
Amazon DynamoDB
API Reference

API Version 2012-08-10

Amazon DynamoDB: API Reference
Copyright © 2015 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
AWS CloudTrail, AWS CodeDeploy, Amazon Cognito, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic
Compute Cloud, Amazon Glacier, Amazon Kinesis, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift,
Amazon Route 53, Amazon S3, Amazon VPC, and Amazon WorkDocs. In addition, Amazon.com graphics, logos, page headers,
button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon's
trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Amazon DynamoDB API Reference

Table of Contents
Welcome ... 1
Actions .. 3

BatchGetItem ... 4
Request Syntax .. 4
Request Parameters .. 5
Response Syntax .. 7
Response Elements ... 9
Errors .. 10
Examples ... 10

BatchWriteItem ... 13
Request Syntax ... 14
Request Parameters .. 15
Response Syntax .. 16
Response Elements ... 18
Errors .. 19
Examples ... 20

CreateTable .. 23
Request Syntax ... 23
Request Parameters .. 24
Response Syntax .. 26
Response Elements ... 28
Errors .. 28
Examples ... 28

DeleteItem .. 32
Request Syntax ... 32
Request Parameters .. 34
Response Syntax .. 40
Response Elements ... 41
Errors .. 42
Examples ... 43

DeleteTable .. 45
Request Syntax ... 45
Request Parameters .. 45
Response Syntax .. 45
Response Elements ... 47
Errors .. 47
Examples ... 48

DescribeTable ... 49
Request Syntax ... 49
Request Parameters .. 49
Response Syntax .. 49
Response Elements ... 51
Errors .. 51
Examples ... 51

GetItem ... 54
Request Syntax ... 54
Request Parameters .. 55
Response Syntax .. 57
Response Elements ... 58
Errors .. 58
Examples ... 58

ListTables ... 60
Request Syntax ... 60
Request Parameters .. 60
Response Syntax .. 60

API Version 2012-08-10
iii

Amazon DynamoDB API Reference

Response Elements ... 60
Errors .. 61
Examples ... 61

PutItem .. 63
Request Syntax ... 63
Request Parameters .. 65
Response Syntax .. 71
Response Elements ... 73
Errors .. 73
Examples ... 74

Query .. 76
Request Syntax ... 76
Request Parameters .. 79
Response Syntax .. 87
Response Elements ... 88
Errors .. 89
Examples ... 89

Scan ... 92
Request Syntax ... 92
Request Parameters .. 94
Response Syntax .. 99
Response Elements ... 101
Errors .. 102
Examples ... 102

UpdateItem ... 106
Request Syntax ... 106
Request Parameters ... 109
Response Syntax ... 117
Response Elements ... 118
Errors .. 119
Examples ... 119

UpdateTable .. 122
Request Syntax ... 122
Request Parameters ... 123
Response Syntax ... 124
Response Elements ... 125
Errors .. 126
Examples ... 126

Data Types .. 129
AttributeDefinition .. 130

Description ... 130
Contents .. 130

AttributeValue .. 130
Description ... 130
Contents .. 130

AttributeValueUpdate .. 132
Description ... 132
Contents .. 132

Capacity ... 133
Description ... 133
Contents .. 133

Condition .. 134
Description ... 134
Contents .. 134

ConsumedCapacity .. 136
Description ... 136
Contents .. 136

CreateGlobalSecondaryIndexAction .. 137

API Version 2012-08-10
iv

Amazon DynamoDB API Reference

Description ... 137
Contents .. 137

DeleteGlobalSecondaryIndexAction .. 138
Description ... 138
Contents .. 138

DeleteRequest .. 138
Description ... 138
Contents .. 139

ExpectedAttributeValue ... 139
Description ... 139
Contents .. 139

GlobalSecondaryIndex .. 142
Description ... 142
Contents .. 142

GlobalSecondaryIndexDescription .. 143
Description ... 143
Contents .. 143

GlobalSecondaryIndexUpdate .. 145
Description ... 145
Contents .. 145

ItemCollectionMetrics ... 145
Description ... 145
Contents .. 146

KeysAndAttributes .. 146
Description ... 146
Contents .. 146

KeySchemaElement ... 148
Description ... 148
Contents .. 148

LocalSecondaryIndex ... 148
Description ... 148
Contents .. 148

LocalSecondaryIndexDescription .. 149
Description ... 149
Contents .. 149

Projection ... 150
Description ... 150
Contents .. 150

ProvisionedThroughput ... 151
Description ... 151
Contents .. 151

ProvisionedThroughputDescription .. 151
Description ... 151
Contents .. 151

PutRequest ... 152
Description ... 152
Contents .. 152

StreamSpecification ... 153
Description ... 153
Contents .. 153

TableDescription .. 153
Description ... 153
Contents .. 153

UpdateGlobalSecondaryIndexAction ... 157
Description ... 157
Contents .. 157

WriteRequest .. 157
Description ... 157

API Version 2012-08-10
v

Amazon DynamoDB API Reference

Contents .. 158
Common Errors ... 159

.. 159

API Version 2012-08-10
vi

Amazon DynamoDB API Reference

Welcome

This is the Amazon DynamoDB API Reference.This guide provides descriptions of the low-level DynamoDB
API.

This guide is intended for use with the following DynamoDB documentation:

• Amazon DynamoDB Getting Started Guide - provides hands-on exercises that help you learn the basics
of working with DynamoDB. If you are new to DynamoDB, we recommend that you begin with the
Getting Started Guide.

• Amazon DynamoDB Developer Guide - contains detailed information about DynamoDB concepts,
usage, and best practices.

• Amazon DynamoDB Streams API Reference - provides descriptions and samples of the DynamoDB
Streams API. (For more information, see Capturing Table Activity with DynamoDB Streams in the
Amazon DynamoDB Developer Guide.)

Instead of making the requests to the low-level DynamoDB API directly from your application, we
recommend that you use the AWS Software Development Kits (SDKs). The easy-to-use libraries in the
AWS SDKs make it unnecessary to call the low-level DynamoDB API directly from your application. The
libraries take care of request authentication, serialization, and connection management. For more
information, see Using the AWS SDKs with DynamoDB in the Amazon DynamoDB Developer Guide.

If you decide to code against the low-level DynamoDB API directly, you will need to write the necessary
code to authenticate your requests. For more information on signing your requests, see Using the
DynamoDB API in the Amazon DynamoDB Developer Guide.

The following are short descriptions of each low-level API action, organized by function.

Managing Tables

• CreateTable - Creates a table with user-specified provisioned throughput settings.You must designate
one attribute as the hash primary key for the table; you can optionally designate a second attribute as
the range primary key. DynamoDB creates indexes on these key attributes for fast data access.
Optionally, you can create one or more secondary indexes, which provide fast data access using
non-key attributes.

• DescribeTable - Returns metadata for a table, such as table size, status, and index information.

• UpdateTable - Modifies the provisioned throughput settings for a table. Optionally, you can modify the
provisioned throughput settings for global secondary indexes on the table.

• ListTables - Returns a list of all tables associated with the current AWS account and endpoint.

API Version 2012-08-10
1

Amazon DynamoDB API Reference

http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://docs.aws.amazon.com/dynamodbstreams/latest/APIReference/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingAWSSDK.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/API.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/API.html

• DeleteTable - Deletes a table and all of its indexes.

For conceptual information about managing tables, see Working with Tables in the Amazon DynamoDB
Developer Guide.

Reading Data

• GetItem - Returns a set of attributes for the item that has a given primary key. By default, GetItem
performs an eventually consistent read; however, applications can request a strongly consistent read
instead.

• BatchGetItem - Performs multiple GetItem requests for data items using their primary keys, from one
table or multiple tables. The response from BatchGetItem has a size limit of 16 MB and returns a
maximum of 100 items. Both eventually consistent and strongly consistent reads can be used.

• Query - Returns one or more items from a table or a secondary index.You must provide a specific
hash key value.You can narrow the scope of the query using comparison operators against a range
key value, or on the index key. Query supports either eventual or strong consistency. A single response
has a size limit of 1 MB.

• Scan - Reads every item in a table; the result set is eventually consistent.You can limit the number of
items returned by filtering the data attributes, using conditional expressions. Scan can be used to enable
ad-hoc querying of a table against non-key attributes; however, since this is a full table scan without
using an index, Scan should not be used for any application query use case that requires predictable
performance.

For conceptual information about reading data, see Working with Items and Query and Scan Operations
in the Amazon DynamoDB Developer Guide.

Modifying Data

• PutItem - Creates a new item, or replaces an existing item with a new item (including all the attributes).
By default, if an item in the table already exists with the same primary key, the new item completely
replaces the existing item.You can use conditional operators to replace an item only if its attribute
values match certain conditions, or to insert a new item only if that item doesn't already exist.

• UpdateItem - Modifies the attributes of an existing item.You can also use conditional operators to
perform an update only if the item's attribute values match certain conditions.

• DeleteItem - Deletes an item in a table by primary key.You can use conditional operators to perform
a delete an item only if the item's attribute values match certain conditions.

• BatchWriteItem - Performs multiple PutItem and DeleteItem requests across multiple tables in a single
request. A failure of any request(s) in the batch will not cause the entire BatchWriteItem operation to
fail. Supports batches of up to 25 items to put or delete, with a maximum total request size of 16 MB.

For conceptual information about modifying data, see Working with Items and Query and Scan Operations
in the Amazon DynamoDB Developer Guide.

This document was last updated on September 3, 2015.

API Version 2012-08-10
2

Amazon DynamoDB API Reference

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html

Actions

The following actions are supported:

• BatchGetItem (p. 4)

• BatchWriteItem (p. 13)

• CreateTable (p. 23)

• DeleteItem (p. 32)

• DeleteTable (p. 45)

• DescribeTable (p. 49)

• GetItem (p. 54)

• ListTables (p. 60)

• PutItem (p. 63)

• Query (p. 76)

• Scan (p. 92)

• UpdateItem (p. 106)

• UpdateTable (p. 122)

API Version 2012-08-10
3

Amazon DynamoDB API Reference

BatchGetItem
The BatchGetItem operation returns the attributes of one or more items from one or more tables.You
identify requested items by primary key.

A single operation can retrieve up to 16 MB of data, which can contain as many as 100 items. BatchGetItem
will return a partial result if the response size limit is exceeded, the table's provisioned throughput is
exceeded, or an internal processing failure occurs. If a partial result is returned, the operation returns a
value for UnprocessedKeys.You can use this value to retry the operation starting with the next item to
get.

Important
If you request more than 100 items BatchGetItem will return a ValidationException with the
message "Too many items requested for the BatchGetItem call".

For example, if you ask to retrieve 100 items, but each individual item is 300 KB in size, the system returns
52 items (so as not to exceed the 16 MB limit). It also returns an appropriate UnprocessedKeys value so
you can get the next page of results. If desired, your application can include its own logic to assemble
the pages of results into one data set.

If none of the items can be processed due to insufficient provisioned throughput on all of the tables in the
request, then BatchGetItem will return a ProvisionedThroughputExceededException. If at least one of
the items is successfully processed, then BatchGetItem completes successfully, while returning the keys
of the unread items in UnprocessedKeys.

Important
If DynamoDB returns any unprocessed items, you should retry the batch operation on those
items. However, we strongly recommend that you use an exponential backoff algorithm. If you
retry the batch operation immediately, the underlying read or write requests can still fail due to
throttling on the individual tables. If you delay the batch operation using exponential backoff, the
individual requests in the batch are much more likely to succeed. For more information, see
Batch Operations and Error Handling in the Amazon DynamoDB Developer Guide.

By default, BatchGetItem performs eventually consistent reads on every table in the request. If you want
strongly consistent reads instead, you can set ConsistentRead to true for any or all tables.

In order to minimize response latency, BatchGetItem retrieves items in parallel.

When designing your application, keep in mind that DynamoDB does not return attributes in any particular
order. To help parse the response by item, include the primary key values for the items in your request
in the AttributesToGet parameter.

If a requested item does not exist, it is not returned in the result. Requests for nonexistent items consume
the minimum read capacity units according to the type of read. For more information, see Capacity Units
Calculations in the Amazon DynamoDB Developer Guide.

Request Syntax

{
 "RequestItems":
 {
 "string" :
 {
 "AttributesToGet": [
 "string"
],

API Version 2012-08-10
4

Amazon DynamoDB API Reference
BatchGetItem

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#CapacityUnitCalculations
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#CapacityUnitCalculations

 "ConsistentRead": boolean,
 "ExpressionAttributeNames":
 {
 "string" :
 "string"
 },
 "Keys": [

 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
],
 "ProjectionExpression": "string"
 }
 },
 "ReturnConsumedCapacity": "string"
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

RequestItems
A map of one or more table names and, for each table, a map that describes one or more items to
retrieve from that table. Each table name can be used only once per BatchGetItem request.

Each element in the map of items to retrieve consists of the following:

• ConsistentRead - If true, a strongly consistent read is used; if false (the default), an eventually
consistent read is used.

API Version 2012-08-10
5

Amazon DynamoDB API Reference
Request Parameters

• ExpressionAttributeNames - One or more substitution tokens for attribute names in the
ProjectionExpression parameter. The following are some use cases for using
ExpressionAttributeNames:

• To access an attribute whose name conflicts with a DynamoDB reserved word.

• To create a placeholder for repeating occurrences of an attribute name in an expression.

• To prevent special characters in an attribute name from being misinterpreted in an expression.

Use the # character in an expression to dereference an attribute name. For example, consider the
following attribute name:

• Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an
expression. (For the complete list of reserved words, see Reserved Words in the Amazon
DynamoDB Developer Guide). To work around this, you could specify the following for
ExpressionAttributeNames:

• {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

• #P = :val

Note
Tokens that begin with the : character are expression attribute values, which are
placeholders for the actual value at runtime.

For more information on expression attribute names, see Accessing Item Attributes in the Amazon
DynamoDB Developer Guide.

• Keys - An array of primary key attribute values that define specific items in the table. For each
primary key, you must provide all of the key attributes. For example, with a hash type primary key,
you only need to provide the hash attribute. For a hash-and-range type primary key, you must
provide both the hash attribute and the range attribute.

• ProjectionExpression - A string that identifies one or more attributes to retrieve from the table.
These attributes can include scalars, sets, or elements of a JSON document. The attributes in the
expression must be separated by commas.

If no attribute names are specified, then all attributes will be returned. If any of the requested
attributes are not found, they will not appear in the result.

For more information, see Accessing Item Attributes in the Amazon DynamoDB Developer Guide.

• AttributesToGet -

Important
This is a legacy parameter, for backward compatibility. New applications should use
ProjectionExpression instead. Do not combine legacy parameters and expression
parameters in a single API call; otherwise, DynamoDB will return a ValidationException
exception. This parameter allows you to retrieve attributes of type List or Map; however,
it cannot retrieve individual elements within a List or a Map.

The names of one or more attributes to retrieve. If no attribute names are provided, then all attributes
will be returned. If any of the requested attributes are not found, they will not appear in the result.

Note that AttributesToGet has no effect on provisioned throughput consumption. DynamoDB
determines capacity units consumed based on item size, not on the amount of data that is returned
to an application.

Type: String to KeysAndAttributes (p. 146) object map

Length constraints: Minimum length of 1. Maximum length of 100.

API Version 2012-08-10
6

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html

Required:Yes

ReturnConsumedCapacity
Determines the level of detail about provisioned throughput consumption that is returned in the
response:

• INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together
with ConsumedCapacity for each table and secondary index that was accessed.

Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all.
In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

• TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

• NONE - No ConsumedCapacity details are included in the response.

Type: String

Valid Values: INDEXES | TOTAL | NONE

Required: No

Response Syntax

{
 "ConsumedCapacity": [
 {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"
 }
],
 "Responses":
 {
 "string" :
 [

 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,

API Version 2012-08-10
7

Amazon DynamoDB API Reference
Response Syntax

 "BS": [
blob

],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
]
 },
 "UnprocessedKeys":
 {
 "string" :
 {
 "AttributesToGet": [
 "string"
],
 "ConsistentRead": boolean,
 "ExpressionAttributeNames":
 {
 "string" :
 "string"
 },
 "Keys": [

 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"

API Version 2012-08-10
8

Amazon DynamoDB API Reference
Response Syntax

],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
],
 "ProjectionExpression": "string"
 }
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ConsumedCapacity
The read capacity units consumed by the operation.

Each element consists of:

• TableName - The table that consumed the provisioned throughput.

• CapacityUnits - The total number of capacity units consumed.

Type: array of ConsumedCapacity (p. 136) objects

Responses
A map of table name to a list of items. Each object in Responses consists of a table name, along
with a map of attribute data consisting of the data type and attribute value.

Type: String to map

UnprocessedKeys
A map of tables and their respective keys that were not processed with the current response. The
UnprocessedKeys value is in the same form as RequestItems, so the value can be provided directly
to a subsequent BatchGetItem operation. For more information, see RequestItems in the Request
Parameters section.

Each element consists of:

• Keys - An array of primary key attribute values that define specific items in the table.

• AttributesToGet - One or more attributes to be retrieved from the table or index. By default, all
attributes are returned. If a requested attribute is not found, it does not appear in the result.

• ConsistentRead - The consistency of a read operation. If set to true, then a strongly consistent
read is used; otherwise, an eventually consistent read is used.

If there are no unprocessed keys remaining, the response contains an empty UnprocessedKeys
map.

Type: String to KeysAndAttributes (p. 146) object map

Length constraints: Minimum length of 1. Maximum length of 100.

API Version 2012-08-10
9

Amazon DynamoDB API Reference
Response Elements

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

ProvisionedThroughputExceededException
Your request rate is too high.The AWS SDKs for DynamoDB automatically retry requests that receive
this exception.Your request is eventually successful, unless your retry queue is too large to finish.
Reduce the frequency of requests and use exponential backoff. For more information, go to Error
Retries and Exponential Backoff in the Amazon DynamoDB Developer Guide.

HTTP Status Code: 400

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Retrieve Items From Multiple Tables
The following sample requests attributes from two different tables.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.BatchGetItem

{
 "RequestItems": {
 "Forum": {
 "Keys": [
 {
 "Name":{"S":"Amazon DynamoDB"}
 },
 {
 "Name":{"S":"Amazon RDS"}
 },
 {
 "Name":{"S":"Amazon Redshift"}
 }
],

API Version 2012-08-10
10

Amazon DynamoDB API Reference
Errors

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries

 "ProjectionExpression":"Name, Threads, Messages, Views"
 },
 "Thread": {
 "Keys": [
 {
 "ForumName":{"S":"Amazon DynamoDB"},
 "Subject":{"S":"Concurrent reads"}
 }
],
 "ProjectionExpression":"Tags, Message"
 }
 },
 "ReturnConsumedCapacity": "TOTAL"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "Responses": {
 "Forum": [
 {
 "Name":{
 "S":"Amazon DynamoDB"
 },
 "Threads":{
 "N":"5"
 },
 "Messages":{
 "N":"19"
 },
 "Views":{
 "N":"35"
 }
 },
 {
 "Name":{
 "S":"Amazon RDS"
 },
 "Threads":{
 "N":"8"
 },
 "Messages":{
 "N":"32"
 },
 "Views":{
 "N":"38"
 }
 },

API Version 2012-08-10
11

Amazon DynamoDB API Reference
Examples

 {
 "Name":{
 "S":"Amazon Redshift"
 },
 "Threads":{
 "N":"12"
 },
 "Messages":{
 "N":"55"
 },
 "Views":{
 "N":"47"
 }
 }
]
 "Thread": [
 {
 "Tags":{
 "SS":["Reads","MultipleUsers"]
 },
 "Message":{
 "S":"How many users can read a single data item at a time?
 Are there any limits?"
 }
 }
]
 },
 "UnprocessedKeys": {
 },
 "ConsumedCapacity": [
 {
 "TableName": "Forum",
 "CapacityUnits": 3
 },
 {
 "TableName": "Thread",
 "CapacityUnits": 1
 }
]
}

API Version 2012-08-10
12

Amazon DynamoDB API Reference
Examples

BatchWriteItem
The BatchWriteItem operation puts or deletes multiple items in one or more tables. A single call to
BatchWriteItem can write up to 16 MB of data, which can comprise as many as 25 put or delete requests.
Individual items to be written can be as large as 400 KB.

Note
BatchWriteItem cannot update items. To update items, use the UpdateItem API.

The individual PutItem and DeleteItem operations specified in BatchWriteItem are atomic; however
BatchWriteItem as a whole is not. If any requested operations fail because the table's provisioned
throughput is exceeded or an internal processing failure occurs, the failed operations are returned in the
UnprocessedItems response parameter.You can investigate and optionally resend the requests.Typically,
you would call BatchWriteItem in a loop. Each iteration would check for unprocessed items and submit
a new BatchWriteItem request with those unprocessed items until all items have been processed.

Note that if none of the items can be processed due to insufficient provisioned throughput on all of the
tables in the request, then BatchWriteItem will return a ProvisionedThroughputExceededException.

Important
If DynamoDB returns any unprocessed items, you should retry the batch operation on those
items. However, we strongly recommend that you use an exponential backoff algorithm. If you
retry the batch operation immediately, the underlying read or write requests can still fail due to
throttling on the individual tables. If you delay the batch operation using exponential backoff, the
individual requests in the batch are much more likely to succeed. For more information, see
Batch Operations and Error Handling in the Amazon DynamoDB Developer Guide.

With BatchWriteItem, you can efficiently write or delete large amounts of data, such as from Amazon
Elastic MapReduce (EMR), or copy data from another database into DynamoDB. In order to improve
performance with these large-scale operations, BatchWriteItem does not behave in the same way as
individual PutItem and DeleteItem calls would. For example, you cannot specify conditions on individual
put and delete requests, and BatchWriteItem does not return deleted items in the response.

If you use a programming language that supports concurrency, you can use threads to write items in
parallel.Your application must include the necessary logic to manage the threads. With languages that
don't support threading, you must update or delete the specified items one at a time. In both situations,
BatchWriteItem provides an alternative where the API performs the specified put and delete operations
in parallel, giving you the power of the thread pool approach without having to introduce complexity into
your application.

Parallel processing reduces latency, but each specified put and delete request consumes the same
number of write capacity units whether it is processed in parallel or not. Delete operations on nonexistent
items consume one write capacity unit.

If one or more of the following is true, DynamoDB rejects the entire batch write operation:

• One or more tables specified in the BatchWriteItem request does not exist.

• Primary key attributes specified on an item in the request do not match those in the corresponding
table's primary key schema.

• You try to perform multiple operations on the same item in the same BatchWriteItem request. For
example, you cannot put and delete the same item in the same BatchWriteItem request.

• There are more than 25 requests in the batch.

• Any individual item in a batch exceeds 400 KB.

• The total request size exceeds 16 MB.

API Version 2012-08-10
13

Amazon DynamoDB API Reference
BatchWriteItem

Request Syntax

{
 "RequestItems":
 {
 "string" :
 [
 {
 "DeleteRequest": {
 "Key":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
 },
 "PutRequest": {
 "Item":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },

API Version 2012-08-10
14

Amazon DynamoDB API Reference
Request Syntax

 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
 }
 }
]
 },
 "ReturnConsumedCapacity": "string",
 "ReturnItemCollectionMetrics": "string"
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

RequestItems
A map of one or more table names and, for each table, a list of operations to be performed
(DeleteRequest or PutRequest). Each element in the map consists of the following:

• DeleteRequest - Perform a DeleteItem operation on the specified item. The item to be deleted is
identified by a Key subelement:

• Key - A map of primary key attribute values that uniquely identify the ! item. Each entry in this
map consists of an attribute name and an attribute value. For each primary key, you must provide
all of the key attributes. For example, with a hash type primary key, you only need to provide
the hash attribute. For a hash-and-range type primary key, you must provide both the hash
attribute and the range attribute.

• PutRequest - Perform a PutItem operation on the specified item. The item to be put is identified
by an Item subelement:

• Item - A map of attributes and their values. Each entry in this map consists of an attribute name
and an attribute value. Attribute values must not be null; string and binary type attributes must
have lengths greater than zero; and set type attributes must not be empty. Requests that contain
empty values will be rejected with a ValidationException exception.

If you specify any attributes that are part of an index key, then the data types for those attributes
must match those of the schema in the table's attribute definition.

Type: String to WriteRequest (p. 157) object map

Length constraints: Minimum length of 1. Maximum length of 25.

Required:Yes

ReturnConsumedCapacity
Determines the level of detail about provisioned throughput consumption that is returned in the
response:

• INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together
with ConsumedCapacity for each table and secondary index that was accessed.

API Version 2012-08-10
15

Amazon DynamoDB API Reference
Request Parameters

Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all.
In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

• TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

• NONE - No ConsumedCapacity details are included in the response.

Type: String

Valid Values: INDEXES | TOTAL | NONE

Required: No

ReturnItemCollectionMetrics
Determines whether item collection metrics are returned. If set to SIZE, the response includes
statistics about item collections, if any, that were modified during the operation are returned in the
response. If set to NONE (the default), no statistics are returned.

