specify the names of all of the primary key and
index key attributes, for the table and any secondary indexes that are listed the policy. Otherwise,
DynamoDB will not be able to use these key attributes to perform the requested action.

Limit access to specific attributes in a table
In this example, we create a policy that permits access to only two specific attributes in a table. These
attributes can be read, written, or evaluated in a conditional write or scan filter.

{
 "Version": "2012-10-17",

API Version 2012-08-10
604

Amazon DynamoDB Developer Guide
Example Policies for Fine-Grained Access Control

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateItem",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:BatchGetItem",
 "dynamodb:Scan"
],
 "Resource": ["arn:aws:dynamodb:us-west-
2:123456789012:table/GameScores"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:Attributes": ["UserId","TopScore"]
 },
 "StringEqualsIfExists": {
 "dynamodb:Select": "SPECIFIC_ATTRIBUTES",
 "dynamodb:ReturnValues": [
 "NONE",
 "UPDATED_OLD",
 "UPDATED_NEW"
]
 }
 }
 }
]
}

Note
The policy takes a "whitelist" approach, allowing access to a named set of attributes. It is possible
to write an equivalent policy that disallows access to other attributes instead. This "blacklist"
approach is not recommended, because users could determine the names of these blacklisted
attributes by repeatedly issuing requests for all possible attribute names, eventually finding an
attribute that they are not allowed access to. To avoid this, follow the principle of least privilege
and use a whitelist approach to enumerate all of the allowed values, rather than specifying the
disallowed attribute names.

This policy does not permit PutItem, DeleteItem or BatchWriteItem, because those actions always
replace the entire previous item. This would allow users to delete the previous values for attributes that
they are not allowed to access.

The StringEqualsIfExists clause ensures the following:

• If the user specifies the Select parameter, then its value must be SPECIFIC_ATTRIBUTES. This
prevents the API action from returning any non-allowed attributes, such as from an index projection.

• If the user specifies the ReturnValues parameter, then its value must be NONE, UPDATED_OLD or
UPDATED_NEW. This is because the UpdateItem action also perform implicit reads, to check whether
an item exists before replacing it, or so that previous attribute values can be returned if requested.
Restricting ReturnValues in this way ensures that users can only read or write the allowed attributes.

• The StringEqualsIfExists clause assures that only one of these parameters — Select or
ReturnValues — can be used per request, in the context of the allowed actions.

Here are some important considerations about the limits of fine-grained access policy controls:

API Version 2012-08-10
605

Amazon DynamoDB Developer Guide
Example Policies for Fine-Grained Access Control

http://en.wikipedia.org/wiki/Principle_of_least_privilege

• If you are limiting access to certain attributes, you must allow the primary key attribute names. If you
want to allow Query actions on a secondary index, you must also allow the index range key attribute
name.

• UpdateItem is actually an "upsert", meaning that if an item does not exist with the specified primary
key, then DynamoDB will put a new item into the table. This implies that users could put new items
without having any of the whitelisted attributes defined. To avoid this, ensure that your applications are
designed to expect upsert behavior, and that they will not be vulnerable to any kinds of exploits from
it.

The following are some variations on this policy:

• To allow only read actions, we can remove UpdateItem from the list of allowed actions. Since none
of the remaining actions accept ReturnValues, we can remove ReturnValues from the condition.
We can also change StringEqualsIfExists to StringEquals, since the Select parameter will
always have a value (ALL_ATTRIBUTES, unless otherwise specified).

• To allow only write actions, we can remove everything except UpdateItem from the list of allowed
actions. Since UpdateItem does not use the Select parameter, we can remove Select from the
condition.We must also change StringEqualsIfExists to StringEquals, since the ReturnValues
parameter will always have a value (NONE unless otherwise specified).

• To allow all attributes whose name matches a pattern, use StringLike instead of StringEquals,
and use a multi-character pattern match wildcard: "*".

Hide certain attributes on write actions
In this example, we create a policy that allows UpdateItem actions only on a limited number of attributes
in the GameScores table.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:UpdateItem"],
 "Resource": "arn:aws:dynamodb:us-west-
2:123456789012:table/GameScores",
 "Condition": {
 "ForAllValues:StringNotLike": {
 "dynamodb:Attributes": [
 "FreeGamesAvailable",
 "BossLevelUnlocked"
]
 },
 "StringEquals": {
 "dynamodb:ReturnValues": [
 "NONE",
 "UPDATED_OLD",
 "UPDATED_NEW"
]
 }
 }
 }
]
}

API Version 2012-08-10
606

Amazon DynamoDB Developer Guide
Example Policies for Fine-Grained Access Control

In this policy, PutItem and DeleteItem are not allowed. These actions always replace the entire item,
which means there is no way to prevent a user from modifying other attributes. Like other write actions,
in DynamoDB, UpdateItem also performs a read, in order to return the values as they appeared either
before or after they were updated. To ensure that other attributes are not seen, the calling application
must set the ReturnValues parameter to NONE, UPDATED_OLD, or UPDATED_NEW. (ALL_OLD and
ALL_NEW are not included in this policy.)

Query only projected attributes in an index
In this example, we create a policy that allows queries on a secondary index named
TopScoreDateTimeIndex, but only for queries that request specific attributes that have been projected
into the index.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:Query"],
 "Resource": ["arn:aws:dynamodb:us-west-
2:123456789012:table/GameScores/index/TopScoreDateTimeIndex"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:Attributes": [
 "TopScoreDateTime","GameTitle",
 "Wins","Losses","Attempts"
]
 },
 "StringEquals": {"dynamodb:Select": "SPECIFIC_ATTRIBUTES"}
 }
 }
]
}

The following policy is similar, but the query must request all of the attributes that have been projected
into the index.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:Query"],
 "Resource": ["arn:aws:dynamodb:us-west-
2:123456789012:table/GameScores/index/TopScoreDateTimeIndex"],
 "Condition": {"StringEquals": {"dynamodb:Select": "ALL_PROJECTED_AT
TRIBUTES"}}
 }
]
}

Limit access to certain attributes and hash key values
In this example, we create a policy that allows access only to items in the GameScores table and
TopScoreDateTimeIndex, with specific hash key values.

API Version 2012-08-10
607

Amazon DynamoDB Developer Guide
Example Policies for Fine-Grained Access Control

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateItem",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:BatchGetItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores/in
dex/TopScoreDateTimeIndex"
],
 "Condition": {
 "ForAllValues:StringEquals" : {
 "dynamodb:LeadingKeys" : ["${graph.facebook.com:id}"],
 "dynamodb:Attributes" : ["allowed_attribute", "another_al
lowed_attribute"]
 },
 "StringEqualsIfExists": {
 "dynamodb:Select": "SPECIFIC_ATTRIBUTES",
 "dynamodb:ReturnValues": [
 "NONE",
 "UPDATED_OLD",
 "UPDATED_NEW"
]
 }
 }
 }
]
}

In this policy:

• The user can only access items where the hash key values match the unique identifier from Facebook.
The identifier is unique for this user and this application.

• Write actions can only modify allowed_attribute or another_allowed_attribute. To prevent
other attributes from being modified, PutItem, DeleteItem and BatchWriteItem are omitted from
the list of allowed actions. However, an application can insert new items using UpdateItem, and those
hidden attributes will be null in the new items. If these attributes are projected into
TopScoreDateTimeIndex, the policy has the added benefit of preventing queries that would cause
fetches from the table.

• Applications cannot read any attributes other than those listed in dynamodb:Attributes
(allowed_attribute and another_allowed_attribute). An application must now set the Select
parameter to SPECIFIC_ATTRIBUTES in read requests, and only whitelisted attributes can be requested.
For write requests, the application cannot set ReturnValues to ALL_OLD or ALL_NEW and it cannot
perform conditional writes based on any other attributes.

Using Web Identity Federation
If you are writing an application targeted at large numbers of users, you can optionally use web identity
federation for authentication and authorization. Web identity federation removes the need for creating

API Version 2012-08-10
608

Amazon DynamoDB Developer Guide
Using Web Identity Federation

individual IAM users; instead, users can sign in to an identity provider and then obtain temporary security
credentials from AWS Security Token Service (AWS STS). The app can then use these credentials to
access AWS services.

Web identity federation supports the following identity providers:

• Login with Amazon

• Facebook

• Google

Additional Resources for Web Identity Federation
The following resources can help you learn more about web identity federation:

• The Web Identity Federation Playground is an interactive website that lets you walk through the process
of authenticating via Login with Amazon, Facebook, or Google, getting temporary security credentials,
and then using those credentials to make a request to AWS.

• The entry Web Identity Federation using the AWS SDK for .NET on the AWS .NET Development blog
walks through how to use web identity federation with Facebook and includes code snippets in C# that
show how to assume an IAM role with web identity and how to use temporary security credentials to
access an AWS resource.

• The AWS SDK for iOS and the AWS SDK for Android contain sample apps. These apps include code
that shows how to invoke the identity providers, and then how to use the information from these providers
to get and use temporary security credentials.

• The article Web Identity Federation with Mobile Applications discusses web identity federation and
shows an example of how to use web identity federation to access an AWS resource.

Example Policy for Web Identity Federation
To show how web identity federation can be used with DynamoDB, let's revisit the GameScores table
that was introduced in Fine-Grained Access Control for DynamoDB (p. 600). Here is the primary key for
GameScores:

Range Attribute Name
and Type

Hash Attribute Name
and Type

Primary Key TypeTable Name

Attribute Name: Game-
Title

Type: String

Attribute Name: UserId

Type: String

Hash and RangeGameScores (UserId,
GameTitle, ...)

Now suppose that a mobile gaming app uses this table, and that app needs to support thousands, or
even millions, of users. At this scale, it becomes very difficult to manage individual app users, and to
guarantee that each user can only access their own data in the GameScores table. Fortunately, many
users already have accounts with a third-party identity provider, such as Facebook, Google, or Login with
Amazon — so it makes sense to leverage one of these providers for authentication tasks.

To do this using web identity federation, the app developer must register the app with an identity provider
(such as Login with Amazon) and obtain a unique app ID. Next, the developer needs to create an IAM
role. (For this example, we will give this role a name of GameRole.) The role must have an IAM policy
document attached to it, specifying the conditions under which the app can access GameScores table.

API Version 2012-08-10
609

Amazon DynamoDB Developer Guide
Using Web Identity Federation

https://web-identity-federation-playground.s3.amazonaws.com/index.html
http://blogs.aws.amazon.com/net/post/Tx2KW5KYMRE681I/Web-Identity-Federation-using-the-AWS-SDK-for-NET
http://aws.amazon.com/sdkforios/
http://aws.amazon.com/sdkforandroid/
http://aws.amazon.com/articles/4617974389850313

When a user want to play a game, he signs in to his Login with Amazon account from within the gaming
app. The app then calls AWS Security Token Service (AWS STS), providing the Login with Amazon app
ID and requesting membership in GameRole. AWS STS returns temporary AWS credentials to the app
and allows it to access the GameScores table, subject to the GameRole policy document.

The following diagram shows how these pieces fit together.

1. The app calls a third-party identity provider to authenticate the user and the app. The identity provider
returns a web identity token to the app.

2. The app calls AWS STS and passes the web identity token as input. AWS STS authorizes the app
and gives it temporary AWS access credentials.The app is allowed to assume an IAM role (GameRole)
and access AWS resources in accordance with the role's security policy.

3. The app calls DynamoDB to access the GameScores table. Because it has assumed the GameRole,
the app is subject to the security policy associated with that role. The policy document prevents the
app from accessing data that does not belong to the user.

Once again, here is the security policy for GameRole that was shown in Fine-Grained Access Control for
DynamoDB (p. 600):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores"
],

API Version 2012-08-10
610

Amazon DynamoDB Developer Guide
Using Web Identity Federation

 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": ["${www.amazon.com:user_id}"],
 "dynamodb:Attributes": [
 "UserId","GameTitle","Wins","Losses",
 "TopScore","TopScoreDateTime"
]
 },
 "StringEqualsIfExists": {"dynamodb:Select": "SPECIFIC_ATTRIB
UTES"}
 }
 }
]
}

The Condition clause determines which items in GameScores are visible to the app. It does this by
comparing the Login with Amazon ID to the UserId hash key values in GameScores. Only the items
belonging to the current user can be processed using one of DynamoDB actions that are listed in this
policy; other items in the table cannot be accessed. Furthermore, only the specific attributes listed in the
policy can be accessed.

Preparing to Use Web Identity Federation
If you are an application developer and want to use web identity federation for your app, follow these
steps:

1. Sign up as a developer with a third-party identity provider. The following external links provide
information about signing up with supported identity providers:

• Login with Amazon Developer Center

• Registration on the Facebook site

• Using OAuth 2.0 to Access Google APIs on the Google site

2. Register your app with the identity provider. When you do this, the provider gives you an ID that's
unique to your app. If you want your app to work with multiple identity providers, you will need to obtain
an app ID from each provider.

3. Create one or more IAM roles. You will need one role for each identity provider for each app. For
example, you might create a role that can be assumed by an app where the user signed in using Login
with Amazon, a second role for the same app where the user has signed in using Facebook, and a
third role for the app where users sign in using Google.

As part of the role creation process, you will need to attach an IAM policy to the role.Your policy
document should define the DynamoDB resources required by your app, and the permissions for
accessing those resources.

For more information, go to Creating Temporary Security Credentials for Mobile Apps Using Identity
Providers in Using Temporary Security Credentials.

Note
As an alternative to AWS Security Token Service, you can use Amazon Cognito. Amazon Cognito
is now the preferred service for managing temporary credentials for mobile apps. For more
information, go to the following pages:

• How to Authenticate Users (AWS SDK for iOS)

• How to Authenticate Users (AWS SDK for Android)

API Version 2012-08-10
611

Amazon DynamoDB Developer Guide
Using Web Identity Federation

http://login.amazon.com/
https://developers.facebook.com/docs/plugins/registration/
https://developers.google.com/accounts/docs/OAuth2
http://docs.aws.amazon.com/STS/latest/UsingSTS//CreatingWIF.html
http://docs.aws.amazon.com/STS/latest/UsingSTS//CreatingWIF.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html

Generating an IAM Policy Using the DynamoDB Console

The DynamoDB console can help you create an IAM policy for use with web identity federation. To do
this, you choose a DynamoDB table and specify the identity provider, actions, and attributes to be included
in the policy. The DynamoDB console will then generate a policy that you can attach to an IAM role.

To generate an IAM policy using the DynamoDB console

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the Tables pane, click the table you want to create the policy for, and then click Access Control.
The Table Access Permissions wizard opens.

3. In the Set Permissions pane, choose the identity provider, actions, and attributes for the policy.

When the settings are as you want them, click Continue.

4. In the Review pane, the generated policy appears in the Policy Document field.

You can now go to the IAM console to create a new IAM role. For step-by-step instructions, see Creating
a Role for Web Identity Federation section in IAM User Guide.You will need to specify the third-party
identity provider you want to use, along with the app ID that you obtained from that provider. When you
are asked to set permissions for the role, choose Custom Policy and paste your DynamoDB policy in
the Policy Document field.

Writing Your App to Use Web Identity Federation
To use web identity federation, your app must assume the IAM role that you created; from that point on,
the app will honor the access policy that you attached to the role.

At runtime, if your app uses web identity federation, it must follow these steps:

1. Authenticate with a third-party identity provider. Your app must call the identity provider using an
interface that they provide. The exact way in which you authenticate the user depends on the provider
and on what platform your app is running. Typically, if the user is not already signed in, the identity
provider takes care of displaying a sign-in page for that provider.

API Version 2012-08-10
612

Amazon DynamoDB Developer Guide
Using Web Identity Federation

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
http://docs.aws.amazon.com/IAM/latest/UserGuide/creating-role.html#create-role-wif
http://docs.aws.amazon.com/IAM/latest/UserGuide/creating-role.html#create-role-wif
http://docs.aws.amazon.com/IAM/latest/UserGuide/

After the identity provider authenticates the user, the provider returns a web identity token to your app.
The format of this token depends on the provider, but is typically a very long string of characters.

2. Obtain temporary AWS security credentials. To do this, your app sends a
AssumeRoleWithWebIdentity request to AWS Security Token Service (AWS STS). This request
contains:

• The web identity token from the previous step

• The app ID from the identity provider

• The Amazon Resource Name (ARN) of the IAM role that you created for this identity provider for
this app

AWS STS returns a set of AWS security credentials that expire after a certain amount of time (3600
seconds, by default).

The following is a sample request and response from a AssumeRoleWithWebIdentity action in
AWS STS. The web identity token was obtained from the Login with Amazon identity provider.

GET / HTTP/1.1
Host: sts.amazonaws.com
Content-Type: application/json; charset=utf-8
URL: https://sts.amazonaws.com/?ProviderId=www.amazon.com
&DurationSeconds=900&Action=AssumeRoleWithWebIdentity
&Version=2011-06-15&RoleSessionName=web-identity-federation
&RoleArn=arn:aws:iam::123456789012:role/GameRole
&WebIdentityToken=Atza|IQEBLjAsAhQluyKqyBiYZ8-kclvGTYM81e...(remaining char
acters omitted)

<AssumeRoleWithWebIdentityResponse
 xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
 <AssumeRoleWithWebIdentityResult>
 <SubjectFromWebIdentityToken>amzn1.ac
count.AGJZDKHJKAUUSW6C44CHPEXAMPLE</SubjectFromWebIdentityToken>
 <Credentials>
 <SessionToken>AQoDYXdzEMf//////////wEa8AP6nNDwcSLnf+cHupC...(remaining
 characters omitted)</SessionToken>
 <SecretAccessKey>8Jhi60+EWUUbbUShTEsjTxqQtM8UKvsM6XAjdA==</SecretAccess
Key>
 <Expiration>2013-10-01T22:14:35Z</Expiration>
 <AccessKeyId>06198791C436IEXAMPLE</AccessKeyId>
 </Credentials>
 <AssumedRoleUser>
 <Arn>arn:aws:sts::123456789012:assumed-role/GameRole/web-identity-fed
eration</Arn>
 <AssumedRoleId>AROAJU4SA2VW5SZRF2YMG:web-identity-federation</Assumed
RoleId>
 </AssumedRoleUser>
 </AssumeRoleWithWebIdentityResult>
 <ResponseMetadata>
 <RequestId>c265ac8e-2ae4-11e3-8775-6969323a932d</RequestId>
 </ResponseMetadata>
</AssumeRoleWithWebIdentityResponse>

3. Access AWS resources. The response from AWS STS contains information that your app will require
in order to access DynamoDB resources:

• The AccessKeyID, SecretAccessKey and SessionToken fields contain security credentials that
are valid for this user and this app only.

API Version 2012-08-10
613

Amazon DynamoDB Developer Guide
Using Web Identity Federation

• The Expiration field signifies the time limit for these credentials, after which they will no longer
be valid.

• The AssumedRoleId field contains the name of a session-specific IAM role that has been assumed
by the app. The app will honor the access controls in the IAM policy document for the duration of
this session.

• The SubjectFromWebIdentityToken field contains the unique ID that appears in an IAM policy
variable for this particular identity provider. The following are the IAM policy variables for supported
providers, and some example values for them:

Example ValuePolicy Variable

amzn1.account.AGJZDKHJKAUUSW6C44CHPEXAMPLE${www.amazon.com:user_id}

123456789${graph.face-
book.com:id}

123456789012345678901${ac-
counts.google.com:sub}

For example IAM policies where these policy variables are used, see Example Policies for Fine-Grained
Access Control (p. 602).

For more information about how AWS Security Token Service generates temporary access credentials,
go to Creating Auth Tokens in Using Temporary Security Credentials.

Logging DynamoDB API Calls By Using AWS
CloudTrail

DynamoDB is integrated with CloudTrail, a service that captures API calls made by or on behalf of
DynamoDB in your AWS account and delivers the log files to an Amazon S3 bucket that you specify.
CloudTrail captures API calls made from the DynamoDB console or from the DynamoDB API. Using the
information collected by CloudTrail, you can determine what request was made to DynamoDB, the source
IP address from which the request was made, who made the request, when it was made, and so on. To
learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

DynamoDB Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to DynamoDB actions are
tracked in log files. DynamoDB records are written together with other AWS service records in a log file.
CloudTrail determines when to create and write to a new file based on a time period and file size.

The following actions are supported:

• CreateTable

• DeleteTable

• DescribeTable

• ListTables

• UpdateTable

• DescribeReservedCapacity

API Version 2012-08-10
614

Amazon DynamoDB Developer Guide
Logging DynamoDB API Calls By Using AWS CloudTrail

http://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingAuthTokens.html
http://docs.aws.amazon.com/STS/latest/UsingSTS/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_ListTables.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html

• DescribeReservedCapacityOfferings

• PurchaseReservedCapacityOfferings

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications.

You can also aggregate DynamoDB log files from multiple AWS regions and multiple AWS accounts into
a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket.

Understanding DynamoDB Log File Entries
CloudTrail log files contain one or more log entries where each entry is made up of multiple JSON-formatted
events. A log entry represents a single request from any source and includes information about the
requested action, any parameters, the date and time of the action, and so on. The log entries are not
guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public API
calls.

The following example shows a CloudTrail log.

{"Records": [
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-05-28T18:06:01Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 }
 }
 },
 "eventTime": "2015-05-01T07:24:55Z",
 "eventSource": "dynamodb.amazonaws.com",

API Version 2012-08-10
615

Amazon DynamoDB Developer Guide
Understanding DynamoDB Log File Entries

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

 "eventName": "CreateTable",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "console.aws.amazon.com",
 "requestParameters": {
 "provisionedThroughput": {
 "writeCapacityUnits": 10,
 "readCapacityUnits": 10
 },
 "tableName": "Music",
 "keySchema": [
 {
 "attributeName": "Artist",
 "keyType": "HASH"
 },
 {
 "attributeName": "SongTitle",
 "keyType": "RANGE"
 }
],
 "attributeDefinitions": [
 {
 "attributeType": "S",
 "attributeName": "Artist"
 },
 {
 "attributeType": "S",
 "attributeName": "SongTitle"
 }
]
 },
 "responseElements": {"tableDescription": {
 "tableName": "Music",
 "attributeDefinitions": [
 {
 "attributeType": "S",
 "attributeName": "Artist"
 },
 {
 "attributeType": "S",
 "attributeName": "SongTitle"
 }
],
 "itemCount": 0,
 "provisionedThroughput": {
 "writeCapacityUnits": 10,
 "numberOfDecreasesToday": 0,
 "readCapacityUnits": 10
 },
 "creationDateTime": "May 1, 2015 7:24:55 AM",
 "keySchema": [
 {
 "attributeName": "Artist",
 "keyType": "HASH"
 },
 {
 "attributeName": "SongTitle",
 "keyType": "RANGE"

API Version 2012-08-10
616

Amazon DynamoDB Developer Guide
Understanding DynamoDB Log File Entries

 }
],
 "tableStatus": "CREATING",
 "tableSizeBytes": 0
 }},
 "requestID": "KAVGJR1Q0I5VHF8FS8V809EV7FVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "a8b5f864-480b-43bf-bc22-9b6d77910a29",
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "recipientAccountId": "111122223333"
 },

 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "444455556666",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-05-28T18:06:01Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 }
 }
 },
 "eventTime": "2015-05-04T02:43:11Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "DescribeTable",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "console.aws.amazon.com",
 "requestParameters": {"tableName": "Music"},
 "responseElements": null,
 "requestID": "DISTSH6DQRLCC74L48Q51LRBHFVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "c07befa7-f402-4770-8c1b-1911601ed2af",
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "recipientAccountId": "111122223333"
 },

 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {

API Version 2012-08-10
617

Amazon DynamoDB Developer Guide
Understanding DynamoDB Log File Entries

 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-05-28T18:06:01Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 }
 }
 },
 "eventTime": "2015-05-04T02:14:52Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "UpdateTable",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "console.aws.amazon.com",
 "requestParameters": {"provisionedThroughput": {
 "writeCapacityUnits": 25,
 "readCapacityUnits": 25
 }},
 "responseElements": {"tableDescription": {
 "tableName": "Music",
 "attributeDefinitions": [
 {
 "attributeType": "S",
 "attributeName": "Artist"
 },
 {
 "attributeType": "S",
 "attributeName": "SongTitle"
 }
],
 "itemCount": 0,
 "provisionedThroughput": {
 "writeCapacityUnits": 10,
 "numberOfDecreasesToday": 0,
 "readCapacityUnits": 10,
 "lastIncreaseDateTime": "May 3, 2015 11:34:14 PM"
 },
 "creationDateTime": "May 3, 2015 11:34:14 PM",
 "keySchema": [
 {
 "attributeName": "Artist",
 "keyType": "HASH"
 },
 {
 "attributeName": "SongTitle",
 "keyType": "RANGE"
 }
],
 "tableStatus": "UPDATING",
 "tableSizeBytes": 0
 }},
 "requestID": "AALNP0J2L244N5O15PKISJ1KUFVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "eb834e01-f168-435f-92c0-c36278378b6e",

API Version 2012-08-10
618

Amazon DynamoDB Developer Guide
Understanding DynamoDB Log File Entries

 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "recipientAccountId": "111122223333"
 },

 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-05-28T18:06:01Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 }
 }
 },
 "eventTime": "2015-05-04T02:42:20Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "ListTables",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "console.aws.amazon.com",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "3BGHST5OVHLMTPUMAUTA1RF4M3VV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "bd5bf4b0-b8a5-4bec-9edf-83605bd5e54e",
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "recipientAccountId": "111122223333"
 },

 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-05-28T18:06:01Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",

API Version 2012-08-10
619

Amazon DynamoDB Developer Guide
Understanding DynamoDB Log File Entries

 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 }
 }
 },
 "eventTime": "2015-05-04T13:38:20Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "DeleteTable",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "console.aws.amazon.com",
 "requestParameters": {"tableName": "Music"},
 "responseElements": {"tableDescription": {
 "tableName": "Music",
 "itemCount": 0,
 "provisionedThroughput": {
 "writeCapacityUnits": 25,
 "numberOfDecreasesToday": 0,
 "readCapacityUnits": 25
 },
 "tableStatus": "DELETING",
 "tableSizeBytes": 0
 }},
 "requestID": "4KBNVRGD25RG1KEO9UT4V3FQDJVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "a954451c-c2fc-4561-8aea-7a30ba1fdf52",
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "recipientAccountId": "111122223333"
 }
]}

Exporting, Importing and Transforming Data
Using AWS Data Pipeline

Topics

• Using the AWS Management Console to Export and Import Data (p. 621)

• Predefined Templates for AWS Data Pipeline and DynamoDB (p. 634)

You can use AWS Data Pipeline to automate data movement and transformation into and out of Amazon
DynamoDB. The built-in scheduling capabilities of AWS Data Pipeline let you schedule and execute
recurring jobs, without having to write your own complex data transfer or transformation logic. For example,
you can set up a recurring job to automatically copy data from DynamoDB into Amazon Redshift. As
another example, you can copy data from DynamoDB into Amazon S3, and then analyze the data using
a statistics program (such as R) running on Amazon EC2.

Tip
The DynamoDB console provides a point-and-click interface for exporting data to Amazon S3,
and for importing data from Amazon S3 to DynamoDB. Using the console is the easiest way to
leverage AWS Data Pipeline for exporting and importing DynamoDB data. For more information,
see Using the AWS Management Console to Export and Import Data (p. 621).

API Version 2012-08-10
620

Amazon DynamoDB Developer Guide
Exporting, Importing and Transforming Data Using AWS

Data Pipeline

http://www.r-project.org/

Using the AWS Management Console to Export
and Import Data
You can use the AWS Management Console to export data from one or more DynamoDB tables to a file
in an Amazon S3 bucket.You can also use the console to import data from Amazon S3 into a DynamoDB
table, in the same AWS region or in a different region.

The ability to export and import data is useful in many scenarios. For example, suppose you want to
maintain a baseline set of data, for testing purposes.You could put the baseline data into a DynamoDB
table and export it to Amazon S3.Then, after you run an application that modifies the test data, you could
"reset" the data set by importing the baseline from Amazon S3 back into the DynamoDB table. Another
example involves accidental deletion of data, or even an accidental DeleteTable operation. In these
cases, you could restore the data from a previous export file in Amazon S3.

You can even set up an export job to copy data from a DynamoDB table in one AWS region, store the
data in Amazon S3, and then import the data from Amazon S3 to an identical DynamoDB table in a second
region. Applications in the second region could then connect to their nearest DynamoDB endpoint and
work with their own copy of the data, with reduced network latency.

The AWS Management Console lets you easily perform exports and imports, without having to manually
create an AWS Data Pipeline or provision and maintain an Amazon EMR cluster.The console automates
these steps for you, and lets you monitor the progress of your export and import jobs.

Overview of the Export and Import Process
To perform exports and imports, you use an AWS Data Pipeline and an Amazon Elastic MapReduce
cluster (Amazon EMR).The DynamoDB console automates these tasks for you, and lets you monitor the
progress of your export and import jobs. The following shows an overview of the process.

API Version 2012-08-10
621

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

API Version 2012-08-10
622

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

To export a table, you use the console to create a new AWS Data Pipeline.The pipeline, in turn, launches
an Amazon EMR cluster to perform the actual export. The Amazon EMR cluster reads the data from a
table in DynamoDB, and writes the data to an export file in an Amazon S3 bucket.

The process is similar for an import, except that the data is read from the Amazon S3 bucket and written
to the DynamoDB table.

Important
When you export or import DynamoDB data, you will incur additional costs for the underlying
AWS services that are used:

• AWS Data Pipeline— manages the import/export workflow for you.

• Amazon S3— contains the data that you export from DynamoDB, or import into DynamoDB.

• Amazon Elastic MapReduce (Amazon EMR)— runs a managed Hadoop cluster to performs
reads and writes between DynamoDB to Amazon S3.The cluster configuration is one m1.small
instance master node and one m1.xlarge instance task node.

For more information see AWS Data Pipeline Pricing, Amazon EMR Pricing, and Amazon S3
Pricing.

Prerequisites to Export and Import Data
Topics

• Creating IAM Roles for AWS Data Pipeline (p. 623)

• Granting IAM Users and Groups Permission to Perform Export and Import Tasks (p. 624)

When you use AWS Data Pipeline for exporting and importing data, you must specify the actions that the
pipeline is allowed to perform, and which resources the pipeline can consume.The permitted actions and
resources are defined using AWS Identity and Access Management (IAM) roles.

If you are an administrator for your DynamoDB tables, you can optionally configure IAM policies and
attach them to IAM users or groups in your AWS account. These policies let you specify which users can
import and export your DynamoDB table data.

Important
The IAM user that performs the exports and imports must have an active AWS Access Key Id
and Secret Key. For more information, go to Administering Access Keys for IAM Users in IAM
User Guide.

Creating IAM Roles for AWS Data Pipeline

In order to use AWS Data Pipeline, the following IAM roles must be present in your AWS account:

• DataPipelineDefaultRole — the actions that your pipeline can take on your behalf.

• DataPipelineDefaultResourceRole — the AWS resources that the pipeline will provision on your
behalf. For exporting and importing DynamoDB data, these resources include an Amazon EMR cluster
and the Amazon EC2 instances associated with that cluster.

If you have never used AWS Data Pipeline before, you will need to create DataPipelineDefaultRole and
DataPipelineDefaultResourceRole yourself. Once you have created these roles, you can use them any
time you want to export or import DynamoDB data.

Note
If you have previously used the AWS Data Pipeline console to create a pipeline, then
DataPipelineDefaultRole and DataPipelineDefaultResourceRole were created for you at that
time. No further action is required; you can skip this section and begin creating pipelines using

API Version 2012-08-10
623

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

http://aws.amazon.com/datapipeline/pricing
http://aws.amazon.com/elasticmapreduce/pricing
http://aws.amazon.com/s3/pricing
http://aws.amazon.com/s3/pricing
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html

the DynamoDB console. For more information, see Exporting Data From DynamoDB to Amazon
S3 (p. 627) and Importing Data From Amazon S3 to DynamoDB (p. 628).

To create DataPipelineDefaultRole and DataPipelineDefaultResourceRole

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. From the IAM Console Dashboard, click Roles.

3. Click Create New Role and do the following:

a. In the Role Name field, type DataPipelineDefaultRole and then click Next Step.

b. In the Select Role Type panel, in the list of AWS Service Roles, go to AWS Data Pipeline and
click Select.

c. In the Attach Policy panel, click the box next to the AWSDataPipelineRole policy, and then
click Next Step.

d. In the Review panel, click Create Role.

4. Click Create New Role and do the following:

a. In the Role Name field, type DataPipelineDefaultResourceRole and then click Next Step.

b. In the Select Role Type panel, in the list of AWS Service Roles, go to Amazon EC2 Role for
Data Pipeline and click Select.

c. In the Attach Policy panel, click the box next to the AmazonEC2RoleforDataPipelineRole
policy, and then click Next Step.

d. In the Review panel, click Create Role.

Now that you have created these roles, you can begin creating pipelines using the DynamoDB console.
For more information, see Exporting Data From DynamoDB to Amazon S3 (p. 627) and Importing Data
From Amazon S3 to DynamoDB (p. 628).

Granting IAM Users and Groups Permission to Perform Export and Import
Tasks

If you are a DynamoDB administrator and you want to allow other IAM users or groups to export and
import your DynamoDB table data, you can create an IAM policy and attach it to the users or groups that
you designate. The policy contains only the necessary permissions for performing these tasks.

Granting Full Access Using an AWS Managed Policy

The following procedure describes how to attach the AWS managed policy
AmazonDynamoDBFullAccesswithDataPipeline to an IAM user. This managed policy provides full
access to AWS Data Pipeline and to DynamoDB resources.

To attach the AmazonDynamoDBFullAccesswithDataPipeline policy to an IAM user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. From the IAM Console Dashboard, click Users and select the user you want to modify.

3. In the Permissions panel, click Attach Policy.

4. In the Attach Policy panel, select AmazonDynamoDBFullAccesswithDataPipeline and click
Attach Policy.

API Version 2012-08-10
624

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Note
You can use a similar procedure to attach this managed policy to a group, rather than to a user.

Restricting Access to Particular DynamoDB Tables

If you are a DynamoDB administrator and you want to restrict access, so that a user can only perform
export and import tasks on a subset of your tables, you will need to create a customized IAM policy
document.You can use the AWS managed policy AmazonDynamoDBFullAccesswithDataPipeline
as a starting point for your custom policy, and then modify the policy so that a user can only work with
the tables that you specify.

For example, suppose that you want to allow an IAM user to export and import only the Forum, Thread,
and Reply tables. This procedure describes how to create a custom policy so that a user can work with
those tables, but no others.

To create a custom policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. From the IAM Console Dashboard, click Policies and then click Create Policy.

3. In the Create Policy panel, go to Copy an AWS Managed Policy and click Select.

4. In the Copy an AWS Managed Policy panel, go to
AmazonDynamoDBFullAccesswithDataPipeline and click Select.

5. In the Review Policy panel, do the following:

a. Review the autogenerated Policy Name and Description. If you want, you can modify these
values.

b. In the Policy Document text box, edit the policy to restrict access to specific tables. By default,
the policy permits all DynamoDB API actions on all of your tables:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarmHistory",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DescribeAlarmsForMetric",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "cloudwatch:PutMetricAlarm",

"dynamodb:*",
 "sns:CreateTopic",
 "sns:DeleteTopic",
 "sns:ListSubscriptions",
 "sns:ListSubscriptionsByTopic",
 "sns:ListTopics",
 "sns:Subscribe",
 "sns:Unsubscribe"
],
 "Effect": "Allow",
 "Resource": "*",
 "Sid": "DDBConsole"
 },

API Version 2012-08-10
625

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

...remainder of document omitted...

To restrict the policy, first remove the following line:

"dynamodb:*",

Next, construct a new Action that allows access to only the Forum, Thread and Reply tables:

 {
 "Action": [
 "dynamodb:*"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/Forum",
 "arn:aws:dynamodb:us-west-2:123456789012:table/Thread",
 "arn:aws:dynamodb:us-west-2:123456789012:table/Reply"
]
 },

Note
Replace us-west-2 with the region in which your DynamoDB tables reside. Replace
123456789012 with your AWS account number. For more information, see Amazon
Resource Names (ARNs) for DynamoDB (p. 592).

Finally, add the new Action to the policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:*"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/Forum",
 "arn:aws:dynamodb:us-west-2:123456789012:table/Thread",
 "arn:aws:dynamodb:us-west-2:123456789012:table/Reply"
]
 },
 {
 "Action": [
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarmHistory",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DescribeAlarmsForMetric",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "cloudwatch:PutMetricAlarm",
 "sns:CreateTopic",

API Version 2012-08-10
626

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

 "sns:DeleteTopic",
 "sns:ListSubscriptions",
 "sns:ListSubscriptionsByTopic",
 "sns:ListTopics",
 "sns:Subscribe",
 "sns:Unsubscribe"
],
 "Effect": "Allow",
 "Resource": "*",
 "Sid": "DDBConsole"
 },

...remainder of document omitted...

When the policy settings are as you want them, click Create Policy.

Now that you have created the policy, you can attach it to an IAM user.

To attach the custom policy to an IAM user

1. From the IAM Console Dashboard, click Users and select the user you want to modify.

2. In the Permissions panel, click Attach Policy.

3. In the Attach Policy panel, select the name of your policy and click Attach Policy.

Note
You can use a similar procedure to attach your policy to a group, rather than to a user.

Exporting Data From DynamoDB to Amazon S3
This section describes how to export data from one or more DynamoDB tables to an Amazon S3 bucket.
You need to create the Amazon S3 bucket before you can perform the export.

Important
If you have never used AWS Data Pipeline before, you will need to set up two IAM roles before
following this procedure. For more information, see Creating IAM Roles for AWS Data
Pipeline (p. 623).

To export data from DynamoDB to Amazon S3

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. On the Amazon DynamoDB Tables page, click Export/Import.

3. On the Export/Import page, select one or more source tables containing data you want to export,
and then click Export from DynamoDB.

4. On the Create Export Table Data Pipeline(s) page, do the following:

a. In the S3 Output Folder text box, enter an Amazon S3 URI where the export file will be written.
For example: s3://mybucket/exports

The format of this URI is s3://bucketname/folder where:

• bucketname is the name of your Amazon S3 bucket.

API Version 2012-08-10
627

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

• folder is the name of a folder within that bucket. If the folder does not exist, it will be created
automatically. If you do not specify a name for the folder, a name will be assigned for it in the
form s3://bucketname/region/tablename.

b. In the S3 Log Folder text box, enter an Amazon S3 URI where the log file for the export will be
written. For example: s3://mybucket/logs/

The URI format for S3 Log Folder is the same as for S3 Output Folder. The URI must resolve
to a folder; log files cannot be written to the top level of the S3 bucket.

c. In the Throughput Rate text box, choose a percentage from the drop-down list.This percentage
will be used during the export process to regulate the amount of provisioned read throughput
consumed. For example, suppose you are exporting a source table that has a
ReadCapacityUnits setting of 20, and you set the throughput rate percentage to 40%. The
export job will consume no more than 8 read capacity units per second from your table's
provisioned read throughput.

If you are exporting multiple tables, the Throughput Rate will be applied to each of the tables
during the export process.

d. In the Execution Timeout text box, enter the number of hours after which the export job will
time out. If the job has not completed within this period, it will fail.

e. In the Send notifications to text box, enter your email address. After the pipeline is created,
you will receive an email message inviting you to subscribe to a topic in Amazon Simple
Notification Service (Amazon SNS); if you accept this invite, you will receive periodic notifications
via email as the export progresses.

f. In the Schedule section, choose one of the following:

• One-time Export — the export will begin immediately after the pipeline is created.

