
Transaction Models and Algorithms for Improved 
Transaction Throughput   

 
 
 
 
  
 
 
  
 

Samuel  Kaspi 
 
  
 
 
 
 

This thesis is presented in fulfillment of  
the requirements for the degree of  

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 
 

  Computer and Mathematical Sciences 
School of Communications and Informatics 

Faculty of Engineering and Science 
 
 

Victoria University Of Technology 
2002 



Abstract 

 

Currently, e-commerce is in its infancy, however its expansion is expected to be 

exponential and as it grows, so too will the demands for very fast real time online 

transaction processing systems.  One avenue for meeting the demand for 

increased transaction processing speed is conversion from disk-based to in-

memory databases. However, while in-memory systems are very promising, 

there are many organizations whose data is too large to fit in in-memory systems 

or who are not willing to undertake the investment that an implementation of an 

in-memory system requires. For these organizations an improvement in the 

performance of disk-based systems is required.   

 

Accordingly, in this thesis, we introduce two mechanisms that substantially 

improve the performance of disk-based systems.  The first mechanism, which we 

call a contention-based scheduler, is attached to a standard 2PL system. This 

scheduler determines each transaction’s probability of conflict before it begins 

executing. Using this knowledge, the contention-based scheduler allows 

transactions into the system in both optimal numbers and an optimal mix. We 

present tests that show that the contention-based scheduler substantially 

outperforms standard 2PL concurrency control in a wide variety of disk-based 

hardware configurations. The improvement though most pronounced in the 

 i 



throughput of low contention transactions extends to all transaction types over an 

extended processing period.    

 

We call the second mechanism that we develop to improve the 

performance of disk-based database systems, enhanced memory access (EMA). 

The purpose of EMA is to allow very high levels of concurrency in the pre-

fetching of data thus bringing the performance of disk-based systems close to 

that achieved by in-memory systems. The basis of our proposal for EMA is to 

ensure that even when conditions satisfying a transaction’s predicate change 

between pre-fetch time and execution time, the data required for satisfying 

transactions’ predicates are still found in memory.  We present tests that show 

that the implementation of EMA allows the performance of disk-based systems to 

approach the performance achieved by in-memory systems. Further, the tests 

show that the performance of EMA is very robust to the imposition of additional 

costs associated with its implementation.   

 

 

 

 

 

 

 

 

 ii 



 Declaration 

 

 This thesis contains no material which has been accepted for the award of any 

other degree or diploma in any university. The material presented in this thesis is 

the product of the author’s own independent research under the supervision of 

Professor Clement H.C. Leung. 

Some of the materials presented in this thesis has been published in various 

publications. This thesis is less than 100,000 words in length. 

 

 

 

 

Samuel Kaspi 

June 28 2002 

 

 

 

 

 

 

 

 iii 



A List of External Publications 

 

1. Kaspi, S., “Optimizing Transaction Throughput in Databases Via an 

Intelligent Scheduler”, Proceedings of the 1997 IEEE International 

Conference on Intelligent Processing Systems, Beijing, October, 1997, 

pp.1337 – 1341 

 

2. Kaspi, S., “The Use of Contention-Based Scheduling For Improving The 

Throughput of Locking Systems”, Research Communications, Advances In 

Databases And Information Systems 5th East - European Conference 

ADBIS' 2001, A. Caplinskas andJ. Eder (Eds.), Vol. 1, Vilnius, Lithuania, 

September 2001, pp 115-124   

 

3. Leung, C.H.C. and S. Kaspi, “A Flexible Paradigm for Semantic 

Integration in Cooperative Heterogeneous Databases” Proceedings of 

FGCS '94, ICOT, Tokyo, December 1994 

 

 

 

 

 

 iv 



Acknowledgements 
  

I would like to express my appreciation and gratitude to my supervisor, Professor 

Clement H.C. Leung for enabling me to accomplish this work by providing me 

guidance in all aspects of my research. 

