
Performance at Scale with
Amazon ElastiCache

Nate Wiger

May 2015

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 2 of 39

Contents
Contents 2	

Abstract 3	

Introduction 3	

ElastiCache Overview 4	

Alternatives to ElastiCache 5	

Memcached vs. Redis 5	

ElastiCache for Memcached 7	

Architecture with ElastiCache for Memcached 7	

Selecting the Right Cache Node Size 11	

Security Groups and VPC 11	

Caching Design Patterns 14	

How to Apply Caching 14	

Consistent Hashing (Sharding) 14	

Client Libraries 16	

Be Lazy 17	

Write On Through 19	

Expiration Date 20	

The Thundering Herd 21	

Cache (Almost) Everything 22	

ElastiCache for Redis 22	

Architecture with ElastiCache for Redis 22	

Distributing Reads and Writes 24	

Multi-AZ with Auto-Failover 26	

Sharding with Redis 26	

Advanced Datasets with Redis 29	

Game Leaderboards 29	

Recommendation Engines 30	

Chat and Messaging 31	

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 3 of 39

Queues 31	

Client Libraries and Consistent Hashing 32	

Monitoring and Tuning 32	

Monitoring Cache Efficiency 32	

Watching For Hot Spots 34	

Memcached Memory Optimization 35	

Redis Memory Optimization 35	

Redis Backup and Restore 35	

Cluster Scaling and Auto Discovery 36	

Auto Scaling Cluster Nodes 36	

Auto Discovery of Memcached Nodes 37	

Cluster Reconfiguration Events from Amazon SNS 38	

Conclusion 39	

Abstract
In-memory caching improves application performance by storing frequently accessed
data items in memory, so that they can be retrieved without access to the primary data
store. Properly leveraging caching can result in an application that not only performs
better, but also costs less at scale. Amazon ElastiCache is a managed service that
reduces the administrative burden of deploying an in-memory cache in the cloud.
Beyond caching, an in-memory data layer also enables advanced use cases, such as
analytics and recommendation engines. This whitepaper lays out common ElastiCache
design patterns, performance tuning tips, and important operational considerations to get
the most out of an in-memory layer.

Introduction
An effective caching strategy is perhaps the single biggest factor in creating an app that
performs well at scale. A brief look at the largest web, gaming, and mobile apps reveals
that all apps at significant scale have a considerable investment in caching. Despite this,
many developers fail to exploit caching to its full potential. This oversight can result in
running larger database and application instances than needed. Not only does this
approach decrease performance and add cost, but also it limits your ability to scale.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 4 of 39

The in-memory caching provided by Amazon ElastiCache improves application
performance by storing critical pieces of data in memory for fast access. You can use
this caching to significantly improve latency and throughput for many read-heavy
application workloads, such as social networking, gaming, media sharing, and Q&A
portals. Cached information can include the results of database queries, computationally
intensive calculations, or even remote API calls. In addition, compute-intensive
workloads that manipulate data sets, such as recommendation engines and high-
performance computing simulations, also benefit from an in-memory data layer. In these
applications, very large datasets must be accessed in real-time across clusters of
machines that can span hundreds of nodes. Manipulating this data in a disk-based store
would be a significant bottleneck for these applications.

Amazon ElastiCache is a web service that makes it easy to deploy, operate, and scale
an in-memory cache in the cloud. Amazon ElastiCache manages the work involved in
setting up an in-memory service, from provisioning the AWS resources you request to
installing the software. Using Amazon ElastiCache, you can add an in-memory caching
layer to your application in a matter of minutes, with a few API calls. Amazon
ElastiCache integrates with other Amazon web services such as Amazon Elastic
Compute Cloud (Amazon EC2) and Amazon Relational Database Service (Amazon
RDS), as well as deployment management solutions such as AWS CloudFormation,
AWS Elastic Beanstalk, and AWS OpsWorks.

In this whitepaper, we'll walk through best practices for working with ElastiCache. We'll
demonstrate common in-memory data design patterns, compare the two open source
engines that ElastiCache supports, and show how ElastiCache fits into real-world
application architectures such as web apps and online games. By the end of this paper,
you should have a clear grasp of which caching strategies apply to your use case, and
how you can use ElastiCache to deploy an in-memory caching layer for your app.

ElastiCache Overview
The Amazon ElastiCache architecture is based on the concept of deploying one or more
cache clusters for your application. Once your cache cluster is up and running, the
service automates common administrative tasks such as resource provisioning, failure
detection and recovery, and software patching. Amazon ElastiCache provides detailed
monitoring metrics associated with your cache nodes, enabling you to diagnose and
react to issues very quickly. For example, you can set up thresholds and receive alarms
if one of your cache nodes is overloaded with requests. You can launch an ElastiCache
cluster by following the steps in the Getting Started section of the Amazon ElastiCache
User Guide.

It's important to understand that Amazon ElastiCache is not coupled to your database
tier. As far as Amazon ElastiCache nodes are concerned, your application is just setting
and getting keys in a slab of memory. That being the case, you can use Amazon

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 5 of 39

ElastiCache with relational databases such as MySQL or Microsoft SQL Server; with
NoSQL databases such as Amazon DynamoDB or MongoDB; or with no database tier at
all, which is common for distributed computing applications. Amazon ElastiCache gives
you the flexibility to deploy one, two, or more different cache clusters with your
application, which you can use for differing types of datasets.

Alternatives to ElastiCache
In addition to using ElastiCache, you can cache data in AWS in other ways, each of
which has its own pros and cons. Let's briefly review some of the alternatives:

• Amazon CloudFront content delivery network (CDN)—this approach is used to cache
web pages, image assets, videos, and other static data at the edge, as close to end
users as possible. In addition to using CloudFront with static assets, you can also
place CloudFront in front of dynamic content, such as web apps. The important
caveat here is that CloudFront only caches rendered page output. In web apps,
games, and mobile apps, it's very common to have thousands of fragments of data,
which are reused in multiple sections of the app. CloudFront is a valuable component
of scaling a website, but it does not obviate the need for application caching.

• Amazon RDS Read Replicas—some database engines, such as MySQL, support the
ability to attach asynchronous read replicas. Although useful, this ability is limited to
providing data in a duplicate format of the primary database. You cannot cache
calculations, aggregates, or arbitrary custom keys in a replica. Also, read replicas are
not as fast as in-memory caches. Read replicas are more interesting for distributing
data to remote sites or apps.

• On-host caching—a simplistic approach to caching is to store data on each Amazon
EC2 application instance, so that it's local to the server for fast lookup. Don't do this.
First, you get no efficiency from your cache in this case. As application instances
scale up, they start with an empty cache, meaning they end up hammering the data
tier. Second, cache invalidation becomes a nightmare. How are you going to reliably
signal 10 or 100 separate EC2 instances to delete a given cache key? Finally, you
rule out interesting use cases for in-memory caches, such as sharing data at high
speed across a fleet of instances.

Let's turn our attention back to ElastiCache, and how it fits into your application.

Memcached vs. Redis
Amazon ElastiCache currently supports two different in-memory key-value engines. You
can choose the engine you prefer when launching an ElastiCache cache cluster:

• Memcached—a widely adopted in-memory key store, and historically the gold
standard of web caching. ElastiCache is protocol-compliant with Memcached, so

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 6 of 39

popular tools that you use today with existing Memcached environments will work
seamlessly with the service. Memcached is also multithreaded, meaning it makes
good use of larger Amazon EC2 instance sizes with multiple cores.