• Daily Export — the export will begin at the time of day you specify, and will be repeated every
day at that time.

g. In the Data Pipeline Role field, select DataPipelineDefaultRole.

h. In the Resource Role field, select DataPipelineDefaultResourceRole

When the settings are as you want them, click Create Export Pipeline.

Your pipeline will now be created; this process can take several minutes to complete. To view the current
status, see Managing Export and Import Pipelines (p. 630).

If you chose a one-time export, the export job will begin immediately after the pipeline has been created.
If you chose a daily export, the job will begin at the time you have selected, and will repeat at that time
each day.

When the export has finished, you can go to the Amazon S3 console to view your export file. The file will
be in a folder with the same name as your table, and the file will be named using the following format:
YYYY-MM-DD_HH.MM. The internal format of this file is described at Verify Data Export File in the AWS
Data Pipeline Developer Guide.

Importing Data From Amazon S3 to DynamoDB
This section assumes that you have already exported data from a DynamoDB table, and that the export
file has been written to your Amazon S3 bucket. The internal format of this file is described at Verify Data
Export File in the AWS Data Pipeline Developer Guide.

API Version 2012-08-10
628

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

http://console.aws.amazon.com/s3
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-importexport-ddb-pipelinejson-verifydata2.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-importexport-ddb-pipelinejson-verifydata2.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-importexport-ddb-pipelinejson-verifydata2.html

We will use the term source table for the original table from which the data was exported, and destination
table for the table that will receive the imported data.You can import data from an export file in Amazon
S3, provided that all of the following are true:

• The destination table already exists. (The import process will not create the table for you.)

• The destination table has the same name as the source table.

• The destination table has the same key schema as the source table.

The destination table does not have to be empty. However, the import process will replace any data items
in the table that have the same keys as the items in the export file. For example, suppose you have a
Customer table with a key of CustomerId, and that there are only three items in the table (CustomerId 1,
2, and 3). If your export file also contains data items for CustomerID 1, 2, and 3, the items in the destination
table will be replaced with those from the export file. If the export file also contains a data item for
CustomerId 4, then that item will be added to the table.

The destination table can be in a different AWS region. For example, suppose you have a Customer table
in the US West (Oregon) region and export its data to Amazon S3.You could then import that data into
an identical Customer table in the EU (Ireland) region. This is referred to as a cross-region export and
import. For a list of AWS regions, go to Regions and Endpoints in the AWS General Reference.

Note that the AWS Management Console lets you export multiple source tables at once. However, you
can only import one table at a time.

Important
If you have never used AWS Data Pipeline before, you will need to set up two AWS Identity and
Access Management roles before following this procedure. For more information, see Creating
IAM Roles for AWS Data Pipeline (p. 623).

To import data from Amazon S3 to DynamoDB

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. (Optional) If you want to perform a cross region import, click Select a Region in the upper right
corner of the console and click the destination region. The console will display all of the DynamoDB
tables in that region. If the destination table does not already exist, you can create it using the console.

3. On the Amazon DynamoDB Tables page, click Export/Import.

4. On the Export/Import page, select the destination table for your data, and then click Import into
DynamoDB.

5. On the Create Import Table Data Pipeline page, do the following:

a. In the S3 Input Folder text box, enter an Amazon S3 URI where the export file can be found.
For example: s3://mybucket/exports

The format of this URI is s3://bucketname/folder where:

• bucketname is the name of your Amazon S3 bucket.

• folder is the name of the folder that contains the export file.

The import job will expect to find a file at the specified Amazon S3 location. The internal format
of the file is described at Verify Data Export File in the AWS Data Pipeline Developer Guide.

b. In the S3 Log Folder text box, enter an Amazon S3 URI where the log file for the import will be
written. For example: s3://mybucket/logs/

The URI format for S3 Log Folder is the same as for S3 Input Folder. The URI must resolve
to a folder; log files cannot be written to the top level of the S3 bucket.

API Version 2012-08-10
629

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

http://docs.aws.amazon.com/general/latest/gr/rande.html
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-importexport-ddb-pipelinejson-verifydata2.html

c. In the Throughput Ratio text box, choose a percentage from the drop-down list.This percentage
will be used during the import process to regulate the amount of provisioned write throughput
consumed. For example, suppose you are importing data into a table that has a
WriteCapacityUnits setting of 10, and you set the throughput ratio percentage to 60%. The
import job will consume no more than 6 write capacity units per second from your table's
provisioned write throughput.

d. In the Execution Timeout text box, enter the number of hours after which the import job will
time out. If the job has not completed within this period, it will fail.

e. In the Send notifications to text box, enter your email address. After the pipeline is created,
you will receive an email message inviting you to subscribe to a topic in Amazon Simple
Notification Service (Amazon SNS); if you accept this invite, you will receive periodic notifications
via email as the import proceeds.

f. In the Associate pipeline with a role section, in Data Pipeline Role, select
DataPipelineDefaultRole.

g. In the Associate pipeline compute resources with a role section, in Resource Role, select
DataPipelineDefaultResourceRole

When the settings are as you want them, click Create Export Pipeline.

Your pipeline will now be created; this process can take several minutes to complete. To view the current
status, see Managing Export and Import Pipelines (p. 630).

The import job will begin immediately after the pipeline has been created.

Managing Export and Import Pipelines
Topics

• Canceling an Export or Import Job (p. 632)

• Deleting a Pipeline (p. 632)

You can use the AWS Management Console to monitor the progress of pipeline creation, as well as
import and export jobs. The Export/Import page displays all of your DynamoDB tables, along with any
export and import pipelines that may be present.

Note
This page displays only the export and import pipelines that you have created in the DynamoDB
console. If you have created other pipelines using the AWS Data Pipeline, those pipelines will
not be shown here.
To view all of your pipelines, including those that are not used for DynamoDB export, and imports,
go to the AWS Data Pipeline console.

Each pipeline has a Pipeline Status field; the status changes in response to events within that pipeline.
To get more details about a pipeline, click its name:

API Version 2012-08-10
630

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

http://console.aws.amazon.com/datapipeline

When you do this, a Data Pipeline Detail page is shown:

This page provides a summary of the pipeline's events and its current status.

If you need more information, go to the lower right corner and click Data Pipeline Console.This will open
the AWS Data Pipeline console, where you can review the pipeline and all of its tasks in detail.

API Version 2012-08-10
631

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

To return to the Export/Import page, click Back.

Canceling an Export or Import Job

At any time, you can cancel a running export or import job.This will terminate the Amazon EMR processing,
and prevent any further reads and writes on your DynamoDB table(s).

To cancel an export or import job

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. On the Amazon DynamoDB Tables page, click Export/Import.

3. On the Export/Import page, go to the pipeline and click its name.

4. On the Data Pipeline Detail page, go to the lower right corner and click Data Pipeline Console.

5. In the AWS Data Pipeline console, look for a task that has a status of RUNNING. (This will most
likely be a task of type EmrActivity; however, you can cancel any task in the pipeline using the
console.).

6. In the Actions drop-down list, click Cancel.

Note
Even if you cancel a task, the pipeline itself will remain intact. If the pipeline is for a daily export,
the job will restart the next day at its scheduled time.

Deleting a Pipeline

If you create an export or import pipeline, it remains available until you delete it.You can delete a pipeline
at any time using the DynamoDB console. In addition, if you delete a table using the console, you can
also delete all of the table's pipelines at that time.

Note that if an import or export job is still running, the job will be cancelled first before its pipeline is deleted.

To delete a single pipeline

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. On the Amazon DynamoDB Tables page, click Export/Import.

3. On the Export/Import page, go to the pipeline and click its name.

4. On the Data Pipeline Detail page, go to the lower right corner and click Delete This Pipeline.

5. In the confirmation dialog, click Yes.

The pipeline and all resources associated with it will be deleted.

Note
Each DynamoDB table can have a maximum of three pipelines associated with it:

1. A one-time export pipeline.

2. A daily export pipeline.

3. A one-time import pipeline.

If you want to perform a one-time export or import, you must first delete any existing pipeline of
that type for the table, and then re-create the pipeline. Similarly, if you currently have a daily
export pipeline but want to perform the tasks at a different time, you will need to delete and then
re-create the existing pipeline.

API Version 2012-08-10
632

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

After you delete a table's pipeline, you can create a new one of the same type. See Exporting
Data From DynamoDB to Amazon S3 (p. 627) and Importing Data From Amazon S3 to
DynamoDB (p. 628) for instructions on how to create new pipelines.

If you delete a table using the DynamoDB console, you can also delete all of the pipelines associated
with that table.

To delete a table and all of its pipelines

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. Select the table that you want to delete.

3. Click Delete Table in the Tables wizard.

4. In the Delete Table confirmation window, select Delete all export/import pipelines for this table
and then click Delete.

Troubleshooting
This section covers some basic failure modes and troubleshooting for DynamoDB exports.

If an error occurs during an export or import, the pipeline status in the DynamoDB console will display as
FAILED. If this happens, click the name of the failed pipeline to go to the Data Pipeline Detail page. On
that page, take note of any errors that you see.

Next, go to the lower right corner and click Data Pipeline Console. This will show details about all of the
steps in the pipeline, and the status of each one.

• DynamoDBDataNode — represents the DynamoDB table to be exported.

• S3DataNode — represents the Amazon S3 bucket where the export file is to be written.

• EmrCluster — represents the provisioning process for the Amazon EMR cluster that will perform the
export.

• EmrActivity — represents the Amazon EMR cluster running the export job.

In the AWS Data Pipeline console, click each of these steps and take note of any errors. In particular,
examine the execution stack traces and look for errors there.

Finally, go to your Amazon S3 bucket and look for any export or import log files that were written there.

The following are some common issues that may cause a pipeline to fail, along with corrective actions.
To diagnose your pipeline, compare the errors you have seen with the issues noted below.

• For an import, ensure that the destination table already exists, and the destination table has the same
key schema as the source table. These conditions must be met, or the import will fail.

• Ensure that the Amazon S3 bucket you specified has been created, and that you have read and write
permissions on it.

• The pipeline might have exceeded its execution timeout. (You set this parameter when you created
the pipeline.) For example, you might have set the execution timeout for 1 hour, but the export job might
have required more time than this. Try deleting and then re-creating the pipeline, but with a longer
execution timeout interval this time.

• You might not have the correct permissions for performing an export or import. For more information,
see Prerequisites to Export and Import Data (p. 623).

• You might have reached a resource limit in your AWS account, such as the maximum number of
Amazon EC2 instances or the maximum number of AWS Data Pipeline pipelines. For more information,
including how to request increases in these limits, see AWS Service Limits in the AWS General
Reference.

API Version 2012-08-10
633

Amazon DynamoDB Developer Guide
Using the AWS Management Console to Export and

Import Data

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_ec2

Tip
For more details on troubleshooting a pipeline, go to Troubleshooting in the AWS Data Pipeline
Developer Guide.

Predefined Templates for AWS Data Pipeline and
DynamoDB
If you would like a deeper understanding of how AWS Data Pipeline works, we recommend that you
consult the AWS Data Pipeline Developer Guide. This guide contains step-by-step tutorials for creating
and working with pipelines; you can use these tutorials as starting points for creating your own pipelines.
We recommend that you read the DynamoDB tutorial, which walks you through the steps required to
create an import and export pipeline that you can customize for your requirements. See Tutorial: Amazon
DynamoDB Import and Export Using AWS Data Pipeline in the AWS Data Pipeline Developer Guide.

AWS Data Pipeline offers several templates for creating pipelines; the following templates are relevant
to DynamoDB.

Exporting Data Between DynamoDB and Amazon S3
The AWS Data Pipeline console provides two predefined templates for exporting data between DynamoDB
and Amazon S3. For more information about these templates, see the following sections of the AWS
Data Pipeline Developer Guide:

• Export DynamoDB to Amazon S3

• Export Amazon S3 to DynamoDB

Cross-Region DynamoDB Copy
This AWS Data Pipeline console template lets you configure periodic movement of data between
DynamoDB instances across different regions or to a different table within the same region. This feature
is useful in the following scenarios:

• Disaster recovery in the case of data loss or region failure

• Moving Amazon DynamoDB data across regions to support applications in those regions

• Performing full or incremental Amazon DynamoDB data backups

For more information about this template, see Cross-Region DynamoDB Copy in the AWS Data Pipeline
Developer Guide.

Querying and Joining Tables Using Amazon
Elastic MapReduce

Topics

• Prerequisites for Integrating Amazon EMR with DynamoDB (p. 636)

• Step 1: Create a Key Pair (p. 636)

• Step 2: Create a Cluster (p. 637)

• Step 3: SSH into the Master Node (p. 640)

• Step 4: Set Up a Hive Table to Run Hive Commands (p. 642)

• Hive Command Examples for Exporting, Importing, and Querying Data in DynamoDB (p. 646)

API Version 2012-08-10
634

Amazon DynamoDB Developer Guide
Predefined Templates for AWS Data Pipeline and

DynamoDB

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-troubleshooting.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-importexport-ddb.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-importexport-ddb.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/
http://docs.aws.amazon.com//datapipeline/latest/DeveloperGuide/dp-template-exportddbtos3.html
http://docs.aws.amazon.com//datapipeline/latest/DeveloperGuide/dp-template-exports3toddb.html
http://docs.aws.amazon.com//datapipeline/latest/DeveloperGuide/dp-template-crossregionddbcopy.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/

• Optimizing Performance for Amazon EMR Operations in DynamoDB (p. 653)

• Walkthrough: Using DynamoDB and Amazon Elastic MapReduce (p. 656)

In the following sections, you will learn how to use Amazon Elastic MapReduce (Amazon EMR) with a
customized version of Hive that includes connectivity to Amazon DynamoDB to perform operations on
data stored in DynamoDB, such as:

• Exporting data stored in DynamoDB to Amazon S3.

• Importing data in Amazon S3 to DynamoDB.

• Querying live DynamoDB data using SQL-like statements (HiveQL).

• Joining data stored in DynamoDB and exporting it or querying against the joined data.

• Loading DynamoDB data into the Hadoop Distributed File System (HDFS) and using it as input into an
Amazon EMR job flow.

To perform each of the tasks above, you'll launch an Amazon EMR job flow, specify the location of the
data in DynamoDB, and issue Hive commands to manipulate the data in DynamoDB.

Amazon EMR runs Apache Hadoop on Amazon EC2 instances. Hadoop is an application that implements
the map-reduce algorithm, in which a computational task is mapped to multiple computers that work in
parallel to process a task. The output of these computers is reduced together onto a single computer to
produce the final result. Using Amazon EMR you can quickly and efficiently process large amounts of
data, such as data stored in DynamoDB. For more information about Amazon EMR, go to the Amazon
Elastic MapReduce Developer Guide.

Apache Hive is a software layer that you can use to query map reduce job flows using a simplified,
SQL-like query language called HiveQL. It runs on top of the Hadoop architecture. For more information
about Hive and HiveQL, go to the HiveQL Language Manual.

There are several ways to launch an Amazon EMR job flow: you can use the AWS Management Console
Amazon EMR tab, the Amazon EMR command-line interface (CLI), or you can program your job flow
using the AWS SDK or the API.You can also choose whether to run a Hive job flow interactively or from
a script. In this document, we will show you how to launch an interactive Hive job flow from the console
and the CLI.

Using Hive interactively is a great way to test query performance and tune your application. Once you
have established a set of Hive commands that will run on a regular basis, consider creating a Hive script
that Amazon EMR can run for you. For more information about how to run Hive from a script, go to How
to Create a Job Flow Using Hive.

Warning
Amazon EMR read and write operations on a DynamoDB table count against your established
provisioned throughput, potentially increasing the frequency of provisioned throughput exceptions.
For large requests, Amazon EMR implements retries with exponential backoff to manage the
request load on the DynamoDB table. Running Amazon EMR jobs concurrently with other traffic
may cause you to exceed the allocated provisioned throughput level.You can monitor this by
checking the ThrottleRequests metric in CloudWatch. If the request load is too high, you can
relaunch the job flow and set Read Percent Setting (p. 654) and Write Percent Setting (p. 654) to
lower values to throttle the Amazon EMR read and write operations. For information about
DynamoDB throughput settings, see Specifying Read and Write Requirements for Tables (p. 62).

Note
The integration of DynamoDB with Amazon EMR does not currently support Binary and Binary
Set type attributes.

API Version 2012-08-10
635

Amazon DynamoDB Developer Guide
Querying and Joining Tables Using Amazon Elastic

MapReduce

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide//CLI_CreatingaJobFlowUsingHive.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide//CLI_CreatingaJobFlowUsingHive.html

Prerequisites for Integrating Amazon EMR with
DynamoDB
To use Amazon EMR (Amazon EMR) and Hive to manipulate data in DynamoDB, you need the following:

• An Amazon Web Services account. If you do not have one, you can get an account by going to http://
aws.amazon.com, and clicking Create an AWS Account.

• A DynamoDB table that contains data on the same account used with Amazon EMR.

• A customized version of Hive that includes connectivity to DynamoDB.The latest version of Hive provided
by Amazon EMR is available by default when you launch an Amazon EMR cluster from the AWS
Management Console . For more information about Amazon EMR AMIs and Hive versioning, go to
Specifying the Amazon EMR AMI Version and to Configuring Hive in the Amazon EMR Developer
Guide.

• Support for DynamoDB connectivity. This is included in the Amazon EMR AMI version 2.0.2 or later.

• (Optional) An Amazon S3 bucket. For instructions about how to create a bucket, see Get Started With
Amazon Simple Storage Service.This bucket is used as a destination when exporting DynamoDB data
to Amazon S3 or as a location to store a Hive script.

• (Optional) A Secure Shell (SSH) client application to connect to the master node of the Amazon EMR
cluster and run HiveQL queries against the DynamoDB data. SSH is used to run Hive interactively.
You can also save Hive commands in a text file and have Amazon EMR run the Hive commands from
the script. In this case an SSH client is not necessary, though the ability to SSH into the master node
is useful even in non-interactive clusters, for debugging purposes.

An SSH client is available by default on most Linux, Unix, and Mac OS X installations. Windows users
can install and use the PuTTY client, which has SSH support.

• (Optional) An Amazon EC2 key pair. This is only required for interactive clusters. The key pair provides
the credentials the SSH client uses to connect to the master node. If you are running the Hive commands
from a script in an Amazon S3 bucket, an EC2 key pair is optional.

Step 1: Create a Key Pair
To run Hive interactively to manage data in DynamoDB, you will need a key pair to connect to the Amazon
EC2 instances launched by Amazon EMR (Amazon EMR).You will use this key pair to connect to the
master node of the Amazon EMR job flow to run a HiveQL script (a language similar to SQL).

To generate a key pair

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the upper right hand corner of the console, select a Region from the Region drop-down menu.
This should be the same region that your DynamoDB database is in.

3. Click Key Pairs in the Navigation pane.

The console displays a list of key pairs associated with your account.

4. Click Create Key Pair.

5. Enter a name for the key pair, such as mykeypair, for the new key pair in the Key Pair Name field
and click Create.

6. Download the private key file. The file name will end with .pem, (such as mykeypair.pem). Keep
this private key file in a safe place.You will need it to access any instances that you launch with this
key pair.

Important
If you lose the key pair, you cannot connect to your Amazon EC2 instances.

API Version 2012-08-10
636

Amazon DynamoDB Developer Guide
Prerequisites for Integrating Amazon EMR

http://aws.amazon.com
http://aws.amazon.com
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/EnvironmentConfig_AMIVersion.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_Hive.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

For more information about key pairs, see Amazon Elastic Compute Cloud Key Pairs in the Amazon
EC2 User Guide for Linux Instances.

Step 2: Create a Cluster
In order for Hive to run on Amazon EMR, you must create a cluster with Hive enabled. This sets up the
necessary applications and infrastructure for Hive to connect to DynamoDB. The following procedures
explain how to create an interactive Hive cluster from the AWS Management Console and the CLI.

Topics

• To start a cluster using the AWS Management Console (p. 637)

To start a cluster using the AWS Management Console
1. Sign in to the AWS Management Console and open the Amazon EMR console at https://

console.aws.amazon.com/elasticmapreduce/.

2. Click Create Cluster.

3. In the Create Cluster page, in the Cluster Configuration section, verify the fields according to the
following table.

ActionField

Enter a descriptive name for your cluster.

The name is optional, and does not need to be unique.

Cluster name

Choose Yes.

Enabling termination protection ensures that the cluster does not shut down
due to accident or error. For more information, see Protect a Cluster from
Termination in the Amazon EMR Developer Guide. Typically, set this value
to Yes only when developing an application (so you can debug errors that
would have otherwise terminated the cluster) and to protect long-running
clusters or clusters that contain data.

Termination protec-
tion

Choose Enabled.

This determines whether Amazon EMR captures detailed log data to Amazon
S3.

For more information, see View Log Files in the Amazon EMR Developer
Guide.

Logging

Enter an Amazon S3 path to store your debug logs if you enabled logging in
the previous field.

When this value is set, Amazon EMR copies the log files from the EC2 in-
stances in the cluster to Amazon S3. This prevents the log files from being
lost when the cluster ends and the EC2 instances hosting the cluster are ter-
minated. These logs are useful for troubleshooting purposes.

For more information, see View Log Files in the Amazon EMR Developer
Guide.

Log folder S3 loca-
tion

API Version 2012-08-10
637

Amazon DynamoDB Developer Guide
Step 2: Create a Cluster

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_TerminationProtection.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_TerminationProtection.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-manage-view-web-log-files.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-manage-view-web-log-files.html

ActionField

Choose Enabled.

This option creates a debug log index in SimpleDB (additional charges apply)
to enable detailed debugging in the Amazon EMR console.You can only set
this when the cluster is created. For more information about Amazon SimpleDB,
go to the Amazon SimpleDB product description page.

Debugging

4. In the Software Configuration section, verify the fields according to the following table.

ActionField

Choose Amazon.

This determines which distribution of Hadoop to run on your cluster.You can
choose to run the Amazon distribution of Hadoop or one of several MapR dis-
tributions. For more information, see Using the MapR Distribution for Hadoop
in the Amazon EMR Developer Guide.

Hadoop distribu-
tion

Choose the latest AMI version in the list.

This determines the version of Hadoop and other applications such as Hive or
Pig to run on your cluster. For more information, see Choose a Machine Image
in the Amazon EMR Developer Guide.

AMI version

A default Hive version should already be selected and displayed in the list. If
it does not appear, choose it from the Additional applications list.

For more information, see Analyze Data with Hive in the Amazon EMR De-
veloper Guide.

Applications to be
installed - Hive

A default Pig version should already be selected and displayed in the list. If it
does not appear, choose it from the Additional applications list.

For more information, see Process Data with Pig in the Amazon EMR Developer
Guide.

Applications to be
installed - Pig

5. In the Hardware Configuration section, verify the fields according to the following table.

Note
The default maximum number of nodes per AWS account is twenty. For example, if you
have two clusters running, the total number of nodes running for both clusters must be 20
or less. Exceeding this limit will result in cluster failures. If you need more than 20 nodes,
you must submit a request to increase your Amazon EC2 instance limit. Ensure that your
requested limit increase includes sufficient capacity for any temporary, unplanned increases
in your needs. For more information, go to the Request to Increase Amazon EC2 Instance
Limit Form.

API Version 2012-08-10
638

Amazon DynamoDB Developer Guide
Step 2: Create a Cluster

http://aws.amazon.com/simpledb/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-mapr.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-ami.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hive.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-pig.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-ec2-instances
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-ec2-instances

ActionField

Choose Launch into EC2-Classic.

Optionally, choose a VPC subnet identifier from the list to launch the cluster
in an Amazon VPC. For more information, see Select a Amazon VPC Subnet
for the Cluster (Optional) in the Amazon EMR Developer Guide.

Network

Choose No preference.

Optionally, you can launch the cluster in a specific EC2 Availability Zone.

For more information, see Regions and Availability Zones in the Amazon EC2
User Guide.

EC2 Availability
Zone

For this tutorial, use the default EC2 instance type that is shown in this field.

This specifies the EC2 instance types to use as master nodes. The master
node assigns Hadoop tasks to core and task nodes, and monitors their status.
There is always one master node in each cluster.

For more information, see Instance Groups in the Amazon EMR Developer
Guide.

Master - Amazon
EC2 Instance
Type

Leave this box unchecked.

This specifies whether to run master nodes on Spot Instances. For more inform-
ation, see Lower Costs with Spot Instances (Optional) in the Amazon EMR
Developer Guide.

Request Spot In-
stances

For this tutorial, use the default EC2 instance type that is shown in this field.

This specifies the EC2 instance types to use as core nodes. A core node is an
EC2 instance that runs Hadoop map and reduce tasks and stores data using
the Hadoop Distributed File System (HDFS). Core nodes are managed by the
master node.

For more information, see Instance Groups in the Amazon EMR Developer
Guide.

Core - Amazon
EC2 Instance
Type

Choose 2.Count

Leave this box unchecked.

This specifies whether to run core nodes on Spot Instances. For more inform-
ation, see Lower Costs with Spot Instances (Optional) in the Amazon EMR
Developer Guide.

Request Spot In-
stances

For this tutorial, use the default EC2 instance type that is shown in this field.

This specifies the EC2 instance types to use as task nodes. A task node only
processes Hadoop tasks and don't store data.You can add and remove them
from a cluster to manage the EC2 instance capacity your cluster uses, increas-
ing capacity to handle peak loads and decreasing it later. Task nodes only run
a TaskTracker Hadoop daemon.

For more information, see Instance Groups in the Amazon EMR Developer
Guide.

Task - Amazon
EC2 Instance
Type

Choose 0.Count

API Version 2012-08-10
639

Amazon DynamoDB Developer Guide
Step 2: Create a Cluster

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-vpc-subnet.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-vpc-subnet.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/InstanceGroups.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-spot-instances.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/InstanceGroups.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-spot-instances.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/InstanceGroups.html

ActionField

Leave this box unchecked.

This specifies whether to run task nodes on Spot Instances. For more inform-
ation, see Lower Costs with Spot Instances (Optional) in the Amazon EMR
Developer Guide.

Request Spot In-
stances

6. In the Security and Access section, complete the fields according to the following table.

ActionField

Choose the key pair that you created in Step 1: Create a Key Pair (p. 636).

For more information, see Create SSH Credentials for the Master Node in the
Amazon EMR Developer Guide.

If you do not enter a value in this field, you will not be able to connect to the
master node using SSH. For more information, see Connect to the Cluster in
the Amazon EMR Developer Guide.

EC2 key pair

Choose No other IAM users.

Optionally, choose All other IAM users to make the cluster visible and access-
ible to all IAM users on the AWS account. For more information, see Configure
IAM User Permissions in the Amazon EMR Developer Guide.

IAM user access

Choose Proceed without roles.

This controls application access to the EC2 instances in the cluster.

For more information, see Configure IAM Roles for Amazon EMR in the Amazon
EMR Developer Guide.

IAM role

7. Review the Bootstrap Actions section, but note that you do not need to make any changes. There
are no bootstrap actions necessary for this sample configuration.

Optionally, you can use bootstrap actions, which are scripts that can install additional software and
change the configuration of applications on the cluster before Hadoop starts. For more information,
see Create Bootstrap Actions to Install Additional Software (Optional) in the Amazon EMR Developer
Guide.

8. Review your configuration and if you are satisfied with the settings, click Create Cluster.

9. When the cluster starts, you see the Summary pane.

Step 3: SSH into the Master Node
When the cluster’s status is WAITING, the master node is ready for you to connect to it. With an active
SSH session into the master node, you can execute command line operations.

To locate the public DNS name of the master node

• In the Amazon EMR console, select the cluster from the list of running clusters in the WAITING state.

API Version 2012-08-10
640

Amazon DynamoDB Developer Guide
Step 3: SSH into the Master Node

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-spot-instances.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-access-ssh.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-connect-master-node.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-access-iam.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-access-iam.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-bootstrap.html

The DNS name you use to connect to the instance is listed as Master Public DNS Name.

To connect to the master node using Mac OS X/Linux/UNIX

1. Go to the command prompt on your system. (On Mac OS X, use the Terminal program in
/Applications/Utilities/Terminal.)

2. Set the permissions on the .pem file for your Amazon EC2 key pair so that only the key owner has
permissions to access the key. For example, if you saved the file as mykeypair.pem in the user's
home directory, the command is:

chmod og-rwx ~/mykeypair.pem

If you do not perform this step, SSH returns an error saying that your private key file is unprotected
and rejects the key.You only need to perform this step the first time you use the private key to
connect.

3. To establish the connection to the master node, enter the following command line, which assumes
the .pem file is in the user's home directory. Replace master-public-dns-name with the Master
Public DNS Name of your cluster and replace ~/mykeypair.pem with the location and filename of
your .pem file.

ssh hadoop@master-public-dns-name -i ~/mykeypair.pem

A warning states that the authenticity of the host you are connecting to can't be verified.

4. Type yes to continue.

Note
If you are asked to log in, enter hadoop.

To install and configure PuTTY on Windows

1. Download PuTTYgen.exe and PuTTY.exe to your computer from http://www.chiark.greenend.org.uk/
~sgtatham/putty/download.html.

2. Launch PuTTYgen.

3. Click Load.

4. Select the PEM file you created earlier. Note that you may have to change the search parameters
from file of type “PuTTY Private Key Files (*.ppk) to “All Files (*.*)”.

5. Click Open.

6. Click OK on the PuTTYgen notice telling you the key was successfully imported.

7. Click Save private key to save the key in the PPK format.

8. When PuTTYgen prompts you to save the key without a pass phrase, click Yes.

9. Enter a name for your PuTTY private key, such as mykeypair.ppk.

10. Click Save.

11. Close PuTTYgen.

To connect to the master node using PuTTY on Windows

1. Start PuTTY.

API Version 2012-08-10
641

Amazon DynamoDB Developer Guide
Step 3: SSH into the Master Node

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

2. Select Session in the Category list. Enter hadoop@DNS in the Host Name field. The input looks
similar to hadoop@ec2-184-72-128-177.compute-1.amazonaws.com.

3. In the Category list, expand Connection, expand SSH, and then select Auth.The Options controlling
the SSH authentication pane appears.

4. For Private key file for authentication, click Browse and select the private key file you generated
earlier. If you are following this guide, the file name is mykeypair.ppk.

5. Click Open.

A PuTTY Security Alert pops up.

6. Click Yes for the PuTTY Security Alert.

Note
If you are asked to log in, enter hadoop.

After you connect to the master node using either SSH or PuTTY, you should see a Hadoop command
prompt and you are ready to start a Hive interactive session.

Step 4: Set Up a Hive Table to Run Hive Commands
Apache Hive is a data warehouse application you can use to query data contained in Amazon EMR
clusters using a SQL-like language. Because we launched the cluster as a Hive application, Amazon
EMR installs Hive on the EC2 instances it launches to process the cluster. For more information about
Hive, go to http://hive.apache.org/.

If you've followed the previous instructions to set up a cluster and use SSH to connect to the master node,
you are ready to use Hive interactively.

To run Hive commands interactively

1. At the command prompt for the current master node, type hive.

You should see a hive prompt: hive>

2. Enter a Hive command that maps a table in the Hive application to the data in DynamoDB.This table
acts as a reference to the data stored in Amazon DynamoDB; the data is not stored locally in Hive
and any queries using this table run against the live data in DynamoDB, consuming the table’s read
or write capacity every time a command is run. If you expect to run multiple Hive commands against
the same dataset, consider exporting it first.

The following shows the syntax for mapping a Hive table to a DynamoDB table.

CREATE EXTERNAL TABLE hive_tablename (hive_column1_name column1_datatype,
hive_column2_name column2_datatype...)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodb_tablename",
"dynamodb.column.mapping" = "hive_column1_name:dynamodb_attrib
ute1_name,hive_column2_name:dynamodb_attribute2_name...");

When you create a table in Hive from DynamoDB, you must create it as an external table using the
keyword EXTERNAL. The difference between external and internal tables is that the data in internal

API Version 2012-08-10
642

Amazon DynamoDB Developer Guide
Step 4: Set Up a Hive Table to Run Hive Commands

http://hive.apache.org/

tables is deleted when an internal table is dropped. This is not the desired behavior when connected
to Amazon DynamoDB, and thus only external tables are supported.

For example, the following Hive command creates a table named hivetable1 in Hive that references
the DynamoDB table named dynamodbtable1. The DynamoDB table dynamodbtable1 has a
hash-and-range primary key schema. The hash key element is name (string type), the range key
element is year (numeric type), and each item has an attribute value for holidays (string set type).

CREATE EXTERNAL TABLE hivetable1 (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

Line 1 uses the HiveQL CREATE EXTERNAL TABLE statement. For hivetable1, you need to establish
a column for each attribute name-value pair in the DynamoDB table, and provide the data type.These
values are not case-sensitive, and you can give the columns any name (except reserved words).

Line 2 uses the STORED BY statement.The value of STORED BY is the name of the class that handles
the connection between Hive and DynamoDB. It should be set to
'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'.

Line 3 uses the TBLPROPERTIES statement to associate "hivetable1" with the correct table and
schema in DynamoDB. Provide TBLPROPERTIES with values for the dynamodb.table.name
parameter and dynamodb.column.mapping parameter. These values are case-sensitive.

Note
All DynamoDB attribute names for the table must have corresponding columns in the Hive
table. Otherwise, the Hive table won't contain the name-value pair from DynamoDB. If you
do not map the DynamoDB primary key attributes, Hive generates an error. If you do not
map a non-primary key attribute, no error is generated, but you won't see the data in the
Hive table. If the data types do not match, the value is null.

Then you can start running Hive operations on hivetable1. Queries run against hivetable1 are internally
run against the DynamoDB table dynamodbtable1 of your DynamoDB account, consuming read or write
units with each execution.

When you run Hive queries against a DynamoDB table, you need to ensure that you have provisioned a
sufficient amount of read capacity units.

For example, suppose that you have provisioned 100 units of read capacity for your DynamoDB table.
This will let you perform 100 reads, or 409,600 bytes, per second. If that table contains 20GB of data
(21,474,836,480 bytes), and your Hive query performs a full table scan, you can estimate how long the
query will take to run:

21,474,836,480 / 409,600 = 52,429 seconds = 14.56 hours

The only way to decrease the time required would be to adjust the read capacity units on the source
DynamoDB table. Adding more Amazon EMR nodes will not help.

In the Hive output, the completion percentage is updated when one or more mapper processes are
finished. For a large DynamoDB table with a low provisioned read capacity setting, the completion
percentage output might not be updated for a long time; in the case above, the job will appear to be 0%
complete for several hours. For more detailed status on your job's progress, go to the Amazon EMR
console; you will be able to view the individual mapper task status, and statistics for data reads.

API Version 2012-08-10
643

Amazon DynamoDB Developer Guide
Step 4: Set Up a Hive Table to Run Hive Commands

You can also log on to Hadoop interface on the master node and see the Hadoop statistics.This will show
you the individual map task status and some data read statistics. For more information, see the following
topics:

• Web Interfaces Hosted on the Master Node

• View the Hadoop Web Interfaces

For more information about sample HiveQL statements to perform tasks such as exporting or importing
data from DynamoDB and joining tables, see Hive Command Examples for Exporting, Importing, and
Querying Data in Amazon DynamoDB in the Amazon EMR Developer Guide.

You can also create a file that contains a series of commands, launch a cluster, and reference that file
to perform the operations. For more information, see Interactive and Batch Modes in the Amazon EMR
Developer Guide.

To cancel a Hive request

When you execute a Hive query, the initial response from the server includes the command to cancel the
request.To cancel the request at any time in the process, use the Kill Command from the server response.

1. Enter Ctrl+C to exit the command line client.

2. At the shell prompt, enter the Kill Command from the initial server response to your request.

Alternatively, you can run the following command from the command line of the master node to kill
the Hadoop job, where job-id is the identifier of the Hadoop job and can be retrieved from the
Hadoop user interface. For more information about the Hadoop user interface, see How to Use the
Hadoop User Interface in the Amazon EMR Developer Guide.

hadoop job -kill job-id

Data Types for Hive and DynamoDB
The following table shows the available Hive data types and how they map to the corresponding DynamoDB
data types.

DynamoDB typeHive type

string (S)string

number (N)bigint or double

binary (B)binary

number set (NS), string set (SS), or binary set (BS)array

The bigint type in Hive is the same as the Java long type, and the Hive double type is the same as the
Java double type in terms of precision. This means that if you have numeric data stored in DynamoDB
that has precision higher than is available in the Hive datatypes, using Hive to export, import, or reference
the DynamoDB data could lead to a loss in precision or a failure of the Hive query.

API Version 2012-08-10
644

Amazon DynamoDB Developer Guide
Step 4: Set Up a Hive Table to Run Hive Commands

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-web-interfaces.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/EMR_Hive_Commands.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/EMR_Hive_Commands.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_Hive.html#interactiveandbatch
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html

Exports of the binary type from DynamoDB to Amazon Simple Storage Service (Amazon S3) or HDFS
are stored as a Base64-encoded string. If you are importing data from Amazon S3 or HDFS into the
DynamoDB binary type, it should be encoded as a Base64 string.

Hive Options
You can set the following Hive options to manage the transfer of data out of Amazon DynamoDB. These
options only persist for the current Hive session. If you close the Hive command prompt and reopen it
later on the cluster, these settings will have returned to the default values.

DescriptionHive Options

Set the rate of read operations to keep your DynamoDB
provisioned throughput rate in the allocated range for your
table. The value is between 0.1 and 1.5, inclusively.

The value of 0.5 is the default read rate, which means that
Hive will attempt to consume half of the read provisioned
throughout resources in the table. Increasing this value
above 0.5 increases the read request rate. Decreasing it
below 0.5 decreases the read request rate. This read rate
is approximate. The actual read rate will depend on factors
such as whether there is a uniform distribution of keys in
DynamoDB.

If you find your provisioned throughput is frequently ex-
ceeded by the Hive operation, or if live read traffic is being
throttled too much, then reduce this value below 0.5. If you
have enough capacity and want a faster Hive operation,
set this value above 0.5.You can also oversubscribe by
setting it up to 1.5 if you believe there are unused input/out-
put operations available.

dynamodb.throughput.read.percent

Set the rate of write operations to keep your DynamoDB
provisioned throughput rate in the allocated range for your
table. The value is between 0.1 and 1.5, inclusively.

The value of 0.5 is the default write rate, which means that
Hive will attempt to consume half of the write provisioned
throughout resources in the table. Increasing this value
above 0.5 increases the write request rate. Decreasing it
below 0.5 decreases the write request rate. This write rate
is approximate.The actual write rate will depend on factors
such as whether there is a uniform distribution of keys in
DynamoDB

If you find your provisioned throughput is frequently ex-
ceeded by the Hive operation, or if live write traffic is being
throttled too much, then reduce this value below 0.5. If you
have enough capacity and want a faster Hive operation,
set this value above 0.5.You can also oversubscribe by
setting it up to 1.5 if you believe there are unused input/out-
put operations available or this is the initial data upload to
the table and there is no live traffic yet.

dynamodb.throughput.write.per-
cent

Specify the endpoint in case you have tables in different
regions. For more information about the available Dy-
namoDB endpoints, see Regions and Endpoints.

dynamodb.endpoint

API Version 2012-08-10
645

Amazon DynamoDB Developer Guide
Step 4: Set Up a Hive Table to Run Hive Commands

http://docs.aws.amazon.com/general/latest/gr/rande.html#ddb_region

DescriptionHive Options

Specify the maximum number of map tasks when reading
data from DynamoDB. This value must be equal to or
greater than 1.

dynamodb.max.map.tasks

Specify the number of minutes to use as the timeout dura-
tion for retrying Hive commands. This value must be an in-
teger equal to or greater than 0.The default timeout duration
is two minutes.

dynamodb.retry.duration

These options are set using the SET command as shown in the following example.

