
AWS Lambda
Developer Guide

AWS Lambda: Developer Guide
Copyright © 2015 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
AWS CloudTrail, AWS CodeDeploy, Amazon Cognito, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic
Compute Cloud, Amazon Glacier, Amazon Kinesis, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift,
Amazon Route 53, Amazon S3, Amazon VPC, and Amazon WorkDocs. In addition, Amazon.com graphics, logos, page headers,
button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon's
trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

AWS Lambda Developer Guide

Table of Contents
What Is AWS Lambda? .. 1

When should I use it? ... 1
Are you a first-time user of AWS Lambda? ... 2

How it Works .. 3
Lambda Function and Event Source ... 3

Lambda Function .. 3
Event Source .. 4
Invoking Lambda Functions Over HTTPS .. 4
Invocation Types .. 4
Related Topics .. 5

The Pull/Push Event Models .. 5
The Pull Event Model ... 5
The Push Event Model ... 6
Related Topics .. 8

Permission Model .. 8
Execution Permissions ... 8
Invocation Permissions ... 9
Related Topics .. 10

Resource Model .. 10
Next Step ... 11

Supported Versions .. 11
Next Step ... 11

Set Up an AWS Account ... 12
Sign up for AWS .. 12
Create an IAM User ... 12
Next Step ... 14

Authoring Lambda Functions in Node.js ... 15
Getting Started (Node.js) .. 15

Preparing for the Getting Started .. 16
Getting Started 1: Invoking Lambda Functions from User Applications (Node.js) 16
Getting Started 2: Handling Amazon S3 Events (Node.js) ... 19
Getting Started 3: Handling Amazon Kinesis Events (Node.js) ... 23
Getting Started 4: Creating an HTTP Endpoint-Enabled Lambda Function 27

Creating Deployment Package (Node.js) .. 31
Programming Model (Node.js) .. 32

The context Object: Methods and Properties .. 32
Related Topics .. 34

Walkthroughs (Node.js) ... 35
Walkthrough 1: Handling User Application Events (Node.js) ... 35
Walkthrough 2: Handling Amazon S3 Events (Node.js) ... 43
Walkthrough 3: Handling Amazon DynamoDB Stream Events (Node.js) 53
Walkthrough 4: Handling Amazon Kinesis Stream Events (Node.js) 60
Walkthrough 5: Handling AWS CloudTrail Events (Node.js) .. 67
Walkthrough 6: Handling Mobile User Application Events (Node.js) 79

Authoring Lambda Functions in Java ... 88
Getting Started (Java) .. 88

Introduction .. 88
Step 1: Create Deployment Package ... 90
Step 2: Create Lambda Function .. 90
Step 3: Test the Lambda Function ... 92

Creating a Deployment Package (Java) ... 93
Creating a .jar Deployment Package Using Maven without any IDE (Java) 93
Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java) 96
Creating a .zip Deployment Package (Java) .. 98
Authoring Lambda Functions Using Eclipse IDE and AWS SDK Plugin (Java) 101

iii

AWS Lambda Developer Guide

Programming Model (Java) .. 101
Handler (Java) ... 102
The Context Object (Java) ... 112
Logging (Java) ... 114
Exceptions (Java) ... 115

Walkthroughs (Java) ... 116
Walkthrough 1: Process S3 Events (Java) .. 117
Walkthrough 2: Process Kinesis Events (Java) .. 120
Walkthrough 3: Process DynamoDB Events (Java) ... 122
Walkthrough 4: Handling Mobile User Application Events for Android (Java) 124

Troubleshooting and Monitoring .. 135
Troubleshooting Scenarios ... 136

Troubleshooting Function not working ... 136
Troubleshooting .. 136

Accessing CloudWatch Metrics .. 137
Accessing CloudWatch Logs .. 138
Metrics ... 139

CloudWatch Metrics ... 140
CloudWatch Dimensions ... 141

API Logging with AWS CloudTrail .. 142
AWS Lambda Information in CloudTrail .. 142
Understanding AWS Lambda Log File Entries ... 143

Best Practices ... 145
Limits ... 146

AWS Lambda Safety Throttles .. 146
List of AWS Lambda Limits .. 147
AWS Lambda Limit Errors ... 147

Appendix: API Updates ... 149
API Reference ... 152

Actions ... 152
AddPermission .. 153
CreateEventSourceMapping .. 156
CreateFunction .. 160
DeleteEventSourceMapping ... 165
DeleteFunction .. 167
GetEventSourceMapping .. 169
GetFunction .. 171
GetFunctionConfiguration .. 173
GetPolicy .. 176
Invoke .. 178
InvokeAsync ... 181
ListEventSourceMappings ... 183
ListFunctions ... 185
RemovePermission .. 187
UpdateEventSourceMapping .. 189
UpdateFunctionCode .. 192
UpdateFunctionConfiguration ... 196

Data Types .. 199
EventSourceMappingConfiguration ... 200
FunctionCode .. 201
FunctionCodeLocation .. 202
FunctionConfiguration ... 202

Document History .. 204
AWS Glossary ... 207

iv

AWS Lambda Developer Guide

What Is AWS Lambda?

AWS Lambda makes it easy for you to build applications that respond quickly to new information.You
upload your application code as "Lambda" functions and AWS Lambda runs your code on high-availability
compute infrastructure and performs all the administration of the compute resources, including server
and operating system maintenance, capacity provisioning and automatic scaling, code and security patch
deployment, and code monitoring and logging. All you need to do is supply your code in one of the
languages that AWS Lambda supports (currently Node.js or Java).

AWS Lambda can execute your Lambda functions in response to one of the following:

• Events, such as discrete updates (for example, object-created events in Amazon S3 or CloudWatch
alerts), or streaming updates (for example, website clickstreams or outputs from connected devices).

• JSON inputs or HTTPS commands from your custom applications.

AWS Lambda executes your code only when needed and scales automatically, from a few requests per
day to thousands per second. With these capabilities, you can use Lambda to easily build triggers for
AWS services like Amazon S3 and Amazon DynamoDB, process streaming data stored in Amazon
Kinesis, or create your own back-end that operates at AWS scale, performance, and security.

When should I use AWS Lambda?
Amazon Web Services lets you choose from a range of compute services to meet your needs.

• The Amazon Elastic Compute Cloud (Amazon EC2) web service offers flexibility and a wide range of
EC2 instance types to choose from. It gives you the option to customize operating systems, network
and security settings, and the entire software stack, but you are responsible for provisioning capacity,
monitoring fleet health and performance, and using Availability Zones for fault tolerance.

• Elastic Beanstalk offers an easy-to-use service for deploying and scaling applications onto Amazon
EC2 in which you retain ownership and full control over the underlying EC2 instances.

AWS Lambda is a great alternative to using these other AWS compute services if you can write your
application code in languages supported by AWS Lambda, and run within the standard runtime environment
and resources provided by the service.

The higher-level abstraction that AWS Lambda offers is the convenience of your being responsible only
for your code. AWS Lambda manages the compute fleet that offers a balance of memory, CPU, network

1

AWS Lambda Developer Guide
When should I use it?

and other resources.This is in exchange for flexibility, which means you cannot log in to compute instances,
customize the operating system or language runtime. These constraints enable AWS Lambda to perform
operational and administrative activities on your behalf, including provisioning capacity, monitoring fleet
health, applying security patches, deploying your code, running a web service front end, and monitoring
and logging your functions.

Are you a first-time user of AWS Lambda?
If you are a first-time user of AWS Lambda, we recommend you read the following sections in order:

1. For a product overview and pricing information, go to the AWS Lambda product detail page.

2. Read AWS Lambda: How it Works (p. 3).

3. Depending on the language (Java or Node.js) you want to author your Lambda function in, follow one
of the getting started exercises:

• Getting Started: Authoring AWS Lambda Code in Node.js (p. 15)

• Getting Started: Authoring AWS Lambda Code in Java (p. 88)

4. To further explore authoring AWS Lambda functions, see the following topics:

• Authoring Lambda Functions in Node.js (p. 15)

• Authoring Lambda Functions in Java (p. 88)

Refer to the following topics to learn more about the service:

• Troubleshooting and Monitoring AWS Lambda Functions with Amazon CloudWatch (p. 135)

• Best Practices for Working with AWS Lambda Functions (p. 145)

• AWS Lambda Limits (p. 146)

2

AWS Lambda Developer Guide
Are you a first-time user of AWS Lambda?

http://aws.amazon.com/lambda/

AWS Lambda: How it Works

The following sections provide an overview of various AWS Lambda service components and how they
interact.

Note
After you read the introduction, try the Getting Started exercises and the walkthroughs for Node.js
and Java.

Topics

• Core Components: Lambda Function and Event Source (p. 3)

• The Pull/Push Event Models (p. 5)

• Permission Model (p. 8)

• Resource Model (p. 10)

• Supported Versions (p. 11)

Core Components: Lambda Function and Event
Source

A Lambda function and an event source are the core components when you work with AWS Lambda.
Event sources publish events, and a Lambda function is the custom code that you write to process the
events.You can also invoke your Lambda function over HTTPS.

Then, AWS Lambda executes your Lambda function on your behalf.

Lambda Function
After you upload your custom code to AWS Lambda, we refer to it as a Lambda function. A Lambda
function consists of your code, associated dependencies, and configuration. Configuration includes
information such as the handler that will receive the event, the IAM role AWS Lambda can assume to
execute the Lambda function on your behalf, the compute resource you want allocated and execution
timeout.

Currently, you can author your Lambda function code in Java or Node.js.

3

AWS Lambda Developer Guide
Lambda Function and Event Source

Event Source
Event sources publish events that cause the Lambda function to be invoked (either by the event source
in the "push" model, or by AWS Lambda in the "pull" model, discussed in the next section). Event sources
can be:

• AWS services such as Amazon S3.

• Amazon services such as Amazon Echo.

• User-defined applications such as your Android application.

All of these invoke Lambda functions using the Lambda invoke API.

AWS services—Currently, AWS Lambda supports events from Amazon S3, Amazon DynamoDB, Amazon
Kinesis, Amazon SNS, and Amazon Cognito.

You can also use Lambda functions with other AWS services that publish data to one of these listed event
sources. For example:

• You can trigger Lambda functions in response to CloudTrail updates because it records all API access
events to an S3 bucket.

• You can trigger Lambda functions in response to Amazon CloudWatch alarms because it publishes
alarm events to an Amazon SNS topic.

Each of these event sources have a pre-defined event data structure and you can write a Lambda function
to process the event data that it receives. For example, Amazon S3 can publish object-created events,
Amazon DynamoDB can publish table updates to a stream associated with the table, and AWS CloudTrail
can record all API calls made in your account.

Other Amazon Services—Currently, you can use Lambda functions to build services that give new
“skills” to Alexa, the Voice assistant on Amazon Echo. The Alexa Skills Kit provides the APIs, tools, and
documentation to create these new skills, powered by your own services running as Lambda functions.
Amazon Echo users can access these new skills by asking Alexa questions or making requests. For more
information, go to Getting Started with Alexa Skills Kit.

Build your own event source—In addition to AWS services generating events, user applications can
also generate events. User applications such as client, mobile, or web applications can publish events
and invoke Lambda functions using the AWS SDKs or AWS Mobile SDKs.

Invoking Lambda Functions Over HTTPS
In addition to invoking Lambda functions using event sources or through custom clients that are built
using the AWS SDKs, you can also invoke your Lambda function over HTTPS.You can do this by defining
a custom REST API and endpoint using Amazon API Gateway.You map individual API methods, such
as GET and PUT, to specific Lambda functions. When you send an HTTPS request to the API endpoint,
the Amazon API Gateway service invokes the corresponding Lambda function.

For more information, see http://aws.amazon.com/api-gateway/.

Invocation Types
AWS Lambda supports the following two invocation types:

• Event invocation type:

4

AWS Lambda Developer Guide
Event Source

https://developer.amazon.com/appsandservices/solutions/alexa/alexa-skills-kit/getting-started-guide
http://aws.amazon.com/api-gateway/

This invocation type causes AWS Lambda to execute the Lambda function asynchronously. The event
sources Amazon S3, Amazon SNS, Amazon Kinesis, or Amazon Cognito use this invocation type.Your
custom applications can also invoke your Lambda function using this invocation type.

Because of the asynchronous nature of execution, your Lambda function need not send any response.

• RequestResponse invocation type:

This invocation type causes AWS Lambda to execute the function synchronously and returns the
response immediately to the calling application. This invocation type is available only for custom
applications.

For more information, see Invoke (p. 178).

Note
When you invoke a Lambda function via the AWS console or over HTTPS using Amazon API
Gateway, Lambda always uses the RequestResponse invocation type.

Related Topics
AWS Lambda: How it Works (p. 3)

The Pull/Push Event Models
How a Lambda function is invoked depends on the event source that you use with it. There are two
models:

• The pull event model

• The push event model

Note
This section applies when using a Lambda function with event sources and does not apply when
you are invoking over HTTPS using Amazon API Gateway.

The Pull Event Model
In the pull event model, AWS Lambda polls the event source and invokes your Lambda function when it
detects an event. This model applies when AWS Lambda is used with streaming event sources such as
Amazon Kinesis and DynamoDB Streams. For example, AWS Lambda polls your Amazon Kinesis stream,
or Amazon DynamoDB Stream, and invokes your Lambda function when it detects new records on the
stream.

In this model, AWS Lambda manages the event source mapping. That is, it provides an API for you to
create event source mappings that associate your Lambda function with a specific event source. For
more information, see CreateEventSourceMapping (p. 156).You will need to grant AWS Lambda necessary
permissions to access the event source via an IAM role. The permission model is discussed in the next
section.

For example, the following diagram shows AWS Lambda polling an Amazon Kinesis stream and invoking
the Lambda function when it detects new events.

5

AWS Lambda Developer Guide
Related Topics

The Push Event Model
In push event model, an event source directly invokes a Lambda function when it publishes an event.
The push model applies to Amazon S3, Amazon SNS, Amazon Cognito, Amazon Echo and user
applications, where each individual event triggers the Lambda function.You will need to grant the event
source necessary permissions to invoke the Lambda function via the access policy associated with the
function. For more information about the permission model, see Permission Model (p. 8).

AWS Lambda does not explicitly manage event sources in this model. That is, you do not use the AWS
Lambda APIs to map your Lambda function to its event source. Instead, you use APIs from the event
source to configure this mapping. For example, if Amazon S3 is your event source, you would specify
event source mapping as part of bucket notification configuration.

Note
For your convenience, the AWS Lambda console shows all event sources (pull and push) for a
given function.

The event source can decide the invocation type it wants to use. For more information, see Invoke (p. 178).
Amazon S3, Amazon SNS, Amazon Cognito, and Amazon Echo invoke the Lambda function using the
"event" invocation type in the invoke API call. User applications can invoke the Lambda functions by using
the "Event" invocation type or the "RequestResponse" invocation type.

The following are examples of the push event model:

• The following diagram shows Amazon S3 invoking a Lambda function upon detecting an object-created
event in a bucket.The Lambda function owner must grant Amazon S3 permission to invoke the function
by adding a permission in the access policy associated with the Lambda function. Access policies are
discussed in Permission Model (p. 8).

6

AWS Lambda Developer Guide
The Push Event Model

• The following diagram shows a custom application in your account invoking your Lambda function.

• In the following diagram, the user application and Lambda function are owned by different AWS accounts.
In this case, the Lambda function owner must add a permission in the access policy associated with
the Lambda function to grant cross-account access. Cross accounts are discussed in Permission
Model (p. 8).

7

AWS Lambda Developer Guide
The Push Event Model

Related Topics
AWS Lambda: How it Works (p. 3)

Permission Model
There are two types of permissions related to Lambda functions:

• Execution permissions—The permissions that your Lambda function needs to access other AWS
resources in your account.You grant these permissions by creating an IAM role, known as an execution
role.

• Invocation permissions—The permissions that the event source needs to communicate with your
Lambda function. Depending on the invocation model (push or pull model), you can grant these
permissions using either the execution role or resource policies (the access policy associated with your
Lambda function).

Execution Permissions
When your Lambda function executes, it can access other AWS resources in your account. For example:

• Read objects from an S3 bucket and write objects to an S3 bucket

• Write logs to CloudWatch Logs.

• Write items to an Amazon DynamoDB table.

You must grant necessary permissions for the Lambda function to access these resources.

You grant these permissions via an IAM role, called execution role.You create the IAM role granting
AWS Lambda permission to assume the role and attach an access policy to the role granting all the
needed permissions.

First you create an execution role, and then you specify the role at the time you create your Lambda
function so that AWS Lambda knows the role it can assume to execute your Lambda function on your
behalf.

Each IAM role has two policies attached:

• Access policy—Grants your Lambda function the resource permissions it needs.

For example, if your Lambda function writes logs for your function to Amazon CloudWatch Logs, you
grant permissions for the CloudWatch Logs actions to create a log group, log stream, and write to the
log stream as shown:

{
 "Statement": [
 {
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Effect": "Allow",
 "Resource": "arn:aws:logs:*:*:*"

8

AWS Lambda Developer Guide
Related Topics

 }
]
}

If your function uploads an object to an S3 bucket, you grant permission for relevant Amazon S3 actions
in this policy. For a list of actions, see Specifying Permissions in a Policy in the Amazon Simple Storage
Service Developer Guide.

• Trust policy—Identifies who can assume the role. In this case, it is the AWS Lambda service principal
as shown:

Important
The user who is creating the IAM role is passing permission to AWS Lambda to assume this
role. This requires the user to have permission for the iam:PassRole action to be able to
grant this permission. If an administrator user is creating this role, the user has full permissions
including the iam:PassRole.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

For more information about IAM roles, go to Roles (Delegation and Federation) in IAM User Guide.

Invocation Permissions
The entity invoking your Lambda function must have permission to do so.

• In the pull model, AWS Lambda invokes your Lambda function but it needs to read your event sources
(such as a Kinesis stream or a DynamoDB stream). Therefore you will need to grant AWS Lambda
permission to read from the stream.You do this by updating the execution role associated with your
Lambda function.

• In the push model, the event source (such as Amazon S3 or a user-defined application) invokes your
Lambda function by publishing events.You grant these event sources permission to invoke your Lambda
function by updating the access policy associated with your Lambda function. AWS Lambda provides
the AddPermission API for this purpose. For more information, see AddPermission (p. 153).

Note
If the user-defined application and the Lambda function it invokes belong to the same AWS
account, you don't need to grant explicit permissions.

The following are two example policies:

9

AWS Lambda Developer Guide
Invocation Permissions

http://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html

• Grant Amazon S3 permission to invoke your Lambda function—The following example policy grants
Amazon S3 Principal permission for the lambda:InvokeFunction action provided that the event
source is examplebucket bucket and the bucket is owned by a specific AWS account.

{
 "Statement":{
 "StatementId":"Id-1",
 "Action":"lambda:InvokeFunction",
 "Principal":"s3.amazonaws.com",
 "SourceArn":"arn:aws:s3:::examplebucket",
 "SourceAccount":"account-id"
 }
}

• Grant Amazon API Gateway permission to invoke your Lambda function—The following example policy
grants Amazon API Gateway Principal permission for the lambda:InvokeFunction action provided
that the request is coming from your Amazon API Gateway API resource action.

{
 "Statement":{
 "StatementId":"Id-1",
 "Action":"lambda:InvokeFunction",
 "Principal":"apigateway.amazonaws.com",
 "SourceArn":" arn:aws:execute-api:aws-region:ac
count_id:api_id/stage/method/api_specific_resource_path",
 "SourceAccount":"account-id"
 }
}

• Grant cross-account permission to a user application created by some other AWS account—To grant
cross-account permission to another AWS account, you specify Principal as shown:

"Principal": "account-id"

For more information, see Principal in IAM User Guide.

Related Topics
AWS Lambda: How it Works (p. 3)

Resource Model
In the AWS Lambda resource model, you choose the amount of memory you want allocated for your
function. AWS Lambda then allocates CPU power proportional to the memory by using the same ratio
as a general purpose Amazon EC2 instance type, such as an M3 type. For example, if you allocate 256
MB to your Lambda function, it will receive twice the CPU share than if you had allocated 128 MB.You
can request additional memory in 64 MB increments up to 1536 MB. For a full list of AWS Lambda limits,
see AWS Lambda Limits (p. 146).

10

AWS Lambda Developer Guide
Related Topics

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html#Principal

Next Step
Set Up an AWS Account and Create an Administrator User (p. 12)

Supported Versions
The AWS Lambda runtime supports the following versions:

VersionItem

AMI Id: ami-e7527ed7 in the US West (Oregon) region.

For information about using an AMI, see Amazon Machine Images
(AMI) in the Amazon EC2 User Guide for Linux Instances.

Public Amazon Linux AMI ver-
sion

3.14.44-32.39.amzn1.x86_64Linux kernel version

v0.10.36Node.js

Installed with default settings. For versioning information, go to im-
agemagick nodejs wrapper and ImageMagick native binary (search
for "ImageMagick").

ImageMagick

AWS SDK for JavaScript version 2.1.35AWS SDK for JavaScript version

Next Step
Set Up an AWS Account and Create an Administrator User (p. 12)

11

AWS Lambda Developer Guide
Next Step

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://www.npmjs.org/package/imagemagick
https://www.npmjs.org/package/imagemagick
http://aws.amazon.com/amazon-linux-ami/2014.09-packages/
http://docs.aws.amazon.com/AWSJavaScriptSDK/guide/

Set Up an AWS Account and Create
an Administrator User

Before you use AWS Lambda for the first time, complete the following tasks:

1. Sign up for AWS (p. 12)

2. Create an IAM User (p. 12)

Sign up for AWS
When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for
all services in AWS, including AWS Lambda.You are charged only for the services that you use.

With AWS Lambda, you pay only for the resources you use. For more information about Amazon Lambda
usage rates, see the AWS Lambda product page. If you are a new AWS customer, you can get started
with AWS Lambda for free; for more information, see AWS Free Usage Tier.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open http://aws.amazon.com/, and then click Sign Up.

2. Follow the on-screen instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

Note your AWS account ID, because you'll need it for the next task.

Create an IAM User
Services in AWS, such as AWS Lambda, require that you provide credentials when you access them, so
that the service can determine whether you have permission to access its resources.The console requires

12

AWS Lambda Developer Guide
Sign up for AWS

http://aws.amazon.com/lambda
http://aws.amazon.com/free/
http://aws.amazon.com/

your password.You can create access keys for your AWS account to access the command line interface
or API. However, we don't recommend that you access AWS using the credentials for your AWS account;
we recommend that you use AWS Identity and Access Management (IAM) instead. Create an IAM user,
and then add the user to an IAM group with administrative permissions or and grant this user administrative
permissions.You can then access AWS using a special URL and the credentials for the IAM user.

If you signed up for AWS but have not created an IAM user for yourself, you can create one using the
IAM console.

The getting started and walkthrough exercises in this guide assume you have a user ("adminuser") with
administrator privileges. So when you follow the procedure, create a user with name "adminuser".

To create the Administrators group

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, click Groups, and then click Create New Group.

3. In the Group Name box, type Administrators, and then click Next Step.

4. In the list of policies, select the check box next to the AdministratorAccess policy.You can use the
Filter menu and the Search box to filter the list of policies.

5. Click Next Step, and then click Create Group.

Your new group is listed under Group Name.

To create an IAM user for yourself, add the user to the Administrators group, and create
a password for the user

1. In the navigation pane, click Users, and then click Create New Users.

2. In box 1, type a user name. Clear the check box next to Generate an access key for each user.
Then click Create.

3. In the list of users, click the name (not the check box) of the user you just created.You can use the
Search box to search for the user name.

4. In the Groups section, click Add User to Groups.

5. Select the check box next to the Administrators group. Then click Add to Groups.

6. Scroll down to the Security Credentials section. Under Sign-In Credentials, click Manage Password.

7. Select Assign a custom password.Then type a password in the Password and Confirm Password
boxes. When you are finished, click Apply.

To sign in as this new IAM user, do the following:

1. Sign out of the AWS Management Console.

2. Use the following URL

https://aws_account_number.signin.aws.amazon.com/console/

The aws_account_number is your AWS account ID without hyphen. For example, if your AWS account
ID is 1234-5678-9012, your AWS account number is 123456789012.

For information about finding your account number, go to Your AWS Account ID and Its Alias in the
IAM User Guide.

3. Enter the IAM user name and password that you just created. When you're signed in, the navigation
bar displays "your_user_name @ your_aws_account_id".

13

AWS Lambda Developer Guide
Create an IAM User

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/AccountAlias.html

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an account
alias.

To create or remove an account alias

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. On the navigation pane, select Dashboard.

3. Find the IAM users sign-in link.

4. To create the alias, click Customize, enter the name you want to use for your alias, and then click
Yes, Create.

5. To remove the alias, click Customize, and then click Yes, Delete. The sign-in URL reverts to using
your AWS account ID.

To sign in after you create an account alias, use the following URL:

https://your_account_alias.signin.aws.amazon.com/console/

To verify the sign-in link for IAM users for your account, open the IAM console and check under IAM
users sign-in link: on the dashboard.

For more information about IAM, see the following:

• Identity and Access Management (IAM)

• IAM Getting Started Guide

• IAM User Guide

Next Step
Getting Started: Authoring AWS Lambda Code in Node.js (p. 15)

14

AWS Lambda Developer Guide
Next Step

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://aws.amazon.com/iam
http://docs.aws.amazon.com/IAM/latest/GettingStartedGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Authoring Lambda Functions in
Node.js

This section explains how to author your Lambda functions in Node.js. We recommend you first review
the AWS Lambda: How it Works (p. 3) section and make sure you are familiar with core AWS Lambda
concepts such as function, event source, event source mapping, Lambda permission model, and resource
model.You can then review the topics in this section for information specific to creating Lambda functions
in Node.js.

Topics

• Getting Started: Authoring AWS Lambda Code in Node.js (p. 15)

• Creating Deployment Package (Node.js) (p. 31)

• Programming Model (Node.js) (p. 32)

• AWS Lambda Walkthroughs (Node.js) (p. 35)

Getting Started: Authoring AWS Lambda Code
in Node.js

The Getting Started section provide exercises using the AWS Lambda console. Before you explore the
Getting Started exercises, we recommend you read introductory information including the core components
of AWS Lambda, the programming model, and the permissions model. For more information, see AWS
Lambda: How it Works (p. 3). Then, you can review the following three Getting Started exercises.

Getting Started 1: Invoking Lambda Functions from User Applications Using the AWS Lambda Console
(Node.js) (p. 16)

Getting Started 2: Handling Amazon S3 Events Using the AWS Lambda Console (Node.js) (p. 19)

Getting Started 3: Handling Amazon Kinesis Events Using the AWS Lambda Console (Node.js) (p. 23)

The AWS Lambda console provides a set of blueprints that you can use to easily create Lambda functions
and test them. The getting started exercises use these blueprints.

15

AWS Lambda Developer Guide
Getting Started (Node.js)

Note that the console does many things for you as you create and configure Lambda functions. To help
you understand the AWS Lambda API, the documentation also provides AWS CLI–based walkthroughs.
For more information, see AWS Lambda Walkthroughs (Node.js) (p. 35).

Preparing for the Getting Started
First, you need to sign up for an AWS account and create an administrator user in your account. For
instructions, see Set Up an AWS Account and Create an Administrator User (p. 12).

Important
AWS Identity and Access Management recommends that you do not use the root credentials of
your AWS account to make requests. Instead, create an IAM user (called adminuser), grant that
user full access, and then use that user's credentials to interact with AWS. We refer to this user
as an administrator user. For more information, go to Root Account Credentials vs. IAM User
Credentials in the AWS General Reference and IAM Best Practices in Using IAM.

Getting Started 1: Invoking Lambda Functions
from User Applications Using the AWS Lambda
Console (Node.js)
Topics

• Step 1: Create a Lambda Function (p. 17)

• Step 2: Invoke the Lambda Function Manually (p. 19)

• Next Step (p. 19)

One of the use cases for using AWS Lambda is to process events generated by a user application. For
demonstration purposes, you don't need to write a user application that will invoke your Lambda function.
Instead, in this Getting Started exercise, you will use sample event data and invoke your Lambda function
manually.

Note
This is an example of the AWS Lambda request-response model in which a user application
invokes a Lambda function and receives a response in real time. For more information, see AWS
Lambda: How it Works (p. 3).

You will do this exercise using the AWS Lambda console.You will use the console provided "hello-world"
blueprint and event data.

• The "hello-world" blueprint assumes application generating event data of this form:

{
 "key1": "value1",
 "key2": "value2",
 "key3": "value3"
}

• Accordingly, the blueprint provides the following Node.js example code to process these events.You
will use this sample code to create your Lambda function.

console.log('Loading function');

exports.handler = function(event, context) {

16

AWS Lambda Developer Guide
Preparing for the Getting Started

http://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
http://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPractices.html

 console.log('value1 =', event.key1);
 console.log('value2 =', event.key2);
 console.log('value3 =', event.key3);
 context.succeed(event.key1); // Echo back the first key value
 // context.fail('Something went wrong');
};

In the code, the handler receives the event as the first parameter. and processes the event, for
illustration it simply writes the incoming event data to CloudWatch logs, each console.log()
statements generate log events in CloudWatch.

Step 1: Create a Lambda Function
Follow the steps to create a Lambda function.

1. Sign in to the AWS Management Console and open the AWS Lambda console.

2. Choose Get Started Now.

Note
The console shows the Get Started Now page only if you do not have any Lambda functions
created. If you have created functions already, you will see the Lambda > Functions page.
On the list page, choose Create a Lambda function to go to the Lambda > New function
page.

3. On the Step 1: Select blueprint page, select the "Hello-world" blueprint.

4. On the Step 2: Configure function page, do the following:

a. In the Configure function section, enter the function name HelloWorld in the Name box.

b. In the Lambda Function Code section, do the following:

• Provide code for the Lambda function that you are creating.

• Specify the IAM execution role that AWS Lambda can assume when it executes the function
on your behalf. For more information, see Execution Permissions (p. 8).The example Lambda
function only writes logs to Amazon CloudWatch. In this case, use the Basic execution role
template that grants permissions for CloudWatch actions.

i. Select Node.js from the Runtime list.

ii. Choose Edit code inline. Review the code.You will upload this code as your Lambda
function.

iii. Note the value in the Handler box matches the exports.handler in the code.

17

AWS Lambda Developer Guide
Getting Started 1: Invoking Lambda Functions from User

Applications (Node.js)

When you create a Lambda function you must specify the handler in your code that will
receive the events and process them. In the console you specify the handler in the Handler
box. For more information, see Programming Model (Node.js) (p. 32).

iv. From the Role list, choose Basic Execution Role in the Create New Role section (you
might need to enable pop-ups to see the role selector list).

When you create a Lambda function, you must specify an IAM role that AWS Lambda can
assume to execute your Lambda function on your behalf. The role must have permissions
for the AWS action that your Lambda function will need.The Lambda function in this example
only writes logs to CloudWatch Logs. So the following predefined access policy associated
with the basic execution role is sufficient for the Lambda function you are creating.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:*"
],
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

On the AWS Lambda requires access to your resource page, do the following:

A. Choose Create a new IAM Role from the IAM Role list.

B. For Role Name, enter a role name. For example, type lambda_basic_execution
for the execution role that you need to create for the first Getting Started exercise.

C. Choose View Policy Document to review the access policy.

D. Choose Allow.

The browser tab will close, and the new role name appears on the Lambda: New
Function page.

c. In the Advanced settings section, leave the default Lambda function configuration values. The
memory and timeout values are sufficient for the Lambda function you are creating.

d. Choose Create Function to create a Lambda function.

The console saves the code into a file and then zips the file, which is the deployment package.
The console then uploads the deployment packages to AWS Lambda creating your Lambda
function. The console shows the HelloWorld Lambda function, you can now perform various
action including test the function:

18

AWS Lambda Developer Guide
Getting Started 1: Invoking Lambda Functions from User

Applications (Node.js)

Step 2: Invoke the Lambda Function Manually
Follow the steps to invoke your Lambda function using console-provided sample event data.

1. In the > Functions > HelloWorld page, click Test with to select sample event data that you want
to pass to the Lambda function.

2. In the Input sample event page, select the "Hello World" from the Sample event list and click
Submit.

You can change key and values in the sample JSON but don't change the event structure.

3. AWS Lambda executes your function on your behalf (by assuming the execution role you had specified
at the time of creating the function). The handler in your Lambda function receives the sample event
and processes it.

4. View results in the console. Note the following:

• The Execution result section shows the object passed to the context.succeed() method in
your code.

• The Summary section shows the REPORT line in the execution log.

• The Execution log section shows the log AWS Lambda generates for each execution.

Note that the Click here link shows logs in the CloudWatch console. The function then adds logs to
Amazon CloudWatch, to the log group that corresponds to the Lambda function.

Next Step
Getting Started 2: Handling Amazon S3 Events Using the AWS Lambda Console (Node.js) (p. 19)

Getting Started 2: Handling Amazon S3 Events
Using the AWS Lambda Console (Node.js)
In this Getting Started exercise, you create a Lambda function to consume events published by Amazon
S3.

19

AWS Lambda Developer Guide
Getting Started 2: Handling Amazon S3 Events (Node.js)

Amazon S3 notification feature enables you to configure notification on a bucket and request Amazon
S3 to publish object-created events to AWS Lambda by invoking your Lambda function. AWS Lambda
executes the function by passing the event data to the handler in your Lambda function. The handler
then processes the event. For illustration, in this example the handler logs some of the event information
to Amazon CloudWatch.

Note
This is an example of the "push" model where Amazon S3 invokes the Lambda function and
then AWS Lambda executes it. For more information about the "push" model, see AWS Lambda:
How it Works (p. 3).

You will perform tasks in this exercise in two steps:

• Create a Lambda function and manually invoke it using a sample Amazon S3 event.

• Add the event source.This is where you configure your Lambda function to respond to events published
by Amazon S3.

In a "push" model, event source mapping is managed by the individual service. In this example, you
add notification configuration to your Amazon S3 bucket to request Amazon S3 to publish events to
AWS Lambda by invoking your Lambda function.

Important
Both the Lambda function and the Amazon S3 bucket must be in the same AWS region. This
exercise assumes the us-west-2 region.

Next Step
Step 1: Create a Lambda Function and Invoke it Manually Using the Console (Node.js) (p. 20)

Step 1: Create a Lambda Function and Invoke it Manually
Using the Console (Node.js)
In this exercise, you will use the AWS Lambda console.You will use the s3-get-object blueprint and
event data provided in the console.

• The blueprint provides a sample Amazon S3 object-created event to test your function. The event
includes information such as bucket name, object key, and the size of the object as shown in the
following.

{
 "Records": [
 {
 ...
 },
 "s3": {
 ...
 "bucket": {
 "name": "sourcebucket",
 ...
 "arn": "arn:aws:s3:::sourcebucket"
 },
 "object": {
 "key": "object keyname",
 "size": 1024,
 ...
 }

20

AWS Lambda Developer Guide
Getting Started 2: Handling Amazon S3 Events (Node.js)

 }
 }
]
}

• The blueprint provides the following Node.js example code to process Amazon S3 events.You will use
this sample code to create your Lambda function.

In the code, the handler receives the event as the first parameter. The handler then processes the
event, for illustration it simply writes the incoming event data to Amazon CloudWatch Logs, each
console.log() statement generates log events in CloudWatch.

console.log('Loading function');
var aws = require('aws-sdk');
var s3 = new aws.S3({apiVersion: '2006-03-01'});

exports.handler = function(event, context) {
 console.log('Received event:', JSON.stringify(event, null, 2));
 // Get the object from the event and show its content type
 var bucket = event.Records[0].s3.bucket.name;
 var key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g,
 " ")) ;
 s3.getObject({Bucket: bucket, Key: key}, function(err, data) {
 if (err) {
 console.log("Error getting object " + key + " from bucket " +
bucket +
 ". Make sure they exist and your bucket is in the same region
 as this function.");
 context.fail ("Error getting file: " + err)
 } else {
 console.log('CONTENT TYPE:', data.ContentType);
 context.succeed();
 }
 });
};

Step 1.1: Create a Lambda Function

Follow the procedure in the Getting Started 1 exercise to create a Lambda function using the following
values:

• In Step 1: Select blueprint, choose the s3-get-object blueprint.

• In Step 2: Configure event sources, click Skip.

In this exercise you create a Lambda function first and then test it using sample event data, so you
don't have to configure an Amazon S3 bucket at this time.You will do that in the next section.

• In Step 3: Configure function, specify the following values:

• For the IAM Role, create a role by choosing the S3 execution role from the list.

This role template has predefined access policy that grants sufficient permissions for AWS actions
that your Lambda function needs.You create a new IAM role and assign a name (for example,
lambda_s3_exec_role) as the execution role.

21

AWS Lambda Developer Guide
Getting Started 2: Handling Amazon S3 Events (Node.js)

• In the Advanced settings section, increase the Timeout (s) to 5 seconds to avoid any timeout
issues, and increase Memory (MB) to 512 MB. The amount of memory and timeout is configurable
and depends on the size of objects you are creating in your bucket.

For instructions, see Step 1: Create a Lambda Function (p. 17).

Step 1.2: Invoke the Lambda Function Manually

Now you can manually invoke your Lambda function using a sample Amazon S3 event provided by the
console.

1. Write down your Amazon S3 bucket name and object key name.

Although this manual test Amazon S3 does not publish any events, you still need an existing bucket
name and object key name to use in the sample event data provided by the console. When your
Lambda function executes, it retrieves the object and then logs its content type.

2. Follow the instructions in the Getting Started 1 exercise to test the Lambda function. For instructions,
see Step 2: Invoke the Lambda Function Manually (p. 19). Note the following:

• On the Input sample event page, you need to select the S3 Put event from the Sample event
list. This provides you with a sample Amazon S3 event to test your Lambda function.

• Remember to update the sample event by providing your bucket name and object key name so
that your Lambda function can download the object.

Next Step

Step 2: Configure Amazon S3 as the Event Source Using the Console (Node.js) (p. 22)

Step 2: Configure Amazon S3 as the Event Source Using the
Console (Node.js)
In the preceding section you tested your Lambda function by using sample event data and manually
invoking it. In this section, you configure your Lambda function to respond to object-created events
published by Amazon S3.You will do this by adding an event source to your Lambda function using the
Lambda console. The console does the following:

• In AWS Lambda: Grants Amazon S3 permission to invoke the Lambda function by adding a permission
in the access policy associated with the Lambda function.

• In Amazon S3: Adds notification configuration on the specific Amazon S3 bucket requesting Amazon
S3 to invoke Lambda function when an object is created.