Type: String

Valid Values: SIZE | NONE

Required: No

Response Syntax

{
 "ConsumedCapacity": [
 {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"
 }
],
 "ItemCollectionMetrics":
 {
 "string" :
 [
 {
 "ItemCollectionKey":
 {
 "string" :

API Version 2012-08-10
16

Amazon DynamoDB API Reference
Response Syntax

 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "SizeEstimateRangeGB": [

number
]
 }
]
 },
 "UnprocessedItems":
 {
 "string" :
 [
 {
 "DeleteRequest": {
 "Key":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],

API Version 2012-08-10
17

Amazon DynamoDB API Reference
Response Syntax

 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
 },
 "PutRequest": {
 "Item":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
 }
 }
]
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ConsumedCapacity
The capacity units consumed by the operation.

Each element consists of:

• TableName - The table that consumed the provisioned throughput.

• CapacityUnits - The total number of capacity units consumed.

Type: array of ConsumedCapacity (p. 136) objects

API Version 2012-08-10
18

Amazon DynamoDB API Reference
Response Elements

ItemCollectionMetrics
A list of tables that were processed by BatchWriteItem and, for each table, information about any
item collections that were affected by individual DeleteItem or PutItem operations.

Each entry consists of the following subelements:

• ItemCollectionKey - The hash key value of the item collection. This is the same as the hash key
of the item.

• SizeEstimateRange - An estimate of item collection size, expressed in GB. This is a two-element
array containing a lower bound and an upper bound for the estimate. The estimate includes the
size of all the items in the table, plus the size of all attributes projected into all of the local secondary
indexes on the table. Use this estimate to measure whether a local secondary index is approaching
its size limit.

The estimate is subject to change over time; therefore, do not rely on the precision or accuracy of
the estimate.

Type: String to ItemCollectionMetrics (p. 145) object map

UnprocessedItems
A map of tables and requests against those tables that were not processed. The UnprocessedItems
value is in the same form as RequestItems, so you can provide this value directly to a subsequent
BatchGetItem operation. For more information, see RequestItems in the Request Parameters section.

Each UnprocessedItems entry consists of a table name and, for that table, a list of operations to
perform (DeleteRequest or PutRequest).

• DeleteRequest - Perform a DeleteItem operation on the specified item. The item to be deleted is
identified by a Key subelement:

• Key - A map of primary key attribute values that uniquely identify the item. Each entry in this
map consists of an attribute name and an attribute value.

• PutRequest - Perform a PutItem operation on the specified item. The item to be put is identified
by an Item subelement:

• Item - A map of attributes and their values. Each entry in this map consists of an attribute name
and an attribute value. Attribute values must not be null; string and binary type attributes must
have lengths greater than zero; and set type attributes must not be empty. Requests that contain
empty values will be rejected with a ValidationException exception.

If you specify any attributes that are part of an index key, then the data types for those attributes
must match those of the schema in the table's attribute definition.

If there are no unprocessed items remaining, the response contains an empty UnprocessedItems
map.

Type: String to WriteRequest (p. 157) object map

Length constraints: Minimum length of 1. Maximum length of 25.

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

ItemCollectionSizeLimitExceededException
An item collection is too large. This exception is only returned for tables that have one or more local
secondary indexes.

API Version 2012-08-10
19

Amazon DynamoDB API Reference
Errors

HTTP Status Code: 400

ProvisionedThroughputExceededException
Your request rate is too high.The AWS SDKs for DynamoDB automatically retry requests that receive
this exception.Your request is eventually successful, unless your retry queue is too large to finish.
Reduce the frequency of requests and use exponential backoff. For more information, go to Error
Retries and Exponential Backoff in the Amazon DynamoDB Developer Guide.

HTTP Status Code: 400

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Multiple Operations on One Table
This example writes several items to the Forum table. The response shows that the final put operation
failed, possibly because the application exceeded the provisioned throughput on the table. The
UnprocessedItems object shows the unsuccessful put request. The application can call BatchWriteItem
again to address such unprocessed requests.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.BatchWriteItem

{
 "RequestItems": {
 "Forum": [
 {
 "PutRequest": {
 "Item": {
 "Name": {
 "S": "Amazon DynamoDB"
 },
 "Category": {
 "S": "Amazon Web Services"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Name": {

API Version 2012-08-10
20

Amazon DynamoDB API Reference
Examples

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries

 "S": "Amazon RDS"
 },
 "Category": {
 "S": "Amazon Web Services"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Name": {
 "S": "Amazon Redshift"
 },
 "Category": {
 "S": "Amazon Web Services"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Name": {
 "S": "Amazon ElastiCache"
 },
 "Category": {
 "S": "Amazon Web Services"
 }
 }
 }
 }
]
 },
 "ReturnConsumedCapacity": "TOTAL"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "UnprocessedItems": {
 "Forum": [
 {
 "PutRequest": {
 "Item": {
 "Name": {
 "S": "Amazon ElastiCache"
 },

API Version 2012-08-10
21

Amazon DynamoDB API Reference
Examples

 "Category": {
 "S": "Amazon Web Services"
 }
 }
 }
 }
]
 },
 "ConsumedCapacity": [
 {
 "TableName": "Forum",
 "CapacityUnits": 3
 }
]
}

API Version 2012-08-10
22

Amazon DynamoDB API Reference
Examples

CreateTable
The CreateTable operation adds a new table to your account. In an AWS account, table names must be
unique within each region. That is, you can have two tables with same name if you create the tables in
different regions.

CreateTable is an asynchronous operation. Upon receiving a CreateTable request, DynamoDB immediately
returns a response with a TableStatus of CREATING. After the table is created, DynamoDB sets the
TableStatus to ACTIVE.You can perform read and write operations only on an ACTIVE table.

You can optionally define secondary indexes on the new table, as part of the CreateTable operation. If
you want to create multiple tables with secondary indexes on them, you must create the tables sequentially.
Only one table with secondary indexes can be in the CREATING state at any given time.

You can use the DescribeTable API to check the table status.

Request Syntax

{
 "AttributeDefinitions": [
 {
 "AttributeName": "string",
 "AttributeType": "string"
 }
],
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "string",
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 },
 "ProvisionedThroughput": {
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 }
],
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "LocalSecondaryIndexes": [
 {
 "IndexName": "string",

API Version 2012-08-10
23

Amazon DynamoDB API Reference
CreateTable

 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 }
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 },
 "StreamSpecification": {
 "StreamEnabled": boolean,
 "StreamViewType": "string"
 },
 "TableName": "string"
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

AttributeDefinitions
An array of attributes that describe the key schema for the table and indexes.

Type: array of AttributeDefinition (p. 130) objects

Required:Yes

KeySchema
Specifies the attributes that make up the primary key for a table or an index. The attributes in
KeySchema must also be defined in the AttributeDefinitions array. For more information, see Data
Model in the Amazon DynamoDB Developer Guide.

Each KeySchemaElement in the array is composed of:

• AttributeName - The name of this key attribute.

• KeyType - Determines whether the key attribute is HASH or RANGE.

For a primary key that consists of a hash attribute, you must provide exactly one element with a
KeyType of HASH.

For a primary key that consists of hash and range attributes, you must provide exactly two elements,
in this order: The first element must have a KeyType of HASH, and the second element must have a
KeyType of RANGE.

For more information, see Specifying the Primary Key in the Amazon DynamoDB Developer Guide.

Type: array of KeySchemaElement (p. 148) objects

API Version 2012-08-10
24

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key

Length constraints: Minimum of 1 item(s) in the list. Maximum of 2 item(s) in the list.

Required:Yes

ProvisionedThroughput
Represents the provisioned throughput settings for a specified table or index. The settings can be
modified using the UpdateTable operation.

For current minimum and maximum provisioned throughput values, see Limits in the Amazon
DynamoDB Developer Guide.

Type: ProvisionedThroughput (p. 151) object

Required:Yes

TableName
The name of the table to create.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

GlobalSecondaryIndexes
One or more global secondary indexes (the maximum is five) to be created on the table. Each global
secondary index in the array includes the following:

• IndexName - The name of the global secondary index. Must be unique only for this table.

• KeySchema - Specifies the key schema for the global secondary index.

• Projection - Specifies attributes that are copied (projected) from the table into the index.These are
in addition to the primary key attributes and index key attributes, which are automatically projected.
Each attribute specification is composed of:

• ProjectionType - One of the following:

• KEYS_ONLY - Only the index and primary keys are projected into the index.

• INCLUDE - Only the specified table attributes are projected into the index.The list of projected
attributes are in NonKeyAttributes.

• ALL - All of the table attributes are projected into the index.

• NonKeyAttributes - A list of one or more non-key attribute names that are projected into the
secondary index. The total count of attributes provided in NonKeyAttributes, summed across all
of the secondary indexes, must not exceed 20. If you project the same attribute into two different
indexes, this counts as two distinct attributes when determining the total.

• ProvisionedThroughput - The provisioned throughput settings for the global secondary index,
consisting of read and write capacity units.

Type: array of GlobalSecondaryIndex (p. 142) objects

Required: No

LocalSecondaryIndexes
One or more local secondary indexes (the maximum is five) to be created on the table. Each index
is scoped to a given hash key value. There is a 10 GB size limit per hash key; otherwise, the size of
a local secondary index is unconstrained.

Each local secondary index in the array includes the following:

• IndexName - The name of the local secondary index. Must be unique only for this table.

API Version 2012-08-10
25

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

• KeySchema - Specifies the key schema for the local secondary index.The key schema must begin
with the same hash key attribute as the table.

• Projection - Specifies attributes that are copied (projected) from the table into the index.These are
in addition to the primary key attributes and index key attributes, which are automatically projected.
Each attribute specification is composed of:

• ProjectionType - One of the following:

• KEYS_ONLY - Only the index and primary keys are projected into the index.

• INCLUDE - Only the specified table attributes are projected into the index.The list of projected
attributes are in NonKeyAttributes.

• ALL - All of the table attributes are projected into the index.

• NonKeyAttributes - A list of one or more non-key attribute names that are projected into the
secondary index. The total count of attributes provided in NonKeyAttributes, summed across all
of the secondary indexes, must not exceed 20. If you project the same attribute into two different
indexes, this counts as two distinct attributes when determining the total.

Type: array of LocalSecondaryIndex (p. 148) objects

Required: No

StreamSpecification
The settings for DynamoDB Streams on the table. These settings consist of:

• StreamEnabled - Indicates whether Streams is to be enabled (true) or disabled (false).

• StreamViewType - When an item in the table is modified, StreamViewType determines what
information is written to the table's stream. Valid values for StreamViewType are:

• KEYS_ONLY - Only the key attributes of the modified item are written to the stream.

• NEW_IMAGE - The entire item, as it appears after it was modified, is written to the stream.

• OLD_IMAGE - The entire item, as it appeared before it was modified, is written to the stream.

• NEW_AND_OLD_IMAGES - Both the new and the old item images of the item are written to the
stream.

Type: StreamSpecification (p. 153) object

Required: No

Response Syntax

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "string",
 "AttributeType": "string"
 }
],
 "CreationDateTime": number,
 "GlobalSecondaryIndexes": [
 {
 "Backfilling": boolean,
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "IndexStatus": "string",
 "ItemCount": number,

API Version 2012-08-10
26

Amazon DynamoDB API Reference
Response Syntax

 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 },
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 }
],
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "LatestStreamArn": "string",
 "LatestStreamLabel": "string",
 "LocalSecondaryIndexes": [
 {
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 }
 }
],
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 },
 "StreamSpecification": {

API Version 2012-08-10
27

Amazon DynamoDB API Reference
Response Syntax

 "StreamEnabled": boolean,
 "StreamViewType": "string"
 },
 "TableArn": "string",
 "TableName": "string",
 "TableSizeBytes": number,
 "TableStatus": "string"
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TableDescription
Represents the properties of a table.

Type: TableDescription (p. 153) object

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

LimitExceededException
The number of concurrent table requests (cumulative number of tables in the CREATING, DELETING
or UPDATING state) exceeds the maximum allowed of 10.

Also, for tables with secondary indexes, only one of those tables can be in the CREATING state at
any point in time. Do not attempt to create more than one such table simultaneously.

The total limit of tables in the ACTIVE state is 250.

HTTP Status Code: 400

ResourceInUseException
The operation conflicts with the resource's availability. For example, you attempted to recreate an
existing table, or tried to delete a table currently in the CREATING state.

HTTP Status Code: 400

Examples

Create a Table
This example creates a table named Thread. The table primary key consists of ForumName (hash) and
Subject (range). A local secondary index is also created; its key consists of ForumName (hash) and
LastPostDateTime (range).

API Version 2012-08-10
28

Amazon DynamoDB API Reference
Response Elements

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.CreateTable

{
 "AttributeDefinitions": [
 {
 "AttributeName": "ForumName",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Subject",
 "AttributeType": "S"
 },
 {
 "AttributeName": "LastPostDateTime",
 "AttributeType": "S"
 }
],
 "TableName": "Thread",
 "KeySchema": [
 {
 "AttributeName": "ForumName",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "Subject",
 "KeyType": "RANGE"
 }
],
 "LocalSecondaryIndexes": [
 {
 "IndexName": "LastPostIndex",
 "KeySchema": [
 {
 "AttributeName": "ForumName",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "LastPostDateTime",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "KEYS_ONLY"
 }
 }
],

API Version 2012-08-10
29

Amazon DynamoDB API Reference
Examples

 "ProvisionedThroughput": {
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 }
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "TableDescription": {
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/Thread",
 "AttributeDefinitions": [
 {
 "AttributeName": "ForumName",
 "AttributeType": "S"
 },
 {
 "AttributeName": "LastPostDateTime",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Subject",
 "AttributeType": "S"
 }
],
 "CreationDateTime": 1.36372808007E9,
 "ItemCount": 0,
 "KeySchema": [
 {
 "AttributeName": "ForumName",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "Subject",
 "KeyType": "RANGE"
 }
],
 "LocalSecondaryIndexes": [
 {
 "IndexArn": "arn:aws:dynamodb:us-west-
2:123456789012:table/Thread/index/LastPostIndex",
 "IndexName": "LastPostIndex",
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "KeySchema": [
 {
 "AttributeName": "ForumName",
 "KeyType": "HASH"

API Version 2012-08-10
30

Amazon DynamoDB API Reference
Examples

 },
 {
 "AttributeName": "LastPostDateTime",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "KEYS_ONLY"
 }
 }
],
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },
 "TableName": "Thread",
 "TableSizeBytes": 0,
 "TableStatus": "CREATING"
 }
}

API Version 2012-08-10
31

Amazon DynamoDB API Reference
Examples

DeleteItem
Deletes a single item in a table by primary key.You can perform a conditional delete operation that deletes
the item if it exists, or if it has an expected attribute value.

In addition to deleting an item, you can also return the item's attribute values in the same operation, using
the ReturnValues parameter.

Unless you specify conditions, the DeleteItem is an idempotent operation; running it multiple times on
the same item or attribute does not result in an error response.

Conditional deletes are useful for deleting items only if specific conditions are met. If those conditions are
met, DynamoDB performs the delete. Otherwise, the item is not deleted.

Request Syntax

{
 "ConditionalOperator": "string",
 "ConditionExpression": "string",
 "Expected":
 {
 "string" :
 {
 "AttributeValueList": [
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
],
 "ComparisonOperator": "string",
 "Exists": boolean,
 "Value": {
 "B": blob,
 "BOOL": boolean,
 "BS": [

API Version 2012-08-10
32

Amazon DynamoDB API Reference
DeleteItem

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
 },
 "ExpressionAttributeNames":
 {
 "string" :
 "string"
 },
 "ExpressionAttributeValues":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "Key":
 {
 "string" :

API Version 2012-08-10
33

Amazon DynamoDB API Reference
Request Syntax

 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ReturnConsumedCapacity": "string",
 "ReturnItemCollectionMetrics": "string",
 "ReturnValues": "string",
 "TableName": "string"
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

Key
A map of attribute names to AttributeValue objects, representing the primary key of the item to delete.

For the primary key, you must provide all of the attributes. For example, with a hash type primary
key, you only need to provide the hash attribute. For a hash-and-range type primary key, you must
provide both the hash attribute and the range attribute.

Type: String to AttributeValue (p. 130) object map

Required:Yes

TableName
The name of the table from which to delete the item.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

API Version 2012-08-10
34

Amazon DynamoDB API Reference
Request Parameters

ConditionalOperator

Important
This is a legacy parameter, for backward compatibility. New applications should use
ConditionExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A logical operator to apply to the conditions in the Expected map:

• AND - If all of the conditions evaluate to true, then the entire map evaluates to true.

• OR - If at least one of the conditions evaluate to true, then the entire map evaluates to true.

If you omit ConditionalOperator, then AND is the default.

The operation will succeed only if the entire map evaluates to true.

Note
This parameter does not support attributes of type List or Map.

Type: String

Valid Values: AND | OR

Required: No

ConditionExpression
A condition that must be satisfied in order for a conditional DeleteItem to succeed.

An expression can contain any of the following:

• Functions:attribute_exists | attribute_not_exists | attribute_type | contains
| begins_with | size

These function names are case-sensitive.

• Comparison operators: = | <> | < | > | <= | >= | BETWEEN | IN

• Logical operators: AND | OR | NOT

For more information on condition expressions, see Specifying Conditions in the Amazon DynamoDB
Developer Guide.

Note
ConditionExpression replaces the legacy ConditionalOperator and Expected parameters.

Type: String

Required: No

Expected

Important
This is a legacy parameter, for backward compatibility. New applications should use
ConditionExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A map of attribute/condition pairs. Expected provides a conditional block for the DeleteItem operation.

Each element of Expected consists of an attribute name, a comparison operator, and one or more
values. DynamoDB compares the attribute with the value(s) you supplied, using the comparison
operator. For each Expected element, the result of the evaluation is either true or false.

If you specify more than one element in the Expected map, then by default all of the conditions must
evaluate to true. In other words, the conditions are ANDed together. (You can use the
ConditionalOperator parameter to OR the conditions instead. If you do this, then at least one of the
conditions must evaluate to true, rather than all of them.)

API Version 2012-08-10
35

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html

If the Expected map evaluates to true, then the conditional operation succeeds; otherwise, it fails.

Expected contains the following:

• AttributeValueList - One or more values to evaluate against the supplied attribute. The number of
values in the list depends on the ComparisonOperator being used.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on ASCII character code
values. For example, a is greater than A, and a is greater than B. For a list of code values, see
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

For type Binary, DynamoDB treats each byte of the binary data as unsigned when it compares
binary values.

• ComparisonOperator - A comparator for evaluating attributes in the AttributeValueList. When
performing the comparison, DynamoDB uses strongly consistent reads.

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

The following are descriptions of each comparison operator.

• EQ : Equal. EQ is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue element of type String, Number, Binary,
String Set, Number Set, or Binary Set. If an item contains an AttributeValue element of a different
type than the one provided in the request, the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• NE : Not equal. NE is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue of type String, Number, Binary, String
Set, Number Set, or Binary Set. If an item contains an AttributeValue of a different type than the
one provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• LE : Less than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• LT : Less than.

AttributeValueList can contain only one AttributeValue of type String, Number, or Binary (not a
set type). If an item contains an AttributeValue element of a different type than the one provided
in the request, the value does not match. For example, {"S":"6"} does not equal {"N":"6"}.
Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GE : Greater than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

API Version 2012-08-10
36

Amazon DynamoDB API Reference
Request Parameters

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

• GT : Greater than.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• NOT_NULL : The attribute exists. NOT_NULL is supported for all datatypes, including lists and
maps.

Note
This operator tests for the existence of an attribute, not its data type. If the data type of
attribute "a" is null, and you evaluate it using NOT_NULL, the result is a Boolean true.
This result is because the attribute "a" exists; its data type is not relevant to the
NOT_NULL comparison operator.

• NULL :The attribute does not exist.NULL is supported for all datatypes, including lists and maps.

Note
This operator tests for the nonexistence of an attribute, not its data type. If the data
type of attribute "a" is null, and you evaluate it using NULL, the result is a Boolean false.
This is because the attribute "a" exists; its data type is not relevant to the NULL
comparison operator.

• CONTAINS : Checks for a subsequence, or value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is of type String, then the operator checks
for a substring match. If the target attribute of the comparison is of type Binary, then the operator
looks for a subsequence of the target that matches the input. If the target attribute of the
comparison is a set ("SS", "NS", or "BS"), then the operator evaluates to true if it finds an exact
match with any member of the set.

CONTAINS is supported for lists: When evaluating "a CONTAINS b", "a" can be a list; however,
"b" cannot be a set, a map, or a list.

• NOT_CONTAINS : Checks for absence of a subsequence, or absence of a value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is a String, then the operator checks for
the absence of a substring match. If the target attribute of the comparison is Binary, then the
operator checks for the absence of a subsequence of the target that matches the input. If the
target attribute of the comparison is a set ("SS", "NS", or "BS"), then the operator evaluates to
true if it does not find an exact match with any member of the set.

NOT_CONTAINS is supported for lists: When evaluating "a NOT CONTAINS b", "a" can be a
list; however, "b" cannot be a set, a map, or a list.

• BEGINS_WITH : Checks for a prefix.

AttributeValueList can contain only one AttributeValue of type String or Binary (not a Number or
a set type).The target attribute of the comparison must be of type String or Binary (not a Number
or a set type).

• IN : Checks for matching elements within two sets.

AttributeValueList can contain one or more AttributeValue elements of type String, Number, or
Binary (not a set type). These attributes are compared against an existing set type attribute of
an item. If any elements of the input set are present in the item attribute, the expression evaluates
to true.

• BETWEEN : Greater than or equal to the first value, and less than or equal to the second value.

API Version 2012-08-10
37

Amazon DynamoDB API Reference
Request Parameters

AttributeValueList must contain two AttributeValue elements of the same type, either String,
Number, or Binary (not a set type). A target attribute matches if the target value is greater than,
or equal to, the first element and less than, or equal to, the second element. If an item contains
an AttributeValue element of a different type than the one provided in the request, the value
does not match. For example, {"S":"6"} does not compare to {"N":"6"}. Also, {"N":"6"}
does not compare to {"NS":["6", "2", "1"]}

For usage examples of AttributeValueList and ComparisonOperator, see Legacy Conditional
Parameters in the Amazon DynamoDB Developer Guide.

For backward compatibility with previous DynamoDB releases, the following parameters can be used
instead of AttributeValueList and ComparisonOperator:

• Value - A value for DynamoDB to compare with an attribute.

• Exists - A Boolean value that causes DynamoDB to evaluate the value before attempting the
conditional operation:

• If Exists is true, DynamoDB will check to see if that attribute value already exists in the table.
If it is found, then the condition evaluates to true; otherwise the condition evaluate to false.

• If Exists is false, DynamoDB assumes that the attribute value does not exist in the table. If in
fact the value does not exist, then the assumption is valid and the condition evaluates to true. If
the value is found, despite the assumption that it does not exist, the condition evaluates to false.

Note that the default value for Exists is true.

The Value and Exists parameters are incompatible with AttributeValueList and ComparisonOperator.
Note that if you use both sets of parameters at once, DynamoDB will return a ValidationException
exception.

Note
This parameter does not support attributes of type List or Map.

Type: String to ExpectedAttributeValue (p. 139) object map

Required: No

ExpressionAttributeNames
One or more substitution tokens for attribute names in an expression. The following are some use
cases for using ExpressionAttributeNames:

• To access an attribute whose name conflicts with a DynamoDB reserved word.

• To create a placeholder for repeating occurrences of an attribute name in an expression.

• To prevent special characters in an attribute name from being misinterpreted in an expression.

Use the # character in an expression to dereference an attribute name. For example, consider the
following attribute name:

• Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression.
(For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer
Guide). To work around this, you could specify the following for ExpressionAttributeNames:

• {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

• #P = :val

Note
Tokens that begin with the : character are expression attribute values, which are placeholders
for the actual value at runtime.

API Version 2012-08-10
38

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html

For more information on expression attribute names, see Accessing Item Attributes in the Amazon
DynamoDB Developer Guide.

Type: String to String map

Required: No

ExpressionAttributeValues
One or more values that can be substituted in an expression.

Use the : (colon) character in an expression to dereference an attribute value. For example, suppose
that you wanted to check whether the value of the ProductStatus attribute was one of the following:

Available | Backordered | Discontinued

You would first need to specify ExpressionAttributeValues as follows:

{ ":avail":{"S":"Available"}, ":back":{"S":"Backordered"},
":disc":{"S":"Discontinued"} }

You could then use these values in an expression, such as this:

ProductStatus IN (:avail, :back, :disc)

For more information on expression attribute values, see Specifying Conditions in the Amazon
DynamoDB Developer Guide.

Type: String to AttributeValue (p. 130) object map

Required: No

ReturnConsumedCapacity
Determines the level of detail about provisioned throughput consumption that is returned in the
response:

• INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together
with ConsumedCapacity for each table and secondary index that was accessed.

Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all.
In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

• TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

• NONE - No ConsumedCapacity details are included in the response.

Type: String

Valid Values: INDEXES | TOTAL | NONE

Required: No

ReturnItemCollectionMetrics
Determines whether item collection metrics are returned. If set to SIZE, the response includes
statistics about item collections, if any, that were modified during the operation are returned in the
response. If set to NONE (the default), no statistics are returned.

Type: String

Valid Values: SIZE | NONE

Required: No

ReturnValues
Use ReturnValues if you want to get the item attributes as they appeared before they were deleted.
For DeleteItem, the valid values are:

API Version 2012-08-10
39

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html

• NONE - If ReturnValues is not specified, or if its value is NONE, then nothing is returned. (This setting
is the default for ReturnValues.)

• ALL_OLD - The content of the old item is returned.

Type: String

Valid Values: NONE | ALL_OLD | UPDATED_OLD | ALL_NEW | UPDATED_NEW

Required: No

Response Syntax

{
 "Attributes":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ConsumedCapacity": {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number

API Version 2012-08-10
40

Amazon DynamoDB API Reference
Response Syntax

 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"
 },
 "ItemCollectionMetrics": {
 "ItemCollectionKey":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "SizeEstimateRangeGB": [

number
]
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Attributes
A map of attribute names to AttributeValue objects, representing the item as it appeared before the
DeleteItem operation. This map appears in the response only if ReturnValues was specified as
ALL_OLD in the request.

Type: String to AttributeValue (p. 130) object map

ConsumedCapacity
The capacity units consumed by an operation. The data returned includes the total provisioned
throughput consumed, along with statistics for the table and any indexes involved in the operation.

API Version 2012-08-10
41

Amazon DynamoDB API Reference
Response Elements

ConsumedCapacity is only returned if the request asked for it. For more information, see Provisioned
Throughput in the Amazon DynamoDB Developer Guide.

Type: ConsumedCapacity (p. 136) object

ItemCollectionMetrics
Information about item collections, if any, that were affected by the operation. ItemCollectionMetrics
is only returned if the request asked for it. If the table does not have any local secondary indexes,
this information is not returned in the response.

Each ItemCollectionMetrics element consists of:

• ItemCollectionKey - The hash key value of the item collection. This is the same as the hash key
of the item.

• SizeEstimateRange - An estimate of item collection size, in gigabytes. This value is a two-element
array containing a lower bound and an upper bound for the estimate. The estimate includes the
size of all the items in the table, plus the size of all attributes projected into all of the local secondary
indexes on that table. Use this estimate to measure whether a local secondary index is approaching
its size limit.

The estimate is subject to change over time; therefore, do not rely on the precision or accuracy of
the estimate.

Type: ItemCollectionMetrics (p. 145) object

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

ConditionalCheckFailedException
A condition specified in the operation could not be evaluated.

HTTP Status Code: 400

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

ItemCollectionSizeLimitExceededException
An item collection is too large. This exception is only returned for tables that have one or more local
secondary indexes.

HTTP Status Code: 400

ProvisionedThroughputExceededException
Your request rate is too high.The AWS SDKs for DynamoDB automatically retry requests that receive
this exception.Your request is eventually successful, unless your retry queue is too large to finish.
Reduce the frequency of requests and use exponential backoff. For more information, go to Error
Retries and Exponential Backoff in the Amazon DynamoDB Developer Guide.

HTTP Status Code: 400

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

API Version 2012-08-10
42

Amazon DynamoDB API Reference
Errors

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries

Examples

Delete an Item
The following example deletes an item from the Thread table, but only if that item does not already have
an attribute named Replies. Because ReturnValues is set to ALL_OLD, the response contains the item
as it appeared before the delete.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.DeleteItem

{
 "TableName": "Thread",
 "Key": {
 "ForumName": {
 "S": "Amazon DynamoDB"
 },
 "Subject": {
 "S": "How do I update multiple items?"
 }
 },
 "ConditionExpression": "attribute_not_exists(Replies)",
 "ReturnValues": "ALL_OLD"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "Attributes": {
 "LastPostedBy": {
 "S": "fred@example.com"
 },
 "ForumName": {
 "S": "Amazon DynamoDB"
 },
 "LastPostDateTime": {
 "S": "201303201023"

API Version 2012-08-10
43

Amazon DynamoDB API Reference
Examples

 },
 "Tags": {
 "SS": ["Update","Multiple Items","HelpMe"]
 },
 "Subject": {
 "S": "How do I update multiple items?"
 },
 "Message": {
 "S": "I want to update multiple items in a single API call. What's
 the best way to do that?"
 }
 }
}

API Version 2012-08-10
44

Amazon DynamoDB API Reference
Examples

DeleteTable
The DeleteTable operation deletes a table and all of its items. After a DeleteTable request, the specified
table is in the DELETING state until DynamoDB completes the deletion. If the table is in the ACTIVE state,
you can delete it. If a table is in CREATING or UPDATING states, then DynamoDB returns a
ResourceInUseException. If the specified table does not exist, DynamoDB returns a
ResourceNotFoundException. If table is already in the DELETING state, no error is returned.

Note
DynamoDB might continue to accept data read and write operations, such as GetItem and
PutItem, on a table in the DELETING state until the table deletion is complete.

When you delete a table, any indexes on that table are also deleted.

If you have DynamoDB Streams enabled on the table, then the corresponding stream on that table goes
into the DISABLED state, and the stream is automatically deleted after 24 hours.

Use the DescribeTable API to check the status of the table.

Request Syntax

{
 "TableName": "string"
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

TableName
The name of the table to delete.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

Response Syntax

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "string",
 "AttributeType": "string"
 }

API Version 2012-08-10
45

Amazon DynamoDB API Reference
DeleteTable

],
 "CreationDateTime": number,
 "GlobalSecondaryIndexes": [
 {
 "Backfilling": boolean,
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "IndexStatus": "string",
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 },
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 }
],
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "LatestStreamArn": "string",
 "LatestStreamLabel": "string",
 "LocalSecondaryIndexes": [
 {
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 }

API Version 2012-08-10
46

Amazon DynamoDB API Reference
Response Syntax

 }
],
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 },
 "StreamSpecification": {
 "StreamEnabled": boolean,
 "StreamViewType": "string"
 },
 "TableArn": "string",
 "TableName": "string",
 "TableSizeBytes": number,
 "TableStatus": "string"
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

TableDescription
Represents the properties of a table.

Type: TableDescription (p. 153) object

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

LimitExceededException
The number of concurrent table requests (cumulative number of tables in the CREATING, DELETING
or UPDATING state) exceeds the maximum allowed of 10.

Also, for tables with secondary indexes, only one of those tables can be in the CREATING state at
any point in time. Do not attempt to create more than one such table simultaneously.

The total limit of tables in the ACTIVE state is 250.

HTTP Status Code: 400

ResourceInUseException
The operation conflicts with the resource's availability. For example, you attempted to recreate an
existing table, or tried to delete a table currently in the CREATING state.

HTTP Status Code: 400

API Version 2012-08-10
47

Amazon DynamoDB API Reference
Response Elements

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Delete a Table
This example deletes the Reply table.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.DeleteTable

{
 "TableName": "Reply"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "TableDescription": {
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/Reply",
 "ItemCount": 0,
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },
 "TableName": "Reply",
 "TableSizeBytes": 0,
 "TableStatus": "DELETING"
 }
}

API Version 2012-08-10
48

Amazon DynamoDB API Reference
Examples

DescribeTable
Returns information about the table, including the current status of the table, when it was created, the
primary key schema, and any indexes on the table.

Note
If you issue a DescribeTable request immediately after a CreateTable request, DynamoDB might
return a ResourceNotFoundException. This is because DescribeTable uses an eventually
consistent query, and the metadata for your table might not be available at that moment. Wait
for a few seconds, and then try the DescribeTable request again.

Request Syntax

{
 "TableName": "string"
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

TableName
The name of the table to describe.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

Response Syntax

{
 "Table": {
 "AttributeDefinitions": [
 {
 "AttributeName": "string",
 "AttributeType": "string"
 }
],
 "CreationDateTime": number,
 "GlobalSecondaryIndexes": [
 {
 "Backfilling": boolean,
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,

API Version 2012-08-10
49

Amazon DynamoDB API Reference
DescribeTable

 "IndexStatus": "string",
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 },
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 }
],
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "LatestStreamArn": "string",
 "LatestStreamLabel": "string",
 "LocalSecondaryIndexes": [
 {
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 }
 }
],
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number

API Version 2012-08-10
50

Amazon DynamoDB API Reference
Response Syntax

 },
 "StreamSpecification": {
 "StreamEnabled": boolean,
 "StreamViewType": "string"
 },
 "TableArn": "string",
 "TableName": "string",
 "TableSizeBytes": number,
 "TableStatus": "string"
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Table
Represents the properties of a table.

Type: TableDescription (p. 153) object

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Describe a Table
This example describes the Thread table.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0

API Version 2012-08-10
51

Amazon DynamoDB API Reference
Response Elements

Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.DescribeTable

{
 "TableName":"Thread"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "Table": {
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/Thread",
 "AttributeDefinitions": [
 {
 "AttributeName": "ForumName",
 "AttributeType": "S"
 },
 {
 "AttributeName": "LastPostDateTime",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Subject",
 "AttributeType": "S"
 }
],
 "CreationDateTime": 1.363729002358E9,
 "ItemCount": 0,
 "KeySchema": [
 {
 "AttributeName": "ForumName",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "Subject",
 "KeyType": "RANGE"
 }
],
 "LocalSecondaryIndexes": [
 {
 "IndexArn": "arn:aws:dynamodb:us-west-
2:123456789012:table/Thread/index/LastPostIndex",
 "IndexName": "LastPostIndex",
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "KeySchema": [
 {

API Version 2012-08-10
52

Amazon DynamoDB API Reference
Examples

 "AttributeName": "ForumName",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "LastPostDateTime",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "KEYS_ONLY"
 }
 }
],
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },
 "TableName": "Thread",
 "TableSizeBytes": 0,
 "TableStatus": "ACTIVE"
 }
}

API Version 2012-08-10
53

Amazon DynamoDB API Reference
Examples

GetItem
The GetItem operation returns a set of attributes for the item with the given primary key. If there is no
matching item, GetItem does not return any data.

GetItem provides an eventually consistent read by default. If your application requires a strongly consistent
read, set ConsistentRead to true. Although a strongly consistent read might take more time than an
eventually consistent read, it always returns the last updated value.

Request Syntax

{
 "AttributesToGet": [
 "string"
],
 "ConsistentRead": boolean,
 "ExpressionAttributeNames":
 {
 "string" :
 "string"
 },
 "Key":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ProjectionExpression": "string",
 "ReturnConsumedCapacity": "string",
 "TableName": "string"
}

API Version 2012-08-10
54

Amazon DynamoDB API Reference
GetItem

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

Key
A map of attribute names to AttributeValue objects, representing the primary key of the item to retrieve.

For the primary key, you must provide all of the attributes. For example, with a hash type primary
key, you only need to provide the hash attribute. For a hash-and-range type primary key, you must
provide both the hash attribute and the range attribute.

Type: String to AttributeValue (p. 130) object map

Required:Yes

TableName
The name of the table containing the requested item.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

AttributesToGet

Important
This is a legacy parameter, for backward compatibility. New applications should use
ProjectionExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception. This
parameter allows you to retrieve attributes of type List or Map; however, it cannot retrieve
individual elements within a List or a Map.

The names of one or more attributes to retrieve. If no attribute names are provided, then all attributes
will be returned. If any of the requested attributes are not found, they will not appear in the result.

Note that AttributesToGet has no effect on provisioned throughput consumption. DynamoDB
determines capacity units consumed based on item size, not on the amount of data that is returned
to an application.

Type: array of Strings

Length constraints: Minimum of 1 item(s) in the list.

Required: No

ConsistentRead
Determines the read consistency model: If set to true, then the operation uses strongly consistent
reads; otherwise, the operation uses eventually consistent reads.

Type: Boolean

Required: No

ExpressionAttributeNames
One or more substitution tokens for attribute names in an expression. The following are some use
cases for using ExpressionAttributeNames:

• To access an attribute whose name conflicts with a DynamoDB reserved word.

API Version 2012-08-10
55

Amazon DynamoDB API Reference
Request Parameters

• To create a placeholder for repeating occurrences of an attribute name in an expression.

• To prevent special characters in an attribute name from being misinterpreted in an expression.

Use the # character in an expression to dereference an attribute name. For example, consider the
following attribute name:

• Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression.
(For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer
Guide). To work around this, you could specify the following for ExpressionAttributeNames:

• {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

• #P = :val

Note
Tokens that begin with the : character are expression attribute values, which are placeholders
for the actual value at runtime.

For more information on expression attribute names, see Accessing Item Attributes in the Amazon
DynamoDB Developer Guide.

Type: String to String map

Required: No

ProjectionExpression
A string that identifies one or more attributes to retrieve from the table. These attributes can include
scalars, sets, or elements of a JSON document. The attributes in the expression must be separated
by commas.

If no attribute names are specified, then all attributes will be returned. If any of the requested attributes
are not found, they will not appear in the result.

For more information, see Accessing Item Attributes in the Amazon DynamoDB Developer Guide.

Note
ProjectionExpression replaces the legacy AttributesToGet parameter.

Type: String

Required: No

ReturnConsumedCapacity
Determines the level of detail about provisioned throughput consumption that is returned in the
response:

• INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together
with ConsumedCapacity for each table and secondary index that was accessed.

Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all.
In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

• TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

• NONE - No ConsumedCapacity details are included in the response.

Type: String

Valid Values: INDEXES | TOTAL | NONE

API Version 2012-08-10
56

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html

Required: No

Response Syntax

{
 "ConsumedCapacity": {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"
 },
 "Item":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
}

API Version 2012-08-10
57

Amazon DynamoDB API Reference
Response Syntax

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ConsumedCapacity
The capacity units consumed by an operation. The data returned includes the total provisioned
throughput consumed, along with statistics for the table and any indexes involved in the operation.
ConsumedCapacity is only returned if the request asked for it. For more information, see Provisioned
Throughput in the Amazon DynamoDB Developer Guide.

Type: ConsumedCapacity (p. 136) object

Item
A map of attribute names to AttributeValue objects, as specified by AttributesToGet.

Type: String to AttributeValue (p. 130) object map

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

ProvisionedThroughputExceededException
Your request rate is too high.The AWS SDKs for DynamoDB automatically retry requests that receive
this exception.Your request is eventually successful, unless your retry queue is too large to finish.
Reduce the frequency of requests and use exponential backoff. For more information, go to Error
Retries and Exponential Backoff in the Amazon DynamoDB Developer Guide.

HTTP Status Code: 400

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Retrieve Item Attributes
The following example retrieves three attributes from the Thread table. In the response, the
ConsumedCapacityUnits value is 1, because ConsistentRead is set to true. If ConsistentRead had been
set to false (or not specified) for the same request, an eventually consistent read would have been used
and ConsumedCapacityUnits would have been 0.5.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;

API Version 2012-08-10
58

Amazon DynamoDB API Reference
Response Elements

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries

Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.GetItem

{
 "TableName": "Thread",
 "Key": {
 "ForumName": {
 "S": "Amazon DynamoDB"
 },
 "Subject": {
 "S": "How do I update multiple items?"
 }
 },
 "ProjectionExpression":"LastPostDateTime, Message, Tags",
 "ConsistentRead": true,
 "ReturnConsumedCapacity": "TOTAL"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "ConsumedCapacity": {
 "CapacityUnits": 1,
 "TableName": "Thread"
 },
 "Item": {
 "Tags": {
 "SS": ["Update","Multiple Items","HelpMe"]
 },
 "LastPostDateTime": {
 "S": "201303190436"
 },
 "Message": {
 "S": "I want to update multiple items in a single API call. What's
 the best way to do that?"
 }
 }
}

API Version 2012-08-10
59

Amazon DynamoDB API Reference
Examples

ListTables
Returns an array of table names associated with the current account and endpoint. The output from
ListTables is paginated, with each page returning a maximum of 100 table names.

Request Syntax

{
 "ExclusiveStartTableName": "string",
 "Limit": number
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

ExclusiveStartTableName
The first table name that this operation will evaluate. Use the value that was returned for
LastEvaluatedTableName in a previous operation, so that you can obtain the next page of results.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required: No

Limit
A maximum number of table names to return. If this parameter is not specified, the limit is 100.

Type: Number

Valid range: Minimum value of 1. Maximum value of 100.

Required: No

Response Syntax

{
 "LastEvaluatedTableName": "string",
 "TableNames": [
 "string"
]
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

API Version 2012-08-10
60

Amazon DynamoDB API Reference
ListTables

The following data is returned in JSON format by the service.

LastEvaluatedTableName
The name of the last table in the current page of results. Use this value as the
ExclusiveStartTableName in a new request to obtain the next page of results, until all the table names
are returned.

If you do not receive a LastEvaluatedTableName value in the response, this means that there are
no more table names to be retrieved.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

TableNames
The names of the tables associated with the current account at the current endpoint. The maximum
size of this array is 100.

If LastEvaluatedTableName also appears in the output, you can use this value as the
ExclusiveStartTableName parameter in a subsequent ListTables request and obtain the next page
of results.

Type: array of Strings

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

Examples

List Tables
This example requests a list of tables, starting with a table named Forum and ending after three table
names have been returned.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.ListTables

{

API Version 2012-08-10
61

Amazon DynamoDB API Reference
Errors

 "ExclusiveStartTableName": "Forum",
 "Limit": 3
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "LastEvaluatedTableName": "Thread",
 "TableNames": ["Forum","Reply","Thread"]
}

API Version 2012-08-10
62

Amazon DynamoDB API Reference
Examples

PutItem
Creates a new item, or replaces an old item with a new item. If an item that has the same primary key as
the new item already exists in the specified table, the new item completely replaces the existing item.
You can perform a conditional put operation (add a new item if one with the specified primary key doesn't
exist), or replace an existing item if it has certain attribute values.

In addition to putting an item, you can also return the item's attribute values in the same operation, using
the ReturnValues parameter.

When you add an item, the primary key attribute(s) are the only required attributes. Attribute values cannot
be null. String and Binary type attributes must have lengths greater than zero. Set type attributes cannot
be empty. Requests with empty values will be rejected with a ValidationException exception.

You can request that PutItem return either a copy of the original item (before the update) or a copy of the
updated item (after the update). For more information, see the ReturnValues description below.

Note
To prevent a new item from replacing an existing item, use a conditional expression that contains
the attribute_not_exists function with the name of the attribute being used as the HASH key for
the table. Since every record must contain that attribute, the attribute_not_exists function will
only succeed if no matching item exists.

For more information about using this API, see Working with Items in the Amazon DynamoDB Developer
Guide.

Request Syntax

{
 "ConditionalOperator": "string",
 "ConditionExpression": "string",
 "Expected":
 {
 "string" :
 {
 "AttributeValueList": [
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,

API Version 2012-08-10
63

Amazon DynamoDB API Reference
PutItem

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html

 "S": "string",
 "SS": [
 "string"
]
 }
],
 "ComparisonOperator": "string",
 "Exists": boolean,
 "Value": {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
 },
 "ExpressionAttributeNames":
 {
 "string" :
 "string"
 },
 "ExpressionAttributeValues":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [

API Version 2012-08-10
64

Amazon DynamoDB API Reference
Request Syntax

 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "Item":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ReturnConsumedCapacity": "string",
 "ReturnItemCollectionMetrics": "string",
 "ReturnValues": "string",
 "TableName": "string"
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

Item
A map of attribute name/value pairs, one for each attribute. Only the primary key attributes are
required; you can optionally provide other attribute name-value pairs for the item.

You must provide all of the attributes for the primary key. For example, with a hash type primary key,
you only need to provide the hash attribute. For a hash-and-range type primary key, you must provide
both the hash attribute and the range attribute.

API Version 2012-08-10
65

Amazon DynamoDB API Reference
Request Parameters

If you specify any attributes that are part of an index key, then the data types for those attributes
must match those of the schema in the table's attribute definition.

For more information about primary keys, see Primary Key in the Amazon DynamoDB Developer
Guide.

Each element in the Item map is an AttributeValue object.

Type: String to AttributeValue (p. 130) object map

Required:Yes

TableName
The name of the table to contain the item.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

ConditionalOperator

Important
This is a legacy parameter, for backward compatibility. New applications should use
ConditionExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A logical operator to apply to the conditions in the Expected map:

• AND - If all of the conditions evaluate to true, then the entire map evaluates to true.

• OR - If at least one of the conditions evaluate to true, then the entire map evaluates to true.

If you omit ConditionalOperator, then AND is the default.

The operation will succeed only if the entire map evaluates to true.

Note
This parameter does not support attributes of type List or Map.

Type: String

Valid Values: AND | OR

Required: No

ConditionExpression
A condition that must be satisfied in order for a conditional PutItem operation to succeed.

An expression can contain any of the following:

• Functions:attribute_exists | attribute_not_exists | attribute_type | contains
| begins_with | size

These function names are case-sensitive.

• Comparison operators: = | <> | < | > | <= | >= | BETWEEN | IN

• Logical operators: AND | OR | NOT

For more information on condition expressions, see Specifying Conditions in the Amazon DynamoDB
Developer Guide.

Note
ConditionExpression replaces the legacy ConditionalOperator and Expected parameters.

API Version 2012-08-10
66

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html#DataModelPrimaryKey
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html

Type: String

Required: No

Expected

Important
This is a legacy parameter, for backward compatibility. New applications should use
ConditionExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A map of attribute/condition pairs. Expected provides a conditional block for the PutItem operation.

Note
This parameter does not support attributes of type List or Map.

Each element of Expected consists of an attribute name, a comparison operator, and one or more
values. DynamoDB compares the attribute with the value(s) you supplied, using the comparison
operator. For each Expected element, the result of the evaluation is either true or false.

If you specify more than one element in the Expected map, then by default all of the conditions must
evaluate to true. In other words, the conditions are ANDed together. (You can use the
ConditionalOperator parameter to OR the conditions instead. If you do this, then at least one of the
conditions must evaluate to true, rather than all of them.)

If the Expected map evaluates to true, then the conditional operation succeeds; otherwise, it fails.

Expected contains the following:

• AttributeValueList - One or more values to evaluate against the supplied attribute. The number of
values in the list depends on the ComparisonOperator being used.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on ASCII character code
values. For example, a is greater than A, and a is greater than B. For a list of code values, see
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

For type Binary, DynamoDB treats each byte of the binary data as unsigned when it compares
binary values.

• ComparisonOperator - A comparator for evaluating attributes in the AttributeValueList. When
performing the comparison, DynamoDB uses strongly consistent reads.

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

The following are descriptions of each comparison operator.

• EQ : Equal. EQ is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue element of type String, Number, Binary,
String Set, Number Set, or Binary Set. If an item contains an AttributeValue element of a different
type than the one provided in the request, the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• NE : Not equal. NE is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue of type String, Number, Binary, String
Set, Number Set, or Binary Set. If an item contains an AttributeValue of a different type than the
one provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

API Version 2012-08-10
67

Amazon DynamoDB API Reference
Request Parameters

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

• LE : Less than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• LT : Less than.

AttributeValueList can contain only one AttributeValue of type String, Number, or Binary (not a
set type). If an item contains an AttributeValue element of a different type than the one provided
in the request, the value does not match. For example, {"S":"6"} does not equal {"N":"6"}.
Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GE : Greater than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GT : Greater than.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• NOT_NULL : The attribute exists. NOT_NULL is supported for all datatypes, including lists and
maps.

Note
This operator tests for the existence of an attribute, not its data type. If the data type of
attribute "a" is null, and you evaluate it using NOT_NULL, the result is a Boolean true.
This result is because the attribute "a" exists; its data type is not relevant to the
NOT_NULL comparison operator.

• NULL :The attribute does not exist.NULL is supported for all datatypes, including lists and maps.

Note
This operator tests for the nonexistence of an attribute, not its data type. If the data
type of attribute "a" is null, and you evaluate it using NULL, the result is a Boolean false.
This is because the attribute "a" exists; its data type is not relevant to the NULL
comparison operator.

• CONTAINS : Checks for a subsequence, or value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is of type String, then the operator checks
for a substring match. If the target attribute of the comparison is of type Binary, then the operator
looks for a subsequence of the target that matches the input. If the target attribute of the
comparison is a set ("SS", "NS", or "BS"), then the operator evaluates to true if it finds an exact
match with any member of the set.

CONTAINS is supported for lists: When evaluating "a CONTAINS b", "a" can be a list; however,
"b" cannot be a set, a map, or a list.

• NOT_CONTAINS : Checks for absence of a subsequence, or absence of a value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is a String, then the operator checks for

API Version 2012-08-10
68

Amazon DynamoDB API Reference
Request Parameters

the absence of a substring match. If the target attribute of the comparison is Binary, then the
operator checks for the absence of a subsequence of the target that matches the input. If the
target attribute of the comparison is a set ("SS", "NS", or "BS"), then the operator evaluates to
true if it does not find an exact match with any member of the set.