• Redis—an increasingly popular open-source key-value store that supports more
advanced data structures such as sorted sets, hashes, and lists. Unlike Memcached,
Redis has disk persistence built in, meaning you can use it for long-lived data. Redis
also supports replication, which can be used to achieve Multi-AZ redundancy, similar
to Amazon RDS.

Although both Memcached and Redis appear similar on the surface, in that they are both
in-memory key stores, they are actually quite different in practice. Because of the
replication and persistence features of Redis, ElastiCache manages Redis more as a
relational database. Redis ElastiCache clusters are managed as stateful entities that
include failover, similar to how Amazon RDS manages database failover.

Conversely, because Memcached is designed as a pure caching solution with no
persistence, ElastiCache manages Memcached nodes as a pool that can grow and
shrink, similar to an Amazon EC2 Auto Scaling group. Individual nodes are expendable,
and ElastiCache provides additional capabilities here such as automatic node
replacement and Auto Discovery.

When deciding between Memcached and Redis, here are a few questions to consider:

• Is object caching your primary goal, for example to offload your database? If so, use
Memcached.

• Are you interested in as simple a caching model as possible? If so, use Memcached.

• Are you planning on running large cache nodes, and require multithreaded
performance with utilization of multiple cores? If so, use Memcached.

• Do you want the ability to scale your cache horizontally as you grow? If so, use
Memcached.

• Does your app need to atomically increment or decrement counters? If so, use either
Redis or Memcached.

• Are you looking for more advanced data types, such as lists, hashes, and sets? If so,
use Redis.

• Does sorting and ranking datasets in memory help you, such as with leaderboards?
If so, use Redis.

• Are publish and subscribe (pub/sub) capabilities of use to your application? If so, use
Redis.

• Is persistence of your key store important? If so, use Redis.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 7 of 39

• Do you want to run in multiple AWS Availability Zones (Multi-AZ) with failover? If so,
use Redis.

Although it's tempting to look at Redis as a more evolved Memcached due to its
advanced data types and atomic operations, Memcached has a longer track record and
the ability to leverage multiple CPU cores.

Because Memcached and Redis are so different in practice, we're going to address them
separately in most of this paper. We will focus on using Memcached as an in-memory
cache pool, and using Redis for advanced datasets such as game leaderboards and
activity streams.

ElastiCache for Memcached
The primary goal of caching is typically to offload reads from your database or other
primary data source. In most apps, you have hot spots of data that are regularly queried,
but only updated periodically. Think of the front page of a blog or news site, or the top
100 leaderboard in an online game. In this type of case, your app can receive dozens,
hundreds, or even thousands of requests for the same data before it's updated again.
Having your caching layer handle these queries has several advantages. First, it's
considerably cheaper to add an in-memory cache than to scale up to a larger database
cluster. Second, an in-memory cache is also easier to scale out, because it's easier to
distribute an in-memory cache horizontally than a relational database.

Last, a caching layer provides a request buffer in the event of a sudden spike in usage. If
your app or game ends up on the front page of Reddit or the App Store, it's not unheard
of to see a spike that is 10 to 100 times your normal application load. Even if you auto-
scale your application instances, a 10x request spike will likely make your database very
unhappy.

Let's focus on ElastiCache for Memcached first, because it is the best fit for a caching-
focused solution. We'll revisit Redis later in the paper, and weigh its advantages and
disadvantages.

Architecture with ElastiCache for Memcached
When you deploy an ElastiCache Memcached cluster, it sits in your application as a
separate tier alongside your database. As mentioned previously, Amazon ElastiCache
does not directly communicate with your database tier, or indeed have any particular
knowledge of your database. A simplified deployment for a web application looks
something like this:

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 8 of 39

In this architecture diagram, the Amazon EC2 application instances are in an Auto
Scaling group, located behind a load balancer using Elastic Load Balancing, which
distributes requests among the instances. As requests come into a given EC2 instance,
that EC2 instance is responsible for communicating with ElastiCache and the database
tier. For development purposes, you can begin with a single ElastiCache node to test
your application, and then scale to additional cluster nodes by modifying the ElastiCache
cluster. As you add additional cache nodes, the EC2 application instances are able to
distribute cache keys across multiple ElastiCache nodes. The most common practice is
to use client-side sharding to distribute keys across cache nodes, which we will discuss
later in this paper.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 9 of 39

When you launch an ElastiCache cluster, you can choose the Availability Zone(s) that
the cluster lives in. For best performance, you should configure your cluster to use the
same Availability Zones as your application servers. To launch an ElastiCache cluster in
a specific Availability Zone, make sure to specify the Preferred Zone(s) option during
cache cluster creation. The Availability Zones that you specify will be where ElastiCache
will launch your cache nodes. We recommend that you select Spread Nodes Across
Zones, which tells ElastiCache to distribute cache nodes across these zones as evenly
as possible. This distribution will mitigate the impact of an Availability Zone disruption on
your ElastiCache nodes. The trade-off is that some of the requests from your application
to ElastiCache will go to a node in a different Availability Zone, meaning latency will be
slightly higher. For more details, refer to Creating a Cache Cluster in the Amazon
ElastiCache User Guide.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 10 of 39

As mentioned at the outset, ElastiCache can be coupled with a wide variety of
databases. Here is an example architecture that uses Amazon DynamoDB instead of
Amazon RDS and MySQL:

:

This combination of DynamoDB and ElastiCache is very popular with mobile and game
companies, because DynamoDB allows for higher write throughput at lower cost than
traditional relational databases. In addition, DynamoDB uses a key-value access pattern
similar to ElastiCache, which also simplifies the programming model. Instead of using
relational SQL for the primary database but then key-value patterns for the cache, both
the primary database and cache can be programmed similarly. In this architecture

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 11 of 39

pattern, DynamoDB remains the source of truth for data, but application reads are
offloaded to ElastiCache for a speed boost.

Selecting the Right Cache Node Size
ElastiCache supports many different types of cache nodes. Because the newest node
types support the latest-generation CPUs and networking capabilities, we recommend
choosing a cache node from the M3 or R3 families. Of these, M3 has smaller sizes and
R3 instances provide proportionately more RAM per CPU core, enhanced networking
performance, and the cheapest price per GB of RAM. All of these features can save
money as your nodes grow in memory size. As of the time of writing, ElastiCache
supports cache nodes with over 200 GB of memory!

You can get a ballpark estimate of the amount of cache memory you'll need by
multiplying the size of items you want to cache by the number of items you want to keep
cached at once. Unfortunately, calculating the size of your cached items can be trickier
than it sounds. You can arrive at a slight overestimate by serializing your cached items
and then counting characters. Here's an example that flattens a Ruby object to JSON,
counts the number of characters, and then multiplies by 2 because there are typically 2
bytes per character:

irb(main):010:0> user = User.find(4)
irb(main):011:0> user.to_json.size * 2
=> 580

In addition to the size of your data, Memcached adds approximately 50–60 bytes of
internal bookkeeping data to each element. The cache key also consumes space, up to
250 characters at 2 bytes each. In this example, it's probably safest to overestimate a
little and guess 1–2 KB per cached object. Keep in mind that this approach is just for
illustration purposes. Your cached objects can be much larger if you are caching
rendered page fragments or if you use a serialization library that expands strings.

Because Amazon ElastiCache is a pay-as-you-go service, make your best guess at the
node instance size, and then adjust after getting some real-world data. Make sure your
application is set up for consistent hashing, which will enable you to add additional
Memcached nodes to scale your in-memory layer horizontally. For additional tips, refer
to Cache Node Considerations for Memcached and Cache Node Considerations for
Redis in the Amazon ElastiCache User Guide.