For more information about Amazon S3 notification feature, see Configuring Notifications for Amazon
S3 Events in the Amazon Simple Storage Service Developer Guide.

Step 2.1: Add Amazon S3 as the Event Source

Follow the steps in this section to configure your Lambda function to respond to Amazon S3 object-created
events. First, you create a bucket in Amazon S3.

1. In the Amazon S3 console, create a bucket.

In the next step, you will add notification configuration to this bucket.

22

AWS Lambda Developer Guide
Getting Started 2: Handling Amazon S3 Events (Node.js)

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

Important
The bucket must be in the same region where you created your Lambda function.

For instructions, see Create a Bucket in the Amazon Simple Storage Service Getting Started Guide.

2. In the AWS Lambda console, select the Lambda function.

a. On the Lambda> Functions > function-name page, choose the Event sources tab.

b. On the Event Sources tab, choose Add event source.

c. On the Add event source page, select your bucket from the Bucket list, and choose Object
created from the Event type list, and then choose Submit.

This completes the setup.

Step 2.2:Test the Setup

To test the end-to-end setup, do the following:

1. Upload an object to the Amazon S3 bucket.

Amazon S3 detects the object-created event, and publishes the event by invoking your Lambda
function.

Then, AWS Lambda executes your function by passing the Amazon S3 event to the Lambda function
handler. The handler processes the event and writes some of the event information as logs to
Amazon CloudWatch Logs.

2. You can verify your logs by using the following steps:

a. Review function logs in the AWS Lambda console. To see specific function logs, choose the
Monitoring tab.

b. You can click the logs links to open and review the logs in the CloudWatch console.

Step 2.3: Cleanup

If you don't need the resources you created, you can remove them.

• Remove your Amazon S3 bucket using the Amazon S3 console.

• Remove the Lambda function using the AWS Lambda console.

• Remove IAM roles using the IAM console.

Related Topics

In this exercise, you used the AWS Lambda console for the setup. This guide also provides a follow-up
walkthrough in which you perform all these steps using the AWS Command Line Interface (CLI). For
more information, see AWS Lambda Walkthrough 2: Handling Amazon S3 Events Using the AWS CLI
(Node.js) (p. 43).

Getting Started 3: Handling Amazon Kinesis
Events Using the AWS Lambda Console (Node.js)
In this exercise, you create a Lambda function to consume events from an Amazon Kinesis stream.

23

AWS Lambda Developer Guide
Getting Started 3: Handling Amazon Kinesis Events

(Node.js)

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Note
This is an example of the "pull" model where AWS Lambda polls the Amazon Kinesis stream
and invokes your Lambda function when it detects new data on the stream. For more information,
see AWS Lambda: How it Works (p. 3).

In this case, AWS Lambda both invokes and executes the Lambda function. The handler in your Lambda
function gets the event data as parameter. It then processes the event, for illustration, logs some of the
event information to Amazon CloudWatch.

• You will perform tasks in this exercise in two steps:

• Create a Lambda function and manually invoke it using sample Amazon Kinesis event.

• Add an event source. This is where you configure your Lambda function to respond to your Amazon
Kinesis stream events.

In a "pull" model, AWS Lambda manages the event source mappings. In this example, you will create
event source mapping in AWS Lambda. Each of these event source mapping in AWS Lambda stores
information such as an Amazon Kinesis stream ARN that is the event source and Lambda function
to invoke when AWS Lambda detects events on the stream.

Important
Both the Lambda function and the Amazon Kinesis stream must be in the same AWS region.
This exercise assumes the us-west-2 region.

Next Step
Step 1: Create a Lambda Function and Invoke It Manually Using the Console (Node.js) (p. 24)

Step 1: Create a Lambda Function and Invoke It Manually
Using the Console (Node.js)
In this exercise, you will use the AWS Lambda console.You will use the kinesis-process-record blueprint
and event data provided in the console.

• The blueprint provides the following sample Amazon Kinesis event to test your function.

{
 "Records": [
 {
 "kinesis": {
 "partitionKey": "partitionKey-3",
 "kinesisSchemaVersion": "1.0",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0IDEyMy4=",
 "sequenceNumber": "value"
 },
 "eventSource": "aws:kinesis",
 "eventID": "shardId-id",
 "invokeIdentityArn": "arn:aws:iam::account-id:role/testLEBRole",
 "eventVersion": "1.0",
 "eventName": "aws:kinesis:record",
 "eventSourceARN": "arn:aws:kinesis:us-east-1:account-id:stream/ex
amplestream",
 "awsRegion": "us-east-1"
 }
]
}

24

AWS Lambda Developer Guide
Getting Started 3: Handling Amazon Kinesis Events

(Node.js)

• The blueprint provides the following Node.js example code to process Amazon Kinesis events.You
will use this sample code to create your Lambda function.

In the code, the handler receives the event as the first parameter. The handler then processes the
event, for illustration it simply writes payload (data on the stream) to Amazon CloudWatch Logs, each
console.log() statement generates log events in CloudWatch.

console.log('Loading function');

exports.handler = function(event, context) {
 console.log('Received event:', JSON.stringify(event, null, 2));
 event.Records.forEach(function(record) {
 // Kinesis data is base64 encoded so decode here
 payload = new Buffer(record.kinesis.data, 'base64').toString('ascii');

 console.log('Decoded payload:', payload);
 });
 context.succeed("Successfully processed " + event.Records.length + " re
cords.");
};;

Step 1.1: Create a Lambda Function to Process Amazon Kinesis Stream
Events

Follow the procedure in the Getting Started 1 exercise to create a Lambda function using the following
values:

• In Step 1: Select blueprint, choose the kinesis-process-record blueprint.

• In Step 2: Configure event sources, click Skip.

In this exercise you create a Lambda function first, and then test it using sample event data, so you
don't have to configure an Amazon Kinesis stream as the event source at this time.You will do that in
the next section.

• In Step 3: Configure function, specify the following values:

• For the IAM Role, create a role by choosing the Kinesis execution role from the list.

This role template has predefined access policy that grants sufficient permissions for AWS actions
that your Lambda function needs.You create a new IAM role and assign a name (for example,
lambda_kinesis_role) as the execution role.

For instructions, see Step 1: Create a Lambda Function (p. 17).

Step 1.2: Invoke the Lambda Function Manually

Now you can manually invoke your Lambda function using a sample Amazon Kinesis event provided by
console. Follow the Getting Started 1 exercise for instructions to test the Lambda function. For instructions,
see Step 2: Invoke the Lambda Function Manually (p. 19). Note the following:

• On the Input sample event page, you need to select the Kinesis event from the Sample event list.
This provides you with a sample Amazon Kinesis event to test your Lambda function.

Next Step

Step 2: Configure an Amazon Kinesis Stream as the Event Source Using the Console (Node.js) (p. 26)

25

AWS Lambda Developer Guide
Getting Started 3: Handling Amazon Kinesis Events

(Node.js)

Step 2: Configure an Amazon Kinesis Stream as the Event
Source Using the Console (Node.js)
In the preceding section you tested your Lambda function by using a sample Amazon Kinesis event and
manually invoking it. In this section, you configure your Lambda function to respond to Amazon Kinesis
stream events.You will do this by adding an event source to your Lambda function using the Lambda
console.The console creates an event source mapping in AWS Lambda that stores information including,
the Amazon Kinesis stream that AWS Lambda needs to poll for events, the Lambda function to invoke
when events are detected on the stream.

Step 2.1: Add an Amazon Kinesis Stream as the Event Source

First, you create an Amazon Kinesis stream using the Amazon Kinesis console.Then, you add the stream
as the event source for your Lambda function using the AWS Lambda console.

1. Create a stream in the Amazon Kinesis console and set the number of shards to 1.

2. Add an event source in the AWS Lambda.

a. In the AWS Lambda console, select the Lambda function.

b. On the Lambda> Functions > function-name page, choose the Event sources tab.

c. On the Event Sources tab, choose Add event source.

d. On the Add event source page, choose Kinesis from the Event source type list, choose
stream from the Kinesis stream list, set Batch size to 2, and choose Submit.

This completes the setup.

Step 2.2:Test the Setup

To test the end-to-end experience, you need to upload sample records using the AWS CLI (you cannot
use the console to add sample records to the stream). Using the following AWS CLI command, add event
records to your Amazon Kinesis stream. The --data value is a base64-encoded value of the "Hello,
this is a test." string .

aws kinesis put-record \
--stream-name examplestream \
--data "Hello, this is a test" \
--partition-key shardId-000000000000 \
--region aws-region, for example us-west-2 \
--profile adminuser

26

AWS Lambda Developer Guide
Getting Started 3: Handling Amazon Kinesis Events

(Node.js)

For example walkthroughs that use AWS CLI for setting up and testing, see Step 1: Prepare for the
Walkthrough (p. 36).

You can run the same command more than once to add multiple records to the stream. The following
things happen:

• AWS Lambda polls the stream.When it detects updates on the stream, it invokes your Lambda function.

• AWS Lambda then executes your Lambda function by passing the event to the handler in your Lambda
function.

The handler processes the event and writes some of the event information as logs to Amazon
CloudWatch Logs.

You can review the logs in the AWS Lambda console. To see specific function logs, choose Monitoring
tab.You can click the logs links to open and review the logs in the CloudWatch console.

Step 2.3: Cleanup

If you don't need the resources you created, you can remove them.

• Remove the Amazon Kinesis stream.

• Remove the Lambda function using the AWS Lambda console.

• Remove the IAM role using the IAM console.

Related Topics

In this exercise, you completed the setup using the console. This guide also provides a follow-up
walkthrough in which you perform all these steps using the AWS Command Line Interface (CLI). For
more information, see AWS Lambda Walkthrough 4: Processing Events from an Amazon Kinesis Stream
Using the AWS CLI (Node.js) (p. 60).

Getting Started 4: Creating an HTTP
Endpoint-Enabled Lambda Function (AWS Lambda
Integration with Amazon API Gateway)
This exercise shows you how to create an HTTP endpoint-enabled Lambda function.

Scenario
In this exercise, you will create a Lambda function using the following Node.js code example.The Lambda
function supports various DynamoDB table operations such as create an item, update an item, and delete
an item. For easy testing, it also supports the echo operation, which simply echos the incoming event.

console.log('Loading function');

var doc = require('dynamodb-doc');
var dynamo = new doc.DynamoDB();

exports.handler = function(event, context) {
 //console.log('Received event:', JSON.stringify(event, null, 2));

 var operation = event.operation;

27

AWS Lambda Developer Guide
Getting Started 4: Creating an HTTP Endpoint-Enabled

Lambda Function

 delete event.operation;

 switch (operation) {
 case 'create':
 dynamo.putItem(event, context.done);
 break;
 case 'read':
 dynamo.getItem(event, context.done);
 break;
 case 'update':
 dynamo.updateItem(event, context.done);
 break;
 case 'delete':
 dynamo.deleteItem(event, context.done);
 break;
 case 'list':
 dynamo.scan(event, context.done);
 break;
 case 'echo':
 context.succeed(event);
 break;
 case 'ping':
 context.succeed('pong');
 break;
 default:
 context.fail(new Error('Unrecognized operation "' + operation +
'"'));
 }
};

Next, you will configure an HTTP endpoint for the Lambda function using Amazon API Gateway.

Lastly, you will test it by sending an HTTP request to the Lambda function endpoint.You will do this using
the Amazon API Gateway console.You will send a request body with your POST request. Amazon API
Gateway will invoke your Lambda function and AWS Lambda will execute the function on your behalf.
The HTTP POST request body you send is provided to your Lambda function handler as event data.
Then, the handler will process the event.

Implementation Summary
You will create, configure, and test the setup using the AWS Lambda console and the Amazon API
Gateway console as follows:

1. In the AWS Lambda console, you will use the blueprint called microservice-http-endpoint to configure
the Lambda function and configure the HTTP endpoint for that function.

To configure an HTTP endpoint, the blueprint creates an API using Amazon API Gateway, and then
adds the Lambda function as a resource so that you can send an HTTP POST request to the Lambda
function endpoint.

Note that the Lambda console also configures the required permissions as follows:

• Grants the Amazon API Gateway service permission to invoke your Lambda function by adding a
permission in the access policy associated with your Lambda function.

• Creates an IAM role (called an execution role) that grants AWS Lambda permission to assume the
role, so that the AWS Lambda service can execute your Lambda function on your behalf.The access
policy associated with the execution role grants permissions for the DynamoDB actions that your
Lambda function will need to perform.

28

AWS Lambda Developer Guide
Getting Started 4: Creating an HTTP Endpoint-Enabled

Lambda Function

To learn more about invocation and execution permissions, see Permission Model (p. 8).

2. In the Amazon API Gateway console, you will test the setup by sending an HTTP POST request to
the Lambda function endpoint with a sample request body. Amazon API Gateway invokes your Lambda
function, and then AWS Lambda executes your Lambda function on your behalf by passing the request
body as an event parameter to your Lambda function handler. Then, the handler processes the
event.

An easy way to test the endpoint is to send an HTTP POST request with echo as the operation, which
causes the Lambda function to simply echo the incoming event (the results appear in the console). In
addition, the Lambda function also supports DynamoDB table operations, such as create an item,
delete an item, and update an item.You need to make sure you create the table first before you try to
perform these operations.

Important
This exercise assume you are creating AWS resources, your Lambda function, API in the
us-east-1 AWS region.

Next Step
Step 1: Create a Lambda Function and Invoke It Manually Using the Console (Node.js) (p. 29)

Step 1: Create a Lambda Function and Invoke It Manually
Using the Console (Node.js)
You will perform this exercise using the AWS Lambda console.You will use the blueprint called
microservice-http-endpoint and event data provided in the AWS Lambda console.

Step 1.1: Create a Lambda Function

Follow the procedure in Getting Started 1: Invoking Lambda Functions from User Applications Using the
AWS Lambda Console (Node.js) (p. 16) to create a Lambda function using the following values:

• In Step 1: Select blueprint, choose the microservice-http-endpoint blueprint.

• In Step 2: Configure function, specify the following values:

• Enter a function name (for example, ExampleFunctionWithHTTPEndpoint).

• Select Node.js from the Runtime list.

• For the IAM Role, create a role by choosing the Basic with DynamoDB from the list.

This role template has a predefined access policy that grants sufficient permissions for AWS actions
that your Lambda function needs. Create a new IAM role and assign a name (for example,
lambda_dynamo) as the execution role.

• In Step 3: Configure endpoints, specify the following values:

• Leave the default API name as LambdaMicroservice. After the API is created, it will appear in the
Amazon Gateway console.

• Leave the Resource name as it appears in the console. It maps to the name that you specified for
your Lambda function, so do not change this value.

• Choose POST from the Method list.

• Leave the default prod for Deployment stage.

• Choose Open with access key from the Security list.

29

AWS Lambda Developer Guide
Getting Started 4: Creating an HTTP Endpoint-Enabled

Lambda Function

Step 1.2: Invoke the Lambda Function Manually

You can manually invoke the Lambda function in the AWS Lambda console.You will use the following
JSON as a sample event:

{
 "operation": "echo",
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
}

Follow the procedure in the Getting Started 1 exercise to test the Lambda function. For instructions, see
Step 2: Invoke the Lambda Function Manually (p. 19). Note the following:

• On the Input sample event page, choose the Hello World event from the Sample event list, and
replace the sample event with the JSON listed in this step.

Next Step

Step 2: Invoke the Lambda Function Using the HTTP Endpoint (p. 30)

Step 2: Invoke the Lambda Function Using the HTTP
Endpoint
In this section you send an HTTP POST request to your Lambda function endpoint.

1. In this exercise, you will use the following JSON in the request body:

{
 "operation": "echo",
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
}

When the Lambda function executes, the handler gets this JSON as the event parameter and then
it processes the event. For the echo operation, the Lambda function simply echos the incoming
event.

a. In the AWS Lambda console, select the Lambda function.

b. In the API endpoints tab, click the POST method link.

This opens the Amazon API Gateway console, showing the POST method page for your Lambda
function endpoint.

c. Choose Test.

d. Open the Request Body section and provide the following JSON:

{
 "operation": "echo",
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
}

e. Choose Test.

30

AWS Lambda Developer Guide
Getting Started 4: Creating an HTTP Endpoint-Enabled

Lambda Function

Amazon API Gateway invokes your Lambda function. AWS Lambda executes your Lambda
function on your behalf. The Lambda function handler processes the incoming event, which in
this case simply echos the incoming event.You can also verify that the response is same as
what you saw earlier in the Lambda console.

2. (Optional) In this case, you send JSON payload with request for a create operation to create an
item in a DynamoDB table. This will require you to first create a table in DynamoDB and then invoke
the Lambda function.

a. In the DynamoDB console (https://console.aws.amazon.com/dynamodb) create a table (myTable)
with a primary key made of only a hash attribute (id) of string type.

b. Now, send an HTTPS POST request to the Lambda function endpoint using following JSON in
the request body:

{
 "operation": "create",
 "TableName": "myTable",
 "Item": {
 "id": "test"
 }
}

c. After you send the request, the Lambda function executes and creates an item in the table.You
can verify the new item in the DynamoDB console.

Creating Deployment Package (Node.js)
To create a Lambda function you first create a Lambda function deployment package, a .zip file consisting
of your code and any dependencies. At the time you create a Lambda function you provide the .zip file
and other configuration information such as name, description, and run-time requirements like memory
allocation. If you want, you can upload the .zip file first to an Amazon S3 bucket in the same AWS region
where you want to create the Lambda function, and then specify the bucket name and object key name
when you create the Lambda function.

Depending on the resources your custom code uses, you have the following options when creating a
Lambda function:

• Simple scenario—If your custom code requires only the AWS SDK library, then you can use the inline
editor in the AWS Lambda console. Using the console, you can edit and upload your code to AWS
Lambda.The console will zip up your code with the relevant configuration information into a deployment
package that the Lambda service can run.

You can also test your code in the console by manually invoking it using sample event data.

Note
The Lambda service has preinstalled the AWS SDK for Node.js.

• Advanced scenario—If you are writing code that uses other resources, such as a graphics library for
image processing, or you want to use the AWS CLI instead of the console, you need to first create the
Lambda function deployment package, and then use the console or the CLI to upload the package.

31

AWS Lambda Developer Guide
Creating Deployment Package (Node.js)

https://console.aws.amazon.com/dynamodb

Programming Model (Node.js)
Your Lambda function code must be written in a stateless style, and have no affinity with the underlying
compute infrastructure.Your code should expect local file system access, child processes, and similar
artifacts to be limited to the lifetime of the request, and store any persistent state in Amazon S3, Amazon
DynamoDB, or another cloud storage service. Requiring functions to be stateless enables AWS Lambda
to launch as many copies of a function as needed to scale to the incoming rate of events and requests.
These functions may not always run on the same compute instance from request to request, and a given
instance of your Lambda function may be used more than once by AWS Lambda.

The following example skeleton code shows the format in which you write your custom Node.js code:

exports.handler_name = function(event, context) {
 console.log("value1 = " + event.key1);
 console.log("value2 = " + event.key2);
 ...
 context.succeed("some message");
}

In the code:

• handler_name – The handler parameter name you provided when you create a Lambda function
(see CreateFunction). This tells Lambda which Node.js function to call.

• The event parameter – Lambda passes event data to the function via this parameter. The structure
of event data depends on the event source. For example, if Amazon S3 is the event source, the event
data will provide, among other things, bucket name and object key. For more information about Amazon
S3's event data structure, go to Event Message Structure in the Amazon Simple Storage Service
Developer Guide.

• The context parameter – See the following section.

The context Object: Methods and Properties
You interact with AWS Lambda execution environment via the context parameter. The context object
allows you to specify when the function and any callbacks have completed execution. It also allows you
to access useful information available within the Lambda execution environment. For example, you can
use the context parameter to determine the CloudWatch log stream associated with the function, or
use the clientContext property of the context object to learn more about the application calling the
Lambda function (when invoked through the AWS Mobile SDK).

You can use the Context object methods as follows:

context.succeed() method
Indicates the Lambda function execution and all callbacks completed successfully. Here's the general
syntax:

context.succeed (Object result);

where

Object result – provides the result of the function execution. The result provided must be
JSON.stringify compatible.This parameter is optional.You can call this method without any parameters

32

AWS Lambda Developer Guide
Programming Model (Node.js)

http://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html

(succeed()) or pass a null value (succeed(null)). If AWS Lambda fails to stringify or encounters another
error, an unhandled error is thrown, with the X-Amz-Function-Error response header set to Unhandled.

The method behavior depends on the invocation type specified when the Lambda function is invoked
(see Invoke (p. 178)).

• If the Lambda function is invoked using the Event invocation type, this succeed method returns HTTP
status 202, request accepted.

• If the Lambda function is invoked using the RequestResponse invocation type, this succeed method
will return HTTP status 200 (OK) and set the response body to the string representation of result.

context.fail() method
Indicates the Lambda function execution and all callbacks completed unsuccessfully, resulting in a handled
exception. Here's the general syntax:

context.fail (Error error);

where

Error error – provides the result of the Lambda function execution.

The parameter is optional.You can call this method without the parameter or pass null as a parameter
value. Non-null error values will populate the response body.

The fail method will set the response body to the string representation of error and also write to logs.

If AWS Lambda fails to stringify or encounters another error, an unhandled error, with the
X-Amz-Function-Error header set to Unhandled.

Note
For the error from the context.done(error, null) and context.fail(error), Lambda
will log the first 256 KB of the error object. In case of a larger error object, it will be truncated
and logged, and the customers should see the text - Truncated by Lambda next to their
error object.

context.done() method
Causes the Lambda function execution to terminate.This method complements the context.succeed()
and context.fail() methods by allowing the use of the "error first" callback design pattern. It provides
no additional functionality.

Here's the general syntax:

context.done (Error error, Object result);

where

Error error – provides an error representing the results of the failed Lambda function execution.

Object result – provides the result of a successful function execution. The result provided must be
JSON.stringify compatible. If an error is provided, this parameter is expected to be null.

Both the parameters are optional.You can call this method without any parameters or pass null as a
parameter value.

33

AWS Lambda Developer Guide
The context Object: Methods and Properties

AWS Lambda treats any non-null value for the error parameter as a managed exception.

The function behavior depends on the invocation type specified when the Lambda function is invoked
(see Invoke (p. 178)).

• If the Lambda function was invoked using the Event or the RequestResponse invocation type, this
done method automatically logs the string representation of non-null values of error to the Amazon
CloudWatch Logs stream associated with the Lambda function.

• If the Lambda function was invoked using the RequestResponse invocation type, the done method
will do the following:

• If the error is null, set the response body to the string representation of result, similar to the
context.fail().

• If the error is not null, set the response body to error.

• If the function is called with a single argument of type error, the error value will be populated in the
response body.

Note
For the error from the context.done(error, null) and context.fail(error), Lambda
will log the first 256 KB of the error object, and in case of a larger error object, it will be truncated
and logged and the customers should see the text - Truncated by Lambda next to their error
object.

context.getRemainingTimeInMillis method
Returns the approximate remaining execution time (before timeout occurs) of the Lambda function that
is currently executing. At the time you create your Lambda function you set the timeout and when the
timeout reaches AWS Lambda terminates your Lambda function.You can use this method to check the
remaining time during your function execution and take appropriate corrective action.

Here's the general syntax:

context.getRemainingTimeInMillis ();

context Object Properties
The context object properties are:

• awsRequestId – The request ID for the Lambda function invocation request that is currently being
executed.

• logStreamName – The CloudWatch log stream name associated with the invoked Lambda function.

• clientContext – Information about the client application and device when invoked through the AWS
Mobile SDK. It can be null.

• identity – Information about the Amazon Cognito identity provider when invoked through the AWS
Mobile SDK. It can be null.

• logGroupName–The name of the CloudWatch log group where you can find log output for the function.

• logStreamName–The name of the CloudWatch log stream where you can find log output for the function
execution. The log stream may or may not change for each invocation of the Lambda function.

• functionName–The name of your Lambda function that is being executed.

Related Topics
AWS Lambda: How it Works (p. 3)

34

AWS Lambda Developer Guide
Related Topics

AWS Lambda Walkthroughs (Node.js)
This section contains several AWS CLI–based examples that walk through how to use AWS Lambda.
The walkthroughs show you how to create Lambda functions and invoke them in response to Amazon
S3 event notifications, Amazon DynamoDB table updates, and Amazon Kinesis streams. They also
illustrate how to use Lambda functions with a user application or to develop an Alexa Skill for Amazon
Echo.

Topics

• Walkthrough 1: Handling User Application Events (Node.js) (p. 35)

• Walkthrough 2: Handling Amazon S3 Events (Node.js) (p. 43)

• Walkthrough 3: Handling Amazon DynamoDB Stream Events (Node.js) (p. 53)

• Walkthrough 4: Handling Amazon Kinesis Stream Events (Node.js) (p. 60)

• Walkthrough 5: Handling AWS CloudTrail Events (Node.js) (p. 67)

• Walkthrough 6: Handling Mobile User Application Events (Node.js) (p. 79)

In addition, for an example walkthrough of using AWS Lambda functions with Amazon Echo, go to
Developing an Alexa Skill as a Lambda Function.

AWS Lambda Walkthrough 1: Invoking Lambda
Functions from User Applications Using the AWS
CLI (Node.js)
One of the use cases for using AWS Lambda is to process events generated by a user application. For
demonstration purposes, you don't need to write a user application that will invoke your Lambda function.
Instead, in this walkthrough, you will use sample event data and invoke your Lambda function manually.

When a user application invokes a Lambda function as shown in this walkthrough, it's an example of the
AWS Lambda request-response model in which an application invokes a Lambda function and receives
a response in real time. For more information, see AWS Lambda: How it Works (p. 3).

Note
In this walkthrough, you will use the AWS CLI to create and invoke a Lambda function and
explore other AWS Lambda APIs.

Here's an overview of what you'll be doing:

• Create a Lambda function to process an event it receives as a parameter.You will use the following
example JavaScript code to create your Lambda function.

console.log('Loading function');

exports.handler = function(event, context) {
 console.log('value1 =', event.key1);
 console.log('value2 =', event.key2);
 console.log('value3 =', event.key3);
 context.succeed(event.key1); // Echo back the first key value
 // context.fail('Something went wrong');
};

35

AWS Lambda Developer Guide
Walkthroughs (Node.js)

https://developer.amazon.com/appsandservices/solutions/alexa/alexa-skills-kit/docs/developing-an-alexa-skill-as-a-lambda-function

The function is simple. It processes incoming event data by logging it; these logs are available in
Amazon CloudWatch, and in the request-response model, you can request the log data be returned in
the response.

• Simulate a user application sending an event to your Lambda function by invoking your Lambda function
manually using the following sample event data.

{
 "key1": "value1",
 "key2": "value2",
 "key3": "value3"
}

Note
This example is similar to the getting started example (see Getting Started 1: Invoking Lambda
Functions from User Applications Using the AWS Lambda Console (Node.js) (p. 16)). The
difference is that the Getting Started exercises provide a console-based experience.The console
does many things for you, simplifying your experience. When using the CLI, you get the raw
experience of making the API calls, which can help you familiarize yourself with the AWS Lambda
operations. In addition to creating and invoking a Lambda function, you will explore other Lambda
APIs.

Next Step
Step 1: Prepare for the Walkthrough (p. 36)

Step 1: Prepare for the Walkthrough
You need to set up the AWS CLI to test this walkthrough. The exercise assumes that you are using
administrator user credentials. We refer to the administrator user as adminuser in this walkthrough. For
instructions on creating an administrator user in your AWS account, see Set Up an AWS Account and
Create an Administrator User (p. 12).

Set Up the AWS CLI

Before you can start the example walkthrough, you need to download and configure the AWS Command
Line Interface (CLI).

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS Command
Line Interface User Guide.

• Getting Set Up with the AWS Command Line Interface

• Configuring the AWS Command Line Interface

2. Add a named profile for the administrator user in the CLI config file.You will use this profile when
executing the CLI commands.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

36

AWS Lambda Developer Guide
Walkthrough 1: Handling User Application Events

(Node.js)

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

For a list of available AWS regions, go to Regions and Endpoints in the AWS General Reference.

3. Verify the setup by entering the following commands at the command prompt.

• Try the help command to verify that the AWS CLI is installed on your computer:

aws help

• Try a Lambda command to verify the user can reach AWS Lambda. This command lists Lambda
functions in the account, if any. The AWS CLI uses the adminuser credentials to authenticate
the request.

aws lambda list-functions --profile adminuser

Next Step

Step 2: Create a Lambda Function (p. 37)

Step 2: Create a Lambda Function
In this section, you first do the following:

• Create a deployment package — A deployment package is a .zip file containing your code and any
dependencies. For this walkthrough there are no dependencies, you only have a simple example code.

• Create an IAM role (execution role) — At the time you upload you deployment package to create your
Lambda function, you must specify an IAM role. AWS Lambda uses this role when executing your
function.

You also grant this role the permissions your Lambda function needs. The code in this walkthrough
writes logs to Amazon CloudWatch Logs. So you grant permission for CloudWatch actions. For more
information, see Amazon LambdaWatch Logs.

You will then create a Lambda function ("HelloWorld") using the create-function CLI command. For
more information about the underlying API and related parameters, see CreateFunction (p. 160).

Step 2.1: Create a Lambda Function Deployment Package

Follow the instructions to create an AWS Lambda function deployment package.

1. Open a text editor, and copy the following code.

console.log('Loading function');

exports.handler = function(event, context) {
 console.log('value1 =', event.key1);
 console.log('value2 =', event.key2);
 console.log('value3 =', event.key3);
 context.succeed(event.key1); // Echo back the first key value
 // context.fail('Something went wrong');
};

2. Save the file as helloworld.js.

37

AWS Lambda Developer Guide
Walkthrough 1: Handling User Application Events

(Node.js)

http://docs.aws.amazon.com/general/latest/gr/rande.html
https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#logs:

3. Zip the helloworld.js file as helloworld.zip.

Step 2.2: Create an IAM Role (execution role)

When the Lambda function in this exercise executes, it will need permissions to write logs to Amazon
CloudWatch.You grant these permission by creating an IAM role (also referred as an execution role).
AWS Lambda assumes this role when executing your Lambda function on your behalf. In this section,
you create an IAM role using the following predefined role type and access policy:

• AWS service role of the "AWS Lambda" type. This role grants AWS Lambda permission to assume the
role.

• "AWSLambdaBasicExecutionRole" access policy that you attach to the role.This existing policy grants
permissions that include permissions for Amazon CloudWatch actions that your Lambda function needs.

For more information about IAM roles, go to Creating a Role for an AWS Service in Using IAM.

To create an IAM role (executionrole)

1. Sign in to the AWS Management Console.

2. In the IAM console, create an IAM role, executionrole. As you follow the steps to create a role,
note the following:

• In Select Role Type, click AWS Service Roles, and then select AWS Lambda.

• In Attach Policy, select the policy named AWSLambdaBasicExecutionRole.

For instructions, go to Creating a Role for an AWS Service (AWS Management Console) in IAM User
Guide.

3. Write down the Amazon Resource Name (ARN) of the IAM role.You will need this value when you
create your Lambda function in the next step.

Step 2.3: Create a Lambda Function

Execute the following Lambda CLI create-function command to create a Lambda function.You
provide the deployment package and IAM role ARN as parameters.

$ aws lambda create-function \
--region us-west-2 \
--function-name helloworld \
--zip-file fileb://file-path/helloworld.zip \
--role role-arn \
--handler helloworld.handler \
--runtime nodejs \
--profile adminuser

Note that if you want you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and
then specify the bucket and object name in the preceding command.You will need to replace the
--zip-file parameter by the --code parameter as shown:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

For more information, see CreateFunction (p. 160). AWS Lambda creates the function and returns function
configuration information as shown in the following example:

38

AWS Lambda Developer Guide
Walkthrough 1: Handling User Application Events

(Node.js)

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-creatingrole-service.html

{
 "FunctionName": "helloworld",
 "CodeSize": 351,
 "MemorySize": 128,
 "FunctionArn": "function-arn",
 "Handler": "helloworld.handler",
 "Role": "arn:aws:iam::account-id:role/LambdaExecRole",
 "Timeout": 3,
 "LastModified": "2015-04-07T22:02:58.854+0000",
 "Runtime": "nodejs",
 "Description": ""
}

Next Step

Step 3: Invoke the Lambda Function (p. 39)

Step 3: Invoke the Lambda Function
In this section, you invoke your Lambda function manually using the invoke CLI command.

$ aws lambda invoke \
--invocation-type RequestResponse \
--function-name helloworld \
--region us-west-2 \
--log-type Tail \
--payload '{"key1":"value1", "key2":"value2", "key3":"value3"}' \
--profile adminuser \
outputfile.txt

If you want you can save the payload to a file (say "input.txt") and provide the file name as a parameter.

--payload file://input.txt \

The preceding invoke command specifies "RequestResponse" as the invocation type, which returns a
response immediately in response to the execution.You can alternatively specify "Event" as the invocation
type to invoke the function asynchronously.

By specifying the --log-type parameter, the command also requests the tail end of the log produced
by the function. The log data in the response is base64-encoded as shown in the following example
response:

{
 "LogResult": "base64-encoded-log",
 "StatusCode": 200
}

On Linux and Mac, you can use the base64 command to decode the log.

$ echo base64-encoded-log | base64 --decode

The following is a decoded version of an example log.

39

AWS Lambda Developer Guide
Walkthrough 1: Handling User Application Events

(Node.js)

START RequestId: 16d25499-d89f-11e4-9e64-5d70fce44801
2015-04-01T18:44:12.323Z 16d25499-d89f-11e4-9e64-5d70fce44801 value1 =
value1
2015-04-01T18:44:12.323Z 16d25499-d89f-11e4-9e64-5d70fce44801 value2 =
value2
2015-04-01T18:44:12.323Z 16d25499-d89f-11e4-9e64-5d70fce44801 value3 =
value3
2015-04-01T18:44:12.323Z 16d25499-d89f-11e4-9e64-5d70fce44801 result:
"value1"
END RequestId: 16d25499-d89f-11e4-9e64-5d70fce44801
REPORT RequestId: 16d25499-d89f-11e4-9e64-5d70fce44801
Duration: 13.35 ms Billed Duration: 100 ms Memory Size: 128 MB
Max Memory Used: 9 MB

For more information, see Invoke (p. 178).

Because you invoked the function using the "RequestResponse" invocation type, the function executes
and returns the object you passed to the context.succeed() in real time when it is called. In this
example, you will see the following text written to the outputfile.txt you specified in the CLI command:

"value1"

Note
You are able to execute this function because you are using the same AWS account to create
and invoke the Lambda function. However, if you want to grant cross-account permission to
another AWS account or an AWS service permission to execute the function, you must add a
permission to the access policy associated with the function.The walkthrough that uses Amazon
S3 as the event source (see AWS Lambda Walkthrough 2: Handling Amazon S3 Events Using
the AWS CLI (Node.js) (p. 43)) grants such permission to Amazon S3 to invoke the function.

You can monitor the activity of your Lambda function in the AWS Lambda console.

• The AWS Lambda console shows a graphical representation of some of the CloudWatch metrics in
the Cloudwatch Metrics at a glance section for your function. Sign in to the AWS Management Console
at https://console.aws.amazon.com/.

• For each graph, you can also click the logs link to view the CloudWatch logs directly.

Next Step

Step 4: Try More CLI Commands (p. 40)

Step 4:Try More CLI Commands

Step 4.1: List the Lambda Functions in Your Account

In this section, you try AWS Lambda list function operations. Execute the following CLI list-functions
command to retrieve a list of functions you uploaded.

$ aws lambda list-functions \
--max-items 10 \
--profile adminuser

40

AWS Lambda Developer Guide
Walkthrough 1: Handling User Application Events

(Node.js)

https://console.aws.amazon.com/

To illustrate the use of pagination, the command specifies the optional --max-items parameter to limit
the number of functions returned in the response. For more information, see ListFunctions (p. 185). The
following is an example response.

{
 "Functions": [
 {
 "FunctionName": "helloworld",
 "MemorySize": 128,
 "CodeSize": 412,
 "FunctionArn": "arn:aws:lambda:us-east-1:account-id:function:Pro
cessKinesisRecords",
 "Handler": "ProcessKinesisRecords.handler",
 "Role": "arn:aws:iam::account-id:role/LambdaExecRole",
 "Timeout": 3,
 "LastModified": "2015-02-22T21:03:01.172+0000",
 "Runtime": "nodejs",
 "Description": ""
 },
 {
 "FunctionName": "ProcessKinesisRecords",
 "MemorySize": 128,
 "CodeSize": 412,
 "FunctionArn": "arn:aws:lambda:us-east-1:account-id:function:Pro
cessKinesisRecords",
 "Handler": "ProcessKinesisRecords.handler",
 "Role": "arn:aws:iam::account-id:role/lambda-execute-test-kinesis",

 "Timeout": 3,
 "LastModified": "2015-02-22T21:03:01.172+0000",
 "Runtime": "nodejs",
 "Description": ""
 },
 ...
],
 "NextMarker": null

}

In response, Lambda returns a list of up to 10 functions. If there are more functions you can retrieve,
NextMarker provides a marker you can use in the next list-functions request; otherwise, the value
is null. The following list-functions CLI command is an example that shows the --next-marker
parameter.

$ aws lambda list-functions \
--max-items 10 \
--marker value-of-NextMarker-from-previous-response \
--profile adminuser

Step 4.2: Get Metadata and URL to Download Previously Uploaded Lambda
Function Deployment Package

The Lambda CLI get-function command returns Lambda function metadata and a presigned URL
that you can use to download the function's .zip file (deployment package) that you uploaded to create
the function. For more information, see GetFunction (p. 171).

41

AWS Lambda Developer Guide
Walkthrough 1: Handling User Application Events

(Node.js)

$ aws lambda get-function \
--function-name helloworld \
--region us-west-2 \
--profile adminuser

The following is an example response.

{
 "Code": {
 "RepositoryType": "S3",
 "Location": "pre-signed-url"
 },
 "Configuration": {
 "FunctionName": "helloworld",
 "MemorySize": 128,
 "CodeSize": 287,
 "FunctionArn": "arn:aws:lambda:us-west-2:account-id:function:helloworld",

 "Handler": "helloworld.handler",
 "Role": "arn:aws:iam::account-id:role/LambdaExecRole",
 "Timeout": 3,
 "LastModified": "2015-04-07T22:02:58.854+0000",
 "Runtime": "nodejs",
 "Description": ""
 }

}

If you want only the function configuration information (not the presigned URL), you can use the Lambda
CLI get-function-configuration command.