NOT_CONTAINS is supported for lists: When evaluating "a NOT CONTAINS b", "a" can be a
list; however, "b" cannot be a set, a map, or a list.

• BEGINS_WITH : Checks for a prefix.

AttributeValueList can contain only one AttributeValue of type String or Binary (not a Number or
a set type).The target attribute of the comparison must be of type String or Binary (not a Number
or a set type).

• IN : Checks for matching elements within two sets.

AttributeValueList can contain one or more AttributeValue elements of type String, Number, or
Binary (not a set type). These attributes are compared against an existing set type attribute of
an item. If any elements of the input set are present in the item attribute, the expression evaluates
to true.

• BETWEEN : Greater than or equal to the first value, and less than or equal to the second value.

AttributeValueList must contain two AttributeValue elements of the same type, either String,
Number, or Binary (not a set type). A target attribute matches if the target value is greater than,
or equal to, the first element and less than, or equal to, the second element. If an item contains
an AttributeValue element of a different type than the one provided in the request, the value
does not match. For example, {"S":"6"} does not compare to {"N":"6"}. Also, {"N":"6"}
does not compare to {"NS":["6", "2", "1"]}

For usage examples of AttributeValueList and ComparisonOperator, see Legacy Conditional
Parameters in the Amazon DynamoDB Developer Guide.

For backward compatibility with previous DynamoDB releases, the following parameters can be used
instead of AttributeValueList and ComparisonOperator:

• Value - A value for DynamoDB to compare with an attribute.

• Exists - A Boolean value that causes DynamoDB to evaluate the value before attempting the
conditional operation:

• If Exists is true, DynamoDB will check to see if that attribute value already exists in the table.
If it is found, then the condition evaluates to true; otherwise the condition evaluate to false.

• If Exists is false, DynamoDB assumes that the attribute value does not exist in the table. If in
fact the value does not exist, then the assumption is valid and the condition evaluates to true. If
the value is found, despite the assumption that it does not exist, the condition evaluates to false.

Note that the default value for Exists is true.

The Value and Exists parameters are incompatible with AttributeValueList and ComparisonOperator.
Note that if you use both sets of parameters at once, DynamoDB will return a ValidationException
exception.

Type: String to ExpectedAttributeValue (p. 139) object map

Required: No

ExpressionAttributeNames
One or more substitution tokens for attribute names in an expression. The following are some use
cases for using ExpressionAttributeNames:

• To access an attribute whose name conflicts with a DynamoDB reserved word.

• To create a placeholder for repeating occurrences of an attribute name in an expression.

• To prevent special characters in an attribute name from being misinterpreted in an expression.

API Version 2012-08-10
69

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html

Use the # character in an expression to dereference an attribute name. For example, consider the
following attribute name:

• Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression.
(For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer
Guide). To work around this, you could specify the following for ExpressionAttributeNames:

• {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

• #P = :val

Note
Tokens that begin with the : character are expression attribute values, which are placeholders
for the actual value at runtime.

For more information on expression attribute names, see Accessing Item Attributes in the Amazon
DynamoDB Developer Guide.

Type: String to String map

Required: No

ExpressionAttributeValues
One or more values that can be substituted in an expression.

Use the : (colon) character in an expression to dereference an attribute value. For example, suppose
that you wanted to check whether the value of the ProductStatus attribute was one of the following:

Available | Backordered | Discontinued

You would first need to specify ExpressionAttributeValues as follows:

{ ":avail":{"S":"Available"}, ":back":{"S":"Backordered"},
":disc":{"S":"Discontinued"} }

You could then use these values in an expression, such as this:

ProductStatus IN (:avail, :back, :disc)

For more information on expression attribute values, see Specifying Conditions in the Amazon
DynamoDB Developer Guide.

Type: String to AttributeValue (p. 130) object map

Required: No

ReturnConsumedCapacity
Determines the level of detail about provisioned throughput consumption that is returned in the
response:

• INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together
with ConsumedCapacity for each table and secondary index that was accessed.

Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all.
In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

• TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

• NONE - No ConsumedCapacity details are included in the response.

Type: String

Valid Values: INDEXES | TOTAL | NONE

API Version 2012-08-10
70

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html

Required: No

ReturnItemCollectionMetrics
Determines whether item collection metrics are returned. If set to SIZE, the response includes
statistics about item collections, if any, that were modified during the operation are returned in the
response. If set to NONE (the default), no statistics are returned.

Type: String

Valid Values: SIZE | NONE

Required: No

ReturnValues
Use ReturnValues if you want to get the item attributes as they appeared before they were updated
with the PutItem request. For PutItem, the valid values are:

• NONE - If ReturnValues is not specified, or if its value is NONE, then nothing is returned. (This setting
is the default for ReturnValues.)

• ALL_OLD - If PutItem overwrote an attribute name-value pair, then the content of the old item is
returned.

Note
Other "Valid Values" are not relevant to PutItem.

Type: String

Valid Values: NONE | ALL_OLD | UPDATED_OLD | ALL_NEW | UPDATED_NEW

Required: No

Response Syntax

{
 "Attributes":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [

API Version 2012-08-10
71

Amazon DynamoDB API Reference
Response Syntax

 "string"
]
 }
 },
 "ConsumedCapacity": {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"
 },
 "ItemCollectionMetrics": {
 "ItemCollectionKey":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "SizeEstimateRangeGB": [

number
]

API Version 2012-08-10
72

Amazon DynamoDB API Reference
Response Syntax

 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Attributes
The attribute values as they appeared before the PutItem operation, but only if ReturnValues is
specified as ALL_OLD in the request. Each element consists of an attribute name and an attribute
value.

Type: String to AttributeValue (p. 130) object map

ConsumedCapacity
The capacity units consumed by an operation. The data returned includes the total provisioned
throughput consumed, along with statistics for the table and any indexes involved in the operation.
ConsumedCapacity is only returned if the request asked for it. For more information, see Provisioned
Throughput in the Amazon DynamoDB Developer Guide.

Type: ConsumedCapacity (p. 136) object

ItemCollectionMetrics
Information about item collections, if any, that were affected by the operation. ItemCollectionMetrics
is only returned if the request asked for it. If the table does not have any local secondary indexes,
this information is not returned in the response.

Each ItemCollectionMetrics element consists of:

• ItemCollectionKey - The hash key value of the item collection. This is the same as the hash key
of the item.

• SizeEstimateRange - An estimate of item collection size, in gigabytes. This value is a two-element
array containing a lower bound and an upper bound for the estimate. The estimate includes the
size of all the items in the table, plus the size of all attributes projected into all of the local secondary
indexes on that table. Use this estimate to measure whether a local secondary index is approaching
its size limit.

The estimate is subject to change over time; therefore, do not rely on the precision or accuracy of
the estimate.

Type: ItemCollectionMetrics (p. 145) object

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

ConditionalCheckFailedException
A condition specified in the operation could not be evaluated.

HTTP Status Code: 400

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

API Version 2012-08-10
73

Amazon DynamoDB API Reference
Response Elements

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html

ItemCollectionSizeLimitExceededException
An item collection is too large. This exception is only returned for tables that have one or more local
secondary indexes.

HTTP Status Code: 400

ProvisionedThroughputExceededException
Your request rate is too high.The AWS SDKs for DynamoDB automatically retry requests that receive
this exception.Your request is eventually successful, unless your retry queue is too large to finish.
Reduce the frequency of requests and use exponential backoff. For more information, go to Error
Retries and Exponential Backoff in the Amazon DynamoDB Developer Guide.

HTTP Status Code: 400

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Put an Item
The following example puts a new item into the Thread table, but only if there is not already an item in
the table with the same key.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.PutItem

{
 "TableName": "Thread",
 "Item": {
 "LastPostDateTime": {
 "S": "201303190422"
 },
 "Tags": {
 "SS": ["Update","Multiple Items","HelpMe"]
 },
 "ForumName": {
 "S": "Amazon DynamoDB"
 },
 "Message": {
 "S": "I want to update multiple items in a single API call. What's
 the best way to do that?"
 },
 "Subject": {

API Version 2012-08-10
74

Amazon DynamoDB API Reference
Examples

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries

 "S": "How do I update multiple items?"
 },
 "LastPostedBy": {
 "S": "fred@example.com"
 }
 },
 "ConditionExpression": "ForumName <> :f and Subject <> :s",
 "ExpressionAttributeValues": {
 ":f": {"S": "Amazon DynamoDB"},
 ":s": {"S": "How do I update multiple items?"}
 }
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
}

API Version 2012-08-10
75

Amazon DynamoDB API Reference
Examples

Query
A Query operation uses the primary key of a table or a secondary index to directly access items from that
table or index.

Use the KeyConditionExpression parameter to provide a specific hash key value. The Query operation
will return all of the items from the table or index with that hash key value.You can optionally narrow the
scope of the Query operation by specifying a range key value and a comparison operator in
KeyConditionExpression.You can use the ScanIndexForward parameter to get results in forward or
reverse order, by range key or by index key.

Queries that do not return results consume the minimum number of read capacity units for that type of
read operation.

If the total number of items meeting the query criteria exceeds the result set size limit of 1 MB, the query
stops and results are returned to the user with the LastEvaluatedKey element to continue the query in a
subsequent operation. Unlike a Scan operation, a Query operation never returns both an empty result
set and a LastEvaluatedKey value. LastEvaluatedKey is only provided if the results exceed 1 MB, or if
you have used the Limit parameter.

You can query a table, a local secondary index, or a global secondary index. For a query on a table or
on a local secondary index, you can set the ConsistentRead parameter to true and obtain a strongly
consistent result. Global secondary indexes support eventually consistent reads only, so do not specify
ConsistentRead when querying a global secondary index.

Request Syntax

{
 "AttributesToGet": [
 "string"
],
 "ConditionalOperator": "string",
 "ConsistentRead": boolean,
 "ExclusiveStartKey":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,

API Version 2012-08-10
76

Amazon DynamoDB API Reference
Query

 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ExpressionAttributeNames":
 {
 "string" :
 "string"
 },
 "ExpressionAttributeValues":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "FilterExpression": "string",
 "IndexName": "string",
 "KeyConditionExpression": "string",
 "KeyConditions":
 {
 "string" :
 {
 "AttributeValueList": [
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {

API Version 2012-08-10
77

Amazon DynamoDB API Reference
Request Syntax

 "string" :
AttributeValue

 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
],
 "ComparisonOperator": "string"
 }
 },
 "Limit": number,
 "ProjectionExpression": "string",
 "QueryFilter":
 {
 "string" :
 {
 "AttributeValueList": [
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
],
 "ComparisonOperator": "string"
 }
 },
 "ReturnConsumedCapacity": "string",
 "ScanIndexForward": boolean,
 "Select": "string",
 "TableName": "string"
}

API Version 2012-08-10
78

Amazon DynamoDB API Reference
Request Syntax

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

TableName
The name of the table containing the requested items.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

AttributesToGet

Important
This is a legacy parameter, for backward compatibility. New applications should use
ProjectionExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception. This
parameter allows you to retrieve attributes of type List or Map; however, it cannot retrieve
individual elements within a List or a Map.

The names of one or more attributes to retrieve. If no attribute names are provided, then all attributes
will be returned. If any of the requested attributes are not found, they will not appear in the result.

Note that AttributesToGet has no effect on provisioned throughput consumption. DynamoDB
determines capacity units consumed based on item size, not on the amount of data that is returned
to an application.

You cannot use both AttributesToGet and Select together in a Query request, unless the value for
Select is SPECIFIC_ATTRIBUTES. (This usage is equivalent to specifying AttributesToGet without
any value for Select.)

If you query a local secondary index and request only attributes that are projected into that index,
the operation will read only the index and not the table. If any of the requested attributes are not
projected into the local secondary index, DynamoDB will fetch each of these attributes from the parent
table. This extra fetching incurs additional throughput cost and latency.

If you query a global secondary index, you can only request attributes that are projected into the
index. Global secondary index queries cannot fetch attributes from the parent table.

Type: array of Strings

Length constraints: Minimum of 1 item(s) in the list.

Required: No

ConditionalOperator

Important
This is a legacy parameter, for backward compatibility. New applications should use
FilterExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A logical operator to apply to the conditions in a QueryFilter map:

• AND - If all of the conditions evaluate to true, then the entire map evaluates to true.

• OR - If at least one of the conditions evaluate to true, then the entire map evaluates to true.

API Version 2012-08-10
79

Amazon DynamoDB API Reference
Request Parameters

If you omit ConditionalOperator, then AND is the default.

The operation will succeed only if the entire map evaluates to true.

Note
This parameter does not support attributes of type List or Map.

Type: String

Valid Values: AND | OR

Required: No

ConsistentRead
Determines the read consistency model: If set to true, then the operation uses strongly consistent
reads; otherwise, the operation uses eventually consistent reads.

Strongly consistent reads are not supported on global secondary indexes. If you query a global
secondary index with ConsistentRead set to true, you will receive a ValidationException.

Type: Boolean

Required: No

ExclusiveStartKey
The primary key of the first item that this operation will evaluate. Use the value that was returned for
LastEvaluatedKey in the previous operation.

The data type for ExclusiveStartKey must be String, Number or Binary. No set data types are allowed.

Type: String to AttributeValue (p. 130) object map

Required: No

ExpressionAttributeNames
One or more substitution tokens for attribute names in an expression. The following are some use
cases for using ExpressionAttributeNames:

• To access an attribute whose name conflicts with a DynamoDB reserved word.

• To create a placeholder for repeating occurrences of an attribute name in an expression.

• To prevent special characters in an attribute name from being misinterpreted in an expression.

Use the # character in an expression to dereference an attribute name. For example, consider the
following attribute name:

• Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression.
(For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer
Guide). To work around this, you could specify the following for ExpressionAttributeNames:

• {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

• #P = :val

Note
Tokens that begin with the : character are expression attribute values, which are placeholders
for the actual value at runtime.

For more information on expression attribute names, see Accessing Item Attributes in the Amazon
DynamoDB Developer Guide.

Type: String to String map

API Version 2012-08-10
80

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html

Required: No

ExpressionAttributeValues
One or more values that can be substituted in an expression.

Use the : (colon) character in an expression to dereference an attribute value. For example, suppose
that you wanted to check whether the value of the ProductStatus attribute was one of the following:

Available | Backordered | Discontinued

You would first need to specify ExpressionAttributeValues as follows:

{ ":avail":{"S":"Available"}, ":back":{"S":"Backordered"},
":disc":{"S":"Discontinued"} }

You could then use these values in an expression, such as this:

ProductStatus IN (:avail, :back, :disc)

For more information on expression attribute values, see Specifying Conditions in the Amazon
DynamoDB Developer Guide.

Type: String to AttributeValue (p. 130) object map

Required: No

FilterExpression
A string that contains conditions that DynamoDB applies after the Query operation, but before the
data is returned to you. Items that do not satisfy the FilterExpression criteria are not returned.

Note
A FilterExpression is applied after the items have already been read; the process of filtering
does not consume any additional read capacity units.

For more information, see Filter Expressions in the Amazon DynamoDB Developer Guide.

Note
FilterExpression replaces the legacy QueryFilter and ConditionalOperator parameters.

Type: String

Required: No

IndexName
The name of an index to query. This index can be any local secondary index or global secondary
index on the table. Note that if you use the IndexName parameter, you must also provide TableName.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required: No

KeyConditionExpression
The condition that specifies the key value(s) for items to be retrieved by the Query action.

The condition must perform an equality test on a single hash key value. The condition can also
perform one of several comparison tests on a single range key value. Query can use
KeyConditionExpression to retrieve one item with a given hash and range key value, or several items
that have the same hash key value but different range key values.

The hash key equality test is required, and must be specified in the following format:

API Version 2012-08-10
81

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#FilteringResults

hashAttributeName = :hashval

If you also want to provide a range key condition, it must be combined using AND with the hash key
condition. Following is an example, using the = comparison operator for the range key:

hashAttributeName = :hashval AND rangeAttributeName = :rangeval

Valid comparisons for the range key condition are as follows:

• rangeAttributeName = :rangeval - true if the range key is equal to :rangeval.

• rangeAttributeName < :rangeval - true if the range key is less than :rangeval.

• rangeAttributeName <= :rangeval - true if the range key is less than or equal to :rangeval.

• rangeAttributeName > :rangeval - true if the range key is greater than :rangeval.

• rangeAttributeName >= :rangeval - true if the range key is greater than or equal to
:rangeval.

• rangeAttributeName BETWEEN :rangeval1 AND :rangeval2 - true if the range key is
greater than or equal to :rangeval1, and less than or equal to :rangeval2.

• begins_with (rangeAttributeName, :rangeval) - true if the range key begins with a particular
operand. (You cannot use this function with a range key that is of type Number.) Note that the
function name begins_with is case-sensitive.

Use the ExpressionAttributeValues parameter to replace tokens such as :hashval and :rangeval
with actual values at runtime.

You can optionally use the ExpressionAttributeNames parameter to replace the names of the hash
and range attributes with placeholder tokens. This option might be necessary if an attribute name
conflicts with a DynamoDB reserved word. For example, the following KeyConditionExpression
parameter causes an error because Size is a reserved word:

• Size = :myval

To work around this, define a placeholder (such a #S) to represent the attribute name Size.
KeyConditionExpression then is as follows:

• #S = :myval

For a list of reserved words, see Reserved Words in the Amazon DynamoDB Developer Guide.

For more information on ExpressionAttributeNames and ExpressionAttributeValues, see Using
Placeholders for Attribute Names and Values in the Amazon DynamoDB Developer Guide.

Note
KeyConditionExpression replaces the legacy KeyConditions parameter.

Type: String

Required: No

KeyConditions

Important
This is a legacy parameter, for backward compatibility. New applications should use
KeyConditionExpression instead. Do not combine legacy parameters and expression
parameters in a single API call; otherwise, DynamoDB will return a ValidationException
exception.

The selection criteria for the query. For a query on a table, you can have conditions only on the table
primary key attributes.You must provide the hash key attribute name and value as an EQ condition.
You can optionally provide a second condition, referring to the range key attribute.

API Version 2012-08-10
82

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ExpressionPlaceholders.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ExpressionPlaceholders.html

Note
If you don't provide a range key condition, all of the items that match the hash key will be
retrieved. If a FilterExpression or QueryFilter is present, it will be applied after the items are
retrieved.

For a query on an index, you can have conditions only on the index key attributes.You must provide
the index hash attribute name and value as an EQ condition.You can optionally provide a second
condition, referring to the index key range attribute.

Each KeyConditions element consists of an attribute name to compare, along with the following:

• AttributeValueList - One or more values to evaluate against the supplied attribute. The number of
values in the list depends on the ComparisonOperator being used.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on ASCII character code
values. For example, a is greater than A, and a is greater than B. For a list of code values, see
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

For Binary, DynamoDB treats each byte of the binary data as unsigned when it compares binary
values.

• ComparisonOperator - A comparator for evaluating attributes, for example, equals, greater than,
less than, and so on.

For KeyConditions, only the following comparison operators are supported:

EQ | LE | LT | GE | GT | BEGINS_WITH | BETWEEN

The following are descriptions of these comparison operators.

• EQ : Equal.

AttributeValueList can contain only one AttributeValue of type String, Number, or Binary (not a
set type). If an item contains an AttributeValue element of a different type than the one specified
in the request, the value does not match. For example, {"S":"6"} does not equal {"N":"6"}.
Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• LE : Less than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• LT : Less than.

AttributeValueList can contain only one AttributeValue of type String, Number, or Binary (not a
set type). If an item contains an AttributeValue element of a different type than the one provided
in the request, the value does not match. For example, {"S":"6"} does not equal {"N":"6"}.
Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GE : Greater than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GT : Greater than.

API Version 2012-08-10
83

Amazon DynamoDB API Reference
Request Parameters

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• BEGINS_WITH : Checks for a prefix.

AttributeValueList can contain only one AttributeValue of type String or Binary (not a Number or
a set type).The target attribute of the comparison must be of type String or Binary (not a Number
or a set type).

• BETWEEN : Greater than or equal to the first value, and less than or equal to the second value.

AttributeValueList must contain two AttributeValue elements of the same type, either String,
Number, or Binary (not a set type). A target attribute matches if the target value is greater than,
or equal to, the first element and less than, or equal to, the second element. If an item contains
an AttributeValue element of a different type than the one provided in the request, the value
does not match. For example, {"S":"6"} does not compare to {"N":"6"}. Also, {"N":"6"}
does not compare to {"NS":["6", "2", "1"]}

For usage examples of AttributeValueList and ComparisonOperator, see Legacy Conditional
Parameters in the Amazon DynamoDB Developer Guide.

Type: String to Condition (p. 134) object map

Required: No

Limit
The maximum number of items to evaluate (not necessarily the number of matching items). If
DynamoDB processes the number of items up to the limit while processing the results, it stops the
operation and returns the matching values up to that point, and a key in LastEvaluatedKey to apply
in a subsequent operation, so that you can pick up where you left off. Also, if the processed data set
size exceeds 1 MB before DynamoDB reaches this limit, it stops the operation and returns the
matching values up to the limit, and a key in LastEvaluatedKey to apply in a subsequent operation
to continue the operation. For more information, see Query and Scan in the Amazon DynamoDB
Developer Guide.

Type: Number

Valid range: Minimum value of 1.

Required: No

ProjectionExpression
A string that identifies one or more attributes to retrieve from the table. These attributes can include
scalars, sets, or elements of a JSON document. The attributes in the expression must be separated
by commas.

If no attribute names are specified, then all attributes will be returned. If any of the requested attributes
are not found, they will not appear in the result.

For more information, see Accessing Item Attributes in the Amazon DynamoDB Developer Guide.

Note
ProjectionExpression replaces the legacy AttributesToGet parameter.

Type: String

Required: No

API Version 2012-08-10
84

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html

QueryFilter

Important
This is a legacy parameter, for backward compatibility. New applications should use
FilterExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A condition that evaluates the query results after the items are read and returns only the desired
values.

This parameter does not support attributes of type List or Map.

Note
A QueryFilter is applied after the items have already been read; the process of filtering does
not consume any additional read capacity units.

If you provide more than one condition in the QueryFilter map, then by default all of the conditions
must evaluate to true. In other words, the conditions are ANDed together. (You can use the
ConditionalOperator parameter to OR the conditions instead. If you do this, then at least one of the
conditions must evaluate to true, rather than all of them.)

Note that QueryFilter does not allow key attributes.You cannot define a filter condition on a hash
key or range key.

Each QueryFilter element consists of an attribute name to compare, along with the following:

• AttributeValueList - One or more values to evaluate against the supplied attribute. The number of
values in the list depends on the operator specified in ComparisonOperator.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on ASCII character code
values. For example, a is greater than A, and a is greater than B. For a list of code values, see
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

For type Binary, DynamoDB treats each byte of the binary data as unsigned when it compares
binary values.

For information on specifying data types in JSON, see JSON Data Format in the Amazon DynamoDB
Developer Guide.

• ComparisonOperator - A comparator for evaluating attributes. For example, equals, greater than,
less than, etc.

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

For complete descriptions of all comparison operators, see the Condition data type.

Type: String to Condition (p. 134) object map

Required: No

ReturnConsumedCapacity
Determines the level of detail about provisioned throughput consumption that is returned in the
response:

• INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together
with ConsumedCapacity for each table and secondary index that was accessed.

Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all.
In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

API Version 2012-08-10
85

Amazon DynamoDB API Reference
Request Parameters

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataFormat.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Condition.html

• TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

• NONE - No ConsumedCapacity details are included in the response.

Type: String

Valid Values: INDEXES | TOTAL | NONE

Required: No

ScanIndexForward
Specifies the order for index traversal: If true (default), the traversal is performed in ascending order;
if false, the traversal is performed in descending order.

Items with the same hash key are stored in sorted order by range key. If the range key data type is
Number, the results are stored in numeric order. For type String, the results are stored in order of
ASCII character code values. For type Binary, DynamoDB treats each byte of the binary data as
unsigned.

If ScanIndexForward is true, DynamoDB returns the results in the order in which they are stored
(by range key). This is the default behavior. If ScanIndexForward is false, DynamoDB reads the
results in reverse order by range key, and then returns the results to the client.

Type: Boolean

Required: No

Select
The attributes to be returned in the result.You can retrieve all item attributes, specific item attributes,
the count of matching items, or in the case of an index, some or all of the attributes projected into
the index.

• ALL_ATTRIBUTES - Returns all of the item attributes from the specified table or index. If you query
a local secondary index, then for each matching item in the index DynamoDB will fetch the entire
item from the parent table. If the index is configured to project all item attributes, then all of the
data can be obtained from the local secondary index, and no fetching is required.

• ALL_PROJECTED_ATTRIBUTES - Allowed only when querying an index. Retrieves all attributes
that have been projected into the index. If the index is configured to project all attributes, this return
value is equivalent to specifying ALL_ATTRIBUTES.

• COUNT - Returns the number of matching items, rather than the matching items themselves.