Security Groups and VPC
Like other Amazon web services, ElastiCache supports security groups. You can use
security groups to define rules that limit access to your instances based on IP address

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 12 of 39

and port. ElastiCache supports both subnet security groups in Amazon Virtual Private
Cloud (Amazon VPC) and classic Amazon EC2 security groups. We strongly
recommend you deploy ElastiCache and your application in Amazon VPC, unless you
have a specific need otherwise (such as for an existing application). Amazon VPC offers
several advantages, including fine-grained access rules and control over private IP
addressing. For an overview of how ElastiCache integrates with Amazon VPC, refer to
ElastiCache with VPC in the Amazon ElastiCache User Guide.

When launching your ElastiCache cluster in VPC, launch it in a private subnet with no
public connectivity for best security. Neither Memcached nor Redis has any serious
authentication or encryption capabilities. Following is a simplified version of our previous
architecture diagram that includes an example VPC subnet design.

To keep your cache nodes as secure as possible, only allow access to your cache
cluster from your application tier, as shown preceding. ElastiCache does not need
connectivity to or from your database tier, because your database does not directly
interact with ElastiCache. Only application instances that are making calls to your cache
cluster need connectivity to it.

The way ElastiCache manages connectivity in Amazon VPC is through standard VPC
subnets and security groups. To securely launch an ElastiCache cluster in Amazon
VPC, follow these steps:

1. Create VPC private subnet(s) that will house your ElastiCache cluster, in the same
VPC as the rest of your application. A given VPC subnet maps to a single Availability
Zone. Given this mapping, create a private VPC subnet for each Availability Zone
where you have application instances. Alternatively, you can reuse another private
VPC subnet that you already have. For more information, refer to VPC Subnets in
the Amazon Virtual Private Cloud User Guide.

2. Create a VPC security group for your new cache cluster. Make sure it is also in the
same VPC as the preceding subnet. For more details, refer to VPC Security Groups
in the Amazon Virtual Private Cloud User Guide.

3. Create a single access rule for this security group, allowing inbound access on port
11211 for Memcached or on port 6379 for Redis.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 13 of 39

4. Create an ElastiCache subnet group that contains the VPC private subnet(s) you
chose preceding. This subnet group is how ElastiCache knows which VPC subnets
to use when launching the cluster. For instructions, see Creating a Cache Subnet
Group in the Amazon ElastiCache User Guide.

5. When you launch your ElastiCache cluster, make sure to place it in the correct VPC,
and choose the correct ElastiCache subnet group. For instructions, refer to Creating
a Cache Cluster in VPC in the Amazon ElastiCache User Guide.

A correct VPC security group for your cache cluster should look like the following. Notice
the single ingress rule allowing access to the cluster from the application tier:

To test connectivity from an application instance to your cache cluster in VPC, you can
use netcat, a command-line Linux utility. Choose one of your cache cluster nodes, and
attempt to connect to the node on either port 11211 (Memcached) or port 6379 (Redis):

$ nc -z -w5 my-cache-2b.z2vq55.001.usw2.cache.amazonaws.com
11211
$ echo $?
0

If the connection is successful, netcat will exit with status 0. If netcat appears to hang, or
exits with a nonzero status, check your VPC security group and subnet settings.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 14 of 39

Caching Design Patterns
With a ElastiCache cluster deployed, let's now dive into how to best apply caching in
your application.

How to Apply Caching
Caching is applicable to a wide variety of use cases, but fully exploiting caching requires
some planning. When you are deciding whether to cache a piece of data, consider the
following questions:

• Is it safe to use a cached value? The same piece of data can have different
consistency requirements in different contexts. For example, during online checkout,
you need the authoritative price of an item, so caching might not be appropriate. On
other pages, however, the price might be a few minutes out of date without a
negative impact on users.

• Is caching effective for that data? Some applications generate access patterns that
are not suitable for caching—for example, sweeping through the key space of a large
dataset that is changing frequently. In this case, keeping the cache up to date could
offset any advantage caching could offer.

• Is the data structured well for caching? Simply caching a database record can often
be enough to offer significant performance advantages. However, other times, data
is best cached in a format that combines multiple records together. Because caches
are simple key-value stores, you might also need to cache a data record in multiple
different formats, so you can access it by different attributes in the record.

You don’t need to make all of these decisions up front. As you expand your usage of
caching, keep these guidelines in mind when deciding whether to cache a given piece of
data.

Consistent Hashing (Sharding)
In order to make use of multiple ElastiCache nodes, you need a way to efficiently spread
your cache keys across your cache nodes. The naïve approach to distributing cache
keys, often found in blogs, looks like this:

cache_node_list = [
 ’my-cache-2a.z2vq55.0001.usw2.cache.amazonaws.com:11211’,
 ’my-cache-2a.z2vq55.0002.usw2.cache.amazonaws.com:11211’
]
cache_index = hash(key) % length(cache_node_list)
cache_node = cache_node_list[cache_index]

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 15 of 39

This approach applies a hash function (such as CRC32) to the key to add some
randomization, and then uses a math modulo of the number of cache nodes to distribute
the key to a random node in the list. This approach is easy to understand, and most
importantly for any key hashing scheme it is deterministic in that the same cache key
always maps to the same cache node.

Unfortunately, this particular approach suffers from a fatal flaw due to the way that
modulo works. As the number of cache nodes scales up, most hash keys will get
remapped to new nodes with empty caches, as a side effect of using modulo. You can
calculate the number of keys that would be remapped to a new cache node by dividing
the old node count by the new node count. For example, scaling from 1 to 2 nodes
remaps ½ your cache keys; scaling from 3 to 4 nodes remaps ¾ of your keys; and
scaling from 9 to 10 nodes remaps 90 percent of your keys to empty caches. Ouch.

This approach is bad for obvious reasons. Think of the scenario where you're scaling
rapidly due to a spike in demand. Just at the point when your application is getting
overwhelmed, you add an additional cache node to help alleviate the load. Instead you
effectively wipe 90 percent of your cache, causing a huge spike of requests to your
database. Your dashboard goes red and you start getting those alerts that nobody wants
to get.

Luckily, there is a well-understood solution to this dilemma, known as consistent
hashing. The theory behind consistent hashing is to create an internal hash ring with a
pre-allocated number of partitions that can hold hash keys. As cache nodes are added
and removed, they are slotted into positions on that ring. The following illustration, taken
from Benjamin Erb’s thesis on Scalable Web Architectures, illustrates consistent hashing
graphically.

The downside to consistent hashing is that there's quite a bit of math involved—at least,
it's more complicated than a simple modulo. In a nutshell, you preallocate a set of
random integers, and assign cache nodes to those random integers. Then, rather than

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 16 of 39

using modulo, you find the closest integer in the ring for a given cache key, and use the
cache node associated with that integer. A concise yet complete explanation can be
found in the article Consistent Hashing, by Tom White.

Luckily, many modern client libraries include consistent hashing. Although you shouldn't
need to write your consistent hashing solution from scratch, it's still important you be
aware of consistent hashing, so you can ensure it's enabled in your client. For many
libraries, it's still not the default behavior, even when supported by the library.

Client Libraries
Mature Memcached client libraries exist for all popular programming languages. Any of
the following Memcached libraries will work with Amazon ElastiCache:

Language Library

Ruby Dalli, Dalli::ElastiCache

Python Memcache Ring, django-elasticache

Node.js node-memcached

PHP ElastiCache AutoDiscover Client

Java ElastiCache AutoDiscover Client, spymemcached

C#/.NET ElastiCache AutoDiscover Client, Enyim Memcached

For Memcached with Java, .NET, or PHP, we recommend using the Amazon
ElastiCache client library, because it supports Auto Discovery of new ElastiCache nodes
as they are added to the cache cluster. For Java, this library is a simple wrapper around
the popular spymemcached library that adds Auto Discovery support. For PHP, it is a
wrapper around the built-in Memcached PHP library. For .NET, it is a wrapper around
Enyim Memcached.