$ aws lambda get-function-configuration \
 --function-name helloworld \
 --region us-west-2 \
--profile adminuser

Next Step

Step 5: Delete the Lambda Function and IAM Role (p. 42)

Step 5: Delete the Lambda Function and IAM Role
Execute the following delete-function command to delete helloworld function.

$ aws lambda delete-function \
 --function-name helloworld \
 --region us-west-2 \
--profile adminuser

Delete IAM Role

After you delete the Lambda function you can also delete the IAM role you created in the IAM console.
For information about deleting a role, see Deleting Roles or Instance Profiles in IAM User Guide.

42

AWS Lambda Developer Guide
Walkthrough 1: Handling User Application Events

(Node.js)

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-deleting.html

AWS Lambda Walkthrough 2: Handling Amazon
S3 Events Using the AWS CLI (Node.js)

Scenario
Suppose you have two buckets in Amazon S3.You store images (.jpg and .png objects) in one bucket
(sourcebucket), and for each object created in the bucket, you want AWS Lambda to execute a Lambda
function to create a thumbnail in the sourcebucketresized bucket.You will use Amazon S3's bucket
notification configuration feature to request Amazon S3 to publish object-created events to AWS Lambda.
In the notification configuration, you will identify your Lambda function (called CreateThumbnail) that
you want Amazon S3 to invoke.

Important
You must use two buckets. If you use the same bucket as source and target, each thumbnail
uploaded to the source bucket will trigger another object-created event, which will invoke the
Lambda function creating the unwanted recursion.

Implementation Summary
The following diagram illustrates the application flow:

1. A user uploads an object to the source bucket.

2. Amazon S3 detects the object-created event.

3. Amazon S3 publishes the s3:ObjectCreated:* event to AWS Lambda by invoking the Lambda
function by passing event data as function parameter.

4. Lambda executes the function by assuming the execution role.

5. From the event data it received, the Lambda function knows the source bucket name and object key
name. The Lambda function reads the object and creates a thumbnail using graphics libraries, and
saves it to the target bucket.

Note that upon completing this exercise, you will have the following S3, Lambda, and IAM resources in
your account.

43

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

As the diagram shows, you create Amazon S3, AWS Lambda, and AWS Identity and Access Management
(IAM) resources in your account:

In Lambda:

• A Lambda function – Amazon S3 invokes this function by passing event data such as the source bucket
name and object key as parameter. The function reads the object and, if the object is a .jpg or .png
object, creates a thumbnail in the target bucket.

• An access policy – In the access policy associated with the Lambda function, you will add a permission
granting Amazon S3 permission to invoke the Lambda function.You will also restrict the permission
so that Amazon S3 can invoke the Lambda function only for object-created events from a specific
bucket owned by a specific AWS account.

Note
It is possible for an AWS account to delete a bucket and some other AWS account to later
create a bucket with same name.The additional conditions ensure that Amazon S3 can invoke
the Lambda function only if Amazon S3 detects object-created events from a specific bucket
owned by a specific AWS account.

For more information, see AWS Lambda: How it Works (p. 3).

In IAM:

• Administrator user – Called adminuser. Using root credentials of an AWS account is not recommended.
Instead, use the adminuser credentials to perform steps in this exercise.

• An IAM role (execution role) – When you create this role, you will trust AWS Lambda to assume this
role.You will also grant sufficient permissions that your Lambda function needs—for example, permission
to read objects from the source bucket and create a thumbnail in the target bucket.

In Amazon S3:

• Two buckets – We refer to these as the source bucket and the target bucket.

• Notification configuration – You will add notification configuration on your source bucket identifying the
type of events (object-created events) you want Amazon S3 to publish to AWS Lambda and the Lambda

44

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

function to invoke. For more information about the Amazon S3 notification feature, go to Setting Up
Notification of Bucket Events.

Now you are ready to try the steps. Note that after the initial preparation the walkthrough is divided into
two main sections:

• First, you do the necessary setup to create a Lambda function and invoke it manually using Amazon
S3 sample event data. This intermediate testing verifies that the function works.

• Then you will add a notification configuration to your source bucket so that Amazon S3 can then invoke
your Lambda function when it detects object-created events.

Next Step
Step 1: Prepare for the Walkthrough (Amazon S3 Events) (p. 45)

Step 1: Prepare for the Walkthrough (Amazon S3 Events)
In this section, you do the following:

• Create an administrator user, adminuser. For instructions, see Set Up an AWS Account and Create
an Administrator User (p. 12). If you have an administrator user, you can skip this step.

• Create two buckets with a sample .jpg object (HappyFace.jpg) in the source bucket.

• Set up the AWS CLI.

Step 1.1: Create Buckets and Upload a Sample Object

Follow the steps to create buckets and upload an object.

Important
Both the source bucket and your Lambda function must be in the same AWS region. In addition,
the example code used for the Lambda function also assumes both the buckets are in the same
region. This exercise assumes the us-west-2 region.

1. Using the IAM User Sign-In URL, sign in to the Amazon S3 console as adminuser.

2. Create two buckets. The target bucket name must be sourcebucket followed by "resized". For
example, "mybucket" and "mybucketresized".

For instructions, go to Create a Bucket in the Amazon Simple Storage Service Getting Started Guide.

3. In the source bucket, upload a .jpg object, HappyFace.jpg.

When you invoke the Lambda function manually, before hooking up Amazon S3, you will pass sample
event data to the function that specifies the source bucket and HappyFace.jpg as the newly created
object. So you need to create this sample object.

Step 1.2: Set Up the AWS CLI

You use the AWS CLI to upload your Lambda function deployment package.You will test the resulting
Lambda function by manually invoking it using the CLI. Walkthrough 1 provides instructions to set up the
AWS CLI and add the adminuser profile. For instructions, see Step 1: Prepare for the Walkthrough (p. 36).

Next Step

Step 2: Create and Test the Lambda Function (Amazon S3 Events) (p. 46)

45

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Step 2: Create and Test the Lambda Function (Amazon S3
Events)
In this section, you do the following:

• Create a Lambda function deployment package using the sample Node.js code provided.

• Create an IAM role (execution role) — At the time you upload the deployment package, you will need
to specify an IAM role (execution role) that Lambda can assume to execute the function on your behalf.

• Create the Lambda function and test.

Follow the instructions in the following sections:

Step 2.1: Create a Lambda Function Deployment Package (p. 46)

Step 2.2: Create an IAM Role (execution role) (Amazon S3 Events) (p. 49)

Step 2.3: Upload the Deployment Package and Test (Amazon S3 Events) (p. 49)

Step 2.1: Create a Lambda Function Deployment Package

The deployment package is a zip file containing your function code and dependencies. So you will first
create a directory to save the JavaScript function code and dependencies. After you complete the steps,
you will have the following folder structure:

CreateThumbnail.js
/node_modules/gm
/node_modules/async

You will then zip the directory content, which is your Lambda function deployment package.

To create a Lambda function deployment package

1. Create a folder (examplefolder). After creating the folder, create a subfolder (node_modules) in
it.

2. Install the Node.js platform. For more information, go to the Node.js website at http://nodejs.org/.a.

b. Install dependencies. The code examples uses the following libraries.

• AWS SDK for JavaScript in Node.js

• gm, "GraphicsMagick for node.js"

• Async utility module

The AWS Lambda runtime already has the AWS SDK for JavaScript in Node.js. So you need
only the other two. Open a command prompt, navigate to the examplefolder, and install the
libraries using the npm command, which is part of Node.js.

npm install async gm

3. Save example code to the folder. Open a text editor, and copy the following code.

46

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

http://nodejs.org/

// dependencies
var async = require('async');
var AWS = require('aws-sdk');
var gm = require('gm')
 .subClass({ imageMagick: true }); // Enable ImageMagick integra
tion.
var util = require('util');

// constants
var MAX_WIDTH = 100;
var MAX_HEIGHT = 100;

// get reference to S3 client
var s3 = new AWS.S3();

exports.handler = function(event, context) {
 // Read options from the event.
 console.log("Reading options from event:\n", util.inspect(event, {depth:
5}));
 var srcBucket = event.Records[0].s3.bucket.name;
 // Object key may have spaces or unicode non-ASCII characters.
 var srcKey =
 decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g, " "));

 var dstBucket = srcBucket + "resized";
 var dstKey = "resized-" + srcKey;

 // Sanity check: validate that source and destination are different buckets.

 if (srcBucket == dstBucket) {
 console.error("Destination bucket must not match source bucket.");
 return;
 }

 // Infer the image type.
 var typeMatch = srcKey.match(/\.([^.]*)$/);
 if (!typeMatch) {
 console.error('unable to infer image type for key ' + srcKey);
 return;
 }
 var imageType = typeMatch[1];
 if (imageType != "jpg" && imageType != "png") {
 console.log('skipping non-image ' + srcKey);
 return;
 }

 // Download the image from S3, transform, and upload to a different S3
bucket.
 async.waterfall([
 function download(next) {
 // Download the image from S3 into a buffer.
 s3.getObject({
 Bucket: srcBucket,
 Key: srcKey
 },
 next);
 },
 function transform(response, next) {

47

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

 gm(response.Body).size(function(err, size) {
 // Infer the scaling factor to avoid stretching the image unnaturally.
 var scalingFactor = Math.min(
 MAX_WIDTH / size.width,
 MAX_HEIGHT / size.height
);
 var width = scalingFactor * size.width;
 var height = scalingFactor * size.height;

 // Transform the image buffer in memory.
 this.resize(width, height)
 .toBuffer(imageType, function(err, buffer) {
 if (err) {
 next(err);
 } else {
 next(null, response.ContentType, buffer);
 }
 });
 });
 },
 function upload(contentType, data, next) {
 // Stream the transformed image to a different S3 bucket.
 s3.putObject({
 Bucket: dstBucket,
 Key: dstKey,
 Body: data,
 ContentType: contentType
 },
 next);
 }
], function (err) {
 if (err) {
 console.error(
 'Unable to resize ' + srcBucket + '/' + srcKey +
 ' and upload to ' + dstBucket + '/' + dstKey +
 ' due to an error: ' + err
);
 } else {
 console.log(
 'Successfully resized ' + srcBucket + '/' + srcKey +
 ' and uploaded to ' + dstBucket + '/' + dstKey
);
 }

 context.done();
 }
);
};

4. Review the preceding code and note the following:

• The function knows the source bucket name and the key name of the object from the event data
it receives as parameters. If the object is a .jpg, the code creates a thumbnail and saves it to the
target bucket.

• The code assumes the destination bucket exists and its name is a concatenation of the source
bucket name followed by the string "resized". For example, if the source bucket identified in the

48

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

event data is "examplebucket", the code assumes you have an "examplebucketresized" destination
bucket.

• For the thumbnail it creates, the code derives its key name as the concatenation of the string
"resized-" followed by the source object key name. For example, if the source object key is
"sample.jpg", the code creates a thumbnail object that has the key "resized-sample.jpg".

5. Save the file as CreateThumbnail.js in examplefolder.

6. Zip the folder content as CreateThumbnail.zip.

Important
You zip the folder content, not the folder itself.

This is your Lambda function deployment package.

Next Step

Step 2.2: Create an IAM Role (execution role) (Amazon S3 Events) (p. 49)

Step 2.2: Create an IAM Role (execution role) (Amazon S3 Events)

In this section, you create an IAM role using the following predefined role type and access policy:

• AWS service role of the "AWS Lambda" type. This role grants AWS Lambda permission to assume the
role.

• "AWSLambdaExecute" access policy that you attach to the role.

For more information about IAM roles, go to Roles (Delegation and Federation) in Using IAM. Use the
following procedure to create the IAM role.

To create an IAM role (execution role)

1. Sign in to the AWS Management Console.

2. Create an IAM role.

For instructions on creating the role, go to Creating a Role for an AWS Service (AWS Management
Console) in IAM User Guide. As you follow the steps to create a role, note the following:

• In Select Role Type, click AWS Service Roles, and then select AWS Lambda. This will grant
AWS Lambda service permission to assume the role.

• In Attach Policy select AWSLambdaExecute.

3. Write down the role ARN.You will need it in the next step when you create your Lambda function.

Step 2.3: Upload the Deployment Package and Test (Amazon S3 Events)

In this section, you do the following:

• Create a Lambda function by uploading the deployment package.

• Test the Lambda function by invoking it manually, by passing sample Amazon S3 event data as
parameter.

49

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html

Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)

1. At the command prompt, run the following Lambda CLI create-function command using the
adminuser profile.

You will need to update the command by providing the .zip file path and the execution role ARN.

$ aws lambda create-function \
--region us-west-2 \
--function-name CreateThumbnail \
--zip-file fileb://file-path/CreateThumbnail.zip \
--role role-arn \
--handler CreateThumbnail.handler \
--runtime nodejs \
--profile adminuser \
--timeout 10 \
--memory-size 1024

Note that if you want to you can upload the .zip file to an Amazon S3 bucket in the same AWS region,
and then specify the bucket and object name in the preceding command.You will need to replace
the --zip-file parameter by the --code parameter as shown:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

2. Write down the function ARN.You will need this in the next section when you add notification
configuration to your Amazon S3 bucket.

3. (Optional) The preceding command specifies a 10-second timeout value as the function configuration.
Depending on the size of objects you upload, you might need to increase the timeout value using
the following CLI command.

$ aws lambda update-function-configuration \
 --function-name CreateThumbnail \
 --region us-west-2 \
 --timeout timeout-in-seconds \
 --profile adminuser

Step 2.3.2:Test Lambda Function (Invoke Manually)

Invoke the function manually using sample Amazon S3 event data.

1. Save the following Amazon S3 sample event data in a file, input.txt.

You will need to update the JSON by providing your sourcebucket and a .jpg object key.

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-west-2",
 "eventTime":"1970-01-01T00:00:00.000Z",
 "eventName":"ObjectCreated:Put",
 "userIdentity":{

50

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

 "principalId":"AIDAJDPLRKLG7UEXAMPLE"
 },
 "requestParameters":{
 "sourceIPAddress":"127.0.0.1"
 },
 "responseElements":{
 "x-amz-request-id":"C3D13FE58DE4C810",
 "x-amz-id-2":"FMyUVURIY8/IgAtTv8xRjskZQpcIZ9KG4V5Wp6S7S/JRWeUWer
MUE5JgHvANOjpD"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"testConfigRule",
 "bucket":{
 "name":"sourcebucket",
 "ownerIdentity":{
 "principalId":"A3NL1KOZZKExample"
 },
 "arn":"arn:aws:s3:::sourcebucket"
 },
 "object":{
 "key":"HappyFace.jpg",
 "size":1024,
 "eTag":"d41d8cd98f00b204e9800998ecf8427e",
 "versionId":"096fKKXTRTtl3on89fVO.nfljtsv6qko"
 }
 }
 }
]
}

2. Run the following Lambda CLI invoke command to invoke the function. Note that:

• The command requests asynchronous execution.You can optionally invoke it synchronously by
specifying "RequestResponse" as the invocation-type parameter value.

$ aws lambda invoke \
--invocation-type Event \
--function-name CreateThumbnail \
--region us-west-2 \
--payload file://file-path/inputfile.txt \
--profile adminuser \
outputfile.txt

Note
You are able to invoke this function because you are using your own credentials to invoke
your own function. In the next section, you configure Amazon S3 to invoke this function on
your behalf which requires you to add a permission to the access policy associated with your
Lambda function to grant Amazon S3 permission to invoke your function.

3. Verify results:

• Verify the thumbnail was created in the target bucket.

• You can monitor the activity of your Lambda function in the AWS Lambda console.

• The AWS Lambda console shows a graphical representation of some of the CloudWatch metrics
in the Cloudwatch Metrics at a glance section for your function.

• For each graph, you can also click the logs link to view the CloudWatch logs directly.

51

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

Next Step

Step 3: Configure Amazon S3 to Publish Events (p. 52)

Step 3: Configure Amazon S3 to Publish Events
In this section, you add the remaining configuration so Amazon S3 can publish object-created events to
AWS Lambda and invoke your Lambda function.You will do the following:

• Add permission to the Lambda function access policy to allow Amazon S3 to invoke the function.

• Add notification configuration to your source bucket — In the notification configuration, you provide:

• Event type for which you want Amazon S3 to publish events. For this exercise, you will specify the
s3:ObjectCreated:* event type so that Amazon S3 publishes events when objects are created.

• Lambda function to invoke.

Step 3.1: Add Permission to the Lambda Function Access Policy

1. Run the following Lambda CLI add-permission command to grant Amazon S3 service principal
("s3.amazonaws.com") permission for the lambda:InvokeFunction action. Note that permission
is granted to Amazon S3 to invoke the function only if the following conditions are met:

• An object-created event is detected on a specific bucket.

• The bucket is owned by a specific AWS account.

If a bucket owner deletes a bucket, some other AWS account can create bucket with the same
name. This condition ensures that only a specific AWS account can invoke your Lambda function.

$ aws lambda add-permission \
--function-name CreateThumbnail \
--region us-west-2 \
--statement-id some-unique-id \
--action "lambda:InvokeFunction" \
--principal s3.amazonaws.com \
--source-arn arn:aws:s3:::sourcebucket \
--source-account bucket-owner-account-id \
--profile adminuser

2. Verify the access policy of your function by calling the CLI get-policy command.

$ aws lambda get-policy \
--function-name function-name \
--profile adminuser

Step 3.2: Configure a Notification on the Bucket

Add notification configuration on the source bucket to request Amazon S3 to publish object-created events
to Lambda. In the configuration, you specify the following:

• Event type — For this exercise, select the "ObjectCreated (All)" Amazon S3 event type.

• Lambda function — This is your Lambda function Amazon S3 will invoke.

52

AWS Lambda Developer Guide
Walkthrough 2: Handling Amazon S3 Events (Node.js)

For instructions on adding notification configuration to a bucket, go to Enabling Event Notifications in the
Amazon Simple Storage Service Console User Guide.

Step 3.3:Test the Setup

You are all done! Now adminuser can test the setup as follows:

1. Upload .jpg or .png objects to the source bucket using the Amazon S3 console.

2. Verify that the thumbnail was created in the target bucket by the CreateThumbnail function.

3. The adminuser user can also verify the logs reported by Amazon CloudWatch Logs.

You can monitor the activity of your Lambda function in the AWS Lambda console. For example,
choose the logs link in the console to view logs, including logs your function wrote to CloudWatch Logs.

AWS Lambda Walkthrough 3: Processing Events
from Amazon DynamoDB Streams Using the AWS
CLI (Node.js)

Scenario
You can use Lambda functions as Triggers for your DynamoDB table. Triggers are custom actions you
take in response to updates made to the DynamoDB table.To create a Trigger, first you enable DynamoDB
Streams for your table.Then, you write a Lambda function to process the updates published to the stream.
Lastly, you create an event source mapping in AWS Lambda to associate your Lambda function with the
stream.

In this walkthrough, you create a simple Lambda function in which the handler receives event data as
parameter and processes it. For illustration, the handler will log some of the information to Amazon
CloudWatch.

Implementation Summary
This is an example of the "pull" model (see AWS Lambda: How it Works (p. 3)) where AWS Lambda
polls the Amazon DynamoDB stream and invokes your Lambda function when it detects new data on the
stream. In the "pull" model, AWS Lambda both invokes and executes the Lambda function.

The following diagram illustrates the application workflow:

In this walkthrough, you will do the following:

53

AWS Lambda Developer Guide
Walkthrough 3: Handling Amazon DynamoDB Stream

Events (Node.js)

http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html

• Create a Lambda function to process Amazon DynamoDB events.

• Invoke a Lambda function manually by using sample Amazon DynamoDB event data.

• Create a stream-enabled DynamoDB table.

Using the DynamoDB console, you will create a table with a stream.

• Create an event source mapping in AWS Lambda associating the stream and your Lambda function.

As soon as you create the event source mapping, AWS Lambda starts polling the stream.

• Test the setup.

As you create, update, and delete items from the table, Amazon DynamoDB writes records to the
stream. AWS Lambda will detect the new records as it polls the stream and execute your Lambda
function on your behalf.You then verify AWS Lambda executed your Lambda function on your behalf.

Important
Both the Lambda function and the Amazon DynamoDB stream must be in the same AWS region.
This exercise assumes the US East (N. Virginia) region (us-east-1).

Next Step
Step 1: Prepare for the Walkthrough (DynamoDB Stream Events) (p. 54)

Step 1: Prepare for the Walkthrough (DynamoDB Stream
Events)
In this section, you do the following:

• If you don't have an administrator user in your account, create it. For instructions, see Set Up an AWS
Account and Create an Administrator User (p. 12).

• Set up the AWS CLI. For instructions, see Step 1: Prepare for the Walkthrough (p. 36).

You will use AWS CLI to perform the AWS Lambda activities, such as create a Lambda function, initially
invoke it manually, and add an event source mapping.

Next Step

Step 2: Create a Lambda Function and Invoke it Manually Using Sample Event Data (DynamoDB Stream
Events) (p. 54)

Step 2: Create a Lambda Function and Invoke it Manually
Using Sample Event Data (DynamoDB Stream Events)
Topics

• Step 2.1: Create a Lambda Function (p. 55)

• Step 2.2: Invoke Lambda Function Manually (p. 56)

• Next Step (p. 59)

In this section, you create a Lambda function and manually invoke it by passing a sample DynamoDB
event.

54

AWS Lambda Developer Guide
Walkthrough 3: Handling Amazon DynamoDB Stream

Events (Node.js)

Step 2.1: Create a Lambda Function

To create a Lambda function you need to first create the following:

• A deployment package (a .zip file) containing your code and dependencies.

After you upload the deployment package to AWS Lambda we refer it as your Lambda function. The
code for this exercise is a Node.js example code, and there are no dependencies.

• An IAM role (execution role).

At the time you create your Lambda function you specify an IAM role that the AWS Lambda service
can assume to execute the function on your behalf.

You must grant this execution role necessary permissions. For example AWS Lambda will need
permission for Amazon DynamoDB actions so it can poll the stream and read records from the stream.
In the "pull" model you must also grant AWS Lambda permission to invoke your Lambda function. The
example Lambda function writes some of the event data to Amazon CloudWatch, so it will need
permissions for necessary Amazon CloudWatch actions.

For more information, see Execution Permissions (p. 8).

You provide both the deployment package and the IAM role at the time of creating a Lambda function.
You can also specify other configuration information such as the function name, memory size, runtime
environment (nodejs) to use, and the handler. For more information about these parameters, see
CreateFunction (p. 160).

After creating the Lambda function you will invoke it using sample Amazon DynamoDB event data.

Step 2.1.1: Create a Lambda Function Deployment Package

Follow the instructions to create your AWS Lambda function deployment package.

1. Open a text editor, and copy the following code.

console.log('Loading function');

exports.handler = function(event, context) {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(function(record) {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log('DynamoDB Record: %j', record.dynamodb);
 });
 context.succeed("Successfully processed " + event.Records.length + "
records.");
};

2. Save the file as ProcessDynamoDBStream.js.

3. Zip the ProcessDynamoDBStream.js file as ProcessDynamoDBStream.zip.

Step 2.1.2: Create an IAM Role (execution role)

In this section you create an IAM role using the following predefined role type and access policy:

• Role Type: AWS service role of the "AWS Lambda" type.

55

AWS Lambda Developer Guide
Walkthrough 3: Handling Amazon DynamoDB Stream

Events (Node.js)

This role grants AWS Lambda permission to assume the role. So when you specify this role when
creating your Lambda function, AWS Lambda will be able to assume this role and execute your Lambda
function on your behalf.

• Access Policy:You will grant permission to the role by attaching a predefined access policy
("AWSLambdaDynamoDBExecutionRole").

The policy grants necessary permission your Lambda function needs when it executes.

Use the following procedure to create the IAM role.

1. Sign in to the AWS Management Console.

2. Create an IAM role.

For instructions on creating the role, go to Creating a Role for an AWS Service (AWS Management
Console) in IAM User Guide. As you follow the steps to create a role, note the following:

• In Select Role Type, click AWS Service Roles, and then select AWS Lambda.

• In Attach Policy select AWSLambdaDynamoDBExecutionRole.

3. Write down the role ARN.You will need the ARN in the next step when you create Lambda function.

For more information about IAM roles, go to Roles (Delegation and Federation) in Using IAM.

Step 2.1.3: Create Lambda Function

Execute the following Lambda CLI create-function command to create a Lambda function.You
provide the deployment package and IAM role ARN as parameters.

$ aws lambda create-function \
--region us-east-1 \
--function-name ProcessDynamoDBStream \
--zip-file fileb://file-path/ProcessDynamoDBStream.zip \
--role role-arn \
--handler ProcessDynamoDBStream.handler \
--runtime nodejs \
--profile adminuser

For more information, see CreateFunction (p. 160). AWS Lambda creates the function and return function
configuration information.

Note
You can upload the .zip file to an Amazon S3 bucket in the same AWS region where you are
creating the Lambda function, and then specify the bucket and object name in the
create-function command.You will need to replace the --zip-file parameter by the
--code parameter as shown:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

Step 2.2: Invoke Lambda Function Manually

In this section you invoke your Lambda function manually using the invoke AWS Lambda CLI command
and the following sample DynamoDB event.

1. Save the following JSON in a file, input.txt.

56

AWS Lambda Developer Guide
Walkthrough 3: Handling Amazon DynamoDB Stream

Events (Node.js)

http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

{
 "Records":[
 {
 "eventID":"1",
 "eventName":"INSERT",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"111",
 "SizeBytes":26,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"2",
 "eventName":"MODIFY",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"222",
 "SizeBytes":59,

57

AWS Lambda Developer Guide
Walkthrough 3: Handling Amazon DynamoDB Stream

Events (Node.js)

 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"3",
 "eventName":"REMOVE",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"333",
 "SizeBytes":38,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 }
]
}

2. Execute the following invoke command.

$ aws lambda invoke \
--invocation-type RequestResponse \
--function-name ProcessDynamoDBStream \
--region us-east-1 \
--payload file://file-path/input.txt \
--profile adminuser \
outputfile.txt

Note the invoke command specifies the "RequestResponse" as the invocation type which requests
synchronous execution. For more information, see Invoke (p. 178). The function returns the string
message (message in the context.succeed() in the code) in the response body.

3. Verify the following output in the outputfile.txt file.

"Successfully processed 3 records."

You can monitor the activity of your Lambda function in the AWS Lambda console.

• The AWS Lambda console shows a graphical representation of some of the CloudWatch metrics
in the Cloudwatch Metrics at a glance section for your function. Sign in to the AWS Management
Console at https://console.aws.amazon.com/.

58

AWS Lambda Developer Guide
Walkthrough 3: Handling Amazon DynamoDB Stream

Events (Node.js)

https://console.aws.amazon.com/

• For each graph you can also click the logs link to view the CloudWatch logs directly.

Next Step

Step 3: Add an Event Source (DynamoDB Streams) and Test (p. 59)

Step 3: Add an Event Source (DynamoDB Streams) and Test
In this section, you do the following:

• Create an Amazon DynamoDB table with a stream enabled.

• Create an event source mapping in AWS Lambda.

This event source mapping will associate the DynamoDB stream with your Lambda function. After you
create this event source mapping, AWS Lambda will start polling the stream.

• Test the setup.

As you perform table updates, DynamoDB will write event records to the stream. AWS Lambda that is
polling the stream will detect new records in the stream and execute your Lambda function on your
behalf, by passing events to the function.

Step 3.1: Create a DynamoDB Table with a Stream Enabled

Follow the procedure to create a table with a stream:

1. Sign in to the AWS Management console at http://aws.amazon.com/console/.

2. In the DynamoDB console, create a table with streams enabled. Make sure you have the US East
(N. Virginia) region selected before you create the table.

Important
You must create a DynamoDB table in the same region that you have a Lambda function
created. This exercise assume the US East (N. Virginia) region. In addition, both the table
and the Lambda functions must belong to the same AWS account.

3. Write down the stream ARN.You will need this in the next section when you associate the stream
with your Lambda function.

Step 3.2: Create Event Source Mapping in AWS Lambda

In this section you associate your DynamoDB stream with your Lambda function by creating a event
source mapping in AWS Lambda.

Run the following AWS CLI create-event-source-mapping command. After the command executes,
note down the UUID.You'll need this UUID to refer to the event source mapping in any commands, for
example, when deleting the event source mapping.

$ aws lambda create-event-source-mapping \
--region us-east-1 \
--function-name ProcessDynamoDBStream \
--event-source DynamoDB-stream-arn \
--batch-size 100 \
--starting-position TRIM_HORIZON \
--profile adminuser

59

AWS Lambda Developer Guide
Walkthrough 3: Handling Amazon DynamoDB Stream

Events (Node.js)

http://aws.amazon.com/console/

Note
This creates a mapping between the specified DynamoDB stream and the Lambda function.
You can associate a DynamoDB stream with multiple Lambda functions, and associate the same
Lambda function with multiple streams. However, the Lambda functions will share the read
throughput for the stream they share.

You can get the list of event source mappings.

$ aws lambda list-event-source-mappings \
--region us-east-1 \
--function-name ProcessDynamoDBStream \
--event-source DynamoDB-stream-arn \
--profile adminuser

The list returns all the event source mappings you created, and for each mapping it shows (among other
things) the LastProcessingResult. This field is used to provide an informative message if there are
any problems. Values such as "No records processed" (indicating either AWS Lambda has not started
polling or there are no records in the stream), and "OK" (indicating AWS Lambda successfully read records
from the stream and invoked your Lambda function) indicate there no issues. Otherwise, you will get an
appropriate message.

Step 3.3:Test the Setup

You are all done! Now adminuser can test the setup as follows:

1. In the DynamoDB console, add, update, delete items to the table. DynamoDB will write records of
these actions to the stream.

2. AWS Lambda polls the stream and when it detects updates to the stream, it will invoke your Lambda
function by passing in event data it found in the stream.

3. Your function executes and creates logs in Amazon CloudWatch. The adminuser can also verify the
logs reported in the Amazon CloudWatch console.

AWS Lambda Walkthrough 4: Processing Events
from an Amazon Kinesis Stream Using the AWS
CLI (Node.js)
In this walkthrough, you create a Lambda function to consume events from an Amazon Kinesis stream.
The Lambda function is simple: it reads incoming event data and logs some of the information to Amazon
CloudWatch.

This is an example of the "pull" model (see AWS Lambda: How it Works (p. 3)) where AWS Lambda
polls the Amazon Kinesis stream and invokes your Lambda function when it detects new data on the
stream. That is, in the pull model, AWS Lambda both invokes and executes the Lambda function.

The following diagram illustrates the application workflow:

60

AWS Lambda Developer Guide
Walkthrough 4: Handling Amazon Kinesis Stream Events

(Node.js)

In this walkthrough, you will do the following:

• Create a Lambda function to process Amazon Kinesis events

• Invoke a Lambda function manually using sample Amazon Kinesis event data

• Create an Amazon Amazon Kinesis stream

• Add an event source in AWS Lambda associating the stream and your Lambda function.

As soon as you add the event source, AWS Lambda starts polling the stream.

• Test the setup

You will then add a sample event record to the Amazon Kinesis stream and verify AWS Lambda
executed your Lambda function on your behalf.

Important
Both the Lambda function and the Amazon Kinesis stream must be in the same AWS region.
This exercise assumes the us-west-2 region.

Note
In this walkthrough, you use the AWS Command Line Interface to perform AWS Lambda
operations such as the create and invoke functions.This example is similar to the getting started
example (see Getting Started 3: Handling Amazon Kinesis Events Using the AWS Lambda
Console (Node.js) (p. 23)). The difference is that the Getting Started exercise provides a
console-based experience. The console does many things for you, simplifying your experience.
When you use the CLI, you get the raw experience of making the API calls, which can help you
familiarize yourself with the AWS Lambda operations. In addition to creating and invoking Lambda
function, you will explore other Lambda APIs.

Next Step
Step 1: Prepare for the Walkthrough (Amazon Kinesis Stream Events) (p. 61)

Step 1: Prepare for the Walkthrough (Amazon Kinesis Stream
Events)
In this section, you do the following:

• If you don't have an administrator user in your account, create one. For instructions, see Set Up an
AWS Account and Create an Administrator User (p. 12).

• Set up the AWS CLI. For instructions, see Step 1: Prepare for the Walkthrough (p. 36).

61

AWS Lambda Developer Guide
Walkthrough 4: Handling Amazon Kinesis Stream Events

(Node.js)

You will use AWS CLI to perform the AWS Lambda activities, such as create a Lambda function, initially
invoke it manually, and add an event source.

Next Step

Step 2: Create a Lambda Function and Invoke it Manually Using Sample Event Data (Amazon Kinesis
Stream Events) (p. 62)

Step 2: Create a Lambda Function and Invoke it Manually
Using Sample Event Data (Amazon Kinesis Stream Events)
Topics

• Step 2.1: Create a Lambda Function (p. 62)

• Step 2.2: Invoke Your Lambda Function Manually (p. 64)

• Next Step (p. 65)

In this section, you create a Lambda function and manually invoke it by passing sample Amazon Kinesis
event.

Step 2.1: Create a Lambda Function

To create a Lambda function, you need to first create the following:

• A deployment package (a .zip file) containing your code and dependencies.

After you upload the deployment package to AWS Lambda, we refer it as your Lambda function. The
code for this exercise is a Node.js example, and there are no dependencies.

• An IAM role (execution role).

At the time you create your Lambda function, you specify an IAM role that AWS Lambda can assume
to execute the function on your behalf.

You must grant this execution role the necessary permissions. For example, AWS Lambda will need
permission for Amazon Kinesis actions so it can poll the stream and read records from the stream. In
the pull model, you must also grant AWS Lambda permission to invoke your Lambda function. The
example Lambda function writes some of the event data to Amazon CloudWatch so your function will
need permissions for the necessary Amazon CloudWatch actions.

For more information, see Execution Permissions (p. 8)).

You provide both the deployment package and the IAM role when you create a Lambda function.You
can also specify other configuration information such as the function name, memory size, runtime
environment (nodejs) to use, and the handler. For more information about these parameters, see
CreateFunction (p. 160).

After creating the Lambda function, you will invoke it using sample Amazon Kinesis event data.

Step 2.1.1: Create a Lambda Function Deployment Package

Follow the instructions to create AWS Lambda function deployment package.

1. Open a text editor, and copy the following code.

62

AWS Lambda Developer Guide
Walkthrough 4: Handling Amazon Kinesis Stream Events

(Node.js)

console.log('Loading function');

exports.handler = function(event, context) {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(function(record) {
 // Kinesis data is base64 encoded so decode here
 payload = new Buffer(record.kinesis.data, 'base64').toString('ascii');

 console.log('Decoded payload:', payload);
 });
 context.succeed();
};

2. Save the file as ProcessKinesisRecords.js.

3. Zip the ProcessKinesisRecords.js file as ProcessKinesisRecords.zip.

Step 2.1.2: Create an IAM Role (execution role)

In this section, you create an IAM role using the following predefined role type and access policy:

• AWS service role of the "AWS Lambda" type. This role grants AWS Lambda permission to assume the
role.

• "AWSLambdaKinesisExecutionRole" access policy that you attach to the role.

For more information about IAM roles, go to Roles (Delegation and Federation) in Using IAM. Use the
following procedure to create the IAM role.

To create an IAM role (executionrole)

1. Sign in to the AWS Management Console.

2. Create an IAM role.

For instructions on creating the role, go to Creating a Role for an AWS Service (AWS Management
Console) in IAM User Guide. As you follow the steps to create a role, note the following:

• In Select Role Type, click AWS Service Roles, and then select AWS Lambda. This will grant
AWS Lambda service permission to assume the role.

• In Attach Policy select AWSLambdaKinesisExecutionRole.

.

3. Write down the role ARN.You will need it in the next step when you create your Lambda function.

Step 2.1.3: Create a Lambda Function

Execute the following Lambda CLI create-function command to create a Lambda function.You
provide the deployment package and IAM role ARN as parameters.

$ aws lambda create-function \
--region us-west-2 \
--function-name ProcessKinesisRecords \
--zip-file fileb://file-path/ProcessKinesisRecords.zip \
--role execution-role-arn \

63

AWS Lambda Developer Guide
Walkthrough 4: Handling Amazon Kinesis Stream Events

(Node.js)

http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html

--handler ProcessKinesisRecords.handler \
--runtime nodejs \
--profile adminuser

Note that if you want you can upload the .zip file to an Amazon S3 bucket in the same AWS region, and
then specify the bucket and object name in the preceding command.You will need to replace the
--zip-file parameter by the --code parameter as shown:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

For more information, see CreateFunction (p. 160). AWS Lambda creates the function and returns function
configuration information as shown in the following example:

{
 "FunctionName": "ProcessKinesisRecords",
 "CodeSize": 412,
 "MemorySize": 128,
 "FunctionArn": "arn:aws:lambda:us-west-2:account-id:function:ProcessKines
isRecords",
 "Handler": "ProcessKinesisRecords.handler",
 "Role": "arn:aws:iam::account-id:role/kinesis-lambda-role",
 "Timeout": 3,
 "LastModified": "2015-04-02T01:20:42.355+0000",
 "Runtime": "nodejs",
 "Description": ""
}

Step 2.2: Invoke Your Lambda Function Manually

In this section, you invoke your Lambda function manually using the invoke CLI command.

Save the following JSON in a file, input.txt.

{
 "Records": [
 {
 "kinesis": {
 "partitionKey": "partitionKey-3",
 "kinesisSchemaVersion": "1.0",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0IDEyMy4=",
 "sequenceNumber":
"49545115243490985018280067714973144582180062593244200961"
 },
 "eventSource": "aws:kinesis",
 "eventID": "shardId-
000000000000:49545115243490985018280067714973144582180062593244200961",
 "invokeIdentityArn": "arn:aws:iam::059493405231:role/testLEBRole",

 "eventVersion": "1.0",
 "eventName": "aws:kinesis:record",
 "eventSourceARN": "arn:aws:kinesis:us-west-2:35667example:stream/ex
amplestream",
 "awsRegion": "us-west-2"
 }

64

AWS Lambda Developer Guide
Walkthrough 4: Handling Amazon Kinesis Stream Events

(Node.js)

]
}

Execute the following invoke command.

$ aws lambda invoke \
--invocation-type Event \
--function-name ProcessKinesisRecords \
--region us-west-2 \
--payload file://file-path/input.txt \
--profile adminuser
outputfile.txt

Note that if you request synchronous execution ("RequestResponse" as the invocation type), function
returns the string message (message in the context.succeed() in the code) in the response body. In
the preceding example it will be saved in outputfile.txt.

"Hello, this is a test 123."