• SPECIFIC_ATTRIBUTES - Returns only the attributes listed in AttributesToGet. This return value
is equivalent to specifying AttributesToGet without specifying any value for Select.

If you query a local secondary index and request only attributes that are projected into that index,
the operation will read only the index and not the table. If any of the requested attributes are not
projected into the local secondary index, DynamoDB will fetch each of these attributes from the
parent table. This extra fetching incurs additional throughput cost and latency.

If you query a global secondary index, you can only request attributes that are projected into the
index. Global secondary index queries cannot fetch attributes from the parent table.

If neither Select nor AttributesToGet are specified, DynamoDB defaults to ALL_ATTRIBUTES when
accessing a table, and ALL_PROJECTED_ATTRIBUTES when accessing an index.You cannot use
both Select and AttributesToGet together in a single request, unless the value for Select is
SPECIFIC_ATTRIBUTES. (This usage is equivalent to specifying AttributesToGet without any value
for Select.)

Note
If you use the ProjectionExpression parameter, then the value for Select can only be
SPECIFIC_ATTRIBUTES. Any other value for Select will return an error.

Type: String

API Version 2012-08-10
86

Amazon DynamoDB API Reference
Request Parameters

Valid Values: ALL_ATTRIBUTES | ALL_PROJECTED_ATTRIBUTES | SPECIFIC_ATTRIBUTES
| COUNT

Required: No

Response Syntax

{
 "ConsumedCapacity": {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"
 },
 "Count": number,
 "Items": [

 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [

API Version 2012-08-10
87

Amazon DynamoDB API Reference
Response Syntax

 "string"
]
 }
 }
],
 "LastEvaluatedKey":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ScannedCount": number
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ConsumedCapacity
The capacity units consumed by an operation. The data returned includes the total provisioned
throughput consumed, along with statistics for the table and any indexes involved in the operation.
ConsumedCapacity is only returned if the request asked for it. For more information, see Provisioned
Throughput in the Amazon DynamoDB Developer Guide.

Type: ConsumedCapacity (p. 136) object

Count
The number of items in the response.

If you used a QueryFilter in the request, then Count is the number of items returned after the filter
was applied, and ScannedCount is the number of matching items before> the filter was applied.

If you did not use a filter in the request, then Count and ScannedCount are the same.

API Version 2012-08-10
88

Amazon DynamoDB API Reference
Response Elements

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html

Type: Number

Items
An array of item attributes that match the query criteria. Each element in this array consists of an
attribute name and the value for that attribute.

Type: array of s

LastEvaluatedKey
The primary key of the item where the operation stopped, inclusive of the previous result set. Use
this value to start a new operation, excluding this value in the new request.

If LastEvaluatedKey is empty, then the "last page" of results has been processed and there is no
more data to be retrieved.

If LastEvaluatedKey is not empty, it does not necessarily mean that there is more data in the result
set.The only way to know when you have reached the end of the result set is when LastEvaluatedKey
is empty.

Type: String to AttributeValue (p. 130) object map

ScannedCount
The number of items evaluated, before any QueryFilter is applied. A high ScannedCount value with
few, or no, Count results indicates an inefficient Query operation. For more information, see Count
and ScannedCount in the Amazon DynamoDB Developer Guide.

If you did not use a filter in the request, then ScannedCount is the same as Count.

Type: Number

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

ProvisionedThroughputExceededException
Your request rate is too high.The AWS SDKs for DynamoDB automatically retry requests that receive
this exception.Your request is eventually successful, unless your retry queue is too large to finish.
Reduce the frequency of requests and use exponential backoff. For more information, go to Error
Retries and Exponential Backoff in the Amazon DynamoDB Developer Guide.

HTTP Status Code: 400

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Retrieve a Range of Items
The following example queries the Reply table for replies in a forum that were posted by particular users.
There is a local secondary index on the Reply table, PostedBy-Index, to facilitate fast lookups on the
these attributes. The ProjectionExpression parameter determines which attributes are returned.

API Version 2012-08-10
89

Amazon DynamoDB API Reference
Errors

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#Count
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#Count
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.Query

{
 "TableName": "Reply",
 "IndexName": "PostedBy-Index",
 "Limit": 3,
 "ConsistentRead": true,
 "ProjectionExpression": "Id, PostedBy, ReplyDateTime",
 "KeyConditionExpression": "Id = :v1 AND PostedBy BETWEEN :v2a AND :v2b",
 "ExpressionAttributeValues": {
 ":v1": {"S": "Amazon DynamoDB#DynamoDB Thread 1"},
 ":v2a": {"S": "User A"},
 ":v2b": {"S": "User C"}
 },
 "ReturnConsumedCapacity": "TOTAL"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "ConsumedCapacity": {
 "CapacityUnits": 1,
 "TableName": "Reply"
 },
 "Count": 2,
 "Items": [
 {
 "ReplyDateTime": {"S": "2015-02-18T20:27:36.165Z"},
 "PostedBy": {"S": "User A"},
 "Id": {"S": "Amazon DynamoDB#DynamoDB Thread 1"}
 },
 {
 "ReplyDateTime": {"S": "2015-02-25T20:27:36.165Z"},
 "PostedBy": {"S": "User B"},
 "Id": {"S": "Amazon DynamoDB#DynamoDB Thread 1"}
 }
],

API Version 2012-08-10
90

Amazon DynamoDB API Reference
Examples

 "ScannedCount": 2
}

Count Items
The following example returns the number of items in the Thread table for a particular forum.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.Query

{
 "TableName": "Thread",
 "ConsistentRead": true,
 "KeyConditionExpression": "ForumName = :val",
 "ExpressionAttributeValues": {":val": {"S": "Amazon DynamoDB"}}
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "Count":2,
 "ScannedCount":2
}

API Version 2012-08-10
91

Amazon DynamoDB API Reference
Examples

Scan
The Scan operation returns one or more items and item attributes by accessing every item in a table or
a secondary index. To have DynamoDB return fewer items, you can provide a ScanFilter operation.

If the total number of scanned items exceeds the maximum data set size limit of 1 MB, the scan stops
and results are returned to the user as a LastEvaluatedKey value to continue the scan in a subsequent
operation. The results also include the number of items exceeding the limit. A scan can result in no table
data meeting the filter criteria.

By default, Scan operations proceed sequentially; however, for faster performance on a large table or
secondary index, applications can request a parallel Scan operation by providing the Segment and
TotalSegments parameters. For more information, see Parallel Scan in the Amazon DynamoDB Developer
Guide.

By default, Scan uses eventually consistent reads when acessing the data in a table; therefore, the result
set might not include the changes to data in the table immediately before the operation began. If you
need a consistent copy of the data, as of the time that the Scan begins, you can set the ConsistentRead
parameter to true.

Request Syntax

{
 "AttributesToGet": [
 "string"
],
 "ConditionalOperator": "string",
 "ConsistentRead": boolean,
 "ExclusiveStartKey":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }

API Version 2012-08-10
92

Amazon DynamoDB API Reference
Scan

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#QueryAndScanParallelScan

 },
 "ExpressionAttributeNames":
 {
 "string" :
 "string"
 },
 "ExpressionAttributeValues":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "FilterExpression": "string",
 "IndexName": "string",
 "Limit": number,
 "ProjectionExpression": "string",
 "ReturnConsumedCapacity": "string",
 "ScanFilter":
 {
 "string" :
 {
 "AttributeValueList": [
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },

API Version 2012-08-10
93

Amazon DynamoDB API Reference
Request Syntax

 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
],
 "ComparisonOperator": "string"
 }
 },
 "Segment": number,
 "Select": "string",
 "TableName": "string",
 "TotalSegments": number
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

TableName
The name of the table containing the requested items; or, if you provide IndexName, the name of
the table to which that index belongs.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

AttributesToGet

Important
This is a legacy parameter, for backward compatibility. New applications should use
ProjectionExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception. This
parameter allows you to retrieve attributes of type List or Map; however, it cannot retrieve
individual elements within a List or a Map.

The names of one or more attributes to retrieve. If no attribute names are provided, then all attributes
will be returned. If any of the requested attributes are not found, they will not appear in the result.

Note that AttributesToGet has no effect on provisioned throughput consumption. DynamoDB
determines capacity units consumed based on item size, not on the amount of data that is returned
to an application.

Type: array of Strings

Length constraints: Minimum of 1 item(s) in the list.

Required: No

API Version 2012-08-10
94

Amazon DynamoDB API Reference
Request Parameters

ConditionalOperator

Important
This is a legacy parameter, for backward compatibility. New applications should use
FilterExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A logical operator to apply to the conditions in a ScanFilter map:

• AND - If all of the conditions evaluate to true, then the entire map evaluates to true.

• OR - If at least one of the conditions evaluate to true, then the entire map evaluates to true.

If you omit ConditionalOperator, then AND is the default.

The operation will succeed only if the entire map evaluates to true.

Note
This parameter does not support attributes of type List or Map.

Type: String

Valid Values: AND | OR

Required: No

ConsistentRead
A Boolean value that determines the read consistency model during the scan:

• If ConsistentRead is false, then the data returned from Scan might not contain the results from
other recently completed write operations (PutItem, UpdateItem or DeleteItem).

• If ConsistentRead is true, then all of the write operations that completed before the Scan began
are guaranteed to be contained in the Scan response.

The default setting for ConsistentRead is false.

The ConsistentRead parameter is not supported on global secondary indexes. If you scan a global
secondary index with ConsistentRead set to true, you will receive a ValidationException.

Type: Boolean

Required: No

ExclusiveStartKey
The primary key of the first item that this operation will evaluate. Use the value that was returned for
LastEvaluatedKey in the previous operation.

The data type for ExclusiveStartKey must be String, Number or Binary. No set data types are allowed.

In a parallel scan, a Scan request that includes ExclusiveStartKey must specify the same segment
whose previous Scan returned the corresponding value of LastEvaluatedKey.

Type: String to AttributeValue (p. 130) object map

Required: No

ExpressionAttributeNames
One or more substitution tokens for attribute names in an expression. The following are some use
cases for using ExpressionAttributeNames:

• To access an attribute whose name conflicts with a DynamoDB reserved word.

• To create a placeholder for repeating occurrences of an attribute name in an expression.

• To prevent special characters in an attribute name from being misinterpreted in an expression.

API Version 2012-08-10
95

Amazon DynamoDB API Reference
Request Parameters

Use the # character in an expression to dereference an attribute name. For example, consider the
following attribute name:

• Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression.
(For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer
Guide). To work around this, you could specify the following for ExpressionAttributeNames:

• {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

• #P = :val

Note
Tokens that begin with the : character are expression attribute values, which are placeholders
for the actual value at runtime.

For more information on expression attribute names, see Accessing Item Attributes in the Amazon
DynamoDB Developer Guide.

Type: String to String map

Required: No

ExpressionAttributeValues
One or more values that can be substituted in an expression.

Use the : (colon) character in an expression to dereference an attribute value. For example, suppose
that you wanted to check whether the value of the ProductStatus attribute was one of the following:

Available | Backordered | Discontinued

You would first need to specify ExpressionAttributeValues as follows:

{ ":avail":{"S":"Available"}, ":back":{"S":"Backordered"},
":disc":{"S":"Discontinued"} }

You could then use these values in an expression, such as this:

ProductStatus IN (:avail, :back, :disc)

For more information on expression attribute values, see Specifying Conditions in the Amazon
DynamoDB Developer Guide.

Type: String to AttributeValue (p. 130) object map

Required: No

FilterExpression
A string that contains conditions that DynamoDB applies after the Scan operation, but before the
data is returned to you. Items that do not satisfy the FilterExpression criteria are not returned.

Note
A FilterExpression is applied after the items have already been read; the process of filtering
does not consume any additional read capacity units.

For more information, see Filter Expressions in the Amazon DynamoDB Developer Guide.

Note
FilterExpression replaces the legacy ScanFilter and ConditionalOperator parameters.

Type: String

Required: No

API Version 2012-08-10
96

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#FilteringResults

IndexName
The name of a secondary index to scan. This index can be any local secondary index or global
secondary index. Note that if you use the IndexName parameter, you must also provide TableName.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required: No

Limit
The maximum number of items to evaluate (not necessarily the number of matching items). If
DynamoDB processes the number of items up to the limit while processing the results, it stops the
operation and returns the matching values up to that point, and a key in LastEvaluatedKey to apply
in a subsequent operation, so that you can pick up where you left off. Also, if the processed data set
size exceeds 1 MB before DynamoDB reaches this limit, it stops the operation and returns the
matching values up to the limit, and a key in LastEvaluatedKey to apply in a subsequent operation
to continue the operation. For more information, see Query and Scan in the Amazon DynamoDB
Developer Guide.

Type: Number

Valid range: Minimum value of 1.

Required: No

ProjectionExpression
A string that identifies one or more attributes to retrieve from the specified table or index. These
attributes can include scalars, sets, or elements of a JSON document.The attributes in the expression
must be separated by commas.

If no attribute names are specified, then all attributes will be returned. If any of the requested attributes
are not found, they will not appear in the result.

For more information, see Accessing Item Attributes in the Amazon DynamoDB Developer Guide.

Note
ProjectionExpression replaces the legacy AttributesToGet parameter.

Type: String

Required: No

ReturnConsumedCapacity
Determines the level of detail about provisioned throughput consumption that is returned in the
response:

• INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together
with ConsumedCapacity for each table and secondary index that was accessed.

Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all.
In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

• TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

• NONE - No ConsumedCapacity details are included in the response.

Type: String

Valid Values: INDEXES | TOTAL | NONE

Required: No

API Version 2012-08-10
97

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html

ScanFilter

Important
This is a legacy parameter, for backward compatibility. New applications should use
FilterExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A condition that evaluates the scan results and returns only the desired values.

Note
This parameter does not support attributes of type List or Map.

If you specify more than one condition in the ScanFilter map, then by default all of the conditions
must evaluate to true. In other words, the conditions are ANDed together. (You can use the
ConditionalOperator parameter to OR the conditions instead. If you do this, then at least one of the
conditions must evaluate to true, rather than all of them.)

Each ScanFilter element consists of an attribute name to compare, along with the following:

• AttributeValueList - One or more values to evaluate against the supplied attribute. The number of
values in the list depends on the operator specified in ComparisonOperator .

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on ASCII character code
values. For example, a is greater than A, and a is greater than B. For a list of code values, see
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

For Binary, DynamoDB treats each byte of the binary data as unsigned when it compares binary
values.

For information on specifying data types in JSON, see JSON Data Format in the Amazon DynamoDB
Developer Guide.

• ComparisonOperator - A comparator for evaluating attributes. For example, equals, greater than,
less than, etc.

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

For complete descriptions of all comparison operators, see Condition.

Type: String to Condition (p. 134) object map

Required: No

Segment
For a parallel Scan request, Segment identifies an individual segment to be scanned by an application
worker.

Segment IDs are zero-based, so the first segment is always 0. For example, if you want to use four
application threads to scan a table or an index, then the first thread specifies a Segment value of 0,
the second thread specifies 1, and so on.

The value of LastEvaluatedKey returned from a parallel Scan request must be used as
ExclusiveStartKey with the same segment ID in a subsequent Scan operation.

The value for Segment must be greater than or equal to 0, and less than the value provided for
TotalSegments.

If you provide Segment, you must also provide TotalSegments.

API Version 2012-08-10
98

Amazon DynamoDB API Reference
Request Parameters

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataFormat.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Condition.html

Type: Number

Valid range: Minimum value of 0. Maximum value of 999999.

Required: No

Select
The attributes to be returned in the result.You can retrieve all item attributes, specific item attributes,
or the count of matching items.

• ALL_ATTRIBUTES - Returns all of the item attributes.

• COUNT - Returns the number of matching items, rather than the matching items themselves.

• SPECIFIC_ATTRIBUTES - Returns only the attributes listed in AttributesToGet. This return value
is equivalent to specifying AttributesToGet without specifying any value for Select.

If neither Select nor AttributesToGet are specified, DynamoDB defaults to ALL_ATTRIBUTES.You
cannot use both AttributesToGet and Select together in a single request, unless the value for Select
is SPECIFIC_ATTRIBUTES. (This usage is equivalent to specifying AttributesToGet without any value
for Select.)

Type: String

Valid Values: ALL_ATTRIBUTES | ALL_PROJECTED_ATTRIBUTES | SPECIFIC_ATTRIBUTES
| COUNT

Required: No

TotalSegments
For a parallel Scan request, TotalSegments represents the total number of segments into which the
Scan operation will be divided.The value of TotalSegments corresponds to the number of application
workers that will perform the parallel scan. For example, if you want to use four application threads
to scan a table or an index, specify a TotalSegments value of 4.

The value for TotalSegments must be greater than or equal to 1, and less than or equal to 1000000.
If you specify a TotalSegments value of 1, the Scan operation will be sequential rather than parallel.

If you specify TotalSegments, you must also specify Segment.

Type: Number

Valid range: Minimum value of 1. Maximum value of 1000000.

Required: No

Response Syntax

{
 "ConsumedCapacity": {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes":
 {

API Version 2012-08-10
99

Amazon DynamoDB API Reference
Response Syntax

 "string" :
 {
 "CapacityUnits": number
 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"
 },
 "Count": number,
 "Items": [

 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
],
 "LastEvaluatedKey":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },

API Version 2012-08-10
100

Amazon DynamoDB API Reference
Response Syntax

 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ScannedCount": number
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ConsumedCapacity
The capacity units consumed by an operation. The data returned includes the total provisioned
throughput consumed, along with statistics for the table and any indexes involved in the operation.
ConsumedCapacity is only returned if the request asked for it. For more information, see Provisioned
Throughput in the Amazon DynamoDB Developer Guide.

Type: ConsumedCapacity (p. 136) object

Count
The number of items in the response.

If you set ScanFilter in the request, then Count is the number of items returned after the filter was
applied, and ScannedCount is the number of matching items before the filter was applied.

If you did not use a filter in the request, then Count is the same as ScannedCount.

Type: Number

Items
An array of item attributes that match the scan criteria. Each element in this array consists of an
attribute name and the value for that attribute.

Type: array of s

LastEvaluatedKey
The primary key of the item where the operation stopped, inclusive of the previous result set. Use
this value to start a new operation, excluding this value in the new request.

If LastEvaluatedKey is empty, then the "last page" of results has been processed and there is no
more data to be retrieved.

If LastEvaluatedKey is not empty, it does not necessarily mean that there is more data in the result
set.The only way to know when you have reached the end of the result set is when LastEvaluatedKey
is empty.

Type: String to AttributeValue (p. 130) object map

ScannedCount
The number of items evaluated, before any ScanFilter is applied. A high ScannedCount value with
few, or no, Count results indicates an inefficient Scan operation. For more information, see Count
and ScannedCount in the Amazon DynamoDB Developer Guide.

API Version 2012-08-10
101

Amazon DynamoDB API Reference
Response Elements

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#Count
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html#Count

If you did not use a filter in the request, then ScannedCount is the same as Count.

Type: Number

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

ProvisionedThroughputExceededException
Your request rate is too high.The AWS SDKs for DynamoDB automatically retry requests that receive
this exception.Your request is eventually successful, unless your retry queue is too large to finish.
Reduce the frequency of requests and use exponential backoff. For more information, go to Error
Retries and Exponential Backoff in the Amazon DynamoDB Developer Guide.

HTTP Status Code: 400

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Return All Items
The following example returns all of the items in a table. No scan filter is applied.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.Scan

{
 "TableName": "Reply",
 "ReturnConsumedCapacity": "TOTAL"
}

API Version 2012-08-10
102

Amazon DynamoDB API Reference
Errors

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "ConsumedCapacity": {
 "CapacityUnits": 0.5,
 "TableName": "Reply"
 },
 "Count": 4,
 "Items": [
 {
 "PostedBy": {
 "S": "joe@example.com"
 },
 "ReplyDateTime": {
 "S": "20130320115336"
 },
 "Id": {
 "S": "Amazon DynamoDB#How do I update multiple items?"
 },
 "Message": {
 "S": "Have you looked at the BatchWriteItem API?"
 }
 },
 {
 "PostedBy": {
 "S": "fred@example.com"
 },
 "ReplyDateTime": {
 "S": "20130320115342"
 },
 "Id": {
 "S": "Amazon DynamoDB#How do I update multiple items?"
 },
 "Message": {
 "S": "No, I didn't know about that. Where can I find more in
formation?"
 }
 },
 {
 "PostedBy": {
 "S": "joe@example.com"
 },
 "ReplyDateTime": {
 "S": "20130320115347"
 },
 "Id": {
 "S": "Amazon DynamoDB#How do I update multiple items?"
 },
 "Message": {
 "S": "BatchWriteItem is documented in the Amazon DynamoDB API

API Version 2012-08-10
103

Amazon DynamoDB API Reference
Examples

Reference."
 }
 },
 {
 "PostedBy": {
 "S": "fred@example.com"
 },
 "ReplyDateTime": {
 "S": "20130320115352"
 },
 "Id": {
 "S": "Amazon DynamoDB#How do I update multiple items?"
 },
 "Message": {
 "S": "OK, I'll take a look at that. Thanks!"
 }
 }
],
 "ScannedCount": 4
}

Use a Filter Expression
The following example returns only those items matching specific criteria.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.Scan

{
 "TableName": "Reply",
 "FilterExpression": "PostedBy = :val",
 "ExpressionAttributeValues": {":val": {"S": "joe@example.com"}},
 "ReturnConsumedCapacity": "TOTAL"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>

API Version 2012-08-10
104

Amazon DynamoDB API Reference
Examples

Date: <Date>
 {
 "ConsumedCapacity": {
 "CapacityUnits": 0.5,
 "TableName": "Reply"
 },
 "Count": 2,
 "Items": [
 {
 "PostedBy": {
 "S": "joe@example.com"
 },
 "ReplyDateTime": {
 "S": "20130320115336"
 },
 "Id": {
 "S": "Amazon DynamoDB#How do I update multiple items?"
 },
 "Message": {
 "S": "Have you looked at the BatchWriteItem API?"
 }
 },
 {
 "PostedBy": {
 "S": "joe@example.com"
 },
 "ReplyDateTime": {
 "S": "20130320115347"
 },
 "Id": {
 "S": "Amazon DynamoDB#How do I update multiple items?"
 },
 "Message": {
 "S": "BatchWriteItem is documented in the Amazon DynamoDB API
Reference."
 }
 }
],
 "ScannedCount": 4
}

API Version 2012-08-10
105

Amazon DynamoDB API Reference
Examples

UpdateItem
Edits an existing item's attributes, or adds a new item to the table if it does not already exist.You can
put, delete, or add attribute values.You can also perform a conditional update on an existing item (insert
a new attribute name-value pair if it doesn't exist, or replace an existing name-value pair if it has certain
expected attribute values).

You can also return the item's attribute values in the same UpdateItem operation using the ReturnValues
parameter.

Request Syntax

{
 "AttributeUpdates":
 {
 "string" :
 {
 "Action": "string",
 "Value": {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
 },
 "ConditionalOperator": "string",
 "ConditionExpression": "string",
 "Expected":
 {
 "string" :
 {
 "AttributeValueList": [
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

API Version 2012-08-10
106

Amazon DynamoDB API Reference
UpdateItem

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
],
 "ComparisonOperator": "string",
 "Exists": boolean,
 "Value": {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 }
 },
 "ExpressionAttributeNames":
 {
 "string" :
 "string"
 },
 "ExpressionAttributeValues":
 {
 "string" :
 {

API Version 2012-08-10
107

Amazon DynamoDB API Reference
Request Syntax

 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "Key":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ReturnConsumedCapacity": "string",
 "ReturnItemCollectionMetrics": "string",
 "ReturnValues": "string",
 "TableName": "string",
 "UpdateExpression": "string"
}

API Version 2012-08-10
108

Amazon DynamoDB API Reference
Request Syntax

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

Key
The primary key of the item to be updated. Each element consists of an attribute name and a value
for that attribute.

For the primary key, you must provide all of the attributes. For example, with a hash type primary
key, you only need to provide the hash attribute. For a hash-and-range type primary key, you must
provide both the hash attribute and the range attribute.

Type: String to AttributeValue (p. 130) object map

Required:Yes

TableName
The name of the table containing the item to update.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

AttributeUpdates

Important
This is a legacy parameter, for backward compatibility. New applications should use
UpdateExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception. This
parameter can be used for modifying top-level attributes; however, it does not support
individual list or map elements.

The names of attributes to be modified, the action to perform on each, and the new value for each.
If you are updating an attribute that is an index key attribute for any indexes on that table, the attribute
type must match the index key type defined in the AttributesDefinition of the table description.You
can use UpdateItem to update any nonkey attributes.

Attribute values cannot be null. String and Binary type attributes must have lengths greater than zero.
Set type attributes must not be empty. Requests with empty values will be rejected with a
ValidationException exception.

Each AttributeUpdates element consists of an attribute name to modify, along with the following:

• Value - The new value, if applicable, for this attribute.

• Action - A value that specifies how to perform the update. This action is only valid for an existing
attribute whose data type is Number or is a set; do not use ADD for other data types.