I am grateful to my employer, Victoria University for encouraging me to undertake 

this work with both financial support and grants in the form of paid leave. 

I would like to apologize to my friends and family for the long periods of time 

during which my research made me unavailable to them. I am thankful that my 

friends have made the effort to keep in contact with me and that my wife hasn’t 

killed me for constantly getting up in the middle of the night to monitor my 

experiments. 

Although my father died early in the history of this research, I owe him more than 

I can say. He was a wonderful person and a model of perseverance and 

dedication.  

 

 

 

 

 v 



 

                                                          

 vi

Tables of Contents 
 

Abstract……………………………………………………………………………………………i 

Declaration………………………………………………………………………………………ii 

List of External Publications…………………………………………………………….iii 

Acknowledgements…………………………………………………………………………iv 

Table of Contents…………………………………………………………………vi 

List of Figures and Tables…………………………………………………………….  ...x 
 

 
Chapter 1 Introduction..................................................................................................................... 1 

1.1  Objective ..................................................................................................................................... 1 

1.2  Summary of Contributions ....................................................................................................... 2 

1.3  Thesis Structure ......................................................................................................................... 4 

Chapter 2 An Overview of Transaction Processing....................................................................... 8 

2.1   Introduction............................................................................................................................... 8 

2.2   Two Phase Locking ................................................................................................................... 9 

2.2.1   INTRA-TRANSACTION PARALLELISM..................................................................................................................... 12 
2.2.2  FIELD CALLS AND ESCROW LOCKING..................................................................................................................... 14 

2.3   Optimistic Concurrency ......................................................................................................... 17 

2.4   Running Priority and Wait Depth Limited .......................................................................... 19 

2.5   Performance Comparisons..................................................................................................... 19 

2.6   Further Reading...................................................................................................................... 21 



 

                                                          

 vii

Chapter 3  An Analysis of the Behavior of Concurrency Control Mechanisms ....................... 23 

3.1   Introduction............................................................................................................................. 23 

3.2   An Overview of 2PL................................................................................................................ 24 

3.2.1   OTHER BEHAVIORAL PROPERTIES OF 2PL CONCURRENCY CONTROL................................................................... 28 

3.3   Alternative Concurrency Control Mechanisms ................................................................... 31 

3.3.1   OPTIMISTIC CONCURRENCY CONTROL .................................................................................................................. 32 
3.3.1.1 VARIABILITY OF TRANSACTION SIZE AND CONTENTION AND PERFORMANCE...................................................... 35 
3.3.2    WAIT DEPTH LIMITED (WDL).............................................................................................................................. 36 
3.3.3    ACCESS INVARIANCE AND WASTED WORK IN DISK-BASED SYSTEMS.................................................................. 38 

3.4   Evaluation Systems ................................................................................................................. 40 

3.4.1  THE DATABASE AND TRANSACTION SUBSYSTEMS ................................................................................................. 40 
3.4.2   HARDWARE SUBSYSTEMS...................................................................................................................................... 41 
3.4.3   THE CONCURRENCY CONTROL SUBSYSTEMS ........................................................................................................ 43 
3.4.4   THE PROCESSING SUBSYSTEM............................................................................................................................... 44 

3.5    Performance Results .............................................................................................................. 45 

3.5.1  THE PERFORMANCE OF IN-MEMORY SYSTEMS....................................................................................................... 45 
3.5.1.1 THE PERFORMANCE OF IN-MEMORY SYSTEMS WITH VERY FAST PROCESSORS ................................................... 50 
3.5.2   THE PERFORMANCE OF DISK-BASED SYSTEMS...................................................................................................... 53 
3.5.3   A COMPARISON OF THE PERFORMANCE OF IN-MEMORY AND DISK-BASED SYSTEMS ........................................... 65 

3.6    Thrashing  in 2PL Concurrency Control Systems.............................................................. 71 

3.7    Summary................................................................................................................................. 80 