Note that Auto Discovery works for only Memcached, not Redis. When ElastiCache
repairs or replaces a cache node, the Domain Name Service (DNS) name of the cache
node will remain the same, meaning your application doesn't need to use Auto Discovery
to deal with common failures. You only need Auto Discovery support if you dynamically
scale the size of your cache cluster on the fly, while your application is running. Dynamic
scaling is only required if your application load fluctuates significantly. For more details,
see Cluster Scaling and Auto Discovery.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 17 of 39

As mentioned, you should choose a client library that includes native support for
consistent hashing. Many of the libraries in the preceding table support consistent
hashing, but we recommend you check the documentation, because this support can
change over time. Also, you might need to enable consistent hashing by setting an
option in the client library.

In PHP, for example, you need to explicitly set
Memcached::OPT_LIBKETAMA_COMPATIBLE to true to enable consistent hashing:

$cache_nodes = array(
 array(’my-cache-
2a.z2vq55.0001.usw2.cache.amazonaws.com’, 11211),
 array(’my-cache-
2a.z2vq55.0002.usw2.cache.amazonaws.com’, 11211)
);
$memcached = new Memcached();
$memcached->setOption(Memcached::OPT_LIBKETAMA_COMPATIBLE,
true);
$memcached->addServers($cache_nodes);

This code snippet tells PHP to use consistent hashing by using libketama. Otherwise,
the default in PHP is to use modulo, which suffers from the drawbacks outlined
preceding.

Next, let's look at some common and effective caching strategies. If you've done a good
amount of caching before, some of this might be old hat.

Be Lazy
Lazy caching, also called lazy population or cache-aside, is the most prevalent form of
caching. Laziness should serve as the foundation of any good caching strategy. The
basic idea is to populate the cache only when an object is actually requested by the
application. The overall application flow goes like this:

1. Your app receives a query for data, for example the top 10 most recent news stories.

2. Your app checks the cache to see if the object is in cache.

3. If so (a cache hit), the cached object is returned, and the call flow ends.

4. If not (a cache miss), then the database is queried for the object. The cache is
populated, and the object is returned.

This approach has several advantages over other methods:

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 18 of 39

• The cache only contains objects that the application actually requests, which helps
keep the cache size manageable. New objects are only added to the cache as
needed. You can then manage your cache memory passively, by simply letting
Memcached automatically evict (delete) the least-accessed keys as your cache fills
up, which it does by default.

• As new cache nodes come online, for example as your application scales up, the
lazy population method will automatically add objects to the new cache nodes when
the application first requests them.

• Cache expiration, which we will cover in depth later, is easily handled by simply
deleting the cached object. A new object will be fetched from the database the next
time it is requested.

• Lazy caching is widely understood, and many web and app frameworks include
support out of the box.

Here is an example of lazy caching in Python pseudocode:

Python
def get_user(user_id):
 # Check the cache
 record = cache.get(user_id)
 if record is None:
 # Run a DB query
 record = db.query("select * from users where id =
?",user_id)
 # Populate the cache
 cache.set(user_id, record)
 return record

App code
user = get_user(17)

You can find libraries in many popular programming frameworks that encapsulate this
pattern. But regardless of programming language, the overall approach is the same.

You should apply a lazy caching strategy anywhere in your app where you have data
that is going to be read often, but written infrequently. In a typical web or mobile app, for
example, a user's profile rarely changes, but is accessed throughout the app. A person
might only update his or her profile a few times a year, but the profile might be accessed
dozens or hundreds of times a day, depending on the user. Because Memcached will
automatically evict the less frequently used cache keys to free up memory, you can
apply lazy caching liberally with little downside.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 19 of 39

Write On Through
In a write-through cache, the cache is updated in real time when the database is
updated. So, if a user updates his or her profile, the updated profile is also pushed into
the cache. You can think of this as being proactive to avoid unnecessary cache misses,
in the case that you have data that you absolutely know is going to be accessed. A good
example is any type of aggregate, such as a top 100 game leaderboard, or the top 10
most popular news stories, or even recommendations. Because this data is typically
updated by a specific piece of application or background job code, it's straightforward to
update the cache as well.

The write-through pattern is also easy to demonstrate in pseudocode:

Python
def save_user(user_id, values):
 # Save to DB
 record = db.query("update users ... where id = ?",
 user_id, values)
 # Push into cache
 cache.set(user_id, record)
 return record

App code
user = save_user(17, {"name": "Nate Dogg"})

This approach has certain advantages over lazy population:

• It avoids cache misses, which can help the application perform better and feel
snappier.

• It shifts any application delay to the user updating data, which maps better to user
expectations. By contrast, a series of cache misses can give a random user the
impression that your app is just slow.

• It simplifies cache expiration. The cache is always up-to-date.

However, write-through caching also has some disadvantages:

• The cache can be filled with unnecessary objects that aren't actually being accessed.
Not only could this consume extra memory, but unused items can evict more useful
items out of the cache.

• It can result in lots of cache churn if certain records are updated repeatedly.

• When (not if) cache nodes fail, those objects will no longer be in the cache. You
need some way to repopulate the cache of missing objects, for example by lazy
population.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 20 of 39

As might be obvious, you can combine lazy caching with write-through caching to help
address these issues, because they are associated with opposite sides of the data flow.
Lazy caching catches cache misses on reads, and write-through caching populates data
on writes, so the two approaches complement each other. For this reason, it's often best
to think of lazy caching as a foundation that you can use throughout your app, and write-
through caching as a targeted optimization that you apply to specific situations.

Expiration Date
Cache expiration can get really complex really quickly. In our previous examples, we
were only operating on a single user record. In a real app, a given page or screen often
caches a whole bunch of different stuff at once—profile data, top news stories,
recommendations, comments, and so forth, all of which are being updated by different
methods.

Unfortunately, there is no silver bullet for this problem, and cache expiration is a whole
arm of computer science. But there are a few simple strategies that you can use:

• Always apply a time to live (TTL) to all of your cache keys, except those you are
updating by write-through caching. You can use a long time, say hours or even days.
This approach catches application bugs, where you forget to update or delete a
given cache key when updating the underlying record. Eventually, the cache key will
auto-expire and get refreshed.

• For rapidly changing data such as comments, leaderboards, or activity streams,
rather than adding write-through caching or complex expiration logic, just set a short
TTL of a few seconds. If you have a database query that is getting hammered in
production, it's just a few lines of code to add a cache key with a 5 second TTL
around the query. This code can be a wonderful Band-Aid to keep your application
up and running while you evaluate more elegant solutions.

• A newer pattern, Russian doll caching, has come out of work done by the Ruby on
Rails team. In this pattern, nested records are managed with their own cache keys,
and then the top-level resource is a collection of those cache keys. Say you have a
news webpage that contains users, stories, and comments. In this approach, each of
those is its own cache key, and the page queries each of those keys respectively.

• When in doubt, just delete a cache key if you're not sure whether it's affected by a
given database update or not. Your lazy caching foundation will refresh the key when
needed. In the meantime, your database will be no worse off than it was without
Memcached.