Note
The Amazon Kinesis stream and Lambda function must be in the same AWS account.

Next Step

Step 3: Add an AWS Lambda Event Source and Test (Amazon Kinesis Stream Events) (p. 65)

Step 3: Add an AWS Lambda Event Source and Test (Amazon
Kinesis Stream Events)
Topics

• Step 3.1: Create an Amazon Kinesis Stream (p. 65)

• Step 3.2: Add an Event Source in AWS Lambda (p. 66)

• Step 3.3: Test the Setup (p. 66)

In this section, you create an Amazon Kinesis stream and add an event source in AWS Lambda to
associate the stream with your Lambda function. After you create an event source, AWS Lambda will
start polling the stream.You will then test the setup by adding events to the stream and verify that AWS
Lambda executed your Lambda function on your behalf.

Step 3.1: Create an Amazon Kinesis Stream

Use the following Amazon Kinesis create-stream CLI command to create a stream.

$ aws kinesis create-stream \
--stream-name examplestream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Run the following Amazon Kinesis describe-stream CLI command to get the stream ARN.

65

AWS Lambda Developer Guide
Walkthrough 4: Handling Amazon Kinesis Stream Events

(Node.js)

$ aws kinesis describe-stream \
--stream-name examplestream \
--region us-west-2 \
--profile adminuser

You need the stream ARN in the next step to associate the stream with your Lambda function.The stream
is of the form:

arn:aws:kinesis:aws-region:account-id:stream/stream-name

Step 3.2: Add an Event Source in AWS Lambda

Run the following AWS CLI add-event-source command. After the command executes, note down
the UUID.You'll need this UUID to refer to the event source in any commands, for example, when deleting
the event source.

$ aws lambda create-event-source-mapping \
--region us-west-2 \
--function-name ProcessKinesisRecords \
--event-source kinesis-stream-arn \
--batch-size 100 \
--starting-position TRIM_HORIZON \
--profile adminuser

Note
This creates a mapping between the specified Amazon Kinesis stream and the Lambda function.
You can associate an Amazon Kinesis stream with only one Lambda function. If you associate
another function with the same stream, it replaces the previous mapping.

You can get a list of event source mappings.

$ aws lambda list-event-source-mappings \
--region us-west-2 \
--function-name ProcessKinesisRecords \
--event-source kinesis-stream-arn \
--debug

In the response, you can verify the status value is "enabled".

Step 3.3:Test the Setup

You are all done! Now adminuser can test the setup as follows:

1. Using the following AWS CLI command, add event records to your Amazon Kinesis stream.The --data
value is a base64-encoded value of the "Hello, this is a test." string.You can run the same command
more than once to add multiple records to the stream.

$ aws kinesis put-record \
--stream-name examplestream \
--data "This is a test. final" \
--partition-key shardId-000000000000 \
--region us-west-2 \
--profile adminuser

66

AWS Lambda Developer Guide
Walkthrough 4: Handling Amazon Kinesis Stream Events

(Node.js)

2. AWS Lambda polls the stream and when it detects updates to the stream, it will invoke your Lambda
function by passing in event data it found in the stream.

AWS Lambda assumes the execution role to poll the stream.You have granted the role permissions
for necessary Amazon Kinesis actions, and therefore AWS Lambda can poll the stream and read
events from the stream.

3. Your function executes and adds logs to the log group that corresponds to the Lambda function in
Amazon CloudWatch.

The adminuser can also verify the logs reported in the Amazon CloudWatch console. Make sure you
are checking for logs in the same AWS region where you created the Lambda function.

AWS Lambda Walkthrough 5: Handling AWS
CloudTrail Events Using the AWS CLI (Node.js)

Scenario
Suppose you have turned on AWS CloudTrail for your AWS account to maintain records (logs) of AWS
API calls made on your account. As API calls are made in your account, CloudTrail writes logs to an
Amazon S3 bucket you configured.You want Amazon S3 to publish the "object created" events to AWS
Lambda and invoke your Lambda function, as CloudTrail creates log objects.

When Amazon S3 invokes your Lambda function, it will pass an S3 event identifying, among other things,
the bucket name and the new object key that CloudTrail created. So your Lambda function can read the
log object, and it will know the API calls that were reported in the log.

You want your Lambda function to notify you via email if the log reports a specific API was called. Each
CloudTrail is a JSON object with one or more event records. Each record, among other things, provides
eventSource and eventName.

{
 "Records":[

 {
 "eventVersion":"1.02",
 "userIdentity":{
 ...
 },
 "eventTime":"2014-12-16T19:17:43Z",
 "eventSource":"sns.amazonaws.com",
 "eventName":"CreateTopic",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"72.21.198.64",
 ...
 },
 {
 ...
 },
 ...
}

Your Lambda function will parse the log for records with specific eventSource ("sns.amazonaws.com")
and eventName ("CreateTopic"). If found, it will publish the event to your Amazon SNS topic, which you
will configure to send email.

67

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

Implementation Summary
Upon completing this walkthrough, you will have Amazon S3, AWS Lambda, Amazon SNS, and AWS
Identity and Access Management (IAM) resources in your account:

Note
The walkthrough assumes you create these resources in the us-west-2 region.

In Lambda:

• A Lambda function – The function first reads incoming S3 event data so it knows where the CloudTrail
log object is created. It will then read that object and process as explained in the preceding section.

• An access policy – In the Lambda function's access policy, you will add a permission to allow Amazon
S3 to invoke the Lambda function.

In IAM:

• Administrator user – Called adminuser.

You use the adminuser credentials to performs steps in this walkthrough.

• An IAM role (executionrole) – When you create this role, you will trust AWS Lambda to assume this
role.You will also grant sufficient permissions that your Lambda function needs—for example,
permissions for Amazon S3 actions to read objects from a bucket, permission for Amazon SNS actions
to publish events, and permissions for CloudWatch actions to write logs.

In Amazon S3:

• A bucket – We refer to the bucket as examplebucket. When you turn the trail on in the CloudTrail
console, you specify this bucket for CloudTrail to save the logs.

• Configure notification on examplebucket.

You will add notification configuration to your bucket to request Amazon S3 to publish object-created
events to Lambda, by invoking your Lambda function. For more information about the Amazon S3
notification feature, go to Setting Up Notification of Bucket Events.

• Sample CloudTrail log object, ExampleCloudTrailLog.json, in examplebucket bucket.

You will use a sample Amazon S3 event that will identify examplebucket and this object as a CloudTrail
object.You will use this Amazon S3 object to first manually invoke your Lambda function.You Lambda
function will then read the sample CloudTrail log object and send you email notifications via an SNS
topic.

In Amazon SNS

• An SNS topic.

You subscribe to this topic by specifying email as the protocol.

The following diagram illustrates the application flow:

68

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

1. AWS CloudTrail saves logs to an S3 bucket.

2. Amazon S3 detects the object-created event.

3. Amazon S3 publishes the s3:ObjectCreated:* event to AWS Lambda by invoking the Lambda
function, per the bucket notification configuration.

Because the Lambda function's access policy includes a permission for Amazon S3 to invoke the
function, Amazon S3 will be able to invoke the function.

4. Lambda assumes the execution role and executes the function.

5. The Lambda function first reads the Amazon S3 event it receives as a parameter and determines
where the CloudTrail object is. It then reads the CloudTrail object and processes log records in it.

6. If the log includes a record with specific eventType and eventSource values, it publishes the event
to your Amazon SNS topic.

In this walkthrough, you subscribe to the SNS topic using the email protocol, so you will get email
notifications.

Now you are ready to try the steps.

First Walkthrough Step
Step 1: Prepare for the Walkthrough (AWS CloudTrail Events) (p. 69)

Step 1: Prepare for the Walkthrough (AWS CloudTrail Events)
In this section, you do the following (the example assumes you are creating your AWS resources—S3
bucket, SNS topic, and Lambda function—in the us-west-2 region:

• Create an administrator user, adminuser. For instructions, see Set Up an AWS Account and Create
an Administrator User (p. 12). If you already have an administrator user, you can skip this step.

• Set up the AWS CLI. If you followed the walkthroughs in order, you already have the AWS CLI setup.
If not, follow the instructions provided in walkthrough 1. For more information, see Step 1: Prepare for
the Walkthrough (p. 36).

• Turn CloudTrail on. For instructions, see the following section.

• Create an SNS topic. For instructions, see the following section.

69

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

Step 1.1:Turn on CloudTrail

In the AWS CloudTrail console, turn on the trail in your account by specifying examplebucket in the
us-west-2 region for CloudTrail to save logs. When configuring the trail, do not enable SNS notification.

For instructions, go to Creating and Updating Your Trail in the AWS CloudTrail User Guide.

Step 1.2: Create an SNS Topic and Subscribe to the Topic

Follow the procedure to create an SNS topic in the us-west-2 region and subscribe to it by providing
an email address as the endpoint.

To create and subscribe to a topic

1. Create an SNS topic.

For instructions, go to Create a Topic in the Amazon Simple Notification Service Developer Guide.

2. Subscribe to the topic by providing an email address as the endpoint.

For instructions, go to Subscribe to a Topic in the Amazon Simple Notification Service Developer
Guide.

3. Note down the topic ARN.You will need the value in the following sections.

Next Step

Step 2: Create and Invoke a Lambda Function (AWS CloudTrail Events) (p. 70)

Step 2: Create and Invoke a Lambda Function (AWS
CloudTrail Events)
In this section, the adminuser creates a function in AWS Lambda and invokes it manually, using the AWS
CLI command, using sample Amazon S3 event data. For instructions, see the following sections:

Step 2.1: Create a Lambda Function Deployment Package (AWS CloudTrail Events) (p. 70)

Step 2.2: Create an IAM Role (execution role) (AWS CloudTrail Events) (p. 73)

Step 2.3: Create a Lambda Function (AWS CloudTrail Events) (p. 74)

Step 2.4: Invoke Your Lambda Function Manually (AWS CloudTrail Events) (p. 75)

After you complete the steps, you can add a notification configuration on the examplebucket and test
the end-to-end experience. For instructions, see the following section.

Step 3: Configure Amazon S3 to Publish Events (AWS CloudTrail Events) (p. 78).

Step 2.1: Create a Lambda Function Deployment Package (AWS CloudTrail
Events)

The code example is created using Node.js.You first creates a folder to save the following:

• An example JavaScript function

• Dependencies

After you complete the steps, you will have the following folder structure:

70

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html

CloudTrailEventProcessing.js
/node_modules/async

You will then zip the folder content; the .zip file is the Lambda function deployment package.

To create the Lambda function deployment package

1. Install the Node.js platform. For more information, go to the Node.js website at http://nodejs.org/.

2. Create a folder (examplefolder). After creating the folder, create a subfolder (node_modules) in it.

3. Open a command prompt, navigate to the examplefolder, and install the following libraries using
the npm command, which is part of Node.js.

• async (Async utility module)

npm install async

4. Open a text editor, and copy the following code.

var aws = require('aws-sdk');
var zlib = require('zlib');
var async = require('async');

var EVENT_SOURCE_TO_TRACK = /sns.amazonaws.com/;
var EVENT_NAME_TO_TRACK = /CreateTopic/;
var DEFAULT_SNS_REGION = 'us-west-2';
var SNS_TOPIC_ARN = 'SNS Topic ARN';

var s3 = new aws.S3();
var sns = new aws.SNS({
 apiVersion: '2010-03-31',
 region: DEFAULT_SNS_REGION
});

exports.handler = function(event, context) {
 var srcBucket = event.Records[0].s3.bucket.name;
 var srcKey = event.Records[0].s3.object.key;

 async.waterfall([
 function fetchLogFromS3(next){
 console.log('Fetching compressed log from S3...');
 s3.getObject({
 Bucket: srcBucket,
 Key: srcKey
 },
 next);
 },
 function uncompressLog(response, next){
 console.log("Uncompressing log...");
 zlib.gunzip(response.Body, next);
 },
 function publishNotifications(jsonBuffer, next) {
 console.log('Filtering log...');
 var json = jsonBuffer.toString();
 console.log('CloudTrail JSON from S3:', json);

71

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

http://nodejs.org/

 var records;
 try {
 records = JSON.parse(json);
 } catch (err) {
 next('Unable to parse CloudTrail JSON: ' + err);
 return;
 }
 var matchingRecords = records
 .Records
 .filter(function(record) {
 return record.eventSource.match(EVENT_SOURCE_TO_TRACK)
 && record.eventName.match(EVENT_NAME_TO_TRACK);
 });

 console.log('Publishing ' + matchingRecords.length + ' notific
ation(s) in parallel...');
 async.each(
 matchingRecords,
 function(record, publishComplete) {
 console.log('Publishing notification: ', record);
 sns.publish({
 Message:
 'Alert... SNS topic created: \n TopicARN=' +
record.responseElements.topicArn + '\n\n' +
 JSON.stringify(record),
 TopicArn: SNS_TOPIC_ARN
 }, publishComplete);
 },
 next
);
 }
], function (err) {
 if (err) {
 console.error('Failed to publish notifications: ', err);
 } else {
 console.log('Successfully published all notifications.');
 }
 context.done(err);
 });
};

5. Update the code by providing your SNS topic ARN.

6. Save the file as CloudTrailEventProcessing.js in examplefolder.

7. Zip the folder content as CloudTrailEventProcessing.zip.

Note
You zip the folder content, not the folder itself.

This is your Lambda function deployment package.

Next Step

Step 2.2: Create an IAM Role (execution role) (AWS CloudTrail Events) (p. 73)

72

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

Step 2.2: Create an IAM Role (execution role) (AWS CloudTrail Events)

Now the adminuser is ready to create a Lambda function by uploading the deployment package to Lambda
that you created in the previous step. But at the time of creating the function, adminuser will need to
specify an IAM role that Lambda can assume.This role will have permissions the Lambda function needs
to access your AWS resources. So let's first create an IAM role, executionrole. For more information
about the executionrole, see Execution Permissions (p. 8).

Each IAM role has two policies. For the executionrole, you will use the following two policies:

• Trust policy specifying that AWS Lambda account principal who can assume the role.

• Access policy defining permissions for this role.

The role will have permission for Amazon S3 actions to perform operations on the examplebucket,
CloudWatch actions so the function can write application logs to CloudWatch, and Amazon SNS actions
so the function can publish events to your SNS topic.

To create an IAM role (executionrole)

1. Sign in to the AWS Management Console using the adminuser credentials.

2. Create a managed policy that you will attach to the IAM role.

a. In the navigation pane of the IAM console, click Policies, and then click Create Policy.

b. Next to Copy an AWS Managed Policy, click Select.

c. Next to AWSLambdaExecute, click Select.

d. Copy the following policy into the Policy Document replacing the existing policy, and then
update the policy with the ARN of the Amazon SNS topic you created.

Note the policy name because you will use it in the next step.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:*"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "your sns topic ARN"
 }
]
}

73

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

3. Create an IAM role, the executionrole, and attach the policy you just created to the role.

For instructions on creating the role, go to Creating a Role for an AWS Service (AWS Management
Console) in IAM User Guide. Note the following:

• In Select Role Type, click AWS Service Roles, and then select AWS Lambda.

• In Attach Policy, select the policy you created in the previous step.

Next Step

Step 2.3: Create a Lambda Function (AWS CloudTrail Events) (p. 74)

Step 2.3: Create a Lambda Function (AWS CloudTrail Events)

Now you are ready to upload the deployment package to create Lambda function.You will also test invoke
the function. At this point, you have not configured notification on your S3 bucket, so Amazon S3 will not
invoke your function. But you can test your Lambda function by manually invoking it, which requires the
following:

• Sample S3 event data identify bucket name and an object key.

• Sample CloudTrail log object in the S3 bucket.

You want this sample log to include a record that has the eventType value set to "ec2.amazonaws.com"
and the eventName value set to "CreateSecurityGroup". The Lambda function looks for event records
with these values.

Follow the steps to test invoke your Lambda function.

1. Create a Lambda function.

At the command prompt, run the following Lambda CLI create-function command using the
adminuser profile.You will need to update the command by providing the .zip file path and the
"executionrole" ARN.

$ aws lambda create-function \
--region us-west-2 \
--function-name CloudTrailEventProcessing \
--zip-file fileb://file-path/CloudTrailEventProcessing.zip \
--role execution-role-arn \
--handler CloudTrailEventProcessing.handler \
--runtime nodejs \
--profile adminuser \
--timeout 10 \
--memory-size 1024

Note that if you want you can upload the .zip file to an Amazon S3 bucket in the same AWS region,
and then specify the bucket and object name in the preceding command.You will need to replace
the --zip-file parameter by the --code parameter as shown:

--code S3Bucket=bucket-name,S3Key=zip-file-object-key

2. Note down the Lambda function ARN.You will need this ARN when you configure a bucket notification
in the next section.

74

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html

Next Step

Step 2.4: Invoke Your Lambda Function Manually (AWS CloudTrail Events) (p. 75)

Step 2.4: Invoke Your Lambda Function Manually (AWS CloudTrail Events)

In this section, you invoke your Lambda function manually using sample Amazon S3 event data that you
will pass to the Lambda function. When Lambda function executes, it will read the S3 object (a sample
CloudTrail log) from the bucket identified in the S3 event data, and publish an event to your SNS topic if
the sample CloudTrail log reports use of a specific API. For this walkthrough, the API is the SNS API
used to create a topic. That is, the CloudTrail log reports a record identifying "sns.amazonaws.com" as
the eventSource, and "CreateTopic" as the eventName.

1. Prepare to invoke the Lambda function manually

a. Save the following JSON (an example S3 event) in a file, input.txt.

You will provide this sample event when you invoke your Lambda function. For more information
about the S3 event structure, go to Event Message Structure in the Amazon Simple Storage
Service Developer Guide.

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-west-2",
 "eventTime":"1970-01-01T00:00:00.000Z",
 "eventName":"ObjectCreated:Put",
 "userIdentity":{
 "principalId":"AIDAJDPLRKLG7UEXAMPLE"
 },
 "requestParameters":{
 "sourceIPAddress":"127.0.0.1"
 },
 "responseElements":{
 "x-amz-request-id":"C3D13FE58DE4C810",
 "x-amz-id-2":"FMyUVURIY8/IgAtTv8xRjskZQpcIZ9KG4V5Wp6S7S/JR
WeUWerMUE5JgHvANOjpD"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"testConfigRule",
 "bucket":{
 "name":"your bucket name",
 "ownerIdentity":{
 "principalId":"A3NL1KOZZKExample"
 },
 "arn":"arn:aws:s3:::mybucket"
 },
 "object":{
 "key":"ExampleCloudTrailLog.json.gz",
 "size":1024,
 "eTag":"d41d8cd98f00b204e9800998ecf8427e",
 "versionId":"096fKKXTRTtl3on89fVO.nfljtsv6qko"
 }
 }
 }

75

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

http://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html

]
}

b. Upload a sample CloudTrail log to your examplebucket.

i. Save the following sample CloudTrail log to a file (ExampleCloudTrailLog.json).

Note that one of events in this log has "sns.amazonaws.com" as the eventSource and
"CreateTopic" as the eventName.Your Lambda function reads the logs and if it finds event
of this type, it publishes the event to the Amazon SNS topic you created and you will receive
one email when you invoke the Lambda function manually.

{
 "Records":[
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"Root",
 "principalId":"account-id",
 "arn":"arn:aws:iam::account-id:root",
 "accountId":"account-id",
 "accessKeyId":"access-key-id",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"2015-01-24T22:41:54Z"
 }
 }
 },
 "eventTime":"2015-01-24T23:26:50Z",
 "eventSource":"sns.amazonaws.com",
 "eventName":"CreateTopic",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"205.251.233.176",
 "userAgent":"console.amazonaws.com",
 "requestParameters":{
 "name":"dropmeplease"
 },
 "responseElements":{
 "topicArn":"arn:aws:sns:us-west-2:account-id:exampletopic"

 },
 "requestID":"3fdb7834-9079-557e-8ef2-350abc03536b",
 "eventID":"17b46459-dada-4278-b8e2-5a4ca9ff1a9c",
 "eventType":"AwsApiCall",
 "recipientAccountId":"account-id"
 },
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"Root",
 "principalId":"account-id",
 "arn":"arn:aws:iam::account-id:root",
 "accountId":"account-id",
 "accessKeyId":"access-key-id",
 "sessionContext":{
 "attributes":{

76

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

 "mfaAuthenticated":"false",
 "creationDate":"2015-01-24T22:41:54Z"
 }
 }
 },
 "eventTime":"2015-01-24T23:27:02Z",
 "eventSource":"sns.amazonaws.com",
 "eventName":"GetTopicAttributes",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"205.251.233.176",
 "userAgent":"console.amazonaws.com",
 "requestParameters":{
 "topicArn":"arn:aws:sns:us-west-2:account-id:exampletopic"

 },
 "responseElements":null,
 "requestID":"4a0388f7-a0af-5df9-9587-c5c98c29cbec",
 "eventID":"ec5bb073-8fa1-4d45-b03c-f07b9fc9ea18",
 "eventType":"AwsApiCall",
 "recipientAccountId":"account-id"
 }
]
}

ii. Run the gzip command to create .gz file from the preceding source file.

$ gzip ExampleCloudTrailLog.json

This creates ExampleCloudTrailLog.json.gz file.

iii. Upload the ExampleCloudTrailLog.json.gz file to your bucket that you specified in
the CloudTrail configuration.

This object is specified in the sample Amazon S3 event data that we use in manually invoking
the Lambda function.

2. Invoke the Lambda function.

Execute the following CLI command to invoke the function manually using adminuser profile.

$ aws lambda invoke-async \
 --function-name CloudTrailEventProcessing \
 --region us-west-2 \
 --invoke-args /filepath/input.txt \
 --debug \
--profile adminuser

Because your example log object has an event record showing the SNS API to call to create a topic,
the Lambda function will post that event to your SNS topic, and you should get an email notification.

You can monitor the activity of your Lambda function by using CloudWatch metrics and logs. For
more information about CloudWatch monitoring, see Troubleshooting and Monitoring AWS Lambda
Functions with Amazon CloudWatch (p. 135).

77

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

Next Step

Step 3: Configure Amazon S3 to Publish Events (AWS CloudTrail Events) (p. 78)

Step 3: Configure Amazon S3 to Publish Events (AWS
CloudTrail Events)
In this section, you add the remaining configuration so Amazon S3 can publish object-created events to
AWS Lambda and invoke your Lambda function.You will do the following:

• Add permission to the Lambda function's access policy to allow Amazon S3 to invoke the function.

• Add notification configuration to your source bucket. In the notification configuration, you provide:

• The event type for which you want Amazon S3 to publish events. For this exercise, you will specify
the s3:ObjectCreated:* event type.

• Lambda function to invoke.

Add permission to the Lambda Function's Access Policy

1. Run the following Lambda CLI add-permission command to grant Amazon S3 service principal
("s3.amazonaws.com") permission for the lambda:InvokeFunction action. Note that the permission
is granted with the following conditions:

• Amazon S3 can invoke the function only if an object-created event is detected on a specific bucket.

• The bucket is owned by a specific AWS account. If a bucket owner deletes a bucket, some other
AWS account can create a bucket with the same name.This condition ensures that only a specific
AWS account can invoke your Lambda function.

$ aws lambda add-permission \
--function-name CloudTrailEventProcessing \
--region us-west-2 \
--statement-id Id-1 \
--action "lambda:InvokeFunction" \
--principal s3.amazonaws.com \
--source-arn arn:aws:s3:::examplebucket \
--source-account examplebucket-owner-account-id \
--profile adminuser

2. Verify the access policy of your function by calling the CLI get-policy command.

$ lambda get-policy \
--function-name function-name \
--profile adminuser

Step 3.2: Add Notification Configuration to Your Bucket

Add notification configuration on the examplebucket to request Amazon S3 to publish object-created
events to Lambda. In the configuration, you specify the following:

• Event type — For this exercise, these can be any event types that create objects.

• Lambda function ARN – This is your Lambda function that Amazon S3 will invoke. The ARN is of the
following form:

78

AWS Lambda Developer Guide
Walkthrough 5: Handling AWS CloudTrail Events

(Node.js)

arn:aws:lambda:aws-region:account-id:function:function-name

For example, the function CloudTrailEventProcessing created in us-west-2 region will have this
ARN:

arn:aws:lambda:us-west-2:account-id:function:CloudTrailEventProcessing

For instructions on adding notification configuration to a bucket, go to Enabling Event Notifications in the
Amazon Simple Storage Service Console User Guide.

Step 3.3:Test the Setup

You are all done! You can now test the setup as follows:

1. Perform some action in your AWS account. For example, add another topic in the Amazon SNS console.

2. You should get an email notification about this event.You also notice the following:

• AWS CloudTrail creates a log object in your bucket.

• If you open the log object (.gz file), the log shows the CreateTopic SNS event.

• For each object AWS CloudTrail creates, Amazon S3 invokes your Lambda function by passing in
the log object as event data.

• Lambda executes your function.The function parses the log, and it finds a CreateTopic SNS event,
sends you an email notification.

You can monitor the activity of your Lambda function by using CloudWatch metrics and logs. For
more information about CloudWatch monitoring, see Troubleshooting and Monitoring AWS Lambda
Functions with Amazon CloudWatch (p. 135).

AWS Lambda Walkthrough 6: Handling Mobile
User Application Events for Android (Node.js)

Scenario
In this walkthrough, you will create a simple Android mobile application. The primary purpose of this
walkthrough is to show you how to hook up various components to enable an Android mobile application
to invoke a Lambda function and process response.

79

AWS Lambda Developer Guide
Walkthrough 6: Handling Mobile User Application Events

(Node.js)

http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html

The mobile application processes events by invoking a Lambda function called
ExampleAndroidEventProcessor using the AWS Mobile SDK for Android, and passing the event data to
the function. The application events are not complex and the event data consists of a name (first name
and last name) as shown:

{ firstName: 'value1', lastName: 'value2' }

The Lambda function then processes the event and sends back a response.

Use the following Node.js code to create the ExampleAndroidEventProcessor function in AWS Lambda.

exports.handler = function(event, context) {
 console.log("Received event: ", event);
 context.succeed("Hello "+ event.firstName + ". You are using " + context.cli
entContext.deviceManufacturer);
}

The code does the following two things only:

• The console.log() statement causes AWS Lambda to write logs Amazon CloudWatch Logs. In this
case it writes the incoming event data to Amazon CloudWatch Logs.

• Upon successful execution, the context.succeed() method sets the response body to the string
representation of its parameter. For information about the context.succeed() method , see
Programming Model (Node.js) (p. 32).Your mobile code processes this response by simply displaying
the message using the Android Toast class.

Note
The way that the mobile application invokes a Lambda function as shown in this walkthrough is
an example of the AWS Lambda "request-response" model in which an application invokes a
Lambda function and receives a response in real time. For more information, see Programming
Model (Node.js) (p. 32).

Implementation Summary
Note the following about the mobile application:

• The mobile application must have valid security credentials and permissions to invoke a Lambda
function.

The mobile application in this walkthrough uses the Amazon Cognito service to manage user identities,
authentication, and permissions. As part of the application setup, you create an Amazon Cognito identity
pool to store user identities and define permissions. For more information, see Amazon Cognito.

• This example mobile application does not require a user to log in.

A mobile application can require its users to log in using public identity providers such as Amazon and
Facebook. The scope of this walkthrough is limited and assumes that the mobile application users are
unauthenticated. It is essential that you understand this before you create an Amazon Cognito identity
pool and configure user permissions.

For this walkthrough, configure the Amazon Cognito identity pool as follows:

• Enable access for unauthenticated identities.

80

AWS Lambda Developer Guide
Walkthrough 6: Handling Mobile User Application Events

(Node.js)

http://aws.amazon.com/cognito/

In this walkthrough, the mobile application users are unauthenticated (within the mobile application),
so Amazon Cognito provides a unique identifier and temporary AWS credentials for these users to
invoke the Lambda function.

• Add permission to invoke the Lambda function in the access policy associated with the IAM role for
unauthenticated users.

An identity pool has two associated IAM roles, one for authenticated and one for unauthenticated
application users. Depending on the application user, Amazon Cognito assumes one of the roles when
it generates temporary credentials for the user. In this example, Amazon Cognito assumes the role for
unauthenticated users to obtain temporary credentials. Using the temporary credentials, the application
user can then invoke the Lambda function.

The access policy associated with the IAM role determines what the mobile application user can do
when using the temporary credentials. In this walkthrough, you update the policy to allow permission
to invoke the ExampleAndroidEventProcessor function.

The following diagram illustrates the application flow:

• Step 1: The mobile application sends the request to Amazon Cognito, and Amazon Cognito uses the
identity pool ID in the requests.

• Step 2: The application receives temporary security credentials from Amazon Cognito.

Amazon Cognito assumes the role associated with the identity pool and generates temporary credentials.
What the application can do with the temporary credentials is limited by the access policy associated
with the role.The AWS SDK can cache the temporary credentials so that the application does not send
a request to Amazon Cognito each time it needs to invoke a Lambda function.

• Step 3: The mobile application invokes the Lambda function using temporary credentials (Cognito
Identity).

AWS Lambda executes the function and responds immediately (in real time) with output as follows:

• Step 4: AWS Lambda assumes the execution role to execute your Lambda function on your behalf.

• Step 5: The Lambda function executes.

• Step 6: AWS Lambda returns results to the mobile application.

81

AWS Lambda Developer Guide
Walkthrough 6: Handling Mobile User Application Events

(Node.js)

Now you are ready to try the steps.

Note that after the initial preparation, the walkthrough is divided into two main sections:

• First, you perform the necessary setup to create a Lambda function. Instead of creating an event source
(the Android mobile application), you invoke the Lambda function manually using sample event data.
This intermediate testing verifies that the function works.

• Second, you create an Amazon Cognito identity pool to manage authentication and permissions, and
create the example Android application.

When you run the Android application, it creates sample events and invokes your Lambda function.

Next Step
Step 1: Preparing for the Walkthrough (p. 82)

Step 1: Preparing for the Walkthrough
We recommend that you do not use the root credentials of your AWS account. Instead, create an
administrator user in your account and use the administrator user credentials in setting up the walkthrough.
If you already have an administrator user, you can skip this step.

For instructions to create an administrator user, see Set Up an AWS Account and Create an Administrator
User (p. 12).

Note
The walkthrough assumes you are creating a Lambda function and an Amazon Cognito identity
pool in the us-west-2 region. If you want to use a different AWS region, make sure you create
these resources in the same region.You also need to update the example mobile application
code by providing the specific region that you want to use.

Next Step

Step 2: Create and Test the Lambda Function (p. 82)

Step 2: Create and Test the Lambda Function
Use the AWS Lambda console to create the Lambda function. Before you follow the steps, note the
following:

• Specify ExampleAndroidEventProcessor as the function name.

If you use any other name, you must specify that name in the access policy associated with the IAM
role in the Amazon Cognito identity pool that you will create in the next section.

• Use the "Hello World" code template.

• Choose Edit code inline and replace the console-provided code by the following JavaScript code:

exports.handler = function(event, context) {
 console.log("Received event: ", event);
 context.succeed("Hello "+ event.firstName + "using " + context.clientCon
text.deviceManufacturer);
}

• For the execution role, select the Basic Execution Role.

82

AWS Lambda Developer Guide
Walkthrough 6: Handling Mobile User Application Events

(Node.js)

Your JavaScript code (Lambda function) only writes logs to CloudWatch logs and the console.log()
statement simply writes the incoming event to CloudWatch logs, so the permissions granted to the
Basic Execution Role are sufficient for this application.

Now you are ready to create a Lambda function and test it manually.You can follow the steps in the
Getting Started exercise to create and test the Lambda function.

• For instruction to create the Lambda function, see Step 1: Create a Lambda Function (p. 17).

• Test the function by manually invoking it in the Lambda console. Use the following sample event data
in the console:

{
 "firstName": "first-name",
 "lastName": "last-name"
}

For instructions, see Step 2: Invoke the Lambda Function Manually (p. 19).

Next Step

Step 3: Create an Amazon Cognito Identity Pool (p. 83)

Step 3: Create an Amazon Cognito Identity Pool
In this section, you create an Amazon Cognito identity pool. The identity pool has two IAM roles.You
update the IAM role for unauthenticated users and grant permission to execute the
ExampleAndroidEventProcessor Lambda function.

For more information about IAM roles, go to IAM Roles (Delegation and Federation) in the IAM User
Guide.

For more information about Amazon Cognito services, go to the Amazon Cognito product detail page.

To create an identity pool

1. Using the IAM User Sign-In URL, sign in to the Amazon Cognito console as adminuser.

2. Create a new identity pool called ExampleAndroidEventProcessorPool. Before you follow the procedure
to create an identity pool, note the following:

• The identity pool you are creating must allow access to unauthenticated identities because our
example mobile application does not require a user log in (the application users are
unauthenticated). In this case, select the Enable access to unauthenticated identities
option.

• The unauthenticated application users need permission to invoke the Lambda function. To enable
this, add the following statement to allow the lambda:InvokeFunction action for the specific
Lambda function.

{
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-west-2:account-id:function:ExampleAndroid

83

AWS Lambda Developer Guide
Walkthrough 6: Handling Mobile User Application Events

(Node.js)

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html
http://aws.amazon.com/cognito/

EventProcessor"
]
}

The Resource ARN identifies your Lambda function for which you are granting the
lambda:InvokeFunction action and ExampleAndroidEventProcessor is the Lambda function
name that you created in the preceding step.

Update the access policy when the identity pool is being created. The resulting policy will be as
follows:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "mobileanalytics:PutEvents",
 "cognito-sync:*"
],
 "Resource":[
 "*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "lambda:invokefunction"
],
 "Resource":[
 "arn:aws:lambda:us-west-2:account-id:function:ExampleAndroid
EventProcessor"
]
 }
]
}

Note
After creating the identity pool, go to the IAM console, find the role for unauthenticated
users, and edit the access policy. Make sure you write down the IAM role name for the
unauthenticated users so that you can search for it in the IAM console.

For instructions about how to create an identity pool, log in to the Amazon Cognito console and follow
the New Identity Pool wizard.

Write down the identify pool ID.You specify this ID in your mobile application. The application uses
this ID when it sends request to Amazon Cognito to request for temporary security credentials.

Next Step

Step 4: Create a Mobile User Application for Android (p. 85)

84

AWS Lambda Developer Guide
Walkthrough 6: Handling Mobile User Application Events

(Node.js)

https://console.aws.amazon.com/cognito/home

Step 4: Create a Mobile User Application for Android
Now you can create a simple Android mobile application that generates events and invokes Lambda
functions by passing the event data as parameters.

The following instructions have been verified using Android studio.

1. Create a new Android project called AndroidEventGenerator using the following configuration:

• Select the Phone and Tablet platform.

• Choose Blank Activity.

2. In the build.gradle (Module:app) file, add the following in the dependencies section:

compile 'com.amazonaws:aws-android-sdk-core:2.2.+'
compile 'com.amazonaws:aws-android-sdk-lambda:2.2.+'

3. Build the project so that the required dependencies are downloaded, as needed.

4. In the Android application manifest (AndroidManifest.xml), add the following permissions so that your
application can connect to the Internet.You can add them just before the </manifest> end tag.

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

5. In MainActivity, add the following imports:

import com.amazonaws.mobileconnectors.lambdainvoker.*;
import com.amazonaws.auth.CognitoCachingCredentialsProvider;
import com.amazonaws.regions.Regions;

6. In the package section, specify the appropriate package name (as shown below
com.example.....lambdaeventgenerator). Add a new class called NameInfo, instances of
which act as the POJO (Plain Old Java Object) for event data which consists of first and last name.

package com.example....lambdaeventgenerator;
public class NameInfo {
 private String firstName;
 private String lastName;

 public NameInfo() {}

 public NameInfo(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {

85

AWS Lambda Developer Guide
Walkthrough 6: Handling Mobile User Application Events

(Node.js)

 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
}

7. In the specified package (as shown below com.example.....lambdaeventgenerator), create an
interface called MyInterface for invoking the ExampleAndroidEventProcessor Lambda function. Note
that the @LambdaFunction annotation in the code maps the specific client method to the same-name
Lambda function. For more information about this annotation, go to AWS Lambda in the AWS SDK
for Android Developer Guide.

package com.example.....lambdaeventgenerator;
import com.amazonaws.mobileconnectors.lambdainvoker.LambdaFunction;
public interface MyInterface {

 /**
 * Invoke the Lambda function "ExampleAndroidEventProcessor".
 * The function name is the method name.
 */
 @LambdaFunction
 String ExampleAndroidEventProcessor(NameInfo nameInfo);

}

8. To keep the application simple, we are going to add code to invoke the Lambda function in the
onCreate() event handler. In MainActivity, add the following code toward the end of the onCreate()
code.

// Create an instance of CognitoCachingCredentialsProvider
CognitoCachingCredentialsProvider cognitoProvider = new CognitoCachingCreden
tialsProvider(
 this.getApplicationContext(), "Identity-pool-id", Regions.US_WEST_2);

// Create LambdaInvokerFactory, to be used to instantiate the Lambda proxy.
LambdaInvokerFactory factory = new LambdaInvokerFactory(this.getApplication
Context(),
 Regions.UW_WEST_2, cognitoProvider);

// Create the Lambda proxy object with a default Json data binder.
// You can provide your own data binder by implementing
// LambdaDataBinder.
final MyInterface myInterface = factory.build(MyInterface.class);

NameInfo nameInfo = new NameInfo("John", "Doe");
// The Lambda function invocation results in a network call.
// Make sure it is not called from the main thread.
new AsyncTask<NameInfo, Void, String>() {
 @Override
 protected String doInBackground(NameInfo... params) {
 // invoke "echo" method. In case it fails, it will throw a
 // LambdaFunctionException.

86

AWS Lambda Developer Guide
Walkthrough 6: Handling Mobile User Application Events

(Node.js)

http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/lambda.html

 try {
 return myInterface.ExampleAndroidEventProcessor(params[0]);
 } catch (LambdaFunctionException lfe) {
 Log.e("Tag", "Failed to invoke echo", lfe);
 return null;
 }
 }

 @Override
 protected void onPostExecute(String result) {
 if (result == null) {
 return;
 }

 // Do a toast
 Toast.makeText(MainActivity.this, result, Toast.LENGTH_LONG).show();

 }
}.execute(nameInfo);

9. Run the code and verify as follows:

• The Toast.makeText() displays the response returned.

• Verify that CloudWatch Logs shows the log created by the Lambda function. It should show the
event data (first name and last name).You can also verify this in the AWS Lambda console.

