
Amazon Kinesis and Apache Storm
Building a Real-Time Sliding-Window Dashboard over Streaming Data

Rahul Bhartia

October 2014

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 2 of 16

Contents
Contents 2

Abstract 3

Introduction 3

Reference Architecture 4

Amazon Kinesis 4

Apache Storm 5

Amazon ElastiCache 5

Node.js 6

Epoch and D3 6

Deploying on AWS 6

Streaming Data in Amazon Kinesis 6

Accessing Kinesis Stream 7

Continuous Processing Using Storm 7

Implementing a Sliding Window 9

Accessing the Storm User Interface 11

Building a Real-Time Data Visualization 12

Generating Server-Side Events 12

Visualization Using Epoch 14

Accessing the Dashboard 15

Deleting the CloudFormation Stack 15

Conclusion 16

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 3 of 16

Abstract
Apache Storm developers can use Amazon Kinesis to quickly and cost effectively build

real-time analytics dashboards and applications that can continuously process very high

volumes of streaming data, such as clickstream log files and machine-generated data.

This whitepaper outlines a reference architecture for building a system that performs

real-time sliding-windows analysis over clickstream data using Amazon Kinesis and

Apache Storm. We will use Amazon Kinesis for managed ingestion of streaming data at

scale with the ability to replay past data, and we'll run sliding-window analytics to power

dashboards in Apache Storm. We build the system based on the reference architecture,

which demonstrates everything from ingestion, processing, and storing to visualizing of

the data in real-time.

Introduction
Streams of data are ubiquitous today – clickstreams, log data streams, event streams,

and more. The need for real-time processing of high-volume data streams is pushing the

limits of traditional data processing infrastructures. Building a clickstream monitoring

system, for example, where data is in the form of a continuous clickstream rather than

discrete data sets, requires the use of continuous queries, rather than ad-hoc one-time

queries.

In this whitepaper, we propose a reference architecture for ingesting, analyzing, and

processing vast amounts of clickstream data generated at very high rates in a smart and

cost-efficient way using Amazon Kinesis with Apache Storm. We also explore the use of

Amazon ElastiCache (Redis) as an in-memory data store for aggregated counters and

use of its Pub/Sub facility to publish the counters on a simple dashboard.

We demonstrate the architecture by implementing a time-sensitive, sliding-window

analysis over continuous clickstream data to determine how many visitors originated

from specific referrers. Sliding-window analysis is a common way to analyze and identify

trends in the clickstream data. The term sliding-window analysis refers to a common

pattern analysis of real-time and continuous data and uses rolling counts of incoming

data to examine trending, volumes, and rankings.

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 4 of 16

Reference Architecture
The reference architecture outlined below demonstrates using Amazon Kinesis for real-

time data ingestion and Apache Storm for processing streaming data. To demonstrate

the reference architecture, we create an application that puts simulated URLs and

referrers into an Amazon Kinesis stream. Then we use Apache Storm to process the

Amazon Kinesis stream and calculate how many visitors originated from a particular

referrer. Storm also persists the aggregated counters in ElastiCache and publishes the

counter on a pubsub channel. Using Node.Js, we further translate the messages from

the Pub/Sub channel into server-side events (SSEs). Epoch, which uses D3, is used to

build a real-time visualization by consuming the server-side events.

Let's start by taking a look at each component of our reference architecture and the role

it plays in our architecture.

Amazon Kinesis
Amazon Kinesis handles streaming of high-volume, continuously generated data in our

reference architecture. Amazon Kinesis is a fully managed service for real-time

processing of streaming data at massive scale. Using Amazon Kinesis, developers can

continuously capture and store terabytes of data per hour from hundreds of thousands of

sources, including website clickstreams, financial transaction data, social media feeds,

IT logs, location-tracking events, and more. Developers can then write stream

processing applications that consume the Kinesis streams to take action on real-time

data, and power real-time dashboards, generate alerts, implement real-time business

logic, or even emit data to other big data services such as Amazon Simple Storage

Service (Amazon S3), Amazon Redshift, and more.