For a good overview of cache expiration and Russian doll caching, refer to The
performance impact of "Russian doll" caching, a post in the Basecamp Signal vs Noise
blog.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 21 of 39

The Thundering Herd
Also known as dog piling, the thundering herd effect is what happens when many
different application processes simultaneously request a cache key, get a cache miss,
and then each hits the same database query in parallel. The more expensive this query
is, the bigger impact it has on the database. If the query involved is a top 10 query that
requires ranking a large dataset, the impact can be a significant hit.

One problem with adding TTLs to all of your cache keys is that it can exacerbate this
problem. For example, let's say millions of people are following a popular user on your
site. That user hasn't updated his profile or published any new messages, yet his profile
cache still expires due to a TTL. Your database might suddenly be swamped with a
series of identical queries.

TTLs aside, this effect is also common when adding a new cache node, because the
new cache node's memory is empty. In both cases, the solution is to prewarm the cache
by following these steps:

1. Write a script that performs the same requests that your application will. If it's a web
app, this script can be a shell script that hits a set of URLs.

2. If your app is set up for lazy caching, cache misses will result in cache keys being
populated, and the new cache node will fill up.

3. When you add new cache nodes, run your script before you attach the new node to
your application. Because your application needs to be reconfigured to add a new
node to the consistent hashing ring, insert this script as a step before triggering the
app reconfiguration.

4. If you anticipate adding and removing cache nodes on a regular basis, prewarming
can be automated by triggering the script to run whenever your app receives a
cluster reconfiguration event through Amazon Simple Notification Service (Amazon
SNS).

Finally, there is one last subtle side effect of using TTLs everywhere. If you use the
same TTL length (say 60 minutes) consistently, then many of your cache keys might
expire within the same time window, even after prewarming your cache. One strategy
that's easy to implement is to add some randomness to your TTL:

ttl = 3600 + (rand() * 120) /* +/- 2 minutes */

The good news is that only sites at large scale typically have to worry about this level of
scaling problem. It's good to be aware of, but it's also a good problem to have.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 22 of 39

Cache (Almost) Everything
Finally, it might seem as if you should only cache your heavily hit database queries and
expensive calculations, but that other parts of your app might not benefit from caching.
In practice, in-memory caching is widely useful, because it is much faster to retrieve a
flat cache key from memory than to perform even the most highly optimized database
query or remote API call. Just keep in mind that cached data is stale data by definition,
meaning there may be cases where it’s not appropriate, such as accessing an item’s
price during online checkout. You can monitor statistics like cache misses to see
whether your cache is effective, which we will cover in Monitoring and Tuning later in the
paper.

ElastiCache for Redis
So far, we've been talking about ElastiCache for Memcached as a passive component in
our application—a big slab of memory in the cloud. Choosing Redis as our engine can
unlock more interesting possibilities for our application, due to its higher-level data
structures such as lists, hashes, sets, and sorted sets.

Deploying Redis makes use of familiar concepts such as clusters and nodes. However,
Redis has a few important differences compared with Memcached:

• Redis data structures cannot be horizontally sharded. As a result, Redis ElastiCache
clusters are always a single node, rather than the multiple nodes we saw with
Memcached.

• Redis supports replication, both for high availability and to separate read workloads
from write workloads. A given ElastiCache for Redis primary node can have one or
more replica nodes. A Redis primary node can handle both reads and writes from the
app. Redis replica nodes can only handle reads, similar to Amazon RDS Read
Replicas.

• Because Redis supports replication, you can also fail over from the primary node to a
replica in the event of failure. You can configure ElastiCache for Redis to
automatically fail over by using the Multi-AZ feature.

• Redis supports persistence, including backup and recovery. However, because
Redis replication is asynchronous, you cannot completely guard against data loss in
the event of a failure. We will go into detail on this topic in our discussion of Multi-AZ.

Architecture with ElastiCache for Redis
As with Memcached, when you deploy an ElastiCache for Redis cluster, it is an
additional tier in your app. Unlike Memcached, ElastiCache clusters for Redis only
contain a single primary node. After you create the primary node, you can configure one
or more replica nodes and attach them to the primary Redis node. An ElastiCache for

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 23 of 39

Redis replication group consists of a primary and up to five read replicas. Redis
asynchronously replicates the data from the primary to the read replicas.

Because Redis supports persistence, it is technically possible to use Redis as your only
data store. In practice, customers find that a managed database such as Amazon
DynamoDB or Amazon RDS is a better fit for most use cases of long-term data storage.

ElastiCache for Redis has the concept of a primary endpoint, which is a DNS name that
always points to the current Redis primary node. If a failover event occurs, the DNS
entry will be updated to point to the new Redis primary node. To take advantage of this
functionality, make sure to configure your Redis client so that it uses the primary
endpoint DNS name to access your Redis cluster.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 24 of 39

Keep in mind that the number of Redis replicas you attach will affect the performance of
the primary node. Resist the urge to spin up lots of replicas just for durability. One or two
replicas in a different Availability Zone are sufficient for availability. When scaling read
throughput, monitor your application's performance and add replicas as needed. Be sure
to monitor your ElastiCache cluster's performance as you add replica nodes. For more
details, refer to Monitoring and Tuning.

Distributing Reads and Writes
Using read replicas with Redis, you can separate your read and write workloads. This
separation lets you scale reads by adding additional replicas as your application grows.
In this pattern, you configure your application to send writes to the primary endpoint.
Then you read from one of the replicas, as shown in the following diagram. With this
approach, you can scale your read and write loads independently, so your primary node
only has to deal with writes.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 25 of 39

The main caveat to this approach is that reads can return data that is slightly out of date
compared to the primary node, because Redis replication is asynchronous. For example,
if you have a global counter of "total games played" that is being continuously
incremented (a good fit for Redis), your master might show 51,782. However, a read
from a replica might only return 51,775. In many cases, this is just fine. But if the counter
is a basis for a crucial application state, such as the number of seconds remaining to
vote on the most popular pop singer, this approach won't work.

When deciding whether data can be read from a replica, here are a few questions to
consider:

• Is the value being used only for display purposes? If so, being slightly out of date is
probably okay.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 26 of 39

• Is the value a cached value, for example a page fragment? If so, again being slightly
out of date is likely fine.

• Is the value being used on a screen where the user might have just edited it? In this
case, showing an old value might look like an application bug.

• Is the value being used for application logic? If so, using an old value can be risky.

• Are multiple processes using the value simultaneously, such as a lock or queue? If
so, the value needs to be up-to-date and needs to be read from the primary node.

In order to split reads and writes, you will need to create two separate Redis connection
handles in your application: one pointing to the primary node, and one pointing to the
read replica(s). Configure your application to write to the DNS primary endpoint, and
then read from the other Redis nodes.

Multi-AZ with Auto-Failover
During certain types of planned maintenance, or in the unlikely event of ElastiCache
node failure or Availability Zone failure, Amazon ElastiCache can be configured to
automatically detect the failure of the primary node, select a read replica, and promote it
to become the new primary. ElastiCache auto-failover will then update the DNS primary
endpoint with the IP address of the promoted read replica. If your application is writing to
the primary node endpoint as recommended earlier, no application change will be
needed.

Depending on how in-sync the promoted read replica is with the primary node, the
failover process can take several minutes. First, ElastiCache needs to detect the
failover, then suspend writes to the primary node, and finally complete the failover to the
replica. During this time, your application cannot write to the Redis ElastiCache cluster.
Architecting your application to limit the impact of these types of failover events will
ensure greater overall availability.