If an item with the specified primary key is found in the table, the following values perform the
following actions:

• PUT - Adds the specified attribute to the item. If the attribute already exists, it is replaced by the
new value.

• DELETE - Removes the attribute and its value, if no value is specified for DELETE. The data type
of the specified value must match the existing value's data type.

API Version 2012-08-10
109

Amazon DynamoDB API Reference
Request Parameters

If a set of values is specified, then those values are subtracted from the old set. For example, if
the attribute value was the set [a,b,c] and the DELETE action specifies [a,c], then the final
attribute value is [b]. Specifying an empty set is an error.

• ADD - Adds the specified value to the item, if the attribute does not already exist. If the attribute
does exist, then the behavior of ADD depends on the data type of the attribute:

• If the existing attribute is a number, and if Value is also a number, then Value is mathematically
added to the existing attribute. If Value is a negative number, then it is subtracted from the
existing attribute.

Note
If you use ADD to increment or decrement a number value for an item that doesn't
exist before the update, DynamoDB uses 0 as the initial value. Similarly, if you use
ADD for an existing item to increment or decrement an attribute value that doesn't
exist before the update, DynamoDB uses 0 as the initial value. For example, suppose
that the item you want to update doesn't have an attribute named itemcount, but you
decide to ADD the number 3 to this attribute anyway. DynamoDB will create the
itemcount attribute, set its initial value to 0, and finally add 3 to it. The result will be
a new itemcount attribute, with a value of 3.

• If the existing data type is a set, and if Value is also a set, then Value is appended to the
existing set. For example, if the attribute value is the set [1,2], and the ADD action specified
[3], then the final attribute value is [1,2,3]. An error occurs if an ADD action is specified for
a set attribute and the attribute type specified does not match the existing set type.

Both sets must have the same primitive data type. For example, if the existing data type is a
set of strings, Value must also be a set of strings.

If no item with the specified key is found in the table, the following values perform the following
actions:

• PUT - Causes DynamoDB to create a new item with the specified primary key, and then adds
the attribute.

• DELETE - Nothing happens, because attributes cannot be deleted from a nonexistent item. The
operation succeeds, but DynamoDB does not create a new item.

• ADD - Causes DynamoDB to create an item with the supplied primary key and number (or set
of numbers) for the attribute value. The only data types allowed are Number and Number Set.

If you provide any attributes that are part of an index key, then the data types for those attributes
must match those of the schema in the table's attribute definition.

Type: String to AttributeValueUpdate (p. 132) object map

Required: No

ConditionalOperator

Important
This is a legacy parameter, for backward compatibility. New applications should use
ConditionExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A logical operator to apply to the conditions in the Expected map:

• AND - If all of the conditions evaluate to true, then the entire map evaluates to true.

• OR - If at least one of the conditions evaluate to true, then the entire map evaluates to true.

If you omit ConditionalOperator, then AND is the default.

The operation will succeed only if the entire map evaluates to true.

Note
This parameter does not support attributes of type List or Map.

API Version 2012-08-10
110

Amazon DynamoDB API Reference
Request Parameters

Type: String

Valid Values: AND | OR

Required: No

ConditionExpression
A condition that must be satisfied in order for a conditional update to succeed.

An expression can contain any of the following:

• Functions:attribute_exists | attribute_not_exists | attribute_type | contains
| begins_with | size

These function names are case-sensitive.

• Comparison operators: = | <> | < | > | <= | >= | BETWEEN | IN

• Logical operators: AND | OR | NOT

For more information on condition expressions, see Specifying Conditions in the Amazon DynamoDB
Developer Guide.

Note
ConditionExpression replaces the legacy ConditionalOperator and Expected parameters.

Type: String

Required: No

Expected

Important
This is a legacy parameter, for backward compatibility. New applications should use
ConditionExpression instead. Do not combine legacy parameters and expression parameters
in a single API call; otherwise, DynamoDB will return a ValidationException exception.

A map of attribute/condition pairs. Expected provides a conditional block for the UpdateItem operation.

Each element of Expected consists of an attribute name, a comparison operator, and one or more
values. DynamoDB compares the attribute with the value(s) you supplied, using the comparison
operator. For each Expected element, the result of the evaluation is either true or false.

If you specify more than one element in the Expected map, then by default all of the conditions must
evaluate to true. In other words, the conditions are ANDed together. (You can use the
ConditionalOperator parameter to OR the conditions instead. If you do this, then at least one of the
conditions must evaluate to true, rather than all of them.)

If the Expected map evaluates to true, then the conditional operation succeeds; otherwise, it fails.

Expected contains the following:

• AttributeValueList - One or more values to evaluate against the supplied attribute. The number of
values in the list depends on the ComparisonOperator being used.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on ASCII character code
values. For example, a is greater than A, and a is greater than B. For a list of code values, see
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

For type Binary, DynamoDB treats each byte of the binary data as unsigned when it compares
binary values.

• ComparisonOperator - A comparator for evaluating attributes in the AttributeValueList. When
performing the comparison, DynamoDB uses strongly consistent reads.

API Version 2012-08-10
111

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

The following are descriptions of each comparison operator.

• EQ : Equal. EQ is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue element of type String, Number, Binary,
String Set, Number Set, or Binary Set. If an item contains an AttributeValue element of a different
type than the one provided in the request, the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• NE : Not equal. NE is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue of type String, Number, Binary, String
Set, Number Set, or Binary Set. If an item contains an AttributeValue of a different type than the
one provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• LE : Less than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• LT : Less than.

AttributeValueList can contain only one AttributeValue of type String, Number, or Binary (not a
set type). If an item contains an AttributeValue element of a different type than the one provided
in the request, the value does not match. For example, {"S":"6"} does not equal {"N":"6"}.
Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GE : Greater than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GT : Greater than.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• NOT_NULL : The attribute exists. NOT_NULL is supported for all datatypes, including lists and
maps.

Note
This operator tests for the existence of an attribute, not its data type. If the data type of
attribute "a" is null, and you evaluate it using NOT_NULL, the result is a Boolean true.
This result is because the attribute "a" exists; its data type is not relevant to the
NOT_NULL comparison operator.

• NULL :The attribute does not exist.NULL is supported for all datatypes, including lists and maps.

API Version 2012-08-10
112

Amazon DynamoDB API Reference
Request Parameters

Note
This operator tests for the nonexistence of an attribute, not its data type. If the data
type of attribute "a" is null, and you evaluate it using NULL, the result is a Boolean false.
This is because the attribute "a" exists; its data type is not relevant to the NULL
comparison operator.

• CONTAINS : Checks for a subsequence, or value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is of type String, then the operator checks
for a substring match. If the target attribute of the comparison is of type Binary, then the operator
looks for a subsequence of the target that matches the input. If the target attribute of the
comparison is a set ("SS", "NS", or "BS"), then the operator evaluates to true if it finds an exact
match with any member of the set.

CONTAINS is supported for lists: When evaluating "a CONTAINS b", "a" can be a list; however,
"b" cannot be a set, a map, or a list.

• NOT_CONTAINS : Checks for absence of a subsequence, or absence of a value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is a String, then the operator checks for
the absence of a substring match. If the target attribute of the comparison is Binary, then the
operator checks for the absence of a subsequence of the target that matches the input. If the
target attribute of the comparison is a set ("SS", "NS", or "BS"), then the operator evaluates to
true if it does not find an exact match with any member of the set.

NOT_CONTAINS is supported for lists: When evaluating "a NOT CONTAINS b", "a" can be a
list; however, "b" cannot be a set, a map, or a list.

• BEGINS_WITH : Checks for a prefix.

AttributeValueList can contain only one AttributeValue of type String or Binary (not a Number or
a set type).The target attribute of the comparison must be of type String or Binary (not a Number
or a set type).

• IN : Checks for matching elements within two sets.

AttributeValueList can contain one or more AttributeValue elements of type String, Number, or
Binary (not a set type). These attributes are compared against an existing set type attribute of
an item. If any elements of the input set are present in the item attribute, the expression evaluates
to true.

• BETWEEN : Greater than or equal to the first value, and less than or equal to the second value.

AttributeValueList must contain two AttributeValue elements of the same type, either String,
Number, or Binary (not a set type). A target attribute matches if the target value is greater than,
or equal to, the first element and less than, or equal to, the second element. If an item contains
an AttributeValue element of a different type than the one provided in the request, the value
does not match. For example, {"S":"6"} does not compare to {"N":"6"}. Also, {"N":"6"}
does not compare to {"NS":["6", "2", "1"]}

For usage examples of AttributeValueList and ComparisonOperator, see Legacy Conditional
Parameters in the Amazon DynamoDB Developer Guide.

For backward compatibility with previous DynamoDB releases, the following parameters can be used
instead of AttributeValueList and ComparisonOperator:

• Value - A value for DynamoDB to compare with an attribute.

• Exists - A Boolean value that causes DynamoDB to evaluate the value before attempting the
conditional operation:

API Version 2012-08-10
113

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html

• If Exists is true, DynamoDB will check to see if that attribute value already exists in the table.
If it is found, then the condition evaluates to true; otherwise the condition evaluate to false.

• If Exists is false, DynamoDB assumes that the attribute value does not exist in the table. If in
fact the value does not exist, then the assumption is valid and the condition evaluates to true. If
the value is found, despite the assumption that it does not exist, the condition evaluates to false.

Note that the default value for Exists is true.

The Value and Exists parameters are incompatible with AttributeValueList and ComparisonOperator.
Note that if you use both sets of parameters at once, DynamoDB will return a ValidationException
exception.

Note
This parameter does not support attributes of type List or Map.

Type: String to ExpectedAttributeValue (p. 139) object map

Required: No

ExpressionAttributeNames
One or more substitution tokens for attribute names in an expression. The following are some use
cases for using ExpressionAttributeNames:

• To access an attribute whose name conflicts with a DynamoDB reserved word.

• To create a placeholder for repeating occurrences of an attribute name in an expression.

• To prevent special characters in an attribute name from being misinterpreted in an expression.

Use the # character in an expression to dereference an attribute name. For example, consider the
following attribute name:

• Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression.
(For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer
Guide). To work around this, you could specify the following for ExpressionAttributeNames:

• {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

• #P = :val

Note
Tokens that begin with the : character are expression attribute values, which are placeholders
for the actual value at runtime.

For more information on expression attribute names, see Accessing Item Attributes in the Amazon
DynamoDB Developer Guide.

Type: String to String map

Required: No

ExpressionAttributeValues
One or more values that can be substituted in an expression.

Use the : (colon) character in an expression to dereference an attribute value. For example, suppose
that you wanted to check whether the value of the ProductStatus attribute was one of the following:

Available | Backordered | Discontinued

You would first need to specify ExpressionAttributeValues as follows:

{ ":avail":{"S":"Available"}, ":back":{"S":"Backordered"},
":disc":{"S":"Discontinued"} }

API Version 2012-08-10
114

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html

You could then use these values in an expression, such as this:

ProductStatus IN (:avail, :back, :disc)

For more information on expression attribute values, see Specifying Conditions in the Amazon
DynamoDB Developer Guide.

Type: String to AttributeValue (p. 130) object map

Required: No

ReturnConsumedCapacity
Determines the level of detail about provisioned throughput consumption that is returned in the
response:

• INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together
with ConsumedCapacity for each table and secondary index that was accessed.

Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all.
In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

• TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

• NONE - No ConsumedCapacity details are included in the response.

Type: String

Valid Values: INDEXES | TOTAL | NONE

Required: No

ReturnItemCollectionMetrics
Determines whether item collection metrics are returned. If set to SIZE, the response includes
statistics about item collections, if any, that were modified during the operation are returned in the
response. If set to NONE (the default), no statistics are returned.

Type: String

Valid Values: SIZE | NONE

Required: No

ReturnValues
Use ReturnValues if you want to get the item attributes as they appeared either before or after they
were updated. For UpdateItem, the valid values are:

• NONE - If ReturnValues is not specified, or if its value is NONE, then nothing is returned. (This setting
is the default for ReturnValues.)

• ALL_OLD - If UpdateItem overwrote an attribute name-value pair, then the content of the old item
is returned.

• UPDATED_OLD - The old versions of only the updated attributes are returned.

• ALL_NEW - All of the attributes of the new version of the item are returned.

• UPDATED_NEW - The new versions of only the updated attributes are returned.

Type: String

Valid Values: NONE | ALL_OLD | UPDATED_OLD | ALL_NEW | UPDATED_NEW

Required: No

UpdateExpression
An expression that defines one or more attributes to be updated, the action to be performed on them,
and new value(s) for them.

The following action values are available for UpdateExpression.

API Version 2012-08-10
115

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html

• SET - Adds one or more attributes and values to an item. If any of these attribute already exist,
they are replaced by the new values.You can also use SET to add or subtract from an attribute
that is of type Number. For example: SET myNum = myNum + :val

SET supports the following functions:

• if_not_exists (path, operand) - if the item does not contain an attribute at the specified
path, then if_not_exists evaluates to operand; otherwise, it evaluates to path.You can use
this function to avoid overwriting an attribute that may already be present in the item.

• list_append (operand, operand) - evaluates to a list with a new element added to it.You
can append the new element to the start or the end of the list by reversing the order of the
operands.

These function names are case-sensitive.

• REMOVE - Removes one or more attributes from an item.

• ADD - Adds the specified value to the item, if the attribute does not already exist. If the attribute
does exist, then the behavior of ADD depends on the data type of the attribute:

• If the existing attribute is a number, and if Value is also a number, then Value is mathematically
added to the existing attribute. If Value is a negative number, then it is subtracted from the
existing attribute.

Note
If you use ADD to increment or decrement a number value for an item that doesn't exist
before the update, DynamoDB uses 0 as the initial value. Similarly, if you use ADD for
an existing item to increment or decrement an attribute value that doesn't exist before
the update, DynamoDB uses 0 as the initial value. For example, suppose that the item
you want to update doesn't have an attribute named itemcount, but you decide to ADD
the number 3 to this attribute anyway. DynamoDB will create the itemcount attribute,
set its initial value to 0, and finally add 3 to it.The result will be a new itemcount attribute
in the item, with a value of 3.

• If the existing data type is a set and if Value is also a set, then Value is added to the existing
set. For example, if the attribute value is the set [1,2], and the ADD action specified [3], then
the final attribute value is [1,2,3]. An error occurs if an ADD action is specified for a set attribute
and the attribute type specified does not match the existing set type.

Both sets must have the same primitive data type. For example, if the existing data type is a set
of strings, the Value must also be a set of strings.

Important
The ADD action only supports Number and set data types. In addition, ADD can only be
used on top-level attributes, not nested attributes.

• DELETE - Deletes an element from a set.

If a set of values is specified, then those values are subtracted from the old set. For example, if
the attribute value was the set [a,b,c] and the DELETE action specifies [a,c], then the final
attribute value is [b]. Specifying an empty set is an error.

Important
The DELETE action only supports set data types. In addition, DELETE can only be used
on top-level attributes, not nested attributes.

You can have many actions in a single expression, such as the following: SET a=:value1,
b=:value2 DELETE :value3, :value4, :value5

For more information on update expressions, see Modifying Items and Attributes in the Amazon
DynamoDB Developer Guide.

Note
UpdateExpression replaces the legacy AttributeUpdates parameter.

API Version 2012-08-10
116

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.Modifying.html

Type: String

Required: No

Response Syntax

{
 "Attributes":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "ConsumedCapacity": {
 "CapacityUnits": number,
 "GlobalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "LocalSecondaryIndexes":
 {
 "string" :
 {
 "CapacityUnits": number
 }
 },
 "Table": {
 "CapacityUnits": number
 },
 "TableName": "string"

API Version 2012-08-10
117

Amazon DynamoDB API Reference
Response Syntax

 },
 "ItemCollectionMetrics": {
 "ItemCollectionKey":
 {
 "string" :
 {
 "B": blob,
 "BOOL": boolean,
 "BS": [

blob
],
 "L": [

AttributeValue
],
 "M":
 {
 "string" :

AttributeValue
 },
 "N": "string",
 "NS": [
 "string"
],
 "NULL": boolean,
 "S": "string",
 "SS": [
 "string"
]
 }
 },
 "SizeEstimateRangeGB": [

number
]
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Attributes
A map of attribute values as they appeared before the UpdateItem operation.This map only appears
if ReturnValues was specified as something other than NONE in the request. Each element represents
one attribute.

Type: String to AttributeValue (p. 130) object map

ConsumedCapacity
The capacity units consumed by an operation. The data returned includes the total provisioned
throughput consumed, along with statistics for the table and any indexes involved in the operation.
ConsumedCapacity is only returned if the request asked for it. For more information, see Provisioned
Throughput in the Amazon DynamoDB Developer Guide.

Type: ConsumedCapacity (p. 136) object

API Version 2012-08-10
118

Amazon DynamoDB API Reference
Response Elements

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html

ItemCollectionMetrics
Information about item collections, if any, that were affected by the operation. ItemCollectionMetrics
is only returned if the request asked for it. If the table does not have any local secondary indexes,
this information is not returned in the response.

Type: ItemCollectionMetrics (p. 145) object

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

ConditionalCheckFailedException
A condition specified in the operation could not be evaluated.

HTTP Status Code: 400

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

ItemCollectionSizeLimitExceededException
An item collection is too large. This exception is only returned for tables that have one or more local
secondary indexes.

HTTP Status Code: 400

ProvisionedThroughputExceededException
Your request rate is too high.The AWS SDKs for DynamoDB automatically retry requests that receive
this exception.Your request is eventually successful, unless your retry queue is too large to finish.
Reduce the frequency of requests and use exponential backoff. For more information, go to Error
Retries and Exponential Backoff in the Amazon DynamoDB Developer Guide.

HTTP Status Code: 400

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Conditional Update
This example updates the Thread table, changing the LastPostedBy attribute - but only if LastPostedBy
is currently "fred@example.com". All of the item's attributes, as they appear after the update, are returned
in the response.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>

API Version 2012-08-10
119

Amazon DynamoDB API Reference
Errors

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIRetries

Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.UpdateItem

{
 "TableName": "Thread",
 "Key": {
 "ForumName": {
 "S": "Amazon DynamoDB"
 },
 "Subject": {
 "S": "Maximum number of items?"
 }
 },
 "UpdateExpression": "set LastPostedBy = :val1",
 "ConditionExpression": "LastPostedBy = :val2",
 "ExpressionAttributeValues": {
 ":val1": {"S": "alice@example.com"},
 ":val2": {"S": "fred@example.com"}
 },
 "ReturnValues": "ALL_NEW"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "Attributes": {
 "LastPostedBy": {
 "S": "alice@example.com"
 },
 "ForumName": {
 "S": "Amazon DynamoDB"
 },
 "LastPostDateTime": {
 "S": "20130320010350"
 },
 "Tags": {
 "SS": ["Update","Multiple Items","HelpMe"]
 },
 "Subject": {
 "S": "Maximum number of items?"
 },
 "Views": {
 "N": "5"
 },
 "Message": {
 "S": "I want to put 10 million data items to an Amazon DynamoDB

API Version 2012-08-10
120

Amazon DynamoDB API Reference
Examples

table. Is there an upper limit?"
 }
 }
}

Atomic Counter
The following example increments the Replies attribute in the Thread table whenever someone posts a
reply. Because ReturnValues is set to NONE, no output appears in the response payload.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.UpdateItem

{
 "TableName": "Thread",
 "Key": {
 "ForumName": {
 "S": "Amazon DynamoDB"
 },
 "Subject": {
 "S": "A question about updates"
 }
 },
 "UpdateExpression": "set Replies = Replies + :num",
 "ExpressionAttributeValues": {
 ":num": {"N": "1"}
 },
 "ReturnValues" : "NONE"
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
}

API Version 2012-08-10
121

Amazon DynamoDB API Reference
Examples

UpdateTable
Modifies the provisioned throughput settings, global secondary indexes, or DynamoDB Streams settings
for a given table.

You can only perform one of the following operations at once:

• Modify the provisioned throughput settings of the table.

• Enable or disable Streams on the table.

• Remove a global secondary index from the table.

• Create a new global secondary index on the table. Once the index begins backfilling, you can use
UpdateTable to perform other operations.

UpdateTable is an asynchronous operation; while it is executing, the table status changes from ACTIVE
to UPDATING. While it is UPDATING, you cannot issue another UpdateTable request. When the table
returns to the ACTIVE state, the UpdateTable operation is complete.

Request Syntax

{
 "AttributeDefinitions": [
 {
 "AttributeName": "string",
 "AttributeType": "string"
 }
],
 "GlobalSecondaryIndexUpdates": [
 {
 "Create": {
 "IndexName": "string",
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 },
 "ProvisionedThroughput": {
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 },
 "Delete": {
 "IndexName": "string"
 },
 "Update": {
 "IndexName": "string",
 "ProvisionedThroughput": {

API Version 2012-08-10
122

Amazon DynamoDB API Reference
UpdateTable

 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 }
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 },
 "StreamSpecification": {
 "StreamEnabled": boolean,
 "StreamViewType": "string"
 },
 "TableName": "string"
}

Request Parameters
The request requires the following data in JSON format.

Note
In the following list, the required parameters are described first.

TableName
The name of the table to be updated.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

AttributeDefinitions
An array of attributes that describe the key schema for the table and indexes. If you are adding a
new global secondary index to the table, AttributeDefinitions must include the key element(s) of the
new index.

Type: array of AttributeDefinition (p. 130) objects

Required: No

GlobalSecondaryIndexUpdates
An array of one or more global secondary indexes for the table. For each index in the array, you can
request one action:

• Create - add a new global secondary index to the table.

• Update - modify the provisioned throughput settings of an existing global secondary index.

• Delete - remove a global secondary index from the table.

For more information, see Managing Global Secondary Indexes in the Amazon DynamoDB Developer
Guide.

Type: array of GlobalSecondaryIndexUpdate (p. 145) objects

Required: No

API Version 2012-08-10
123

Amazon DynamoDB API Reference
Request Parameters

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.OnlineOps.html

ProvisionedThroughput
Represents the provisioned throughput settings for a specified table or index. The settings can be
modified using the UpdateTable operation.

For current minimum and maximum provisioned throughput values, see Limits in the Amazon
DynamoDB Developer Guide.

Type: ProvisionedThroughput (p. 151) object

Required: No

StreamSpecification
Represents the DynamoDB Streams configuration for the table.

Note
You will receive a ResourceInUseException if you attempt to enable a stream on a table
that already has a stream, or if you attempt to disable a stream on a table which does not
have a stream.

Type: StreamSpecification (p. 153) object

Required: No

Response Syntax

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "string",
 "AttributeType": "string"
 }
],
 "CreationDateTime": number,
 "GlobalSecondaryIndexes": [
 {
 "Backfilling": boolean,
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "IndexStatus": "string",
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 },
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,

API Version 2012-08-10
124

Amazon DynamoDB API Reference
Response Syntax

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 }
 }
],
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "LatestStreamArn": "string",
 "LatestStreamLabel": "string",
 "LocalSecondaryIndexes": [
 {
 "IndexArn": "string",
 "IndexName": "string",
 "IndexSizeBytes": number,
 "ItemCount": number,
 "KeySchema": [
 {
 "AttributeName": "string",
 "KeyType": "string"
 }
],
 "Projection": {
 "NonKeyAttributes": [
 "string"
],
 "ProjectionType": "string"
 }
 }
],
 "ProvisionedThroughput": {
 "LastDecreaseDateTime": number,
 "LastIncreaseDateTime": number,
 "NumberOfDecreasesToday": number,
 "ReadCapacityUnits": number,
 "WriteCapacityUnits": number
 },
 "StreamSpecification": {
 "StreamEnabled": boolean,
 "StreamViewType": "string"
 },
 "TableArn": "string",
 "TableName": "string",
 "TableSizeBytes": number,
 "TableStatus": "string"
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

API Version 2012-08-10
125

Amazon DynamoDB API Reference
Response Elements

The following data is returned in JSON format by the service.

TableDescription
Represents the properties of a table.

Type: TableDescription (p. 153) object

Errors
For information about the errors that are common to all actions, see Common Errors (p. 159).

InternalServerError
An error occurred on the server side.

HTTP Status Code: 500

LimitExceededException
The number of concurrent table requests (cumulative number of tables in the CREATING, DELETING
or UPDATING state) exceeds the maximum allowed of 10.

Also, for tables with secondary indexes, only one of those tables can be in the CREATING state at
any point in time. Do not attempt to create more than one such table simultaneously.

The total limit of tables in the ACTIVE state is 250.

HTTP Status Code: 400

ResourceInUseException
The operation conflicts with the resource's availability. For example, you attempted to recreate an
existing table, or tried to delete a table currently in the CREATING state.

HTTP Status Code: 400

ResourceNotFoundException
The operation tried to access a nonexistent table or index. The resource might not be specified
correctly, or its status might not be ACTIVE.

HTTP Status Code: 400

Examples

Modify Provisioned Write Throughput
This example changes both the provisioned read and write throughput of the Thread table to 10 capacity
units.