SET dynamodb.throughput.read.percent=1.0;

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

If you are using the AWS SDK for Java, you can use the -e option of Hive to pass in the command directly,
as shown in the last line of the following example.

steps.add(new StepConfig()
.withName("Run Hive Script")
.withHadoopJarStep(new HadoopJarStepConfig()
.withJar("s3://us-west-2.elasticmapreduce/libs/script-runner/script-runner.jar")
.withArgs("s3://us-west-2.elasticmapreduce/libs/hive/hive-script",
"--base-path","s3://us-west-2.elasticmapreduce/libs/hive/","--run-hive-script",
"--args","-e","SET dynamodb.throughput.read.percent=1.0;")));

Hive Command Examples for Exporting, Importing,
and Querying Data in DynamoDB
The following examples use Hive commands to perform operations such as exporting data to Amazon
S3 or HDFS, importing data to DynamoDB, joining tables, querying tables, and more.

Operations on a Hive table reference data stored in DynamoDB. Hive commands are subject to the
DynamoDB table's provisioned throughput settings, and the data retrieved includes the data written to
the DynamoDB table at the time the Hive operation request is processed by DynamoDB. If the data
retrieval process takes a long time, some data returned by the Hive command may have been updated
in DynamoDB since the Hive command began.

Hive commands DROP TABLE and CREATE TABLE only act on the local tables in Hive and do not create
or drop tables in DynamoDB. If your Hive query references a table in DynamoDB, that table must already
exist before you run the query. For more information on creating and deleting tables in DynamoDB, go
to Working with Tables in DynamoDB.

API Version 2012-08-10
646

Amazon DynamoDB Developer Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html

Note
When you map a Hive table to a location in Amazon S3, do not map it to the root path of the
bucket, s3://mybucket, as this may cause errors when Hive writes the data to Amazon S3. Instead
map the table to a subpath of the bucket, s3://mybucket/mypath.

Exporting Data from DynamoDB
You can use Hive to export data from DynamoDB.

To export a DynamoDB table to an Amazon S3 bucket

• Create a Hive table that references data stored in DynamoDB. Then you can call the INSERT
OVERWRITE command to write the data to an external directory. In the following example,
s3://bucketname/path/subpath/ is a valid path in Amazon S3. Adjust the columns and datatypes
in the CREATE command to match the values in your DynamoDB.You can use this to create an
archive of your DynamoDB data in Amazon S3.

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

INSERT OVERWRITE DIRECTORY 's3://bucketname/path/subpath/' SELECT *
FROM hiveTableName;

To export a DynamoDB table to an Amazon S3 bucket using formatting

• Create an external table that references a location in Amazon S3.This is shown below as s3_export.
During the CREATE call, specify row formatting for the table. Then, when you use INSERT
OVERWRITE to export data from DynamoDB to s3_export, the data is written out in the specified
format. In the following example, the data is written out as comma-separated values (CSV).

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

CREATE EXTERNAL TABLE s3_export(a_col string, b_col bigint, c_col ar
ray<string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

API Version 2012-08-10
647

Amazon DynamoDB Developer Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

To export a DynamoDB table to an Amazon S3 bucket without specifying a column mapping

• Create a Hive table that references data stored in DynamoDB.This is similar to the preceding example,
except that you are not specifying a column mapping. The table must have exactly one column of
type map<string, string>. If you then create an EXTERNAL table in Amazon S3 you can call the
INSERT OVERWRITE command to write the data from DynamoDB to Amazon S3.You can use this
to create an archive of your DynamoDB data in Amazon S3. Because there is no column mapping,
you cannot query tables that are exported this way. Exporting data without specifying a column
mapping is available in Hive 0.8.1.5 or later, which is supported on Amazon EMR AMI 2.2.x and later.

Note
DynamoDB tables that contain JSON types (list, map, boolean, null) can only be exported
without specifying a column mapping. This is supported on Amazon EMR AMI 3.3.2 and
later.

CREATE EXTERNAL TABLE hiveTableName (item map<string,string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1");

CREATE EXTERNAL TABLE s3TableName (item map<string, string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3TableName SELECT *
FROM hiveTableName;

To export a DynamoDB table to an Amazon S3 bucket using data compression

• Hive provides several compression codecs you can set during your Hive session. Doing so causes
the exported data to be compressed in the specified format. The following example compresses the
exported files using the Lempel-Ziv-Oberhumer (LZO) algorithm.

SET hive.exec.compress.output=true;
SET io.seqfile.compression.type=BLOCK;
SET mapred.output.compression.codec = com.hadoop.compression.lzo.LzopCodec;

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

CREATE EXTERNAL TABLE lzo_compression_table (line STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE lzo_compression_table SELECT *
FROM hiveTableName;

The available compression codecs are:

API Version 2012-08-10
648

Amazon DynamoDB Developer Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

• org.apache.hadoop.io.compress.GzipCodec

• org.apache.hadoop.io.compress.DefaultCodec

• com.hadoop.compression.lzo.LzoCodec

• com.hadoop.compression.lzo.LzopCodec

• org.apache.hadoop.io.compress.BZip2Codec

• org.apache.hadoop.io.compress.SnappyCodec

To export a DynamoDB table to HDFS

• Use the following Hive command, where hdfs:///directoryName is a valid HDFS path and
hiveTableName is a table in Hive that references DynamoDB. This export operation is faster than
exporting a DynamoDB table to Amazon S3 because Hive 0.7.1.1 uses HDFS as an intermediate
step when exporting data to Amazon S3. The following example also shows how to set
dynamodb.throughput.read.percent to 1.0 in order to increase the read request rate.

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

SET dynamodb.throughput.read.percent=1.0;

INSERT OVERWRITE DIRECTORY 'hdfs:///directoryName' SELECT * FROM hiveTable
Name;

You can also export data to HDFS using formatting and compression as shown above for the export
to Amazon S3. To do so, simply replace the Amazon S3 directory in the examples above with an
HDFS directory.

To read non-printable UTF-8 character data in Hive

• You can read and write non-printable UTF-8 character data with Hive by using the STORED AS
SEQUENCEFILE clause when you create the table. A SequenceFile is Hadoop binary file format; you
need to use Hadoop to read this file.The following example shows how to export data from DynamoDB
into Amazon S3.You can use this functionality to handle non-printable UTF-8 encoded characters.

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

CREATE EXTERNAL TABLE s3_export(a_col string, b_col bigint, c_col ar
ray<string>)
STORED AS SEQUENCEFILE
LOCATION 's3://bucketname/path/subpath/';

API Version 2012-08-10
649

Amazon DynamoDB Developer Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

Importing Data to DynamoDB
When you write data to DynamoDB using Hive you should ensure that the number of write capacity units
is greater than the number of mappers in the cluster. For example, clusters that run on m1.xlarge EC2
instances produce 8 mappers per instance. In the case of a cluster that has 10 instances, that would
mean a total of 80 mappers. If your write capacity units are not greater than the number of mappers in
the cluster, the Hive write operation may consume all of the write throughput, or attempt to consume more
throughput than is provisioned. For more information about the number of mappers produced by each
EC2 instance type, go to Hadoop Configuration Reference in the Amazon EMR Developer Guide. There,
you will find a "Task Configuration" section for each of the supported configurations.

The number of mappers in Hadoop are controlled by the input splits. If there are too few splits, your write
command might not be able to consume all the write throughput available.

If an item with the same key exists in the target DynamoDB table, it will be overwritten. If no item with the
key exists in the target DynamoDB table, the item is inserted.

To import a table from Amazon S3 to DynamoDB

• You can use Amazon EMR (Amazon EMR) and Hive to write data from Amazon S3 to DynamoDB.

CREATE EXTERNAL TABLE s3_import(a_col string, b_col bigint, c_col ar
ray<string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

INSERT OVERWRITE TABLE 'hiveTableName' SELECT * FROM s3_import;

To import a table from an Amazon S3 bucket to DynamoDB without specifying a column
mapping

• Create an EXTERNAL table that references data stored in Amazon S3 that was previously exported
from DynamoDB. Before importing, ensure that the table exists in DynamoDB and that it has the
same key schema as the previously exported DynamoDB table. In addition, the table must have
exactly one column of type map<string, string>. If you then create a Hive table that is linked to
DynamoDB, you can call the INSERT OVERWRITE command to write the data from Amazon S3 to
DynamoDB. Because there is no column mapping, you cannot query tables that are imported this
way. Importing data without specifying a column mapping is available in Hive 0.8.1.5 or later, which
is supported on Amazon EMR AMI 2.2.3 and later.

API Version 2012-08-10
650

Amazon DynamoDB Developer Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hadoop-config.html

Note
DynamoDB tables that contain JSON types (list, map, boolean, null) can only be imported
without specifying a column mapping. This is supported on Amazon EMR AMI 3.3.2 and
later.

CREATE EXTERNAL TABLE s3TableName (item map<string, string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

CREATE EXTERNAL TABLE hiveTableName (item map<string,string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1");

INSERT OVERWRITE TABLE hiveTableName SELECT *
FROM s3TableName;

To import a table from HDFS to DynamoDB

• You can use Amazon EMR and Hive to write data from HDFS to DynamoDB.

CREATE EXTERNAL TABLE hdfs_import(a_col string, b_col bigint, c_col ar
ray<string>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 'hdfs:///directoryName';

CREATE EXTERNAL TABLE hiveTableName (col1 string, col2 bigint, col3 ar
ray<string>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "dynamodbtable1",
"dynamodb.column.mapping" = "col1:name,col2:year,col3:holidays");

INSERT OVERWRITE TABLE 'hiveTableName' SELECT * FROM hdfs_import;

Querying Data in DynamoDB
The following examples show the various ways you can use Amazon EMR to query data stored in
DynamoDB.

To find the largest value for a mapped column (max)

• Use Hive commands like the following. In the first command, the CREATE statement creates a Hive
table that references data stored in DynamoDB.The SELECT statement then uses that table to query
data stored in DynamoDB.The following example finds the largest order placed by a given customer.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

API Version 2012-08-10
651

Amazon DynamoDB Developer Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" = "customerId:CustomerId,total_cost:Cost,items_pur
chased:Items");

SELECT max(total_cost) from hive_purchases where customerId = 717;

To aggregate data using the GROUP BY clause

• You can use the GROUP BY clause to collect data across multiple records. This is often used with
an aggregate function such as sum, count, min, or max. The following example returns a list of the
largest orders from customers who have placed more than three orders.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" = "customerId:CustomerId,total_cost:Cost,items_pur
chased:Items");

SELECT customerId, max(total_cost) from hive_purchases GROUP BY customerId
 HAVING count(*) > 3;

To join two DynamoDB tables

• The following example maps two Hive tables to data stored in DynamoDB. It then calls a join across
those two tables. The join is computed on the cluster and returned. The join does not take place in
DynamoDB. This example returns a list of customers and their purchases for customers that have
placed more than two orders.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" = "customerId:CustomerId,total_cost:Cost,items_pur
chased:Items");

CREATE EXTERNAL TABLE hive_customers(customerId bigint, customerName string,
 customerAddress array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Customers",
"dynamodb.column.mapping" = "customerId:CustomerId,customerName:Name,custom
erAddress:Address");

Select c.customerId, c.customerName, count(*) as count from hive_customers
 c
JOIN hive_purchases p ON c.customerId=p.customerId
GROUP BY c.customerId, c.customerName HAVING count > 2;

API Version 2012-08-10
652

Amazon DynamoDB Developer Guide
Hive Command Examples for Exporting, Importing, and

Querying Data

To join two tables from different sources

• In the following example, Customer_S3 is a Hive table that loads a CSV file stored in Amazon S3
and hive_purchases is a table that references data in DynamoDB. The following example joins
together customer data stored as a CSV file in Amazon S3 with order data stored in DynamoDB to
return a set of data that represents orders placed by customers who have "Miller" in their name.

CREATE EXTERNAL TABLE hive_purchases(customerId bigint, total_cost double,
 items_purchased array<String>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Purchases",
"dynamodb.column.mapping" = "customerId:CustomerId,total_cost:Cost,items_pur
chased:Items");

CREATE EXTERNAL TABLE Customer_S3(customerId bigint, customerName string,
customerAddress array<String>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

Select c.customerId, c.customerName, c.customerAddress from
Customer_S3 c
JOIN hive_purchases p
ON c.customerid=p.customerid
where c.customerName like '%Miller%';

Note
In the preceding examples, the CREATE TABLE statements were included in each example for
clarity and completeness. When running multiple queries or export operations against a given
Hive table, you only need to create the table one time, at the beginning of the Hive session.

Optimizing Performance for Amazon EMR
Operations in DynamoDB
Amazon EMR operations on a DynamoDB table count as read operations, and are subject to the table's
provisioned throughput settings. Amazon EMR implements its own logic to try to balance the load on your
DynamoDB table to minimize the possibility of exceeding your provisioned throughput. At the end of each
Hive query, Amazon EMR returns information about the cluster used to process the query, including how
many times your provisioned throughput was exceeded.You can use this information, as well as
CloudWatch metrics about your DynamoDB throughput, to better manage the load on your DynamoDB
table in subsequent requests.

The following factors influence Hive query performance when working with DynamoDB tables.

Provisioned Read Capacity Units
When you run Hive queries against a DynamoDB table, you need to ensure that you have provisioned a
sufficient amount of read capacity units.

For example, suppose that you have provisioned 100 units of Read Capacity for your DynamoDB table.
This will let you perform 100 reads, or 409,600 bytes, per second. If that table contains 20GB of data
(21,474,836,480 bytes), and your Hive query performs a full table scan, you can estimate how long the
query will take to run:

API Version 2012-08-10
653

Amazon DynamoDB Developer Guide
Optimizing Performance

21,474,836,480 / 409,600 = 52,429 seconds = 14.56 hours

The only way to decrease the time required would be to adjust the read capacity units on the source
DynamoDB table. Adding more nodes to the Amazon EMR cluster will not help.

In the Hive output, the completion percentage is updated when one or more mapper processes are
finished. For a large DynamoDB table with a low provisioned Read Capacity setting, the completion
percentage output might not be updated for a long time; in the case above, the job will appear to be 0%
complete for several hours. For more detailed status on your job's progress, go to the Amazon EMR
console; you will be able to view the individual mapper task status, and statistics for data reads.

You can also log on to Hadoop interface on the master node and see the Hadoop statistics.This will show
you the individual map task status and some data read statistics. For more information, see the following
topics:

• Web Interfaces Hosted on the Master Node

• View the Hadoop Web Interfaces

Read Percent Setting
By default, Amazon EMR manages the request load against your DynamoDB table according to your
current provisioned throughput. However, when Amazon EMR returns information about your job that
includes a high number of provisioned throughput exceeded responses, you can adjust the default read
rate using the dynamodb.throughput.read.percent parameter when you set up the Hive table. For
more information about setting the read percent parameter, see Hive Options in the Amazon EMR
Developer Guide.

Write Percent Setting
By default, Amazon EMR manages the request load against your DynamoDB table according to your
current provisioned throughput. However, when Amazon EMR returns information about your job that
includes a high number of provisioned throughput exceeded responses, you can adjust the default write
rate using the dynamodb.throughput.write.percent parameter when you set up the Hive table.
For more information about setting the write percent parameter, see Hive Options in the Amazon EMR
Developer Guide.

Retry Duration Setting
By default, Amazon EMR re-runs a Hive query if it has not returned a result within two minutes, the default
retry interval.You can adjust this interval by setting the dynamodb.retry.duration parameter when
you run a Hive query. For more information about setting the write percent parameter, see Hive Options
in the Amazon EMR Developer Guide.

Number of Map Tasks
The mapper daemons that Hadoop launches to process your requests to export and query data stored
in DynamoDB are capped at a maximum read rate of 1 MiB per second to limit the read capacity used.
If you have additional provisioned throughput available on DynamoDB, you can improve the performance
of Hive export and query operations by increasing the number of mapper daemons. To do this, you can
either increase the number of EC2 instances in your cluster or increase the number of mapper daemons
running on each EC2 instance.

You can increase the number of EC2 instances in a cluster by stopping the current cluster and re-launching
it with a larger number of EC2 instances.You specify the number of EC2 instances in the Configure EC2
Instances dialog box if you're launching the cluster from the Amazon EMR console, or with the
--num-instances option if you're launching the cluster from the CLI.

API Version 2012-08-10
654

Amazon DynamoDB Developer Guide
Optimizing Performance

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-web-interfaces.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/EMR_Interactive_Hive.html#EMR_Hive_Options
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/EMR_Interactive_Hive.html#EMR_Hive_Options
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/EMR_Interactive_Hive.html#EMR_Hive_Options

The number of map tasks run on an instance depends on the EC2 instance type. For more information
about the supported EC2 instance types and the number of mappers each one provides, go to Hadoop
Configuration Reference in the Amazon EMR Developer Guide.There, you will find a "Task Configuration"
section for each of the supported configurations.

Another way to increase the number of mapper daemons is to change the
mapred.tasktracker.map.tasks.maximum configuration parameter of Hadoop to a higher value.
This has the advantage of giving you more mappers without increasing either the number or the size of
EC2 instances, which saves you money. A disadvantage is that setting this value too high can cause the
EC2 instances in your cluster to run out of memory.To set mapred.tasktracker.map.tasks.maximum,
launch the cluster and specify the Configure Hadoop bootstrap action, passing in a value for
mapred.tasktracker.map.tasks.maximum as one of the arguments of the bootstrap action. This is
shown in the following example.

--bootstrap-action s3n://elasticmapreduce/bootstrap-actions/configure-hadoop \

 --args -m,mapred.tasktracker.map.tasks.maximum=10

For more information about bootstrap actions, see Create Bootstrap Actions to Install Additional Software
(Optional) in the Amazon EMR Developer Guide.

Parallel Data Requests
Multiple data requests, either from more than one user or more than one application to a single table may
drain read provisioned throughput and slow performance.

Process Duration
Data consistency in DynamoDB depends on the order of read and write operations on each node. While
a Hive query is in progress, another application might load new data into the DynamoDB table or modify
or delete existing data. In this case, the results of the Hive query might not reflect changes made to the
data while the query was running.

Avoid Exceeding Throughput
When running Hive queries against DynamoDB, take care not to exceed your provisioned throughput,
because this will deplete capacity needed for your application's calls to DynamoDB::Get. To ensure that
this is not occurring, you should regularly monitor the read volume and throttling on application calls to
DynamoDB::Get by checking logs and monitoring metrics in Amazon CloudWatch.

Request Time
Scheduling Hive queries that access a DynamoDB table when there is lower demand on the DynamoDB
table improves performance. For example, if most of your application's users live in San Francisco, you
might choose to export daily data at 4 a.m. PST, when the majority of users are asleep, and not updating
records in your DynamoDB database.

Time-Based Tables
If the data is organized as a series of time-based DynamoDB tables, such as one table per day, you can
export the data when the table becomes no longer active.You can use this technique to back up data to
Amazon S3 on an ongoing fashion.

API Version 2012-08-10
655

Amazon DynamoDB Developer Guide
Optimizing Performance

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hadoop-config.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hadoop-config.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-bootstrap.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-bootstrap.html

Archived Data
If you plan to run many Hive queries against the data stored in DynamoDB and your application can
tolerate archived data, you may want to export the data to HDFS or Amazon S3 and run the Hive queries
against a copy of the data instead of DynamoDB. This conserves your read operations and provisioned
throughput.

Viewing Hadoop Logs
If you run into an error, you can investigate what went wrong by viewing the Hadoop logs and user
interface. For more information, see How to Monitor Hadoop on a Master Node and How to Use the
Hadoop User Interface in the Amazon EMR Developer Guide.

Walkthrough: Using DynamoDB and Amazon
Elastic MapReduce
Topics

• Video (p. 656)

• Step-by-Step Instructions (p. 656)

The integration of Amazon Elastic MapReduce (Amazon EMR) with DynamoDB enables several scenarios.
For example, using a Hive cluster launched within Amazon EMR, you can export data to Amazon Simple
Storage Service (Amazon S3) or upload it to a Native Hive Table. In this walkthrough, you'll learn how to
set up a Hive cluster, export DynamoDB data to Amazon S3, upload data to a native Hive table, and
execute complex queries for business intelligence reporting or data mining.You can run queries against
the data without using a lot of DynamoDB capacity units or interfering with your running application.

Video
Video: Using Amazon Elastic MapReduce (Amazon EMR) to Export and Analyze DynamoDB Data

Step-by-Step Instructions
Topics

• Setting Up the Environment (p. 657)

• Exporting Data to Amazon S3 (p. 658)

• Exporting DynamoDB Data to a Native Hive Table and Executing Queries (p. 661)

• Final Cleanup (p. 664)

When you have completed this walkthrough, you will have a DynamoDB table with sample data, an
Amazon S3 bucket with exported data, an Amazon EMR job flow, two Apache Hive external tables, and
one native Hive table.

API Version 2012-08-10
656

Amazon DynamoDB Developer Guide
Walkthrough: Using DynamoDB and Amazon Elastic

MapReduce

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingSSHtoMonitorJobStatus.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingtheHadoopUserInterface.html
http://www.youtube.com/embed/RlKndm22bXw

Setting Up the Environment

Upon completing this step, you will have the ProductCatalog table in DynamoDB, a bucket in Amazon
S3, and an Amazon EMR job flow set up.

To set up the walkthrough environment

1. Create the ProductCatalog table in DynamoDB and upload sample data.

The ProductCatalog table used in the video is one of the tables you create by following the steps
in the Creating Tables and Loading Sample Data (p. 14) section to create and populate the DynamoDB
tables.

2. Create a bucket in Amazon S3.

For step-by-step instructions, go to the Creating an Amazon S3 Bucket topic in the Amazon Simple
Storage Service Getting Started Guide.

3. Set up an Amazon EMR job flow.

This Amazon EMR job flow handles the queries between DynamoDB, Apache Hive, and Amazon
S3. Follow the Prerequisites and Steps 1 through 3 in the Exporting, Importing, Querying, and Joining
Tables in DynamoDB Using Amazon EMR section of the DynamoDB documentation to set up your
job flow for these operations.

When you have completed the environment setup, your SSH session will look like this screen shot.You
can now proceed with the rest of the walkthrough.

API Version 2012-08-10
657

Amazon DynamoDB Developer Guide
Walkthrough: Using DynamoDB and Amazon Elastic

MapReduce

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EMRforDynamoDB.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EMRforDynamoDB.html

Exporting Data to Amazon S3

Now you are ready to export data from DynamoDB to an Amazon S3 bucket. As shown in the video, you
need to create two external Hive tables. The first external table, pc_dynamodb (where "pc" is short for
product catalog), maps to the DynamoDB table ProductCatalog.The external Hive table, pc_s3, maps
to a folder (catalog) in an Amazon S3 bucket (myawsbucket1).

To create the first external table

1. Type hive to start a Hive command prompt.

When Hive is ready, you see a hive> prompt.

API Version 2012-08-10
658

Amazon DynamoDB Developer Guide
Walkthrough: Using DynamoDB and Amazon Elastic

MapReduce

2. Create the external Hive table pc_dynamodb that maps to the ProductCatalog table in DynamoDB.

Copy and paste the following code into your Hive session.

 CREATE EXTERNAL TABLE pc_dynamodb (
 id bigint
 ,title string
 ,isbn string
 ,authors array<string>
 ,price bigint
 ,dimensions string
 ,pagecount bigint
 ,inpublication bigint
 ,productcategory string
 ,description string
 ,bicycletype string
 ,brand string
 ,gender string
 ,color array<string>)
 STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
 TBLPROPERTIES ("dynamodb.table.name"="ProductCatalog","dynamodb.column.map
ping" = "id:Id,title:Title
 ,isbn:ISBN,authors:Authors,price:Price,dimensions:Dimensions,page
count:PageCount
 ,inpublication:InPublication,productcategory:ProductCategory,descrip
tion:Description
 ,bicycletype:BicycleType,brand:Brand,gender:Gender,color:Color");

When it has completed creating the table, Hive responds OK.You can verify the existence of the
table by typing show tables; at the command line.

3. Create a second external Hive table that maps to a folder in the specified Amazon S3 bucket.

Copy and paste the following code into your Hive session. The external Hive table name is pc_s3,
and it maps to a folder in the Amazon S3 bucket myawsbucket1/catalog. Note that we specify
ROW FORMAT to request comma-separated values in the resulting Amazon S3 object. Before copying
and pasting this code, adjust the name of the Amazon S3 bucket in the last line to the name of the
bucket and folder you created in the To set up the walkthrough environment (p. 657) procedure.

API Version 2012-08-10
659

Amazon DynamoDB Developer Guide
Walkthrough: Using DynamoDB and Amazon Elastic

MapReduce

 CREATE EXTERNAL TABLE pc_s3 (
 id bigint
 ,title string
 ,isbn string
 ,authors array<string>
 ,price bigint
 ,dimensions string
 ,pagecount bigint
 ,inpublication bigint
 ,productcategory string
 ,description string
 ,bicycletype string
 ,brand string
 ,gender string
 ,color array<string>
)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
 LOCATION 's3://myawsbucket1/catalog/';

When it has completed creating the table, Hive responds OK. Now you can export the DynamoDB
table data to an Amazon S3 bucket.

To export the data to your Amazon S3 bucket

1. Use an INSERT statement as follows:

 INSERT OVERWRITE TABLE pc_s3
 SELECT * FROM pc_dynamodb;

This statement selects data from the Dynamo DB table and inserts it into a folder in the specified
Amazon S3 bucket through the mapped tables.

When the INSERT completes, the data is stored in Amazon S3.

2. Verify the resulting object by returning to the AWS Management Console at https://
console.aws.amazon.com/s3/home and locating the bucket you created.

API Version 2012-08-10
660

Amazon DynamoDB Developer Guide
Walkthrough: Using DynamoDB and Amazon Elastic

MapReduce

https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/s3/home

3. To download the file, right-click the file, and then click Download in the context menu.

Click the Download button to save the file to your local drive.

4. Open the file in a text editor to see the data. Depending on your platform, you may need to add a
".txt" file name extension to open the file.

Note
You can import data from Amazon S3 to a DynamoDB table, too. This is a useful way to
import existing data into a new DynamoDB table or perform periodic bulk uploads of data
from another application. With Amazon EMR's support for scripting, you can save your
scripts and run them according to a schedule.

Exporting DynamoDB Data to a Native Hive Table and Executing Queries

Next, you load data from DynamoDB into a native Hive table and execute a sample query. As shown in
the video, this query is executed on the data stored natively. Uploading data consumes some provisioned

API Version 2012-08-10
661

Amazon DynamoDB Developer Guide
Walkthrough: Using DynamoDB and Amazon Elastic

MapReduce

throughput in DynamoDB, but queries on the data stored natively in an Amazon EMR cluster do not
consume DynamoDB provisioned throughput.

You already have an external Hive table (pc_dynamodb) mapped to our DynamoDB ProductCatalog
table as shown in the preceding figure. Now you need only create a native Hive table where you will load
the data for your query.

To create a native Hive table

1. Copy and paste the following code into your Hive session.

 CREATE TABLE pc_hive (
 id bigint
 ,title string
 ,isbn string
 ,authors array<string>
 ,price bigint
 ,dimensions string
 ,pagecount bigint
 ,inpublication bigint
 ,productcategory string
 ,description string
 ,bicycletype string
 ,brand string
 ,gender string
 ,color array<string>
);

This statement creates the native Hive table. Notice that the EXTERNAL key word is not used.

API Version 2012-08-10
662

Amazon DynamoDB Developer Guide
Walkthrough: Using DynamoDB and Amazon Elastic

MapReduce

2. Upload the DynamoDB table data into the new Hive table using an INSERT statement.

 INSERT OVERWRITE TABLE pc_hive
 SELECT * FROM pc_dynamodb;

The data is now stored in the new pc_hive table.

You can now query the native table using Hive. For example, let's find the number of products in each
product category.

API Version 2012-08-10
663

Amazon DynamoDB Developer Guide
Walkthrough: Using DynamoDB and Amazon Elastic

MapReduce

To issue a SQL query on the native Hive table

• Copy and paste the following code into your Hive session.

 SELECT ProductCategory, count(*)
 FROM pc_hive
 GROUP BY ProductCategory;

With this SELECT statement, you are querying the native Hive table, and not querying DynamoDB
at all. Therefore, you are not using any DynamoDB provisioned throughput nor affecting your live
tables.

In the preceding screen shot, the query results are shown in the white box.

Tip
For more information about SQL statements using HiveQL, go to SQL Operations on the
Getting Started page for Apache Hive.

Final Cleanup

When you have completed this walkthrough, you can remove the DynamoDB table, the Amazon S3
bucket, and the Amazon EMR job flow to avoid incurring additional charges.

API Version 2012-08-10
664

Amazon DynamoDB Developer Guide
Walkthrough: Using DynamoDB and Amazon Elastic

MapReduce

https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-SQLOperations
http://hive.apache.org/

1. Delete the sample tables by following the instructions in Step 5: Delete Example Tables (p. 51).

2. Delete the bucket in Amazon S3.

Follow the instructions in the Amazon S3 documentation for Deleting an Object.

3. Terminate the Amazon EMR job flow.

Open the AWS Management Console to https://console.aws.amazon.com/elasticmapreduce/home
and right-click the job flow in the list. Choose Terminate Job, and then click the Yes,Terminate
button.

Loading Data From DynamoDB Into Amazon
Redshift

Amazon Redshift complements Amazon DynamoDB with advanced business intelligence capabilities
and a powerful SQL-based interface.When you copy data from a DynamoDB table into Amazon Redshift,
you can perform complex data analysis queries on that data, including joins with other tables in your
Amazon Redshift cluster.

In terms of provisioned throughput, a copy operation from a DynamoDB table counts against that table's
read capacity. After the data is copied, your SQL queries in Amazon Redshift do not affect DynamoDB
in any way. This is because your queries act upon a copy of the data from DynamoDB, rather than upon
DynamoDB itself.

Before you can load data from a DynamoDB table, you must first create an Amazon Redshift table to
serve as the destination for the data. Keep in mind that you are copying data from a NoSQL environment
into a SQL environment, and that there are certain rules in one environment that do not apply in the other.
Here are some of the differences to consider:

• DynamoDB table names can contain up to 255 characters, including '.' (dot) and '-' (dash) characters,
and are case-sensitive. Amazon Redshift table names are limited to 127 characters, cannot contain
dots or dashes and are not case-sensitive. In addition, table names cannot conflict with any Amazon
Redshift reserved words.

• DynamoDB does not support the SQL concept of NULL.You need to specify how Amazon Redshift
interprets empty or blank attribute values in DynamoDB, treating them either as NULLs or as empty
fields.

• DynamoDB data types do not correspond directly with those of Amazon Redshift.You need to ensure
that each column in the Amazon Redshift table is of the correct data type and size to accommodate
the data from DynamoDB.

Here is an example COPY command from Amazon Redshift SQL:

copy favoritemovies from 'dynamodb://my-favorite-movies-table'
credentials 'aws_access_key_id=<Your-Access-Key-ID>;aws_secret_access_key=<Your-
Secret-Access-Key>'
readratio 50;

In this example, the source table in DynamoDB is my-favorite-movies-table. The target table in
Amazon Redshift is favoritemovies.The readratio 50 clause regulates the percentage of provisioned
throughput that is consumed; in this case, the COPY command will use no more than 50 percent of the
read capacity units provisioned for my-favorite-movies-table. We highly recommend setting this
ratio to a value less than the average unused provisioned throughput.

API Version 2012-08-10
665

Amazon DynamoDB Developer Guide
Loading Data From DynamoDB Into Amazon Redshift

http://docs.aws.amazon.com/AmazonS3/latest/UG/DeletinganObject.html
https://console.aws.amazon.com/elasticmapreduce/home

For detailed instructions on loading data from DynamoDB into Amazon Redshift, refer to the following
sections in the Amazon Redshift Database Developer Guide:

• Loading data from a DynamoDB table

• The COPY command

• COPY examples

API Version 2012-08-10
666

Amazon DynamoDB Developer Guide
Loading Data From DynamoDB Into Amazon Redshift

http://docs.aws.amazon.com/redshift/latest/dg/
http://docs.aws.amazon.com/redshift/latest/dg/t_Loading-data-from-dynamodb.html
http://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html
http://docs.aws.amazon.com/redshift/latest/dg/r_COPY_command_examples.html

Limits in DynamoDB

The following table describes current limits within Amazon DynamoDB (or no limit, in some cases).

Note
Each limit listed below applies on a per-region basis unless otherwise specified.

For table and secondary index names, allowed characters
are a-z, A-Z, 0-9, '_' (underscore), '-' (dash), and '.' (dot).
Names can be between 3 and 255 characters long.

Table names and secondary index
names

No practical limit in number of bytes or items.Table size

By default, the number of tables per account is limited to 256
per region. However, you can request an increase in this
limit. For more information, go to http://aws.amazon.com/
support.

Tables per account

No practical limit.Hash or hash-and-range primary key:
Number of hash key values

No practical limit for tables without local secondary indexes.

For a table with local secondary indexes, there is a limit on
item collection sizes: For every distinct hash key value, the
total sizes of all table and index items cannot exceed 10 GB.
Depending on your item sizes, this may constrain the number
of range keys per hash value. For more information, see Item
Collection Size Limit (p. 319).

Hash-and-range primary key: Number
of range keys per hash value

One read capacity unit = one strongly consistent read per
second, or two eventually consistent reads per second, for
items up 4 KB in size.

One write capacity unit = one write per second, for items up
to 1 KB in size.

Provisioned throughput capacity unit
sizes

1 read capacity unit and 1 write capacity unit.Provisioned throughput minimum per
table

1 read capacity unit and 1 write capacity unit.Provisioned throughput minimum per
global secondary index

API Version 2012-08-10
667

Amazon DynamoDB Developer Guide

http://aws.amazon.com/support
http://aws.amazon.com/support

DynamoDB is designed to scale without limits. However, there
are some initial limits in place on provisioned throughput:

US East (N. Virginia) Region:

• Per table – 40,000 read capacity units or 40,000 write ca-
pacity units

• Per account – 80,000 read capacity units or 80,000 write
capacity units

All Other Regions:

• Per table – 10,000 read capacity units or 10,000 write ca-
pacity units

• Per account – 20,000 read capacity units or 20,000 write
capacity units

You can request an increase on any of these limits. For more
information, go to http://aws.amazon.com/support.

Provisioned throughput limits

You can call UpdateTable as often as necessary to increase
ReadCapacityUnits or WriteCapacityUnits. In a single
UpdateTable operation, you can increase the provisioned
throughput for a table, for any global secondary indexes on
that table, or for any combination of these.

The following conditions apply:

• You can increase ReadCapacityUnits or WriteCapa-
cityUnits (or both), provided that you stay within your
per-table and per-account limits. For more information, see
the "Provisioned throughput limits" item in this section.

• The new provisioned throughput settings do not take effect
until the UpdateTable operation is complete.

• You can call UpdateTable multiple times, until you reach
the desired throughput capacity for your table or global
secondary indexes.

UpdateTable: Limits when increasing
provisioned throughput on tables and
global secondary indexes

You can call UpdateTable to reduce provisioned throughput,
but no more than four times per table in a single UTC calendar
day.

In an UpdateTable operation, you can decrease the provi-
sioned throughput for a table, for any global secondary in-
dexes on that table, or for any combination of these.

For every table and global secondary index in an Updat-
eTable operation, you can decrease ReadCapacityUnits
or WriteCapacityUnits (or both). The new provisioned
throughput settings do not take effect until the UpdateTable
operation is complete.

UpdateTable: Limits when decreasing
provisioned throughput on tables and
global secondary indexes

API Version 2012-08-10
668

Amazon DynamoDB Developer Guide

http://aws.amazon.com/support

In general, you can have up to 10 of these requests running
at the same time. For example, the cumulative number of
tables in the CREATING, UPDATING or DELETING state cannot
exceed 10.

The only exception is when you are creating a table with one
or more secondary indexes.You can have up to 5 such re-
quests running at a time; however, if the table or index spe-
cifications are complex, DynamoDB might temporarily reduce
the number of concurrent requests below 5.

Maximum concurrent CreateTable/Up-
dateTable/DeleteTable API requests

You can define up to 5 local secondary indexes and 5 global
secondary indexes per table.

Maximum number of secondary indexes
per table

You can project a total of up to 20 attributes into all of a table's
local and global secondary indexes.This only applies to user-
specified projected attributes.

In a CreateTable operation, if you specify a Projection-
Type of INCLUDE, the total count of attributes specified in
NonKeyAttributes, summed across all of the secondary
indexes, must not exceed 20. If you project the same attribute
name into two different indexes, this counts as two distinct
attributes when determining the total.

This limit does not apply for secondary indexes with a Pro-
jectionType of KEYS_ONLY or ALL.

Maximum number of projected second-
ary index attributes per table

For the attribute names listed below, the name must be
between 1 and 255 characters long, inclusive.The name can
be any UTF-8 encodable character, but the total size of the
UTF-8 string after encoding cannot exceed 255 bytes.

• Primary key attribute names.

• The names of any user-specified projected attributes (ap-
plicable only to local secondary indexes). In a Creat-
eTable operation, if you specify a ProjectionType of
INCLUDE, then the names of the attributes in the NonKey-
Attributes parameter are length-restricted. The
KEYS_ONLY and ALL projection types are not affected.

For attributes that are not in the list above, there is a 64 KB
limit on the length of the attribute name.

Attribute name lengths

API Version 2012-08-10
669

Amazon DynamoDB Developer Guide

Cannot exceed 400 KB which includes both attribute name
binary length (UTF-8 length) and attribute value lengths (again
binary length). The attribute name counts towards the size
limit. For example, consider an item with two attributes: one
attribute named "shirt-color" with value "R" and another attrib-
ute named "shirt-size" with value "M". The total size of that
item is 23 bytes.

For attribute values that are of type binary, the application
must encode the data in base64 format before sending it to
DynamoDB. Upon receipt of the data, DynamoDB decodes
it into an unsigned byte array and uses that as the length of
the attribute.

These limits apply to items stored in tables, and also to items
in secondary indexes.

For each local secondary index on a table, there is a 400 KB
limit on the total size of the following:

• The size of an item's data in the table.

• The size of the local secondary index entry corresponding
to that item, including its key values and projected attributes.

Item size

Attribute values cannot be empty strings or empty sets.Attribute values

The cumulative size of attributes per item must be under 400
KB.

Attribute name-value pairs per item

2048 bytes.Maximum length of a hash key attribute
value

1024 bytes.Maximum length of a range key attribute
value

All strings must conform to the UTF-8 encoding. Since UTF-
8 is a variable width encoding, string sizes are determined
using the UTF-8 bytes.

String

A number can have up to 38 digits precision, and can be
positive, negative, or zero.

• Positive range: 1E-130 to
9.9999999999999999999999999999999999999E+125

• Negative range: -
9.9999999999999999999999999999999999999E+125 to
-1E-130

DynamoDB uses strings for the data transfer of numeric values
in JSON notation. For more information, see JSON Is Used
as a Transport Protocol Only (p. 513).

If number precision is important, you should pass numbers
to DynamoDB using strings that you convert from a number
type.

Number

DynamoDB supports nested attributes up to 32 levels deep.Document path maximum depth

API Version 2012-08-10
670

Amazon DynamoDB Developer Guide

The following limits apply when using expression parameters:

• Maximum length of an expression string: 4 KB. (For ex-
ample, the size of the ConditionExpression a=b is three
bytes.)

• Maximum number of operators or functions allowed in an
UpdateExpression: 300. (For example, the UpdateExpres-
sion SET a = :val1 + :val2 + :val3 contains two
"+" operators.)

• Maximum number of operands for the IN comparator: 100.

• Maximum length of substitution variables (sum of Expres-
sionAttributeNames and ExpressionAttributeValues): 2MB

• Maximum length of any one expression attribute name or
expression attribute value: 255 bytes. (For example, #name
is five bytes; :val is four bytes.)