Unless you have a specific need otherwise, all production deployments should use Multi-
AZ with auto-failover. Keep in mind that Redis replication is asynchronous, meaning if a
failover occurs, the read replica that is selected might be slightly behind the master.
Bottom line: Some data loss might occur if you have rapidly changing data. This effect is
currently a limitation of Redis replication itself. If you have crucial data that cannot be
lost (for example, transactional or purchase data), we recommend you also store that in
a durable database such as Amazon DynamoDB or Amazon RDS.

Sharding with Redis
Redis has two categories of data structures: simple keys and counters, and
multidimensional sets, lists, and hashes. The bad news is the second category cannot
be sharded horizontally. But the good news is that simple keys and counters can.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 27 of 39

In the simplest case, you can treat a single Redis node just like a single Memcached
node. Just like you might spin up multiple Memcached nodes, you can spin up multiple
Redis clusters, and each Redis cluster is responsible for part of the sharded dataset.

In your application, you'll then need to configure the Redis client to shard between those
two clusters. Here is an example from the Jedis Sharded Java Client:

List<JedisShardInfo> shards = new
ArrayList<JedisShardInfo>();

shards.add(new JedisShardInfo("redis-cluster1", 6379));
shards.add(new JedisShardInfo("redis-cluster2", 6379));

ShardedJedisPool pool = new ShardedJedisPool(shards);
ShardedJedis jedis = pool.getResource();

You can also combine horizontal sharding with split reads and writes. In this setup, you
have two or more Redis clusters, each of which stores part of the keyspace. You
configure your application with two separate sets of Redis handles, a write handle that

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 28 of 39

points to the sharded masters and a read handle that points to the sharded replicas.
Following is an example architecture, this time with Amazon DynamoDB rather than
MySQL, just to illustrate that you can use either one:

For the purpose of simplification, the preceding diagram shows replicas in the same
Availability Zone as the primary node. In practice, you should place the replicas in a
different Availability Zone. From an application perspective, continuing with our Java
example, you configure two Redis connection pools as follows:

List<JedisShardInfo> masters = new
ArrayList<JedisShardInfo>();
masters.add(new JedisShardInfo("redis-masterA", 6379));
masters.add(new JedisShardInfo("redis-masterB", 6379));

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 29 of 39

ShardedJedisPool write_pool = new
ShardedJedisPool(masters);

ShardedJedis write_jedis = write_pool.getResource();

List<JedisShardInfo> replicas = new
ArrayList<JedisShardInfo>();
replicas.add(new JedisShardInfo("redis-replicaA", 6379));
replicas.add(new JedisShardInfo("redis-replicaB", 6379));

ShardedJedisPool read_pool = new
ShardedJedisPool(replicas);
ShardedJedis read_jedis = read_pool.getResource();

In designing your application, you need to make decisions as to whether a given value
can be read from the replica pool, which might be slightly out of date, or from the primary
write node. Be aware that reading from the primary node will ultimately limit the
throughput of your entire Redis layer, because it takes I/O away from writes.

Using multiple clusters in this fashion is the most advanced configuration of Redis
possible. In practice, it is overkill for most applications. However, if you design your
application so that it can leverage a split read/write Redis layer, you can apply this
design in the future, if your application grows to the scale where it is needed.

Advanced Datasets with Redis
Let's briefly look at some use cases that ElastiCache for Redis can support.

Game Leaderboards
If you've played online games, you're probably familiar with top 10 leaderboards. What
might not be obvious is that calculating a top n leaderboard in near real time is actually
quite complex. An online game can easily have thousands of people playing
concurrently, each with stats that are changing continuously. Re-sorting these users and
reassigning a numeric position is very computationally expensive.

Sorted sets are particularly interesting here, because they simultaneously guarantee
both the uniqueness and ordering of elements. Redis sorted set commands all start with
Z. When an element is inserted in a Redis sorted set, it is reranked in real time and
assigned a numeric position. Here is a complete game leaderboard example in Redis:

ZADD "leaderboard" 556 "Andy"

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 30 of 39

ZADD "leaderboard" 819 "Barry"
ZADD "leaderboard" 105 "Carl"
ZADD "leaderboard" 1312 "Derek"

ZREVRANGE "leaderboard" 0 -1
1) "Derek"
2) "Barry"
3) "Andy"
4) "Carl"

ZREVRANK "leaderboard" "Barry"
2

When a player's score is updated, the Redis command ZADD overwrites the existing
value with the new score. The list is instantly re-sorted, and the player receives a new
rank. For more information, refer to the Redis documentation on ZADD, ZRANGE, and
ZRANK.

Recommendation Engines
Similarly, calculating recommendations for users based on other items they've liked
requires very fast access to a large dataset. Some algorithms, such as Slope One, are
simple and effective but require in-memory access to every item ever rated by anyone in
the system. Even if this data is kept in a relational database, it has to be loaded in
memory somewhere to run the algorithm.

Redis data structures are a great fit for recommendation data. You can use Redis
counters used to increment or decrement the number of likes or dislikes for a given item.
You can use Redis hashes to maintain a list of everyone who has liked or disliked that
item, which is the type of data that Slope One requires. Here is a brief example of storing
item likes and dislikes:

INCR "item:38923:likes"
HSET "item:38923:ratings" "Susan" 1
INCR "item:38923:dislikes"
HSET "item:38923:ratings" "Tommy" -1

From this simple data, not only can we use Slope One or Jaccardian similarity to
recommend similar items, but we can use the same counters to display likes and dislikes
in the app itself. In fact, a number of open source projects use Redis in exactly this
manner, such as Recommendify and Recommendable. In addition, because Redis
supports persistence, this data can live solely in Redis. This placement eliminates the

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 31 of 39

need for any data loading process, and also offloads an intensive process from your
main database.

Chat and Messaging
Redis provides a lightweight pub/sub mechanism that is well-suited to simple chat and
messaging needs. Use cases include in-app messaging, web chat windows, online
game invites and chat, and real-time comment streams (such as you might see during a
live streaming event). Two basic Redis commands are involved, PUBLISH and
SUBSCRIBE:

SUBSCRIBE "chat:114"
PUBLISH "chat:114" "Hello all"
 ["message", "chat:114", "Hello all"]
UNSUBSCRIBE "chat:114"

Note that unlike other Redis data structures, pub/sub messaging doesn't get persisted to
disk. Redis pub/sub messages are not written as part of the RDB or AOF backup files
that Redis creates. If you want to save these pub/sub messages, you will need to add
them to a Redis data structure, such as a list. For more details, refer to Using Pub/Sub
for Asynchronous Communication in the Redis Cookbook.

Also, because Redis pub/sub is not persistent, you can lose data if a cache node fails. If
you're looking for a reliable topic-based messaging system, consider evaluating Amazon
SNS.

Queues
Although we offer a managed queue service in the form of Amazon Simple Queue
Service (Amazon SQS) and we encourage customers to use it, you can also use Redis
data structures to build queuing solutions. The Redis documentation for RPOPLPUSH
covers two well-documented queuing patterns. In these patterns, Redis lists are used to
hold items in a queue. When a process takes an item from the queue to work on it, the
item is pushed onto an "in-progress" queue, and then deleted when the work is done.
Open source solutions such as Resque use Redis as a queue; GitHub uses Resque.