The Kinesis Client Library enables developers to build streaming data processing

applications. Leveraging the client library, developers can focus on business logic and

let the client library automatically handle complex issues like adapting to changes in

stream volume, load-balancing streaming data, coordinating distributed services, and

processing data with fault-tolerance. Amazon Kinesis Connector Library further helps

developers integrate Amazon Kinesis with other services from AWS, such as Amazon

http://aws.amazon.com/kinesis
https://github.com/awslabs/amazon-kinesis-client
https://github.com/awslabs/amazon-kinesis-connectors

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 5 of 16

DynamoDB, Redshift, and Amazon S3. Amazon Kinesis also has connectors for other

applications and distributed systems, like Apache Storm.

Apache Storm
Apache Storm handles continuous processing of the Amazon Kinesis streams in our

reference architecture. Apache Storm is a real-time distributed computing technology for

processing streaming messages on a continuous basis. Individual logical processing

units (known as bolts in Storm terminology) are connected like a pipeline to express the

series of transformations while also exposing opportunities for concurrent processing.

Data streams are ingested in Storm via spouts. Each spout emits one or more

sequences of tuples into a cluster for processing. A given bolt can consume any number

of input spouts, process the tuples, and emit transformed tuples. A topology is a multi-

stage distributing computation application composed of a network of spouts and bolts. A

topology (which you can think of as a full application) runs continuously in order to

process incoming data.

We'll use the Amazon Kinesis Storm Spout to integrate Amazon Kinesis with Storm for

real-time computation of our clickstream logs.

Amazon ElastiCache
Amazon ElastiCache handles the persistent storage of aggregated counters in an in-

memory store and publication of these counters in our reference architecture.

ElastiCache is a web service for forming the data store and notification layer that makes

it easy to deploy, operate, and scale an in-memory cache in the cloud. The service

improves the performance of web applications by allowing you to retrieve information

from fast, managed, in-memory caches, instead of relying entirely on slower disk-based

databases.

ElastiCache also supports Redis—a popular open-source in-memory key-value store

that supports data structures such as sorted sets and lists. Redis also has a subscription

model that client apps can use to receive notifications. In this model, our client app—the

visualization layer—is notified of the change and then updates the visualizations to

reflect that change.

While our stack mainly uses the Redis Pub/Sub facility to stream the updates to the

visualization layer, you can also use Redis to persist the aggregated counters in the

simple key-value store that Redis provides. Using such a persistent store, multiple

applications across an enterprise can present different views or bootstrap to a known

state in case of failures.

https://storm.incubator.apache.org/
https://github.com/awslabs/kinesis-storm-spout
http://aws.amazon.com/elasticache
http://redis.io/

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 6 of 16

Node.js
Node.js is the component handing the conversion of published counters into server side

events in our reference architecture. Node.js is a platform built on Chrome's JavaScript

runtime for easily building fast, scalable network applications. Node.js uses an event-

driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-

intensive real-time applications that run across distributed devices. The Node.js

application subscribes to the Redis Pub/Sub channel and translates those notifications

to Server-Sent Events (SSEs). SSE is a W3C specification that describes how a server

can push events to browser clients using the standard HTTP protocol.

Epoch and D3
Epoch is a real-time charting library built on D3, which handles the visualization of the

server-side events to provide a real-time dashboard. D3.js is a JavaScript library for

manipulating documents based on data. D3 helps bring data to life using HTML, SVG,

and CSS. Epoch is a general purpose library for application developers and visualization

designers. It focuses on two different aspects of visualization programming: basic charts

for creating historical reports, and real-time charts for displaying frequently updating

time-series data.

Deploying on AWS
We deploy our application using AWS CloudFormation, a service that gives developers

and systems administrators an easy way to create and manage a collection of related

AWS resources, provisioning and updating them in an orderly and predictable fashion.

The sample AWS CloudFormation template included here provisions three Amazon EC2

instances and starts all the applications on them. The AWS CloudFormation stack also

creates an IAM Role to allow the application to authenticate your account without the

need for you to provide explicit credentials. See Using IAM Roles for EC2 Instances with

the SDK for Java for more information.

You can run the AWS CloudFormation template to create the stack we described. In the

following sections we walk through the details about processing in each individual layer.