Expression parameters

No practical limit on the quantity of values, as long as the item
containing the values fits within the 400 KB item size limit.

Number of values in an attribute set

Up to 100 items retrieved. The total size of all the items re-
trieved cannot exceed 16 MB.

BatchGetItem item maximum per op-
eration

Up to 25 PutItem or DeleteItem operations per Batch-
WriteItem call. The total size of all the items written cannot
exceed 16 MB.

BatchWriteItem item maximum per
operation

The result set is limited to 1 MB per API call.You can use the
LastEvaluatedKey from the query response to retrieve
more results.

Query

The maximum size of the scanned data set is 1 MB per API
call.You can use the LastEvaluatedKey from the scan re-
sponse to retrieve more results.

Scan

No more than 2 processes at most should be reading from
the same Streams shard at the same time. Having more than
2 readers per shard may result in throttling.

Simultaneous readers of a Streams
shard

API Version 2012-08-10
671

Amazon DynamoDB Developer Guide

Document History for DynamoDB

The following table describes the important changes to the documentation since the last release of the
Amazon DynamoDB Developer Guide.

• API version: 2012-08-10

• Latest product release: August 20, 2015

• Latest documentation update: August 20, 2015

Date ChangedDescriptionChange

In this releaseThe DynamoDB Storage Backend for Titan is a storage
backend for the Titan graph database implemented on top of
Amazon DynamoDB. When using the DynamoDB Storage
Backend for Titan, your data benefits from the protection of
DynamoDB, which runs across Amazon’s high-availability
data centers. The plugin is available for Titan version 0.4.4
(primarily for compatibility with existing applications) and Titan
version 0.5.4 (recommended for new applications). Like other
storage backends for Titan, this plugin supports the Tinkerpop
stack (versions 2.4 and 2.5), including the Blueprints API and
the Gremlin shell. For more information, see Amazon Dy-
namoDB Storage Backend for Titan (p. 551).

Amazon DynamoDB
Storage Backend for
Titan

API Version 2012-08-10
672

Amazon DynamoDB Developer Guide

Date ChangedDescriptionChange

July 16, 2015DynamoDB Streams captures a time-ordered sequence of
item-level modifications in any DynamoDB table, and stores
this information in a log for up to 24 hours. Applications can
access this log and view the data items as they appeared
before and after they were modified, in near real time. For
more information, see Capturing Table Activity with Dy-
namoDB Streams (p. 357) and the Amazon DynamoDB
Streams API Reference.

DynamoDB cross-region replication is a client-side solution
for maintaining identical copies of DynamoDB tables across
different AWS regions, in near real time.You can use cross
region replication to back up DynamoDB tables, or to provide
low-latency access to data where users are geographically
distributed. For more information, see Cross-Region Replica-
tion Using DynamoDB Streams (p. 381).

The DynamoDB Scan operation uses eventually consistent
reads, by default.You can use strongly consistent reads in-
stead by setting the ConsistentRead parameter to true. For
more information, see Read Consistency for Scan (p. 196) and
Scan in the Amazon DynamoDB API Reference.

Amazon DynamoDB
Streams, Cross-Region
Replication, and Scan
with Strongly Consist-
ent Reads

May 28, 2015DynamoDB is now integrated with CloudTrail. CloudTrail
captures API calls made from the DynamoDB console or from
the DynamoDB API and tracks them in log files. For more in-
formation, see Logging DynamoDB API Calls By Using AWS
CloudTrail (p. 614) and the AWS CloudTrail User Guide.

AWS CloudTrail sup-
port for Amazon Dy-
namoDB

April 27, 2015This release adds a new KeyConditionExpression para-
meter to the Query API. A Query reads items from a table
or an index using primary key values.The KeyConditionEx-
pression parameter is a string that identifies primary key
names, and conditions to be applied to the key values; the
Query retrieves only those items that satisfy the expression.
The syntax of KeyConditionExpression is similar to that
of other expression parameters in DynamoDB, and allows
you to define substitution variables for names and values
within the expression. For more information, see Query and
Scan Operations in DynamoDB (p. 192).

Improved support for
Query expressions

April 27, 2015In DynamoDB, the ConditionExpression parameter de-
termines whether a PutItem, UpdateItem, or DeleteItem
succeeds: The item is written only if the condition evaluates
to true. This release adds two new functions, attrib-
ute_type and size, for use withConditionExpression.
These functions allow you to perform a conditional writes
based on the data type or size of an attribute in a table. For
more information, see Performing Conditional Writes with
Condition Expressions (p. 103).

New comparison func-
tions for conditional
writes

API Version 2012-08-10
673

Amazon DynamoDB Developer Guide

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/APIReference/Welcome.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/APIReference/Welcome.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Date ChangedDescriptionChange

February 10,
2015

In DynamoDB, a Scan operation reads all of the items in a
table, applies user-defined filtering criteria, and returns the
selected data items to the application. This same capability
is now available for secondary indexes too. To scan a local
secondary index or a global secondary index, you specify the
index name and the name of its parent table. By default, an
index Scan returns all of the data in the index; you can use
a filter expression to narrow the results that are returned to
the application. For more information, see Query and Scan
Operations in DynamoDB (p. 192).

Scan API for secondary
indexes

January 27,
2015

Online indexing lets you add or remove global secondary in-
dexes on existing tables. With online indexing, you do not
need to define all of a table's indexes when you create a table;
instead, you can add a new index at any time. Similarly, if you
decide you no longer need an index, you can remove it at any
time. Online indexing operations are non-blocking, so that the
table remains available for read and write activity while in-
dexes are being added or removed. For more information,
see Managing Global Secondary Indexes (p. 268).

Online operations for
global secondary in-
dexes

October 7,
2014

DynamoDB allows you to store and retrieve documents with
full support for document models. New data types are fully
compatible with the JSON standard and allow you to nest
document elements within one another.You can use docu-
ment path dereference operators to read and write individual
elements, without having to retrieve the entire document.This
release also introduces new expression parameters for spe-
cifying projections, conditions and update actions when
reading or writing data items. To learn more about document
model support with JSON, see DynamoDB Data
Types (p. 6) and Reading and Writing Items Using Expres-
sions (p. 98).

Document model sup-
port with JSON

October 7,
2014

For tables and global secondary indexes, you can increase
provisioned read and write throughput capacity by any
amount, provided that you stay within your per-table and per-
account limits. For more information, see Limits in Dy-
namoDB (p. 667).

Flexible scaling

October 7,
2014

The maximum item size in DynamoDB has increased from
64 KB to 400 KB. For more information, see Limits in Dy-
namoDB (p. 667).

Larger item sizes

API Version 2012-08-10
674

Amazon DynamoDB Developer Guide

Date ChangedDescriptionChange

April 24, 2014DynamoDB expands the operators that are available for
conditional expressions, giving you additional flexibility for
conditional puts, updates, and deletes. The newly available
operators let you check whether an attribute does or does not
exist, is greater than or less than a particular value, is between
two values, begins with certain characters, and much more.
DynamoDB also provides an optional OR operator for evalu-
ating multiple conditions. By default, multiple conditions in an
expression are ANDed together, so the expression is true
only if all of its conditions are true. If you specify OR instead,
the expression is true if one or more one conditions are true.
For more information, see Working with Items in Dy-
namoDB (p. 92).

Improved conditional
expressions

April 24, 2014The DynamoDB Query API supports a new QueryFilter
option. By default, a Query finds items that match a specific
hash key value and an optional range key condition. A Query
filter applies conditional expressions to other, non-key attrib-
utes; if a Query filter is present, then items that do not match
the filter conditions are discarded before the Query results
are returned to the application. For more information, see
Query and Scan Operations in DynamoDB (p. 192).

Query filter

March 6, 2014The DynamoDB console has been enhanced to simplify ex-
ports and imports of data in DynamoDB tables. With just a
few clicks, you can set up an AWS Data Pipeline to orches-
trate the workflow, and an Amazon Elastic MapReduce cluster
to copy data from DynamoDB tables to an Amazon S3 bucket,
or vice-versa.You can perform an export or import one time
only, or set up a daily export job.You can even perform cross-
region exports and imports, copying DynamoDB data from a
table in one AWS region to a table in another AWS region.
For more information, see Using the AWS Management
Console to Export and Import Data (p. 621) and Global Sec-
ondary Indexes (p. 260).

Data export and import
using the AWS Manage-
ment Console

January 20,
2014

Information about the following APIs is now easier to find:

• Java: Object-persistence model

• .NET: Document model and object-persistence model

These higher-level APIs are now documented here: Higher-
Level Programming Interfaces for DynamoDB (p. 408).

Reorganized higher-
level API documenta-
tion

API Version 2012-08-10
675

Amazon DynamoDB Developer Guide

Date ChangedDescriptionChange

December 12,
2013

DynamoDB adds support for global secondary indexes. As
with a local secondary index, you define a global secondary
index by using an alternate key from a table and then issuing
Query requests on the index. Unlike a local secondary index,
the hash key for the global secondary index does not have
to be the same as that of the table; it can be any scalar attrib-
ute from the table. The range key is optional and can also be
any scalar table attribute. A global secondary index also has
its own provisioned throughput settings, which are separate
from those of the parent table. For more information, see Im-
proving Data Access with Secondary Indexes in Dy-
namoDB (p. 248) and Global Secondary Indexes (p. 260).

Global secondary in-
dexes

October 29,
2013

DynamoDB adds support for fine-grained access control.This
feature allows customers to specify which principals (users,
groups, or roles) can access individual items and attributes
in a DynamoDB table or secondary index. Applications can
also leverage web identity federation to offload the task of
user authentication to a third-party identity provider, such as
Facebook, Google, or Login with Amazon. In this way, applic-
ations (including mobile apps) can handle very large numbers
of users, while ensuring that no one can access DynamoDB
data items unless they are authorized to do so. For more in-
formation, see Fine-Grained Access Control for Dy-
namoDB (p. 600).

Fine-grained access
control

May 14, 2013The capacity unit size for reads has increased from 1 KB to
4 KB. This enhancement can reduce the number of provi-
sioned read capacity units required for many applications.
For example, prior to this release, reading a 10 KB item would
consume 10 read capacity units; now that same 10 KB read
would consume only 3 units (10 KB / 4 KB, rounded up to the
next 4 KB boundary). For more information, see Provisioned
Throughput in Amazon DynamoDB (p. 11).

4 KB read capacity unit
size

May 14, 2013DynamoDB adds support for parallel Scan operations. Applic-
ations can now divide a table into logical segments and scan
all of the segments simultaneously. This feature reduces the
time required for a Scan to complete, and fully utilizes a table's
provisioned read capacity. For more information, see Parallel
Scan (p. 197).

Parallel scans

April 18, 2013DynamoDB adds support for local secondary indexes.You
can define alternate range indexes on non-key attributes, and
then use these indexes in Query requests.With local second-
ary indexes, applications can efficiently retrieve data items
across multiple dimensions. For more information, see Local
Secondary Indexes (p. 309).

Local secondary in-
dexes

API Version 2012-08-10
676

Amazon DynamoDB Developer Guide

Date ChangedDescriptionChange

April 18, 2013With this release, DynamoDB introduces a new API version
(2012-08-10). The previous API version (2011-12-05) is still
supported for backward compatibility with existing applications.
New applications should use the new API version 2012-08-
10.We recommend that you migrate your existing applications
to API version 2012-08-10, since new DynamoDB features
(such as local secondary indexes) will not be backported to
the previous API version. For more information on API version
2012-08-10, see the Amazon DynamoDB API Reference.

New API version

April 4, 2013The IAM access policy language now supports variables.
When a policy is evaluated, any policy variables are replaced
with values that are supplied by context-based information
from the authenticated user's session.You can use policy
variables to define general purpose policies without explicitly
listing all the components of the policy. For more information
about policy variables, go to Policy Variables in the AWS
Identity and Access Management Using IAM guide.

For examples of policy variables in DynamoDB, see Using
IAM to Control Access to DynamoDB Resources (p. 591).

IAM policy variable
support

January 23,
2013

Version 2 of the AWS SDK for PHP is now available. The
PHP code samples in the Amazon DynamoDB Developer
Guide have been updated to use this new SDK. For more in-
formation on Version 2 of the SDK, see AWS SDK for PHP.

PHP code samples up-
dated for AWS SDK for
PHP version 2

December 3,
2012

DynamoDB expands to the AWS GovCloud (US) region. For
the current list of service endpoints and protocols, see Re-
gions and Endpoints.

New endpoint

December 3,
2012

DynamoDB expands to the South America (Sao Paulo) region.
For the current list of supported endpoints, see Regions and
Endpoints.

New endpoint

November 13,
2012

DynamoDB expands to the Asia Pacific (Sydney) region. For
the current list of supported endpoints, see Regions and En-
dpoints.

New endpoint

November 2,
2012

• DynamoDB calculates a CRC32 checksum of the HTTP
payload and returns this checksum in a new header, x-
amz-crc32. For more information, see Making HTTP Re-
quests to DynamoDB (p. 514).

• By default, read operations performed by the Batch-
GetItem API are eventually consistent. A new Consist-
entRead parameter in BatchGetItem lets you choose
strong read consistency instead, for any table(s) in the re-
quest. For more information, see Description (p. 740).

• This release removes some restrictions when updating
many tables simultaneously. The total number of tables
that can be updated at once is still 10; however, these
tables can now be any combination of CREATING, UPDAT-
ING or DELETING status. Additionally, there is no longer
any minimum amount for increasing or reducing the Read-
CapacityUnits or WriteCapacityUnits for a table. For more
information, see Limits in DynamoDB (p. 667).

DynamoDB implements
support for CRC32
checksums, supports
strongly consistent
batch gets, and re-
moves restrictions on
concurrent table up-
dates.

API Version 2012-08-10
677

Amazon DynamoDB Developer Guide

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
http://docs.aws.amazon.com/IAM/latest/UserGuide//PolicyVariables.html
http://aws.amazon.com/sdkforphp
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Date ChangedDescriptionChange

September 28,
2012

The Amazon DynamoDB Developer Guide identifies best
practices for working with tables and items, along with recom-
mendations for query and scan operations.

Best practices docu-
mentation

August 21,
2012

In addition to the Number and String types, DynamoDB now
supports Binary data type.

Prior to this release, to store binary data, you converted your
binary data into string format and stored it in DynamoDB. In
addition to the required conversion work on the client-side,
the conversion often increased the size of the data item re-
quiring more storage and potentially additional provisioned
throughput capacity.

With the binary type attributes you can now store any binary
data, for example compressed data, encrypted data, and im-
ages. For more information see DynamoDB Data
Types (p. 6). For working examples of handling binary type
data using the AWS SDKs, see the following sections:

• Example: Handling Binary Type Attributes Using the AWS
SDK for Java Document API (p. 139)

• Example: Handling Binary Type Attributes Using the AWS
SDK for .NET Low-Level API (p. 172)

For the added binary data type support in the AWS SDKs,
you will need to download the latest SDKs and you might also
need to update any existing applications. For information
about downloading the AWS SDKs, see Using the AWS SDKs
with DynamoDB (p. 53).

Support for binary data
type

August 14,
2012

DynamoDB users can now update and copy table items using
the DynamoDB Console, in addition to being able to add and
delete items.This new functionality simplifies making changes
to individual items through the Console. For more information,
see the Working with Items and Attributes (p. 399) topic in the
Amazon DynamoDB Developer Guide.

DynamoDB table items
can be updated and
copied using the Dy-
namoDB console

August 9, 2012DynamoDB now supports lower minimum table throughput
requirements, specifically 1 write capacity unit and 1 read
capacity unit. For more information, see the Limits in Dy-
namoDB (p. 667) topic in the Amazon DynamoDB Developer
Guide.

DynamoDB lowers
minimum table
throughput require-
ments

July 5, 2012For more information, see Walkthrough: Using DynamoDB
and Amazon Elastic MapReduce (p. 656).

DynamoDB and
Amazon Elastic
MapReduce (Amazon
EMR) integration video
and walkthrough added

July 5, 2012DynamoDB now supports Signature Version 4 for authentic-
ating requests. To learn about authenticating your HTTP re-
quests, see Making HTTP Requests to DynamoDB (p. 514).

Signature Version 4
support

API Version 2012-08-10
678

Amazon DynamoDB Developer Guide

Date ChangedDescriptionChange

May 22, 2012The DynamoDB Console now supports a table explorer that
enables you to browse and query the data in your tables.You
can also insert new items or delete existing items.The Creat-
ing Tables and Loading Sample Data (p. 14) and DynamoDB
Console (p. 397) sections have been updated for these fea-
tures.

Table explorer support
in DynamoDB Console

April 24, 2012DynamoDB availability expands with new endpoints in the
US West (N. California) region, US West (Oregon) region,
and the Asia Pacific (Singapore) region.

For the current list of supported endpoints, go to Regions and
Endpoints.

New endpoints

April 19, 2012DynamoDB now supports a batch write API that enables you
to put and delete several items from one or more tables in a
single API call. For more information about the DynamoDB
batch write API, see BatchWriteItem (p. 745).

For information about working with items and using batch
write feature using AWS SDKs, see Working with Items in
DynamoDB (p. 92) and Using the AWS SDKs with Dy-
namoDB (p. 53).

BatchWriteItem API
support

April 5, 2012For more information, see Handling Errors in DynamoDB
Operations (p. 517).

Documented more er-
ror codes

March 13,
2012

Amazon Elastic MapReduce now supports a new version of
Hive. For more information, see Querying and Joining Tables
Using Amazon Elastic MapReduce (p. 634).

Updated Hive version
to 0.7.1.3

February 29,
2012

DynamoDB expands to the Asia Pacific (Tokyo) region. For
the current list of supported endpoints, see Regions and En-
dpoints.

New endpoint

February 28,
2012

Amazon Elastic MapReduce now supports a new version of
Hive. For more information, see Querying and Joining Tables
Using Amazon Elastic MapReduce (p. 634).

Updated Hive version
to 0.7.1.2

February 24,
2012

A new metric, ReturnedItemCount, provides the number
of items returned in the response of a Query or Scan operation
for DynamoDB is available for monitoring through Cloud-
Watch. For more information, see Monitoring DynamoDB with
CloudWatch (p. 580).

ReturnedItemCount
metric added

February 2,
2012

The AWS SDK for PHP returns scan results as a SimpleXM-
LElement object. For an example of how to iterate through
the scan results, see Scanning Using the AWS SDK for PHP
Low-Level API (p. 240).

Added a code snippet
for iterating over scan
results

API Version 2012-08-10
679

Amazon DynamoDB Developer Guide

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Date ChangedDescriptionChange

January 25,
2012

DynamoDB supports incrementing and decrementing existing
numeric values. Examples show adding to existing values in
the "Updating an Item" sections at:

Working with Items Using the AWS SDK for Java Document
API (p. 120).

Working with Items Using the AWS SDK for .NET Low-Level
API (p. 142).

Working with Items Using the AWS SDK for PHP Low-Level
API (p. 177).

Added examples for in-
crementing values

January 18,
2012

DynamoDB is introduced as a new service in Beta release.Initial product release

API Version 2012-08-10
680

Amazon DynamoDB Developer Guide

DynamoDB Appendix

Topics

• Example Tables and Data (p. 681)

• Creating Example Tables and Uploading Data (p. 686)

• Reserved Words in DynamoDB (p. 721)

• Legacy Conditional Parameters (p. 731)

• Current API Version (2012-08-10) (p. 739)

• Previous API Version (2011-12-05) (p. 740)

Example Tables and Data
The Amazon DynamoDB Developer Guide uses the following sample tables to illustrate working with
tables, items and the query operations. The following table lists tables, their primary key attributes and
their types.

Range Attribute Name
and Type

Hash Attribute Name
and Type

Primary
Key Type

Table Name

-Attribute Name: Id

Type: Number

HashProductCatalog (Id, ...)

-Attribute Name: Name

Type: String

HashForum (Name, ...)

Attribute Name: Subject

Type: String

Attribute Name: For-
umName

Type: String

Hash and
Range

Thread (ForumName, Subject, ...)

Attribute Name: Reply-
DateTime

Type: String

Attribute Name: Id

Type: String

Hash and
Range

Reply (Id, ReplyDateTime, ...)

The Reply table has the following local secondary index:

API Version 2012-08-10
681

Amazon DynamoDB Developer Guide
Example Tables and Data

Projected AttributesAttribute to IndexIndex Name

Table and Index KeysPostedByPostedBy-index

The ProductCatalog table represents a table in which each product item is uniquely identified by an Id.
Because each table is like a property bag, you can store all kinds of products in this table. For illustration,
we store book and bicycle items. In a DynamoDB table, an attribute can be multivalued. For example, a
book can have multiple authors. All the book items stored have an Authors attribute that stores one or
more author names and the bicycle items have a Color multivalued attribute for the available colors.

The Forum, Thread, and Reply tables are modeled after the AWS forums. Each AWS service maintains
one or more forums. Customers start a thread by posting a message that has a unique subject. Each
thread might receive one or more replies at different times. These replies are stored in the Reply table.
For more information, see AWS Forums.

DynamoDB does not support table joins. Additionally, when accessing data, queries are the most efficient
and table scans should be avoided because of performance issues. These should be taken into
consideration when you design your table schemas. For example, you might want to join the Reply and
Thread tables. The Reply table Id attribute is set up as a concatenation of the forum name and subject
values with a "#" in between to enable efficient queries. If you have a reply item, you can parse the Id to
find forum name and thread subject.You can then use these values to query the Forum or the Thread
table as you need.

For more information about the DynamoDB data model, see DynamoDB Data Model (p. 3).

ProductCatalog Table - Sample Data
The following table shows the sample data that the code example in Creating Tables and Loading Sample
Data (p. 14) uploads to the ProductCatalog table.

Other AttributesId (Primary Key)

{
 Title = "Book 101 Title"
 ISBN = "111-1111111111"
 Authors = "Author 1"
 Price = -2
 Dimensions = "8.5 x 11.0 x 0.5"
 PageCount = 500
 InPublication = true
 ProductCategory = "Book"
}

101

{
 Title = "Book 102 Title"
 ISBN = "222-2222222222"
 Authors = ["Author 1", "Author 2"]
 Price = 20
 Dimensions = "8.5 x 11.0 x 0.8"
 PageCount = 600
 InPublication = true
 ProductCategory = "Book"
}

102

API Version 2012-08-10
682

Amazon DynamoDB Developer Guide
ProductCatalog Table - Sample Data

https://forums.aws.amazon.com/

Other AttributesId (Primary Key)

{
 Title = "Book 103 Title"
 ISBN = "333-3333333333"
 Authors = ["Author 1", "Author2", "Author 3"]
 Price = 200
 Dimensions = "8.5 x 11.0 x 1.5"
 PageCount = 700
 InPublication = false
 ProductCategory = "Book"
}

103

{
 Title = "18-Bicycle 201"
 Description = "201 description"
 BicycleType = "Road"
 Brand = "Brand-Company A"
 Price = 100
 Gender = "M"
 Color = ["Red", "Black"]
 ProductCategory = "Bike"
}

201

{
 Title = "21-Bicycle 202"
 Description = "202 description"
 BicycleType = "Road"
 Brand = "Brand-Company A"
 Price = 200
 Gender = "M"
 Color = ["Green", "Black"]
 ProductCategory = "Bike"
}

202

{
 Title = "19-Bicycle 203"
 Description = "203 description"
 BicycleType = "Road"
 Brand = "Brand-Company B"
 Price = 300
 Gender = "W"
 Color = ["Red", "Green", "Black"]
 ProductCategory = "Bike"
}

203

API Version 2012-08-10
683

Amazon DynamoDB Developer Guide
ProductCatalog Table - Sample Data

Other AttributesId (Primary Key)

{
 Title = "18-Bicycle 204"
 Description = "204 description"
 BicycleType = "Mountain"
 Brand = "Brand-Company B"
 Price = 400
 Gender = "W"
 Color = ["Red"]
 ProductCategory = "Bike"
}

204

{
 Title = "20-Bicycle 205"
 Description = "205 description"
 BicycleType = "Hybrid"
 Brand = "Brand-Company C"
 Price = 500
 Gender = "B"
 Color = ["Red", "Black"]
 ProductCategory = "Bike"
}

205

Forum Table - Sample Data
The following table shows the sample data that the code example in Creating Tables and Loading Sample
Data (p. 14) uploads to the Forum table. .

Other AttributesName (Primary
Key)

{
 Category="Amazon Web Services"
 Threads=3
 Messages=4
 Views=1000
 LastPostBy="User A"
 LastPostDateTime= "2012-01-03T00:40:57.165Z"
}

"DynamoDB"

{
 Category="AWS"
 Threads=1
}

"Amazon S3"

API Version 2012-08-10
684

Amazon DynamoDB Developer Guide
Forum Table - Sample Data

Thread Table - Sample Data
The following table shows the sample data that the code example in Creating Tables and Loading Sample
Data (p. 14) uploads to the Thread table.

Note that, the LastPostDateTime values are shown in the sample data are for illustration only. The code
example generates the date and time values so that your table has relatively current dates in your table.

Other AttributesPrimary Key

{
 Message = "DynamoDB thread 1 message text"
 LastPostedBy = "User A"
 Views = 0
 Replies = 0
 Answered = 0
 Tags = ["index", "primarykey", "table"]
 LastPostDateTime = "2012-01-03T00:40:57.165Z"
 }

ForumName = "DynamoDB"

Subject = "DynamoDB Thread 1"

{
 Message = "DynamoDB thread 2 message text"
 LastPostedBy = "User A"
 Views = 0
 Replies = 0
 Answered = 0
 Tags = ["index", "primarykey", "rangekey"]
 LastPostDateTime = "2012-01-03T00:40:57.165Z"
 }

ForumName = "DynamoDB"

Subject = "DynamoDB Thread 2"

{
 Message = "Amazon S3 Thread 1 message text"
 LastPostedBy = "User A"
 Views = 0
 Replies = 0
 Answered = 0
 Tags = ["largeobject", "multipart upload"]
 LastPostDateTime = "2012-01-03T00:40:57.165Z"
 }

ForumName = "Amazon S3"

Subject = "Amazon S3 Thread 1"

Reply Sample Data
The following table shows the sample data that the code example Creating Tables and Loading Sample
Data (p. 14) uploads to the Reply table.

Note that, the LastPostDateTime values shown in the sample data are for illustration only. The code
example generates the date and time values so that your table has relatively current dates in your table.

API Version 2012-08-10
685

Amazon DynamoDB Developer Guide
Thread Table - Sample Data

Other AttributesPrimary Key

{
 Message = "DynamoDB Thread 1 Reply 1 text"
 PostedBy = "User A"
 }

Id = "DynamoDB#DynamoDB Thread
1"

ReplyDateTime = "2011-12-
11T00:40:57.165Z"

{
 Message = "DynamoDB Thread 1 Reply 1 text"
 PostedBy = "User A"
 }

Id = "DynamoDB#DynamoDB Thread
1"

ReplyDateTime = "2011-12-
18T00:40:57.165Z"

{
 Message = "DynamoDB Thread 1 Reply 3 text"
 PostedBy = "User B"
 }

Id = "DynamoDB#DynamoDB Thread
1"

ReplyDateTime = "2011-12-
25T00:40:57.165Z"

{
 Message = "DynamoDB Thread 2 Reply 1 text"
 PostedBy = "User A"
 }

Id = "DynamoDB#DynamoDB Thread
2"

ReplyDateTime = "2011-12-
25T00:40:57.165Z"

{
 Message = "DynamoDB Thread 2 Reply 2"
 PostedBy = "User A"
}

Id = "DynamoDB#DynamoDB Thread
2"

ReplyDateTime = "2012-01-
03T00:40:57.165Z"

Creating Example Tables and Uploading Data
Topics

• Creating Example Tables and Uploading Data Using the AWS SDK for Java (p. 687)

• Creating Example Tables and Uploading Data Using the AWS SDK for .NET (p. 695)

• Creating Example Tables and Uploading Data Using the AWS SDK for PHP (p. 713)

In Creating Tables and Loading Sample Data (p. 14), you first create tables using the DynamoDB console
and then upload data using the code provided. This appendix provides code to both create the tables
and upload data programmatically.

API Version 2012-08-10
686

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data

Creating Example Tables and Uploading Data
Using the AWS SDK for Java
The following Java code example creates tables and uploads data to the tables. The resulting table
structure and data is shown in Example Tables and Data (p. 681). For step-by-step instructions to run this
code using Eclipse, see Running Java Examples for DynamoDB (p. 55).

// Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Licensed under the Apache License, Version 2.0.
package com.amazonaws.codesamples;

import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Date;
import java.util.HashSet;
import java.util.TimeZone;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.LocalSecondaryIndex;
import com.amazonaws.services.dynamodbv2.model.Projection;
import com.amazonaws.services.dynamodbv2.model.ProjectionType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;

public class CreateTablesLoadData {

 static DynamoDB dynamoDB = new DynamoDB(new AmazonDynamoDBClient(
 new ProfileCredentialsProvider()));

 static SimpleDateFormat dateFormatter = new SimpleDateFormat(
 "yyyy-MM-dd'T'HH:mm:ss.SSS'Z'");

 static String productCatalogTableName = "ProductCatalog";
 static String forumTableName = "Forum";
 static String threadTableName = "Thread";
 static String replyTableName = "Reply";

 public static void main(String[] args) throws Exception {

 try {

 deleteTable(productCatalogTableName);
 deleteTable(forumTableName);
 deleteTable(threadTableName);
 deleteTable(replyTableName);

 // Parameter1: table name // Parameter2: reads per second //
 // Parameter3: writes per second // Parameter4/5: hash key and type

API Version 2012-08-10
687

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - Java

 // Parameter6/7: range key and type (if applicable)

 createTable(productCatalogTableName, 10L, 5L, "Id", "N");
 createTable(forumTableName, 10L, 5L, "Name", "S");
 createTable(threadTableName, 10L, 5L, "ForumName", "S", "Subject",
 "S");
 createTable(replyTableName, 10L, 5L, "Id", "S", "ReplyDateTime",
"S");

 loadSampleProducts(productCatalogTableName);
 loadSampleForums(forumTableName);
 loadSampleThreads(threadTableName);
 loadSampleReplies(replyTableName);

 } catch (Exception e) {
 System.err.println("Program failed:");
 System.err.println(e.getMessage());
 }
 System.out.println("Success.");
 }

 private static void deleteTable(String tableName) {
 Table table = dynamoDB.getTable(tableName);
 try {
 System.out.println("Issuing DeleteTable request for " + tableName);

 table.delete();
 System.out.println("Waiting for " + tableName
 + " to be deleted...this may take a while...");
 table.waitForDelete();

 } catch (Exception e) {
 System.err.println("DeleteTable request failed for " + tableName);

 System.err.println(e.getMessage());
 }
 }

 private static void createTable(
 String tableName, long readCapacityUnits, long writeCapacityUnits,
 String hashKeyName, String hashKeyType) {

 createTable(tableName, readCapacityUnits, writeCapacityUnits,
 hashKeyName, hashKeyType, null, null);
 }

 private static void createTable(
 String tableName, long readCapacityUnits, long writeCapacityUnits,
 String hashKeyName, String hashKeyType,
 String rangeKeyName, String rangeKeyType) {

 try {

 ArrayList<KeySchemaElement> keySchema = new ArrayList<KeySchemaEle
ment>();
 keySchema.add(new KeySchemaElement()
 .withAttributeName(hashKeyName)

API Version 2012-08-10
688

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - Java

 .withKeyType(KeyType.HASH));

 ArrayList<AttributeDefinition> attributeDefinitions = new ArrayL
ist<AttributeDefinition>();
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName(hashKeyName)
 .withAttributeType(hashKeyType));

 if (rangeKeyName != null) {
 keySchema.add(new KeySchemaElement()
 .withAttributeName(rangeKeyName)
 .withKeyType(KeyType.RANGE));
 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName(rangeKeyName)
 .withAttributeType(rangeKeyType));
 }

 CreateTableRequest request = new CreateTableRequest()
 .withTableName(tableName)
 .withKeySchema(keySchema)
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits(readCapacityUnits)
 .withWriteCapacityUnits(writeCapacityUnits));

 // If this is the Reply table, define a local secondary index
 if (replyTableName.equals(tableName)) {

 attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("PostedBy")
 .withAttributeType("S"));

 ArrayList<LocalSecondaryIndex> localSecondaryIndexes = new Ar
rayList<LocalSecondaryIndex>();
 localSecondaryIndexes.add(new LocalSecondaryIndex()
 .withIndexName("PostedBy-Index")
 .withKeySchema(
 new KeySchemaElement().withAttributeName(hashKey
Name).withKeyType(KeyType.HASH),
 new KeySchemaElement() .withAttributeName("PostedBy")
.withKeyType(KeyType.RANGE))
 .withProjection(new Projection() .withProjectionType(Projec
tionType.KEYS_ONLY)));

 request.setLocalSecondaryIndexes(localSecondaryIndexes);
 }

 request.setAttributeDefinitions(attributeDefinitions);

 System.out.println("Issuing CreateTable request for " + tableName);

 Table table = dynamoDB.createTable(request);
 System.out.println("Waiting for " + tableName
 + " to be created...this may take a while...");
 table.waitForActive();

 } catch (Exception e) {
 System.err.println("CreateTable request failed for " + tableName);

API Version 2012-08-10
689

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - Java

 System.err.println(e.getMessage());
 }
 }

 private static void loadSampleProducts(String tableName) {

 Table table = dynamoDB.getTable(tableName);

 try {

 System.out.println("Adding data to " + tableName);

 Item item = new Item()
 .withPrimaryKey("Id", 101)
 .withString("Title", "Book 101 Title")
 .withString("ISBN", "111-1111111111")
 .withStringSet("Authors", new HashSet<String>(
 Arrays.asList("Author1")))
 .withNumber("Price", 2)
 .withString("Dimensions", "8.5 x 11.0 x 0.5")
 .withNumber("PageCount", 500)
 .withBoolean("InPublication", true)
 .withString("ProductCategory", "Book");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 102)
 .withString("Title", "Book 102 Title")
 .withString("ISBN", "222-2222222222")
 .withStringSet("Authors", new HashSet<String>(
 Arrays.asList("Author1", "Author2")))
 .withNumber("Price", 20)
 .withString("Dimensions", "8.5 x 11.0 x 0.8")
 .withNumber("PageCount", 600)
 .withBoolean("InPublication", true)
 .withString("ProductCategory", "Book");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 103)
 .withString("Title", "Book 103 Title")
 .withString("ISBN", "333-3333333333")
 .withStringSet("Authors", new HashSet<String>(
 Arrays.asList("Author1", "Author2")))
 // Intentional. Later we'll run Scan to find price error. Find

 // items > 1000 in price.
 .withNumber("Price", 2000)
 .withString("Dimensions", "8.5 x 11.0 x 1.5")
 .withNumber("PageCount", 600)
 .withBoolean("InPublication", false)
 .withString("ProductCategory", "Book");
 table.putItem(item);

 // Add bikes.

 item = new Item()
 .withPrimaryKey("Id", 201)

API Version 2012-08-10
690

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - Java

 .withString("Title", "18-Bike-201")
 // Size, followed by some title.
 .withString("Description", "201 Description")
 .withString("BicycleType", "Road")
 .withString("Brand", "Mountain A")
 // Trek, Specialized.
 .withNumber("Price", 100)
 .withString("Gender", "M")
 // Men's
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Red", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 202)
 .withString("Title", "21-Bike-202")
 .withString("Description", "202 Description")
 .withString("BicycleType", "Road")
 .withString("Brand", "Brand-Company A")
 .withNumber("Price", 200)
 .withString("Gender", "M")
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Green", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 203)
 .withString("Title", "19-Bike-203")
 .withString("Description", "203 Description")
 .withString("BicycleType", "Road")
 .withString("Brand", "Brand-Company B")
 .withNumber("Price", 300)
 .withString("Gender", "W")
 // Women's
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Red", "Green", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 204)
 .withString("Title", "18-Bike-204")
 .withString("Description", "204 Description")
 .withString("BicycleType", "Mountain")
 .withString("Brand", "Brand-Company B")
 .withNumber("Price", 400)
 .withString("Gender", "W")
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Red")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", 205)
 .withString("Title", "20-Bike-205")
 .withString("Description", "205 Description")

API Version 2012-08-10
691

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - Java

 .withString("BicycleType", "Hybrid")
 .withString("Brand", "Brand-Company C")
 .withNumber("Price", 500)
 .withString("Gender", "B")
 // Boy's
 .withStringSet("Color", new HashSet<String>(
 Arrays.asList("Red", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());
 }

 }

 private static void loadSampleForums(String tableName) {

 Table table = dynamoDB.getTable(tableName);

 try {

 System.out.println("Adding data to " + tableName);

 Item item = new Item().withPrimaryKey("Name", "Amazon DynamoDB")
 .withString("Category", "Amazon Web Services")
 .withNumber("Threads", 2).withNumber("Messages", 4)
 .withNumber("Views", 1000);
 table.putItem(item);

 item = new Item().withPrimaryKey("Name", "Amazon S3")
 .withString("Category", "Amazon Web Services")
 .withNumber("Threads", 0);
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());
 }
 }

 private static void loadSampleThreads(String tableName) {
 try {
 long time1 = (new Date()).getTime() - (7 * 24 * 60 * 60 * 1000);
// 7
 // days
 // ago
 long time2 = (new Date()).getTime() - (14 * 24 * 60 * 60 * 1000);
// 14
 // days
 // ago
 long time3 = (new Date()).getTime() - (21 * 24 * 60 * 60 * 1000);
// 21
 // days
 // ago

 Date date1 = new Date();

API Version 2012-08-10
692

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - Java

 date1.setTime(time1);

 Date date2 = new Date();
 date2.setTime(time2);

 Date date3 = new Date();
 date3.setTime(time3);

 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));

 Table table = dynamoDB.getTable(tableName);

 System.out.println("Adding data to " + tableName);

 Item item = new Item()
 .withPrimaryKey("ForumName", "Amazon DynamoDB")
 .withString("Subject", "DynamoDB Thread 1")
 .withString("Message", "DynamoDB thread 1 message")
 .withString("LastPostedBy", "User A")
 .withString("LastPostedDateTime", dateFormatter.format(date2))

 .withNumber("Views", 0)
 .withNumber("Replies", 0)
 .withNumber("Answered", 0)
 .withStringSet("Tags", new HashSet<String>(
 Arrays.asList("index", "primarykey", "table")));
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("ForumName", "Amazon DynamoDB")
 .withString("Subject", "DynamoDB Thread 2")
 .withString("Message", "DynamoDB thread 2 message")
 .withString("LastPostedBy", "User A")
 .withString("LastPostedDateTime", dateFormatter.format(date3))

 .withNumber("Views", 0)
 .withNumber("Replies", 0)
 .withNumber("Answered", 0)
 .withStringSet("Tags", new HashSet<String>(
 Arrays.asList("index", "primarykey", "rangekey")));
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("ForumName", "Amazon S3")
 .withString("Subject", "S3 Thread 1")
 .withString("Message", "S3 Thread 3 message")
 .withString("LastPostedBy", "User A")
 .withString("LastPostedDateTime", dateFormatter.format(date1))

 .withNumber("Views", 0)
 .withNumber("Replies", 0)
 .withNumber("Answered", 0)
 .withStringSet("Tags", new HashSet<String>(
 Arrays.asList("largeobjects", "multipart upload")));
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);

API Version 2012-08-10
693

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - Java

 System.err.println(e.getMessage());
 }

 }

 private static void loadSampleReplies(String tableName) {
 try {
 // 1 day ago
 long time0 = (new Date()).getTime() - (1 * 24 * 60 * 60 * 1000);
 // 7 days ago
 long time1 = (new Date()).getTime() - (7 * 24 * 60 * 60 * 1000);
 // 14 days ago
 long time2 = (new Date()).getTime() - (14 * 24 * 60 * 60 * 1000);

 // 21 days ago
 long time3 = (new Date()).getTime() - (21 * 24 * 60 * 60 * 1000);

 Date date0 = new Date();
 date0.setTime(time0);

 Date date1 = new Date();
 date1.setTime(time1);

 Date date2 = new Date();
 date2.setTime(time2);

 Date date3 = new Date();
 date3.setTime(time3);

 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));

 Table table = dynamoDB.getTable(tableName);

 System.out.println("Adding data to " + tableName);

 // Add threads.