Redis does have certain advantages over other queue options, such as very fast speed,
once and only once delivery, and guaranteed message ordering. However, pay careful
attention to ElastiCache for Redis backup and recovery options (which we will cover
shortly) if you intend to use Redis as a queue. If a Redis node terminates and you have
not properly configured its persistence options, you can lose the data for the items in
your queue. Essentially, you need to view your queue as a type of database, and treat it
appropriately, rather than as a disposable cache.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 32 of 39

Client Libraries and Consistent Hashing
As with Memcached, you can find Redis client libraries for the currently popular
programming languages. Any of these will work with ElastiCache for Redis:

Language Redis

Ruby Redis-rb, Redis Objects

Python Redis-py

Node.js node_redis

PHP phpredis

Java Jedis

C#/.Net ServiceStack.Redis

Unlike with Memcached, it is uncommon for Redis libraries to support consistent
hashing. Redis libraries rarely support consistent hashing because the advanced data
types that we discussed preceding cannot simply be horizontally sharded across multiple
Redis nodes. This point leads to another, very important one: Redis as a technology
cannot be horizontally scaled easily. Redis can only scale up to a larger node size,
because its data structures must reside in a single memory image in order to perform
properly.

Note that Redis Cluster was just released in April 2015 in Redis version 3.0. It aims to
provide scale-out capability with certain data types. The stability and robustness of this
version remains to be seen over the next months. Redis Cluster currently only supports
a subset of Redis functionality, and has some important caveats about possible data
loss. For more details, refer to the Redis Cluster specification.

Monitoring and Tuning
Before we wrap up, let's spend some time talking about monitoring and performance
tuning.

Monitoring Cache Efficiency
To start with, refer to the Amazon ElastiCache documentation for CloudWatch Metrics
with ElastiCache and Which Metrics Should I Monitor? Both sections are excellent

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 33 of 39

resources for understanding how to measure the health of your ElastiCache cluster, by
using metrics that ElastiCache publishes to Amazon CloudWatch. Most importantly,
watch CPU usage. A consistently high CPU usage indicates a node is overtaxed, either
by too many concurrent requests, or by performing dataset operations in the case of
Redis.

For Redis, because the engine is single-threaded, you will need to multiply the CPU
percentage by the number of cores to get an accurate measure of CPU usage. Once
Redis maxes out a single CPU core, that instance is fully utilized, and a larger instance
is needed. Suppose you're using an EC2 instance with four cores and the CPU is at 25
percent. This situation actually means that the instance is maxed out, because Redis is
essentially pegging one CPU at 100 percent.

In addition to CPU, here is some additional guidance for monitoring cache memory
utilization. Each of these metrics is available in CloudWatch for your ElastiCache cluster:

• Evictions—both Memcached and Redis manage cache memory internally, and
when memory starts to fill up they evict (delete) unused cache keys to free space. A
small number of evictions shouldn't alarm you, but a large number means your cache
is running out of space.

• CacheMisses—the number of times a key was requested but not found in the
cache. This number can be fairly large if you're using lazy population as your main
strategy. If this number is remaining steady, it's likely nothing to worry about.
However, a large cache miss number combined with a large eviction number can
indicate your cache is thrashing due to lack of memory.

• BytesUsedForCacheItems—this value is the actual amount of cache memory that
Memcached or Redis is using. Both Memcached and Redis, like all software, will
attempt to allocate as much system memory as possible, even if it's not used by
actual cache keys. Thus, monitoring the system memory usage on a cache node
doesn't tell you how full your cache actually is.

• SwapUsage—in normal usage, neither Memcached nor Redis should be performing
swaps.

A well-tuned cache node will show cache bytes used almost equal to the "max memory"
parameter. In steady state, most cache counters will increase, with cache hits increasing
faster than misses. You will probably also see a low number of evictions. However, a
rising number of evictions indicates cache keys are getting pushed out of memory, which
means you can benefit from larger cache nodes with more memory.

The one exception to the evictions rule is if you follow a strict definition of Russian doll
caching, which says you should never cause cache items to expire, but instead let
Memcached and Redis evict unused keys as needed. If you follow this approach, keep a
closer eye on cache misses and bytes used to detect potential problems.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 34 of 39

Watching For Hot Spots
If you are using consistent hashing to distribute cache keys across your cache nodes, in
general your access patterns should be fairly even across nodes. However, you still
need to watch out for hot spots, which are nodes in your cache that receive higher load
than other nodes. This pattern is caused by hot keys, which are cache keys that are
accessed more frequently than others. Think of a social website, where you have some
users that might be 10,000 times more popular than an average user. That user's cache
keys will be accessed much more often, which can put an uneven load onto the cache
nodes that house that user's keys.

If you see uneven CPU usage among your cache nodes, you might have a hot spot. This
pattern often appears as one cache node having a significantly higher operation count
than other nodes. One way to confirm this is by keeping a counter in your application of
your cache key gets and puts. You can push these as custom metrics into CloudWatch,
or another monitoring service. Don't do this unless you suspect a hot spot, however,
because logging every key access will decrease the overall performance of your
application.

In the most common case, a few hot keys will not necessarily create any significant hot
spot issues. If you have a few hot keys on each of your cache nodes, then those hot
keys are themselves evenly distributed, and are producing an even load on your cache
nodes. If you have three cache nodes and each of them has a few hot keys, then you
can continue sizing your cache cluster as if those hot keys did not exist. In practice, even
a well-designed application will have some degree of unevenness in cache key access.

In extreme cases, a single hot cache key can create a hot spot that overwhelms a single
cache node. In this case, having good metrics about your cache, especially your most
popular cache keys, is crucial to designing a solution. One solution is to create a
mapping table that remaps very hot keys to a separate set of cache nodes. Although this
approach provides a quick fix, you will still face the challenge of scaling those new cache
nodes. Another solution is to add a secondary layer of smaller caches in front of your
main nodes, to act as a buffer. This approach gives you more flexibility, but introduces
additional latency into your caching tier.

The good news is that these concerns only hit applications of a significant scale. We
recommend being aware of this potential issue and monitoring for it, but not spending
time trying to engineer around it up front. Hot spots are a fast-moving area of computer
science research, and there is no one-size-fits-all solution. As always, our team of
Solutions Architects is available to work with you to address these issues if you
encounter them. For more research on this topic, refer to papers such as Relieving Hot
Spots on the World Wide Web and Characterizing Load Imbalance in Real-World
Networked Caches.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 35 of 39

Memcached Memory Optimization
Memcached uses a slab allocator, which means that it allocates memory in fixed chunks,
and then manages those chunks internally. Using this approach, Memcached can be
more efficient and predictable in its memory access patterns than if it used the system
malloc(). The downside of the Memcached slab allocator is that memory chunks are
rigidly allocated once and cannot be changed later. This approach means that if you
choose the wrong number of the wrong size slabs, you might run out of Memcached
chunks while still having plenty of system memory available.

When you launch an ElastiCache cluster, the max_cache_memory parameter is set for
you automatically, along with several other parameters (for a list of default values, refer
to Parameters for Memcached section in the Amazon ElastiCache User Guide). The key
parameters to keep in mind are chunk_size and chunk_size_growth_factor, which
together control how memory chunks are allocated.

Redis Memory Optimization
Redis has a good write-up on memory optimization that can come in handy for advanced
use cases. Redis exposes a number of Redis configuration variables that will affect how
Redis balances CPU and memory for a given dataset. These directives can be used with
ElastiCache for Redis as well.

Redis Backup and Restore
Redis clusters support persistence by using backup and restore. When Redis backup
and restore is enabled, ElastiCache can automatically take snapshots of your Redis
cluster and save them to Amazon Simple Storage Service (Amazon S3). The
ElastiCache documentation includes very good coverage of this functionality in the topic
Managing Backup and Restore.