Sample Request

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;
Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>

API Version 2012-08-10
126

Amazon DynamoDB API Reference
Errors

X-Amz-Date: <Date> X-Amz-Target: DynamoDB_20120810.UpdateTable

{
 "TableName": "Thread",
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 10
 }
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
 {
 "TableDescription": {
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/Thread",
 "AttributeDefinitions": [
 {
 "AttributeName": "ForumName",
 "AttributeType": "S"
 },
 {
 "AttributeName": "LastPostDateTime",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Subject",
 "AttributeType": "S"
 }
],
 "CreationDateTime": 1.363801528686E9,
 "ItemCount": 0,
 "KeySchema": [
 {
 "AttributeName": "ForumName",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "Subject",
 "KeyType": "RANGE"
 }
],
 "LocalSecondaryIndexes": [
 {
 "IndexName": "LastPostIndex",
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "KeySchema": [
 {

API Version 2012-08-10
127

Amazon DynamoDB API Reference
Examples

 "AttributeName": "ForumName",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "LastPostDateTime",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "KEYS_ONLY"
 }
 }
],
 "ProvisionedThroughput": {
 "LastIncreaseDateTime": 1.363801701282E9,
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },
 "TableName": "Thread",
 "TableSizeBytes": 0,
 "TableStatus": "UPDATING"
 }
}

API Version 2012-08-10
128

Amazon DynamoDB API Reference
Examples

Data Types

The Amazon DynamoDB API contains several data types that various actions use.This section describes
each data type in detail.

Note
The order of each element in the response is not guaranteed. Applications should not assume
a particular order.

The following data types are supported:

• AttributeDefinition (p. 130)

• AttributeValue (p. 130)

• AttributeValueUpdate (p. 132)

• Capacity (p. 133)

• Condition (p. 134)

• ConsumedCapacity (p. 136)

• CreateGlobalSecondaryIndexAction (p. 137)

• DeleteGlobalSecondaryIndexAction (p. 138)

• DeleteRequest (p. 138)

• ExpectedAttributeValue (p. 139)

• GlobalSecondaryIndex (p. 142)

• GlobalSecondaryIndexDescription (p. 143)

• GlobalSecondaryIndexUpdate (p. 145)

• ItemCollectionMetrics (p. 145)

• KeysAndAttributes (p. 146)

• KeySchemaElement (p. 148)

• LocalSecondaryIndex (p. 148)

• LocalSecondaryIndexDescription (p. 149)

• Projection (p. 150)

• ProvisionedThroughput (p. 151)

• ProvisionedThroughputDescription (p. 151)

• PutRequest (p. 152)

• StreamSpecification (p. 153)

• TableDescription (p. 153)

API Version 2012-08-10
129

Amazon DynamoDB API Reference

• UpdateGlobalSecondaryIndexAction (p. 157)

• WriteRequest (p. 157)

AttributeDefinition

Description
Represents an attribute for describing the key schema for the table and indexes.

Contents
Note
In the following list, the required parameters are described first.

AttributeName
A name for the attribute.

Type: String

Length constraints: Minimum length of 1. Maximum length of 255.

Required:Yes

AttributeType
The data type for the attribute.

Type: String

Valid Values: S | N | B

Required:Yes

AttributeValue

Description
Represents the data for an attribute.You can set one, and only one, of the elements.

Each attribute in an item is a name-value pair. An attribute can be single-valued or multi-valued set. For
example, a book item can have title and authors attributes. Each book has one title but can have many
authors. The multi-valued attribute is a set; duplicate values are not allowed.

Contents
Note
In the following list, the required parameters are described first.

B
A Binary data type.

Type: Blob

Required: No

API Version 2012-08-10
130

Amazon DynamoDB API Reference
AttributeDefinition

BOOL
A Boolean data type.

Type: Boolean

Required: No

BS
A Binary Set data type.

Type: array of Blobs

Required: No

L
A List of attribute values.

Type: array of AttributeValue (p. 130) objects

Required: No

M
A Map of attribute values.

Type: String to AttributeValue (p. 130) object map

Required: No

N
A Number data type.

Type: String

Required: No

NS
A Number Set data type.

Type: array of Strings

Required: No

NULL
A Null data type.

Type: Boolean

Required: No

S
A String data type.

Type: String

Required: No

SS
A String Set data type.

Type: array of Strings

Required: No

API Version 2012-08-10
131

Amazon DynamoDB API Reference
Contents

AttributeValueUpdate

Description
For the UpdateItem operation, represents the attributes to be modified, the action to perform on each,
and the new value for each.

Note
You cannot use UpdateItem to update any primary key attributes. Instead, you will need to delete
the item, and then use PutItem to create a new item with new attributes.

Attribute values cannot be null; string and binary type attributes must have lengths greater than zero; and
set type attributes must not be empty. Requests with empty values will be rejected with a
ValidationException exception.

Contents
Note
In the following list, the required parameters are described first.

Action
Specifies how to perform the update. Valid values are PUT (default), DELETE, and ADD. The behavior
depends on whether the specified primary key already exists in the table.

If an item with the specified Key is found in the table:

• PUT - Adds the specified attribute to the item. If the attribute already exists, it is replaced by the
new value.

• DELETE - If no value is specified, the attribute and its value are removed from the item. The data
type of the specified value must match the existing value's data type.

If a set of values is specified, then those values are subtracted from the old set. For example, if
the attribute value was the set [a,b,c] and the DELETE action specified [a,c], then the final
attribute value would be [b]. Specifying an empty set is an error.

• ADD - If the attribute does not already exist, then the attribute and its values are added to the item.
If the attribute does exist, then the behavior of ADD depends on the data type of the attribute:

• If the existing attribute is a number, and if Value is also a number, then the Value is mathematically
added to the existing attribute. If Value is a negative number, then it is subtracted from the
existing attribute.

Note
If you use ADD to increment or decrement a number value for an item that doesn't exist
before the update, DynamoDB uses 0 as the initial value. In addition, if you use ADD
to update an existing item, and intend to increment or decrement an attribute value
which does not yet exist, DynamoDB uses 0 as the initial value. For example, suppose
that the item you want to update does not yet have an attribute named itemcount, but
you decide to ADD the number 3 to this attribute anyway, even though it currently does
not exist. DynamoDB will create the itemcount attribute, set its initial value to 0, and
finally add 3 to it. The result will be a new itemcount attribute in the item, with a value
of 3.

• If the existing data type is a set, and if the Value is also a set, then the Value is added to the
existing set. (This is a set operation, not mathematical addition.) For example, if the attribute
value was the set [1,2], and the ADD action specified [3], then the final attribute value would
be [1,2,3]. An error occurs if an Add action is specified for a set attribute and the attribute
type specified does not match the existing set type.

API Version 2012-08-10
132

Amazon DynamoDB API Reference
AttributeValueUpdate

Both sets must have the same primitive data type. For example, if the existing data type is a set
of strings, the Value must also be a set of strings. The same holds true for number sets and
binary sets.

This action is only valid for an existing attribute whose data type is number or is a set. Do not use
ADD for any other data types.

If no item with the specified Key is found:

• PUT - DynamoDB creates a new item with the specified primary key, and then adds the attribute.

• DELETE - Nothing happens; there is no attribute to delete.

• ADD - DynamoDB creates an item with the supplied primary key and number (or set of numbers)
for the attribute value. The only data types allowed are number and number set; no other data
types can be specified.

Type: String

Valid Values: ADD | PUT | DELETE

Required: No

Value
Represents the data for an attribute.You can set one, and only one, of the elements.

Each attribute in an item is a name-value pair. An attribute can be single-valued or multi-valued set.
For example, a book item can have title and authors attributes. Each book has one title but can have
many authors. The multi-valued attribute is a set; duplicate values are not allowed.

Type: AttributeValue (p. 130) object

Required: No

Capacity

Description
Represents the amount of provisioned throughput capacity consumed on a table or an index.

Contents
Note
In the following list, the required parameters are described first.

CapacityUnits
The total number of capacity units consumed on a table or an index.

Type: Double

Required: No

API Version 2012-08-10
133

Amazon DynamoDB API Reference
Capacity

Condition

Description
Represents the selection criteria for a Query or Scan operation:

• For a Query operation, Condition is used for specifying the KeyConditions to use when querying a table
or an index. For KeyConditions, only the following comparison operators are supported:

EQ | LE | LT | GE | GT | BEGINS_WITH | BETWEEN

Condition is also used in a QueryFilter, which evaluates the query results and returns only the desired
values.

• For a Scan operation, Condition is used in a ScanFilter, which evaluates the scan results and returns
only the desired values.

Contents
Note
In the following list, the required parameters are described first.

ComparisonOperator
A comparator for evaluating attributes. For example, equals, greater than, less than, etc.

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

The following are descriptions of each comparison operator.

• EQ : Equal. EQ is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue element of type String, Number, Binary,
String Set, Number Set, or Binary Set. If an item contains an AttributeValue element of a different
type than the one provided in the request, the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• NE : Not equal. NE is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue of type String, Number, Binary, String Set,
Number Set, or Binary Set. If an item contains an AttributeValue of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• LE : Less than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• LT : Less than.

AttributeValueList can contain only one AttributeValue of type String, Number, or Binary (not a set
type). If an item contains an AttributeValue element of a different type than the one provided in the

API Version 2012-08-10
134

Amazon DynamoDB API Reference
Condition

request, the value does not match. For example, {"S":"6"} does not equal {"N":"6"}. Also,
{"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GE : Greater than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GT : Greater than.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• NOT_NULL :The attribute exists.NOT_NULL is supported for all datatypes, including lists and maps.

Note
This operator tests for the existence of an attribute, not its data type. If the data type of
attribute "a" is null, and you evaluate it using NOT_NULL, the result is a Boolean true.
This result is because the attribute "a" exists; its data type is not relevant to the NOT_NULL
comparison operator.

• NULL : The attribute does not exist. NULL is supported for all datatypes, including lists and maps.

Note
This operator tests for the nonexistence of an attribute, not its data type. If the data type
of attribute "a" is null, and you evaluate it using NULL, the result is a Boolean false. This
is because the attribute "a" exists; its data type is not relevant to the NULL comparison
operator.

• CONTAINS : Checks for a subsequence, or value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is of type String, then the operator checks
for a substring match. If the target attribute of the comparison is of type Binary, then the operator
looks for a subsequence of the target that matches the input. If the target attribute of the comparison
is a set ("SS", "NS", or "BS"), then the operator evaluates to true if it finds an exact match with any
member of the set.

CONTAINS is supported for lists: When evaluating "a CONTAINS b", "a" can be a list; however,
"b" cannot be a set, a map, or a list.

• NOT_CONTAINS : Checks for absence of a subsequence, or absence of a value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is a String, then the operator checks for
the absence of a substring match. If the target attribute of the comparison is Binary, then the
operator checks for the absence of a subsequence of the target that matches the input. If the target
attribute of the comparison is a set ("SS", "NS", or "BS"), then the operator evaluates to true if it
does not find an exact match with any member of the set.

NOT_CONTAINS is supported for lists: When evaluating "a NOT CONTAINS b", "a" can be a list;
however, "b" cannot be a set, a map, or a list.

• BEGINS_WITH : Checks for a prefix.

AttributeValueList can contain only one AttributeValue of type String or Binary (not a Number or a
set type). The target attribute of the comparison must be of type String or Binary (not a Number
or a set type).

API Version 2012-08-10
135

Amazon DynamoDB API Reference
Contents

• IN : Checks for matching elements within two sets.

AttributeValueList can contain one or more AttributeValue elements of type String, Number, or
Binary (not a set type). These attributes are compared against an existing set type attribute of an
item. If any elements of the input set are present in the item attribute, the expression evaluates to
true.

• BETWEEN : Greater than or equal to the first value, and less than or equal to the second value.

AttributeValueList must contain two AttributeValue elements of the same type, either String, Number,
or Binary (not a set type). A target attribute matches if the target value is greater than, or equal to,
the first element and less than, or equal to, the second element. If an item contains an AttributeValue
element of a different type than the one provided in the request, the value does not match. For
example, {"S":"6"} does not compare to {"N":"6"}. Also, {"N":"6"} does not compare to
{"NS":["6", "2", "1"]}

For usage examples of AttributeValueList and ComparisonOperator, see Legacy Conditional
Parameters in the Amazon DynamoDB Developer Guide.

Type: String

Valid Values: EQ | NE | IN | LE | LT | GE | GT | BETWEEN | NOT_NULL | NULL |
CONTAINS | NOT_CONTAINS | BEGINS_WITH

Required:Yes

AttributeValueList
One or more values to evaluate against the supplied attribute.The number of values in the list depends
on the ComparisonOperator being used.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on ASCII character code
values. For example, a is greater than A, and a is greater than B. For a list of code values, see http://
en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

For Binary, DynamoDB treats each byte of the binary data as unsigned when it compares binary
values.

Type: array of AttributeValue (p. 130) objects

Required: No

ConsumedCapacity

Description
The capacity units consumed by an operation.The data returned includes the total provisioned throughput
consumed, along with statistics for the table and any indexes involved in the operation. ConsumedCapacity
is only returned if the request asked for it. For more information, see Provisioned Throughput in the
Amazon DynamoDB Developer Guide.

Contents
Note
In the following list, the required parameters are described first.

API Version 2012-08-10
136

Amazon DynamoDB API Reference
ConsumedCapacity

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LegacyConditionalParameters.html
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html

CapacityUnits
The total number of capacity units consumed by the operation.

Type: Double

Required: No

GlobalSecondaryIndexes
The amount of throughput consumed on each global index affected by the operation.

Type: String to Capacity (p. 133) object map

Required: No

LocalSecondaryIndexes
The amount of throughput consumed on each local index affected by the operation.

Type: String to Capacity (p. 133) object map

Required: No

Table
The amount of throughput consumed on the table affected by the operation.

Type: Capacity (p. 133) object

Required: No

TableName
The name of the table that was affected by the operation.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required: No

CreateGlobalSecondaryIndexAction

Description
Represents a new global secondary index to be added to an existing table.

Contents
Note
In the following list, the required parameters are described first.

IndexName
The name of the global secondary index to be created.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

API Version 2012-08-10
137

Amazon DynamoDB API Reference
CreateGlobalSecondaryIndexAction

KeySchema
The key schema for the global secondary index.

Type: array of KeySchemaElement (p. 148) objects

Length constraints: Minimum of 1 item(s) in the list. Maximum of 2 item(s) in the list.

Required:Yes

Projection
Represents attributes that are copied (projected) from the table into an index. These are in addition
to the primary key attributes and index key attributes, which are automatically projected.

Type: Projection (p. 150) object

Required:Yes

ProvisionedThroughput
Represents the provisioned throughput settings for a specified table or index. The settings can be
modified using the UpdateTable operation.

For current minimum and maximum provisioned throughput values, see Limits in the Amazon
DynamoDB Developer Guide.

Type: ProvisionedThroughput (p. 151) object

Required:Yes

DeleteGlobalSecondaryIndexAction

Description
Represents a global secondary index to be deleted from an existing table.

Contents
Note
In the following list, the required parameters are described first.

IndexName
The name of the global secondary index to be deleted.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

DeleteRequest

Description
Represents a request to perform a DeleteItem operation on an item.

API Version 2012-08-10
138

Amazon DynamoDB API Reference
DeleteGlobalSecondaryIndexAction

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

Contents
Note
In the following list, the required parameters are described first.

Key
A map of attribute name to attribute values, representing the primary key of the item to delete. All of
the table's primary key attributes must be specified, and their data types must match those of the
table's key schema.

Type: String to AttributeValue (p. 130) object map

Required:Yes

ExpectedAttributeValue

Description
Represents a condition to be compared with an attribute value.This condition can be used with DeleteItem,
PutItem or UpdateItem operations; if the comparison evaluates to true, the operation succeeds; if not,
the operation fails.You can use ExpectedAttributeValue in one of two different ways:

• Use AttributeValueList to specify one or more values to compare against an attribute. Use
ComparisonOperator to specify how you want to perform the comparison. If the comparison evaluates
to true, then the conditional operation succeeds.

• Use Value to specify a value that DynamoDB will compare against an attribute. If the values match,
then ExpectedAttributeValue evaluates to true and the conditional operation succeeds. Optionally, you
can also set Exists to false, indicating that you do not expect to find the attribute value in the table. In
this case, the conditional operation succeeds only if the comparison evaluates to false.

Value and Exists are incompatible with AttributeValueList and ComparisonOperator. Note that if you use
both sets of parameters at once, DynamoDB will return a ValidationException exception.

Contents
Note
In the following list, the required parameters are described first.

AttributeValueList
One or more values to evaluate against the supplied attribute.The number of values in the list depends
on the ComparisonOperator being used.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on ASCII character code
values. For example, a is greater than A, and a is greater than B. For a list of code values, see http://
en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

For Binary, DynamoDB treats each byte of the binary data as unsigned when it compares binary
values.

For information on specifying data types in JSON, see JSON Data Format in the Amazon DynamoDB
Developer Guide.

Type: array of AttributeValue (p. 130) objects

API Version 2012-08-10
139

Amazon DynamoDB API Reference
Contents

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataFormat.html

Required: No

ComparisonOperator
A comparator for evaluating attributes in the AttributeValueList. For example, equals, greater than,
less than, etc.

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

The following are descriptions of each comparison operator.

• EQ : Equal. EQ is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue element of type String, Number, Binary,
String Set, Number Set, or Binary Set. If an item contains an AttributeValue element of a different
type than the one provided in the request, the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• NE : Not equal. NE is supported for all datatypes, including lists and maps.

AttributeValueList can contain only one AttributeValue of type String, Number, Binary, String Set,
Number Set, or Binary Set. If an item contains an AttributeValue of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• LE : Less than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• LT : Less than.

AttributeValueList can contain only one AttributeValue of type String, Number, or Binary (not a set
type). If an item contains an AttributeValue element of a different type than the one provided in the
request, the value does not match. For example, {"S":"6"} does not equal {"N":"6"}. Also,
{"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GE : Greater than or equal.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GT : Greater than.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If an item contains an AttributeValue element of a different type than the one
provided in the request, the value does not match. For example, {"S":"6"} does not equal
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• NOT_NULL :The attribute exists.NOT_NULL is supported for all datatypes, including lists and maps.

Note
This operator tests for the existence of an attribute, not its data type. If the data type of
attribute "a" is null, and you evaluate it using NOT_NULL, the result is a Boolean true.

API Version 2012-08-10
140

Amazon DynamoDB API Reference
Contents

This result is because the attribute "a" exists; its data type is not relevant to the NOT_NULL
comparison operator.

• NULL : The attribute does not exist. NULL is supported for all datatypes, including lists and maps.

Note
This operator tests for the nonexistence of an attribute, not its data type. If the data type
of attribute "a" is null, and you evaluate it using NULL, the result is a Boolean false. This
is because the attribute "a" exists; its data type is not relevant to the NULL comparison
operator.

• CONTAINS : Checks for a subsequence, or value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is of type String, then the operator checks
for a substring match. If the target attribute of the comparison is of type Binary, then the operator
looks for a subsequence of the target that matches the input. If the target attribute of the comparison
is a set ("SS", "NS", or "BS"), then the operator evaluates to true if it finds an exact match with any
member of the set.

CONTAINS is supported for lists: When evaluating "a CONTAINS b", "a" can be a list; however,
"b" cannot be a set, a map, or a list.

• NOT_CONTAINS : Checks for absence of a subsequence, or absence of a value in a set.

AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary
(not a set type). If the target attribute of the comparison is a String, then the operator checks for
the absence of a substring match. If the target attribute of the comparison is Binary, then the
operator checks for the absence of a subsequence of the target that matches the input. If the target
attribute of the comparison is a set ("SS", "NS", or "BS"), then the operator evaluates to true if it
does not find an exact match with any member of the set.

NOT_CONTAINS is supported for lists: When evaluating "a NOT CONTAINS b", "a" can be a list;
however, "b" cannot be a set, a map, or a list.

• BEGINS_WITH : Checks for a prefix.

AttributeValueList can contain only one AttributeValue of type String or Binary (not a Number or a
set type). The target attribute of the comparison must be of type String or Binary (not a Number
or a set type).

• IN : Checks for matching elements within two sets.

AttributeValueList can contain one or more AttributeValue elements of type String, Number, or
Binary (not a set type). These attributes are compared against an existing set type attribute of an
item. If any elements of the input set are present in the item attribute, the expression evaluates to
true.

• BETWEEN : Greater than or equal to the first value, and less than or equal to the second value.

AttributeValueList must contain two AttributeValue elements of the same type, either String, Number,
or Binary (not a set type). A target attribute matches if the target value is greater than, or equal to,
the first element and less than, or equal to, the second element. If an item contains an AttributeValue
element of a different type than the one provided in the request, the value does not match. For
example, {"S":"6"} does not compare to {"N":"6"}. Also, {"N":"6"} does not compare to
{"NS":["6", "2", "1"]}

Type: String

Valid Values: EQ | NE | IN | LE | LT | GE | GT | BETWEEN | NOT_NULL | NULL |
CONTAINS | NOT_CONTAINS | BEGINS_WITH

Required: No

API Version 2012-08-10
141

Amazon DynamoDB API Reference
Contents

Exists
Causes DynamoDB to evaluate the value before attempting a conditional operation:

• If Exists is true, DynamoDB will check to see if that attribute value already exists in the table. If
it is found, then the operation succeeds. If it is not found, the operation fails with a
ConditionalCheckFailedException.

• If Exists is false, DynamoDB assumes that the attribute value does not exist in the table. If in
fact the value does not exist, then the assumption is valid and the operation succeeds. If the value
is found, despite the assumption that it does not exist, the operation fails with a
ConditionalCheckFailedException.

The default setting for Exists is true. If you supply a Value all by itself, DynamoDB assumes the
attribute exists:You don't have to set Exists to true, because it is implied.

DynamoDB returns a ValidationException if:

• Exists is true but there is no Value to check. (You expect a value to exist, but don't specify what
that value is.)

• Exists is false but you also provide a Value. (You cannot expect an attribute to have a value,
while also expecting it not to exist.)

Type: Boolean

Required: No

Value
Represents the data for an attribute.You can set one, and only one, of the elements.

Each attribute in an item is a name-value pair. An attribute can be single-valued or multi-valued set.
For example, a book item can have title and authors attributes. Each book has one title but can have
many authors. The multi-valued attribute is a set; duplicate values are not allowed.

Type: AttributeValue (p. 130) object

Required: No

GlobalSecondaryIndex

Description
Represents the properties of a global secondary index.

Contents
Note
In the following list, the required parameters are described first.

IndexName
The name of the global secondary index. The name must be unique among all other indexes on this
table.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

API Version 2012-08-10
142

Amazon DynamoDB API Reference
GlobalSecondaryIndex

KeySchema
The complete key schema for a global secondary index, which consists of one or more pairs of
attribute names and key types (HASH or RANGE).

Type: array of KeySchemaElement (p. 148) objects

Length constraints: Minimum of 1 item(s) in the list. Maximum of 2 item(s) in the list.

Required:Yes

Projection
Represents attributes that are copied (projected) from the table into an index. These are in addition
to the primary key attributes and index key attributes, which are automatically projected.

Type: Projection (p. 150) object

Required:Yes

ProvisionedThroughput
Represents the provisioned throughput settings for a specified table or index. The settings can be
modified using the UpdateTable operation.

For current minimum and maximum provisioned throughput values, see Limits in the Amazon
DynamoDB Developer Guide.

Type: ProvisionedThroughput (p. 151) object

Required:Yes

GlobalSecondaryIndexDescription

Description
Represents the properties of a global secondary index.

Contents
Note
In the following list, the required parameters are described first.

Backfilling
Indicates whether the index is currently backfilling. Backfilling is the process of reading items from
the table and determining whether they can be added to the index. (Not all items will qualify: For
example, a hash key attribute cannot have any duplicates.) If an item can be added to the index,
DynamoDB will do so. After all items have been processed, the backfilling operation is complete and
Backfilling is false.

Note
For indexes that were created during a CreateTable operation, the Backfilling attribute does
not appear in the DescribeTable output.

Type: Boolean

Required: No

IndexArn
The Amazon Resource Name (ARN) that uniquely identifies the index.

Type: String

API Version 2012-08-10
143

Amazon DynamoDB API Reference
GlobalSecondaryIndexDescription

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

Required: No

IndexName
The name of the global secondary index.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required: No

IndexSizeBytes
The total size of the specified index, in bytes. DynamoDB updates this value approximately every
six hours. Recent changes might not be reflected in this value.

Type: Long

Required: No

IndexStatus
The current state of the global secondary index:

• CREATING - The index is being created.

• UPDATING - The index is being updated.

• DELETING - The index is being deleted.

• ACTIVE - The index is ready for use.

Type: String

Valid Values: CREATING | UPDATING | DELETING | ACTIVE

Required: No

ItemCount
The number of items in the specified index. DynamoDB updates this value approximately every six
hours. Recent changes might not be reflected in this value.