Streaming Data in Amazon Kinesis
In a real-world scenario, your log servers, application servers, or app running on

smartphones/ tablets are producing the clickstream data captured by your Amazon

Kinesis stream. For our application, we'll use a sample producer app,

HttpReferrerStreamWriter.java to generate simulated URLs in JSON format. This

producer will automatically create an Amazon Kinesis stream for you and continuously

emit simulated data into the stream.

http://nodejs.org/
http://www.w3.org/TR/2009/WD-eventsource-20090423/
http://fastly.github.io/epoch/getting-started/
http://d3js.org/
http://aws.amazon.com/cloudformation/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-roles.html
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-roles.html
https://s3.amazonaws.com/kinesis-storm-clickstream/kinesis-storm-clickstream-stack.template
https://github.com/awslabs/amazon-kinesis-data-visualization-sample/blob/master/src/main/java/com/amazonaws/services/kinesis/samples/datavis/HttpReferrerStreamWriter.java

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 7 of 16

This producer is also a part of the Amazon Kinesis Data Visualization Sample

Application, which demonstrates how to interact with Amazon Kinesis to generate

meaningful statistics from a stream of data and visualize those results in real time.

Accessing Kinesis Stream
After the AWS CloudFormation template completes deployment, navigate to the Amazon

Kinesis console and click the stream name, which you will find prefixed by the template

name, followed by 'KinesisStream' with two shards, and 'Active' status.

On the Stream Details page for the stream, the first two graphs display write capacity of

two MB/sec and read capacity of four MB/sec based on two shards available for the

stream, as shown in the following illustration. The Amazon Kinesis stream is now

ingesting data submitted to it by the producer.

Continuous Processing Using Storm
Amazon Kinesis Storm Spout fetches data records from Amazon Kinesis and emits them

as tuples. The spout state is stored in Apache ZooKeeper, part of the Storm cluster, to

track the current position in the stream.

To use this spout, we start creating our Storm topology as shown in the following

example:

…

public static void main(String[] args) throws ...

{

…

https://github.com/awslabs/amazon-kinesis-data-visualization-sample
https://github.com/awslabs/amazon-kinesis-data-visualization-sample

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 8 of 16

if (

…

propertiesFile = args[0];

mode = args[1];

…

configure(propertiesFile);

final KinesisSpoutConfig config = new

KinesisSpoutConfig(streamName,

zookeeperEndpoint).withZookeeperPrefix(zookeeperPrefix)

.withInitialPositionInStream(initialPositionInStream)

.withRegion(Regions.fromName(regionName));

final KinesisSpout spout = new KinesisSpout(config, new

CustomCredentialsProviderChain(), new

ClientConfiguration());

…

// Using number of shards as the parallelism hint for the

spout.

builder.setSpout("Kinesis", spout, 2);

…

In the excerpt above, note the following:

 The configure function initializes the variable from the properties file passed as an

argument to the application.

 KinesisSpoutConfig configures the spout, including the Storm topology name,

the Amazon Kinesis stream name endpoint for connecting to ZooKeeper, and the

prefix for the ZooKeeper paths where the spout state is stored.

 KinesisSpout constructs an instance of the spout, using your AWS credentials

and the configuration specified in KinesisSpoutConfig. Each task executed by

the spout operates on a distinct set of Amazon Kinesis shards and periodically

commits their state to ZooKeeper.

The Kinesis Spout by default emits a tuple of (partitionKey, record) as specified

by DefaultKinesisRecordScheme. If you want to emit more structured data, you can

provide your own implementation of IKinesisRecordScheme. In this whitepaper we

use a parse bolt to process the record field back into original referrer and resource

components using the following code:

public void execute(Tuple input, BasicOutputCollector

collector) {

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 9 of 16

Record record =

(Record)input.getValueByField(DefaultKinesisRecordScheme.FI

ELD_RECORD);

ByteBuffer buffer = record.getData();

…

data = decoder.decode(buffer).toString();

JSONObject jsonObject = new JSONObject(data);

String referrer = jsonObject.getString("referrer");

We add this bolt to our topology and connect with the Kinesis spout:

builder.setBolt("Parse", new ParseReferrerBolt(),

6).shuffleGrouping("Kinesis");

At this point, we have a partial storm topology that reads data from Amazon Kinesis and

emits the simulated referrer for each record generated by our producer application. In

the next section we implement a sliding-window counter by using the storm-starter

package library and connect it to the Redis Pub/Sub channel.