 Item item = new Item()
 .withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 1")
 .withString("ReplyDateTime", (dateFormatter.format(date3)))
 .withString("Message", "DynamoDB Thread 1 Reply 1 text")
 .withString("PostedBy", "User A");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 1")
 .withString("ReplyDateTime", dateFormatter.format(date2))
 .withString("Message", "DynamoDB Thread 1 Reply 2 text")
 .withString("PostedBy", "User B");
 table.putItem(item);

 item = new Item()
 .withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 2")
 .withString("ReplyDateTime", dateFormatter.format(date1))
 .withString("Message", "DynamoDB Thread 2 Reply 1 text")
 .withString("PostedBy", "User A");
 table.putItem(item);

API Version 2012-08-10
694

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - Java

 item = new Item()
 .withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 2")
 .withString("ReplyDateTime", dateFormatter.format(date0))
 .withString("Message", "DynamoDB Thread 2 Reply 2 text")
 .withString("PostedBy", "User A");
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());

 }
 }

}

Creating Example Tables and Uploading Data
Using the AWS SDK for .NET
The following C# code example creates tables and uploads data to the tables.The resulting table structure
and data is shown in Example Tables and Data (p. 681). For step-by-step instructions to run this code in
Visual Studio, see Running .NET Examples for DynamoDB (p. 57).

using System;

using System.Collections.Generic;

using Amazon.DynamoDBv2;

using Amazon.DynamoDBv2.DocumentModel;

using Amazon.DynamoDBv2.Model;

using Amazon.Runtime;

using Amazon.SecurityToken;

namespace com.amazonaws.codesamples

{

 class CreateTablesLoadData

 {

 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)

 {

API Version 2012-08-10
695

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 try

 {

 //DeleteAllTables(client);

 DeleteTable("ProductCatalog");

 DeleteTable("Forum");

 DeleteTable("Thread");

 DeleteTable("Reply");

 // Create tables (using the AWS SDK for .NET low-level API).

 CreateTableProductCatalog();

 CreateTableForum();

 CreateTableThread(); // ForumTitle, Subject */

 CreateTableReply();

 // Load data (using the .NET SDK document API)

 LoadSampleProducts();

 LoadSampleForums();

 LoadSampleThreads();

 LoadSampleReplies();

 Console.WriteLine("Sample complete!");

 Console.WriteLine("Press ENTER to continue");

 Console.ReadLine();

 }

 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }

 catch (Exception e) { Console.WriteLine(e.Message); }

 }

 private static void DeleteTable(string tableName)

API Version 2012-08-10
696

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 {

 try

 {

 var deleteTableResponse = client.DeleteTable(new DeleteTableRe
quest() { TableName = tableName });

 WaitTillTableDeleted(client, tableName, deleteTableResponse);

 }

 catch (ResourceNotFoundException)

 {

 // There is no such table.

 }

 }

 private static void CreateTableProductCatalog()

 {

 string tableName = "ProductCatalog";

 var response = client.CreateTable(new CreateTableRequest

 {

 TableName = tableName,

 AttributeDefinitions = new List<AttributeDefinition>()

 {

 new AttributeDefinition

 {

 AttributeName = "Id",

 AttributeType = "N"

 }

 },

 KeySchema = new List<KeySchemaElement>()

 {

API Version 2012-08-10
697

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 new KeySchemaElement

 {

 AttributeName = "Id",

 KeyType = "HASH"

 }

 },

 ProvisionedThroughput = new ProvisionedThroughput

 {

 ReadCapacityUnits = 10,

 WriteCapacityUnits = 5

 }

 });

 WaitTillTableCreated(client, tableName, response);

 }

 private static void CreateTableForum()

 {

 string tableName = "Forum";

 var response = client.CreateTable(new CreateTableRequest

 {

 TableName = tableName,

 AttributeDefinitions = new List<AttributeDefinition>()

 {

 new AttributeDefinition

 {

 AttributeName = "Name",

 AttributeType = "S"

API Version 2012-08-10
698

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 }

 },

 KeySchema = new List<KeySchemaElement>()

 {

 new KeySchemaElement

 {

 AttributeName = "Name", // forum Title

 KeyType = "HASH"

 }

 },

 ProvisionedThroughput = new ProvisionedThroughput

 {

 ReadCapacityUnits = 10,

 WriteCapacityUnits = 5

 }

 });

 WaitTillTableCreated(client, tableName, response);

 }

 private static void CreateTableThread()

 {

 string tableName = "Thread";

 var response = client.CreateTable(new CreateTableRequest

 {

 TableName = tableName,

 AttributeDefinitions = new List<AttributeDefinition>()

 {

API Version 2012-08-10
699

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 new AttributeDefinition

 {

 AttributeName = "ForumName", // Hash attribute

 AttributeType = "S"

 },

 new AttributeDefinition

 {

 AttributeName = "Subject",

 AttributeType = "S"

 }

 },

 KeySchema = new List<KeySchemaElement>()

 {

 new KeySchemaElement

 {

 AttributeName = "ForumName", // Hash attribute

 KeyType = "HASH"

 },

 new KeySchemaElement

 {

 AttributeName = "Subject", // Range attribute

 KeyType = "RANGE"

 }

 },

 ProvisionedThroughput = new ProvisionedThroughput

 {

 ReadCapacityUnits = 10,

 WriteCapacityUnits = 5

 }

API Version 2012-08-10
700

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 });

 WaitTillTableCreated(client, tableName, response);

 }

 private static void CreateTableReply()

 {

 string tableName = "Reply";

 var response = client.CreateTable(new CreateTableRequest

 {

 TableName = tableName,

 AttributeDefinitions = new List<AttributeDefinition>()

 {

 new AttributeDefinition

 {

 AttributeName = "Id",

 AttributeType = "S"

 },

 new AttributeDefinition

 {

 AttributeName = "ReplyDateTime",

 AttributeType = "S"

 },

 new AttributeDefinition

 {

 AttributeName = "PostedBy",

 AttributeType = "S"

 }

API Version 2012-08-10
701

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 },

 KeySchema = new List<KeySchemaElement>()

 {

 new KeySchemaElement()

 {

 AttributeName = "Id",

 KeyType = "HASH"

 },

 new KeySchemaElement()

 {

 AttributeName = "ReplyDateTime",

 KeyType = "RANGE"

 }

 },

 LocalSecondaryIndexes = new List<LocalSecondaryIndex>()

 {

 new LocalSecondaryIndex()

 {

 IndexName = "PostedBy_index",

 KeySchema = new List<KeySchemaElement>() {

 new KeySchemaElement() {AttributeName = "Id", KeyType =
"HASH"},

 new KeySchemaElement() {AttributeName = "PostedBy", KeyType
 = "RANGE"}

 },

 Projection = new Projection() {ProjectionType = Projection
Type.KEYS_ONLY}

 }

API Version 2012-08-10
702

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 },

 ProvisionedThroughput = new ProvisionedThroughput

 {

 ReadCapacityUnits = 10,

 WriteCapacityUnits = 5

 }

 });

 WaitTillTableCreated(client, tableName, response);

 }

 private static void WaitTillTableCreated(AmazonDynamoDBClient client,
string tableName,

 CreateTableResponse response)

 {

 var tableDescription = response.TableDescription;

 string status = tableDescription.TableStatus;

 Console.WriteLine(tableName + " - " + status);

 // Let us wait until table is created. Call DescribeTable.

 while (status != "ACTIVE")

 {

 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.

 try

 {

 var res = client.DescribeTable(new DescribeTableRequest

 {

 TableName = tableName

API Version 2012-08-10
703

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 });

 Console.WriteLine("Table name: {0}, status: {1}",
res.Table.TableName,

res.Table.TableStatus);

 status = res.Table.TableStatus;

 }

 // Try-catch to handle potential eventual-consistency issue.

 catch (ResourceNotFoundException)

 { }

 }

 }

 private static void WaitTillTableDeleted(AmazonDynamoDBClient client,
string tableName,

 DeleteTableResponse response)

 {

 var tableDescription = response.TableDescription;

 string status = tableDescription.TableStatus;

 Console.WriteLine(tableName + " - " + status);

 // Let us wait until table is created. Call DescribeTable

 try

 {

 while (status == "DELETING")

 {

 System.Threading.Thread.Sleep(5000); // wait 5 seconds

API Version 2012-08-10
704

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 var res = client.DescribeTable(new DescribeTableRequest

 {

 TableName = tableName

 });

 Console.WriteLine("Table name: {0}, status: {1}",
res.Table.TableName,

res.Table.TableStatus);

 status = res.Table.TableStatus;

 }

 }

 catch (ResourceNotFoundException)

 {

 // Table deleted.

 }

 }

 private static void LoadSampleProducts()

 {

 Table productCatalogTable = Table.LoadTable(client, "ProductCata
log");

 // ********** Add Books *********************

 var book1 = new Document();

 book1["Id"] = 101;

 book1["Title"] = "Book 101 Title";

 book1["ISBN"] = "111-1111111111";

 book1["Authors"] = new List<string> { "Author 1" };

 book1["Price"] = -2; // *** Intentional value. Later used to illus
trate scan.

 book1["Dimensions"] = "8.5 x 11.0 x 0.5";

API Version 2012-08-10
705

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 book1["PageCount"] = 500;

 book1["InPublication"] = true;

 book1["ProductCategory"] = "Book";

 productCatalogTable.PutItem(book1);

 var book2 = new Document();

 book2["Id"] = 102;

 book2["Title"] = "Book 102 Title";

 book2["ISBN"] = "222-2222222222";

 book2["Authors"] = new List<string> { "Author 1", "Author 2" }; ;

 book2["Price"] = 20;

 book2["Dimensions"] = "8.5 x 11.0 x 0.8";

 book2["PageCount"] = 600;

 book2["InPublication"] = true;

 book2["ProductCategory"] = "Book";

 productCatalogTable.PutItem(book2);

 var book3 = new Document();

 book3["Id"] = 103;

 book3["Title"] = "Book 103 Title";

 book3["ISBN"] = "333-3333333333";

 book3["Authors"] = new List<string> { "Author 1", "Author2", "Author
 3" }; ;

 book3["Price"] = 2000;

 book3["Dimensions"] = "8.5 x 11.0 x 1.5";

 book3["PageCount"] = 700;

 book3["InPublication"] = false;

 book3["ProductCategory"] = "Book";

 productCatalogTable.PutItem(book3);

API Version 2012-08-10
706

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 // ************ Add bikes. *******************

 var bicycle1 = new Document();

 bicycle1["Id"] = 201;

 bicycle1["Title"] = "18-Bike 201"; // size, followed by some title.

 bicycle1["Description"] = "201 description";

 bicycle1["BicycleType"] = "Road";

 bicycle1["Brand"] = "Brand-Company A"; // Trek, Specialized.

 bicycle1["Price"] = 100;

 bicycle1["Gender"] = "M";

 bicycle1["Color"] = new List<string> { "Red", "Black" };

 bicycle1["ProductCategory"] = "Bike";

 productCatalogTable.PutItem(bicycle1);

 var bicycle2 = new Document();

 bicycle2["Id"] = 202;

 bicycle2["Title"] = "21-Bike 202Brand-Company A";

 bicycle2["Description"] = "202 description";

 bicycle2["BicycleType"] = "Road";

 bicycle2["Brand"] = "";

 bicycle2["Price"] = 200;

 bicycle2["Gender"] = "M"; // Mens.

 bicycle2["Color"] = new List<string> { "Green", "Black" };

 bicycle2["ProductCategory"] = "Bicycle";

 productCatalogTable.PutItem(bicycle2);

 var bicycle3 = new Document();

 bicycle3["Id"] = 203;

API Version 2012-08-10
707

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 bicycle3["Title"] = "19-Bike 203";

 bicycle3["Description"] = "203 description";

 bicycle3["BicycleType"] = "Road";

 bicycle3["Brand"] = "Brand-Company B";

 bicycle3["Price"] = 300;

 bicycle3["Gender"] = "W";

 bicycle3["Color"] = new List<string> { "Red", "Green", "Black" };

 bicycle3["ProductCategory"] = "Bike";

 productCatalogTable.PutItem(bicycle3);

 var bicycle4 = new Document();

 bicycle4["Id"] = 204;

 bicycle4["Title"] = "18-Bike 204";

 bicycle4["Description"] = "204 description";

 bicycle4["BicycleType"] = "Mountain";

 bicycle4["Brand"] = "Brand-Company B";

 bicycle4["Price"] = 400;

 bicycle4["Gender"] = "W"; // Women.

 bicycle4["Color"] = new List<string> { "Red" };

 bicycle4["ProductCategory"] = "Bike";

 productCatalogTable.PutItem(bicycle4);

 var bicycle5 = new Document();

 bicycle5["Id"] = 205;

 bicycle5["Title"] = "20-Title 205";

 bicycle4["Description"] = "205 description";

 bicycle5["BicycleType"] = "Hybrid";

 bicycle5["Brand"] = "Brand-Company C";

 bicycle5["Price"] = 500;

API Version 2012-08-10
708

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 bicycle5["Gender"] = "B"; // Boys.

 bicycle5["Color"] = new List<string> { "Red", "Black" };

 bicycle5["ProductCategory"] = "Bike";

 productCatalogTable.PutItem(bicycle5);

 }

 private static void LoadSampleForums()

 {

 Table forumTable = Table.LoadTable(client, "Forum");

 var forum1 = new Document();

 forum1["Name"] = "Amazon DynamoDB"; // PK

 forum1["Category"] = "Amazon Web Services";

 forum1["Threads"] = 2;

 forum1["Messages"] = 4;

 forum1["Views"] = 1000;

 forumTable.PutItem(forum1);

 var forum2 = new Document();

 forum2["Name"] = "Amazon S3"; // PK

 forum2["Category"] = "Amazon Web Services";

 forum2["Threads"] = 1;

 forumTable.PutItem(forum2);

 }

 private static void LoadSampleThreads()

 {

API Version 2012-08-10
709

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 Table threadTable = Table.LoadTable(client, "Thread");

 // Thread 1.

 var thread1 = new Document();

 thread1["ForumName"] = "Amazon DynamoDB"; // Hash attribute.

 thread1["Subject"] = "DynamoDB Thread 1"; // Range attribute.

 thread1["Message"] = "DynamoDB thread 1 message text";

 thread1["LastPostedBy"] = "User A";

 thread1["LastPostedDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(14, 0, 0, 0));

 thread1["Views"] = 0;

 thread1["Replies"] = 0;

 thread1["Answered"] = false;

 thread1["Tags"] = new List<string> { "index", "primarykey", "table"
 };

 threadTable.PutItem(thread1);

 // Thread 2.

 var thread2 = new Document();

 thread2["ForumName"] = "Amazon DynamoDB"; // Hash attribute.

 thread2["Subject"] = "DynamoDB Thread 2"; // Range attribute.

 thread2["Message"] = "DynamoDB thread 2 message text";

 thread2["LastPostedBy"] = "User A";

 thread2["LastPostedDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(21, 0, 0, 0));

 thread2["Views"] = 0;

 thread2["Replies"] = 0;

 thread2["Answered"] = false;

 thread2["Tags"] = new List<string> { "index", "primarykey",
"rangekey" };

API Version 2012-08-10
710

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 threadTable.PutItem(thread2);

 // Thread 3.

 var thread3 = new Document();

 thread3["ForumName"] = "Amazon S3"; // Hash attribute.

 thread3["Subject"] = "S3 Thread 1"; // Range attribute.

 thread3["Message"] = "S3 thread 3 message text";

 thread3["LastPostedBy"] = "User A";

 thread3["LastPostedDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(7, 0, 0, 0));

 thread3["Views"] = 0;

 thread3["Replies"] = 0;

 thread3["Answered"] = false;

 thread3["Tags"] = new List<string> { "largeobjects", "multipart
upload" };

 threadTable.PutItem(thread3);

 }

 private static void LoadSampleReplies()

 {

 Table replyTable = Table.LoadTable(client, "Reply");

 // Reply 1 - thread 1.

 var thread1Reply1 = new Document();

 thread1Reply1["Id"] = "Amazon DynamoDB#DynamoDB Thread 1"; // Hash
 attribute.

 thread1Reply1["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(21, 0, 0, 0)); // Range attribute.

 thread1Reply1["Message"] = "DynamoDB Thread 1 Reply 1 text";

 thread1Reply1["PostedBy"] = "User A";

API Version 2012-08-10
711

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 replyTable.PutItem(thread1Reply1);

 // Reply 2 - thread 1.

 var thread1reply2 = new Document();

 thread1reply2["Id"] = "Amazon DynamoDB#DynamoDB Thread 1"; // Hash
 attribute.

 thread1reply2["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(14, 0, 0, 0)); // Range attribute.

 thread1reply2["Message"] = "DynamoDB Thread 1 Reply 2 text";

 thread1reply2["PostedBy"] = "User B";

 replyTable.PutItem(thread1reply2);

 // Reply 3 - thread 1.

 var thread1Reply3 = new Document();

 thread1Reply3["Id"] = "Amazon DynamoDB#DynamoDB Thread 1"; // Hash
 attribute.

 thread1Reply3["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(7, 0, 0, 0)); // Range attribute.

 thread1Reply3["Message"] = "DynamoDB Thread 1 Reply 3 text";

 thread1Reply3["PostedBy"] = "User B";

 replyTable.PutItem(thread1Reply3);

 // Reply 1 - thread 2.

 var thread2Reply1 = new Document();

 thread2Reply1["Id"] = "Amazon DynamoDB#DynamoDB Thread 2"; // Hash
 attribute.

 thread2Reply1["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(7, 0, 0, 0)); // Range attribute.

 thread2Reply1["Message"] = "DynamoDB Thread 2 Reply 1 text";

API Version 2012-08-10
712

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - .NET

 thread2Reply1["PostedBy"] = "User A";

 replyTable.PutItem(thread2Reply1);

 // Reply 2 - thread 2.

 var thread2Reply2 = new Document();

 thread2Reply2["Id"] = "Amazon DynamoDB#DynamoDB Thread 2"; // Hash
 attribute.

 thread2Reply2["ReplyDateTime"] = DateTime.UtcNow.Subtract(new
TimeSpan(1, 0, 0, 0)); // Range attribute.

 thread2Reply2["Message"] = "DynamoDB Thread 2 Reply 2 text";

 thread2Reply2["PostedBy"] = "User A";

 replyTable.PutItem(thread2Reply2);

 }

 }

}

Creating Example Tables and Uploading Data
Using the AWS SDK for PHP
The following PHP code example creates tables. The resulting tables structure and data is shown in
Example Tables and Data (p. 681). For step-by-step instructions to run this code, see Running PHP
Examples (p. 59).

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

$tableNames = array();

$tableName = 'ProductCatalog';
echo "Creating table $tableName..." . PHP_EOL;

API Version 2012-08-10
713

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - PHP

$response = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(
 array(
 'AttributeName' => 'Id',
 'AttributeType' => 'N'
)
),
 'KeySchema' => array(
 array(
 'AttributeName' => 'Id',
 'KeyType' => 'HASH'
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 10,
 'WriteCapacityUnits' => 5
)
));
$tableNames[] = $tableName;

$tableName = 'Forum';
echo "Creating table $tableName..." . PHP_EOL;

$response = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(
 array(
 'AttributeName' => 'Name',
 'AttributeType' => 'S'
)
),
 'KeySchema' => array(
 array(
 'AttributeName' => 'Name',
 'KeyType' => 'HASH'
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 10,
 'WriteCapacityUnits' => 5
)
));
$tableNames[] = $tableName;

$tableName = 'Thread';
echo "Creating table $tableName..." . PHP_EOL;

$response = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(
 array(
 'AttributeName' => 'ForumName',
 'AttributeType' => 'S'
),
 array(
 'AttributeName' => 'Subject',

API Version 2012-08-10
714

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - PHP

 'AttributeType' => 'S'
)
),
 'KeySchema' => array(
 array(
 'AttributeName' => 'ForumName',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'Subject',
 'KeyType' => 'RANGE'
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 10,
 'WriteCapacityUnits' => 5
)
));
$tableNames[] = $tableName;

$tableName = 'Reply';
echo "Creating table $tableName..." . PHP_EOL;

$response = $client->createTable(array(
 'TableName' => $tableName,
 'AttributeDefinitions' => array(
 array(
 'AttributeName' => 'Id',
 'AttributeType' => 'S'
),
 array(
 'AttributeName' => 'ReplyDateTime',
 'AttributeType' => 'S'
),
 array(
 'AttributeName' => 'PostedBy',
 'AttributeType' => 'S'
)
),
 'LocalSecondaryIndexes' => array(
 array(
 'IndexName' => 'PostedBy-index',
 'KeySchema' => array(
 array(
 'AttributeName' => 'Id',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'PostedBy',
 'KeyType' => 'RANGE'
),
),
 'Projection' => array(
 'ProjectionType' => 'KEYS_ONLY',
),
),
),
 'KeySchema' => array(

API Version 2012-08-10
715

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - PHP

 array(
 'AttributeName' => 'Id',
 'KeyType' => 'HASH'
),
 array(
 'AttributeName' => 'ReplyDateTime',
 'KeyType' => 'RANGE'
)
),
 'ProvisionedThroughput' => array(
 'ReadCapacityUnits' => 10,
 'WriteCapacityUnits' => 5
)
));
$tableNames[] = $tableName;

foreach($tableNames as $tableName) {
 echo "Waiting for table $tableName to be created." . PHP_EOL;
 $client->waitUntilTableExists(array('TableName' => $tableName));
 echo "Table $tableName has been created." . PHP_EOL;
}

?>

The following PHP code example uploads data to the tables. The resulting table structure and data is
shown in Example Tables and Data (p. 681).

<?php

use Aws\DynamoDb\DynamoDbClient;

$client = DynamoDbClient::factory(array(
 'profile' => 'default',
 'region' => 'us-west-2' // replace with your desired region
));

Setup some local variables for dates

date_default_timezone_set('UTC');

$oneDayAgo = date('Y-m-d H:i:s', strtotime('-1 days'));
$sevenDaysAgo = date('Y-m-d H:i:s', strtotime('-7 days'));
$fourteenDaysAgo = date('Y-m-d H:i:s', strtotime('-14 days'));
$twentyOneDaysAgo = date('Y-m-d H:i:s', strtotime('-21 days'));

$tableName = 'ProductCatalog';
echo "Adding data to the $tableName table..." . PHP_EOL;

$response = $client->batchWriteItem(array(
 'RequestItems' => array(
 $tableName => array(
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '1101'),
 'Title' => array('S' => 'Book 101 Title'),
 'ISBN' => array('S' => '111-1111111111'),

API Version 2012-08-10
716

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - PHP

 'Authors' => array('SS' => array('Author1')),
 'Price' => array('N' => '2'),
 'Dimensions' => array('S' => '8.5 x 11.0 x 0.5'),

 'PageCount' => array('N' => '500'),
 'InPublication' => array('N' => '1'),
 'ProductCategory' => array('S' => 'Book')
)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '102'),
 'Title' => array('S' => 'Book 102 Title'),
 'ISBN' => array('S' => '222-2222222222'),
 'Authors' => array('SS' => array('Author1',
'Author2')),
 'Price' => array('N' => '20'),
 'Dimensions' => array('S' => '8.5 x 11.0 x 0.8'),

 'PageCount' => array('N' => '600'),
 'InPublication' => array('N' => '1'),
 'ProductCategory' => array('S' => 'Book')

)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '103'),
 'Title' => array('S' => 'Book 103 Title'),
 'ISBN' => array('S' => '333-3333333333'),
 'Authors' => array('SS' => array('Author1',
'Author2')),
 'Price' => array('N' => '2000'),
 'Dimensions' => array('S' => '8.5 x 11.0 x 1.5'),

 'PageCount' => array('N' => '600'),
 'InPublication' => array('N' => '0'),
 'ProductCategory' => array('S' => 'Book')

)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '201'),
 'Title' => array('S' => '18-Bike-201'),
 'Description' => array('S' => '201 Description'),

 'BicycleType' => array('S' => 'Road'),
 'Brand' => array('S' => 'Mountain A'),
 'Price' => array('N' => '100'),
 'Gender' => array('S' => 'M'),
 'Color' => array('SS' => array('Red',

API Version 2012-08-10
717

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - PHP

'Black')),
 'ProductCategory' => array('S' => 'Bicycle')

)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '202'),
 'Title' => array('S' => '21-Bike-202'),
 'Description' => array('S' => '202 Description'),

 'BicycleType' => array('S' => 'Road'),
 'Brand' => array('S' => 'Brand-Company A'),

 'Price' => array('N' => '200'),
 'Gender' => array('S' => 'M'),
 'Color' => array('SS' => array('Green',
'Black')),
 'ProductCategory' => array('S' => 'Bicycle')
)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '203'),
 'Title' => array('S' => '19-Bike-203'),
 'Description' => array('S' => '203 Description'),

 'BicycleType' => array('S' => 'Road'),
 'Brand' => array('S' => 'Brand-Company B'),

 'Price' => array('N' => '300'),
 'Gender' => array('S' => 'W'),
 'Color' => array('SS' => array('Red', 'Green',
 'Black')),
 'ProductCategory' => array('S' => 'Bicycle')

)
),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '204'),
 'Title' => array('S' => '18-Bike-204'),
 'Description' => array('S' => '204 Description'),

 'BicycleType' => array('S' => 'Mountain'),
 'Brand' => array('S' => 'Brand-Company B'),

 'Price' => array('N' => '400'),
 'Gender' => array('S' => 'W'),
 'Color' => array('SS' => array('Red')),
 'ProductCategory' => array('S' => 'Bicycle')
)

API Version 2012-08-10
718

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - PHP

),
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('N' => '205'),
 'Title' => array('S' => '20-Bike-205'),
 'Description' => array('S' => '205 Description'),
 'BicycleType' => array('S' => 'Hybrid'),
 'Brand' => array('S' => 'Brand-Company C'),
 'Price' => array('N' => '500'),
 'Gender' => array('S' => 'B'),
 'Color' => array('SS' => array('Red',
'Black')),
 'ProductCategory' => array('S' => 'Bicycle')

)
)
)
),
),
));

echo "done." . PHP_EOL;

$tableName = 'Forum';
echo "Adding data to the $tableName table..." . PHP_EOL;

$response = $client->batchWriteItem(array(
 'RequestItems' => array(
 $tableName => array(
 array(
 'PutRequest' => array(
 'Item' => array(
 'Name' => array('S' => 'Amazon DynamoDB'),
 'Category' => array('S' => 'Amazon Web Services'),
 'Threads' => array('N' => '0'),
 'Messages' => array('N' => '0'),
 'Views' => array('N' => '1000')
)
)
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Name' => array('S' => 'Amazon S3'),
 'Category' => array('S' => 'Amazon Web Services'),
 'Threads' => array('N' => '0')
)
)
),
)
)
));

echo "done." . PHP_EOL;

API Version 2012-08-10
719

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - PHP

$tableName = 'Reply';
echo "Adding data to the $tableName table..." . PHP_EOL;

$response = $client->batchWriteItem(array(
 'RequestItems' => array(
 $tableName => array(
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('S' => 'Amazon DynamoDB#DynamoDB
 Thread 1'),
 'ReplyDateTime' => array('S' => $fourteenDaysAgo),
 'Message' => array('S' => 'DynamoDB Thread 1 Reply
 2 text'),
 'PostedBy' => array('S' => 'User B')
)
)
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('S' => 'Amazon DynamoDB#DynamoDB
 Thread 2'),
 'ReplyDateTime' => array('S' => $twentyOneDaysAgo),
 'Message' => array('S' => 'DynamoDB Thread 2 Reply
 3 text'),
 'PostedBy' => array('S' => 'User B')
)
)
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('S' => 'Amazon DynamoDB#DynamoDB
 Thread 2'),
 'ReplyDateTime' => array('S' => $sevenDaysAgo),
 'Message' => array('S' => 'DynamoDB Thread 2 Reply
 2 text'),
 'PostedBy' => array('S' => 'User A')
)
)
),
 array(
 'PutRequest' => array(
 'Item' => array(
 'Id' => array('S' => 'Amazon DynamoDB#DynamoDB
 Thread 2'),
 'ReplyDateTime' => array('S' => $oneDayAgo),
 'Message' => array('S' => 'DynamoDB Thread 2 Reply
 1 text'),
 'PostedBy' => array('S' => 'User A')
)
)
)
),
)

API Version 2012-08-10
720

Amazon DynamoDB Developer Guide
Creating Example Tables and Uploading Data - PHP

));

echo "done." . PHP_EOL;

?>

Reserved Words in DynamoDB
The following keywords are reserved for use by DynamoDB. Do not use any of these words as attribute
names in expressions.

If you need to write an expression containing an attribute name that conflicts with a DynamoDB reserved
word, you can define an expression attribute name to use in the place of the reserved word. For more
information, see Expression Attribute Names (p. 101).

ABORT
ABSOLUTE
ACTION
ADD
AFTER
AGENT
AGGREGATE
ALL
ALLOCATE
ALTER
ANALYZE
AND
ANY
ARCHIVE
ARE
ARRAY
AS
ASC
ASCII
ASENSITIVE
ASSERTION
ASYMMETRIC
AT
ATOMIC
ATTACH
ATTRIBUTE
AUTH
AUTHORIZATION
AUTHORIZE
AUTO
AVG
BACK
BACKUP
BASE
BATCH
BEFORE
BEGIN
BETWEEN
BIGINT

API Version 2012-08-10
721

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

BINARY
BIT
BLOB
BLOCK
BOOLEAN
BOTH
BREADTH
BUCKET
BULK
BY
BYTE
CALL
CALLED
CALLING
CAPACITY
CASCADE
CASCADED
CASE
CAST
CATALOG
CHAR
CHARACTER
CHECK
CLASS
CLOB
CLOSE
CLUSTER
CLUSTERED
CLUSTERING
CLUSTERS
COALESCE
COLLATE
COLLATION
COLLECTION
COLUMN
COLUMNS
COMBINE
COMMENT
COMMIT
COMPACT
COMPILE
COMPRESS
CONDITION
CONFLICT
CONNECT
CONNECTION
CONSISTENCY
CONSISTENT
CONSTRAINT
CONSTRAINTS
CONSTRUCTOR
CONSUMED
CONTINUE
CONVERT
COPY
CORRESPONDING
COUNT
COUNTER

API Version 2012-08-10
722

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

CREATE
CROSS
CUBE
CURRENT
CURSOR
CYCLE
DATA
DATABASE
DATE
DATETIME
DAY
DEALLOCATE
DEC
DECIMAL
DECLARE
DEFAULT
DEFERRABLE
DEFERRED
DEFINE
DEFINED
DEFINITION
DELETE
DELIMITED
DEPTH
DEREF
DESC
DESCRIBE
DESCRIPTOR
DETACH
DETERMINISTIC
DIAGNOSTICS
DIRECTORIES
DISABLE
DISCONNECT
DISTINCT
DISTRIBUTE
DO
DOMAIN
DOUBLE
DROP
DUMP
DURATION
DYNAMIC
EACH
ELEMENT
ELSE
ELSEIF
EMPTY
ENABLE
END
EQUAL
EQUALS
ERROR
ESCAPE
ESCAPED
EVAL
EVALUATE
EXCEEDED

API Version 2012-08-10
723

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

EXCEPT
EXCEPTION
EXCEPTIONS
EXCLUSIVE
EXEC
EXECUTE
EXISTS
EXIT
EXPLAIN
EXPLODE
EXPORT
EXPRESSION
EXTENDED
EXTERNAL
EXTRACT
FAIL
FALSE
FAMILY
FETCH
FIELDS
FILE
FILTER
FILTERING
FINAL
FINISH
FIRST
FIXED
FLATTERN
FLOAT
FOR
FORCE
FOREIGN
FORMAT
FORWARD
FOUND
FREE
FROM
FULL
FUNCTION
FUNCTIONS
GENERAL
GENERATE
GET
GLOB
GLOBAL
GO
GOTO
GRANT
GREATER
GROUP
GROUPING
HANDLER
HASH
HAVE
HAVING
HEAP
HIDDEN
HOLD

API Version 2012-08-10
724

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

HOUR
IDENTIFIED
IDENTITY
IF
IGNORE
IMMEDIATE
IMPORT
IN
INCLUDING
INCLUSIVE
INCREMENT
INCREMENTAL
INDEX
INDEXED
INDEXES
INDICATOR
INFINITE
INITIALLY
INLINE
INNER
INNTER
INOUT
INPUT
INSENSITIVE
INSERT
INSTEAD
INT
INTEGER
INTERSECT
INTERVAL
INTO
INVALIDATE
IS
ISOLATION
ITEM
ITEMS
ITERATE
JOIN
KEY
KEYS
LAG
LANGUAGE
LARGE
LAST
LATERAL
LEAD
LEADING
LEAVE
LEFT
LENGTH
LESS
LEVEL
LIKE
LIMIT
LIMITED
LINES
LIST
LOAD

API Version 2012-08-10
725

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

LOCAL
LOCALTIME
LOCALTIMESTAMP
LOCATION
LOCATOR
LOCK
LOCKS
LOG
LOGED
LONG
LOOP
LOWER
MAP
MATCH
MATERIALIZED
MAX
MAXLEN
MEMBER
MERGE
METHOD
METRICS
MIN
MINUS
MINUTE
MISSING
MOD
MODE
MODIFIES
MODIFY
MODULE
MONTH
MULTI
MULTISET
NAME
NAMES
NATIONAL
NATURAL
NCHAR
NCLOB
NEW
NEXT
NO
NONE
NOT
NULL
NULLIF
NUMBER
NUMERIC
OBJECT
OF
OFFLINE
OFFSET
OLD
ON
ONLINE
ONLY
OPAQUE
OPEN

API Version 2012-08-10
726

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

OPERATOR
OPTION
OR
ORDER
ORDINALITY
OTHER
OTHERS
OUT
OUTER
OUTPUT
OVER
OVERLAPS
OVERRIDE
OWNER
PAD
PARALLEL
PARAMETER
PARAMETERS
PARTIAL
PARTITION
PARTITIONED
PARTITIONS
PATH
PERCENT
PERCENTILE
PERMISSION
PERMISSIONS
PIPE
PIPELINED
PLAN
POOL
POSITION
PRECISION
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVATE
PRIVILEGES
PROCEDURE
PROCESSED
PROJECT
PROJECTION
PROPERTY
PROVISIONING
PUBLIC
PUT
QUERY
QUIT
QUORUM
RAISE
RANDOM
RANGE
RANK
RAW
READ
READS
REAL

API Version 2012-08-10
727

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

REBUILD
RECORD
RECURSIVE
REDUCE
REF
REFERENCE
REFERENCES
REFERENCING
REGEXP
REGION
REINDEX
RELATIVE
RELEASE
REMAINDER
RENAME
REPEAT
REPLACE
REQUEST
RESET
RESIGNAL
RESOURCE
RESPONSE
RESTORE
RESTRICT
RESULT
RETURN
RETURNING
RETURNS
REVERSE
REVOKE
RIGHT
ROLE
ROLES
ROLLBACK
ROLLUP
ROUTINE
ROW
ROWS
RULE
RULES
SAMPLE
SATISFIES
SAVE
SAVEPOINT
SCAN
SCHEMA
SCOPE
SCROLL
SEARCH
SECOND
SECTION
SEGMENT
SEGMENTS
SELECT
SELF
SEMI
SENSITIVE
SEPARATE

API Version 2012-08-10
728

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

SEQUENCE
SERIALIZABLE
SESSION
SET
SETS
SHARD
SHARE
SHARED
SHORT
SHOW
SIGNAL
SIMILAR
SIZE
SKEWED
SMALLINT
SNAPSHOT
SOME
SOURCE
SPACE
SPACES
SPARSE
SPECIFIC
SPECIFICTYPE
SPLIT
SQL
SQLCODE
SQLERROR
SQLEXCEPTION
SQLSTATE
SQLWARNING
START
STATE
STATIC
STATUS
STORAGE
STORE
STORED
STREAM
STRING
STRUCT
STYLE
SUB
SUBMULTISET
SUBPARTITION
SUBSTRING
SUBTYPE
SUM
SUPER
SYMMETRIC
SYNONYM
SYSTEM
TABLE
TABLESAMPLE
TEMP
TEMPORARY
TERMINATED
TEXT
THAN

API Version 2012-08-10
729

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

THEN
THROUGHPUT
TIME
TIMESTAMP
TIMEZONE
TINYINT
TO
TOKEN
TOTAL
TOUCH
TRAILING
TRANSACTION
TRANSFORM
TRANSLATE
TRANSLATION
TREAT
TRIGGER
TRIM
TRUE
TRUNCATE
TTL
TUPLE
TYPE
UNDER
UNDO
UNION
UNIQUE
UNIT
UNKNOWN
UNLOGGED
UNNEST
UNPROCESSED
UNSIGNED
UNTIL
UPDATE
UPPER
URL
USAGE
USE
USER
USERS
USING
UUID
VACUUM
VALUE
VALUED
VALUES
VARCHAR
VARIABLE
VARIANCE
VARINT
VARYING
VIEW
VIEWS
VIRTUAL
VOID
WAIT
WHEN

API Version 2012-08-10
730

Amazon DynamoDB Developer Guide
Reserved Words in DynamoDB

WHENEVER
WHERE
WHILE
WINDOW
WITH
WITHIN
WITHOUT
WORK
WRAPPED
WRITE
YEAR
ZONE

Legacy Conditional Parameters
This section compares the legacy conditional parameters with expression parameters in DynamoDB

Note
New applications should use expression parameters. For more information, see Reading and
Writing Items Using Expressions (p. 98).
The following table shows the legacy conditional parameters, and the expression parameters
that have superseded them:

Expression ParameterLegacy Conditional
Parameter

ProjectionExpressionAttributesToGet

ConditionExpresssionExpected

UpdateExpressionAttributeUpdates

KeyConditionExpressionKeyConditions

FilterExpressionQueryFilter and Scan-
Filter

DynamoDB does not allow mixing legacy conditional parameters and expression parameters in
a single API call. For example, calling the Query API with AttributesToGet and
ConditionExpression will result in an error.

AttributesToGet vs. ProjectionExpression
The AttributesToGet parameter is a list of item attributes requested by the user. This parameter is
available in the BatchGetItem, GetItem, Scan, and Query APIs.

The ProjectionExpression parameter replaces AttributesToGet. Instead of a list,
ProjectionExpression is a string with a comma-separated list of attributes to return.

For more information on ProjectionExpression, see Projection Expressions (p. 99).

API Version 2012-08-10
731

Amazon DynamoDB Developer Guide
Legacy Conditional Parameters

Expected vs. ConditionExpression
The Expected parameter is used for conditional writes. Expected is a map of attribute names and, for
each attribute name, a condition that must be met in order for the write to succeed. For each condition
in the map, you must provide an AttributeValueList and a ComparisonOperator.

By default the conditions in the Expected map are ANDed together; however, you can use
ConditionalOperator to OR the conditions instead.

The Expected parameter is available in the PutItem, DeleteItem, and UpdateItem APIs.

The ConditionExpression parameter replaces Expected. A ConditionExpression is a string with
one or more logical conditions in it; the ConditionExpression must evaluate to true in order for the
write to succeed.