87

AWS Lambda Developer Guide
Walkthrough 6: Handling Mobile User Application Events

(Node.js)

Authoring Lambda Functions in
Java

This section explains how to author your Lambda functions in Java. We recommend you first review the
information in AWS Lambda: How it Works (p. 3) and make sure you are familiar with core AWS Lambda
concepts such as function, event source, event source mapping, Lambda permission model, and resource
model.You can then review the topics in this section for information specific to creating Lambda functions
in Java.

Topics

• Getting Started (Java) (p. 88)

• Creating a Deployment Package (Java) (p. 93)

• Programming Model (Java) (p. 101)

• Walkthroughs (Java) (p. 116)

Getting Started: Authoring AWS Lambda Code
in Java

Topics

• Introduction (p. 88)

• Step 1: Create Deployment Package (p. 90)

• Step 2: Create Lambda Function (p. 90)

• Step 3: Test the Lambda Function (p. 92)

Introduction
In this Getting Started exercise, you will use the following Java code example to create your Lambda
function.

package example;

88

AWS Lambda Developer Guide
Getting Started (Java)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;

public class Hello {
 public String myHandler(int myCount, Context context) {
 LambdaLogger logger = context.getLogger();
 logger.log("received : " + myCount);
 return String.valueOf(myCount);
 }
}

The programming model explains how to write your Java code in detail, for example the input/output
types AWS Lambda supports. For more information about the programming model, see Programming
Model for Authoring Lambda Functions in Java (p. 101). For now, note the following about this code:

• When you package and upload this code to create your Lambda function, you will specify the
example.Hello::myHandler method reference as the handler.

The name "myHandler" is arbitrary.You can name the method anything you want.

When AWS Lambda executes the Lambda function, it invokes this handler. The first parameter is the
input to the handler which can be event data (published by an event source) or custom input you provide
such as a string or any custom data object. In order for AWS Lambda to successfully invoke this handler
the function must be invoked with input data that can be serialized into the data type of the input
parameter.

• The handler in this example uses int type for input and String for output.

AWS Lambda supports input/output of primitive Java types (such as String and int), POJO types, and
Stream types. For this example, the handler uses int type for input and String type for output - when
you invoke this function you will pass a sample int (for example, 123).

• The code specifies the return statement.

The output value of the code (specified in the return statement) is used differently depending on how
the function is invoked:

• RequestResponse invocation type: In this case Lambda function can return response in real-time.
This is used for synchronous applications as well as testing your function using the AWS Lambda
console. In this case, the response gets returned to the caller; for example, if you invoke the above
sample using the AWS Lambda console, you will see a string output as a result.

Note
We recommend not using void response so you can test response in real-time because the
console uses the RequestResponse as the invocation type.

• Event invocation type: In this case AWS Lambda executes the function asynchronously. When you
use AWS Lambda with event sources such as Amazon S3, Amazon Kinesis, and Amazon SNS,
these event source invoke the Lambda function using the Event invocation type. In this case, the
response type is not persisted or used anywhere.

You will test the Lambda function using the console. And console supports only the "RequestResponse"
invocation type. Any results the Lambda function returns will appear in the console.

• The handler includes the optional Context parameter. In the code we use the LambdaLogger provided
by the Context object to write log entries to CloudWatch logs. For information about using the Context
object, see The Context Object (Java) (p. 112).

First, you need to package this code and any dependencies into a deployment package.Then, you upload
the deployment package to AWS Lambda to create your Lambda function. Lastly, you test the code by
invoking the Lambda function manually using sample event data.

89

AWS Lambda Developer Guide
Introduction

Step 1: Create Deployment Package
Your deployment package can be a .zip file or a standalone .jar.You can use any build and packaging
tool you are familiar with to create a deployment package. The following sections provide examples of
how to use Maven build tool to create a standalone .jar and how to use a Gradle build tool to create a
.zip file:

• If you want to create a .jar file as your deployment package, click one of the following links:

Creating a .jar Deployment Package Using Maven without any IDE (Java) (p. 93)

Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java) (p. 96)

• If you want to create a .zip file as your deployment package, click the following link:

Creating a .zip Deployment Package (Java) (p. 98)

After you verify your deployment package is created, go the next section to upload the package to AWS
Lambda to create a Lambda function.

Step 2: Create Lambda Function
This section provides steps to create a Lambda function using the AWS Management Console and the
AWS CLI.

Note
For this Getting Started exercise, we assume you are creating the Lambda function in the US
West (Oregon) region.

To create a Lambda function using AWS Management Console

1. Sign in to the AWS Management Console, open the AWS Lambda console and make sure that you
have the US West (Oregon) region selected.

2. Choose Create a Lambda function.

3. In Step 1: Select blueprint, choose the hello-world blueprint.

4. In Step 2: Configure function, specify the following values.

• Enter a function name (for example, getting-started-lambda-function-in-java).

• Select Java 8 from the Runtime list.

• Choose Upload a .ZIP file, click Upload, and then choose the .jar (or .zip file) you created in the
preceding section.

Note that you can also upload the .jar or .zip file to an S3 bucket, and provide the S3 bucket name
and object key.

• In Handler, specify package.class-name::handler (in the Java code in this
example, example.Hello::myHandler).

• For the IAM Role, create a role by choosing the Basic execution role from the list.

If this is your first time, AWS Management Console will create an IAM role called
basic_execution_role in your account with an access policy that allows only permission to
write logs to CloudWatch Logs. Our example Java code does not access any other AWS resources
so these permissions are sufficient.

• In Memory, specify 512.

• In Timeout, specify 15 seconds.

90

AWS Lambda Developer Guide
Step 1: Create Deployment Package

5. In Step 3: Review, click Create Function.

To create Lambda function using AWS CLI

1. At the command prompt, make sure you are in the project directory (project-dir).

2. In the IAM console create an execution role called lambda_basic_execution with the following
access policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:*"
],
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

Note
If you previously used the Lambda console and specified the basic execution role as the
role, the console already has created the lambda_basic_execution role with this access

91

AWS Lambda Developer Guide
Step 2: Create Lambda Function

policy.You can skip the step to create the role, but you will need to get the role ARN from
the IAM console.

3. Write down the lambda_basic_execution role ARN.You will need the role ARN when creating your
Lambda function.

4. Run the following create-function command to create a
getting-started-lambda-function-in-java Lambda function.

You need to update the command by providing the execution role. Note the command specifies
java8 as the runtime because your Lambda function code is written in Java.

aws lambda create-function \
--region us-west-2 \
--function-name getting-started-lambda-function-in-java \
--zip-file fileb://deployment-package (zip or jar) path \
--role arn:aws:iam::account-id:role/lambda_basic_execution \
--handler example.Hello::myHandler \
--runtime java8 \
--timeout 15 \
--memory-size 512

Note the --handler parameter identifies package.class::handler in your Java code. When
AWS Lambda executes this Lambda function it will invoke the handler you specify when creating the
Lambda function.

AWS Lambda creates a Lambda function and returns a response. An example is shown:

 {
 "FunctionName": "getting-started-lambda-function-in-java",
 "CodeSize": 22617,
 "MemorySize": 512,
 "FunctionArn": "arn:aws:lambda:us-west-2:account-id:function:getting-
started-lambda-function-in-java",
 "Handler": "example.Hello::handler",
 "Role": "arn:aws:iam::account-id:role/lambda_basic_execution",
 "Timeout": 15,
 "LastModified": "2015-05-30T23:15:26.716+0000",
 "Runtime": "java8",
 "Description": ""
}

Step 3:Test the Lambda Function
Now you have a Lambda function created in AWS Lambda. The Lambda function handler can receive
input data as int and returns the string representation of the same.The function also logs a string "received:
input int" to CloudWatch logs.

For this walkthrough, you don't write an application that generates int inputs and invokes your Lambda
function. Instead, you manually invoke the Lambda function using a sample int as the input data.You
can invoke the Lambda function manually using either the console or the AWS CLI.

Manually invoke a Lambda function using the console

1. Sign in to the AWS Management Console and open the AWS Lambda console, and make sure you
have the US West (Oregon) region selected.

92

AWS Lambda Developer Guide
Step 3:Test the Lambda Function

2. Choose the function.

3. In the function page, click Test.

4. The Input sample event page will show Hello World sample event. Replace the sample event by
an integer as sample event data (for example, 123) and click Submit.

If you review the Lambda function, you will notice that the first parameter of the handler (that is,
myHandler) is of int type, so you pass a int input.

The console sends an invoke request using RequestResponse invocation type (that is, synchronous
execution). AWS Lambda executes the function on your behalf by invoking the handler. AWS Lambda
passes the event data (in this case, an integer say 123) to the handler as the first parameter. The
Lambda function executes and returns a string (in this case, "123") back in real-time.

Manually invoke a Lambda function using AWS CLI

1. Run the following CLI command to invoke your Lambda function.

aws lambda invoke \
--region us-west-2 \
--function-name getting-started-lambda-function-in-java \
--payload 123 \
--invocation-type RequestResponse \
/tmp/response

Note that RequestResponse is the invocation type by default. The parameter is specified only for
readability.

2. After AWS Lambda executes the function, it returns results in real-time.You can verify the output in
the /tmp/response file.

Creating a Deployment Package (Java)
Your deployment package can be a .zip file or a standalone jar, it is your choice.You can use any build
and packaging tool you are familiar with to create a deployment package.

We provide examples of using Maven to create standalone jars and using Gradle to create a .zip file. For
more information, see the following topics:

Topics

• Creating a .jar Deployment Package Using Maven without any IDE (Java) (p. 93)

• Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java) (p. 96)

• Creating a .zip Deployment Package (Java) (p. 98)

• Authoring Lambda Functions Using Eclipse IDE and AWS SDK Plugin (Java) (p. 101)

Creating a .jar Deployment Package Using Maven
without any IDE (Java)
This section shows how to package your Java code into a deployment package using Maven at the
command line.

Topics

• Before You Begin (p. 94)

93

AWS Lambda Developer Guide
Creating a Deployment Package (Java)

• Project Structure Overview (p. 94)

• Step 1: Create Project (p. 94)

• Step 2: Build Project (Create Deployment Package) (p. 96)

Before You Begin
You will need to install the Maven command-line build tool. For more information, go to Maven. If you are
using Linux, check your package manager.

sudo apt-get install mvn

if you are using Homebrew

brew install maven

Project Structure Overview
After you set up the project, you should have the following folder structure:

proj-dir/pom.xml
proj-dir/src/main/java (your code goes here)

Your code will then be in the /java folder. For example, if your package name is "example" and you have
a Hello.java class in it, the structure will be:

proj-dir/src/main/java/example/Hello.java

After you build the project, the resulting .jar file (that is, your deployment package), will be in the
proj-dir/target subdirectory.

Step 1: Create Project
Follow the steps in this section to create a Java project.

1. Create a project directory (project-dir).

2. In the project-dir directory, create the following:

• Project Object Model file, pom.xml file. Add the following project information and configuration
details for Maven to build the project.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
tp://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 ht
tp://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>doc-examples</groupId>
 <artifactId>lambda-java-example</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>lambda-java-example</name>

94

AWS Lambda Developer Guide
Creating a .jar Deployment Package Using Maven without

any IDE (Java)

https://maven.apache.org/

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Note
• In the dependencies section, the groupId (that is, com.amazonaws) is the Amazon

AWS group ID for Maven artifacts in the Maven Central Repository. The artifactId
(that is, aws-lambda-java-core) is the AWS Lambda core library that provides definitions
of the RequestHandler, RequestStreamHandler, and the Context AWS Lambda
interfaces for use in your Java application. At the build time Maven resolves these
dependencies.

• In the plugins section, the Apache maven-shade-plugin is a plugin that Maven will
download and use during your build process. This plugin is used for packaging jars to
create a standalone .jar (a .zip file), your deployment package.

• If you are following other walkthrough topics in this guide, the specific walkthroughs
might require you to add more dependencies. Make sure to add those dependencies
as required.

3. In the project-dir, create the following structure:

project-dir/src/main/java

4. Under the /java subdirectory you add your Java files and folder structure, if any. For example, if
you Java package name is "example", and source code is "Hello.java", your directory structure looks
like this:

95

AWS Lambda Developer Guide
Creating a .jar Deployment Package Using Maven without

any IDE (Java)

project-dir/src/main/java/example/Hello.java

Step 2: Build Project (Create Deployment Package)
Now you can build the project using Maven at the command line.

1. At a command prompt change directory to the project directory (project-dir).

2. Run the following mvn command to build the project:

$ mvn package

The resulting .jar is saved as project-dir/target/lambda-java-example-1.0-SNAPSHOT.jar.
The .jar name is created by concatenating the artifactId and version in the POM.xml file.

The build creates this resulting .jar, using information in the pom.xml to do the necessary transforms.
This is a standalone .jar (.zip file) that includes all the dependencies.This is your deployment package
that you can upload to AWS Lambda to create a Lambda function.

Creating a .jar Deployment Package Using Maven
and Eclipse IDE (Java)
This section shows how to package your Java code into a deployment package using Eclipse IDE and
Maven plugin for Eclipse.

Topics

• Before You Begin (p. 96)

• Step 1: Create and Build a Project (p. 96)

Before You Begin
Install the Maven Plugin for Eclipse.

1. Start Eclipse. From the Help menu in Eclipse, choose Install New Software.

2. In the Install window, type http://download.eclipse.org/technology/m2e/releases in
the Work with: box, and choose Add.

3. Follow the steps to complete the setup.

Step 1: Create and Build a Project
In this step, you start Eclipse and create a Maven project.You will add the necessary dependencies, and
build the project. The build will produce a .jar, which is your deployment package.

1. Create a new Maven project in Eclipse.

a. From the File menu, choose New, and then choose Project.

b. In the New Project window, choose Maven Project.

c. In the New Maven Project window, choose Create a simple project, and leave other default
selections.

96

AWS Lambda Developer Guide
Creating a .jar Deployment Package Using Maven and

Eclipse IDE (Java)

d. In the New Maven Project, Configure project windows, type the following Artifact information:

• Group Id: doc-examples

• Artifact Id: lambda-java-example

• Version: 0.0.1-SNAPSHOT

• Packaging: jar

• Name: lambda-java-example

2. Add the aws-lambda-java-core dependency to the pom.xml file.

It provides definitions of the RequestHandler, RequestStreamHandler, and Context interfaces.
This allows you to compile code that you can use with AWS Lambda.

a. Open the context (right-click) menu for the pom.xml file, choose Maven, and then choose Add
Dependency.

b. In the Add Dependency windows, type the following values:

Group Id: com.amazonaws

Artifact Id: aws-lambda-java-core

Version: 1.0.0

Caution
If you are following other walkthrough topics in this guide, the specific walkthroughs
might require you to add more dependencies. Make sure to add those dependencies
as required.

3. Add Java class to the project.

a. Open the context (right-click) menu for the src/main/java subdirectory in the project, choose
New, and then choose Class.

b. In the New Java Class window, type the following values:

• Package: example

• Name: Hello

Caution
If you are following other walkthrough topics in this guide, the specific walkthroughs
might recommend different package name or class name.

c. Add your Java code. If you are following other walkthrough topics in this guide, add the provided
code.

4. Build the project.

Open the context (right-click) menu for the project in Package Explorer, choose Run As, and then
choose Maven Build. In the Edit Configuration window, type "package" in the Goals box.

Note
The resulting .jar, lambda-java-example-0.0.1-SNAPSHOT.jar, is not the final standalone
.jar that you can use as your deployment package. In the next step, you add the Apache

97

AWS Lambda Developer Guide
Creating a .jar Deployment Package Using Maven and

Eclipse IDE (Java)

maven-shade-plugin to create the standalone .jar. For more information, go to Apache
Maven Shade Plugin.

5. Add the maven-shade-plugin plugin and rebuild.

The maven-shade-plugin will take artifacts (jars) produced by the package goal (produces customer
code .jar), and created a standalone .jar that contains the compiled customer code, and the resolved
dependencies from the pom.xml.

a. Open the context (right-click) menu for the pom.xml file, choose Maven, and then choose Add
Plugin.

b. In the Add Plugin window, type the following values:

• Group Id: org.apache.maven.plugins

• Artifact Id: maven-shade-plugin

• Version: 2.3

c. Now build again.

This time we will create the jar as before, and then use the maven-shade-plugin to pull in
dependencies to make the standalone .jar.

i. Open the context (right-click) menu for the project, choose Run As, and then choose Maven
build.

ii. In the Edit Configuration windows, type package shade:shade in the Goals box.

iii. Choose Run.

You can find the resulting standalone .jar (that is, your deployment package), in the /target
subdirectory.

Open the context (right-click) menu for the /target subdirectory, choose Show In, choose
System Explorer, and you will find the lambda-java-example-0.0.1-SNAPSHOT.jar.

Creating a .zip Deployment Package (Java)
This section provides examples of creating .zip file as your deployment package.You can use any build
and packaging tool you like to create this zip. Regardless of the tools you use, the resulting .zip file must
have the following structure:

• All compiled class files and resource files at the root level.

• All required jars to run the code in the /lib directory.

Note
You can also build a standalone .jar (also a zipped file) as your deployment package. For
examples of creating standalone .jar using Maven, see Creating a Deployment Package
(Java) (p. 93).

The following examples use Gradle build and deployment tool to create the .zip.

Important
Minimum Gradle version 2.0 is required.

98

AWS Lambda Developer Guide
Creating a .zip Deployment Package (Java)

https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/

Before You Begin
You will need to download Gradle. For instructions, go to the gradle website, https://gradle.org/ .

Example 1: Creating .zip Using Gradle and the Maven Central
Repository
At the end of this walkthrough, you will have a project directory (proj-dir) with content having the
following structure:

proj-dir/build.gradle
proj-dir/src/main/java

The /java folder will contain your code. For example, if your package name is "example", and you have
a Hello.java class in it, the structure will be:

proj-dir/src/main/java/example/Hello.java

After you build the project, the resulting .zip file (that is, your deployment package), will be in the
proj-dir/build/distributions subdirectory.

1. Create a project directory (proj-dir).

2. In the proj-dir create build.gradle file and add the following content:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 compile (
 'com.amazonaws:aws-lambda-java-core:1.0.0',
 'com.amazonaws:aws-lambda-java-events:1.0.0'
)
}

task buildZip(type: Zip) {
 from compileJava
 from processResources
 into('lib') {
 from configurations.runtime
 }
}

build.dependsOn buildZip

Note

• The repositories section refers to Maven Central Repository. At the build time, it fetches
the dependencies (that is, the two AWS Lambda libraries) from Maven Central.

• The buildZip task describes how to create the deployment package .zip file.

99

AWS Lambda Developer Guide
Creating a .zip Deployment Package (Java)

https://gradle.org/

For example, if you unzip the resulting .zip file you should find any of the compiled class
files and resource files at the root level.You should also find a /lib directory with the
required jars for running the code.

• If you are following other walkthrough topics in this guide, the specific walkthroughs might
require you to add more dependencies. Make sure to add those dependencies as required.

3. In the project-dir, create the following structure:

project-dir/src/main/java

4. Under the /java subdirectory you add your Java files and folder structure, if any. For example, if
you Java package name is "example", and source code is "Hello.java", then your directory structure
looks like this:

project-dir/src/main/java/example/Hello.java

5. Run the following gradle command to build and package the project in a .zip file.

proj-dir> gradle build

6. Verify the resulting proj-dir.zip file in the proj-dir\build\distributions subdirectory.

7. Now you can upload the .zip file, your deployment package to AWS Lambda to create a Lambda
function and test it by manually invoking it using sample event data. For instruction, see Getting
Started: Authoring AWS Lambda Code in Java (p. 88).

Example 2: Creating .zip Using Gradle Using Local Jars
You may choose not to use the Maven Central repository. Instead have all the dependencies in the project
folder. In this case your project folder (proj-dir) will have the following structure:

proj-dir/jars (all jars go here)
proj-dir/build.gradle
proj-dir/src/main/java (your code goes here)

So if your Java code has example package and Hello.java class, the code will be in the following
subdirectory:

proj-dir/src/main/java/example/Hello.java

You build.gradle file should be as follows:

apply plugin: 'java'

dependencies {
 compile fileTree(dir: 'jars', include: '*.jar')
}

task buildZip(type: Zip) {
 from compileJava

100

AWS Lambda Developer Guide
Creating a .zip Deployment Package (Java)

 from processResources
 into('lib') {
 from configurations.runtime
 }
}

build.dependsOn buildZip

Note that the dependencies specify fileTree which identifies proj-dir/jars as the subdirectory that
will include all the required jars.

Now you build the package. Run the following gradle command to build and package the project in a .zip
file.

proj-dir> gradle build

Authoring Lambda Functions Using Eclipse IDE
and AWS SDK Plugin (Java)
Topics

AWS SDK Eclipse Toolkit provides an Eclipse plugin for you to both create a deployment package and
also upload it to create a Lambda function. If you can use Eclipse IDE as your development environment,
this plugin enables you to author Java code, create and upload a deployment package and create your
Lambda function. For more information, go to AWS Toolkit for Eclipse Getting Started Guide.

Programming Model for Authoring Lambda
Functions in Java

Your Lambda function code must be written in a stateless style, and have no affinity with the underlying
compute infrastructure.Your code should expect local file system access, child processes, and similar
artifacts to be limited to the lifetime of the request, and store any persistent state in Amazon S3, Amazon
DynamoDB, or another cloud storage service. Requiring functions to be stateless enables AWS Lambda
to launch as many copies of a function as needed to scale to the incoming rate of events and requests.
These functions may not always run on the same compute instance from request to request, and a given
instance of your Lambda function may be used more than once by AWS Lambda.

AWS Lambda provides the following two libraries:

• aws-lambda-java-core: This library provides the Context object, RequestStreamHandler, and the
RequestHandler interfaces.The Context object (The Context Object (Java) (p. 112)) provides runtime
information about your Lambda function. The predefined interfaces provide one way of defining your
Lambda function handler. For more information, see Leveraging Predefined Interfaces for Creating
Handler (Java) (p. 108).

• aws-lambda-java-events: This library provides predefined types that you can use when writing
Lambda functions to process events published by Amazon S3, Amazon Kinesis, Amazon SNS, and
Amazon Cognito. These classes help you process the event without having to write your own custom
serialization logic.

101

AWS Lambda Developer Guide
Authoring Lambda Functions Using Eclipse IDE and

AWS SDK Plugin (Java)

http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/

These libraries are not required but are provided as convenience for you when writing your Lambda code.
These libraries are available through the Maven Central Repository and can also be found on GitHub.

Topics

• Lambda Function Handler (Java) (p. 102)

• The Context Object (Java) (p. 112)

• Logging (Java) (p. 114)

• Exceptions (Java) (p. 115)

Lambda Function Handler (Java)
At the time you create a Lambda function you specify a handler that AWS Lambda can invoke when the
service executes the Lambda function on your behalf.

Lambda supports two approaches for creating a handler:

• Loading handler method directly without having to implement an interface. This section describes this
approach.

• Implementing standard interfaces provided as part of aws-lambda-java-core library (interface
approach). For more information, see Leveraging Predefined Interfaces for Creating Handler
(Java) (p. 108).

The general syntax for the handler is as follows:

outputType handler-name(inputType input, Context context) {
 ...
}

In order for AWS Lambda to successfully invoke a handler it must be invoked with input data that can be
serialized into the data type of the input parameter.

In the syntax, note the following:

• inputType:The first handler parameter is the input to the handler, which can be event data (published
by an event source) or custom input that you provide such as a string or any custom data object. In
order for AWS Lambda to successfully invoke this handler, the function must be invoked with input
data that can be serialized into the data type of the input parameter.

• outputType: If you plan to invoke the Lambda function synchronously (using the RequestResponse
invocation type), you can return the output of your function using any of the supported data types. For
example, if you use a Lambda function as a mobile application backend, you are invoking it
synchronously.Your output data type will be serialized into JSON.

If you plan to invoke the Lambda function asynchronously (using the Event invocation type), the
outputType should be void. For example, if you use AWS Lambda with event sources such as
Amazon S3, Amazon Kinesis, and Amazon SNS, these event sources invoke the Lambda function
using the Event invocation type.

• The inputType and outputType can be one of the following:

• Primitive Java types (such as String or int).

• Predefined AWS event types defined in the aws-lambda-java-events library.

For example S3Event is one of the POJOs predefined in the library that provides methods for you
to easily read information from the incoming Amazon S3 event.

102

AWS Lambda Developer Guide
Handler (Java)

• You can also write your own POJO class. AWS Lambda will automatically serialize and deserialize
input and output JSON based on the POJO type.

For more information, see Handler Input/Output Types (Java) (p. 104).

• You can omit the Context object from the handler method signature if it isn't needed. For more
information, see The Context Object (Java) (p. 112).

For example, consider the following Java example code used in the Getting Started exercise for Java.
For more information, see Getting Started: Authoring AWS Lambda Code in Java (p. 88).

package example;

import com.amazonaws.services.lambda.runtime.Context;

public class Hello {
 public String myHandler(int myCount, Context context) {
 return myCount.toString();
 }
}

In this example input is int type and output is String type.You packaged this example code and
dependencies created a Lambda function, and specified example.Hello::myHandler
(package.class::method-reference) as the handler, as shown in the following create-function
CLI command from the Getting Started exercise for Java.

aws lambda create-function \
--region us-west-2 \
--function-name getting-started-lambda-function-in-java \
--zip-file fileb://deployment-package (zip or jar) path \
--role arn:aws:iam::account-id:role/lambda_basic_execution \
--handler example.Hello::myHandler \
--runtime java8 \
--timeout 15 \
--memory-size 512

In the example Java code, the first handler parameter is the input to the handler (myHandler), which can
be event data (published by an event source such as Amazon S3) or custom input you provide such as
a int (as in this example) or any custom data object.

Handler Overload Resolution
If your Java code contains multiple methods with same name as the handler name, then AWS Lambda
uses the following rules to pick a method to invoke:

1. Select the method with the largest number of parameters.

2. If two or more methods have the same number of parameters, then AWS Lambda selects the method
that has the Context as the last parameter.

If none or all of these methods have the Context parameter, then the behavior is undefined.

Additional Information
The following topics provide more information about the handler.

103

AWS Lambda Developer Guide
Handler (Java)

• For more information about the handler input and output types, see Handler Input/Output Types
(Java) (p. 104).

• For information about using predefined interfaces to create a handler, see Leveraging Predefined
Interfaces for Creating Handler (Java) (p. 108).

If you implement these interfaces, they can help you compile time validation for your handler method
signature.

• If an exception comes out of your Lambda function, AWS Lambda records metrics that an error occurred
in CloudWatch. For more information, see Exceptions (Java) (p. 115).

Handler Input/Output Types (Java)
When AWS Lambda executes the Lambda function, it invokes this handler. The first parameter is the
input to the handler which can be event data (published by an event source) or custom input you provide
such as a string or any custom data object.

AWS Lambda supports the following input/output types for a handler:

• Simple Java types (AWS Lambda supports the String, Integer, Boolean, Map, and List types)

• POJO (Plain Old Java Object) type

• Stream type (If you do not want to use POJOs or if Lambda's serialization approach does not meet
your needs, you can use the byte stream implementation. For more information, see Example: Using
Stream for Handler Input/Output (Java) (p. 107).)

Handler Input/Output: String Type

The following Java class shows a handler called myHandler that uses String type for input and output.

package example;

import com.amazonaws.services.lambda.runtime.Context;

public class Hello {
 public String myHandler(String name, Context context) {
 return String.format("Hello %s.", name);
 }
}

You can have similar handler functions for other simple Java types.

Note
The return type should be void if you plan to invoke the Lambda function asynchronously (using
Event invocation type). For more information, see Invoke (p. 178).

To test an end-to-end example, see Getting Started: Authoring AWS Lambda Code in Java (p. 88).

Handler Input/Output: POJO Type

The following Java class shows a handler called myHandler that uses POJOs for input and output.

package example;

import com.amazonaws.services.lambda.runtime.Context;

104

AWS Lambda Developer Guide
Handler (Java)

public class HelloPojo {

 // Define two classes/POJOs for use with Lambda function.
 public static class RequestClass {
 ...
 }

 public static class ResponseClass {
 ...
 }

 public static ResponseClass myHandler(RequestClass request, Context context){

 String greetingString = String.format("Hello %s, %s.", request.getFirst
Name(), request.getLastName());
 return new ResponseClass(greetingString);
 }
}

AWS Lambda serializes based on standard bean naming conventions (see The Java EE 6 Tutorial).You
should use mutable POJOs with public getters and setters.

Note
You shouldn't rely on any other features of serialization frameworks such as annotations. If you
need to customize the serialization behavior, you can use the raw byte stream to use your own
serialization.

If you use POJOs for input and output, you need to provide implementation of the RequestClass and
ResponseClass types. For an example, see Example: Using POJOs for Handler Input/Output
(Java) (p. 105).

Example: Using POJOs for Handler Input/Output (Java)

Suppose your application events generate data that includes first name and last name as shown:

{ firstName: 'John', lastName: 'Doe' }

For this example, the handler receives this JSON and returns the string "Hello John Doe".

public static ResponseClass myHandler(RequestClass request, Context context){
 String greetingString = String.format("Hello %s, %s.", request.firstName,
 request.lastName);
 return new ResponseClass(greetingString);
}

To create a Lambda function with this handler, you must provide implementation of the input and output
types as shown in the following Java example. The HelloPojo class defines the RequestClass and
ResponseClass and the handler method.

package example;

import com.amazonaws.services.lambda.runtime.Context;

public class HelloPojo {

105

AWS Lambda Developer Guide
Handler (Java)

https://docs.oracle.com/javaee/6/tutorial/doc/gipks.html

 // Define two classes/POJOs for use with Lambda function.
 public static class RequestClass {
 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public RequestClass(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public RequestClass() {
 }
 }

 public static class ResponseClass {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass() {
 }

 }

 public static ResponseClass myHandler(RequestClass request, Context context){

 String greetingString = String.format("Hello %s, %s.", request.firstName,
 request.lastName);
 return new ResponseClass(greetingString);
 }
}

106

AWS Lambda Developer Guide
Handler (Java)

Note
The get and set methods are required in order for the POJOs to work with AWS Lambda's built
in JSON serializer. The constructors that take no arguments are usually not required, however
in this example we provided other constructors and therefore we need to explicitly provide the
zero argument constructors.

You can upload this code as your Lambda function and test as follows:

• Using the preceding code, create a deployment package.

• Upload the deployment package to AWS Lambda and create your Lambda function.You can do this
using the console or AWS CLI.

• Invoke the Lambda function manually using the console or the CLI.You can use provide sample JSON
event data when you manually invoke your Lambda function. For example,

{ "firstName":"John", "lastName":"Doe" }

Follow instructions provided in the Getting Started exercise for Java. For more information, see Getting
Started: Authoring AWS Lambda Code in Java (p. 88). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-core library dependency.

• When you create the Lambda function specify example.HelloPojo::myHandler
(package.class::method) as the handler value.

Example: Using Stream for Handler Input/Output (Java)

If you do not want to use POJOs or if Lambda's serialization approach does not meet your needs, you
can use the byte stream implementation. In this case, you can use the InputStream and OutputStream
as the input and output types for the handler. An example hander function is shown:

public void handler(InputStream inputStream, OutputStream outputStream, Context
 context) {
 ...
}

Note that in this case the handler function uses parameters for both the request and response streams.

The following is a Lambda function example that implements the handler that uses InputStream and
OutputStream types for the input and output parameters.

package example;

import java.io.InputStream;
import java.io.OutputStream;

import com.amazonaws.services.lambda.runtime.Context;

public class Hello {
 public static void handler(InputStream inputStream, OutputStream output
Stream, Context context) throws IOException {
 int letter;
 while((letter = inputStream.read()) != -1)
 {
 outputStream.write(Character.toUpperCase(letter));

107

AWS Lambda Developer Guide
Handler (Java)

 }
 }
}

You can do the following to test the code:

• Using the preceding code, create a deployment package.

• Upload the deployment package to AWS Lambda and create your Lambda function.You can do this
using the console or AWS CLI.

• You can manually invoke the code by providing sample input. For example:

test

Follow instructions provided in the Getting Started exercise for Java. For more information, see Getting
Started: Authoring AWS Lambda Code in Java (p. 88). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-core library dependency.

• When you create the Lambda function specify "example.Hello::handler" (package.class::method) as
handler value.

Leveraging Predefined Interfaces for Creating Handler (Java)
Instead of loading handler method directly without implementing an interface (see Lambda Function
Handler (Java) (p. 102)) for your Lambda function, you can implement one of the predefined interfaces,
RequestStreamHandler or RequestHandler and provide implementation for the handleRequest
method that the interfaces provide.You implement one of these interfaces depending on whether you
want to use standard Java types or custom POJO types for your handler input/output (where AWS Lambda
automatically serializes and deserializes the input and output to Match your data type), or customize the
serialization using the Stream type.

Note
These interfaces are available in the aws-lambda-java-core library.

When you implement standard interfaces, they help you validate your method signature at compile time.

If you implement one of the interfaces, you specify package.class in your Java code as the handler
when you create the Lambda function. For example, the following is the modified create-function
CLI command from the getting started. Note that the --handler parameter specifies "example.Hello"
value:

aws lambda create-function \
--region us-west-2 \
--function-name getting-started-lambda-function-in-java \
--zip-file fileb://deployment-package (zip or jar)
 path \
--role arn:aws:iam::account-id:role/lambda_basic_execution \
--handler example.Hello \
--runtime java8 \
--timeout 15 \
--memory-size 512

The following sections provide examples of implementing these interfaces.

108

AWS Lambda Developer Guide
Handler (Java)

Example 1: Creating Handler with Custom POJO Input/Output (Leverage
the RequestHandler Interface)

The example Hello class in this section implements the RequestStreamHandler interface.The interface
defines handleRequest() method that takes in event data as input parameter of the Request type and
returns an POJO object of the Response type:

public Response handleRequest(Request request, Context context) {
 ...
}

The Hello class with sample implementation of the handleRequest() method is shown. For this
example, we assume event data consists of first name and last name.

package example;

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.Context;

public class Hello implements RequestHandler<Request, Response> {

 public Response handleRequest(Request request, Context context) {
 String greetingString = String.format("Hello %s %s.", request.firstName,
 request.lastName);
 return new Response(greetingString);
 }
}

For example, if the event data in the Request object is:

{
 "firstName":"value1",
 "lastName" : "value2"
}

The method returns a Response object as follows:

{
 "greetings": "Hello value1 value2."
}

Next, you need to implement the Request and Response classes.You can use the following
implementation for testing:

The Request class:

package example;

public class Request {
 String firstName;
 String lastName;

 public String getFirstName() {

109

AWS Lambda Developer Guide
Handler (Java)

 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Request(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public Request() {
 }
}

The Response class:

package example;

public class Response {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public Response(String greetings) {
 this.greetings = greetings;
 }

 public Response() {
 }
}

You can create a Lambda function from this code and test the end-to-end experience as follows:

• Using the preceding code, create a deployment package.

• Upload the deployment package to AWS Lambda and create your Lambda function.

• Test the Lambda function using either the console or CLI.You can specify any sample JSON data that
conform to the getter and setter in your Request class, for example:

110

AWS Lambda Developer Guide
Handler (Java)

{
 "firstName":"John",
 "lastName" : "Doe"
}

The Lambda function will return the following JSON in response.

{
 "greetings": "Hello John, Doe."
}

Follow instructions provided in the getting started (see Getting Started: Authoring AWS Lambda Code in
Java (p. 88)). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-core library dependency.

• When you create the Lambda function specify "example.Hello" (package.class) as handler value.

Example 2: Creating Handler with Stream Input/Output (Leverage the
RequestStreamHandler Interface)

The Hello class in this example implements the RequestStreamHandler interface. The interface
defines handleRequest method as follows:

public void handleRequest(InputStream inputStream, OutputStream outputStream,
Context context)
 throws IOException {
 ...
}

The Hello class with sample implementation of the handleRequest() handler is shown. The handler
processes incoming event data (for example, a string "hello") by simply converting it to uppercase and
return it.

package example;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import com.amazonaws.services.lambda.runtime.RequestStreamHandler;
import com.amazonaws.services.lambda.runtime.Context;

public class Hello implements RequestStreamHandler {
 public void handleRequest(InputStream inputStream, OutputStream outputStream,
 Context context)
 throws IOException {
 int letter;
 while((letter = inputStream.read()) != -1)
 {
 outputStream.write(Character.toUpperCase(letter));
 }

111

AWS Lambda Developer Guide
Handler (Java)

 }
}

You can create a Lambda function from this code and test the end-to-end experience as follows:

• Use the preceding code to create deployment package.

• Upload the deployment package to AWS Lambda and create your Lambda function.

• Test the Lambda function using either the console or CLI.You can specify any sample string data, for
example:

"test"

The Lambda function will return "TEST" in response.

Follow instructions provided in the getting started (see Getting Started: Authoring AWS Lambda Code in
Java (p. 88)). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-core library dependency.

• When you create the Lambda function specify "example.Hello" (package.class) as handler value.

The Context Object (Java)
You interact with AWS Lambda execution environment via the context parameter. The context object
allows you to access useful information available within the Lambda execution environment. For example,
you can use the context parameter to determine the CloudWatch log stream associated with the function,
or use the clientContext property of the context object to learn more about the application calling the
Lambda function (when invoked through the AWS Mobile SDK).

The context object properties are:

• getMemoryLimitInMB(): Memory limit, in MB, you configured for the Lambda function.

• getFunctionName(): Name of the Lambda function that is running.

• getAwsRequestId(): AWS request ID associated with the request. This is the ID returned to the
client called the invoke().You can use the request ID for any follow up enquiry with AWS support. Note
that if AWS Lambda retries the function (for example, in a situation where the Lambda function processing
Amazon Kinesis records throw an exception), the request ID remains the same.

• getLogStreamName():The CloudWatch log stream name for the particular Lambda function execution.
It can be null if the IAM user provided does not have permission for CloudWatch actions.

• getLogGroupName():The CloudWatch log group name associated with the Lambda function invoked.
It can be null if the IAM user provided does not have permission for CloudWatch actions.

• getClientContext(): Information about the client application and device when invoked through the
AWS Mobile SDK. It can be null. Client context provides client information such as client ID, application
title, version name, version code, and the application package name).

• getIdentity(): Information about the Amazon Cognito identity provider when invoked through the
AWS Mobile SDK. It can be null.

• getRemainingTimeInMillis(): Remaining execution time till the function will be terminated, in
milliseconds. At the time you create the Lambda function you set maximum time limit, at which time
AWS Lambda will terminate the function execution. Information about the remaining time of function
execution can be used to specify function behavior when nearing the timeout.