Chapter 4.  New Strategies for Improving the Performance of 2PL concurrency Control ..... 82 

4.1    Introduction............................................................................................................................ 82 

4.2    Improving the Performance of 2PL by Manipulating Contention.................................... 83 

4.2.1   MECHANICAL PRINCIPLES ..................................................................................................................................... 84 

4.3    Scheduling Heuristics ............................................................................................................ 86 

4.3.1   THE MEASUREMENT OF CONTENTION ................................................................................................................... 87 
4.3.2    SCHEDULING BY TRANSACTION TYPE .................................................................................................................. 90 
4.3.3   SETTING TRANSACTIONS PRIORITY........................................................................................................................ 94 
4.3.4   THE DETERMINATION OF AGGREGATE CONTENTION ............................................................................................. 95 



 

                                                          

 viii

4.4   Controlling Thrashing ............................................................................................................ 98 

4.5   Summary................................................................................................................................ 103 

Chapter 5.   Enhanced Memory Access …………………………………………………. ……105 

5.1   Introduction........................................................................................................................... 105 

5.2  An Overview of the Principles of EMA................................................................................ 106 

5.3 Classification of Update Predicates ....................................................................................... 112 

5.4   Mechanics of the Implementation of EMA......................................................................... 118 

5.4.1  THE MANAGEMENT OF DATA ............................................................................................................................... 123 

5.7   Summary................................................................................................................................ 127 

Chapter 6.  Validation of the Contention-Based Scheduler...................................................... 129 

6.1   Introduction........................................................................................................................... 129 

6.2   Performance Results for the Contention-Based Scheduler............................................... 131 

6.3   Allowing For Errors in the Measurement of Contention.................................................. 135 

6.4    Restricted Number of Transactions ................................................................................... 139 

6.5   The Performance of the Scheduler Over Extended Time Periods ................................... 143 

6.6   Controlling Thrashing .......................................................................................................... 151 

6.7   Very High Concurrencies ..................................................................................................... 156 

6.8   Summary................................................................................................................................ 162 

Chapter 7. Validation of EMA .………………………………………………………………164 

7.1   Introduction........................................................................................................................... 164 

7.2  The Performance Under EMA with 0 Costs........................................................................ 166 

7.3   Adding Costs to EMA........................................................................................................... 182 

7.4   2PL EMA Systems With and Without Thrashing Control ............................................... 192 

7.5   Summary................................................................................................................................ 201 

Chapter 8.  Conclusion ................................................................................................................. 202 



 

                                                          

 ix

8.1   Contributions and Achievements ........................................................................................ 202 

8.2   Future Research .................................................................................................................... 207 

Bibliography .................................................................................................................................. 209 

Appendix A .................................................................................................................................... 218 

Appendix B .................................................................................................................................... 222 



 

                                                          

 x

List of Figures and Tables 
 
 

TABLE 2.1. TWO EXAMPLES OF TRANSACTIONS OPERATING CONCURRENTLY UNDER 2PL. .............................................. 10 
FIGURE 2.1. THEORETICAL UPPER LIMITS ON ACTIVE TRANSACTIONS UNDER 2PL. .......................................................... 12 
FIGURE 2.2. FIRST PHASE OF FIELD CALLS AND ESCROW LOCKS. ...................................................................................... 16 
FIGURE 2.3.  SECOND PHASE OF FIELD CALLS AND ESCROW  LOCKS. ................................................................................ 16 
FIGURE 2.4. UPPER BOUNDS ON EXPECTED ACTIVE TRANSACTIONS FOR ESSENTIAL BLOCKING POLICIES......................... 18 
FIGURE 3.1.  AN EXAMPLE OF TRANSACTION ACTIVITY IN THE FIRST CYCLE.................................................................... 25 
FIGURE 3.2.  AN EXAMPLE OF TRANSACTION ACTIVITY IN THE SECOND CYCLE................................................................ 26 
FIGURE 3.3.  AN EXAMPLE OF ESSENTIAL BLOCKING........................................................................................................ 34 
FIGURE 3.4.  THE THREE INITIAL (TEMPORARY) CASES OF TRANSACTION STATES. ........................................................... 37 
FIGURE 3.5.  WDL(1) ALGORITHM GIVEN THE STATES OUTLINED IN FIGURE 3.2 ............................................................. 38 
FIGURE 3.6.  1248 PROCESSORS EACH OPERATING AT 4 MIPS ......................................................................................... 46 
FIGURE 3.7.   96 PROCESSORS EACH OPERATING AT 100 MIPS ........................................................................................ 47 
FIGURE 3.8.  A COMPARISON OF THROUGHPUTS UNDER 2PL, OPTIMISTIC KILL AND WDL CONCURRENCY CONTROL 