For more information on ConditionExpression, see Condition Expressions (p. 104).

AttributeUpdates vs. UpdateExpression
The AttributeUpdates parameter is available in the UpdateItem API. AttributeUpdates is a map
containing the attributes to be updated, actions to perform on each attribute (such as adding or removing),
and new values for the attributes.

The UpdateExpression parameter replaces AttributeUpdates. An UpdateExpression is a string
with the attributes, actions, and values required for updating an item. To perform a conditional update,
use UpdateExpression together with ConditionExpression.

For more information on UpdateExpression, see Update Expressions (p. 110).

KeyConditions vs. KeyConditionExpression
The KeyConditions parameter is available in the Query APIs. KeyConditions is a map containing
the hash key attribute name and an equality condition. The map can also contain a range attribute name
and a condition (not necessarily equality) to describe the items to be returned. Each condition in the map
is expressed using an AttributeValueList and a ComparisonOperator.

The KeyConditionExpression parameter replaces KeyConditions. A KeyConditionExpression
is a string with the key attribute(s) and a condition to apply to each. The hash key must have an equality
condition; the range key condition can specify one or more values.

For more information on KeyConditionExpression, see Query and Scan Operations in
DynamoDB (p. 192).

QueryFilter and ScanFilter vs. FilterExpression
The QueryFilter and ScanFilter parameters are available in the Query and Scan APIs, respectively.
Each of these parameters is a map of attribute names and, for each attribute, a condition that must be
met: If the condition succeeds, the item is returned to the user; otherwise, the item does not appear in
the result set. These filter parameters are applied after the Query or Scan operation retrieves data, but
before the data is returned to the user.

The FilterExpression parameter replaces QueryFilter and ScanFilter. FilterExpression
is a string with one or more logical conditions in it; only the items that satisfy the conditions are returned
to the user.

For more information on FilterExpression, see Filtering the Results from a Query or a Scan (p. 194).

API Version 2012-08-10
732

Amazon DynamoDB Developer Guide
Expected vs. ConditionExpression

Writing Conditions With Legacy Parameters
The following section describes how to write conditions for use with legacy parameters, such as Expected,
QueryFilter, and ScanFilter.

Note
New applications should use expression parameters instead. For more information, see Reading
and Writing Items Using Expressions (p. 98).

Simple Conditions
With attribute values, you can write conditions for comparisons against table attributes. A condition always
evaluates to true or false, and consists of:

• ComparisonOperator — greater than, less than, equal to, and so on.

• AttributeValueList (optional) — attribute value(s) to compare against. Depending on the
ComparisonOperator being used, the AttributeValueList might contain one, two, or more
values; or it might not be present at all.

The following sections describe the various comparison operators, along with examples of how to use
them in conditions.

Comparison Operators with No Attribute Values

• NOT_NULL - true if an attribute exists.

• NULL - true if an attribute does not exist.

Use these operators to check whether an attribute exists, or doesn't exist. Because there is no value to
compare against, do not specify AttributeValueList.

Example

The following expression evaluates to true if the Dimensions attribute exists.

{
 Dimensions: {
 ComparisonOperator: NOT_NULL
 }
}

Comparison Operators with One Attribute Value

• EQ - true if an attribute is equal to a value.

AttributeValueList can contain only one value of type String, Number, Binary, String Set, Number
Set, or Binary Set. If an item contains a value of a different type than the one specified in the request,
the value does not match. For example, the string "3" is not equal to the number 3. Also, the number
3 is not equal to the number set [3, 2, 1].

• NE - true if an attribute is not equal to a value.

AttributeValueList can contain only one value of type String, Number, Binary, String Set, Number
Set, or Binary Set. If an item contains a value of a different type than the one specified in the request,
the value does not match.

• LE - true if an attribute is less than or equal to a value.

API Version 2012-08-10
733

Amazon DynamoDB Developer Guide
Writing Conditions With Legacy Parameters

AttributeValueList can contain only one value of type String, Number, or Binary (not a set). If an
item contains an AttributeValue of a different type than the one specified in the request, the value
does not match.

• LT - true if an attribute is less than a value.

AttributeValueList can contain only one value of type String, Number, or Binary (not a set). If an
item contains a value of a different type than the one specified in the request, the value does not match.

• GE - true if an attribute is greater than or equal to a value.

AttributeValueList can contain only one value of type String, Number, or Binary (not a set). If an
item contains a value of a different type than the one specified in the request, the value does not match.

• GT - true if an attribute is greater than a value.

AttributeValueList can contain only one value of type String, Number, or Binary (not a set). If an
item contains a value of a different type than the one specified in the request, the value does not match.

• CONTAINS - true if a value is present within a set, or if one value contains another.

AttributeValueList can contain only one value of type String, Number, or Binary (not a set). If the
target attribute of the comparison is a String, then the operator checks for a substring match. If the
target attribute of the comparison is Binary, then the operator looks for a subsequence of the target
that matches the input. If the target attribute of the comparison is a set, then the operator evaluates to
true if it finds an exact match with any member of the set.

• NOT_CONTAINS - true if a value is not present within a set, or if one value does not contain another
value.

AttributeValueList can contain only one value of type String, Number, or Binary (not a set). If the
target attribute of the comparison is a String, then the operator checks for the absence of a substring
match. If the target attribute of the comparison is Binary, then the operator checks for the absence of
a subsequence of the target that matches the input. If the target attribute of the comparison is a set,
then the operator evaluates to true if it does not find an exact match with any member of the set.

• BEGINS_WITH - true if the first few characters of an attribute match the provided value. Do not use this
operator for comparing numbers.

AttributeValueList can contain only one value of type String or Binary (not a Number or a set).
The target attribute of the comparison must be a String or Binary (not a Number or a set).

Use these operators to compare an attribute with a value.You must specify an AttributeValueList
consisting of a single value. For most of the operators, this value must be a scalar; however, the EQ and
NE operators also support sets.

Examples

The following expressions evaluate to true if:

• A product's price is greater than 100.

{
 Price: {
 ComparisonOperator: GT,
 AttributeValueList: [100]
 }
}

• A product category begins with "Bo".

API Version 2012-08-10
734

Amazon DynamoDB Developer Guide
Writing Conditions With Legacy Parameters

{
 ProductCategory: {
 ComparisonOperator: BEGINS_WITH,
 AttributeValueList: ["Bo"]
 }
}

• A product is available in either red, green, or black:

{
 Color: {
 ComparisonOperator: EQ,
 AttributeValueList: [
 ["Black", "Red", "Green"]
]
 }
}

Note
When comparing set data types, the order of the elements does not matter. DynamoDB will
return only the items with the same set of values, regardless of the order in which you specify
them in your request.

Comparison Operators with Two Attribute Values

• BETWEEN - true if a value is between a lower bound and an upper bound, endpoints inclusive.

AttributeValueList must contain two elements of the same type, either String, Number, or Binary
(not a set). A target attribute matches if the target value is greater than, or equal to, the first element
and less than, or equal to, the second element. If an item contains a value of a different type than the
one specified in the request, the value does not match.

Use this operator to determine if an attribute value is within a range. The AttributeValueList must
contain two scalar elements of the same type - String, Number, or Binary.

Example

The following expression evaluates to true if a product's price is between 100 and 200.

{
 Price: {
 ComparisonOperator: BETWEEN,
 AttributeValueList: [100, 200]
 }
}

Comparison Operators with N Attribute Values

• IN - true if a value is equal to any of the values in an enumerated list. Only scalar values are supported
in the list, not sets. The target attribute must be of the same type and exact value in order to match.

AttributeValueList can contain one or more elements of type String, Number, or Binary (not a
set).These attributes are compared against an existing non-set type attribute of an item. If any elements
of the input set are present in the item attribute, the expression evaluates to true.

API Version 2012-08-10
735

Amazon DynamoDB Developer Guide
Writing Conditions With Legacy Parameters

AttributeValueList can contain one or more values of type String, Number, or Binary (not a set).
The target attribute of the comparison must be of the same type and exact value to match. A String
never matches a String set.

Use this operator to determine whether the supplied value is within an enumerated list.You can specify
any number of scalar values in AttributeValueList, but they all must be of the same data type.

Example

The following expression evaluates to true if the value for Id is 201, 203, or 205.

{
 Id: {
 ComparisonOperator: IN,
 AttributeValueList: [201, 203, 205]
 }
}

Using Multiple Conditions
DynamoDB lets you combine multiple conditions to form complex expressions.You do this by providing
at least two expressions, with an optional ConditionalOperator.

By default, when you specify more than one condition, all of the conditions must evaluate to true in order
for the entire expression to evaluate to true. In other words, an implicit AND operation takes place.

Example

The following expression evaluates to true if a product is a book which has at least 600 pages. Both of
the conditions must evaluate to true, since they are implicitly ANDed together.

{
 ProductCategory: {
 ComparisonOperator: EQ,
 AttributeValueList: ["Book"]
 },
 PageCount: {
 ComparisonOperator: GE,
 AttributeValueList: [600]
 }
}

You can use ConditionalOperator to clarify that an AND operation will take place. The following
example behaves in the same manner as the previous one.

{
ConditionalOperator : AND,

 ProductCategory: {
 ComparisonOperator: EQ,
 AttributeValueList: ["Book"]
 },
 PageCount: {
 ComparisonOperator: GE,
 AttributeValueList: [600]

API Version 2012-08-10
736

Amazon DynamoDB Developer Guide
Writing Conditions With Legacy Parameters

 }
}

You can also set ConditionalOperator to OR, which means that at least one of the conditions must
evaluate to true.

Example

The following expression evaluates to true if a product is a mountain bike, if it is a particular brand name,
or if its price is greater than 100.

{
 ConditionalOperator : OR,
 BicycleType: {
 ComparisonOperator: EQ,
 AttributeValueList: ["Mountain"]
 },
 Brand: {
 ComparisonOperator: EQ,
 AttributeValueList: ["Brand-Company A"]
 },
 Price: {
 ComparisonOperator: GT,
 AttributeValueList: [100]
 }
}

Note
In a complex expression, the conditions are processed in order, from the first condition to the
last.
You cannot use both AND and OR in a single expression.

Other Conditional Operators
In previous releases of DynamoDB, the Expected parameter behaved differently for conditional writes.
Each item in the Expected map represented an attribute name for DynamoDB to check, along with the
following:

• Value — a value to compare against the attribute.

• Exists — determine whether the value exists prior to attempting the operation.

The Value and Exists options continue to be supported in DynamoDB; however, they only let you test
for an equality condition, or whether an attribute exists. We recommend that you use
ComparisonOperator and AttributeValueList instead, because these options let you construct a
much wider range of conditions.

API Version 2012-08-10
737

Amazon DynamoDB Developer Guide
Writing Conditions With Legacy Parameters

Example

A DeleteItem can check to see whether a book is no longer in publication, and only delete it if this
condition is true. Here is an example using a legacy condition:

{
 TableName: "Product",
 Item: {
 Id: 600,
 Title: "Book 600 Title"
 },
 Expected: {
 InPublication: {
 Exists: true,
 Value : false
 }
 }
}

The following example does the same thing, but does not use a legacy condition:

{
 TableName: "Product",
 Item: {
 Id: 600,
 Title: "Book 600 Title"
 },
 Expected: {
 InPublication: {
 ComparisonOperator: EQ,
 AttributeValueList: [false]
 }
 }
}

API Version 2012-08-10
738

Amazon DynamoDB Developer Guide
Writing Conditions With Legacy Parameters

Example

A PutItem operation can protect against overwriting an existing item with the same primary key attributes.
Here is an example using a legacy condition:

{
 TableName: "Product",
 Item: {
 Id: 500,
 Title: "Book 500 Title"
 },
 Expected: {
 Id: {
 Exists: false
 }
 }
}

The following example does the same thing, but does not use a legacy condition:

{
 TableName: "Product",
 Item: {
 Id: 500,
 Title: "Book 500 Title"
 },
 Expected: {
 Id: {
 ComparisonOperator: NULL
 }
 }
}

Note
For conditions in the Expected map, do not use the legacy Value and Exists options together
with ComparisonOperator and AttributeValueList. If you do this, your conditional write
will fail.

Current API Version (2012-08-10)
The current version of the DynamoDB API is 2012-08-10. For complete documentation, see the Amazon
DynamoDB API Reference

The following operations are supported:

• BatchGetItem

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• ListTables

API Version 2012-08-10
739

Amazon DynamoDB Developer Guide
Current API Version (2012-08-10)

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchGetItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_ListTables.html

• PutItem

• Query

• Scan

• UpdateItem

• UpdateTable

Previous API Version (2011-12-05)
This section documents the operations available in DynamoDB API version 2011-12-05. This is the
previous version of the API, which is being maintained for backward compatibility with existing applications.

New applications should use the current API version (2012-08-10). For more information, see Current
API Version (2012-08-10) (p. 739).

We recommend that you migrate your applications to the latest API version (2012-08-10), since new
DynamoDB features (such as secondary indexes) will not be backported to the previous API version.

Topics

• BatchGetItem (p. 740)

• BatchWriteItem (p. 745)

• CreateTable (p. 751)

• DeleteItem (p. 755)

• DeleteTable (p. 759)

• DescribeTables (p. 762)

• GetItem (p. 765)

• ListTables (p. 767)

• PutItem (p. 769)

• Query (p. 774)

• Scan (p. 780)

• UpdateItem (p. 788)

• UpdateTable (p. 793)

BatchGetItem
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
The BatchGetItem operation returns the attributes for multiple items from multiple tables using their
primary keys. The maximum number of items that can be retrieved for a single operation is 100. Also,
the number of items retrieved is constrained by a 1 MB size limit. If the response size limit is exceeded
or a partial result is returned because the table’s provisioned throughput is exceeded, or because of an
internal processing failure, DynamoDB returns an UnprocessedKeys value so you can retry the operation
starting with the next item to get. DynamoDB automatically adjusts the number of items returned per page
to enforce this limit. For example, even if you ask to retrieve 100 items, but each individual item is 50 KB
in size, the system returns 20 items and an appropriate UnprocessedKeys value so you can get the
next page of results. If desired, your application can include its own logic to assemble the pages of results
into one set.

API Version 2012-08-10
740

Amazon DynamoDB Developer Guide
Previous API Version (2011-12-05)

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

If no items could be processed because of insufficient provisioned throughput on each of the tables
involved in the request, DynamoDB returns a ProvisionedThroughputExceededException error.

Note
By default, BatchGetItem performs eventually consistent reads on every table in the request.
You can set the ConsistentRead parameter to true, on a per-table basis, if you want consistent
reads instead.
BatchGetItem fetches items in parallel to minimize response latencies.
When designing your application, keep in mind that DynamoDB does not guarantee how attributes
are ordered in the returned response. Include the primary key values in the AttributesToGet
for the items in your request to help parse the response by item.
If the requested items do not exist, nothing is returned in the response for those items. Requests
for non-existent items consume the minimum read capacity units according to the type of read.
For more information, see Capacity Units Calculations for Various Operations (p. 64).

Requests

Syntax

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.BatchGetItem
content-type: application/x-amz-json-1.0

{"RequestItems":
 {"Table1":
 {"Keys":
 [{"HashKeyElement": {"S":"KeyValue1"}, "RangeKeyElement":{"N":"Key
Value2"}},
 {"HashKeyElement": {"S":"KeyValue3"}, "RangeKeyElement":{"N":"Key
Value4"}},
 {"HashKeyElement": {"S":"KeyValue5"}, "RangeKeyElement":{"N":"Key
Value6"}}],
 "AttributesToGet":["AttributeName1", "AttributeName2", "Attribute
Name3"]},
 "Table2":
 {"Keys":
 [{"HashKeyElement": {"S":"KeyValue4"}},
 {"HashKeyElement": {"S":"KeyValue5"}}],
 "AttributesToGet": ["AttributeName4", "AttributeName5", "AttributeName6"]

 }
 }
}

RequiredDescriptionName

YesA container of the table name and correspond-
ing items to get by primary key.While request-
ing items, each table name can be invoked
only once per operation.

Type: String

Default: None

RequestItems

API Version 2012-08-10
741

Amazon DynamoDB Developer Guide
BatchGetItem

RequiredDescriptionName

YesThe name of the table containing the items to
get.The entry is simply a string specifying an
existing table with no label.

Type: String

Default: None

Table

YesThe primary key values that define the items
in the specified table. For more information
about primary keys, see Primary Key (p. 5).

Type: Keys

Table:Keys

NoArray of Attribute names within the specified
table. If attribute names are not specified then
all attributes will be returned. If some attrib-
utes are not found, they will not appear in the
result.

Type: Array

Table:AttributesToGet

NoIf set to true, then a consistent read is is-
sued, otherwise eventually consistent is used.

Type: Boolean

Table:ConsistentRead

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 855

{"Responses":
 {"Table1":
 {"Items":
 [{"AttributeName1": {"S":"AttributeValue"},
 "AttributeName2": {"N":"AttributeValue"},
 "AttributeName3": {"SS":["AttributeValue", "AttributeValue", "Attribute
Value"]}
 },
 {"AttributeName1": {"S": "AttributeValue"},
 "AttributeName2": {"S": "AttributeValue"},
 "AttributeName3": {"NS": ["AttributeValue", "AttributeValue", "Attrib
uteValue"]}
 }],
 "ConsumedCapacityUnits":1},
 "Table2":
 {"Items":
 [{"AttributeName1": {"S":"AttributeValue"},
 "AttributeName2": {"N":"AttributeValue"},
 "AttributeName3": {"SS":["AttributeValue", "AttributeValue", "Attribute
Value"]}
 },

API Version 2012-08-10
742

Amazon DynamoDB Developer Guide
BatchGetItem

 {"AttributeName1": {"S": "AttributeValue"},
 "AttributeName2": {"S": "AttributeValue"},
 "AttributeName3": {"NS": ["AttributeValue", "AttributeValue","Attribute
Value"]}
 }],
 "ConsumedCapacityUnits":1}
 },
 "UnprocessedKeys":
 {"Table3":
 {"Keys":
 [{"HashKeyElement": {"S":"KeyValue1"}, "RangeKeyElement":{"N":"Key
Value2"}},
 {"HashKeyElement": {"S":"KeyValue3"}, "RangeKeyElement":{"N":"Key
Value4"}},
 {"HashKeyElement": {"S":"KeyValue5"}, "RangeKeyElement":{"N":"Key
Value6"}}],
 "AttributesToGet":["AttributeName1", "AttributeName2", "AttributeName3"]}

 }
}

DescriptionName

Table names and the respective item attributes
from the tables.

Type: Map

Responses

The name of the table containing the items. The
entry is simply a string specifying the table with no
label.

Type: String

Table

Container for the attribute names and values
meeting the operation parameters.

Type: Map of attribute names to and their data
types and values.

Items

The number of read capacity units consumed, for
each table. This value shows the number applied
toward your provisioned throughput. Requests for
non-existent items consume the minimum read
capacity units, depending on the type of read. For
more information see Specifying Read and Write
Requirements for Tables (p. 62).

Type: Number

ConsumedCapacityUnits

Contains an array of tables and their respective
keys that were not processed with the current re-
sponse, possibly due to reaching a limit on the re-
sponse size. The UnprocessedKeys value is in
the same form as a RequestItems parameter (so
the value can be provided directly to a subsequent
BatchGetItem operation). For more information,
see the above RequestItems parameter.

Type: Array

UnprocessedKeys

API Version 2012-08-10
743

Amazon DynamoDB Developer Guide
BatchGetItem

DescriptionName

The primary key attribute values that define the
items and the attributes associated with the items.
For more information about primary keys, see
Primary Key (p. 5) .

Type: Array of attribute name-value pairs.

UnprocessedKeys: Table: Keys

Attribute names within the specified table. If attrib-
ute names are not specified then all attributes will
be returned. If some attributes are not found, they
will not appear in the result.

Type: Array of attribute names.

UnprocessedKeys: Table: AttributesToGet

If set to true, then a consistent read is used for
the specified table, otherwise an eventually consist-
ent read is used.

Type: Boolean.

UnprocessedKeys: Table: ConsistentRead

Special Errors

DescriptionError

Your maximum allowed provisioned throughput has
been exceeded.

ProvisionedThroughputExceededException

Examples
The following examples show an HTTP POST request and response using the BatchGetItem operation.
For examples using the AWS SDK, see Working with Items in DynamoDB (p. 92).

Sample Request

The following sample requests attributes from two different tables.

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.BatchGetItem
content-type: application/x-amz-json-1.0
content-length: 409

{"RequestItems":
 {"comp2":
 {"Keys":
 [{"HashKeyElement":{"S":"Julie"}},{"HashKeyElement":{"S":"Mingus"}}],

 "AttributesToGet":["user","friends"]},
 "comp1":
 {"Keys":
 [{"HashKeyElement":{"S":"Casey"},"RangeKeyEle
ment":{"N":"1319509152"}},

API Version 2012-08-10
744

Amazon DynamoDB Developer Guide
BatchGetItem

 {"HashKeyElement":{"S":"Dave"},"RangeKeyElement":{"N":"1319509155"}},

 {"HashKeyElement":{"S":"Riley"},"RangeKeyEle
ment":{"N":"1319509158"}}],
 "AttributesToGet":["user","status"]}
 }
}

Sample Response

The following sample is the response.

HTTP/1.1 200 OK
x-amzn-RequestId: GTPQVRM4VJS792J1UFJTKUBVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 373
Date: Fri, 02 Sep 2011 23:07:39 GMT

{"Responses":
 {"comp2":
 {"Items":
 [{"status":{"S":"online"},"user":{"S":"Casey"}},
 {"status":{"S":"working"},"user":{"S":"Riley"}},
 {"status":{"S":"running"},"user":{"S":"Dave"}}],
 "ConsumedCapacityUnits":1.5},
 "comp2":
 {"Items":
 [{"friends":{"SS":["Elisabeth", "Peter"]},"user":{"S":"Mingus"}},
 {"friends":{"SS":["Dave", "Peter"]},"user":{"S":"Julie"}}],
 "ConsumedCapacityUnits":1}
 },
 "UnprocessedKeys":{}
}

BatchWriteItem
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
This operation enables you to put or delete several items across multiple tables in a single API call.

To upload one item, you can use the PutItem API and to delete one item, you can use the DeleteItem
API. However, when you want to upload or delete large amounts of data, such as uploading large amounts
of data from Amazon Elastic MapReduce (Amazon EMR) or migrate data from another database in to
DynamoDB, this API offers an efficient alternative.

If you use languages such as Java, you can use threads to upload items in parallel. This adds complexity
in your application to handle the threads. Other languages don't support threading. For example, if you
are using PHP, you must upload or delete items one at a time. In both situations, the BatchWriteItem
API provides an alternative where the API performs the specified put and delete operations in parallel,
giving you the power of the thread pool approach without having to introduce complexity in your application.

API Version 2012-08-10
745

Amazon DynamoDB Developer Guide
BatchWriteItem

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

Note that each individual put and delete specified in a BatchWriteItem operation costs the same in
terms of consumed capacity units, however, the API performs the specified operations in parallel giving
you lower latency. Delete operations on non-existent items consume 1 write capacity unit. For more
information about consumed capacity units, see Working with Tables in DynamoDB (p. 61).

When using this API, note the following limitations:

• Maximum operations in a single request—You can specify a total of up to 25 put or delete operations;
however, the total request size cannot exceed 1 MB (the HTTP payload).

• You can use the BatchWriteItem operation only to put and delete items.You cannot use it to update
existing items.

• Not an atomic operation—Individual operations specified in a BatchWriteItem are atomic; however
BatchWriteItem as a whole is a "best-effort" operation and not an atomic operation. That is, in a
BatchWriteItem request, some operations might succeed and others might fail.The failed operations
are returned in an UnprocessedItems field in the response. Some of these failures might be because
you exceeded the provisioned throughput configured for the table or a transient failure such as a network
error.You can investigate and optionally resend the requests. Typically, you call BatchWriteItem in
a loop and in each iteration check for unprocessed items, and submit a new BatchWriteItem request
with those unprocessed items.

• Does not return any items—The BatchWriteItem is designed for uploading large amounts of data
efficiently. It does not provide some of the sophistication offered by APIs such as PutItem and
DeleteItem. For example, the DeleteItem API supports the ReturnValues field in your request
body to request the deleted item in the response. The BatchWriteItem operation does not return
any items in the response.

• Unlike the PutItem and DeleteItem APIs, BatchWriteItem does not allow you to specify conditions
on individual write requests in the operation.

• Attribute values must not be null; string and binary type attributes must have lengths greater than zero;
and set type attributes must not be empty. Requests that have empty values will be rejected with a
ValidationException.

DynamoDB rejects the entire batch write operation if any one of the following is true:

• If one or more tables specified in the BatchWriteItem request does not exist.

• If primary key attributes specified on an item in the request does not match the corresponding table's
primary key schema.

• If you try to perform multiple operations on the same item in the same BatchWriteItem request. For
example, you cannot put and delete the same item in the same BatchWriteItem request.

• If the total request size exceeds the 1 MB request size (the HTTP payload) limit.

• If any individual item in a batch exceeds the 64 KB item size limit.

Requests

Syntax

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.BatchGetItem
content-type: application/x-amz-json-1.0

{
 "RequestItems" : RequestItems
}

API Version 2012-08-10
746

Amazon DynamoDB Developer Guide
BatchWriteItem

RequestItems
{
 "TableName1" : [Request, Request, ...],
 "TableName2" : [Request, Request, ...],
 ...
}

Request ::=
PutRequest | DeleteRequest

PutRequest ::=
{
 "PutRequest" : {
 "Item" : {
 "Attribute-Name1" : Attribute-Value,
 "Attribute-Name2" : Attribute-Value,
 ...
 }
 }
}

DeleteRequest ::=
{
 "DeleteRequest" : {
 "Key" : PrimaryKey-Value
 }
}

PrimaryKey-Value ::= HashTypePK | HashAndRangeTypePK

HashTypePK ::=
{
 "HashKeyElement" : Attribute-Value
}

HashAndRangeTypePK
{
 "HashKeyElement" : Attribute-Value,
 "RangeKeyElement" : Attribute-Value,
}

Attribute-Value ::= String | Numeric| Binary | StringSet | NumericSet | BinarySet

Numeric ::=
{
 "N": "Number"
}

String ::=
{
 "S": "String"
}

Binary ::=
{

API Version 2012-08-10
747

Amazon DynamoDB Developer Guide
BatchWriteItem

 "B": "Base64 encoded binary data"
}

StringSet ::=
{
 "SS": ["String1", "String2", ...]
}

NumberSet ::=
{
 "NS": ["Number1", "Number2", ...]
}

BinarySet ::=
{
 "BS": ["Binary1", "Binary2", ...]
}

In the request body, the RequestItems JSON object describes the operations that you want to perform.
The operations are grouped by tables.You can use the BatchWriteItem API to update or delete several
items across multiple tables. For each specific write request, you must identify the type of request
(PutItem, DeleteItem) followed by detail information about the operation.

• For a PutRequest, you provide the item, that is, a list of attributes and their values.

• For a DeleteRequest, you provide the primary key name and value.

Responses

Syntax

The following is the syntax of the JSON body returned in the response.

{
 "Responses" : ConsumedCapacityUnitsByTable
 "UnprocessedItems" : RequestItems
}

ConsumedCapacityUnitsByTable
{
 "TableName1" : { "ConsumedCapacityUnits", : NumericValue },
 "TableName2" : { "ConsumedCapacityUnits", : NumericValue },
 ...
}

RequestItems
This syntax is identical to the one described in the JSON syntax in the request.

Special Errors
No errors specific to this API.

API Version 2012-08-10
748

Amazon DynamoDB Developer Guide
BatchWriteItem

Examples
The following example shows an HTTP POST request and the response of a BatchWriteItem operation.
The request specifies the following operations on the Reply and the Thread tables:

• Put an item and delete an item from the Reply table

• Put an item into the Thread table

For examples using the AWS SDK, see Working with Items in DynamoDB (p. 92).

Sample Request

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.BatchGetItem
content-type: application/x-amz-json-1.0

{
 "RequestItems":{
 "Reply":[
 {
 "PutRequest":{
 "Item":{
 "ReplyDateTime":{
 "S":"2012-04-03T11:04:47.034Z"
 },
 "Id":{
 "S":"DynamoDB#DynamoDB Thread 5"
 }
 }
 }
 },
 {
 "DeleteRequest":{
 "Key":{
 "HashKeyElement":{
 "S":"DynamoDB#DynamoDB Thread 4"
 },
 "RangeKeyElement":{
 "S":"oops - accidental row"
 }
 }
 }
 }
],
 "Thread":[
 {
 "PutRequest":{
 "Item":{
 "ForumName":{
 "S":"DynamoDB"
 },
 "Subject":{
 "S":"DynamoDB Thread 5"
 }

API Version 2012-08-10
749

Amazon DynamoDB Developer Guide
BatchWriteItem

 }
 }
 }
]
 }
}

Sample Response

The following example response shows a put operation on both the Thread and Reply tables succeeded
and a delete operation on the Reply table failed (for reasons such as throttling that is caused when you
exceed the provisioned throughput on the table). Note the following in the JSON response:

• The Responses object shows one capacity unit was consumed on both the Thread and Reply tables
as a result of the successful put operation on each of these tables.

• The UnprocessedItems object shows the unsuccessful delete operation on the Reply table.You
can then issue a new BatchWriteItem API call to address these unprocessed requests.

HTTP/1.1 200 OK
x-amzn-RequestId: G8M9ANLOE5QA26AEUHJKJE0ASBVV4KQNSO5AEMVJF66Q9ASUAAJG
Content-Type: application/x-amz-json-1.0
Content-Length: 536
Date: Thu, 05 Apr 2012 18:22:09 GMT

{
 "Responses":{
 "Thread":{
 "ConsumedCapacityUnits":1.0
 },
 "Reply":{
 "ConsumedCapacityUnits":1.0
 }
 },
 "UnprocessedItems":{
 "Reply":[
 {
 "DeleteRequest":{
 "Key":{
 "HashKeyElement":{
 "S":"DynamoDB#DynamoDB Thread 4"
 },
 "RangeKeyElement":{
 "S":"oops - accidental row"
 }
 }
 }
 }
]
 }
}

API Version 2012-08-10
750

Amazon DynamoDB Developer Guide
BatchWriteItem

CreateTable
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
The CreateTable operation adds a new table to your account.

The table name must be unique among those associated with the AWS Account issuing the request, and
the AWS region that receives the request (such as dynamodb.us-west-2.amazonaws.com). Each
DynamoDB endpoint is entirely independent. For example, if you have two tables called "MyTable," one
in dynamodb.us-west-2.amazonaws.com and one in dynamodb.us-west-1.amazonaws.com, they are
completely independent and do not share any data.

The CreateTable operation triggers an asynchronous workflow to begin creating the table. DynamoDB
immediately returns the state of the table (CREATING) until the table is in the ACTIVE state. Once the
table is in the ACTIVE state, you can perform data plane operations.

Use the DescribeTables (p. 762) API to check the status of the table.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.CreateTable
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"AttributeName1","AttributeType":"S"},

 "RangeKeyElement":{"AttributeName":"AttributeName2","Attribute
Type":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":10}
}

RequiredDescriptionName

YesThe name of the table to create.

Allowed characters are a-z, A-Z, 0-9, '_' (un-
derscore), '-' (dash), and '.' (dot). Names can
be between 3 and 255 characters long.

Type: String

TableName

API Version 2012-08-10
751

Amazon DynamoDB Developer Guide
CreateTable

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

RequiredDescriptionName

YesThe primary key (simple or composite) struc-
ture for the table. A name-value pair for the
HashKeyElement is required, and a name-
value pair for the RangeKeyElement is op-
tional (only required for composite primary
keys). For more information about primary
keys, see Primary Key (p. 5).

Primary key element names can be between
1 and 255 characters long with no character
restrictions.

Possible values for the AttributeType are "S"
(string), "N" (numeric), or "B" (binary).

Type: Map of HashKeyElement, or
HashKeyElement and RangeKeyElement
for a composite primary key.

KeySchema

YesNew throughput for the specified table, con-
sisting of values for ReadCapacityUnits
and WriteCapacityUnits. For details, see
Specifying Read and Write Requirements for
Tables (p. 62).

Note
For current maximum/minimum val-
ues, see Limits in Dy-
namoDB (p. 667).

Type: Array

ProvisionedThroughput

YesSets the minimum number of consistent
ReadCapacityUnits consumed per second
for the specified table before DynamoDB bal-
ances the load with other operations.

Eventually consistent read operations require
less effort than a consistent read operation,
so a setting of 50 consistent ReadCapacity-
Units per second provides 100 eventually
consistent ReadCapacityUnits per second.
Type: Number

ProvisionedThroughput: ReadCa-
pacityUnits

YesSets the minimum number of WriteCapa-
cityUnits consumed per second for the
specified table before DynamoDB balances
the load with other operations.
Type: Number

ProvisionedThroughput:WriteCa-
pacityUnits

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: CSOC7TJPLR0OOKIRLGOHVAICUFVV4KQNSO5AEMVJF66Q9ASUAAJG

API Version 2012-08-10
752

Amazon DynamoDB Developer Guide
CreateTable

content-type: application/x-amz-json-1.0
content-length: 311
Date: Tue, 12 Jul 2011 21:31:03 GMT

{"TableDescription":
 {"CreationDateTime":1.310506263362E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"AttributeName1","AttributeType":"S"},

 "RangeKeyElement":{"AttributeName":"AttributeName2","Attribute
Type":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":10},
 "TableName":"Table1",
 "TableStatus":"CREATING"
 }
}

DescriptionName

A container for the table properties.TableDescription

Date when the table was created in UNIX epoch time.

Type: Number

CreationDateTime

The primary key (simple or composite) structure for the
table. A name-value pair for the HashKeyElement is
required, and a name-value pair for the
RangeKeyElement is optional (only required for com-
posite primary keys). For more information about
primary keys, see Primary Key (p. 5) .

Type: Map of HashKeyElement, or HashKeyElement
and RangeKeyElement for a composite primary key.

KeySchema

Throughput for the specified table, consisting of values
for ReadCapacityUnits and WriteCapacityUnits.
See Specifying Read and Write Requirements for
Tables (p. 62).

Type: Array

ProvisionedThroughput

The minimum number of ReadCapacityUnits con-
sumed per second before DynamoDB. balances the
load with other operations

Type: Number

ProvisionedThroughput :ReadCapacity-
Units

The minimum number of ReadCapacityUnits con-
sumed per second before WriteCapacityUnits.
balances the load with other operations

Type: Number

ProvisionedThroughput :WriteCapacity-
Units

The name of the created table.

Type: String

TableName

API Version 2012-08-10
753

Amazon DynamoDB Developer Guide
CreateTable

http://www.epochconverter.com/

DescriptionName

The current state of the table (CREATING). Once the
table is in the ACTIVE state, you can put data in it.

Use the DescribeTables (p. 762) API to check the status
of the table.
Type: String

TableStatus

Special Errors

DescriptionError

Attempt to recreate an already existing table.ResourceInUseException

The number of simultaneous table requests (cumulative
number of tables in the CREATING, DELETING or UPDATING
state) exceeds the maximum allowed.

Note
For current maximum/minimum values, see Limits
in DynamoDB (p. 667).

.

LimitExceededException

Examples
The following example creates a table with a composite primary key containing a string and a number.
For examples using the AWS SDK, see Working with Tables in DynamoDB (p. 61).

Sample Request

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.CreateTable
content-type: application/x-amz-json-1.0

{"TableName":"comp-table",
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":10}
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: CSOC7TJPLR0OOKIRLGOHVAICUFVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 311
Date: Tue, 12 Jul 2011 21:31:03 GMT

API Version 2012-08-10
754

Amazon DynamoDB Developer Guide
CreateTable

{"TableDescription":
 {"CreationDateTime":1.310506263362E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":10},
 "TableName":"comp-table",
 "TableStatus":"CREATING"
 }
}

Related Actions
• DescribeTables (p. 762)

• DeleteTable (p. 759)

DeleteItem
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
Deletes a single item in a table by primary key.You can perform a conditional delete operation that deletes
the item if it exists, or if it has an expected attribute value.

Note
If you specify DeleteItem without attributes or values, all the attributes for the item are deleted.
Unless you specify conditions, the DeleteItem is an idempotent operation; running it multiple
times on the same item or attribute does not result in an error response.
Conditional deletes are useful for only deleting items and attributes if specific conditions are met.
If the conditions are met, DynamoDB performs the delete. Otherwise, the item is not deleted.
You can perform the expected conditional check on one attribute per operation.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DeleteItem
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Key":
 {"HashKeyElement":{"S":"AttributeValue1"},"RangeKeyElement":{"N":"At
tributeValue2"}},
 "Expected":{"AttributeName3":{"Value":{"S":"AttributeValue3"}}},
 "ReturnValues":"ALL_OLD"}
}

API Version 2012-08-10
755

Amazon DynamoDB Developer Guide
DeleteItem

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

RequiredDescriptionName

YesThe name of the table containing the item to
delete.

Type: String

TableName

YesThe primary key that defines the item. For
more information about primary keys, see
Primary Key (p. 5).

Type: Map of HashKeyElement to its value
and RangeKeyElement to its value.

Key

NoDesignates an attribute for a conditional de-
lete. The Expected parameter allows you to
provide an attribute name, and whether or not
DynamoDB should check to see if the attribute
has a particular value before deleting it.

Type: Map of attribute names.

Expected

NoThe name of the attribute for the conditional
put.

Type: String

Expected:AttributeName

API Version 2012-08-10
756

Amazon DynamoDB Developer Guide
DeleteItem

RequiredDescriptionName

NoUse this parameter to specify whether or not
a value already exists for the attribute name-
value pair.
The following JSON notation deletes the item
if the "Color" attribute doesn't exist for that
item:

"Expected" :
 {"Color":{"Exists":false}}

The following JSON notation checks to see if
the attribute with name "Color" has an existing
value of "Yellow" before deleting the item:

"Expected" :
 {"Color":{"Ex
ists":true},{"Value":{"S":"Yel
low"}}}

By default, if you use the Expected paramet-
er and provide a Value, DynamoDB assumes
the attribute exists and has a current value to
be replaced. So you don't have to specify
{"Exists":true}, because it is implied.
You can shorten the request to:

"Expected" :
 {"Color":{"Value":{"S":"Yellow"}}}

Note
If you specify {"Exists":true}
without an attribute value to check,
DynamoDB returns an error.

Expected:AttributeName: Expec-
tedAttributeValue

NoUse this parameter if you want to get the at-
tribute name-value pairs before they were
deleted. Possible parameter values are NONE
(default) or ALL_OLD. If ALL_OLD is specified,
the content of the old item is returned. If this
parameter is not provided or is NONE, nothing
is returned.

Type: String

ReturnValues

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: CSOC7TJPLR0OOKIRLGOHVAICUFVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0

API Version 2012-08-10
757

Amazon DynamoDB Developer Guide
DeleteItem

content-length: 353
Date: Tue, 12 Jul 2011 21:31:03 GMT

{"Attributes":
 {"AttributeName3":{"SS":["AttributeValue3","AttributeValue4","Attribute
Value5"]},
 "AttributeName2":{"S":"AttributeValue2"},
 "AttributeName1":{"N":"AttributeValue1"}
 },
"ConsumedCapacityUnits":1
}

DescriptionName

If the ReturnValues parameter is provided as
ALL_OLD in the request, DynamoDB returns an array
of attribute name-value pairs (essentially, the deleted
item). Otherwise, the response contains an empty set.

Type: Array of attribute name-value pairs.

Attributes

The number of write capacity units consumed by the
operation.This value shows the number applied toward
your provisioned throughput. Delete requests on non-
existent items consume 1 write capacity unit. For more
information see Specifying Read and Write Require-
ments for Tables (p. 62).