• getLogger(): Returns the Lambda logger associated with the Context object. For more information,
see Logging (Java) (p. 114).

112

AWS Lambda Developer Guide
The Context Object (Java)

The following Java code snippet shows a handler function that prints some of the context information.

public static void handler(InputStream inputStream, OutputStream outputStream,
 Context context) {

 ...
 System.out.println("Function name: " + context.getFunctionName());
 System.out.println("Max mem allocated: " + context.getMemoryLimitInMB());

 System.out.println("Time remaining in milliseconds: " + context.getRe
mainingTimeInMillis());
 System.out.println("CloudWatch log stream name: " + context.getLogStream
Name());
 System.out.println("CloudWatch log group name: " + context.getLogGroup
Name());
}

Example: Using Context Object (Java)
The following Java code example shows how to use the Context object to retrieve runtime information
of your Lambda function, while it is running.

package example;
import java.io.InputStream;
import java.io.OutputStream;
import com.amazonaws.services.lambda.runtime.Context;

public class Hello {
 public static void myHandler(InputStream inputStream, OutputStream output
Stream, Context context) {

 int letter;
 try {
 while((letter = inputStream.read()) != -1)
 {
 outputStream.write(Character.toUpperCase(letter));
 }
 Thread.sleep(3000); // Intentional delay for testing the getRemain
ingTimeInMillis() result.
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 // For fun, let us get function info using the context object.
 System.out.println("Function name: " + context.getFunctionName());
 System.out.println("Max mem allocated: " + context.getMemoryLimitInMB());

 System.out.println("Time remaining in milliseconds: " + context.getRe
mainingTimeInMillis());
 System.out.println("CloudWatch log stream name: " + context.getLogStream
Name());
 System.out.println("CloudWatch log group name: " + context.getLogGroup
Name());

113

AWS Lambda Developer Guide
The Context Object (Java)

 }
}

You can do the following to test the code:

• Using the preceding code, create a deployment package.

• Upload the deployment package to AWS Lambda to create your Lambda function.You can do this
using the console or AWS CLI.

• To test your Lambda function use the "Hello World" Sample event that the Lambda console provides.

You can type any string and the function will return the same string in uppercase. In addition, you will
also get the useful function information provided by the context object.

Follow the instructions provided in the Getting Started exercise for Java. For more information, see Getting
Started: Authoring AWS Lambda Code in Java (p. 88). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-core library dependency.

• When you create the Lambda function, specify example.Hello::myHandler
(package.class::method) as the handler value.

Logging (Java)
You Lambda function can log information to CloudWatch. The following statements in your Lambda
function code generate log entries:

• System.out()

• System.err()

• LambdaLogger.log()

We recommend using the LambdaLogger object to write logs to CloudWatch Logs. AWS Lambda treats
each line returned by System.out and System.err as a separate event. This works well when each
output line corresponds to a single log entry. When a conceptual log entry has multiple lines of output,
AWS Lambda will attempt to parse them using line breaks to identify separate events. For example,
System.out.println("Hello \n world") will log the two words as two separate event
(LambdaLogger.log() will this as single event).

Each call to LambdaLogger.log() creates an event, provided within the event size, in CloudWatch
logs. For information about CloudWatch limits, go to CloudWatch Limits in the Amazon CloudWatch
Developer Guide.

You can find the logs that your Lambda function writes, as follows:

• Find logs in CloudWatch Logs.

The context object (in the aws-lambda-java-core library) provides the getLogStreamName()
and the getLogGroupName() methods. Using these methods, you can find the specific log stream
where logs are written.

• If you invoke a Lambda function via the console, the invocation type is always RequestResonse (that
is, synchronous execution), and the console displays the logs that the Lambda function writes using
the LambdaLogger object. AWS Lambda also returns logs from System.out and System.err
methods.

• If you invoke a Lambda function programmatically, you can add the LogType parameter to retrieve the
last 4 KB of log data that is written to CloudWatch Logs. For more information, see Invoke (p. 178). AWS

114

AWS Lambda Developer Guide
Logging (Java)

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cloudwatch_limits.html

Lambda returns this log information in the x-amz-log-results header in the response. If you use
the AWS Command Line Interface to invoke the function, you can specify the --log-type parameter
with value Tail.

Example: Writing Logs (Java)
The following Java code example shows how Lambda function can log information. The handler method
(myHandler) uses System.out, System.err, and LambdaLogger object to write logs. For information
about logging, see Logging (Java) (p. 114).

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;

public class Hello {
 public String myHandler(String name, Context context) {
 LambdaLogger logger = context.getLogger();
 // Write log to CloudWatch using LambdaLogger.
 logger.log("log data from Lambda logger");

 // System.out also generates log in CloudWatch but
 System.out.println("log data from stdout");

 System.err.println("log data from stderr.");

 // Return will include the log stream name so you can look
 // up the log later.
 return String.format("Hello %s. log stream = %s", name, context.getLog
StreamName());
 }
}

You can do the following to test the code:

• Using the preceding code, create a deployment package.

• Upload the deployment package to AWS Lambda to create your Lambda function.You can do this
using the console or AWS CLI.

• To test your Lambda function use the "Hello World" Sample event that Lambda console provides.

The handler code receives the sample event but does nothing with it. It only shows how to write logs.

Follow instructions provided in the Getting Started exercise for Java. For more information, see Getting
Started: Authoring AWS Lambda Code in Java (p. 88). Note the following differences:

• When you create a deployment package, don't forget the aws-lambda-java-core library dependency.

• When you create the Lambda function, specify example.Hello::myHandler
(package.class::method) as the handler value.

Exceptions (Java)
If your Lambda function throws exception, AWS Lambda recognizes the failure and serializes the exception
information into JSON and returns it. An example error message is shown:

115

AWS Lambda Developer Guide
Exceptions (Java)

{
 "errorMessage": "Name John Doe is invalid. Exception occurred...",
 "errorType": "java.lang.Exception",
 "stackTrace": [
 "example.Hello.handler(Hello.java:9)",
 "sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)",
 "sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorIm
pl.java:62)",
 "sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessor
Impl.java:43)",
 "java.lang.reflect.Method.invoke(Method.java:497)"
]
}

Note that the stack trace is returned as the stackTrace JSON array of stack trace elements.

The method in which you get the error information back depends on the invocation type that you specified
at the time you invoked the function:

• RequestResponse invocation type (that is, synchronous execution): In this case, you get the error
message back.

For example, if you invoke a Lambda function using the Lambda console, the RequestResponse is
always the invocation type and the console displays the error information returned by AWS Lambda in
the Execution result section as shown in the following image.

• Event invocation type (that is, asynchronous execution): In this case AWS Lambda does not return
anything. Instead, it logs the error information in CloudWatch Logs and CloudWatch metrics.

Depending on the event source, AWS Lambda may retry the failed Lambda function. For example, if
Amazon Kinesis is the event source for the Lambda function, AWS Lambda will retry the failed function
until the Lambda function succeeds or the records in the stream expire.

AWS Lambda Example Walkthroughs (Java)
This section provides additional examples that demonstrate how to use Java.

Topics

• AWS Lambda Walkthrough 1: Process S3 Events (Java) (p. 117)

• AWS Lambda Walkthrough 2: Process Kinesis Events (Java) (p. 120)

• AWS Lambda Walkthrough 3: Process Amazon DynamoDB Events (Java) (p. 122)

116

AWS Lambda Developer Guide
Walkthroughs (Java)

• AWS Lambda Walkthrough 4: Handling Mobile User Application Events for Android (Java) (p. 124)

Important
We recommend you first review the information in Getting Started: Authoring AWS Lambda Code
in Java (p. 88) and read Programming Model for Authoring Lambda Functions in Java (p. 101).

AWS Lambda Walkthrough 1: Process S3 Events
(Java)
Suppose you have two buckets in Amazon S3.You store images (.jpg and .png objects) in one bucket
("source"). For each object created in the bucket, you want AWS Lambda to execute a Lambda function
to create a thumbnail in the "sourceresized" bucket.You will use Amazon S3's bucket notification
configuration feature to request Amazon S3 to publish object-created events to AWS Lambda. In the
notification configuration, you will identify your Lambda function (called CreateThumbnail) that you
want Amazon S3 to invoke.You will create the Lambda function in this exercise.

Important
We recommend you first review Getting Started: Authoring AWS Lambda Code in Java (p. 88))
and also see Programming Model for Authoring Lambda Functions in Java (p. 101).

This is an example of "push" model, where Amazon S3 detects an object created event and invokes
Lambda function by passing in the event information.

The following is example Java code that reads incoming Amazon S3 event and creates a thumbnail. Note
the implements the RequestHandler interface provided in the aws-lambda-java-core library.
Therefore, at the time you create a Lambda function you specify the class as the handler (that is,
example.S3EventProcessorCreateThumbnail). For more information about using interfaces to
provide handler, see Leveraging Predefined Interfaces for Creating Handler (Java) (p. 108).

The S3Event type, the handler uses as the input type, is one of the predefined classes in the
aws-lambda-java-events library that provides methods for you to easily read information from the
incoming Amazon S3 event. The handler returns a string as output.

package example;

import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URLDecoder;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import javax.imageio.ImageIO;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.event.S3EventNotification.S3EventNotification

117

AWS Lambda Developer Guide
Walkthrough 1: Process S3 Events (Java)

Record;
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.S3Object;

public class S3EventProcessorCreateThumbnail implements
 RequestHandler<S3Event, String> {
 private static final float MAX_WIDTH = 100;
 private static final float MAX_HEIGHT = 100;
 private final String JPG_TYPE = (String) "jpg";
 private final String JPG_MIME = (String) "image/jpeg";
 private final String PNG_TYPE = (String) "png";
 private final String PNG_MIME = (String) "image/png";

 public String handleRequest(S3Event s3event, Context context) {
 try {
 S3EventNotificationRecord record = s3event.getRecords().get(0);

 String srcBucket = record.getS3().getBucket().getName();
 // Object key may have spaces or unicode non-ASCII characters.
 String srcKey = record.getS3().getObject().getKey()
 .replace('+', ' ');
 srcKey = URLDecoder.decode(srcKey, "UTF-8");

 String dstBucket = srcBucket + "resized";
 String dstKey = "resized-" + srcKey;

 // Sanity check: validate that source and destination are different

 // buckets.
 if (srcBucket.equals(dstBucket)) {
 System.out
 .println("Destination bucket must not match source
bucket.");
 return "";
 }

 // Infer the image type.
 Matcher matcher = Pattern.compile(".*\\.([^\\.]*)").matcher(srcKey);

 if (!matcher.matches()) {
 System.out.println("Unable to infer image type for key "
 + srcKey);
 return "";
 }
 String imageType = matcher.group(1);
 if (!(JPG_TYPE.equals(imageType)) && !(PNG_TYPE.equals(imageType)))
 {
 System.out.println("Skipping non-image " + srcKey);
 return "";
 }

 // Download the image from S3 into a stream
 AmazonS3 s3Client = new AmazonS3Client();
 S3Object s3Object = s3Client.getObject(new GetObjectRequest(
 srcBucket, srcKey));
 InputStream objectData = s3Object.getObjectContent();

118

AWS Lambda Developer Guide
Walkthrough 1: Process S3 Events (Java)

 // Read the source image
 BufferedImage srcImage = ImageIO.read(objectData);
 int srcHeight = srcImage.getHeight();
 int srcWidth = srcImage.getWidth();
 // Infer the scaling factor to avoid stretching the image
 // unnaturally
 float scalingFactor = Math.min(MAX_WIDTH / srcWidth, MAX_HEIGHT
 / srcHeight);
 int width = (int) (scalingFactor * srcWidth);
 int height = (int) (scalingFactor * srcHeight);

 BufferedImage resizedImage = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D g = resizedImage.createGraphics();
 // Fill with white before applying semi-transparent (alpha) images

 g.setPaint(Color.white);
 g.fillRect(0, 0, width, height);
 // Simple bilinear resize
 // If you want higher quality algorithms, check this link:
 // https://today.java.net/pub/a/today/2007/04/03/perils-of-image-
getscaledinstance.html
 g.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);
 g.drawImage(srcImage, 0, 0, width, height, null);
 g.dispose();

 // Re-encode image to target format
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 ImageIO.write(resizedImage, imageType, os);
 InputStream is = new ByteArrayInputStream(os.toByteArray());
 // Set Content-Length and Content-Type
 ObjectMetadata meta = new ObjectMetadata();
 meta.setContentLength(os.size());
 if (JPG_TYPE.equals(imageType)) {
 meta.setContentType(JPG_MIME);
 }
 if (PNG_TYPE.equals(imageType)) {
 meta.setContentType(PNG_MIME);
 }

 // Uploading to S3 destination bucket
 System.out.println("Writing to: " + dstBucket + "/" + dstKey);
 s3Client.putObject(dstBucket, dstKey, is, meta);
 System.out.println("Successfully resized " + srcBucket + "/"
 + srcKey + " and uploaded to " + dstBucket + "/" + dstKey);

 return "Ok";
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
}

Amazon S3 invokes your Lambda function using the "Event" invocation type, where AWS Lambda executes
the code asynchronously. What you return does not matter. However, in this case we are implementing
the interface that requires that we specify a return type, so in this example the handler uses String as the
return type.

119

AWS Lambda Developer Guide
Walkthrough 1: Process S3 Events (Java)

You can do the following to test the code:

• Using the preceding code, create a deployment package. Make sure you add the following dependencies:

aws-lambda-java-core

aws-lambda-java-events

• Upload the deployment package to AWS Lambda to create your Lambda function.You can do this
using the console or AWS CLI.

• On the Amazon S3 side, do the following:

• Create two buckets (source, and "sourceresized")

• Add notification configuration to source bucket request Amazon S3 to publish any object created
event to the Lambda function you created.

After the Lambda function executes, it writes logs to Amazon CloudWatch Logs. Because you are using
the LambdaLogger to write logs, the console will display the log information.

• To test it, upload a .jpg or .png object to the source bucket and verify Lambda function created a
thumbnail in the sourceresized bucket.

Follow instructions provided in the Getting Started exercise for Java to create your Lambda function. For
more information, see Getting Started: Authoring AWS Lambda Code in Java (p. 88). Note the following
differences:

• When you create a deployment package, don't forget the two libraries (aws-lambda-java-core and
aws-lambda-java-events) you add as dependencies.

• When you create the Lambda function (called CreateThumbnail) specify the class
example.S3EventProcessorCreateThumbnail (package.class) as the handler.

• Use the S3 execution role when creating the function in the console. This role has the necessary
permissions to access Amazon S3 resources.

For instructions on adding notification configuration to a bucket, go to Enabling Event Notifications in the
Amazon Simple Storage Service Console User Guide.

AWS Lambda Walkthrough 2: Process Kinesis
Events (Java)
The Java example provided in this walkthrough processes events published by Amazon Kinesis.

Important
We recommend you first try the Getting Started exercises for Java in Getting Started: Authoring
AWS Lambda Code in Java (p. 88) and also read the programming model section in Programming
Model for Authoring Lambda Functions in Java (p. 101).

AWS Lambda polls the Amazon Kinesis stream and, when new records are found, it invokes your Lambda
function.The Lambda function receives the records from the Kinesis stream as input, and in this example
it writes to CloudWatch logs.

Note
This is an example of "pull" model, where AWS Lambda polls an Amazon Kinesis stream and
invokes Lambda function when it finds a new record in the stream.

In the code, recordHandler is the handler. The handler uses predefined KinesisEvent class defined
in the aws-lambda-java-events library.

120

AWS Lambda Developer Guide
Walkthrough 2: Process Kinesis Events (Java)

http://docs.aws.amazon.com/AmazonS3/latest/UG/SettingBucketNotifications.html

package example;

import java.io.IOException;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRe
cord;

public class ProcessKinesisEvents {
 public void recordHandler(KinesisEvent event) throws IOException {
 for(KinesisEventRecord rec : event.getRecords()) {
 System.out.println(new String(rec.getKinesis().getData().array()));

 }
 }
}

If the handler returns normally, Lambda considers the input batch of records as processed successfully
and begins reading new records in the stream. If the handler throws an exception, Lambda considers the
input batch of records as not processed and invokes the function with the same batch of records again.

You can do the following to test the code:

• Using the preceding code (in a file named ProcessKinesisEvents.java), create a deployment package.
Make sure you add the following dependencies:

aws-lambda-java-core

aws-lambda-java-events

• Upload the deployment package to AWS Lambda to create your Lambda function.You can do this
using the console or AWS CLI.

• You can test this function without having to create an Amazon Kinesis stream. The AWS Lambda
console provides sample Amazon Kinesis event data that you can use to invoke the function.

After the Lambda function executes, it reads the incoming event, reads data from the Amazon Kinesis
records, and writes logs to Amazon CloudWatch Logs. The same log also appears in the console
Execution logs section.

Follow the instructions provided in the Getting Started exercise for Java to create your Lambda function.
For more information, see Getting Started: Authoring AWS Lambda Code in Java (p. 88). Note the
following differences:

• When you create a deployment package, don't forget the two libraries (aws-lambda-java-core and
aws-lambda-java-events) you add as dependencies.

• When you create the Lambda function specify example.ProcessKinesisEvents::recordHandler
(package.class::handler) as the handler value.

• Use the Kinesis execution role when you create the function in the console. The console associates
the following access policy with this role grants the necessary permissions to access the Amazon
Kinesis stream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

121

AWS Lambda Developer Guide
Walkthrough 2: Process Kinesis Events (Java)

 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",
 "kinesis:DescribeStream",
 "kinesis:ListStreams",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

After testing the function in the console you can create an Amazon Kinesis stream and test the end-to-end
experience. For instructions about how to create an Amazon Kinesis stream and add records to it, see
Step 2: Configure an Amazon Kinesis Stream as the Event Source Using the Console (Node.js) (p. 26).

AWS Lambda Walkthrough 3: Process Amazon
DynamoDB Events (Java)
Topics

• Overview (p. 122)

• Setting Up the Walkthrough (p. 123)

Overview
The Java example provided in this walkthrough processes events published by Amazon DynamoDB.

Important
We recommend you first try the Getting Started exercises for Java in Getting Started: Authoring
AWS Lambda Code in Java (p. 88) and also read the programming model section in Programming
Model for Authoring Lambda Functions in Java (p. 101).

AWS Lambda polls the DynamoDB stream and, when new records are found, it invokes your Lambda
function.The Lambda function receives the records from the DynamoDB stream as input. In this example,
the Lambda function processes the event by writing some of the event data to the CloudWatch logs.

Note
This is an example of pull model, where AWS Lambda polls an Amazon DynamoDB stream and
invokes Lambda function when it finds a new record in the stream. For more information, see
The Pull/Push Event Models (p. 5).

122

AWS Lambda Developer Guide
Walkthrough 3: Process DynamoDB Events (Java)

In the code, handleRequest is the handler that AWS Lambda invokes and provides event data. The
handler uses the predefined DynamodbEvent class, which is defined in the aws-lambda-java-events
library.

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent.DynamodbStream
Record;

public class DDBEventProcessor implements
 RequestHandler<DynamodbEvent, String> {

 public String handleRequest(DynamodbEvent ddbEvent, Context context) {
 LambdaLogger logger = context.getLogger();
 for (DynamodbStreamRecord record : ddbEvent.getRecords()){
 logger.log(record.getEventID() + "\n");
 logger.log(record.getEventName() + "\n");
 logger.log(record.getDynamodb().toString() + "\n");

 }
 return "Successfully processed " + ddbEvent.getRecords().size() + "
records.";
 }
}

If the handler returns normally, Lambda considers the input batch of records as processed successfully
and begins reading new records in the stream. If the handler throws an exception, Lambda considers the
input batch of records as not processed and invokes the function with the same batch of records again.

After the Lambda function executes, it reads the incoming event, reads data from the Amazon DynamoDB
records, and writes logs to Amazon CloudWatch Logs.The same log also appears in the console Execution
logs section.

Setting Up the Walkthrough
Use the following steps to create a Lambda function, create a DynamoDB table with streams enabled,
and create event source mapping in AWS Lambda to associate the stream with the Lambda function.

1. Create a Lambda function and specify sample DynamoDB events provided by the AWS Lambda
console.

Follow the instructions provided in the Getting Started: Authoring AWS Lambda Code in Java (p. 88).
As you follow the steps, use the following information:

• When you create a deployment package, don't forget to add the two libraries
(aws-lambda-java-core and aws-lambda-java-events) as dependencies.

• When you create the Lambda function:

• Specify example.DDBEventProcessor (package.class) as the handler value. Note that this
handler string did not include the name of the handler method because your class implements
the RequestHandler interface.

• Specify the DynamoDB event stream role when you create the function in the console. The
console associates the following access policy with this role that grants AWS Lambda necessary
permissions to access the Amazon DynamoDB stream.

123

AWS Lambda Developer Guide
Walkthrough 3: Process DynamoDB Events (Java)

2. Test the end-to-end experience.

Follow the instructions provided in the Step 3: Add an Event Source (DynamoDB Streams) and Test
(p. 59) to do the following:

• Create a DynamoDB table with streams enabled.

• Associate the DynamoDB stream with the Lambda function by adding an event source mapping
in AWS Lambda.

Note
You can add the mapping using the Lambda console, DynamoDB console, or using the
AWS CLI. Instructions in Step 3: Add an Event Source (DynamoDB Streams) and Test
(p. 59) use the AWS CLI to create event source mapping, but you can do the same using
the Lambda console or the DynamoDB console.

AWS Lambda begins polling the stream and when AWS Lambda detects new records on the stream, it
invokes your Lambda function by passing the event data to your Lambda function handler.

AWS Lambda Walkthrough 4: Handling Mobile
User Application Events for Android (Java)

Scenario
In this walkthrough, you will create a simple Android mobile user application. The primary purpose of this
walkthrough is to show you how to hook up various components to enable an Android mobile application
to invoke a Lambda function and process response.

The mobile application processes events by invoking a Lambda function called
LambdaJavaExampleAndroidBackend using the AWS Mobile SDK for Android, and passing the event
data to the function. The application events are not complex and the event data consists of a name (first
name and last name) as shown:

{ firstName: "value1", lastName: "value2" }

The Lambda function then processes the event and sends back a response.

Use the following Java code to create the LambdaJavaExampleAndroidBackend function in AWS
Lambda. In the code, the handler (myHandler) uses the RequestClass and ResponseClass types
for the input and output and code provides implementation for these types.

Important
You will use the same classes (POJOs) to handle the input and output data when you create the
sample mobile application in the next section.

package example;

import com.amazonaws.services.lambda.runtime.Context;

public class HelloPojo {

 // Define two classes/POJOs for use with Lambda function.
 public static class RequestClass {

124

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public RequestClass(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public RequestClass() {
 }
 }

 public static class ResponseClass {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass() {
 }

 }

 public static ResponseClass myHandler(RequestClass request, Context context){

 String greetingString = String.format("Hello %s, %s.", request.firstName,
 request.lastName);
 return new ResponseClass(greetingString);
 }
}

125

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

Note
The way that the mobile application invokes a Lambda function as shown in this walkthrough is
an example of the AWS Lambda request-response model in which an application invokes a
Lambda function and receives a response in real time. For more information, see The Pull/Push
Event Models (p. 5).

Implementation Summary
Note the following about the mobile application:

• The mobile application must have valid security credentials and permissions to invoke a Lambda
function.

The mobile application in this walkthrough uses the Amazon Cognito service to manage user identities,
authentication, and permissions. As part of the application setup, you create an Amazon Cognito identity
pool to store user identities and define permissions. For more information, see Amazon Cognito.

• This example mobile application does not require a user to log in.

A mobile application can require its users to log in using public identity providers such as Amazon and
Facebook. The scope of this walkthrough is limited and assumes that the mobile application users are
unauthenticated. It is essential that you understand this before you create an Amazon Cognito identity
pool and configure user permissions.

For this walkthrough, configure the Amazon Cognito identity pool as follows:

• Enable access for unauthenticated identities.

In this walkthrough, the mobile application users are unauthenticated (within the mobile application),
so Amazon Cognito provides a unique identifier and temporary AWS credentials for these users to
invoke the Lambda function.

• Add permission to invoke the Lambda function in the access policy associated with the IAM role for
unauthenticated users.

An identity pool has two associated IAM roles, one for authenticated and one for unauthenticated
application users. Depending on the application user, Amazon Cognito assumes one of the roles when
it generates temporary credentials for the user. In this example, Amazon Cognito assumes the role for
unauthenticated users to obtain temporary credentials. Using the temporary credentials, the application
user can then invoke the Lambda function.

The access policy associated with the IAM role determines what the mobile application user can do
when using the temporary credentials. In this walkthrough, you update the policy to allow permission
to invoke the LambdaJavaExampleAndroidBackend function.

The following diagram illustrates the application flow:

126

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

http://aws.amazon.com/cognito/

• Step 1: The mobile application sends the request to Amazon Cognito, and Amazon Cognito uses the
identity pool ID in the requests.

• Step 2: The application receives temporary security credentials from Amazon Cognito.

Amazon Cognito assumes the role associated with the identity pool and generates temporary credentials.
What the application can do with the temporary credentials is limited by the access policy associated
with the role.The AWS SDK can cache the temporary credentials so that the application does not send
a request to Amazon Cognito each time it needs to invoke a Lambda function.

• Step 3: The mobile application invokes the Lambda function using temporary credentials (Cognito
Identity).

AWS Lambda executes the function and responds immediately (in real time) with output as follows:

• Step 4: AWS Lambda assumes the execution role to execute your Lambda function on your behalf.

• Step 5: The Lambda function executes.

• Step 6: AWS Lambda returns results to the mobile application.

Now you are ready to try the steps.

Note that after the initial preparation, the walkthrough is divided into two main sections:

• First, you perform the necessary setup to create a Lambda function. Instead of creating an event source
(the Android mobile application), you invoke the Lambda function manually using sample event data.
This intermediate testing verifies that the function works.

• Second, you create an Amazon Cognito identity pool to manage authentication and permissions, and
create the example Android application.When you run the Android application, it creates sample events
and invokes your Lambda function.

Next Step
Step 1: Preparing for the Walkthrough (p. 128)

127

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

Step 1: Preparing for the Walkthrough
We recommend that you do not use the root credentials of your AWS account. Instead, create an
administrator user in your account and use the administrator user credentials in setting up the walkthrough.
If you already have an administrator user, you can skip this step.

For instructions to create an administrator user, see Set Up an AWS Account and Create an Administrator
User (p. 12).

Note
The walkthrough assumes you are creating a Lambda function and an Amazon Cognito identity
pool in the us-west-2 region. If you want to use a different AWS region, make sure you create
these resources in the same region.You also need to update the example mobile application
code by providing the specific region that you want to use.

Next Step

Step 2: Create and Test the Lambda Function (p. 128)

Step 2: Create and Test the Lambda Function
Use the following steps to create a Lambda function and test it using sample event data.You will use the
AWS Lambda console to test the Lambda function.

Topics

• Step 2.1: Create the Lambda Function (p. 128)

• Step 2.2: Test the Lambda Function (p. 130)

• Next Step (p. 130)

Step 2.1: Create the Lambda Function

Follow the instructions provided in the Getting Started: Authoring AWS Lambda Code in Java (p. 88).

Use the following Java code to create your Lambda function (ExampleAndroidEventProcessor).

package example;

import com.amazonaws.services.lambda.runtime.Context;

public class HelloPojo {

 // Define two classes/POJOs for use with Lambda function.
 public static class RequestClass {
 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;

128

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public RequestClass(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public RequestClass() {
 }
 }

 public static class ResponseClass {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass() {
 }

 }

 public static ResponseClass myHandler(RequestClass request, Context context){

 String greetingString = String.format("Hello %s, %s.", request.firstName,
 request.lastName);
 context.getLogger().log(greetingString);
 return new ResponseClass(greetingString);
 }
}

As you follow the steps, use the following information:

• When you create a deployment package, remember to add the aws-lambda-java-core library as
the dependency.

• When you create the Lambda function:

• Specify ExampleAndroidEventProcessor as the function name. The same name is also used in
the Android application in the next section.

Specify example.HelloPojo::myHandler (package.class::handler) as the handler value.

• Specify the Basic execution role when you create the function in the console.

129

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

Step 2.2:Test the Lambda Function

Now you are ready to test the Lambda function by manually invoking it. For step-by-step instructions, see
Step 3: Test the Lambda Function (p. 92). Use the following sample event data:

{
 "firstName": "first-name",
 "lastName": "last-name"
}

Next Step

Step 3: Create an Amazon Cognito Identity Pool (p. 130)

Step 3: Create an Amazon Cognito Identity Pool
In this section, you create an Amazon Cognito identity pool. The identity pool has two IAM roles.You
update the IAM role for unauthenticated users and grant permission to execute the
LambdaJavaExampleAndroidBackend Lambda function.

For more information about IAM roles, see IAM Roles (Delegation and Federation) in the IAM User Guide.
For more information about Amazon Cognito services, go to the Amazon Cognito product detail page.

To create an identity pool

1. Using the IAM User Sign-In URL, sign in to the Amazon Cognito console as adminuser.

2. Create a new identity pool called JavaFunctionAndroidEventHandlerPool. Before you follow
the procedure to create an identity pool, note the following:

• The identity pool you are creating must allow access to unauthenticated identities because our
example mobile application does not require a user log in (the application users are
unauthenticated). In this case, select the Enable access to unauthenticated identities
option.

• The unauthenticated application users need permission to invoke the Lambda function. To enable
this, add the following statement to allow the lambda:InvokeFunction action for the specific
Lambda function.

{
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-west-2:account-id:function:Lambda
JavaExampleAndroidBackend"
]
}

The Resource ARN identifies your Lambda function to which you are granting the
lambda:InvokeFunction action and LambdaJavaExampleAndroidBackend is the Lambda
function name that you created in the preceding step.

Update the access policy when the identity pool is being created. The resulting policy will be as
follows:

130

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html
http://aws.amazon.com/cognito/

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "mobileanalytics:PutEvents",
 "cognito-sync:*"
],
 "Resource":[
 "*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "lambda:invokefunction"
],
 "Resource":[
 "arn:aws:lambda:us-west-2:account-id:function:Lambda
JavaExampleAndroidBackend"
]
 }
]
}

Note
After creating the identity pool, go to the IAM console, find the role for unauthenticated
users, and edit the access policy. Make sure you write down the IAM role name for the
unauthenticated users so that you can search for it in the IAM console.

For instructions about how to create an identity pool, log in to the Amazon Cognito console and follow
the New Identity Pool wizard.

Write down the identity pool ID.You specify this ID in your mobile application. The application uses
this ID when it sends request to Amazon Cognito to request for temporary security credentials.

Next Step

Step 4: Create a Mobile User Application for Android (p. 131)

Step 4: Create a Mobile User Application for Android
Now you can create a simple Android mobile application that generates events and invokes Lambda
functions by passing the event data as parameters.

The following instructions have been verified using Android studio.

1. Create a new Android project called AndroidEventGenerator using the following configuration:

• Select the Phone and Tablet platform.

• Choose Blank Activity.

2. In the build.gradle (Module:app) file, add the following in the dependencies section:

131

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

https://console.aws.amazon.com/cognito/home

compile 'com.amazonaws:aws-android-sdk-core:2.2.+'
compile 'com.amazonaws:aws-android-sdk-lambda:2.2.+'

3. Build the project so that the required dependencies are downloaded, as needed.

4. In the Android application manifest (AndroidManifest.xml), add the following permissions so that
your application can connect to the Internet.You can add them just before the </manifest> end tag.

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

5. In MainActivity, add the following imports:

import com.amazonaws.mobileconnectors.lambdainvoker.*;
import com.amazonaws.auth.CognitoCachingCredentialsProvider;
import com.amazonaws.regions.Regions;

6. In the package section, specify the appropriate package name (as shown below
com.example.....lambdaeventgenerator). Add a new class called RequestClass, instances
of which act as the POJO (Plain Old Java Object) for event data which consists of first and last name.

Note that the POJO is same as the the POJO you created in your Lambda function in the preceding
section.

package com.example....lambdaeventgenerator;
public class RequestClass {
 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public RequestClass(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public RequestClass() {
 }
}

7. Create another class, ResponseClass.

132

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

package com.example....lambdaeventgenerator;
public class ResponseClass {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass() {
 }
}

8. In the specified package (as shown below com.example.....lambdaeventgenerator), create an
interface called MyInterface for invoking the LambdaJavaExampleAndroidBackend Lambda
function.

Note
The @LambdaFunction annotation in the code maps the specific client method to the
same-name Lambda function. For more information about this annotation, go to AWS Lambda
in the AWS SDK for Android Developer Guide.

package com.example.....lambdaeventgenerator;
import com.amazonaws.mobileconnectors.lambdainvoker.LambdaFunction;
public interface MyInterface {

 /**
 * Invoke the Lambda function "LambdaJavaExampleAndroidBackend".
 * The function name is the method name.
 */
 @LambdaFunction
 ResponseClass LambdaJavaExampleAndroidBackend(RequestClass request);

}

9. To keep the application simple, we are going to add code to invoke the Lambda function in the
onCreate() event handler. In MainActivity, add the following code toward the end of the
onCreate() code.

// Create an instance of CognitoCachingCredentialsProvider
CognitoCachingCredentialsProvider cognitoProvider = new CognitoCachingCreden
tialsProvider(
 this.getApplicationContext(), "identity-pool-id", Regions.US_WEST_2);

// Create LambdaInvokerFactory, to be used to instantiate the Lambda proxy.
LambdaInvokerFactory factory = new LambdaInvokerFactory(this.getApplication
Context(),
 Regions.US_WEST_2, cognitoProvider);

133

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/lambda.html

// Create the Lambda proxy object with a default Json data binder.
// You can provide your own data binder by implementing
// LambdaDataBinder.
final MyInterface myInterface = factory.build(MyInterface.class);

RequestClass request = new RequestClass("John", "Doe");
// The Lambda function invocation results in a network call.
// Make sure it is not called from the main thread.
new AsyncTask<RequestClass, Void, ResponseClass>() {
 @Override
 protected ResponseClass doInBackground(RequestClass... params) {
 // invoke "echo" method. In case it fails, it will throw a
 // LambdaFunctionException.
 try {
 return myInterface.LambdaJavaExampleAndroidBackend(params[0]);
 } catch (LambdaFunctionException lfe) {
 Log.e("Tag", "Failed to invoke echo", lfe);
 return null;
 }
 }

 @Override
 protected void onPostExecute(ResponseClass result) {
 if (result == null) {
 return;
 }

 // Do a toast
 Toast.makeText(MainActivity.this, result.getGreetings(),
Toast.LENGTH_LONG).show();
 }
}.execute(request);

10. Run the code and verify as follows:

• The Toast.makeText() displays the response returned.

• Verify that CloudWatch Logs shows the log created by the Lambda function. It should show the
event data (first name and last name).You can also verify this in the AWS Lambda console.

134

AWS Lambda Developer Guide
Walkthrough 4: Handling Mobile User Application Events

for Android (Java)

Troubleshooting and Monitoring
AWS Lambda Functions with
Amazon CloudWatch

AWS Lambda automatically monitors Lambda functions on your behalf, reporting metrics through Amazon
CloudWatch. To help you monitor your code as it executes, Lambda automatically tracks the number of
requests, the latency per request, and the number of requests resulting in an error and publishes the
associated CloudWatch metrics.You can leverage these metrics to set CloudWatch custom alarms. For
more information about CloudWatch, see the Amazon CloudWatch Developer Guide.

You can view request rates and error rates for each of your Lambda functions by using the AWS Lambda
console, the CloudWatch console, and other Amazon Web Services (AWS) resources. The following
topics describe Lambda CloudWatch metrics and how to access them.

• Accessing Amazon CloudWatch Metrics for AWS Lambda (p. 137)

• AWS Lambda Metrics (p. 139)

You can insert logging statements into your code to help you validate if your code is working as expected.
Lambda automatically integrates with Amazon CloudWatch Logs and pushes all logs from your code to
a CloudWatch Logs group associated with a Lambda function (Lambda/<function name>). To learn more
about log groups and accessing them through the CloudWatch console, see the Monitoring System,
Application, and Custom Log Files in the Amazon CloudWatch Developer Guide.

The following topic describes how to access CloudWatch log entries.

• Accessing Amazon CloudWatch Logs for AWS Lambda (p. 138)

Note
If your Lambda function code is executing but you don't see any log data being generated after
several minutes, this could mean your execution role for the Lambda function did not grant
permissions to write log data to CloudWatch Logs. For information about how to make sure that
you have set up the execution role correctly to give these permissions, see Execution
Permissions (p. 8).

135

AWS Lambda Developer Guide

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

AWS Lambda Troubleshooting Scenarios
This sections describes examples of how to monitor and troubleshoot your Lambda functions using the
logging and monitoring capabilities of CloudWatch.

Troubleshooting Scenario 1: Lambda function not
working as expected
In this scenario, you have just finished AWS Lambda Walkthrough 2: Handling Amazon S3 Events Using
the AWS CLI (Node.js) (p. 43). However, the Lambda function you created to upload a thumbnail image
to Amazon S3 when you create an S3 object is not working as expected. When you upload objects to
Amazon S3, you see that the thumbnail images are not being uploaded.You can troubleshoot this issue
in the following ways.

To determine why your Lambda function is not working as expected

1. Check if your code is working correctly. An increased error rate would indicate that it is not.

You can test your code locally as you would any other Node.js function, or you can test it within
Lambda by using the "test invoke" capability on the console, or you can use the AWS CLI
asyncInvoke command. Each time the code is executed in response to an event, it writes a log
entry into the log group associated with a Lambda function, which is Lambda/<function name>.

The following are some errors that might show up in the logs:

• If you see a stack trace in your log, there is probably an error in your code. Review your code and
debug the error the stack trace refers to.

• If you see a "permissions denied" error in the log, the IAM role you have provided as an execution
role may not have the necessary permissions. Check if the IAM role has all the necessary
permissions to access any AWS resources your code references.To ensure that you have correctly
set up the execution role, see Execution Permissions (p. 8).

• If you see a "timeout exceeded" error in the log, your timeout setting exceeds the run time of your
function code.This may be because the timeout is too low, or the code is taking too long to execute.

• If you see a "memory exceeded" error in the log, your memory setting is too low. Set it to a higher
value, for memory size limits see CreateFunction (p. 160). Changing the memory setting can change
how you are charged for duration. For information about pricing, see AWS Lambda.

2. Check if your Lambda function is receiving requests.

Even if your function code is working as expected and responding correctly to test invokes, the
function may not be receiving requests from Amazon S3. If Amazon S3 is able to invoke the function,
you should see an increase in your CloudWatch requests metric. If you do not see an increase in
your CloudWatch requests, check the access policy associated with the function.