Implementing a Sliding Window
The storm-starter project provides sample implementations of various real-time data

processing topologies, including the RollingTopWords topology, which can be used for

computing trending topics. In this whitepaper, we reuse most of the RollingCountBolt

topology to perform the rolling counts of incoming objects, i.e., sliding-window based

counting. The bolt is configured by two parameters:

 Length of the sliding window in seconds (which influences the output data of the bolt,

i.e., how it counts objects)

 Emit frequency in seconds (which influences how often the bolt will output the latest

window counts)

The RollingCountBolt uses tick tuple to emit the count at the specified frequency and is

configured in the bolt as shown in the following example:

public Map<String, Object> getComponentConfiguration()

{

Map<String, Object> conf = new HashMap<String, Object>();

conf.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS,emitFrequency

InSeconds);

https://github.com/nathanmarz/storm-starter
https://github.com/nathanmarz/storm-starter/blob/master/src/jvm/storm/starter/bolt/RollingCountBolt.java

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 10 of 16

return conf;

}

In the execute method of the bolt, we use the helper function isTickTuple to identify

whether the incoming tuple is a tick tuple. If the incoming tuple is a tick tuple, we

proceed with emitting the current count. Otherwise, we increment the counter for the

sliding window.

…

public void execute(Tuple tuple)

{

 if (TupleHelpers.isTickTuple(tuple))

 {

 LOG.debug("Received tick tuple, triggering emit of

current window counts");

 emitCurrentWindowCounts();

 }

 else {

 countObjAndAck(tuple);

 }

}

The bolt uses two main data structures to implement a sliding-window counter:

 SlidingWindowCounter provides a sliding-window count for each tracked object.

The window in our case, however, does not advance with time, but whenever (and

only when) the method getCountsThenAdvanceWindow() is called during the

emit method.

 NthLastModifiedTimeTracker is used to track the actual duration of the sliding

window. It is included in case the expected sliding-window length (as configured by

the user) is different from the actual length.

 private void emitCurrentWindowCounts() {

 Map<Object, Long> counts =

counter.getCountsThenAdvanceWindow();

 int actualWindowLengthInSeconds =

lastModifiedTracker.secondsSinceOldestModification();

 lastModifiedTracker.markAsModified();

 if (actualWindowLengthInSeconds !=

windowLengthInSeconds) {

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 11 of 16

LOG.warn(String.format(WINDOW_LENGTH_WARNING_TEMPLATE,

actualWindowLengthInSeconds, windowLengthInSeconds));

 }

 emit(counts, actualWindowLengthInSeconds);

 }

 private void countObjAndAck(Tuple tuple) {

 Object obj = tuple.getValue(0);

 counter.incrementCount(obj);

 collector.ack(tuple);

 }

At this point we have all the pieces in place to compute a sliding-window count of

referrers coming in a stream of data from Amazon Kinesis. We finally modify the emit

function of the RollingCountBolt to publish the current count over a Pub/Sub

channel of an ElastiCache Redis channel.

for (Entry<Object, Long> entry : counts.entrySet())

{

 …

 JSONObject msg = new JSONObject();

 …

 msg.put("name", referrer);

 msg.put("time", currentEPOCH);

 msg.put("count", count);

 …

 jedis.publish("ticker",msg.toString());

Accessing the Storm User Interface
The AWS CloudFormation template also deploys Storm and Zookeeper over a single

Amazon EC2 instance, and starts the topology described above. You can find the URL

for the Storm UI from the key named "StormURL" in the output section of the cloud-

formation template. Navigate to the URL and click the topology named

'SampleTopology'.

Under the topology, you should see that the spout named "Kinesis" has two tasks; each

task reading data in parallel from individual shards.

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 12 of 16

Building a Real-Time Data Visualization
Next we move to the last task—to present streaming data. Over the years, web

standards have made great progress toward building data-centric applications with ease.

We'll use SSEs, which allow a web app to subscribe to an event-stream instead of

polling to create real-time visualizations.