Type: Number

ConsumedCapacityUnits

Special Errors

DescriptionError

Conditional check failed. An expected attribute value was not
found.

ConditionalCheckFailedException

Examples

Sample Request

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DeleteItem
content-type: application/x-amz-json-1.0

{"TableName":"comp-table",
 "Key":
 {"HashKeyElement":{"S":"Mingus"},"RangeKeyElement":{"N":"200"}},
 "Expected":
 {"status":{"Value":{"S":"shopping"}}},

API Version 2012-08-10
758

Amazon DynamoDB Developer Guide
DeleteItem

 "ReturnValues":"ALL_OLD"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: U9809LI6BBFJA5N2R0TB0P017JVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 353
Date: Tue, 12 Jul 2011 22:31:23 GMT

{"Attributes":
 {"friends":{"SS":["Dooley","Ben","Daisy"]},
 "status":{"S":"shopping"},
 "time":{"N":"200"},
 "user":{"S":"Mingus"}
 },
"ConsumedCapacityUnits":1
}

Related Actions
• PutItem (p. 769)

DeleteTable
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
The DeleteTable operation deletes a table and all of its items. After a DeleteTable request, the
specified table is in the DELETING state until DynamoDB completes the deletion. If the table is in the
ACTIVE state, you can delete it. If a table is in CREATING or UPDATING states, then DynamoDB returns
a ResourceInUseException error. If the specified table does not exist, DynamoDB returns a
ResourceNotFoundException. If table is already in the DELETING state, no error is returned.

Note
DynamoDB might continue to accept data plane operation requests, such as GetItem and
PutItem, on a table in the DELETING state until the table deletion is complete.

Tables are unique among those associated with the AWS Account issuing the request, and the AWS
region that receives the request (such as dynamodb.us-west-1.amazonaws.com). Each DynamoDB
endpoint is entirely independent. For example, if you have two tables called "MyTable," one in
dynamodb.us-west-2.amazonaws.com and one in dynamodb.us-west-1.amazonaws.com, they are
completely independent and do not share any data; deleting one does not delete the other.

Use the DescribeTables (p. 762) API to check the status of the table.

API Version 2012-08-10
759

Amazon DynamoDB Developer Guide
DeleteTable

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DeleteTable
content-type: application/x-amz-json-1.0

{"TableName":"Table1"}

RequiredDescriptionName

YesThe name of the table to delete.

Type: String

TableName

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: 4HONCKIVH1BFUDQ1U68CTG3N27VV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 311
Date: Sun, 14 Aug 2011 22:56:22 GMT

{"TableDescription":
 {"CreationDateTime":1.313362508446E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":10,"WriteCapacityUnits":10},
 "TableName":"Table1",
 "TableStatus":"DELETING"
 }
}

DescriptionName

A container for the table properties.TableDescription

Date when the table was created.

Type: Number

CreationDateTime

API Version 2012-08-10
760

Amazon DynamoDB Developer Guide
DeleteTable

DescriptionName

The primary key (simple or composite) structure for the
table. A name-value pair for the HashKeyElement is
required, and a name-value pair for the
RangeKeyElement is optional (only required for com-
posite primary keys). For more information about
primary keys, see Primary Key (p. 5).

Type: Map of HashKeyElement, or HashKeyElement
and RangeKeyElement for a composite primary key.

KeySchema

Throughput for the specified table, consisting of values
for ReadCapacityUnits and WriteCapacityUnits.
See Specifying Read and Write Requirements for
Tables (p. 62).

ProvisionedThroughput

The minimum number of ReadCapacityUnits con-
sumed per second for the specified table before Dy-
namoDB balances the load with other operations.

Type: Number

ProvisionedThroughput:ReadCapacity-
Units

The minimum number of WriteCapacityUnits con-
sumed per second for the specified table before Dy-
namoDB balances the load with other operations.

Type: Number

ProvisionedThroughput:WriteCapacity-
Units

The name of the deleted table.

Type: String

TableName

The current state of the table (DELETING). Once the
table is deleted, subsequent requests for the table re-
turn resource not found.

Use the DescribeTables (p. 762) API to check the status
of the table.
Type: String

TableStatus

Special Errors

DescriptionError

Table is in state CREATING or UPDATING and can't be deleted.ResourceInUseException

Examples

Sample Request

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DeleteTable
content-type: application/x-amz-json-1.0
content-length: 40

API Version 2012-08-10
761

Amazon DynamoDB Developer Guide
DeleteTable

{"TableName":"favorite-movies-table"}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: 4HONCKIVH1BFUDQ1U68CTG3N27VV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 160
Date: Sun, 14 Aug 2011 17:20:03 GMT

{"TableDescription":
 {"CreationDateTime":1.313362508446E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"name","AttributeType":"S"}},
 "TableName":"favorite-movies-table",
 "TableStatus":"DELETING"
}

Related Actions
• CreateTable (p. 751)

• DescribeTables (p. 762)

DescribeTables
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
Returns information about the table, including the current status of the table, the primary key schema and
when the table was created. DescribeTable results are eventually consistent. If you use DescribeTable
too early in the process of creating a table, DynamoDB returns a ResourceNotFoundException. If you
use DescribeTable too early in the process of updating a table, the new values might not be immediately
available.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DescribeTable
content-type: application/x-amz-json-1.0

{"TableName":"Table1"}

API Version 2012-08-10
762

Amazon DynamoDB Developer Guide
DescribeTables

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

RequiredDescriptionName

YesThe name of the table to describe.

Type: String

TableName

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
Content-Length: 543

{"Table":
 {"CreationDateTime":1.309988345372E9,
 ItemCount:1,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"AttributeName1","AttributeType":"S"},

 "RangeKeyElement":{"AttributeName":"AttributeName2","Attribute
Type":"N"}},
 "ProvisionedThroughput":{"LastIncreaseDateTime": Date, "LastDecreaseDate
Time": Date, "ReadCapacityUnits":10,"WriteCapacityUnits":10},
 "TableName":"Table1",
 "TableSizeBytes":1,
 "TableStatus":"ACTIVE"
 }
}

DescriptionName

Container for the table being described.

Type: String

Table

Date when the table was created in UNIX epoch time.CreationDateTime

Number of items in the specified table. DynamoDB up-
dates this value approximately every six hours. Recent
changes might not be reflected in this value.

Type: Number

ItemCount

The primary key (simple or composite) structure for the
table. A name-value pair for the HashKeyElement is
required, and a name-value pair for the
RangeKeyElement is optional (only required for com-
posite primary keys). The maximum hash key size is
2048 bytes.The maximum range key size is 1024 bytes.
Both limits are enforced separately (i.e. you can have
a combined hash + range 2048 + 1024 key). For more
information about primary keys, see Primary Key (p. 5)
.

KeySchema

API Version 2012-08-10
763

Amazon DynamoDB Developer Guide
DescribeTables

http://www.epochconverter.com/

DescriptionName

Throughput for the specified table, consisting of values
for LastIncreaseDateTime (if applicable), LastDe-
creaseDateTime (if applicable), ReadCapacity-
Units and WriteCapacityUnits. If the throughput
for the table has never been increased or decreased,
DynamoDB does not return values for those elements.
See Specifying Read and Write Requirements for
Tables (p. 62).
Type: Array

ProvisionedThroughput

The name of the requested table.

Type: String

TableName

Total size of the specified table, in bytes. DynamoDB
updates this value approximately every six hours. Re-
cent changes might not be reflected in this value.

Type: Number

TableSizeBytes

The current state of the table (CREATING, ACTIVE,
DELETING or UPDATING). Once the table is in the
ACTIVE state, you can add data.

TableStatus

Special Errors
No errors are specific to this API.

Examples
The following examples show an HTTP POST request and response using the DescribeTable operation
for a table named "comp-table". The table has a composite primary key.

Sample Request

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DescribeTable
content-type: application/x-amz-json-1.0

{"TableName":"users"}

Sample Response

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 543

{"Table":
 {"CreationDateTime":1.309988345372E9,

API Version 2012-08-10
764

Amazon DynamoDB Developer Guide
DescribeTables

 "ItemCount":23,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":{"LastIncreaseDateTime": 1.309988345384E9, "ReadCa
pacityUnits":10,"WriteCapacityUnits":10},
 "TableName":"users",
 "TableSizeBytes":949,
 "TableStatus":"ACTIVE"
 }
}

Related Actions
• CreateTable (p. 751)

• DeleteTable (p. 759)

• ListTables (p. 767)

GetItem
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
The GetItem operation returns a set of Attributes for an item that matches the primary key. If there
is no matching item, GetItem does not return any data.

The GetItem operation provides an eventually consistent read by default. If eventually consistent reads
are not acceptable for your application, use ConsistentRead. Although this operation might take longer
than a standard read, it always returns the last updated value. For more information, see Data Read and
Consistency Considerations (p. 10).

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.GetItem
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Key":
 {"HashKeyElement": {"S":"AttributeValue1"},
 "RangeKeyElement": {"N":"AttributeValue2"}
 },
 "AttributesToGet":["AttributeName3","AttributeName4"],
 "ConsistentRead":Boolean
}

API Version 2012-08-10
765

Amazon DynamoDB Developer Guide
GetItem

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

RequiredDescriptionName

YesThe name of the table containing the reques-
ted item.

Type: String

TableName

YesThe primary key values that define the item.
For more information about primary keys, see
Primary Key (p. 5).

Type: Map of HashKeyElement to its value
and RangeKeyElement to its value.

Key

NoArray of Attribute names. If attribute names
are not specified then all attributes will be re-
turned. If some attributes are not found, they
will not appear in the result.

Type: Array

AttributesToGet

NoIf set to true, then a consistent read is is-
sued, otherwise eventually consistent is used.

Type: Boolean

ConsistentRead

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 144

{"Item":{
 "AttributeName3":{"S":"AttributeValue3"},
 "AttributeName4":{"N":"AttributeValue4"},
 "AttributeName5":{"B":"dmFsdWU="}
 },
"ConsumedCapacityUnits": 0.5
}

DescriptionName

Contains the requested attributes.

Type: Map of attribute name-value pairs.

Item

The number of read capacity units consumed by
the operation.This value shows the number applied
toward your provisioned throughput. Requests for
non-existent items consume the minimum read
capacity units, depending on the type of read. For
more information see Specifying Read and Write
Requirements for Tables (p. 62).

Type: Number

ConsumedCapacityUnits

API Version 2012-08-10
766

Amazon DynamoDB Developer Guide
GetItem

Special Errors
No errors specific to this API.

Examples
For examples using the AWS SDK, see Working with Items in DynamoDB (p. 92).

Sample Request

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.GetItem
content-type: application/x-amz-json-1.0

{"TableName":"comptable",
 "Key":
 {"HashKeyElement":{"S":"Julie"},
 "RangeKeyElement":{"N":"1307654345"}},
 "AttributesToGet":["status","friends"],
 "ConsistentRead":true
}

Sample Response

Notice the ConsumedCapacityUnits value is 1, because the optional parameter ConsistentRead is set
to true. If ConsistentRead is set to false (or not specified) for the same request, the response is
eventually consistent and the ConsumedCapacityUnits value would be 0.5.

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 72

{"Item":
 {"friends":{"SS":["Lynda, Aaron"]},
 "status":{"S":"online"}
 },
"ConsumedCapacityUnits": 1
}

ListTables
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
Returns an array of all the tables associated with the current account and endpoint.

Each DynamoDB endpoint is entirely independent. For example, if you have two tables called "MyTable,"
one in dynamodb.us-west-2.amazonaws.com and one in dynamodb.us-east-1.amazonaws.com, they are

API Version 2012-08-10
767

Amazon DynamoDB Developer Guide
ListTables

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

completely independent and do not share any data. The ListTables operation returns all of the table
names associated with the account making the request, for the endpoint that receives the request.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.ListTables
content-type: application/x-amz-json-1.0

{"ExclusiveStartTableName":"Table1","Limit":3}

The ListTables operation, by default, requests all of the table names associated with the account making
the request, for the endpoint that receives the request.

RequiredDescriptionName

NoA number of maximum table names to return.

Type: Integer

Limit

NoThe name of the table that starts the list. If you
already ran a ListTables operation and received
an LastEvaluatedTableName value in the
response, use that value here to continue the
list.

Type: String

ExclusiveStartTableName

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: S1LEK2DPQP8OJNHVHL8OU2M7KRVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 81
Date: Fri, 21 Oct 2011 20:35:38 GMT

{"TableNames":["Table1","Table2","Table3"], "LastEvaluatedTableName":"Table3"}

DescriptionName

The names of the tables associated with the current
account at the current endpoint.

Type: Array

TableNames

API Version 2012-08-10
768

Amazon DynamoDB Developer Guide
ListTables

DescriptionName

The name of the last table in the current list, only if
some tables for the account and endpoint have not
been returned. This value does not exist in a response
if all table names are already returned. Use this value
as the ExclusiveStartTableName in a new request
to continue the list until all the table names are returned.

Type: String

LastEvaluatedTableName

Special Errors
No errors are specific to this API.

Examples
The following examples show an HTTP POST request and response using the ListTables operation.

Sample Request

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.ListTables
content-type: application/x-amz-json-1.0

{"ExclusiveStartTableName":"comp2","Limit":3}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: S1LEK2DPQP8OJNHVHL8OU2M7KRVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 81
Date: Fri, 21 Oct 2011 20:35:38 GMT

{"LastEvaluatedTableName":"comp5","TableNames":["comp3","comp4","comp5"]}

Related Actions
• DescribeTables (p. 762)

• CreateTable (p. 751)

• DeleteTable (p. 759)

PutItem
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

API Version 2012-08-10
769

Amazon DynamoDB Developer Guide
PutItem

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

Description
Creates a new item, or replaces an old item with a new item (including all the attributes). If an item already
exists in the specified table with the same primary key, the new item completely replaces the existing
item.You can perform a conditional put (insert a new item if one with the specified primary key doesn't
exist), or replace an existing item if it has certain attribute values.

Attribute values may not be null; string and binary type attributes must have lengths greater than zero;
and set type attributes must not be empty. Requests with empty values will be rejected with a
ValidationException.

Note
To ensure that a new item does not replace an existing item, use a conditional put operation
with Exists set to false for the primary key attribute, or attributes.

For more information about using this API, see Working with Items in DynamoDB (p. 92).

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.PutItem
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Item":{
 "AttributeName1":{"S":"AttributeValue1"},
 "AttributeName2":{"N":"AttributeValue2"},
 "AttributeName5":{"B":"dmFsdWU="}
 },
 "Expected":{"AttributeName3":{"Value": {"S":"AttributeValue"}, "Ex
ists":Boolean}},
 "ReturnValues":"ReturnValuesConstant"}

RequiredDescriptionName

YesThe name of the table to contain the item.

Type: String

TableName

YesA map of the attributes for the item, and must
include the primary key values that define the
item. Other attribute name-value pairs can be
provided for the item. For more information
about primary keys, see Primary Key (p. 5).

Type: Map of attribute names to attribute val-
ues.

Item

API Version 2012-08-10
770

Amazon DynamoDB Developer Guide
PutItem

RequiredDescriptionName

NoDesignates an attribute for a conditional put.
The Expected parameter allows you to
provide an attribute name, and whether or not
DynamoDB should check to see if the attribute
value already exists; or if the attribute value
exists and has a particular value before
changing it.

Type: Map of an attribute names to an attrib-
ute value, and whether it exists.

Expected

NoThe name of the attribute for the conditional
put.

Type: String

Expected:AttributeName

NoUse this parameter to specify whether or not
a value already exists for the attribute name-
value pair.
The following JSON notation replaces the item
if the "Color" attribute doesn't already exist
for that item:

"Expected" :
 {"Color":{"Exists":false}}

The following JSON notation checks to see if
the attribute with name "Color" has an existing
value of "Yellow" before replacing the item:

"Expected" :
 {"Color":{"Ex
ists":true,{"Value":{"S":"Yel
low"}}}

By default, if you use the Expected paramet-
er and provide a Value, DynamoDB assumes
the attribute exists and has a current value to
be replaced. So you don't have to specify
{"Exists":true}, because it is implied.
You can shorten the request to:

"Expected" :
 {"Color":{"Value":{"S":"Yellow"}}}

Note
If you specify {"Exists":true}
without an attribute value to check,
DynamoDB returns an error.

Expected:AttributeName: Expec-
tedAttributeValue

API Version 2012-08-10
771

Amazon DynamoDB Developer Guide
PutItem

RequiredDescriptionName

NoUse this parameter if you want to get the at-
tribute name-value pairs before they were
updated with the PutItem request. Possible
parameter values are NONE (default) or
ALL_OLD. If ALL_OLD is specified, and
PutItem overwrote an attribute name-value
pair, the content of the old item is returned. If
this parameter is not provided or is NONE,
nothing is returned.

Type: String

ReturnValues

Responses

Syntax

The following syntax example assumes the request specified a ReturnValues parameter of ALL_OLD;
otherwise, the response has only the ConsumedCapacityUnits element.

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 85

{"Attributes":
 {"AttributeName3":{"S":"AttributeValue3"},
 "AttributeName2":{"SS":"AttributeValue2"},
 "AttributeName1":{"SS":"AttributeValue1"},
 },
"ConsumedCapacityUnits":1
}

DescriptionName

Attribute values before the put operation, but only if the
ReturnValues parameter is specified as ALL_OLD in
the request.

Type: Map of attribute name-value pairs.

Attributes

The number of write capacity units consumed by the
operation.This value shows the number applied toward
your provisioned throughput. For more information see
Specifying Read and Write Requirements for
Tables (p. 62).

Type: Number

ConsumedCapacityUnits

API Version 2012-08-10
772

Amazon DynamoDB Developer Guide
PutItem

Special Errors

DescriptionError

Conditional check failed. An expected attribute value was not
found.

ConditionalCheckFailedException

The specified item or attribute was not found.ResourceNotFoundException

Examples
For examples using the AWS SDK, see Working with Items in DynamoDB (p. 92).

Sample Request

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.PutItem
content-type: application/x-amz-json-1.0

{"TableName":"comp5",
 "Item":
 {"time":{"N":"300"},
 "feeling":{"S":"not surprised"},
 "user":{"S":"Riley"}
 },
 "Expected":
 {"feeling":{"Value":{"S":"surprised"},"Exists":true}}
 "ReturnValues":"ALL_OLD"
}

Sample Response

HTTP/1.1 200
x-amzn-RequestId: 8952fa74-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 84

{"Attributes":
 {"feeling":{"S":"surprised"},
 "time":{"N":"300"},
 "user":{"S":"Riley"}},
"ConsumedCapacityUnits":1
}

Related Actions
• UpdateItem (p. 788)

• DeleteItem (p. 755)

• GetItem (p. 765)

• BatchGetItem (p. 740)

API Version 2012-08-10
773

Amazon DynamoDB Developer Guide
PutItem

Query
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
A Query operation gets the values of one or more items and their attributes by primary key (Query is
only available for hash-and-range primary key tables).You must provide a specific HashKeyValue, and
can narrow the scope of the query using comparison operators on the RangeKeyValue of the primary
key. Use the ScanIndexForward parameter to get results in forward or reverse order by range key.

Queries that do not return results consume the minimum read capacity units according to the type of
read.

Note
If the total number of items meeting the query parameters exceeds the 1MB limit, the query stops
and results are returned to the user with a LastEvaluatedKey to continue the query in a
subsequent operation. Unlike a Scan operation, a Query operation never returns an empty result
set and a LastEvaluatedKey. The LastEvaluatedKey is only provided if the results exceed
1MB, or if you have used the Limit parameter.
The result can be set for a consistent read using the ConsistentRead parameter.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Query
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Limit":2,
 "ConsistentRead":true,
 "HashKeyValue":{"S":"AttributeValue1":},
 "RangeKeyCondition": {"AttributeValueList":[{"N":"AttributeValue2"}],"Compar
isonOperator":"GT"}
 "ScanIndexForward":true,
 "ExclusiveStartKey":{
 "HashKeyElement":{"S":"AttributeName1"},
 "RangeKeyElement":{"N":"AttributeName2"}
 },
 "AttributesToGet":["AttributeName1", "AttributeName2", "AttributeName3"]},
}

RequiredDescriptionName

YesThe name of the table containing the requested items.

Type: String

TableName

API Version 2012-08-10
774

Amazon DynamoDB Developer Guide
Query

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

RequiredDescriptionName

NoArray of Attribute names. If attribute names are not specified
then all attributes will be returned. If some attributes are not
found, they will not appear in the result.

Type: Array

AttributesToGet

NoThe maximum number of items to return (not necessarily the
number of matching items). If DynamoDB processes the
number of items up to the limit while querying the table, it
stops the query and returns the matching values up to that
point, and a LastEvaluatedKey to apply in a subsequent
operation to continue the query. Also, if the result set size
exceeds 1MB before DynamoDB hits this limit, it stops the
query and returns the matching values, and a LastEvalu-
atedKey to apply in a subsequent operation to continue the
query.

Type: Number

Limit

NoIf set to true, then a consistent read is issued, otherwise
eventually consistent is used.

Type: Boolean

ConsistentRead

NoIf set to true, DynamoDB returns a total number of items
that match the query parameters, instead of a list of the
matching items and their attributes.You can apply the Limit
parameter to count-only queries.

Do not set Count to true while providing a list of Attrib-
utesToGet; otherwise, DynamoDB returns a validation error.
For more information, see Count and ScannedCount (p. 195).

Type: Boolean

Count

YesAttribute value of the hash component of the composite
primary key.

Type: String, Number, or Binary

HashKeyValue

NoA container for the attribute values and comparison operators
to use for the query. A query request does not require a
RangeKeyCondition. If you provide only the HashKey-
Value, DynamoDB returns all items with the specified hash
key element value.

Type: Map

RangeKeyCondition

NoThe attribute values to evaluate for the query parameters.
The AttributeValueList contains one attribute value,
unless a BETWEEN comparison is specified. For the BETWEEN
comparison, the AttributeValueList contains two attrib-
ute values.

Type: A map of AttributeValue to a ComparisonOper-
ator.

RangeKeyCondition:
AttributeValueList

API Version 2012-08-10
775

Amazon DynamoDB Developer Guide
Query

RequiredDescriptionName

NoThe criteria for evaluating the provided attributes, such as
equals, greater-than, etc.The following are valid comparison
operators for a Query operation.

Note
String value comparisons for greater than, equals,
or less than are based on ASCII character code
values. For example, a is greater than A, and aa is
greater than B. For a list of code values, see http://
en.wikipedia.org/wiki/ASCII#ASCII_printable_char-
acters.
For Binary, DynamoDB treats each byte of the bin-
ary data as unsigned when it compares binary val-
ues, for example when evaluating query expres-
sions.

Type: String or Binary

RangeKeyCondition:
ComparisonOperator

EQ : Equal.
For EQ, AttributeValueList can contain only one At-
tributeValue of type String, Number, or Binary (not a set).
If an item contains an AttributeValue of a different type
than the one specified in the request, the value does not
match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6",
"2", "1"]}.

LE : Less than or equal.
For LE, AttributeValueList can contain only one At-
tributeValue of type String, Number, or Binary (not a set).
If an item contains an AttributeValue of a different type
than the one specified in the request, the value does not
match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to
{"NS":["6", "2", "1"]}.

LT : Less than.
For LT, AttributeValueList can contain only one At-
tributeValue of type String, Number, or Binary (not a set).
If an item contains an AttributeValue of a different type
than the one specified in the request, the value does not
match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to
{"NS":["6", "2", "1"]}.

GE : Greater than or equal.
For GE, AttributeValueList can contain only one At-
tributeValue of type String, Number, or Binary (not a set).
If an item contains an AttributeValue of a different type
than the one specified in the request, the value does not
match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to
{"NS":["6", "2", "1"]}.

API Version 2012-08-10
776

Amazon DynamoDB Developer Guide
Query

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

RequiredDescriptionName

GT : Greater than.
For GT, AttributeValueList can contain only one At-
tributeValue of type String, Number, or Binary (not a set).
If an item contains an AttributeValue of a different type
than the one specified in the request, the value does not
match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to
{"NS":["6", "2", "1"]}.

BEGINS_WITH : checks for a prefix.
For BEGINS_WITH, AttributeValueList can contain only
one AttributeValue of type String or Binary (not a Number
or a set). The target attribute of the comparison must be a
String or Binary (not a Number or a set).

BETWEEN : Greater than, or equal to, the first value and less
than, or equal to, the second value.
For BETWEEN, AttributeValueList must contain two
AttributeValue elements of the same type, either String,
Number, or Binary (not a set). A target attribute matches if
the target value is greater than, or equal to, the first element
and less than, or equal to, the second element. If an item
contains an AttributeValue of a different type than the
one specified in the request, the value does not match. For
example, {"S":"6"} does not compare to {"N":"6"}.
Also, {"N":"6"} does not compare to {"NS":["6", "2",
"1"]}.

NoSpecifies ascending or descending traversal of the index.
DynamoDB returns results reflecting the requested order
determined by the range key: If the data type is Number, the
results are returned in numeric order; otherwise, the traversal
is based on ASCII character code values.

Type: Boolean

Default is true (ascending).

ScanIndexForward

NoPrimary key of the item from which to continue an earlier
query. An earlier query might provide this value as the
LastEvaluatedKey if that query operation was interrupted
before completing the query; either because of the result set
size or the Limit parameter.The LastEvaluatedKey can
be passed back in a new query request to continue the op-
eration from that point.

Type: HashKeyElement, or HashKeyElement and
RangeKeyElement for a composite primary key.

ExclusiveStartKey

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375

API Version 2012-08-10
777

Amazon DynamoDB Developer Guide
Query

content-type: application/x-amz-json-1.0
content-length: 308

{"Count":2,"Items":[{
 "AttributeName1":{"S":"AttributeValue1"},
 "AttributeName2":{"N":"AttributeValue2"},
 "AttributeName3":{"S":"AttributeValue3"}
 },{
 "AttributeName1":{"S":"AttributeValue3"},
 "AttributeName2":{"N":"AttributeValue4"},
 "AttributeName3":{"S":"AttributeValue3"},
 "AttributeName5":{"B":"dmFsdWU="}
}],
 "LastEvaluatedKey":{"HashKeyElement":{"AttributeValue3":"S"},
 "RangeKeyElement":{"AttributeValue4":"N"}
 },
 "ConsumedCapacityUnits":1
}

DescriptionName

Item attributes meeting the query parameters.

Type: Map of attribute names to and their data
types and values.

Items

Number of items in the response. For more inform-
ation, see Count and ScannedCount (p. 195).

Type: Number

Count

Primary key of the item where the query operation
stopped, inclusive of the previous result set. Use
this value to start a new operation excluding this
value in the new request.
The LastEvaluatedKey is null when the entire
query result set is complete (i.e. the operation pro-
cessed the “last page”).

Type: HashKeyElement, or HashKeyElement
and RangeKeyElement for a composite primary
key.

LastEvaluatedKey

The number of read capacity units consumed by
the operation.This value shows the number applied
toward your provisioned throughput. For more in-
formation see Specifying Read and Write Require-
ments for Tables (p. 62).

Type: Number

ConsumedCapacityUnits

Special Errors

DescriptionError

The specified table was not found.ResourceNotFoundException

API Version 2012-08-10
778

Amazon DynamoDB Developer Guide
Query

Examples
For examples using the AWS SDK, see Query and Scan Operations in DynamoDB (p. 192).

Sample Request

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Query
content-type: application/x-amz-json-1.0

{"TableName":"1-hash-rangetable",
 "Limit":2,
 "HashKeyValue":{"S":"John"},
 "ScanIndexForward":false,
 "ExclusiveStartKey":{
 "HashKeyElement":{"S":"John"},
 "RangeKeyElement":{"S":"The Matrix"}
 }
}

Sample Response

HTTP/1.1 200
x-amzn-RequestId: 3647e778-71eb-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 308

{"Count":2,"Items":[{
 "fans":{"SS":["Jody","Jake"]},
 "name":{"S":"John"},
 "rating":{"S":"***"},
 "title":{"S":"The End"}
 },{
 "fans":{"SS":["Jody","Jake"]},
 "name":{"S":"John"},
 "rating":{"S":"***"},
 "title":{"S":"The Beatles"}
 }],
 "LastEvaluatedKey":{"HashKeyElement":{"S":"John"},"RangeKeyElement":{"S":"The
 Beatles"}},
"ConsumedCapacityUnits":1
}

Sample Request

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Query
content-type: application/x-amz-json-1.0

API Version 2012-08-10
779

Amazon DynamoDB Developer Guide
Query

{"TableName":"1-hash-rangetable",
 "Limit":2,
 "HashKeyValue":{"S":"Airplane"},
 "RangeKeyCondition":{"AttributeValueList":[{"N":"1980"}],"ComparisonOperat
or":"EQ"},
 "ScanIndexForward":false}

Sample Response

HTTP/1.1 200
x-amzn-RequestId: 8b9ee1ad-774c-11e0-9172-d954e38f553a
content-type: application/x-amz-json-1.0
content-length: 119

{"Count":1,"Items":[{
 "fans":{"SS":["Dave","Aaron"]},
 "name":{"S":"Airplane"},
 "rating":{"S":"***"},
 "year":{"N":"1980"}
 }],
"ConsumedCapacityUnits":1
}

Related Actions
• Scan (p. 780)

Scan
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
The Scan operation returns one or more items and its attributes by performing a full scan of a table.
Provide a ScanFilter to get more specific results.

Note
If the total number of scanned items exceeds the 1MB limit, the scan stops and results are
returned to the user with a LastEvaluatedKey to continue the scan in a subsequent operation.
The results also include the number of items exceeding the limit. A scan can result in no table
data meeting the filter criteria.
The result set is eventually consistent.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re

API Version 2012-08-10
780

Amazon DynamoDB Developer Guide
Scan

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Scan
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Limit": 2,
 "ScanFilter":{
 "AttributeName1":{"AttributeValueList":[{"S":"AttributeValue"}],"Compar
isonOperator":"EQ"}
 },
 "ExclusiveStartKey":{
 "HashKeyElement":{"S":"AttributeName1"},
 "RangeKeyElement":{"N":"AttributeName2"}
 },
 "AttributesToGet":["AttributeName1", "AttributeName2", "AttributeName3"]},
}

RequiredDescriptionName

YesThe name of the table containing the requested items.

Type: String

TableName

NoArray of Attribute names. If attribute names are not
specified then all attributes will be returned. If some
attributes are not found, they will not appear in the
result.

Type: Array

AttributesToGet

NoThe maximum number of items to evaluate (not neces-
sarily the number of matching items). If DynamoDB
processes the number of items up to the limit while
processing the results, it stops and returns the matching
values up to that point, and a LastEvaluatedKey to
apply in a subsequent operation to continue retrieving
items. Also, if the scanned data set size exceeds 1MB
before DynamoDB reaches this limit, it stops the scan
and returns the matching values up to the limit, and a
LastEvaluatedKey to apply in a subsequent opera-
tion to continue the scan. For more information see
Limit (p. 196).

Type: Number

Limit

NoIf set to true, DynamoDB returns a total number of
items for the Scan operation, even if the operation has
no matching items for the assigned filter.You can apply
the Limit parameter to count-only scans.

Do not set Count to true while providing a list of At-
tributesToGet, otherwise DynamoDB returns a val-
idation error. For more information, see Count and
ScannedCount (p. 195).

Type: Boolean

Count

API Version 2012-08-10
781

Amazon DynamoDB Developer Guide
Scan

RequiredDescriptionName

NoEvaluates the scan results and returns only the desired
values. Multiple conditions are treated as "AND" oper-
ations: all conditions must be met to be included in the
results.

Type: A map of attribute names to values with compar-
ison operators.

ScanFilter

NoThe values and conditions to evaluate the scan results
for the filter.

Type: A map of AttributeValue to a Condition.

ScanFilter:Attribute-
ValueList

NoThe criteria for evaluating the provided attributes, such
as equals, greater-than, etc. The following are valid
comparison operators for a scan operation.

Note
String value comparisons for greater than,
equals, or less than are based on ASCII
character code values. For example, a is
greater than A, and aa is greater than B. For
a list of code values, see http://en.wikipe-
dia.org/wiki/ASCII#ASCII_printable_charac-
ters.
For Binary, DynamoDB treats each byte of the
binary data as unsigned when it compares
binary values, for example when evaluating
query expressions.

Type: String or Binary

ScanFilter: Comparison-
Operator

EQ : Equal.
For EQ, AttributeValueList can contain only one
AttributeValue of type String, Number, or Binary
(not a set). If an item contains an AttributeValue of
a different type than the one specified in the request,
the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does
not equal {"NS":["6", "2", "1"]}.

NE : Not Equal.
For NE, AttributeValueList can contain only one
AttributeValue of type String, Number, or Binary
(not a set). If an item contains an AttributeValue of
a different type than the one specified in the request,
the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does
not equal {"NS":["6", "2", "1"]}.

LE : Less than or equal.
For LE, AttributeValueList can contain only one
AttributeValue of type String, Number, or Binary
(not a set). If an item contains an AttributeValue of
a different type than the one specified in the request,
the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does
not compare to {"NS":["6", "2", "1"]}.

API Version 2012-08-10
782

Amazon DynamoDB Developer Guide
Scan

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

RequiredDescriptionName

LT : Less than.
For LT, AttributeValueList can contain only one
AttributeValue of type String, Number, or Binary
(not a set). If an item contains an AttributeValue of
a different type than the one specified in the request,
the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does
not compare to {"NS":["6", "2", "1"]}.

GE : Greater than or equal.
For GE, AttributeValueList can contain only one
AttributeValue of type String, Number, or Binary
(not a set). If an item contains an AttributeValue of
a different type than the one specified in the request,
the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does
not compare to {"NS":["6", "2", "1"]}.

GT : Greater than.
For GT, AttributeValueList can contain only one
AttributeValue of type String, Number, or Binary
(not a set). If an item contains an AttributeValue of
a different type than the one specified in the request,
the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does
not compare to {"NS":["6", "2", "1"]}.

NOT_NULL : Attribute exists.

NULL : Attribute does not exist.

CONTAINS : checks for a subsequence, or value in a
set.
For CONTAINS, AttributeValueList can contain
only one AttributeValue of type String, Number, or
Binary (not a set). If the target attribute of the compar-
ison is a String, then the operation checks for a sub-
string match. If the target attribute of the comparison
is Binary, then the operation looks for a subsequence
of the target that matches the input. If the target attrib-
ute of the comparison is a set ("SS", "NS", or "BS"),
then the operation checks for a member of the set (not
as a substring).

API Version 2012-08-10
783

Amazon DynamoDB Developer Guide
Scan

RequiredDescriptionName

NOT_CONTAINS : checks for absence of a subsequence,
or absence of a value in a set.
For NOT_CONTAINS, AttributeValueList can con-
tain only one AttributeValue of type String, Number,
or Binary (not a set). If the target attribute of the com-
parison is a String, then the operation checks for the
absence of a substring match. If the target attribute of
the comparison is Binary, then the operation checks
for the absence of a subsequence of the target that
matches the input. If the target attribute of the compar-
ison is a set ("SS", "NS", or "BS"), then the operation
checks for the absence of a member of the set (not as
a substring).

BEGINS_WITH : checks for a prefix.
For BEGINS_WITH, AttributeValueList can contain
only one AttributeValue of type String or Binary
(not a Number or a set). The target attribute of the
comparison must be a String or Binary (not a Number
or a set).

IN : checks for exact matches.
For IN, AttributeValueList can contain more than
one AttributeValue of type String, Number, or Bin-
ary (not a set). The target attribute of the comparison
must be of the same type and exact value to match. A
String never matches a String set.

BETWEEN : Greater than, or equal to, the first value and
less than, or equal to, the second value.
For BETWEEN, AttributeValueList must contain
two AttributeValue elements of the same type,
either String, Number, or Binary (not a set). A target
attribute matches if the target value is greater than, or
equal to, the first element and less than, or equal to,
the second element. If an item contains an Attribute-
Value of a different type than the one specified in the
request, the value does not match. For example,
{"S":"6"} does not compare to {"N":"6"}. Also,
{"N":"6"} does not compare to {"NS":["6", "2",
"1"]}.

NoPrimary key of the item from which to continue an
earlier scan. An earlier scan might provide this value if
that scan operation was interrupted before scanning
the entire table; either because of the result set size or
the Limit parameter. The LastEvaluatedKey can
be passed back in a new scan request to continue the
operation from that point.

Type: HashKeyElement, or HashKeyElement and
RangeKeyElement for a composite primary key.

ExclusiveStartKey

API Version 2012-08-10
784

Amazon DynamoDB Developer Guide
Scan

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 229

{"Count":2,"Items":[{
 "AttributeName1":{"S":"AttributeValue1"},
 "AttributeName2":{"S":"AttributeValue2"},
 "AttributeName3":{"S":"AttributeValue3"}
 },{
 "AttributeName1":{"S":"AttributeValue4"},
 "AttributeName2":{"S":"AttributeValue5"},
 "AttributeName3":{"S":"AttributeValue6"},
 "AttributeName5":{"B":"dmFsdWU="}
 }],
 "LastEvaluatedKey":
 {"HashKeyElement":{"S":"AttributeName1"},
 "RangeKeyElement":{"N":"AttributeName2"},
 "ConsumedCapacityUnits":1,
 "ScannedCount":2}
}

DescriptionName

Container for the attributes meeting the operation
parameters.

Type: Map of attribute names to and their data
types and values.

Items

Number of items in the response. For more inform-
ation, see Count and ScannedCount (p. 195).

Type: Number

Count

Number of items in the complete scan before any
filters are applied. A high ScannedCount value
with few, or no, Count results indicates an ineffi-
cient Scan operation. For more information, see
Count and ScannedCount (p. 195).

Type: Number

ScannedCount

Primary key of the item where the scan operation
stopped. Provide this value in a subsequent scan
operation to continue the operation from that point.
The LastEvaluatedKey is null when the entire
scan result set is complete (i.e. the operation pro-
cessed the “last page”).

LastEvaluatedKey

API Version 2012-08-10
785

Amazon DynamoDB Developer Guide
Scan

DescriptionName

The number of read capacity units consumed by
the operation.This value shows the number applied
toward your provisioned throughput. For more in-
formation see Specifying Read and Write Require-
ments for Tables (p. 62).

Type: Number

ConsumedCapacityUnits

Special Errors

DescriptionError

The specified table was not found.ResourceNotFoundException

Examples
For examples using the AWS SDK, see Query and Scan Operations in DynamoDB (p. 192).