Troubleshooting Scenario 2: Increased latency in
Lambda function execution
In this scenario, you have just finished AWS Lambda Walkthrough 2: Handling Amazon S3 Events Using
the AWS CLI (Node.js) (p. 43). However, the Lambda function you created to upload a thumbnail image
to Amazon S3 when you create an S3 object is not working as expected. When you upload objects to
Amazon S3, you can see that the thumbnail images are being uploaded, but your code is taking much
longer to execute than expected.You can troubleshoot this issue in a couple of different ways. For

136

AWS Lambda Developer Guide
Troubleshooting Scenarios

http://aws.amazon.com/lambda/

example, you could monitor the "latency" CloudWatch metric for the Lambda function to see if the latency
is increasing. Or you could see an increase in the "errors" CloudWatch metric for the Lambda function,
which might be due to timeout errors.

To determine why there is increased latency in the execution of a Lambda function

1. Test your code with different memory settings.

If your code is taking too long to execute, it could be that it does not have enough compute resources
to execute its logic. Try increasing the memory allocated to your function and testing the code again,
using the Lambda console test invoke functionality.You can see the memory used, code execution
time, and memory allocated in the function log entries. Changing the memory setting can change
how you are charged for duration. For information about pricing, see AWS Lambda.

2. See where the execution bottleneck is using logs.

You can test your code locally as you would any other Node.js function, or you can test it within
Lambda using the "test invoke" capability on the Lambda console, or the asyncInvoke command
by using AWS CLI. Each time the code is executed in response to an event, it writes a log entry into
the log group associated with a Lambda function, which is named (Lambda/<function name>). Add
logging statements around various parts of your code, such as callouts to other services, to see how
much time is being spent in executing different parts of your code.

Accessing Amazon CloudWatch Metrics for AWS
Lambda

AWS Lambda automatically monitors functions on your behalf, reporting metrics through Amazon
CloudWatch. These metrics include total requests, latency, and error rates. For more information about
Lambda metrics, see AWS Lambda Metrics (p. 139). For more information about CloudWatch, see the
Amazon CloudWatch Developer Guide.

You can monitor metrics for Lambda and view logs by using the Lambda console, the CloudWatch console,
the AWS CLI, or the CloudWatch API. The following procedures show you how to access metrics using
these different methods.

To access metrics using the Lambda console

1. Sign in to the AWS Management Console and open the Lambda console.

2. If you have not created a Lambda function before, go to Getting Started: Authoring AWS Lambda
Code in Node.js (p. 15).

3. On the Lambda: Function List page, click the radio button or the triangle to the left of a function
name to expand the function details.

137

AWS Lambda Developer Guide
Accessing CloudWatch Metrics

http://aws.amazon.com/lambda/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

A graphical representation of the metrics for the Lambda function are shown.

4. Click CloudWatch logs next to a metric name to view the log for the metric.

To access metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. From the navigation bar, select a region.

3. In the navigation pane, click Metrics.

4. In the CloudWatch Metrics by Category pane, select Lambda Metrics.

5. (Optional) In the graph pane, select a statistic and a time period, and then create a CloudWatch
alarm using these settings.

To access metrics using the AWS CLI

Use the list-metrics and get-metric-statistics commands.

To access metrics using the CloudWatch CLI

Use the mon-list-metrics and mon-get-stats commands.

To access metrics using the CloudWatch API

Use the ListMetrics and GetMetricStatistics operations.

Accessing Amazon CloudWatch Logs for AWS
Lambda

AWS Lambda automatically monitors Lambda functions on your behalf, reporting metrics through Amazon
CloudWatch. To help you troubleshoot failures in a function, Lambda logs all requests handled by your
function and also automatically stores logs generated by your code through Amazon CloudWatch Logs.

You can insert logging statements into your code to help you validate if your code is working as expected.
Lambda automatically integrates with CloudWatch Logs and pushes all logs from your code to a

138

AWS Lambda Developer Guide
Accessing CloudWatch Logs

https://console.aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
http://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-list-metrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/cli-mon-get-stats.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

CloudWatch Logs group associated with a Lambda function, which is named Lambda/<function name>.
To learn more about log groups and accessing them through the CloudWatch console, see the Monitoring
System, Application, and Custom Log Files in the Amazon CloudWatch Developer Guide.

You can view logs for Lambda by using the Lambda console, the CloudWatch console, the AWS CLI, or
the CloudWatch API. The following procedure show you how to view the logs by using the Lambda
console.

To view logs using the Lambda console

1. Sign in to the AWS Management Console and open the Lambda console.

2. If you have not created a Lambda function before, go to Getting Started: Authoring AWS Lambda
Code in Node.js (p. 15).

3. On the Lambda: Function List page, click the radio button or the triangle to the left of a function
name to expand the function details.

A graphical representation of the metrics for the Lambda function are shown.

4. Click logs next to a metric name to view the log for the metric.

For more information on accessing CloudWatch Logs, see the following guides:

• Amazon CloudWatch Developer Guide

• Amazon CloudWatch Logs API Reference

• Amazon CloudWatch Developer Guide Monitoring Log Files

AWS Lambda Metrics
This topic describes the AWS Lambda namespace, metrics, and dimensions. AWS Lambda automatically
monitors functions on your behalf, reporting metrics through Amazon CloudWatch (CloudWatch). These
metrics include total invocations, errors, duration, and throttles.

CloudWatch is basically a metrics repository. A metric is the fundamental concept in CloudWatch and
represents a time-ordered set of data points.You or AWS products publish metric data points into
CloudWatch and you retrieve statistics about those data points as an ordered set of time-series data.

139

AWS Lambda Developer Guide
Metrics

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

Metrics are uniquely defined by a name, a namespace, and one or more dimensions. Each data point
has a time stamp, and (optionally) a unit of measure. When you request statistics, the returned data
stream is identified by namespace, metric name, and dimension. For more information about CloudWatch,
see the Amazon CloudWatch Developer Guide.

AWS Lambda CloudWatch Metrics
The AWS Lambda namespace for CloudWatch is AWS/Lambda.

The following metrics are available from the AWS Lambda service.

DescriptionMetric

Measures the number of times a function is invoked in response to an event
or invocation API call. This replaces the deprecated RequestCount metric.
This includes successful and failed invocations, but does not include throttled
attempts. This equals the billed requests for the function. Note that AWS
Lambda only sends these metrics to CloudWatch if they have a nonzero
value.

Units: Count

Invocations

Measures the number of invocations that failed due to errors in the function
(response code 4XX).This replaces the deprecated ErrorCount metric. Failed
invocations may trigger a retry attempt that succeeds. This includes:

• Handled exceptions (e.g., context.fail(error))

• Unhandled exceptions causing the code to exit

• Out of memory exceptions

• Timeouts

• Permissions errors

This does not include invocations that fail due to invocation rates exceeding
default concurrent limits (error code 429) or failures due to internal service
errors (error code 500).

Units: Count

Errors

Measures the elapsed wall clock time from when the function code starts
executing as a result of an invocation to when it stops executing.This replaces
the deprecated Latency metric. The maximum data point value possible is
the function timeout configuration. The billed duration will be rounded up to
the nearest 100 millisecond. Note that AWS Lambda only sends these metrics
to CloudWatch if they have a nonzero value.

Units: Milliseconds

Duration

Measures the number of Lambda function invocation attempts that were
throttled due to invocation rates exceeding the customer’s concurrent limits
(error code 429). Failed invocations may trigger a retry attempt that succeeds.

Units: Count

Throttles

140

AWS Lambda Developer Guide
CloudWatch Metrics

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

AWS Lambda CloudWatch Dimensions
You can use the dimensions in the following table to refine the metrics returned for your Lambda functions.

DescriptionDimension

Filters the data you request for a Lambda function.FunctionName

141

AWS Lambda Developer Guide
CloudWatch Dimensions

Logging AWS Lambda API Calls By
Using AWS CloudTrail

AWS Lambda is integrated with AWS CloudTrail, a service that captures API calls made by or on behalf
of AWS Lambda in your AWS account and delivers the log files to an Amazon S3 bucket that you specify.
CloudTrail captures API calls made from the AWS Lambda console or from the AWS Lambda API. Using
the information collected by CloudTrail, you can determine what request was made to AWS Lambda, the
source IP address from which the request was made, who made the request, when it was made, and so
on. To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

AWS Lambda Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to AWS Lambda actions are
tracked in log files. AWS Lambda records are written together with other AWS service records in a log
file. CloudTrail determines when to create and write to a new file based on a time period and file size.

The following actions are supported:

• AddPermission (p. 153)

• CreateEventSourceMapping (p. 156)

• CreateFunction (p. 160)

• The ZipFile parameter is omitted from the CloudTrail logs for CreateFunction.

• DeleteEventSourceMapping (p. 165)

• DeleteFunction (p. 167)

• GetEventSourceMapping (p. 169)

• GetFunction (p. 171)

• GetFunctionConfiguration (p. 173)

• GetPolicy (p. 176)

• ListEventSourceMappings (p. 183)

• ListFunctions (p. 185)

• RemovePermission (p. 187)

• UpdateEventSourceMapping (p. 189)

142

AWS Lambda Developer Guide
AWS Lambda Information in CloudTrail

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

• UpdateFunctionCode (p. 192)

• The ZipFile parameter is omitted from the CloudTrail logs for UpdateFunctionCode.

• UpdateFunctionConfiguration (p. 196)

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine whether the request was made with root or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications for CloudTrail.

You can also aggregate AWS Lambda log files from multiple AWS regions and multiple AWS accounts
into a single S3 bucket. For more information, see Receiving CloudTrail Log Files from Multiple Sources
in a Single Amazon S3 Bucket.

Understanding AWS Lambda Log File Entries
CloudTrail log files contain one or more log entries where each entry is made up of multiple JSON-formatted
events. A log entry represents a single request from any source and includes information about the
requested action, any parameters, the date and time of the action, and so on. The log entries are not
guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public API
calls.

The following example shows CloudTrail log entries for the GetFunction and DeleteFunction actions.

{
 "Records": [
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws:iam::999999999999:user/myUserName",
 "accountId": "999999999999",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-03-18T19:03:36Z",
 "eventSource": "lambda.amazonaws.com",
 "eventName": "GetFunction",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "Python-httplib2/0.8 (gzip)",
 "errorCode": "AccessDenied",
 "errorMessage": "User: arn:aws:iam::999999999999:user/myUserName" is not
 authorized to perform: lambda:GetFunction on resource: arn:aws:lambda:us-west-
2:999999999999:function:other-acct-function",
 "requestParameters": null,
 "responseElements": null,

143

AWS Lambda Developer Guide
Understanding AWS Lambda Log File Entries

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-sources.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-sources.html

 "requestID": "7aebcd0f-cda1-11e4-aaa2-e356da31e4ff",
 "eventID": "e92a3e85-8ecd-4d23-8074-843aabfe89bf",
 "eventType": "AwsApiCall",
 "recipientAccountId": "999999999999"
 },
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws:iam::999999999999:user/myUserName",
 "accountId": "999999999999",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-03-18T19:04:42Z",
 "eventSource": "lambda.amazonaws.com",
 "eventName": "DeleteFunction",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "Python-httplib2/0.8 (gzip)",
 "requestParameters": {
 "functionName": "basic-node-task"
 },
 "responseElements": null,
 "requestID": "a2198ecc-cda1-11e4-aaa2-e356da31e4ff",
 "eventID": "20b84ce5-730f-482e-b2b2-e8fcc87ceb22",
 "eventType": "AwsApiCall",
 "recipientAccountId": "999999999999"
 }
]
}

144

AWS Lambda Developer Guide
Understanding AWS Lambda Log File Entries

Best Practices for Working with
AWS Lambda Functions

The following are recommended best practices for using AWS Lambda.

• Write your Lambda function code in a stateless style, and ensure there is no affinity between your code
and the underlying compute infrastructure.

• Lower costs and improve performance by minimizing the use of ‘startup’ code not directly related to
processing the current event.

• Use the built-in CloudWatch monitoring of your Lambda functions to view and optimize request latencies.

• Delete old Lambda functions that you are no longer using.

145

AWS Lambda Developer Guide

AWS Lambda Limits

This section discusses AWS Lambda limits.

Topics

• AWS Lambda Safety Throttles (p. 146)

• List of AWS Lambda Limits (p. 147)

• AWS Lambda Limit Errors (p. 147)

AWS Lambda Safety Throttles
In order to limit the impact of runaway or recursive functions during initial development and testing, AWS
Lambda has a default "safety" throttle limit of 100 concurrent Lambda function executions per account.
The throttle is applied to the total concurrent executions across all functions within a given region. The
concurrent executions for a given function equals: (average duration of the function execution) X (number
of requests or events processed by AWS Lambda). For example, if your Amazon S3 bucket sends 100
events per second to AWS Lambda, and each event takes three seconds to process, your function will
handle approximately 300 concurrent executions and will exceed the default safety throttle.

Note
When used with Amazon Kinesis or with Amazon DynamoDB streams, AWS Lambda executes
your function concurrently for each shard in the stream, but reads sequentially from each shard
based on your batch size. For more information, see The Pull Event Model (p. 5).

If your account exceeds the safety throttle at any time, any of your functions in the region may be throttled.
When your functions get throttled, you see a spike on the throttled invocations Amazon CloudWatch
metric for the affected functions. If Lambda functions are invoked synchronously, it returns a throttling
error (error code 429). If Lambda functions are invoked asynchronously and are throttled, they are retried
for up to 15-30 minutes, which allows your function to absorb reasonable bursts of traffic. After the 15-30
minute retry period ends, incoming events are rejected as throttled.

If the Lambda function is invoked in response to Amazon S3 events, events rejected by AWS Lambda
are retained and retried by Amazon S3 for up to 24 hours. Events from Amazon Kinesis streams and
Amazon DynamoDB streams are retried until the Lambda function succeeds or the data expires (Amazon
Kinesis and Amazon DynamoDB streams data expires after 24 hours).

To request a limit increase for concurrent execution throttle

1. Open the AWS Support Center page, sign in, if necessary, and then click Create case.

146

AWS Lambda Developer Guide
AWS Lambda Safety Throttles

https://console.aws.amazon.com/support/home#/

2. Under Regarding, select Service Limit Increase.

3. Under Limit Type, select Lambda, fill in the necessary fields in the form, and then click the button
at the bottom of the page for your preferred method of contact.

Note
AWS may automatically raise the concurrent execution throttle limit on your behalf to enable
your function to match the incoming event rate, as in the case of triggering the function from an
Amazon S3 bucket.

List of AWS Lambda Limits
Every Lambda function is allocated with a fixed amount of specific resources regardless of the memory
allocation, and each function is allocated with a fixed amount of code storage per function and per account.

The following table lists the runtime resource limits for a Lambda function per invocation.

AWS Lambda Resource Limits

LimitResource

512 MBEphemeral disk capacity ("/tmp" space)

1,024Number of file descriptors

1,024Number of processes and threads (combined total)

60 secondsMaximum execution duration per request

6 MBInvoke (p. 178) request body payload size

6 MBInvoke (p. 178) response body payload size

The following table lists service limits for deploying a Lambda function.

AWS Lambda Deployment Limits

LimitItem

50 MBLambda function deployment package size (.zip/.jar file)

250 MBSize of code/dependencies that you can zip into a deployment
package (uncompressed zip/jar size)

1.5 GBTotal size of all the deployment packages that can be up-
loaded per account

AWS Lambda Limit Errors
Functions that exceed any of the limits listed in the previous limits tables will fail with an exceeded
limits exception. These limits are fixed and cannot be changed at this time. For example, if you receive
the exception CodeStorageExceededException or an error message similar to "Code storage limit
exceeded" from AWS Lambda, you need to reduce the size of your code storage.

147

AWS Lambda Developer Guide
List of AWS Lambda Limits

To reduce the size of your code storage

1. Remove the functions that you no longer use.

2. Reduce the code size of the functions that you do not want to remove.You can find the code size
of a Lambda function by using the AWS Lambda console, the AWS Command Line Interface, or
AWS SDKs.

148

AWS Lambda Developer Guide
AWS Lambda Limit Errors

Appendix: API Updates

From Preview to General Availability

As part of making the service generally available, the AWS Lambda API and programming model have
been updated to address customer feedback. If you are a customer who has been using Lambda before
April 9, 2015, the following is a useful reference to understand what changes need to be made in order
to use the new API and permissions model.

Migration guidance for existing usersNewPreviousTask

Permissions

If you use the Amazon S3 console, anytime
you create a new notification rule, editing
an existing rule, or deleting a rule, the con-
sole will look at all the existing rules on the
same bucket and convert any existing
Lambda rules as needed (remove invoca-
tion roles and automatically add permis-
sions). If you use the Amazon S3 API for
editing or updating the event source, you
will need to first set permissions using
Lambda AddPermissions, and then create
the notification role.

Create permissions
policy using AddPer-
mission API for a
given function. Invoca-
tionrole is deprecated.

Set the “invoca-
tionrole” paramet-
er for function
properties using
CreateFunc-
tion.

Setting in-
voke permis-
sions for
Amazon S3

149

AWS Lambda Developer Guide

Migration guidance for existing usersNewPreviousTask

• New event source mapping with a new
function - When you create a new func-
tion, you must ensure the execution role
has the necessary permissions to read
from your event source. If you use the
AWS Lambda console, you can use the
1-Click role creation option to automatic-
ally create a role with the necessary per-
missions for a given code template.You
can customize the permissions on the
execution role by using the IAM console
(Roles -> Click on desired role -> scroll
to inline policies -> edit policy).

• New event source mapping with an exist-
ing function - Before setting up a new
event source on an existing function, you
need to update your execution role with
stream read permissions.You can cus-
tomize the permissions on the execution
role by using the IAM console (Roles ->
Click on desired role -> scroll to inline
policies -> edit policy). If you are using
the AWS Lambda console, you can up-
date your execution role with the addition-
al policy for reading and writing from
Streams.

• Existing event source mapping with an
existing function - Existing event source
mappings will continue to use the invoca-
tion role they were configured with. How-
ever, if you modify the event source
through the Lambda CLI, you will need
to remove the invocation role and update
the execution role.

Add appropriate per-
missions to the func-
tion execution role
"kinesis:GetRecords",
"kinesis:GetShardIter-
ator", "kinesis:De-
scribeStream", "kines-
is:ListStreams"

Set the “invoca-
tionrole” paramet-
er for function
properties using
AddEvent-
Source API.

Setting in-
voke permis-
sions for
Amazon Kin-
esis

Managing functions

Update any references to InvokeAsync to
use Invoke. InvokeAsync is deprecated.

Use Invoke API with
“event”Invocation-
Type

Use InvokeA-
sync API

Invoking a
function in
“Event” mode
(asynchron-
ous re-
sponse)

Update any references to UploadFunc-
tion to use CreateFunction

Use CreateFunc-
tion API

Use UploadFunc-
tion API

Creating func-
tions program-
matically

Update any references to UploadFunc-
tion to use UpdateFunctionCode

Use UpdateFunc-
tionCode API

Use UploadFunc-
tion API

Updating
function code
programmatic-
ally

Managing event sources

150

AWS Lambda Developer Guide

Migration guidance for existing usersNewPreviousTask

Update any references to AddEvent-
Source to use AddEventSourceMapping
when used to create an event source

Use AddEvent-
SourceMapping

Use AddEvent-
Source API

Creating
event sources
(stream to
function map-
pings) pro-
grammatically

Update any references to AddEvent-
Source to use UpdateEventSourceMap-
ping when used to update an event source

Use UpdateEvent-
SourceMapping

Use AddEvent-
Source API

Updating
event sources
(stream to
function map-
pings) pro-
grammatically

Update any references to GetEvent-
Source to use GetEventSourceMapping
when used to update an event source

GetEventSourceMap-
ping

GetEvent-
Source

Retrieve
single event
source

Update any references to GetEvent-
Source to use GetEventSourceMapping
when used to update an event source

ListEvent-
SourceMapping

ListEvent-
Source

List all event
sources

Update any references to RemoveEvent-
Source to use DeleteEventSourceMap-
ping when used to delete an event source

DeleteEvent-
SourceMapping

RemoveEvent-
Source

Delete an
event source

Programming model

context.done will continue to work; how-
ever, it is recommended you use the new
methods.

context. suc-
ceed(result)

con-
text.done(null,
“successmes-
sage”)

Specifying
successful
execution

context.done will continue to work; how-
ever, it is recommended you use the new
methods.

context. fail(er-
ror)

con-
text.done(er-
rorObject,
“failuremes-
sage”)

Specifying an
error in execu-
tion

151

AWS Lambda Developer Guide

API Reference

This section contains the AWS Lambda API Reference documentation. When making the API calls, you
will need to authenticate your request by providing a signature. AWS Lambda supports signature version
4. For more information, go to Signature Version 4 Signing Process in the Amazon Web Services General
Reference.

For an overview of the service, see What Is AWS Lambda? (p. 1). For information about how the service
works, see AWS Lambda: How it Works (p. 3).

You can use the AWS CLI to explore the AWS Lambda API. For examples, see AWS Lambda Walkthroughs
(Node.js) (p. 35).

Actions
The following actions are supported:

• AddPermission (p. 153)

• CreateEventSourceMapping (p. 156)

• CreateFunction (p. 160)

• DeleteEventSourceMapping (p. 165)

• DeleteFunction (p. 167)

• GetEventSourceMapping (p. 169)

• GetFunction (p. 171)

• GetFunctionConfiguration (p. 173)

• GetPolicy (p. 176)

• Invoke (p. 178)

• InvokeAsync (p. 181)

• ListEventSourceMappings (p. 183)

• ListFunctions (p. 185)

• RemovePermission (p. 187)

• UpdateEventSourceMapping (p. 189)

• UpdateFunctionCode (p. 192)

• UpdateFunctionConfiguration (p. 196)

152

AWS Lambda Developer Guide
Actions

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AddPermission
Adds a permission to the access policy associated with the specified AWS Lambda function. In a "push
event" model, the access policy attached to the Lambda function grants Amazon S3 or a user application
permission for the Lambda lambda:Invoke action. For information about the push model, see AWS
Lambda: How it Works. Each Lambda function has one access policy associated with it.You can use the
AddPermission API to add a permission to the policy.You have one access policy but it can have
multiple permission statements.

This operation requires permission for the lambda:AddPermission action.

Request Syntax

POST /2015-03-31/functions/FunctionName/versions/HEAD/policy HTTP/1.1
Content-type: application/json

{
 "Action": "string",
 "Principal": "string",
 "SourceAccount": "string",
 "SourceArn": "string",
 "StatementId": "string"
}

URI Request Parameters
The request requires the following URI parameters.

FunctionName
Name of the Lambda function whose access policy you are updating by adding a new permission.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Request Body
The request requires the following data in JSON format.

Action
The AWS Lambda action you want to allow in this statement. Each Lambda action is a string starting
with "lambda:" followed by the API name (see Actions (p. 152)). For example, "lambda:CreateFunction".
You can use wildcard ("lambda:*") to grant permission for all AWS Lambda actions.

Type: String

Pattern: (lambda:[*]|lambda:[a-zA-Z]+|[*])

Required:Yes

153

AWS Lambda Developer Guide
AddPermission

http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

Principal
The principal who is getting this permission. It can be Amazon S3 service Principal
("s3.amazonaws.com") if you want Amazon S3 to invoke the function, an AWS account ID if you are
granting cross-account permission, or any valid AWS service principal such as "sns.amazonaws.com".
For example, you might want to allow a custom application in another AWS account to push events
to AWS Lambda by invoking your function.

Type: String

Pattern: .*

Required:Yes

SourceAccount
The AWS account ID (without a hyphen) of the source owner. For example, if the SourceArn identifies
a bucket, then this is the bucket owner's account ID.You can use this additional condition to ensure
the bucket you specify is owned by a specific account (it is possible the bucket owner deleted the
bucket and some other AWS account created the bucket).You can also use this condition to specify
all sources (that is, you don't specify the SourceArn) owned by a specific account.

Type: String

Pattern: \d{12}

Required: No

SourceArn
This is optional; however, when granting Amazon S3 permission to invoke your function, you should
specify this field with the bucket Amazon Resource Name (ARN) as its value. This ensures that only
events generated from the specified bucket can invoke the function.

Important
If you add a permission for the Amazon S3 principal without providing the source ARN, any
AWS account that creates a mapping to your function ARN can send events to invoke your
Lambda function from Amazon S3.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

Required: No

StatementId
A unique statement identifier.

Type: String

Length constraints: Minimum length of 1. Maximum length of 100.

Pattern: ([a-zA-Z0-9-_]+)

Required:Yes

Response Syntax

HTTP/1.1 201
Content-type: application/json

{

154

AWS Lambda Developer Guide
AddPermission

 "Statement": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

Statement
The permission statement you specified in the request. The response returns the same as a string
using "\" as an escape character in the JSON.

Type: String

Errors
InvalidParameterValueException

One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

PolicyLengthExceededException
Lambda function access policy is limited to 20 KB.

HTTP Status Code: 400

ResourceConflictException
The resource already exists.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

155

AWS Lambda Developer Guide
AddPermission

CreateEventSourceMapping
Identifies a stream as an event source for a Lambda function. It can be either an Amazon Kinesis stream
or an Amazon DynamoDB stream. AWS Lambda invokes the specified function when records are posted
to the stream.

This is the pull model, where AWS Lambda invokes the function. For more information, go to AWS Lambda:
How it Works in the AWS Lambda Developer Guide.

This association between an Amazon Kinesis stream and a Lambda function is called the event source
mapping.You provide the configuration information (for example, which stream to read from and which
Lambda function to invoke) for the event source mapping in the request body.

Each event source, such as an Amazon Kinesis or a DynamoDB stream, can be associated with multiple
AWS Lambda function. A given Lambda function can be associated with multiple AWS event sources.

This operation requires permission for the lambda:CreateEventSourceMapping action.

Request Syntax

POST /2015-03-31/event-source-mappings/ HTTP/1.1
Content-type: application/json

{
 "BatchSize": number,
 "Enabled": boolean,
 "EventSourceArn": "string",
 "FunctionName": "string",
 "StartingPosition": "string"
}

URI Request Parameters
The request does not use any URI parameters.

Request Body
The request requires the following data in JSON format.

BatchSize
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function.Your function receives an event with all the retrieved records. The default is
100 records.

Type: Number

Valid range: Minimum value of 1. Maximum value of 10000.

Required: No

Enabled
Indicates whether AWS Lambda should begin polling the event source, the default is not enabled.

Type: Boolean

Required: No

156

AWS Lambda Developer Guide
CreateEventSourceMapping

http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

EventSourceArn
The Amazon Resource Name (ARN) of the Amazon Kinesis or the Amazon DynamoDB stream that
is the event source. Any record added to this stream could cause AWS Lambda to invoke your
Lambda function, it depends on the BatchSize. AWS Lambda POSTs the Amazon Kinesis event,
containing records, to your Lambda function as JSON.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

Required:Yes

FunctionName
The Lambda function to invoke when AWS Lambda detects an event on the stream.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Type: String

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Required:Yes

StartingPosition
The position in the stream where AWS Lambda should start reading. For more information, go to
ShardIteratorType in the Amazon Kinesis API Reference.

Type: String

Valid Values: TRIM_HORIZON | LATEST

Required:Yes

Response Syntax

HTTP/1.1 202
Content-type: application/json

{
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",
 "UUID": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 202 response.

157

AWS Lambda Developer Guide
CreateEventSourceMapping

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html#Kinesis-GetShardIterator-request-ShardIteratorType

The following data is returned in JSON format by the service.

BatchSize
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function.Your function receives an event with all the retrieved records.

Type: Number

Valid range: Minimum value of 1. Maximum value of 10000.

EventSourceArn
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionArn
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

LastModified
The UTC time string indicating the last time the event mapping was updated.

Type: DateTime

LastProcessingResult
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

State
The state of the event source mapping. It can be "Creating", "Enabled", "Disabled", "Enabling",
"Disabling", "Updating", or "Deleting".

Type: String

StateTransitionReason
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

Type: String

UUID
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Errors
InvalidParameterValueException

One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceConflictException
The resource already exists.

HTTP Status Code: 400

158

AWS Lambda Developer Guide
CreateEventSourceMapping

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

159

AWS Lambda Developer Guide
CreateEventSourceMapping

CreateFunction
Creates a new Lambda function. The function metadata is created from the request parameters, and the
code for the function is provided by a .zip file in the request body. If the function name already exists, the
operation will fail. Note that the function name is case-sensitive.

This operation requires permission for the lambda:CreateFunction action.

Request Syntax

POST /2015-03-31/functions HTTP/1.1
Content-type: application/json

{
 "Code": {
 "S3Bucket": "string",
 "S3Key": "string",
 "S3ObjectVersion": "string",
 "ZipFile": blob
 },
 "Description": "string",
 "FunctionName": "string",
 "Handler": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number
}

URI Request Parameters
The request does not use any URI parameters.

Request Body
The request requires the following data in JSON format.

Code
The code for the Lambda function.

Type: FunctionCode (p. 201) object

Required:Yes

Description
A short, user-defined function description. Lambda does not use this value. Assign a meaningful
description as you see fit.

Type: String

Length constraints: Minimum length of 0. Maximum length of 256.

Required: No

FunctionName
The name you want to assign to the function you are uploading.You can specify an unqualified
function name (for example, "Thumbnail") or you can specify Amazon Resource Name (ARN) of the
function (for example, "arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda

160

AWS Lambda Developer Guide
CreateFunction

also allows you to specify only the account ID qualifier (for example, "account-id:Thumbnail"). Note
that the length constraint applies only to the ARN. If you specify only the function name, it is limited
to 64 character in length. The function names appear in the console and are returned in the
ListFunctions (p. 185) API. Function names are used to specify functions to other AWS Lambda APIs,
such as Invoke (p. 178).

Type: String

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Required:Yes

Handler
The function within your code that Lambda calls to begin execution. For Node.js, it is the
module-name.export value in your function. For Java, it can be package.class-name::handler
or package.class-name. For more information, see Lambda Function Handler (Java).

Type: String

Length constraints: Minimum length of 0. Maximum length of 128.

Pattern: [^\s]+

Required:Yes

MemorySize
The amount of memory, in MB, your Lambda function is given. Lambda uses this memory size to
infer the amount of CPU and memory allocated to your function.Your function use-case determines
your CPU and memory requirements. For example, a database operation might need less memory
compared to an image processing function.The default value is 128 MB.The value must be a multiple
of 64 MB.

Type: Number

Valid range: Minimum value of 128. Maximum value of 1536.

Required: No

Role
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources. For more information, see
AWS Lambda: How it Works

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required:Yes

Runtime
The runtime environment for the Lambda function you are uploading. Currently, Lambda supports
"java" and "nodejs" as the runtime.

Type: String

Valid Values: nodejs | java8

Required:Yes

161

AWS Lambda Developer Guide
CreateFunction

http://docs.aws.amazon.com/lambda/latest/dg/java-programming-model-handler-types.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html

Timeout
The function execution time at which Lambda should terminate the function. Because the execution
time has cost implications, we recommend you set this value based on your expected execution time.
The default is 3 seconds.

Type: Number

Valid range: Minimum value of 1. Maximum value of 60.

Required: No

Response Syntax

HTTP/1.1 201
Content-type: application/json

{
 "CodeSize": number,
 "Description": "string",
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number
}

Response Elements
If the action is successful, the service sends back an HTTP 201 response.

The following data is returned in JSON format by the service.

CodeSize
The size, in bytes, of the function .zip file you uploaded.

Type: Long

Description
The user-provided description.

Type: String

Length constraints: Minimum length of 0. Maximum length of 256.

FunctionArn
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

FunctionName
The name of the function.

Type: String

162

AWS Lambda Developer Guide
CreateFunction

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Handler
The function Lambda calls to begin executing your function.

Type: String

Length constraints: Minimum length of 0. Maximum length of 128.

Pattern: [^\s]+

LastModified
The timestamp of the last time you updated the function.

Type: String

MemorySize
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

Type: Number

Valid range: Minimum value of 128. Maximum value of 1536.

Role
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Runtime
The runtime environment for the Lambda function.

Type: String

Valid Values: nodejs | java8

Timeout
The function execution time at which Lambda should terminate the function. Because the execution
time has cost implications, we recommend you set this value based on your expected execution time.
The default is 3 seconds.

Type: Number

Valid range: Minimum value of 1. Maximum value of 60.

Errors
CodeStorageExceededException

HTTP Status Code: 400

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceConflictException
The resource already exists.

163

AWS Lambda Developer Guide
CreateFunction

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

164

AWS Lambda Developer Guide
CreateFunction

DeleteEventSourceMapping
Removes an event source mapping. This means AWS Lambda will no longer invoke the function for
events in the associated source.

This operation requires permission for the lambda:DeleteEventSourceMapping action.

Request Syntax

DELETE /2015-03-31/event-source-mappings/UUID HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

UUID
The event source mapping ID.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 202
Content-type: application/json

{
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",
 "UUID": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 202 response.

The following data is returned in JSON format by the service.

BatchSize
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function.Your function receives an event with all the retrieved records.

Type: Number

Valid range: Minimum value of 1. Maximum value of 10000.

EventSourceArn
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

165

AWS Lambda Developer Guide
DeleteEventSourceMapping

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionArn
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

LastModified
The UTC time string indicating the last time the event mapping was updated.

Type: DateTime

LastProcessingResult
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

State
The state of the event source mapping. It can be "Creating", "Enabled", "Disabled", "Enabling",
"Disabling", "Updating", or "Deleting".

Type: String

StateTransitionReason
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

Type: String

UUID
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Errors
InvalidParameterValueException

One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

166

AWS Lambda Developer Guide
DeleteEventSourceMapping

DeleteFunction
Deletes the specified Lambda function code and configuration.

When you delete a function the associated access policy is also deleted.You will need to delete the event
source mappings explicitly.

This operation requires permission for the lambda:DeleteFunction action.

Request Syntax

DELETE /2015-03-31/functions/FunctionName HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName
The Lambda function to delete.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements
If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

Errors
ResourceNotFoundException

The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

167

AWS Lambda Developer Guide
DeleteFunction

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

168

AWS Lambda Developer Guide
DeleteFunction

GetEventSourceMapping
Returns configuration information for the specified event source mapping (see
CreateEventSourceMapping (p. 156)).

This operation requires permission for the lambda:GetEventSourceMapping action.

Request Syntax

GET /2015-03-31/event-source-mappings/UUID HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

UUID
The AWS Lambda assigned ID of the event source mapping.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",
 "UUID": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

BatchSize
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function.Your function receives an event with all the retrieved records.

Type: Number

Valid range: Minimum value of 1. Maximum value of 10000.

EventSourceArn
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

169

AWS Lambda Developer Guide
GetEventSourceMapping

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionArn
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

LastModified
The UTC time string indicating the last time the event mapping was updated.

Type: DateTime

LastProcessingResult
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

State
The state of the event source mapping. It can be "Creating", "Enabled", "Disabled", "Enabling",
"Disabling", "Updating", or "Deleting".

Type: String

StateTransitionReason
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

Type: String

UUID
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Errors
InvalidParameterValueException

One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

170

AWS Lambda Developer Guide
GetEventSourceMapping

GetFunction
Returns the configuration information of the Lambda function and a presigned URL link to the .zip file you
uploaded with CreateFunction (p. 160) so you can download the .zip file. Note that the URL is valid for up
to 10 minutes. The configuration information is the same information you provided as parameters when
uploading the function.

This operation requires permission for the lambda:GetFunction action.

Request Syntax

GET /2015-03-31/functions/FunctionName/versions/HEAD HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName
The Lambda function name.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "Code": {
 "Location": "string",
 "RepositoryType": "string"
 },
 "Configuration": {
 "CodeSize": number,
 "Description": "string",
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",

171

AWS Lambda Developer Guide
GetFunction

 "Runtime": "string",
 "Timeout": number
 }
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Code
The object for the Lambda function location.

Type: FunctionCodeLocation (p. 202) object

Configuration
A complex type that describes function metadata.

Type: FunctionConfiguration (p. 202) object

Errors
ResourceNotFoundException

The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

172

AWS Lambda Developer Guide
GetFunction

GetFunctionConfiguration
Returns the configuration information of the Lambda function. This the same information you provided
as parameters when uploading the function by using CreateFunction (p. 160).

This operation requires permission for the lambda:GetFunctionConfiguration operation.

Request Syntax

GET /2015-03-31/functions/FunctionName/versions/HEAD/configuration HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName
The name of the Lambda function for which you want to retrieve the configuration information.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "CodeSize": number,
 "Description": "string",
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number
}

173

AWS Lambda Developer Guide
GetFunctionConfiguration

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CodeSize
The size, in bytes, of the function .zip file you uploaded.

Type: Long

Description
The user-provided description.

Type: String

Length constraints: Minimum length of 0. Maximum length of 256.

FunctionArn
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

FunctionName
The name of the function.

Type: String

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Handler
The function Lambda calls to begin executing your function.

Type: String

Length constraints: Minimum length of 0. Maximum length of 128.

Pattern: [^\s]+

LastModified
The timestamp of the last time you updated the function.

Type: String

MemorySize
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

Type: Number

Valid range: Minimum value of 128. Maximum value of 1536.

Role
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

174

AWS Lambda Developer Guide
GetFunctionConfiguration

Runtime
The runtime environment for the Lambda function.

Type: String

Valid Values: nodejs | java8

Timeout
The function execution time at which Lambda should terminate the function. Because the execution
time has cost implications, we recommend you set this value based on your expected execution time.
The default is 3 seconds.

Type: Number

Valid range: Minimum value of 1. Maximum value of 60.

Errors
ResourceNotFoundException

The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

175

AWS Lambda Developer Guide
GetFunctionConfiguration

GetPolicy
Returns the access policy, containing a list of permissions granted via the AddPermission API, associated
with the specified bucket.

You need permission for the lambda:GetPolicy action.

Request Syntax

GET /2015-03-31/functions/FunctionName/versions/HEAD/policy HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName
Function name whose access policy you want to retrieve.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "Policy": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Policy
The access policy associated with the specified function. The response returns the same as a string
using "\" as an escape character in the JSON.

Type: String

176

AWS Lambda Developer Guide
GetPolicy

Errors
ResourceNotFoundException

The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

177

AWS Lambda Developer Guide
GetPolicy

Invoke
Invokes a specified Lambda function.

This operation requires permission for the lambda:InvokeFunction action.