Generating Server-Side Events
We use Node.js for its event-driven model to generate the SSEs. Our code creates a

basic webserver and serves the content using the Connect middleware for Node.

connect()

.use(connect.static(__dirname))

.use(function(req,res) {

if(req.url == '/ticker') {

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 13 of 16

 ticker(req,res);

 }

}

)

.listen(9000);

The ticker function subscribes to the Redis Pub/Sub channel, which is being

constantly updated via our Storm topology. When a new counter event arrives on the

Pub/Sub channel, the Node server appends the data and publishes it back as a server

side event.

function ticker(req,res) {

 req.socket.setTimeout(Infinity);

 var subscriber =

redis.createClient(6379,process.argv[2]);

 subscriber.subscribe("pubsubCounters");

 // When we receive a message from the redis connection

 subscriber.on("message", function(channel, message) {

 res.j

son(message);

 });

 //send headers for event-stream connection

 res.writeHead(200, {

 'Content-Type': 'text/event-stream',

 'Cache-Control': 'no-cache',

 'Connection': 'keep-alive'

 });

 res.json = function(obj) { res.write("data:

"+obj+"\n\n"); }

 res.json(JSON.stringify({}));

 // The 'close' event is fired when a user closes their

browser window.

 req.on("close", function() {

 subscriber.unsubscribe();

 subscriber.quit();

 });

}

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 14 of 16

Visualization Using Epoch
The index.html page served as default by Connect middleware has the client-side

JavaScript that uses Epoch to render the real-time chart. In the script, we create an

empty chart bound to the respective referrer variable.

var siteArray = ["amazon", "yahoo", "bing", "reddit",

"google", "stackoverflow"];

...

 var chartDiv = document.createElement('div');

 chartDiv.id = siteArray[i]+'Chart';

 chartDiv.className = "epoch category20";

 chartDiv.style.width='89%';

 chartDiv.style.height='100%';

 chartDiv.style.position='relative';

 chartDiv.style.float='left';

...

 eval("var "+siteArray[i]+"Data =

[{label:\""+siteArray[i]+"\",values:[{time:currentTime,y:0}

]}];")

 eval("var "+siteArray[i]+" =

$('#"+siteArray[i]+"Chart').epoch({type:'time.area',data:"+

siteArray[i]+"Data,axes:['left','bottom','right']});")

}

The script adds an event-listener on the event stream that is published by the Node

server.

var source = new EventSource('/ticker');

source.addEventListener('message',tick);

The event-listener function simply parses the payload to find the time when the

counter was generated and its value. The function then updates the dataset with the new

dataset and redraws the graph created on every event.

function tick(e) {

 if(e)

 {

 var eventData = JSON.parse(e.data);

 window[eventData.name].push([{ time: eventData.time, y:

eventData.count}]);

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 15 of 16

 }

 }

Accessing the Dashboard
Our AWS CloudFormation template also deploys Node.js on a single-node Amazon EC2

instance for the server. You can find the URL for the Node server from the key named

"VisualizationURL" under the output section of the AWS CloudFormation template.

Navigate to the dashboard at that URL and you should see the graph being updated in

real time as the data arrives.

Deleting the CloudFormation Stack
Once you've run through the stack and understand how several pieces of our reference

architecture fit together, you can terminate the application resources created by the

AWS CloudFormation stack. To do so, navigate to the AWS Management Console

(https://console.aws.amazon.com/) and select the AWS CloudFormation service. Select

the stack that you created and then click on Delete Stack. When AWS CloudFormation

is finished removing all resources, the stack should be removed from the list.

https://console.aws.amazon.com/

Amazon Web Services – Amazon Kinesis and Apache Storm October 2014

Page 16 of 16

Conclusion
In this whitepaper, we looked at how to implement real-time visualization of sliding-

windows analysis over streaming data. In actual scenarios, real-time streaming data not

only entails collection of data at scale but also being able to process, store, and deliver

the results on a real-time basis. This brings in a number of challenges and requires a

decoupled architecture for streaming, processing, storage, and delivery. Using systems

for each layer, which can scale but easily integrate with other layers, allows for the ever-

expanding data velocity in real-time streaming system.

Amazon Kinesis also supports multi-reader applications, allowing you to build multiple

paths for the same data running at different latencies from a single stream. Using

Amazon Kinesis connectors, you can also deliver the same stream of data to the other

stores of your choice—Amazon S3, Amazon Redshift, and Amazon DynamoDB.

Amazon S3 offers highly durable and available cloud storage for a variety of content,

ranging from web applications to media files, and can be used to build a cost-effective

archive by running an application once every few hours. You can also use Amazon EMR

clusters to read and process Amazon Kinesis streams directly, and use familiar tools like

Hive, Pig, and MapReduce to analyze your data.

©2014, Amazon Web Services, Inc. or its affiliates. All rights reserved.

http://aws.amazon.com/s3/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-kinesis.html.
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-kinesis.html.