Sample Request

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Scan
content-type: application/x-amz-json-1.0

{"TableName":"1-hash-rangetable","ScanFilter":{}}

Sample Response

HTTP/1.1 200
x-amzn-RequestId: 4e8a5fa9-71e7-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 465

{"Count":4,"Items":[{
 "date":{"S":"1980"},
 "fans":{"SS":["Dave","Aaron"]},
 "name":{"S":"Airplane"},
 "rating":{"S":"***"}
 },{
 "date":{"S":"1999"},
 "fans":{"SS":["Ziggy","Laura","Dean"]},
 "name":{"S":"Matrix"},
 "rating":{"S":"*****"}
 },{
 "date":{"S":"1976"},
 "fans":{"SS":["Riley"]},"
 name":{"S":"The Shaggy D.A."},
 "rating":{"S":"**"}
 },{

API Version 2012-08-10
786

Amazon DynamoDB Developer Guide
Scan

 "date":{"S":"1985"},
 "fans":{"SS":["Fox","Lloyd"]},
 "name":{"S":"Back To The Future"},
 "rating":{"S":"****"}
 }],
 "ConsumedCapacityUnits":0.5
 "ScannedCount":4}

Sample Request

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Scan
content-type: application/x-amz-json-1.0
content-length: 125

{"TableName":"comp5",
 "ScanFilter":
 {"time":
 {"AttributeValueList":[{"N":"400"}],
 "ComparisonOperator":"GT"}
 }
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: PD1CQK9QCTERLTJP20VALJ60TRVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 262
Date: Mon, 15 Aug 2011 16:52:02 GMT

{"Count":2,
 "Items":[
 {"friends":{"SS":["Dave","Ziggy","Barrie"]},
 "status":{"S":"chatting"},
 "time":{"N":"2000"},
 "user":{"S":"Casey"}},
 {"friends":{"SS":["Dave","Ziggy","Barrie"]},
 "status":{"S":"chatting"},
 "time":{"N":"2000"},
 "user":{"S":"Fredy"}
 }],
"ConsumedCapacityUnits":0.5
"ScannedCount":4
}

Sample Request

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Scan

API Version 2012-08-10
787

Amazon DynamoDB Developer Guide
Scan

content-type: application/x-amz-json-1.0

{"TableName":"comp5",
 "Limit":2,
 "ScanFilter":
 {"time":
 {"AttributeValueList":[{"N":"400"}],
 "ComparisonOperator":"GT"}
 },
 "ExclusiveStartKey":
 {"HashKeyElement":{"S":"Fredy"},"RangeKeyElement":{"N":"2000"}}
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: PD1CQK9QCTERLTJP20VALJ60TRVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 232
Date: Mon, 15 Aug 2011 16:52:02 GMT

{"Count":1,
 "Items":[
 {"friends":{"SS":["Jane","James","John"]},
 "status":{"S":"exercising"},
 "time":{"N":"2200"},
 "user":{"S":"Roger"}}
],
 "LastEvaluatedKey":{"HashKeyElement":{"S":"Riley"},"RangeKeyEle
ment":{"N":"250"}},
"ConsumedCapacityUnits":0.5
"ScannedCount":2
}

Related Actions
• Query (p. 774)

• BatchGetItem (p. 740)

UpdateItem
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
Edits an existing item's attributes.You can perform a conditional update (insert a new attribute name-value
pair if it doesn't exist, or replace an existing name-value pair if it has certain expected attribute values).

Note
You cannot update the primary key attributes using UpdateItem. Instead, delete the item and
use PutItem to create a new item with new attributes.

API Version 2012-08-10
788

Amazon DynamoDB Developer Guide
UpdateItem

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

The UpdateItem operation includes an Action parameter, which defines how to perform the update.You
can put, delete, or add attribute values.

Attribute values may not be null; string and binary type attributes must have lengths greater than zero;
and set type attributes must not be empty. Requests with empty values will be rejected with a
ValidationException.

If an existing item has the specified primary key:

• PUT— Adds the specified attribute. If the attribute exists, it is replaced by the new value.

• DELETE— If no value is specified, this removes the attribute and its value. If a set of values is specified,
then the values in the specified set are removed from the old set. So if the attribute value contains
[a,b,c] and the delete action contains [a,c], then the final attribute value is [b]. The type of the specified
value must match the existing value type. Specifying an empty set is not valid.

• ADD— Only use the add action for numbers or if the target attribute is a set (including string sets).
ADD does not work if the target attribute is a single string value or a scalar binary value. The specified
value is added to a numeric value (incrementing or decrementing the existing numeric value) or added
as an additional value in a string set. If a set of values is specified, the values are added to the existing
set. For example if the original set is [1,2] and supplied value is [3], then after the add operation the
set is [1,2,3], not [4,5]. An error occurs if an Add action is specified for a set attribute and the attribute
type specified does not match the existing set type.

If you use ADD for an attribute that does not exist, the attribute and its values are added to the item.

If no item matches the specified primary key:

• PUT— Creates a new item with specified primary key. Then adds the specified attribute.

• DELETE— Nothing happens.

• ADD— Creates an item with supplied primary key and number (or set of numbers) for the attribute
value. Not valid for a string or a binary type.

Note
If you use ADD to increment or decrement a number value for an item that doesn't exist before
the update, DynamoDB uses 0 as the initial value. Also, if you update an item using ADD to
increment or decrement a number value for an attribute that doesn't exist before the update (but
the item does) DynamoDB uses 0 as the initial value. For example, you use ADD to add +3 to
an attribute that did not exist before the update. DynamoDB uses 0 for the initial value, and the
value after the update is 3.

For more information about using this API, see Working with Items in DynamoDB (p. 92).

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.UpdateItem
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Key":
 {"HashKeyElement":{"S":"AttributeValue1"},

API Version 2012-08-10
789

Amazon DynamoDB Developer Guide
UpdateItem

 "RangeKeyElement":{"N":"AttributeValue2"}},
 "AttributeUpdates":{"AttributeName3":{"Value":{"S":"AttributeValue3_New"},"Ac
tion":"PUT"}},
 "Expected":{"AttributeName3":{"Value":{"S":"AttributeValue3_Current"}}},
 "ReturnValues":"ReturnValuesConstant"
}

RequiredDescriptionName

YesThe name of the table containing the item to up-
date.

Type: String

TableName

YesThe primary key that defines the item. For more
information about primary keys, see Primary
Key (p. 5).

Type: Map of HashKeyElement to its value and
RangeKeyElement to its value.

Key

Map of attribute name to the new value and action
for the update. The attribute names specify the at-
tributes to modify, and cannot contain any primary
key attributes.

Type: Map of attribute name, value, and an action
for the attribute update.

AttributeUpdates

NoSpecifies how to perform the update. Possible val-
ues: PUT (default), ADD or DELETE. The semantics
are explained in the UpdateItem description.

Type: String

Default: PUT

AttributeUpdates:Action

NoDesignates an attribute for a conditional update.
The Expected parameter allows you to provide
an attribute name, and whether or not DynamoDB
should check to see if the attribute value already
exists; or if the attribute value exists and has a
particular value before changing it.

Type: Map of attribute names.

Expected

NoThe name of the attribute for the conditional put.
Type: String

Expected:AttributeName

API Version 2012-08-10
790

Amazon DynamoDB Developer Guide
UpdateItem

RequiredDescriptionName

NoUse this parameter to specify whether or not a
value already exists for the attribute name-value
pair.
The following JSON notation updates the item if
the "Color" attribute doesn't already exist for that
item:

"Expected" :
 {"Color":{"Exists":false}}

The following JSON notation checks to see if the
attribute with name "Color" has an existing value
of "Yellow" before updating the item:

"Expected" :
 {"Color":{"Ex
ists":true},{"Value":{"S":"Yellow"}}}

By default, if you use the Expected parameter and
provide a Value, DynamoDB assumes the attribute
exists and has a current value to be replaced. So
you don't have to specify {"Exists":true}, be-
cause it is implied.You can shorten the request to:

"Expected" :
 {"Color":{"Value":{"S":"Yellow"}}}

Note
If you specify {"Exists":true} without
an attribute value to check, DynamoDB
returns an error.

Expected:AttributeName:
ExpectedAttributeValue

NoUse this parameter if you want to get the attribute
name-value pairs before they were updated with
the UpdateItem request. Possible parameter val-
ues are NONE (default) or ALL_OLD, UPDATED_OLD,
ALL_NEW or UPDATED_NEW. If ALL_OLD is specified,
and UpdateItem overwrote an attribute name-
value pair, the content of the old item is returned.
If this parameter is not provided or is NONE, nothing
is returned. If ALL_NEW is specified, then all the
attributes of the new version of the item are re-
turned. If UPDATED_NEW is specified, then the new
versions of only the updated attributes are returned.

Type: String

ReturnValues

API Version 2012-08-10
791

Amazon DynamoDB Developer Guide
UpdateItem

Responses

Syntax

The following syntax example assumes the request specified a ReturnValues parameter of ALL_OLD;
otherwise, the response has only the ConsumedCapacityUnits element.

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 140

{"Attributes":{
 "AttributeName1":{"S":"AttributeValue1"},
 "AttributeName2":{"S":"AttributeValue2"},
 "AttributeName3":{"S":"AttributeValue3"},
 "AttributeName5":{"B":"dmFsdWU="}
 },
"ConsumedCapacityUnits":1
}

DescriptionName

A map of attribute name-value pairs, but only if the
ReturnValues parameter is specified as something
other than NONE in the request.

Type: Map of attribute name-value pairs.

Attributes

The number of write capacity units consumed by the
operation.This value shows the number applied toward
your provisioned throughput. For more information see
Specifying Read and Write Requirements for
Tables (p. 62).

Type: Number

ConsumedCapacityUnits

Special Errors

DescriptionError

Conditional check failed. Attribute ("+ name +") value is ("+
value +") but was expected ("+ expValue +")

ConditionalCheckFailedException

The specified item or attribute was not found.ResourceNotFoundExceptions

Examples
For examples using the AWS SDK, see Working with Items in DynamoDB (p. 92).

Sample Request

// This header is abbreviated. For a sample of a complete header, see Sample
DynamoDB JSON Request and Response (p. 516).

API Version 2012-08-10
792

Amazon DynamoDB Developer Guide
UpdateItem

POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.UpdateItem
content-type: application/x-amz-json-1.0

{"TableName":"comp5",
 "Key":
 {"HashKeyElement":{"S":"Julie"},"RangeKeyElement":{"N":"1307654350"}},

 "AttributeUpdates":
 {"status":{"Value":{"S":"online"},
 "Action":"PUT"}},
 "Expected":{"status":{"Value":{"S":"offline"}}},
 "ReturnValues":"ALL_NEW"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: 5IMHO7F01Q9P7Q6QMKMMI3R3QRVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 121
Date: Fri, 26 Aug 2011 21:05:00 GMT

{"Attributes":
 {"friends":{"SS":["Lynda, Aaron"]},
 "status":{"S":"online"},
 "time":{"N":"1307654350"},
 "user":{"S":"Julie"}},
"ConsumedCapacityUnits":1
}

Related Actions
• PutItem (p. 769)

• DeleteItem (p. 755)

UpdateTable
Important
This section refers to the previous API version (2011-12-05). For the most recent API version,
go to the Amazon DynamoDB API Reference.

Description
Updates the provisioned throughput for the given table. Setting the throughput for a table helps you
manage performance and is part of the provisioned throughput feature of DynamoDB. For more information,
see Specifying Read and Write Requirements for Tables (p. 62).

The provisioned throughput values can be upgraded or downgraded based on the maximums and
minimums listed in Limits in DynamoDB (p. 667).

The table must be in the ACTIVE state for this operation to succeed. UpdateTable is an asynchronous
operation; while executing the operation, the table is in the UPDATING state. While the table is in the
UPDATING state, the table still has the provisioned throughput from before the call. The new provisioned

API Version 2012-08-10
793

Amazon DynamoDB Developer Guide
UpdateTable

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

throughput setting is in effect only when the table returns to the ACTIVE state after the UpdateTable
operation.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.UpdateTable
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":15}
}

RequiredDescriptionName

YesThe name of the table to update.

Type: String

TableName

YesNew throughput for the specified table, con-
sisting of values for ReadCapacityUnits
and WriteCapacityUnits. See Specifying
Read and Write Requirements for
Tables (p. 62).

Type: Array

ProvisionedThroughput

YesSets the minimum number of consistent
ReadCapacityUnits consumed per second
for the specified table before DynamoDB bal-
ances the load with other operations.

Eventually consistent read operations require
less effort than a consistent read operation,
so a setting of 50 consistent ReadCapacity-
Units per second provides 100 eventually
consistent ReadCapacityUnits per second.
Type: Number

ProvisionedThroughput :ReadCa-
pacityUnits

YesSets the minimum number of WriteCapa-
cityUnits consumed per second for the
specified table before DynamoDB balances
the load with other operations.

Type: Number

ProvisionedThroughput :WriteCa-
pacityUnits

API Version 2012-08-10
794

Amazon DynamoDB Developer Guide
UpdateTable

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: CSOC7TJPLR0OOKIRLGOHVAICUFVV4KQNSO5AEMVJF66Q9ASUAAJG
Content-Type: application/json
Content-Length: 311
Date: Tue, 12 Jul 2011 21:31:03 GMT

{"TableDescription":
 {"CreationDateTime":1.321657838135E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"AttributeValue1","Attribute
Type":"S"},
 "RangeKeyElement":{"AttributeName":"AttributeValue2","Attribute
Type":"N"}},
 "ProvisionedThroughput":
 {"LastDecreaseDateTime":1.321661704489E9,
 "LastIncreaseDateTime":1.321663607695E9,
 "ReadCapacityUnits":5,
 "WriteCapacityUnits":10},
 "TableName":"Table1",
 "TableStatus":"UPDATING"}}

DescriptionName

Date when the table was created.

Type: Number

CreationDateTime

The primary key (simple or composite) structure for the
table. A name-value pair for the HashKeyElement is
required, and a name-value pair for the
RangeKeyElement is optional (only required for com-
posite primary keys). The maximum hash key size is
2048 bytes.The maximum range key size is 1024 bytes.
Both limits are enforced separately (i.e. you can have
a combined hash + range 2048 + 1024 key). For more
information about primary keys, see Primary
Key (p. 5).

Type: Map of HashKeyElement, or HashKeyElement
and RangeKeyElement for a composite primary key.

KeySchema

Current throughput settings for the specified table, in-
cluding values for LastIncreaseDateTime (if applic-
able), LastDecreaseDateTime (if applicable),

Type: Array

ProvisionedThroughput

The name of the updated table.

Type: String

TableName

API Version 2012-08-10
795

Amazon DynamoDB Developer Guide
UpdateTable

DescriptionName

The current state of the table (CREATING, ACTIVE,
DELETING or UPDATING), which should be UPDATING.

Use the DescribeTables (p. 762) API to check the status
of the table.
Type: String

TableStatus

Special Errors

DescriptionError

The specified table was not found.ResourceNotFoundException

The table is not in the ACTIVE state.ResourceInUseException

Examples

Sample Request

// This header is abbreviated.
// For a sample of a complete header, see Sample DynamoDB JSON Request and Re
sponse (p. 516).
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.UpdateTable
content-type: application/x-amz-json-1.0

{"TableName":"comp1",
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":15}
}

Sample Response

HTTP/1.1 200 OK
content-type: application/x-amz-json-1.0
content-length: 390
Date: Sat, 19 Nov 2011 00:46:47 GMT

{"TableDescription":
 {"CreationDateTime":1.321657838135E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":
 {"LastDecreaseDateTime":1.321661704489E9,
 "LastIncreaseDateTime":1.321663607695E9,
 "ReadCapacityUnits":5,
 "WriteCapacityUnits":10},
 "TableName":"comp1",
 "TableStatus":"UPDATING"}
}

API Version 2012-08-10
796

Amazon DynamoDB Developer Guide
UpdateTable

Related Actions
• CreateTable (p. 751)

• DescribeTables (p. 762)

• DeleteTable (p. 759)

API Version 2012-08-10
797

Amazon DynamoDB Developer Guide
UpdateTable

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

API Version 2012-08-10
798

Amazon DynamoDB Developer Guide

http://docs.aws.amazon.com/general/latest/gr/gloss.html

	Amazon DynamoDB
	Table of Contents
	What Is Amazon DynamoDB?
	DynamoDB Service Highlights
	DynamoDB Data Model
	Data Model Concepts - Tables, Items, and Attributes
	Primary Key
	Secondary Indexes
	DynamoDB Data Types
	Scalar Data Types
	String
	Number
	Binary
	Boolean
	Null

	Multi-Valued Data Types
	Document Data Types

	Supported Operations in DynamoDB
	Table Operations
	Item Operations
	Query and Scan
	Data Read and Consistency Considerations
	Conditional Updates and Concurrency Control

	Provisioned Throughput in Amazon DynamoDB
	Read Capacity Units
	Write Capacity Units

	Accessing DynamoDB
	Regions and Endpoints for DynamoDB

	Creating Tables and Loading Sample Data
	Step 1: Before You Begin
	Sign up for the Service
	Download AWS SDK
	Downloading the AWS SDK for Java
	Downloading the AWS SDK for .NET
	Downloading the AWS SDK for PHP

	Step 2: Create Example Tables
	Use Case 1: Product Catalog
	Use Case 2: Forum Application
	Creating Tables

	Step 3: Load Data into Tables
	Load Data into Tables Using the AWS SDK for Java
	Load Data into Tables Using the AWS SDK for .NET
	Load Data into Tables Using the AWS SDK for PHP
	Verify Data Load
	Using the AWS Management Console
	Using the AWS Explorer

	Step 4: Try a Query
	Try a Query Using the DynamoDB Console
	Try a Query Using the AWS SDK for Java
	Try a Query Using the AWS SDK for .NET
	Try a Query Using the AWS SDK for PHP

	Step 5: Delete Example Tables
	Where Do I Go from Here?

	Using the AWS SDKs with DynamoDB
	Using the AWS SDK for Java
	Running Java Examples for DynamoDB
	Setting the Region

	Using the AWS SDK for .NET
	Running .NET Examples for DynamoDB
	Setting the Endpoint

	Using the AWS SDK for PHP
	Running PHP Examples
	Setting Your AWS Access Keys
	Setting the Region

	Working with Tables in DynamoDB
	Specifying the Primary Key
	Specifying Read and Write Requirements for Tables
	Capacity Units Calculations for Various Operations
	Item Size Calculations
	Read Operation and Consistency

	Listing and Describing Tables
	Guidelines for Working with Tables
	Design For Uniform Data Access Across Items In Your Tables
	Choosing a Hash Key
	Randomizing Across Multiple Hash Key Values
	Using a Calculated Value

	Understand Partition Behavior
	Use Burst Capacity Sparingly
	Distribute Write Activity During Data Upload
	Understand Access Patterns for Time Series Data
	Cache Popular Items
	Consider Workload Uniformity When Adjusting Provisioned Throughput
	Test Your Application At Scale

	Working with Tables Using the AWS SDK for Java Document API
	Creating a Table
	Updating a Table
	Deleting a Table
	Listing Tables
	Example: Create, Update, Delete, and List Tables Using the AWS SDK for Java Document API

	Working with Tables Using the AWS SDK for .NET Low-Level API
	Creating a Table
	Updating a Table
	Deleting a Table
	Listing Tables
	Example: Create, Update, Delete, and List Tables Using the AWS SDK for .NET Low-Level API

	Working with Tables Using the AWS SDK for PHP Low-Level API
	Creating a Table
	Updating a Table
	Deleting a Table
	Listing Tables
	Example: Create, Update, Delete, and List Tables Using the AWS SDK for PHP Low-Level API

	Working with Items in DynamoDB
	Overview
	Reading an Item
	Read Consistency

	Writing an Item
	Batch Operations
	Atomic Counters
	Conditional Writes
	Reading and Writing Items Using Expressions
	Case Study: A ProductCatalog Item
	Accessing Item Attributes with Projection Expressions
	Projection Expressions
	Document Paths
	Accessing List Elements
	Accessing Map Elements
	Document Path Examples

	Using Placeholders for Attribute Names and Values
	Expression Attribute Names
	Expression Attribute Values

	Performing Conditional Writes with Condition Expressions
	Condition Expressions
	Condition Expression Reference
	Syntax for Condition Expressions
	Making Comparisons
	Functions
	Logical Evaluations
	Parentheses
	Precedence in Conditions

	Modifying Items and Attributes with Update Expressions
	Update Expressions
	SET
	Incrementing and Decrementing Numeric Attributes
	Using SET with List Elements
	Functions for Updating Attributes

	REMOVE
	Using REMOVE with List Elements

	ADD
	DELETE

	Conditional Write Operations
	Return Values
	Deleting an Item
	Updating an Item

	Guidelines for Working with Items
	Use One-to-Many Tables Instead Of Large Set Attributes
	Use Multiple Tables to Support Varied Access Patterns
	Compress Large Attribute Values
	Store Large Attribute Values in Amazon S3
	Break Up Large Attributes Across Multiple Items

	Working with Items Using the AWS SDK for Java Document API
	Putting an Item
	Specifying Optional Parameters
	PutItem and JSON Documents

	Getting an Item
	Specifying Optional Parameters
	GetItem and JSON Documents

	Batch Write: Putting and Deleting Multiple Items
	Batch Get: Getting Multiple Items
	Specifying Optional Parameters

	Updating an Item
	Specifying Optional Parameters
	Atomic Counter

	Deleting an Item
	Specifying Optional Parameters

	Example: CRUD Operations Using the AWS SDK for Java Document API
	Example: Batch Operations Using AWS SDK for Java Document API
	Example: Batch Write Operation Using the AWS SDK for Java Document API
	Example: Batch Get Operation Using the AWS SDK for Java Document API

	Example: Handling Binary Type Attributes Using the AWS SDK for Java Document API

	Working with Items Using the AWS SDK for .NET Low-Level API
	Putting an Item
	Specifying Optional Parameters

	Getting an Item
	Specifying Optional Parameters

	Updating an Item
	Specifying Optional Parameters

	Atomic Counter
	Deleting an Item
	Specifying Optional Parameters

	Batch Write: Putting and Deleting Multiple Items
	Batch Get: Getting Multiple Items
	Specifying Optional Parameters

	Example: CRUD Operations Using the AWS SDK for .NET Low-Level API
	Example: Batch Operations Using AWS SDK for .NET Low-Level API
	Example: Batch Write Operation Using the AWS SDK for .NET Low-Level API
	Example: Batch Get Operation Using the AWS SDK for .NET Low-Level API

	Example: Handling Binary Type Attributes Using the AWS SDK for .NET Low-Level API

	Working with Items Using the AWS SDK for PHP Low-Level API
	Putting an Item
	Specifying Optional Parameters

	Getting an Item
	Specifying Optional Parameters

	Batch Write: Putting and Deleting Multiple Items
	Batch Get: Getting Multiple Items
	Specifying Optional Parameters

	Updating an Item
	Specifying Optional Parameters

	Atomic Counter
	Deleting an Item
	Specifying Optional Parameters

	Example: CRUD Operations Using the AWS SDK for PHP Low-Level API
	Example: Batch Operations Using AWS SDK for PHP
	Example: Batch Write Operation Using the AWS SDK for PHP

	Query and Scan Operations in DynamoDB
	Query
	Scan
	Filtering the Results from a Query or a Scan
	Capacity Units Consumed by Query and Scan
	Paginating the Results
	Count and ScannedCount
	Limit
	Read Consistency
	Read Consistency for Query
	Read Consistency for Scan

	Query and Scan Performance
	Parallel Scan
	Guidelines for Query and Scan
	Avoid Sudden Bursts of Read Activity
	Take Advantage of Parallel Scans
	Choosing TotalSegments

	Querying in DynamoDB
	Querying Using the AWS SDK for Java Document API
	Specifying Optional Parameters
	Example - Query Using Java

	Querying Using the AWS SDK for .NET Low-Level API
	Specifying Optional Parameters
	Example - Querying Using the AWS SDK for .NET

	Querying Tables Using the AWS SDK for PHP Low-Level API
	Specifying Optional Parameters

	Scanning in DynamoDB
	Scanning Using the AWS SDK for Java Document API
	Specifying Optional Parameters
	Example - Scan Using Java
	Example - Parallel Scan Using Java

	Scanning Using the AWS SDK for .NET Low-Level API
	Specifying Optional Parameters
	Example - Scan Using .NET
	Example - Parallel Scan Using .NET

	Scanning Using the AWS SDK for PHP Low-Level API
	Specifying Optional Parameters
	Example - Loading Data Using PHP
	Example - Scan Using PHP
	Example - Parallel Scan Using PHP

	Improving Data Access with Secondary Indexes in DynamoDB
	Global Secondary Indexes
	Attribute Projections
	Querying a Global Secondary Index
	Scanning a Global Secondary Index
	Data Synchronization Between Tables and Global Secondary Indexes
	Provisioned Throughput Considerations for Global Secondary Indexes
	Read Capacity Units
	Write Capacity Units

	Storage Considerations for Global Secondary Indexes
	Managing Global Secondary Indexes
	Creating a Table With Global Secondary Indexes
	Describing the Global Secondary Indexes on a Table
	Adding a Global Secondary Index To an Existing Table
	Phases of Index Creation
	Adding a Global Secondary Index To a Large Table

	Modifying an Index Creation
	Deleting a Global Secondary Index From a Table
	Detecting and Correcting Index Key Violations
	Downloading and Running Violation Detector
	The Violation Detector Configuration File
	Detection
	Correction

	Guidelines for Global Secondary Indexes
	Choose a Key That Will Provide Uniform Workloads
	Take Advantage of Sparse Indexes
	Use a Global Secondary Index For Quick Lookups
	Create an Eventually Consistent Read Replica

	Working with Global Secondary Indexes Using the AWS SDK for Java Document API
	Create a Table With a Global Secondary Index
	Describe a Table With a Global Secondary Index
	Query a Global Secondary Index
	Example: Global Secondary Indexes Using the AWS SDK for Java Document API

	Working with Global Secondary Indexes Using the AWS SDK for .NET Low-Level API
	Create a Table With a Global Secondary Index
	Describe a Table With a Global Secondary Index
	Query a Global Secondary Index
	Example: Global Secondary Indexes Using the AWS SDK for .NET Low-Level API

	Working with Global Secondary Indexes Using the AWS SDK for PHP Low-Level API
	Create a Table With a Global Secondary Index
	Describe a Table With a Global Secondary Index
	Query a Global Secondary Index
	Example: Global Secondary Indexes Using the AWS SDK for PHP Low-Level API

	Local Secondary Indexes
	Attribute Projections
	Creating a Local Secondary Index
	Querying a Local Secondary Index
	Scanning a Local Secondary Index
	Item Writes and Local Secondary Indexes
	Provisioned Throughput Considerations for Local Secondary Indexes
	Read Capacity Units
	Write Capacity Units

	Storage Considerations for Local Secondary Indexes
	Item Collections
	Item Collection Size Limit
	Item Collections and Partitions

	Guidelines for Local Secondary Indexes
	Use Indexes Sparingly
	Choose Projections Carefully
	Optimize Frequent Queries To Avoid Fetches
	Take Advantage of Sparse Indexes
	Watch For Expanding Item Collections

	Working with Local Secondary Indexes Using the Java Document API
	Create a Table With a Local Secondary Index
	Describe a Table With a Local Secondary Index
	Query a Local Secondary Index
	Example: Local Secondary Indexes Using the Java Document API

	Working with Local Secondary Indexes Using the AWS SDK for .NET Low-Level API
	Create a Table With a Local Secondary Index
	Describe a Table With a Local Secondary Index
	Query a Local Secondary Index
	Example: Local Secondary Indexes Using the AWS SDK for .NET Low-Level API

	Working with Local Secondary Indexes Using the AWS SDK for PHP Low-Level API
	Create a Table With a Local Secondary Index
	Query a Local Secondary Index
	Example: Local Secondary Indexes Using the AWS SDK for PHP Low-Level API

	Best Practices for DynamoDB
	Table Best Practices
	Item Best Practices
	Query and Scan Best Practices
	Local Secondary Index Best Practices
	Global Secondary Index Best Practices

	Capturing Table Activity with DynamoDB Streams
	Enabling a Stream
	Reading and Processing a Stream
	Data Retention Limit for DynamoDB Streams

	Walkthrough: DynamoDB Streams Low-Level API
	Step 1: Create a Table with a Stream Enabled
	Step 2: Describe the Streams Settings For The Table
	Step 3: Modify data in the table
	Step 4: Describe the Shards in the Stream
	Step 5: Read the Stream Records
	Step 6: Clean Up
	Complete Program: Low-Level Streams API

	Using the DynamoDB Streams Kinesis Adapter to Process Stream Records
	Walkthrough: DynamoDB Streams Kinesis Adapter
	Step 1: Create DynamoDB Tables
	Step 2: Generate Update Activity in Source Table
	Step 3: Process the Streams
	Step 4: Ensure Both Tables Have Identical Contents
	Step 5: Clean Up
	Complete Program: DynamoDB Streams Kinesis Adapter
	StreamsAdapterDemo.java
	StreamsRecordProcessor.java
	StreamsRecordProcessorFactory.java
	StreamsAdapterDemoHelper.java

	Cross-Region Replication Using DynamoDB Streams
	Overview
	Walkthrough: Setting Up Replication Using the Cross Region Replication Console
	Steps in This Walkthrough
	Step 1: Create a Source Table
	Step 2: Launch an AWS CloudFormation Stack
	Step 3: Create a Replication Group
	Step 4: Test Your Replication Setup
	(Optional) Step 5: Clean Up

	Troubleshooting
	Access Your Amazon CloudWatch Logs
	Problems Creating a Replication Group
	Replication Group Stuck in CREATING Status
	Narrowing the Scope of a User's IAM Policy

	Cross-Region Replication Library

	Amazon DynamoDB Triggers
	Walkthrough: Using the AWS Management Console to Create a DynamoDB Trigger
	Steps in This Walkthrough
	Step 1: Create a DynamoDB Table With a Stream Enabled
	Step 2: Create a Lambda Function
	Step 3: Generate Activity in the DynamoDB Table
	Step 4: View The Lambda Function Output in CloudWatch Logs

	DynamoDB Console
	Working with Items and Attributes
	Adding an Item
	Deleting an Item
	Updating an Item
	Copying an Item

	Monitoring Tables
	Setting Up CloudWatch Alarms
	Exporting and Importing Data

	Higher-Level Programming Interfaces for DynamoDB
	Java: Object Persistence Model
	Supported Data Types
	Java Annotations for DynamoDB
	The DynamoDBMapper Class
	DynamoDBMapperConfig: Optional Configuration Settings for DynamoDBMapper

	Optimistic Locking With Version Number
	Disabling Optimistic Locking

	Mapping Arbitrary Data
	Example: CRUD Operations
	Example: Batch Write Operations
	Example: Query and Scan

	.NET: Document Model
	Operations Not Supported by the Document Model
	Working with Items in DynamoDB Using the AWS SDK for .NET Document Model
	Putting an Item - Table.PutItem Method
	Specifying Optional Parameters

	Getting an Item - Table.GetItem
	Specifying Optional Parameters

	Deleting an Item - Table.DeleteItem
	Specifying Optional Parameters

	Updating an Item - Table.UpdateItem
	Specifying Optional Parameters

	Batch Write - Putting and Deleting Multiple Items
	Example: CRUD Operations Using the AWS SDK for .NET Document Model
	Example: Batch Operations Using AWS SDK for .NET Document Model API
	Example: Batch Write Using AWS SDK for .NET Document Model

	Querying Tables in DynamoDB Using the AWS SDK for .NET Document Model
	Table.Query Method in the AWS SDK for .NET
	Specifying Optional Parameters
	Example: Query using the Table.Query method

	Table.Scan Method in the AWS SDK for .NET
	Specifying Optional Parameters
	Example: Scan using the Table.Scan method

	.NET: Object Persistence Model
	DynamoDB Attributes
	DynamoDBContext Class
	Specifying Optional Parameters for DynamoDBContext

	Supported Data Types
	Optimistic Locking Using Version Number with DynamoDB Using the AWS SDK for .NET Object Persistence Model
	Disabling Optimistic Locking

	Mapping Arbitrary Data with DynamoDB Using the AWS SDK for .NET Object Persistence Model
	Batch Operations Using AWS SDK for .NET Object Persistence Model
	Batch Write: Putting and Deleting Multiple Items
	Batch Get: Getting Multiple Items

	Example: CRUD Operations Using the AWS SDK for .NET Object Persistence Model
	Example: Batch Write Operation Using the AWS SDK for .NET Object Persistence Model
	Example: Query and Scan in DynamoDB Using the AWS SDK for .NET Object Persistence Model

	Using the DynamoDB API
	Using JSON Data Format with DynamoDB
	JSON Is Used as a Transport Protocol Only
	Transferring Binary Data Type Values in JSON

	Making HTTP Requests to DynamoDB
	HTTP Header Contents
	HTTP Body Content
	Formatting the Body of HTTP requests

	Handling HTTP Responses
	Sample DynamoDB JSON Request and Response

	Handling Errors in DynamoDB Operations
	Error Types
	Client Errors
	Server Errors

	API Error Codes
	Sample Error Response

	Catching Errors
	Error Retries and Exponential Backoff
	Batch Operations and Error Handling

	Operations in DynamoDB

	DynamoDB Example Application Using AWS SDK for Python (Boto): Tic-Tac-Toe
	Step 1: Deploy and Test Locally Using DynamoDB Local
	1.1: Download and Install Required Packages
	1.2: Test the Game Application

	Step 2: Examine the Data Model and Implementation Details
	2.1: Basic Data Model
	2.2: Application in Action (Code Walkthrough)
	Home Page
	Using getGameInvites to Get the List of Pending Game Invitations
	Using getGamesWithStatus to Get the List of Games with a Specific Status

	Game Page

	Step 3: Deploy in Production Using the DynamoDB Service
	3.1: Create an IAM Role for Amazon EC2
	3.2: Create the Games Table in Amazon DynamoDB
	3.3: Bundle and Deploy Tic-Tac-Toe Application Code
	3.4: Set Up the AWS Elastic Beanstalk Environment

	Step 4: Clean Up Resources

	Additional Tools and Resources For DynamoDB
	DynamoDB Local
	Downloading and Running DynamoDB Local
	Setting the Endpoint
	Usage Notes
	Differences Between DynamoDB Local and DynamoDB

	JavaScript Shell for DynamoDB Local
	Tutorial
	Code Editor

	Amazon DynamoDB Storage Backend for Titan
	Working with Graph Databases
	Titan with the DynamoDB Storage Backend for Titan
	Titan Features
	Next Step

	Getting Started with the DynamoDB Storage Backend for Titan
	Installing and Running the DynamoDB Storage Backend for Titan
	Next Steps

	Launch DynamoDB Storage Backend for Titan with Rexster on Amazon EC2 by using a AWS CloudFormation template
	Next Step

	Storage in DynamoDB Local vs. the Amazon DynamoDB Service

	Titan Graph Modeling in DynamoDB
	Single Item Data Model
	Multiple Item Data Model
	Storage Changes in Titan Version 0.5.4
	Limits of the DynamoDB Storage Backend for Titan
	Backend Data Usage
	Metrics

	DynamoDB Storage Backend for Titan Metrics
	Titan Metrics
	Additional Amazon DynamoDB Storage Backend for Titan Metrics

	Logstash Plugin for Amazon DynamoDB
	Prerequisites
	Before You Begin: Create a Source Table

	Setting Up the Logstash Plugin for Amazon DynamoDB
	Running the Logstash Plugin for Amazon DynamoDB
	Testing the Logstash Plugin for Amazon DynamoDB

	AWS Command Line Interface for DynamoDB
	Downloading and Configuring the AWS CLI
	Using the AWS CLI with DynamoDB
	Using the AWS CLI with DynamoDB Local

	DynamoDB Integration with Other Services
	Monitoring DynamoDB with CloudWatch
	AWS Management Console
	Command Line Interface (CLI)
	API
	DynamoDB Metrics
	Dimensions for DynamoDB Metrics

	Using IAM to Control Access to DynamoDB Resources
	Amazon Resource Names (ARNs) for DynamoDB
	DynamoDB Actions
	Condition Types and Operators
	IAM Policy Keys
	Example Policies for API Actions and Resource Access
	Allow any DynamoDB actions on all tables
	Allow read-only access on items in the AWS account's tables
	Allow put, update, and delete operations on one table
	Allow access to a specific table and all of its indexes
	Prevent a partner from using API actions that change data
	Separate test and production environments
	Allow access to the DynamoDB console
	Disallow purchasing of Reserved Capacity offerings

	Fine-Grained Access Control for DynamoDB
	Example Policies for Fine-Grained Access Control
	Limit access to items with a specific hash key value
	Limit access to specific attributes in a table
	Hide certain attributes on write actions
	Query only projected attributes in an index
	Limit access to certain attributes and hash key values

	Using Web Identity Federation
	Additional Resources for Web Identity Federation
	Example Policy for Web Identity Federation
	Preparing to Use Web Identity Federation
	Generating an IAM Policy Using the DynamoDB Console

	Writing Your App to Use Web Identity Federation

	Logging DynamoDB API Calls By Using AWS CloudTrail
	DynamoDB Information in CloudTrail
	Understanding DynamoDB Log File Entries

	Exporting, Importing and Transforming Data Using AWS Data Pipeline
	Using the AWS Management Console to Export and Import Data
	Overview of the Export and Import Process
	Prerequisites to Export and Import Data
	Creating IAM Roles for AWS Data Pipeline
	Granting IAM Users and Groups Permission to Perform Export and Import Tasks
	Granting Full Access Using an AWS Managed Policy
	Restricting Access to Particular DynamoDB Tables

	Exporting Data From DynamoDB to Amazon S3
	Importing Data From Amazon S3 to DynamoDB
	Managing Export and Import Pipelines
	Canceling an Export or Import Job
	Deleting a Pipeline

	Troubleshooting

	Predefined Templates for AWS Data Pipeline and DynamoDB
	Exporting Data Between DynamoDB and Amazon S3
	Cross-Region DynamoDB Copy

	Querying and Joining Tables Using Amazon Elastic MapReduce
	Prerequisites for Integrating Amazon EMR with DynamoDB
	Step 1: Create a Key Pair
	Step 2: Create a Cluster
	To start a cluster using the AWS Management Console

	Step 3: SSH into the Master Node
	Step 4: Set Up a Hive Table to Run Hive Commands
	Data Types for Hive and DynamoDB
	Hive Options

	Hive Command Examples for Exporting, Importing, and Querying Data in DynamoDB
	Exporting Data from DynamoDB
	Importing Data to DynamoDB
	Querying Data in DynamoDB

	Optimizing Performance for Amazon EMR Operations in DynamoDB
	Provisioned Read Capacity Units
	Read Percent Setting
	Write Percent Setting
	Retry Duration Setting
	Number of Map Tasks
	Parallel Data Requests
	Process Duration
	Avoid Exceeding Throughput
	Request Time
	Time-Based Tables
	Archived Data
	Viewing Hadoop Logs

	Walkthrough: Using DynamoDB and Amazon Elastic MapReduce
	Video
	Step-by-Step Instructions
	Setting Up the Environment
	Exporting Data to Amazon S3
	Exporting DynamoDB Data to a Native Hive Table and Executing Queries
	Final Cleanup

	Loading Data From DynamoDB Into Amazon Redshift

	Limits in DynamoDB
	Document History for DynamoDB
	DynamoDB Appendix
	Example Tables and Data
	ProductCatalog Table - Sample Data
	Forum Table - Sample Data
	Thread Table - Sample Data
	Reply Sample Data

	Creating Example Tables and Uploading Data
	Creating Example Tables and Uploading Data Using the AWS SDK for Java
	Creating Example Tables and Uploading Data Using the AWS SDK for .NET
	Creating Example Tables and Uploading Data Using the AWS SDK for PHP

	Reserved Words in DynamoDB
	Legacy Conditional Parameters
	AttributesToGet vs. ProjectionExpression
	Expected vs. ConditionExpression
	AttributeUpdates vs. UpdateExpression
	KeyConditions vs. KeyConditionExpression
	QueryFilter and ScanFilter vs. FilterExpression
	Writing Conditions With Legacy Parameters
	Simple Conditions
	Comparison Operators with No Attribute Values
	Comparison Operators with One Attribute Value
	Comparison Operators with Two Attribute Values
	Comparison Operators with N Attribute Values

	Using Multiple Conditions
	Other Conditional Operators

	Current API Version (2012-08-10)
	Previous API Version (2011-12-05)
	BatchGetItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	BatchWriteItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	CreateTable
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	DeleteItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	DeleteTable
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	DescribeTables
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	GetItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	ListTables
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	PutItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	Query
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response
	Sample Request
	Sample Response

	Related Actions

	Scan
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response
	Sample Request
	Sample Response
	Sample Request
	Sample Response

	Related Actions

	UpdateItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	UpdateTable
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special Errors
	Examples
	Sample Request
	Sample Response

	Related Actions

	AWS Glossary