Request Syntax

POST /2015-03-31/functions/FunctionName/invocations HTTP/1.1
X-Amz-Client-Context: ClientContext
X-Amz-Invocation-Type: InvocationType
X-Amz-Log-Type: LogType

Payload

URI Request Parameters
The request requires the following URI parameters.

ClientContext
Using the ClientContext you can pass client-specific information to the Lambda function you are
invoking.You can then process the client information in your Lambda function as you choose through
the context variable. For an example of a ClientContext JSON, go to PutEvents in the Amazon Mobile
Analytics API Reference and User Guide.

The ClientContext JSON must be base64-encoded.

FunctionName
The Lambda function name.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

InvocationType
By default, the Invoke API assumes "RequestResponse" invocation type.You can optionally request
asynchronous execution by specifying "Event" as the InvocationType.You can also use this
parameter to request AWS Lambda to not execute the function but do some verification, such as if
the caller is authorized to invoke the function and if the inputs are valid.You request this by specifying
"DryRun" as the InvocationType. This is useful in a cross-account scenario when you want to
verify access to a function without running it.

Valid Values: Event | RequestResponse | DryRun

LogType
You can set this optional parameter to "Tail" in the request only if you specify the InvocationType
parameter with value "RequestResponse". In this case, AWS Lambda returns the base64-encoded
last 4 KB of log data produced by your Lambda function in the x-amz-log-results header.

Valid Values: None | Tail

178

AWS Lambda Developer Guide
Invoke

http://docs.aws.amazon.com/mobileanalytics/latest/ug/PutEvents.html

Request Body
The request requires the following as the HTTP body.

Payload
JSON that you want to provide to your Lambda function as input.

Response Syntax

HTTP/1.1 StatusCode
X-Amz-Function-Error: FunctionError
X-Amz-Log-Result: LogResult

Payload

Response Elements
StatusCode

The HTTP status code will be in the 200 range for successful request. For the "RequestResonse"
invocation type this status code will be 200. For the "Event" invocation type this status code will be
202. For the "DryRun" invocation type the status code will be 204.

The response returns the following HTTP headers.

FunctionError
Indicates whether an error occurred while executing the Lambda function. If an error occurred this
field will have one of two values;Handled or Unhandled.Handled errors are errors that are reported
by the function while the Unhandled errors are those detected and reported by AWS Lambda.
Unhandled errors include out of memory errors and function timeouts. For information about how to
report an Handled error, see Programming Model.

LogResult
It is the base64-encoded logs for the Lambda function invocation.This is present only if the invocation
type is "RequestResponse" and the logs were requested.

The response returns the following as the HTTP body.

Payload
It is the JSON representation of the object returned by the Lambda function. In This is present only
if the invocation type is "RequestResponse".

In the event of a function error this field contains a message describing the error. For the Handled
errors the Lambda function will report this message. For Unhandled errors AWS Lambda reports
the message.

Errors
InvalidRequestContentException

The request body could not be parsed as JSON.

HTTP Status Code: 400

RequestTooLargeException
HTTP Status Code: 400

179

AWS Lambda Developer Guide
Invoke

http://docs.aws.amazon.com/lambda/latest/dg/programming-model.html

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

UnsupportedMediaTypeException
HTTP Status Code: 400

180

AWS Lambda Developer Guide
Invoke

InvokeAsync
Important
This API is deprecated. We recommend you use Invoke API (see Invoke (p. 178)).

Submits an invocation request to AWS Lambda. Upon receiving the request, Lambda executes the
specified function asynchronously. To see the logs generated by the Lambda function execution, see the
CloudWatch logs console.

This operation requires permission for the lambda:InvokeFunction action.

Request Syntax

POST /2014-11-13/functions/FunctionName/invoke-async/ HTTP/1.1

InvokeArgs

URI Request Parameters
The request requires the following URI parameters.

FunctionName
The Lambda function name.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Request Body
The request requires the following as the HTTP body.

InvokeArgs
JSON that you want to provide to your Lambda function as input.

Response Syntax

HTTP/1.1 Status

Response Elements
Status

It will be 202 upon success.

Errors
InvalidRequestContentException

The request body could not be parsed as JSON.

HTTP Status Code: 400

181

AWS Lambda Developer Guide
InvokeAsync

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

Examples

Invoke a Lambda function

The following example uses a POST request to invoke a Lambda function.

Sample Request

POST /2014-11-13/functions/helloworld/invoke-async/ HTTP/1.1
[input json]

Sample Response

HTTP/1.1 202 Accepted

x-amzn-requestid: f037bc5c-5a08-11e4-b02e-af446c3f9d0d
content-length: 0
connection: keep-alive
date: Wed, 22 Oct 2014 16:31:55 GMT
content-type: application/json

182

AWS Lambda Developer Guide
InvokeAsync

ListEventSourceMappings
Returns a list of event source mappings you created using the CreateEventSourceMapping (see
CreateEventSourceMapping (p. 156)), where you identify a stream as an event source. This list does not
include Amazon S3 event sources.

For each mapping, the API returns configuration information.You can optionally specify filters to retrieve
specific event source mappings.

This operation requires permission for the lambda:ListEventSourceMappings action.

Request Syntax

GET /2015-03-31/event-source-mappings/?Marker=Marker&MaxItems=MaxItems&Function
Name=FunctionName&EventSourceArn=EventSourceArn HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

EventSourceArn
The Amazon Resource Name (ARN) of the Amazon Kinesis stream.

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionName
The name of the Lambda function.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Marker
Optional string. An opaque pagination token returned from a previous ListEventSourceMappings
operation. If present, specifies to continue the list from where the returning call left off.

MaxItems
Optional integer. Specifies the maximum number of event sources to return in response. This value
must be greater than 0.

Valid range: Minimum value of 1. Maximum value of 10000.

Request Body
The request does not have a request body.

183

AWS Lambda Developer Guide
ListEventSourceMappings

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "EventSourceMappings": [
 {
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",
 "UUID": "string"
 }
],
 "NextMarker": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

EventSourceMappings
An array of EventSourceMappingConfiguration objects.

Type: array of EventSourceMappingConfiguration (p. 200) objects

NextMarker
A string, present if there are more event source mappings.

Type: String

Errors
InvalidParameterValueException

One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

184

AWS Lambda Developer Guide
ListEventSourceMappings

ListFunctions
Returns a list of your Lambda functions. For each function, the response includes the function configuration
information.You must use GetFunction (p. 171) to retrieve the code for your function.

This operation requires permission for the lambda:ListFunctions action.

Request Syntax

GET /2015-03-31/functions/?Marker=Marker&MaxItems=MaxItems HTTP/1.1

URI Request Parameters
The request requires the following URI parameters.

Marker
Optional string. An opaque pagination token returned from a previous ListFunctions operation.
If present, indicates where to continue the listing.

MaxItems
Optional integer. Specifies the maximum number of AWS Lambda functions to return in response.
This parameter value must be greater than 0.

Valid range: Minimum value of 1. Maximum value of 10000.

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "Functions": [
 {
 "CodeSize": number,
 "Description": "string",
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number
 }
],
 "NextMarker": "string"
}

185

AWS Lambda Developer Guide
ListFunctions

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

Functions
A list of Lambda functions.

Type: array of FunctionConfiguration (p. 202) objects

NextMarker
A string, present if there are more functions.

Type: String

Errors
ServiceException

The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

186

AWS Lambda Developer Guide
ListFunctions

RemovePermission
You can remove individual permissions from an access policy associated with a Lambda function by
providing a Statement ID.

Note that removal of a permission will cause an active event source to lose permission to the function.

You need permission for the lambda:RemovePermission action.

Request Syntax

DELETE /2015-03-31/functions/FunctionName/versions/HEAD/policy/StatementId HT
TP/1.1

URI Request Parameters
The request requires the following URI parameters.

FunctionName
Lambda function whose access policy you want to remove a permission from.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

StatementId
Statement ID of the permission to remove.

Length constraints: Minimum length of 1. Maximum length of 100.

Pattern: ([a-zA-Z0-9-_]+)

Request Body
The request does not have a request body.

Response Syntax

HTTP/1.1 204

Response Elements
If the action is successful, the service sends back an HTTP 204 response with an empty HTTP body.

187

AWS Lambda Developer Guide
RemovePermission

Errors
ResourceNotFoundException

The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

188

AWS Lambda Developer Guide
RemovePermission

UpdateEventSourceMapping
You can update an event source mapping. This is useful if you want to change the parameters of the
existing mapping without losing your position in the stream.You can change which function will receive
the stream records, but to change the stream itself, you must create a new mapping.

This operation requires permission for the lambda:UpdateEventSourceMapping action.

Request Syntax

PUT /2015-03-31/event-source-mappings/UUID HTTP/1.1
Content-type: application/json

{
 "BatchSize": number,
 "Enabled": boolean,
 "FunctionName": "string"
}

URI Request Parameters
The request requires the following URI parameters.

UUID
The event source mapping identifier.

Request Body
The request requires the following data in JSON format.

BatchSize
The maximum number of stream records that can be sent to your Lambda function for a single
invocation.

Type: Number

Valid range: Minimum value of 1. Maximum value of 10000.

Required: No

Enabled
Specifies whether AWS Lambda should actively poll the stream or not. If disabled, AWS Lambda will
not poll the stream.

Type: Boolean

Required: No

FunctionName
The Lambda function to which you want the stream records sent.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

189

AWS Lambda Developer Guide
UpdateEventSourceMapping

Type: String

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Required: No

Response Syntax

HTTP/1.1 202
Content-type: application/json

{
 "BatchSize": number,
 "EventSourceArn": "string",
 "FunctionArn": "string",
 "LastModified": number,
 "LastProcessingResult": "string",
 "State": "string",
 "StateTransitionReason": "string",
 "UUID": "string"
}

Response Elements
If the action is successful, the service sends back an HTTP 202 response.

The following data is returned in JSON format by the service.

BatchSize
The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function.Your function receives an event with all the retrieved records.

Type: Number

Valid range: Minimum value of 1. Maximum value of 10000.

EventSourceArn
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

FunctionArn
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

LastModified
The UTC time string indicating the last time the event mapping was updated.

Type: DateTime

190

AWS Lambda Developer Guide
UpdateEventSourceMapping

LastProcessingResult
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

State
The state of the event source mapping. It can be "Creating", "Enabled", "Disabled", "Enabling",
"Disabling", "Updating", or "Deleting".

Type: String

StateTransitionReason
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

Type: String

UUID
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Errors
InvalidParameterValueException

One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

191

AWS Lambda Developer Guide
UpdateEventSourceMapping

UpdateFunctionCode
Updates the code for the specified Lambda function. This operation must only be used on an existing
Lambda function and cannot be used to update the function configuration.

This operation requires permission for the lambda:UpdateFunctionCode action.

Request Syntax

PUT /2015-03-31/functions/FunctionName/versions/HEAD/code HTTP/1.1
Content-type: application/json

{
 "S3Bucket": "string",
 "S3Key": "string",
 "S3ObjectVersion": "string",
 "ZipFile": blob
}

URI Request Parameters
The request requires the following URI parameters.

FunctionName
The existing Lambda function name whose code you want to replace.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Request Body
The request requires the following data in JSON format.

S3Bucket
Amazon S3 bucket name where the .zip file containing your deployment package is stored. This
bucket must reside in the same AWS region where you are creating the Lambda function.

Type: String

Length constraints: Minimum length of 3. Maximum length of 63.

Pattern: ^[0-9A-Za-z\.\-_]*(?<!\.)$

Required: No

S3Key
The Amazon S3 object (the deployment package) key name you want to upload.

Type: String

192

AWS Lambda Developer Guide
UpdateFunctionCode

Length constraints: Minimum length of 1. Maximum length of 1024.

Required: No

S3ObjectVersion
The Amazon S3 object (the deployment package) version you want to upload.

Type: String

Length constraints: Minimum length of 1. Maximum length of 1024.

Required: No

ZipFile
Based64-encoded .zip file containing your packaged source code.

Type: Blob

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "CodeSize": number,
 "Description": "string",
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number
}

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CodeSize
The size, in bytes, of the function .zip file you uploaded.

Type: Long

Description
The user-provided description.

Type: String

Length constraints: Minimum length of 0. Maximum length of 256.

FunctionArn
The Amazon Resource Name (ARN) assigned to the function.

Type: String

193

AWS Lambda Developer Guide
UpdateFunctionCode

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

FunctionName
The name of the function.

Type: String

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Handler
The function Lambda calls to begin executing your function.

Type: String

Length constraints: Minimum length of 0. Maximum length of 128.

Pattern: [^\s]+

LastModified
The timestamp of the last time you updated the function.

Type: String

MemorySize
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

Type: Number

Valid range: Minimum value of 128. Maximum value of 1536.

Role
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Runtime
The runtime environment for the Lambda function.

Type: String

Valid Values: nodejs | java8

Timeout
The function execution time at which Lambda should terminate the function. Because the execution
time has cost implications, we recommend you set this value based on your expected execution time.
The default is 3 seconds.

Type: Number

Valid range: Minimum value of 1. Maximum value of 60.

Errors
CodeStorageExceededException

HTTP Status Code: 400

194

AWS Lambda Developer Guide
UpdateFunctionCode

InvalidParameterValueException
One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

195

AWS Lambda Developer Guide
UpdateFunctionCode

UpdateFunctionConfiguration
Updates the configuration parameters for the specified Lambda function by using the values provided in
the request.You provide only the parameters you want to change. This operation must only be used on
an existing Lambda function and cannot be used to update the function's code.

This operation requires permission for the lambda:UpdateFunctionConfiguration action.

Request Syntax

PUT /2015-03-31/functions/FunctionName/versions/HEAD/configuration HTTP/1.1
Content-type: application/json

{
 "Description": "string",
 "Handler": "string",
 "MemorySize": number,
 "Role": "string",
 "Timeout": number
}

URI Request Parameters
The request requires the following URI parameters.

FunctionName
The name of the Lambda function.

You can specify an unqualified function name (for example, "Thumbnail") or you can specify Amazon
Resource Name (ARN) of the function (for example,
"arn:aws:lambda:us-west-2:account-id:function:ThumbNail"). AWS Lambda also allows you to specify
only the account ID qualifier (for example, "account-id:Thumbnail"). Note that the length constraint
applies only to the ARN. If you specify only the function name, it is limited to 64 character in length.

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Request Body
The request requires the following data in JSON format.

Description
A short user-defined function description. AWS Lambda does not use this value. Assign a meaningful
description as you see fit.

Type: String

Length constraints: Minimum length of 0. Maximum length of 256.

Required: No

Handler
The function that Lambda calls to begin executing your function. For Node.js, it is the
module-name.export value in your function.

196

AWS Lambda Developer Guide
UpdateFunctionConfiguration

Type: String

Length constraints: Minimum length of 0. Maximum length of 128.

Pattern: [^\s]+

Required: No

MemorySize
The amount of memory, in MB, your Lambda function is given. AWS Lambda uses this memory size
to infer the amount of CPU allocated to your function.Your function use-case determines your CPU
and memory requirements. For example, a database operation might need less memory compared
to an image processing function. The default value is 128 MB. The value must be a multiple of 64
MB.

Type: Number

Valid range: Minimum value of 128. Maximum value of 1536.

Required: No

Role
The Amazon Resource Name (ARN) of the IAM role that Lambda will assume when it executes your
function.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

Timeout
The function execution time at which AWS Lambda should terminate the function. Because the
execution time has cost implications, we recommend you set this value based on your expected
execution time. The default is 3 seconds.

Type: Number

Valid range: Minimum value of 1. Maximum value of 60.

Required: No

Response Syntax

HTTP/1.1 200
Content-type: application/json

{
 "CodeSize": number,
 "Description": "string",
 "FunctionArn": "string",
 "FunctionName": "string",
 "Handler": "string",
 "LastModified": "string",
 "MemorySize": number,
 "Role": "string",
 "Runtime": "string",
 "Timeout": number
}

197

AWS Lambda Developer Guide
UpdateFunctionConfiguration

Response Elements
If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CodeSize
The size, in bytes, of the function .zip file you uploaded.

Type: Long

Description
The user-provided description.

Type: String

Length constraints: Minimum length of 0. Maximum length of 256.

FunctionArn
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

FunctionName
The name of the function.

Type: String

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Handler
The function Lambda calls to begin executing your function.

Type: String

Length constraints: Minimum length of 0. Maximum length of 128.

Pattern: [^\s]+

LastModified
The timestamp of the last time you updated the function.

Type: String

MemorySize
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

Type: Number

Valid range: Minimum value of 128. Maximum value of 1536.

Role
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

198

AWS Lambda Developer Guide
UpdateFunctionConfiguration

Runtime
The runtime environment for the Lambda function.

Type: String

Valid Values: nodejs | java8

Timeout
The function execution time at which Lambda should terminate the function. Because the execution
time has cost implications, we recommend you set this value based on your expected execution time.
The default is 3 seconds.

Type: Number

Valid range: Minimum value of 1. Maximum value of 60.

Errors
InvalidParameterValueException

One of the parameters in the request is invalid. For example, if you provided an IAM role for AWS
Lambda to assume in the CreateFunction or the UpdateFunctionConfiguration API, that
AWS Lambda is unable to assume you will get this exception.

HTTP Status Code: 400

ResourceNotFoundException
The resource (for example, a Lambda function or access policy statement) specified in the request
does not exist.

HTTP Status Code: 400

ServiceException
The AWS Lambda service encountered an internal error.

HTTP Status Code: 500

TooManyRequestsException
HTTP Status Code: 400

Data Types
The AWS Lambda API contains several data types that various actions use. This section describes each
data type in detail.

Note
The order of each element in the response is not guaranteed. Applications should not assume
a particular order.

The following data types are supported:

• EventSourceMappingConfiguration (p. 200)

• FunctionCode (p. 201)

• FunctionCodeLocation (p. 202)

• FunctionConfiguration (p. 202)

199

AWS Lambda Developer Guide
Data Types

EventSourceMappingConfiguration

Description
Describes mapping between an Amazon Kinesis stream and a Lambda function.

Contents
BatchSize

The largest number of records that AWS Lambda will retrieve from your event source at the time of
invoking your function.Your function receives an event with all the retrieved records.

Type: Number

Valid range: Minimum value of 1. Maximum value of 10000.

Required: No

EventSourceArn
The Amazon Resource Name (ARN) of the Amazon Kinesis stream that is the source of events.

Type: String

Pattern: arn:aws:([a-zA-Z0-9\-])+:([a-z]{2}-[a-z]+-\d{1})?:(\d{12})?:(.*)

Required: No

FunctionArn
The Lambda function to invoke when AWS Lambda detects an event on the stream.

Type: String

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

Required: No

LastModified
The UTC time string indicating the last time the event mapping was updated.

Type: DateTime

Required: No

LastProcessingResult
The result of the last AWS Lambda invocation of your Lambda function.

Type: String

Required: No

State
The state of the event source mapping. It can be "Creating", "Enabled", "Disabled", "Enabling",
"Disabling", "Updating", or "Deleting".

Type: String

Required: No

StateTransitionReason
The reason the event source mapping is in its current state. It is either user-requested or an AWS
Lambda-initiated state transition.

200

AWS Lambda Developer Guide
EventSourceMappingConfiguration

Type: String

Required: No

UUID
The AWS Lambda assigned opaque identifier for the mapping.

Type: String

Required: No

FunctionCode

Description
The code for the Lambda function.

Contents
S3Bucket

Amazon S3 bucket name where the .zip file containing your deployment package is stored. This
bucket must reside in the same AWS region where you are creating the Lambda function.

Type: String

Length constraints: Minimum length of 3. Maximum length of 63.

Pattern: ^[0-9A-Za-z\.\-_]*(?<!\.)$

Required: No

S3Key
The Amazon S3 object (the deployment package) key name you want to upload.

Type: String

Length constraints: Minimum length of 1. Maximum length of 1024.

Required: No

S3ObjectVersion
The Amazon S3 object (the deployment package) version you want to upload.

Type: String

Length constraints: Minimum length of 1. Maximum length of 1024.

Required: No

ZipFile
A base64-encoded .zip file containing your deployment package. For more information about creating
a .zip file, go to Execution Permissions in the AWS Lambda Developer Guide.

Type: Blob

Required: No

201

AWS Lambda Developer Guide
FunctionCode

http://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role.html

FunctionCodeLocation

Description
The object for the Lambda function location.

Contents
Location

The presigned URL you can use to download the function's .zip file that you previously uploaded.
The URL is valid for up to 10 minutes.

Type: String

Required: No

RepositoryType
The repository from which you can download the function.

Type: String

Required: No

FunctionConfiguration

Description
A complex type that describes function metadata.

Contents
CodeSize

The size, in bytes, of the function .zip file you uploaded.

Type: Long

Required: No

Description
The user-provided description.

Type: String

Length constraints: Minimum length of 0. Maximum length of 256.

Required: No

FunctionArn
The Amazon Resource Name (ARN) assigned to the function.

Type: String

Pattern:
arn:aws:lambda:[a-z]{2}-[a-z]+-\d{1}:\d{12}:function:[a-zA-Z0-9-_]+(\/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})?

Required: No

FunctionName
The name of the function.

202

AWS Lambda Developer Guide
FunctionCodeLocation

Type: String

Length constraints: Minimum length of 1. Maximum length of 111.

Pattern:
(arn:aws:lambda:)?([a-z]{2}-[a-z]+-\d{1}:)?(\d{12}:)?(function:)?([a-zA-Z0-9-_]+)

Required: No

Handler
The function Lambda calls to begin executing your function.

Type: String

Length constraints: Minimum length of 0. Maximum length of 128.

Pattern: [^\s]+

Required: No

LastModified
The timestamp of the last time you updated the function.

Type: String

Required: No

MemorySize
The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.

Type: Number

Valid range: Minimum value of 128. Maximum value of 1536.

Required: No

Role
The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your
function to access any other Amazon Web Services (AWS) resources.

Type: String

Pattern: arn:aws:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+

Required: No

Runtime
The runtime environment for the Lambda function.

Type: String

Valid Values: nodejs | java8

Required: No

Timeout
The function execution time at which Lambda should terminate the function. Because the execution
time has cost implications, we recommend you set this value based on your expected execution time.
The default is 3 seconds.

Type: Number

Valid range: Minimum value of 1. Maximum value of 60.

Required: No

203

AWS Lambda Developer Guide
FunctionConfiguration

Document History

The following table describes the important changes to the AWS Lambda Developer Guide.

Relevant Dates to this History:

• Current product version: 2015-03-31

• Last documentation update: August 27, 2015

DateDescriptionChange

In this re-
lease

The following new walkthroughs are added.They both use Java
Lambda function.

AWS Lambda Walkthrough 3: Process Amazon DynamoDB
Events (Java) (p. 122)

AWS Lambda Walkthrough 4: Handling Mobile User Application
Events for Android (Java) (p. 124)

Two new walkthroughs

July 14,
2015

DynamoDB Streams is now generally available and you can
use it in all the regions where DynamoDB is available.You can
enable DynamoDB Streams for your table and use a Lambda
function as a trigger for the table. Triggers are custom actions
you take in response to updates made to the DynamoDB table.
For an example walkthrough, see AWS Lambda Walkthrough
3: Processing Events from Amazon DynamoDB Streams Using
the AWS CLI (Node.js) (p. 53).

Support for DynamoDB
Streams

204

AWS Lambda Developer Guide

DateDescriptionChange

July 09,
2015

Until now, to invoke your Lambda function from your web, mo-
bile, or IoT application you needed the AWS SDKs (for example,
AWS SDK for Java, AWS SDK for Android, or AWS SDK for
iOS). Now, AWS Lambda supports invoking a Lambda function
with REST-compatible clients through a customized API that
you can create using Amazon API Gateway.You can send re-
quests to your Lambda function endpoint URL.You can config-
ure security on the endpoint to allow open access, leverage
AWS Identity and Access Management (IAM) to authorize ac-
cess, or use API keys to meter access to your Lambda functions
by others.

For an example Getting Started exercise, see Getting Started
4: Creating an HTTP Endpoint-Enabled Lambda Function (AWS
Lambda Integration with Amazon API Gateway) (p. 27).

For more information about the Amazon API Gateway, go to
http://aws.amazon.com/api-gateway/.

AWS Lambda now sup-
ports invoking Lambda
functions with REST-
compatible clients.

In this re-
lease

AWS Lambda console provides a set of blueprints. Each blue-
print provides a sample event source configuration and sample
code for your Lambda function that you can use to easily create
Lambda-based applications. All of the AWS Lambda Getting
Started exercises now use the blueprints. For more information,
see Getting Started: Authoring AWS Lambda Code in
Node.js (p. 15).

The AWS Lambda con-
sole now provides blue-
prints to easily create
Lambda functions and
test them.

June 15,
2015

You can now author Lambda code in Java. For more informa-
tion, see Authoring Lambda Functions in Java (p. 88).

AWS Lambda now sup-
ports Java to author
your Lambda functions.

May 28,
2015

You can upload a Lambda function deployment package (.zip
file) to an Amazon S3 bucket in the same region where you
want to create a Lambda function. Then, you can specify the
bucket name and object key name when you create or update
a Lambda function.

AWS Lambda now sup-
ports specifying an
Amazon S3 object as
the function .zip when
creating or updating a
Lambda function.

205

AWS Lambda Developer Guide

http://aws.amazon.com/api-gateway/

DateDescriptionChange

April 9,
2015

AWS Lambda is now generally available for production use.
The release also introduces new features that make it easier
to build mobile, tablet, and Internet of Things (IoT) backends
using AWS Lambda that scale automatically without provisioning
or managing infrastructure. AWS Lambda now supports both
real-time (synchronous) and asynchronous events. Additional
features include easier event source configuration and manage-
ment.The permission model and the programming model have
been simplified by the introduction of resource policies for your
Lambda functions.

The documentation has been updated accordingly. For inform-
ation, see the following topics:

AWS Lambda: How it Works (p. 3)

Getting Started: Authoring AWS Lambda Code in Node.js (p. 15)

http://aws.amazon.com/lambda/whatsnew

AWS Lambda now gen-
erally available with ad-
ded support for mobile
backends

November
13, 2014

Preview release of the AWS Lambda Developer Guide.Preview release

206

AWS Lambda Developer Guide

http://aws.amazon.com/lambda/whatsnew

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

207

AWS Lambda Developer Guide

http://docs.aws.amazon.com/general/latest/gr/gloss.html

	AWS Lambda
	Table of Contents
	What Is AWS Lambda?
	When should I use AWS Lambda?
	Are you a first-time user of AWS Lambda?

	AWS Lambda: How it Works
	Core Components: Lambda Function and Event Source
	Lambda Function
	Event Source
	Invoking Lambda Functions Over HTTPS
	Invocation Types
	Related Topics

	The Pull/Push Event Models
	The Pull Event Model
	The Push Event Model
	Related Topics

	Permission Model
	Execution Permissions
	Invocation Permissions
	Related Topics

	Resource Model
	Next Step

	Supported Versions
	Next Step

	Set Up an AWS Account and Create an Administrator User
	Sign up for AWS
	Create an IAM User
	Next Step

	Authoring Lambda Functions in Node.js
	Getting Started: Authoring AWS Lambda Code in Node.js
	Preparing for the Getting Started
	Getting Started 1: Invoking Lambda Functions from User Applications Using the AWS Lambda Console (Node.js)
	Step 1: Create a Lambda Function
	Step 2: Invoke the Lambda Function Manually
	Next Step

	Getting Started 2: Handling Amazon S3 Events Using the AWS Lambda Console (Node.js)
	Next Step
	Step 1: Create a Lambda Function and Invoke it Manually Using the Console (Node.js)
	Step 1.1: Create a Lambda Function
	Step 1.2: Invoke the Lambda Function Manually
	Next Step

	Step 2: Configure Amazon S3 as the Event Source Using the Console (Node.js)
	Step 2.1: Add Amazon S3 as the Event Source
	Step 2.2: Test the Setup
	Step 2.3: Cleanup
	Related Topics

	Getting Started 3: Handling Amazon Kinesis Events Using the AWS Lambda Console (Node.js)
	Next Step
	Step 1: Create a Lambda Function and Invoke It Manually Using the Console (Node.js)
	Step 1.1: Create a Lambda Function to Process Amazon Kinesis Stream Events
	Step 1.2: Invoke the Lambda Function Manually
	Next Step

	Step 2: Configure an Amazon Kinesis Stream as the Event Source Using the Console (Node.js)
	Step 2.1: Add an Amazon Kinesis Stream as the Event Source
	Step 2.2: Test the Setup
	Step 2.3: Cleanup
	Related Topics

	Getting Started 4: Creating an HTTP Endpoint-Enabled Lambda Function (AWS Lambda Integration with Amazon API Gateway)
	Scenario
	Implementation Summary
	Next Step
	Step 1: Create a Lambda Function and Invoke It Manually Using the Console (Node.js)
	Step 1.1: Create a Lambda Function
	Step 1.2: Invoke the Lambda Function Manually
	Next Step

	Step 2: Invoke the Lambda Function Using the HTTP Endpoint

	Creating Deployment Package (Node.js)
	Programming Model (Node.js)
	The context Object: Methods and Properties
	context.succeed() method
	context.fail() method
	context.done() method
	context.getRemainingTimeInMillis method
	context Object Properties

	Related Topics

	AWS Lambda Walkthroughs (Node.js)
	AWS Lambda Walkthrough 1: Invoking Lambda Functions from User Applications Using the AWS CLI (Node.js)
	Next Step
	Step 1: Prepare for the Walkthrough
	Set Up the AWS CLI
	Next Step

	Step 2: Create a Lambda Function
	Step 2.1: Create a Lambda Function Deployment Package
	Step 2.2: Create an IAM Role (execution role)
	Step 2.3: Create a Lambda Function
	Next Step

	Step 3: Invoke the Lambda Function
	Next Step

	Step 4: Try More CLI Commands
	Step 4.1: List the Lambda Functions in Your Account
	Step 4.2: Get Metadata and URL to Download Previously Uploaded Lambda Function Deployment Package
	Next Step

	Step 5: Delete the Lambda Function and IAM Role
	Delete IAM Role

	AWS Lambda Walkthrough 2: Handling Amazon S3 Events Using the AWS CLI (Node.js)
	Scenario
	Implementation Summary
	Next Step
	Step 1: Prepare for the Walkthrough (Amazon S3 Events)
	Step 1.1: Create Buckets and Upload a Sample Object
	Step 1.2: Set Up the AWS CLI
	Next Step

	Step 2: Create and Test the Lambda Function (Amazon S3 Events)
	Step 2.1: Create a Lambda Function Deployment Package
	Next Step

	Step 2.2: Create an IAM Role (execution role) (Amazon S3 Events)
	Step 2.3: Upload the Deployment Package and Test (Amazon S3 Events)
	Step 2.3.1: Create a Lambda Function (Upload the Deployment Package)
	Step 2.3.2: Test Lambda Function (Invoke Manually)
	Next Step

	Step 3: Configure Amazon S3 to Publish Events
	Step 3.1: Add Permission to the Lambda Function Access Policy
	Step 3.2: Configure a Notification on the Bucket
	Step 3.3: Test the Setup

	AWS Lambda Walkthrough 3: Processing Events from Amazon DynamoDB Streams Using the AWS CLI (Node.js)
	Scenario
	Implementation Summary
	Next Step
	Step 1: Prepare for the Walkthrough (DynamoDB Stream Events)
	Next Step

	Step 2: Create a Lambda Function and Invoke it Manually Using Sample Event Data (DynamoDB Stream Events)
	Step 2.1: Create a Lambda Function
	Step 2.1.1: Create a Lambda Function Deployment Package
	Step 2.1.2: Create an IAM Role (execution role)
	Step 2.1.3: Create Lambda Function

	Step 2.2: Invoke Lambda Function Manually
	Next Step

	Step 3: Add an Event Source (DynamoDB Streams) and Test
	Step 3.1: Create a DynamoDB Table with a Stream Enabled
	Step 3.2: Create Event Source Mapping in AWS Lambda
	Step 3.3: Test the Setup

	AWS Lambda Walkthrough 4: Processing Events from an Amazon Kinesis Stream Using the AWS CLI (Node.js)
	Next Step
	Step 1: Prepare for the Walkthrough (Amazon Kinesis Stream Events)
	Next Step

	Step 2: Create a Lambda Function and Invoke it Manually Using Sample Event Data (Amazon Kinesis Stream Events)
	Step 2.1: Create a Lambda Function
	Step 2.1.1: Create a Lambda Function Deployment Package
	Step 2.1.2: Create an IAM Role (execution role)
	Step 2.1.3: Create a Lambda Function

	Step 2.2: Invoke Your Lambda Function Manually
	Next Step

	Step 3: Add an AWS Lambda Event Source and Test (Amazon Kinesis Stream Events)
	Step 3.1: Create an Amazon Kinesis Stream
	Step 3.2: Add an Event Source in AWS Lambda
	Step 3.3: Test the Setup

	AWS Lambda Walkthrough 5: Handling AWS CloudTrail Events Using the AWS CLI (Node.js)
	Scenario
	Implementation Summary
	First Walkthrough Step
	Step 1: Prepare for the Walkthrough (AWS CloudTrail Events)
	Step 1.1: Turn on CloudTrail
	Step 1.2: Create an SNS Topic and Subscribe to the Topic
	Next Step

	Step 2: Create and Invoke a Lambda Function (AWS CloudTrail Events)
	Step 2.1: Create a Lambda Function Deployment Package (AWS CloudTrail Events)
	Next Step

	Step 2.2: Create an IAM Role (execution role) (AWS CloudTrail Events)
	Next Step

	Step 2.3: Create a Lambda Function (AWS CloudTrail Events)
	Next Step

	Step 2.4: Invoke Your Lambda Function Manually (AWS CloudTrail Events)
	Next Step

	Step 3: Configure Amazon S3 to Publish Events (AWS CloudTrail Events)
	Add permission to the Lambda Function's Access Policy
	Step 3.2: Add Notification Configuration to Your Bucket
	Step 3.3: Test the Setup

	AWS Lambda Walkthrough 6: Handling Mobile User Application Events for Android (Node.js)
	Scenario
	Implementation Summary
	Next Step
	Step 1: Preparing for the Walkthrough
	Next Step

	Step 2: Create and Test the Lambda Function
	Next Step

	Step 3: Create an Amazon Cognito Identity Pool
	Next Step

	Step 4: Create a Mobile User Application for Android

	Authoring Lambda Functions in Java
	Getting Started: Authoring AWS Lambda Code in Java
	Introduction
	Step 1: Create Deployment Package
	Step 2: Create Lambda Function
	Step 3: Test the Lambda Function

	Creating a Deployment Package (Java)
	Creating a .jar Deployment Package Using Maven without any IDE (Java)
	Before You Begin
	Project Structure Overview
	Step 1: Create Project
	Step 2: Build Project (Create Deployment Package)

	Creating a .jar Deployment Package Using Maven and Eclipse IDE (Java)
	Before You Begin
	Step 1: Create and Build a Project

	Creating a .zip Deployment Package (Java)
	Before You Begin
	Example 1: Creating .zip Using Gradle and the Maven Central Repository
	Example 2: Creating .zip Using Gradle Using Local Jars

	Authoring Lambda Functions Using Eclipse IDE and AWS SDK Plugin (Java)

	Programming Model for Authoring Lambda Functions in Java
	Lambda Function Handler (Java)
	Handler Overload Resolution
	Additional Information
	Handler Input/Output Types (Java)
	Handler Input/Output: String Type
	Handler Input/Output: POJO Type
	Example: Using POJOs for Handler Input/Output (Java)
	Example: Using Stream for Handler Input/Output (Java)

	Leveraging Predefined Interfaces for Creating Handler (Java)
	Example 1: Creating Handler with Custom POJO Input/Output (Leverage the RequestHandler Interface)
	Example 2: Creating Handler with Stream Input/Output (Leverage the RequestStreamHandler Interface)

	The Context Object (Java)
	Example: Using Context Object (Java)

	Logging (Java)
	Example: Writing Logs (Java)

	Exceptions (Java)

	AWS Lambda Example Walkthroughs (Java)
	AWS Lambda Walkthrough 1: Process S3 Events (Java)
	AWS Lambda Walkthrough 2: Process Kinesis Events (Java)
	AWS Lambda Walkthrough 3: Process Amazon DynamoDB Events (Java)
	Overview
	Setting Up the Walkthrough

	AWS Lambda Walkthrough 4: Handling Mobile User Application Events for Android (Java)
	Scenario
	Implementation Summary
	Next Step
	Step 1: Preparing for the Walkthrough
	Next Step

	Step 2: Create and Test the Lambda Function
	Step 2.1: Create the Lambda Function
	Step 2.2: Test the Lambda Function
	Next Step

	Step 3: Create an Amazon Cognito Identity Pool
	Next Step

	Step 4: Create a Mobile User Application for Android

	Troubleshooting and Monitoring AWS Lambda Functions with Amazon CloudWatch
	AWS Lambda Troubleshooting Scenarios
	Troubleshooting Scenario 1: Lambda function not working as expected
	Troubleshooting Scenario 2: Increased latency in Lambda function execution

	Accessing Amazon CloudWatch Metrics for AWS Lambda
	Accessing Amazon CloudWatch Logs for AWS Lambda
	AWS Lambda Metrics
	AWS Lambda CloudWatch Metrics
	AWS Lambda CloudWatch Dimensions

	Logging AWS Lambda API Calls By Using AWS CloudTrail
	AWS Lambda Information in CloudTrail
	Understanding AWS Lambda Log File Entries

	Best Practices for Working with AWS Lambda Functions
	AWS Lambda Limits
	AWS Lambda Safety Throttles
	List of AWS Lambda Limits
	AWS Lambda Limit Errors

	Appendix: API Updates
	API Reference
	Actions
	AddPermission
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	CreateEventSourceMapping
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	CreateFunction
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	DeleteEventSourceMapping
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	DeleteFunction
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetEventSourceMapping
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetFunction
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetFunctionConfiguration
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	GetPolicy
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	Invoke
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	InvokeAsync
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors
	Examples
	Invoke a Lambda function
	Sample Request
	Sample Response

	ListEventSourceMappings
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	ListFunctions
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	RemovePermission
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	UpdateEventSourceMapping
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	UpdateFunctionCode
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	UpdateFunctionConfiguration
	Request Syntax
	URI Request Parameters
	Request Body
	Response Syntax
	Response Elements
	Errors

	Data Types
	EventSourceMappingConfiguration
	Description
	Contents

	FunctionCode
	Description
	Contents

	FunctionCodeLocation
	Description
	Contents

	FunctionConfiguration
	Description
	Contents

	Document History
	AWS Glossary