Type: Long

Required: No

KeySchema
The complete key schema for the global secondary index, consisting of one or more pairs of attribute
names and key types (HASH or RANGE).

Type: array of KeySchemaElement (p. 148) objects

Length constraints: Minimum of 1 item(s) in the list. Maximum of 2 item(s) in the list.

Required: No

Projection
Represents attributes that are copied (projected) from the table into an index. These are in addition
to the primary key attributes and index key attributes, which are automatically projected.

Type: Projection (p. 150) object

Required: No

ProvisionedThroughput
Represents the provisioned throughput settings for the table, consisting of read and write capacity
units, along with data about increases and decreases.

Type: ProvisionedThroughputDescription (p. 151) object

API Version 2012-08-10
144

Amazon DynamoDB API Reference
Contents

Required: No

GlobalSecondaryIndexUpdate

Description
Represents one of the following:

• A new global secondary index to be added to an existing table.

• New provisioned throughput parameters for an existing global secondary index.

• An existing global secondary index to be removed from an existing table.

Contents
Note
In the following list, the required parameters are described first.

Create
The parameters required for creating a global secondary index on an existing table:

• IndexName

• KeySchema

• AttributeDefinitions

• Projection

• ProvisionedThroughput

Type: CreateGlobalSecondaryIndexAction (p. 137) object

Required: No

Delete
The name of an existing global secondary index to be removed.

Type: DeleteGlobalSecondaryIndexAction (p. 138) object

Required: No

Update
The name of an existing global secondary index, along with new provisioned throughput settings to
be applied to that index.

Type: UpdateGlobalSecondaryIndexAction (p. 157) object

Required: No

ItemCollectionMetrics

Description
Information about item collections, if any, that were affected by the operation. ItemCollectionMetrics is
only returned if the request asked for it. If the table does not have any local secondary indexes, this
information is not returned in the response.

API Version 2012-08-10
145

Amazon DynamoDB API Reference
GlobalSecondaryIndexUpdate

Contents
Note
In the following list, the required parameters are described first.

ItemCollectionKey
The hash key value of the item collection. This value is the same as the hash key of the item.

Type: String to AttributeValue (p. 130) object map

Required: No

SizeEstimateRangeGB
An estimate of item collection size, in gigabytes.This value is a two-element array containing a lower
bound and an upper bound for the estimate. The estimate includes the size of all the items in the
table, plus the size of all attributes projected into all of the local secondary indexes on that table. Use
this estimate to measure whether a local secondary index is approaching its size limit.

The estimate is subject to change over time; therefore, do not rely on the precision or accuracy of
the estimate.

Type: array of Doubles

Required: No

KeysAndAttributes

Description
Represents a set of primary keys and, for each key, the attributes to retrieve from the table.

For each primary key, you must provide all of the key attributes. For example, with a hash type primary
key, you only need to provide the hash attribute. For a hash-and-range type primary key, you must provide
both the hash attribute and the range attribute.

Contents
Note
In the following list, the required parameters are described first.

Keys
The primary key attribute values that define the items and the attributes associated with the items.

Type: array of s

Length constraints: Minimum of 1 item(s) in the list. Maximum of 100 item(s) in the list.

Required:Yes

AttributesToGet
One or more attributes to retrieve from the table or index. If no attribute names are specified then all
attributes will be returned. If any of the specified attributes are not found, they will not appear in the
result.

Type: array of Strings

Length constraints: Minimum of 1 item(s) in the list.

API Version 2012-08-10
146

Amazon DynamoDB API Reference
Contents

Required: No

ConsistentRead
The consistency of a read operation. If set to true, then a strongly consistent read is used; otherwise,
an eventually consistent read is used.

Type: Boolean

Required: No

ExpressionAttributeNames
One or more substitution tokens for attribute names in an expression. The following are some use
cases for using ExpressionAttributeNames:

• To access an attribute whose name conflicts with a DynamoDB reserved word.

• To create a placeholder for repeating occurrences of an attribute name in an expression.

• To prevent special characters in an attribute name from being misinterpreted in an expression.

Use the # character in an expression to dereference an attribute name. For example, consider the
following attribute name:

• Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression.
(For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer
Guide). To work around this, you could specify the following for ExpressionAttributeNames:

• {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

• #P = :val

Note
Tokens that begin with the : character are expression attribute values, which are placeholders
for the actual value at runtime.

For more information on expression attribute names, see Accessing Item Attributes in the Amazon
DynamoDB Developer Guide.

Type: String to String map

Required: No

ProjectionExpression
A string that identifies one or more attributes to retrieve from the table. These attributes can include
scalars, sets, or elements of a JSON document. The attributes in the ProjectionExpression must be
separated by commas.

If no attribute names are specified, then all attributes will be returned. If any of the requested attributes
are not found, they will not appear in the result.

For more information, see Accessing Item Attributes in the Amazon DynamoDB Developer Guide.

Note
ProjectionExpression replaces the legacy AttributesToGet parameter.

Type: String

Required: No

API Version 2012-08-10
147

Amazon DynamoDB API Reference
Contents

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ReservedWords.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html

KeySchemaElement

Description
Represents a single element of a key schema. A key schema specifies the attributes that make up the
primary key of a table, or the key attributes of an index.

A KeySchemaElement represents exactly one attribute of the primary key. For example, a hash type
primary key would be represented by one KeySchemaElement. A hash-and-range type primary key would
require one KeySchemaElement for the hash attribute, and another KeySchemaElement for the range
attribute.

Contents
Note
In the following list, the required parameters are described first.

AttributeName
The name of a key attribute.

Type: String

Length constraints: Minimum length of 1. Maximum length of 255.

Required:Yes

KeyType
The attribute data, consisting of the data type and the attribute value itself.

Type: String

Valid Values: HASH | RANGE

Required:Yes

LocalSecondaryIndex

Description
Represents the properties of a local secondary index.

Contents
Note
In the following list, the required parameters are described first.

IndexName
The name of the local secondary index. The name must be unique among all other indexes on this
table.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

API Version 2012-08-10
148

Amazon DynamoDB API Reference
KeySchemaElement

Required:Yes

KeySchema
The complete key schema for the local secondary index, consisting of one or more pairs of attribute
names and key types (HASH or RANGE).

Type: array of KeySchemaElement (p. 148) objects

Length constraints: Minimum of 1 item(s) in the list. Maximum of 2 item(s) in the list.

Required:Yes

Projection
Represents attributes that are copied (projected) from the table into an index. These are in addition
to the primary key attributes and index key attributes, which are automatically projected.

Type: Projection (p. 150) object

Required:Yes

LocalSecondaryIndexDescription

Description
Represents the properties of a local secondary index.

Contents
Note
In the following list, the required parameters are described first.

IndexArn
The Amazon Resource Name (ARN) that uniquely identifies the index.

Type: String

Required: No

IndexName
Represents the name of the local secondary index.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required: No

IndexSizeBytes
The total size of the specified index, in bytes. DynamoDB updates this value approximately every
six hours. Recent changes might not be reflected in this value.

Type: Long

Required: No

ItemCount
The number of items in the specified index. DynamoDB updates this value approximately every six
hours. Recent changes might not be reflected in this value.

API Version 2012-08-10
149

Amazon DynamoDB API Reference
LocalSecondaryIndexDescription

Type: Long

Required: No

KeySchema
The complete index key schema, which consists of one or more pairs of attribute names and key
types (HASH or RANGE).

Type: array of KeySchemaElement (p. 148) objects

Length constraints: Minimum of 1 item(s) in the list. Maximum of 2 item(s) in the list.

Required: No

Projection
Represents attributes that are copied (projected) from the table into an index. These are in addition
to the primary key attributes and index key attributes, which are automatically projected.

Type: Projection (p. 150) object

Required: No

Projection

Description
Represents attributes that are copied (projected) from the table into an index. These are in addition to
the primary key attributes and index key attributes, which are automatically projected.

Contents
Note
In the following list, the required parameters are described first.

NonKeyAttributes
Represents the non-key attribute names which will be projected into the index.

For local secondary indexes, the total count of NonKeyAttributes summed across all of the local
secondary indexes, must not exceed 20. If you project the same attribute into two different indexes,
this counts as two distinct attributes when determining the total.

Type: array of Strings

Length constraints: Minimum of 1 item(s) in the list. Maximum of 20 item(s) in the list.

Required: No

ProjectionType
The set of attributes that are projected into the index:

• KEYS_ONLY - Only the index and primary keys are projected into the index.

• INCLUDE - Only the specified table attributes are projected into the index. The list of projected
attributes are in NonKeyAttributes.

• ALL - All of the table attributes are projected into the index.

Type: String

Valid Values: ALL | KEYS_ONLY | INCLUDE

API Version 2012-08-10
150

Amazon DynamoDB API Reference
Projection

Required: No

ProvisionedThroughput

Description
Represents the provisioned throughput settings for a specified table or index.The settings can be modified
using the UpdateTable operation.

For current minimum and maximum provisioned throughput values, see Limits in the Amazon DynamoDB
Developer Guide.

Contents
Note
In the following list, the required parameters are described first.

ReadCapacityUnits
The maximum number of strongly consistent reads consumed per second before DynamoDB returns
a ThrottlingException. For more information, see Specifying Read and Write Requirements in the
Amazon DynamoDB Developer Guide.

Type: Long

Valid range: Minimum value of 1.

Required:Yes

WriteCapacityUnits
The maximum number of writes consumed per second before DynamoDB returns a
ThrottlingException. For more information, see Specifying Read and Write Requirements in the
Amazon DynamoDB Developer Guide.

Type: Long

Valid range: Minimum value of 1.

Required:Yes

ProvisionedThroughputDescription

Description
Represents the provisioned throughput settings for the table, consisting of read and write capacity units,
along with data about increases and decreases.

Contents
Note
In the following list, the required parameters are described first.

LastDecreaseDateTime
The date and time of the last provisioned throughput decrease for this table.

API Version 2012-08-10
151

Amazon DynamoDB API Reference
ProvisionedThroughput

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#ProvisionedThroughput
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#ProvisionedThroughput

Type: DateTime

Required: No

LastIncreaseDateTime
The date and time of the last provisioned throughput increase for this table.

Type: DateTime

Required: No

NumberOfDecreasesToday
The number of provisioned throughput decreases for this table during this UTC calendar day. For
current maximums on provisioned throughput decreases, see Limits in the Amazon DynamoDB
Developer Guide.

Type: Long

Valid range: Minimum value of 1.

Required: No

ReadCapacityUnits
The maximum number of strongly consistent reads consumed per second before DynamoDB returns
a ThrottlingException. Eventually consistent reads require less effort than strongly consistent reads,
so a setting of 50 ReadCapacityUnits per second provides 100 eventually consistent
ReadCapacityUnits per second.

Type: Long

Valid range: Minimum value of 1.

Required: No

WriteCapacityUnits
The maximum number of writes consumed per second before DynamoDB returns a
ThrottlingException.

Type: Long

Valid range: Minimum value of 1.

Required: No

PutRequest

Description
Represents a request to perform a PutItem operation on an item.

Contents
Note
In the following list, the required parameters are described first.

Item
A map of attribute name to attribute values, representing the primary key of an item to be processed
by PutItem. All of the table's primary key attributes must be specified, and their data types must match
those of the table's key schema. If any attributes are present in the item which are part of an index
key schema for the table, their types must match the index key schema.

API Version 2012-08-10
152

Amazon DynamoDB API Reference
PutRequest

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

Type: String to AttributeValue (p. 130) object map

Required:Yes

StreamSpecification

Description
Represents the DynamoDB Streams configuration for a table in DynamoDB.

Contents
Note
In the following list, the required parameters are described first.

StreamEnabled
Indicates whether DynamoDB Streams is enabled (true) or disabled (false) on the table.

Type: Boolean

Required: No

StreamViewType
The DynamoDB Streams settings for the table. These settings consist of:

• StreamEnabled - Indicates whether DynamoDB Streams is enabled (true) or disabled (false) on
the table.

• StreamViewType - When an item in the table is modified, StreamViewType determines what
information is written to the stream for this table. Valid values for StreamViewType are:

• KEYS_ONLY - Only the key attributes of the modified item are written to the stream.

• NEW_IMAGE - The entire item, as it appears after it was modified, is written to the stream.

• OLD_IMAGE - The entire item, as it appeared before it was modified, is written to the stream.

• NEW_AND_OLD_IMAGES - Both the new and the old item images of the item are written to the
stream.

Type: String

Valid Values: NEW_IMAGE | OLD_IMAGE | NEW_AND_OLD_IMAGES | KEYS_ONLY

Required: No

TableDescription

Description
Represents the properties of a table.

Contents
Note
In the following list, the required parameters are described first.

API Version 2012-08-10
153

Amazon DynamoDB API Reference
StreamSpecification

AttributeDefinitions
An array of AttributeDefinition objects. Each of these objects describes one attribute in the table and
index key schema.

Each AttributeDefinition object in this array is composed of:

• AttributeName - The name of the attribute.

• AttributeType - The data type for the attribute.

Type: array of AttributeDefinition (p. 130) objects

Required: No

CreationDateTime
The date and time when the table was created, in UNIX epoch time format.

Type: DateTime

Required: No

GlobalSecondaryIndexes
The global secondary indexes, if any, on the table. Each index is scoped to a given hash key value.
Each element is composed of:

• Backfilling - If true, then the index is currently in the backfilling phase. Backfilling occurs only when
a new global secondary index is added to the table; it is the process by which DynamoDB populates
the new index with data from the table. (This attribute does not appear for indexes that were created
during a CreateTable operation.)

• IndexName - The name of the global secondary index.

• IndexSizeBytes - The total size of the global secondary index, in bytes. DynamoDB updates this
value approximately every six hours. Recent changes might not be reflected in this value.

• IndexStatus - The current status of the global secondary index:

• CREATING - The index is being created.

• UPDATING - The index is being updated.

• DELETING - The index is being deleted.

• ACTIVE - The index is ready for use.

• ItemCount - The number of items in the global secondary index. DynamoDB updates this value
approximately every six hours. Recent changes might not be reflected in this value.

• KeySchema - Specifies the complete index key schema. The attribute names in the key schema
must be between 1 and 255 characters (inclusive). The key schema must begin with the same
hash key attribute as the table.

• Projection - Specifies attributes that are copied (projected) from the table into the index.These are
in addition to the primary key attributes and index key attributes, which are automatically projected.
Each attribute specification is composed of:

• ProjectionType - One of the following:

• KEYS_ONLY - Only the index and primary keys are projected into the index.

• INCLUDE - Only the specified table attributes are projected into the index.The list of projected
attributes are in NonKeyAttributes.

• ALL - All of the table attributes are projected into the index.

• NonKeyAttributes - A list of one or more non-key attribute names that are projected into the
secondary index. The total count of attributes provided in NonKeyAttributes, summed across all
of the secondary indexes, must not exceed 20. If you project the same attribute into two different
indexes, this counts as two distinct attributes when determining the total.

• ProvisionedThroughput - The provisioned throughput settings for the global secondary index,
consisting of read and write capacity units, along with data about increases and decreases.

If the table is in the DELETING state, no information about indexes will be returned.

API Version 2012-08-10
154

Amazon DynamoDB API Reference
Contents

http://www.epochconverter.com/

Type: array of GlobalSecondaryIndexDescription (p. 143) objects

Required: No

ItemCount
The number of items in the specified table. DynamoDB updates this value approximately every six
hours. Recent changes might not be reflected in this value.

Type: Long

Required: No

KeySchema
The primary key structure for the table. Each KeySchemaElement consists of:

• AttributeName - The name of the attribute.

• KeyType - The key type for the attribute. Can be either HASH or RANGE.

For more information about primary keys, see Primary Key in the Amazon DynamoDB Developer
Guide.

Type: array of KeySchemaElement (p. 148) objects

Length constraints: Minimum of 1 item(s) in the list. Maximum of 2 item(s) in the list.

Required: No

LatestStreamArn
The Amazon Resource Name (ARN) that uniquely identifies the latest stream for this table.

Type: String

Length constraints: Minimum length of 37. Maximum length of 1024.

Required: No

LatestStreamLabel
A timestamp, in ISO 8601 format, for this stream.

Note that LatestStreamLabel is not a unique identifier for the stream, because it is possible that a
stream from another table might have the same timestamp. However, the combination of the following
three elements is guaranteed to be unique:

• the AWS customer ID.

• the table name.

• the StreamLabel.

Type: String

Required: No

LocalSecondaryIndexes
Represents one or more local secondary indexes on the table. Each index is scoped to a given hash
key value. Tables with one or more local secondary indexes are subject to an item collection size
limit, where the amount of data within a given item collection cannot exceed 10 GB. Each element
is composed of:

• IndexName - The name of the local secondary index.

• KeySchema - Specifies the complete index key schema. The attribute names in the key schema
must be between 1 and 255 characters (inclusive). The key schema must begin with the same
hash key attribute as the table.

• Projection - Specifies attributes that are copied (projected) from the table into the index.These are
in addition to the primary key attributes and index key attributes, which are automatically projected.
Each attribute specification is composed of:

API Version 2012-08-10
155

Amazon DynamoDB API Reference
Contents

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html#DataModelPrimaryKey

• ProjectionType - One of the following:

• KEYS_ONLY - Only the index and primary keys are projected into the index.

• INCLUDE - Only the specified table attributes are projected into the index.The list of projected
attributes are in NonKeyAttributes.

• ALL - All of the table attributes are projected into the index.

• NonKeyAttributes - A list of one or more non-key attribute names that are projected into the
secondary index. The total count of attributes provided in NonKeyAttributes, summed across all
of the secondary indexes, must not exceed 20. If you project the same attribute into two different
indexes, this counts as two distinct attributes when determining the total.

• IndexSizeBytes - Represents the total size of the index, in bytes. DynamoDB updates this value
approximately every six hours. Recent changes might not be reflected in this value.

• ItemCount - Represents the number of items in the index. DynamoDB updates this value
approximately every six hours. Recent changes might not be reflected in this value.

If the table is in the DELETING state, no information about indexes will be returned.

Type: array of LocalSecondaryIndexDescription (p. 149) objects

Required: No

ProvisionedThroughput
The provisioned throughput settings for the table, consisting of read and write capacity units, along
with data about increases and decreases.

Type: ProvisionedThroughputDescription (p. 151) object

Required: No

StreamSpecification
The current DynamoDB Streams configuration for the table.

Type: StreamSpecification (p. 153) object

Required: No

TableArn
The Amazon Resource Name (ARN) that uniquely identifies the table.

Type: String

Required: No

TableName
The name of the table.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required: No

TableSizeBytes
The total size of the specified table, in bytes. DynamoDB updates this value approximately every six
hours. Recent changes might not be reflected in this value.

Type: Long

Required: No

TableStatus
The current state of the table:

API Version 2012-08-10
156

Amazon DynamoDB API Reference
Contents

• CREATING - The table is being created.

• UPDATING - The table is being updated.

• DELETING - The table is being deleted.

• ACTIVE - The table is ready for use.

Type: String

Valid Values: CREATING | UPDATING | DELETING | ACTIVE

Required: No

UpdateGlobalSecondaryIndexAction

Description
Represents the new provisioned throughput settings to be applied to a global secondary index.

Contents
Note
In the following list, the required parameters are described first.

IndexName
The name of the global secondary index to be updated.

Type: String

Length constraints: Minimum length of 3. Maximum length of 255.

Pattern: [a-zA-Z0-9_.-]+

Required:Yes

ProvisionedThroughput
Represents the provisioned throughput settings for a specified table or index. The settings can be
modified using the UpdateTable operation.

For current minimum and maximum provisioned throughput values, see Limits in the Amazon
DynamoDB Developer Guide.

Type: ProvisionedThroughput (p. 151) object

Required:Yes

WriteRequest

Description
Represents an operation to perform - either DeleteItem or PutItem.You can only request one of these
operations, not both, in a single WriteRequest. If you do need to perform both of these operations, you
will need to provide two separate WriteRequest objects.

API Version 2012-08-10
157

Amazon DynamoDB API Reference
UpdateGlobalSecondaryIndexAction

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

Contents
Note
In the following list, the required parameters are described first.

DeleteRequest
A request to perform a DeleteItem operation.

Type: DeleteRequest (p. 138) object

Required: No

PutRequest
A request to perform a PutItem operation.

Type: PutRequest (p. 152) object

Required: No

API Version 2012-08-10
158

Amazon DynamoDB API Reference
Contents

Common Errors

This section lists the common errors that all actions return. Any action-specific errors are listed in the
topic for the action.

IncompleteSignature
The request signature does not conform to AWS standards.

HTTP Status Code: 400

InternalFailure
The request processing has failed because of an unknown error, exception or failure.

HTTP Status Code: 500

InvalidAction
The action or operation requested is invalid. Verify that the action is typed correctly.

HTTP Status Code: 400

InvalidClientTokenId
The X.509 certificate or AWS access key ID provided does not exist in our records.

HTTP Status Code: 403

InvalidParameterCombination
Parameters that must not be used together were used together.

HTTP Status Code: 400

InvalidParameterValue
An invalid or out-of-range value was supplied for the input parameter.

HTTP Status Code: 400

InvalidQueryParameter
The AWS query string is malformed or does not adhere to AWS standards.

HTTP Status Code: 400

MalformedQueryString
The query string contains a syntax error.

HTTP Status Code: 404

MissingAction
The request is missing an action or a required parameter.

API Version 2012-08-10
159

Amazon DynamoDB API Reference

HTTP Status Code: 400

MissingAuthenticationToken
The request must contain either a valid (registered) AWS access key ID or X.509 certificate.

HTTP Status Code: 403

MissingParameter
A required parameter for the specified action is not supplied.

HTTP Status Code: 400

OptInRequired
The AWS access key ID needs a subscription for the service.

HTTP Status Code: 403

RequestExpired
The request reached the service more than 15 minutes after the date stamp on the request or more
than 15 minutes after the request expiration date (such as for pre-signed URLs), or the date stamp
on the request is more than 15 minutes in the future.

HTTP Status Code: 400

ServiceUnavailable
The request has failed due to a temporary failure of the server.

HTTP Status Code: 503

Throttling
The request was denied due to request throttling.

HTTP Status Code: 400

ValidationError
The input fails to satisfy the constraints specified by an AWS service.

HTTP Status Code: 400

API Version 2012-08-10
160

Amazon DynamoDB API Reference

	Amazon DynamoDB
	Table of Contents
	Welcome
	Actions
	BatchGetItem
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Retrieve Items From Multiple Tables
	Sample Request
	Sample Response

	BatchWriteItem
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Multiple Operations on One Table
	Sample Request
	Sample Response

	CreateTable
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Create a Table
	Sample Request
	Sample Response

	DeleteItem
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Delete an Item
	Sample Request
	Sample Response

	DeleteTable
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Delete a Table
	Sample Request
	Sample Response

	DescribeTable
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Describe a Table
	Sample Request
	Sample Response

	GetItem
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Retrieve Item Attributes
	Sample Request
	Sample Response

	ListTables
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	List Tables
	Sample Request
	Sample Response

	PutItem
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Put an Item
	Sample Request
	Sample Response

	Query
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Retrieve a Range of Items
	Sample Request
	Sample Response

	Count Items
	Sample Request
	Sample Response

	Scan
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Return All Items
	Sample Request
	Sample Response

	Use a Filter Expression
	Sample Request
	Sample Response

	UpdateItem
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Conditional Update
	Sample Request
	Sample Response

	Atomic Counter
	Sample Request
	Sample Response

	UpdateTable
	Request Syntax
	Request Parameters
	Response Syntax
	Response Elements
	Errors
	Examples
	Modify Provisioned Write Throughput
	Sample Request
	Sample Response

	Data Types
	AttributeDefinition
	Description
	Contents

	AttributeValue
	Description
	Contents

	AttributeValueUpdate
	Description
	Contents

	Capacity
	Description
	Contents

	Condition
	Description
	Contents

	ConsumedCapacity
	Description
	Contents

	CreateGlobalSecondaryIndexAction
	Description
	Contents

	DeleteGlobalSecondaryIndexAction
	Description
	Contents

	DeleteRequest
	Description
	Contents

	ExpectedAttributeValue
	Description
	Contents

	GlobalSecondaryIndex
	Description
	Contents

	GlobalSecondaryIndexDescription
	Description
	Contents

	GlobalSecondaryIndexUpdate
	Description
	Contents

	ItemCollectionMetrics
	Description
	Contents

	KeysAndAttributes
	Description
	Contents

	KeySchemaElement
	Description
	Contents

	LocalSecondaryIndex
	Description
	Contents

	LocalSecondaryIndexDescription
	Description
	Contents

	Projection
	Description
	Contents

	ProvisionedThroughput
	Description
	Contents

	ProvisionedThroughputDescription
	Description
	Contents

	PutRequest
	Description
	Contents

	StreamSpecification
	Description
	Contents

	TableDescription
	Description
	Contents

	UpdateGlobalSecondaryIndexAction
	Description
	Contents

	WriteRequest
	Description
	Contents

	Common Errors
	