Because of the way Redis backups are implemented in the Redis engine itself, you need
to have more memory available that your dataset consumes. This requirement is
because Redis forks a background process that writes the backup data. To do so, it
makes a copy of your data, using Linux copy-on-write semantics. If your data is
changing rapidly, this approach means those data segments will be copied, consuming
additional memory. For more details, refer to Amazon ElastiCache Backup Best
Practices.

For production use, we strongly recommend that you always enable Redis backups, and
retain them for a minimum of 7 days. In practice, retaining them for 14 or 30 days will
provide better safety in the event of an application bug that ends up corrupting data.
Even if you plan to use Redis primarily as a performance optimization or caching layer,
persisting the data means you can prewarm a new Redis node, which avoids the
thundering herd issue that we discussed earlier. To create a new Redis cluster from a

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 36 of 39

backup snapshot, refer to Restoring a Snapshot to a New Cluster in the Amazon
ElastiCache User Guide.

You can also use a Redis snapshot to scale up to a larger Amazon EC2 instance type.
To do so, follow this process:

1. Suspend writes to your existing ElastiCache cluster. Your application can continue to
do reads.

2. Take a snapshot by following the procedure in the Creating a Manual Snapshot
section in the Amazon ElastiCache User Guide. Give it a distinctive name that you
will remember.

3. Create a new ElastiCache Redis cluster, and specify the snapshot you took
preceding to seed it.

4. Once the new ElastiCache cluster is online, reconfigure your application to start
writing to the new cluster.

Currently, this process will interrupt your application's ability to write data into Redis. If
you have writes that are only going into Redis and that cannot be suspended, you can
put those into Amazon SQS while you are resizing your ElastiCache cluster. Then, once
your new ElastiCache Redis cluster is ready, you can run a script that pulls those
records off Amazon SQS and writes them to your new Redis cluster.

Cluster Scaling and Auto Discovery
Scaling your application in response to changes in demand is one of the key benefits of
working with AWS. Many customers find that configuring their client with a list of node
DNS endpoints for ElastiCache works perfectly fine. But let's look at how to scale your
ElastiCache Memcached cluster while your application is running, and how to set up
your application to detect changes to your cache layer dynamically.

Auto Scaling Cluster Nodes
Amazon ElastiCache does not currently support using Auto Scaling to scale the number
of cache nodes in a cluster. To change the number of cache nodes, you can use either
the AWS Management Console or the AWS API to modify the cluster. For more
information, refer to Managing Cache Cluster Nodes in the Amazon ElastiCache User
Guide.

In practice, you usually don't want to regularly change the number of cache nodes in
your Memcached cluster. Any change to your cache nodes will result in some
percentage of cache keys being remapped to new (empty) nodes, which means a
performance impact to your application. Even with consistent hashing, you will see an
impact on your application when adding or removing nodes.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 37 of 39

Auto Discovery of Memcached Nodes
The Amazon ElastiCache client libraries for Java, .NET, and PHP support Auto
Discovery of new ElastiCache Memcached nodes. For Ruby, the open source library
dalli-elasticache provides autodiscovery support, and django-elasticache is available for
Python Django. In other languages, you'll need to implement autodiscovery yourself.
Luckily, this implementation is very easy.

The overall Auto Discovery mechanism is outlined in the How Auto Discovery Works
section in the Amazon ElastiCache User Guide. Basically, ElastiCache adds a special
Memcached configuration variable called cluster that contains the DNS names of the
current cache nodes. To access this list, your application connects to your cache cluster
configuration endpoint, which is a hostname ending in
cfg.region.cache.amazonaws.com. Once you retrieve the list of cache node host
names, your application configures its Memcached client to connect to the list of cache
nodes, using consistent hashing to balance across them. Here is a complete working
example in Ruby:

require 'socket'
require 'dalli'

socket = TCPSocket.new(
 'my-cache-
2a.z2vq55.cfg.usw2.cache.amazonaws.com', 11211
)
socket.puts("config get cluster")

header = socket.gets
version = socket.gets
nodelist = socket.gets.chomp.split(/\s+/).map{|l|
l.split('|').first }
socket.close

Configure Memcached client
cache = Dalli::Client.new(nodelist)

Using Linux utilities, you can even do this from the command line using netcat, which
can be useful in a script:

ec2-host$ echo "config get cluster" | \
nc my-cache-2a.z2vq55.cfg.usw2.cache.amazonaws.com 11211 |
\
grep 'cache.amazonaws.com' | tr ' ' '\n' | cut -d'|' -f 1

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 38 of 39

my-cache-2a.z2vq55.0001.usw2.cache.amazonaws.com

my-cache-2a.z2vq55.0002.usw2.cache.amazonaws.com

Using Auto Discovery, your Amazon EC2 application servers can locate Memcached
nodes as they are added to a cache cluster. However, once your application has an
open socket to a Memcached instance, it won't necessarily detect any changes to the
cache node list that might happen later. To make this a complete solution, two more
things are needed:

• The ability to scale cache nodes as needed
• The ability to trigger an application reconfiguration on the fly

Cluster Reconfiguration Events from Amazon SNS
Amazon ElastiCache publishes a number of notifications to Amazon SNS when a cluster
change happens, such as a configuration change or replacement of a node. Because
these notifications are sent through Amazon SNS, you can route them to multiple
endpoints, including email, Amazon SNS, or other Amazon EC2 instances. For a
complete list of Amazon SNS events that ElastiCache publishes, refer to ElastiCache
SNS Events in the Amazon ElastiCache User Guide.

If you want your application to dynamically detect nodes that are being added or
removed, you can use these notifications as follows. Note that the following process is
not required to deal with cache node failures. If a cache node fails and is replaced by
ElastiCache, the DNS name will remain the same. Most client libraries should
automatically reconnect once the cache node becomes available again.

The two most interesting events that ElastiCache publishes, at least for the purposes of
scaling our cache, are ElastiCache:AddCacheNodeComplete and
ElastiCache:RemoveCacheNodeComplete. These events are published when cache
nodes are added or removed from the cluster. By listening for these events, your
application can dynamically reconfigure itself to detect the new cache nodes. The basic
process for using Amazon SNS with your application is as follows:

1. Create an Amazon SNS topic for your ElastiCache alerts, as described in the
Creating an SNS Topic section in the Amazon ElastiCache User Guide.

2. Modify your application code to subscribe to this Amazon SNS topic. All of your
application instances will listen to the same topic. The AWS PHP blog has an in-
depth posting with code samples: Receiving Amazon SNS Messages in PHP.

Amazon Web Services—Performance at Scale with Amazon ElastiCache May 2015

Page 39 of 39

3. When a cache node is added or removed, you will receive a corresponding Amazon
SNS message. At that point, your application needs to be able to rerun the Auto
Discovery code we discussed preceding to get the updated cache node list.

4. Once your application has the new list of cache nodes, it also reconfigures its
Memcached client accordingly.

Again, this workflow is not needed for cache node recovery—only if nodes are added or
removed dynamically, and you want your application to dynamically detect them.
Otherwise, you can simply add the new cache nodes to your application's configuration,
and restart your application servers. To accomplish this with zero downtime to your app,
you can leverage solutions such as zero-downtime deploys with Elastic Beanstalk.

Conclusion
Proper use of in-memory caching can result in an application that performs better and
costs less at scale. Amazon ElastiCache greatly simplifies the process of deploying an
in-memory cache in the cloud. By following the steps outlined in this paper, you can
easily deploy an ElastiCache cluster running either Memcached or Redis on AWS, and
then use the caching strategies we discussed to increase the performance and resiliency
of your application. You can change the configuration of ElastiCache to add, remove, or
resize nodes as your application's needs change over time, in order to get the most out
of your in-memory data tier.