METHODS FOR A SYSTEM WITH 96 PROCESSORS EACH OPERATING AT 200 MIPS ............................................................. 47 
FIGURE 3.9.  A COMPARISON OF THROUGHPUTS OF THE LARGEST TRANSACTIONS (T4) UNDER OPTIMISTIC KILL AND WDL 

CONCURRENCY CONTROL METHODS FOR A SYSTEM WITH 1248 PROCESSORS EACH OPERATING AT 4 MIPS..................... 49 
FIGURE 3.10. A COMPARISON OF THROUGHPUTS OF THE LARGEST TRANSACTIONS (T4) UNDER OPTIMISTIC KILL AND WDL 

CONCURRENCY CONTROL METHODS FOR A SYSTEM WITH 96 PROCESSORS EACH OPERATING AT 100 MIPS..................... 49 
FIG 3.12.   A COMPARISON OF THROUGHPUT UNDER 2PL CONCURRENCY CONTROL IN SYSTEMS COMPOSED OF 96 

PROCESSORS EACH OPERATING AT 200 MIPS, 20 PROCESSORS EACH OPERATING AT 1000 MIPS AND 10 PROCESSORS 

EACH OPERATING AT 2000 MIPS...................................................................................................................................... 51 
FIGURE 3.13.  A COMPARISON OF THROUGHPUT UNDER WDL CONCURRENCY CONTROL  IN SYSTEMS COMPOSED OF 96 

PROCESSORS EACH OPERATING AT 200 MIPS,  20 PROCESSORS EACH OPERATING AT 1000 MIPS AND 10PROCESSORS 

EACH OPERATING AT 2000 MIPS...................................................................................................................................... 51 
FIGURE 3.14.  A COMPARISON OF THROUGHPUT UNDER OPTIMISTIC CONCURRENCY CONTROL  IN SYSTEMS COMPOSED OF 

96 PROCESSORS EACH OPERATING AT 200 MIPS,  20 PROCESSORS EACH OPERATING AT 1000 MIPS AND 10 PROCESSORS 

EACH OPERATING AT 2000 MIPS...................................................................................................................................... 52 
FIG 3.15. A COMPARISON OF THROUGHPUTS UNDER 2PL, OPTIMISTIC KILL AND WDL CONCURRENCY CONTROL METHODS 

FOR A SYSTEM WITH 1248 PROCESSORS EACH OPERATING AT 4 MIPS AND WITH DISK ACCESS AT 15 MILLISECONDS PER 

ACCESS ............................................................................................................................................................................. 54 



 

                                                          

 xi

FIGURE 3.16.  A COMPARISON OF THROUGHPUTS UNDER 2PL, OPTIMISTIC DIE-KILL AND WDL CONCURRENCY CONTROL 

METHODS FOR A SYSTEM WITH 96 PROCESSORS EACH OPERATING AT 100 MIPS AND WITH DISK ACCESS AT 15 

MILLISECONDS PER ACCESS .............................................................................................................................................. 55 
FIGURE 3.17.  A COMPARISON OF THROUGHPUTS UNDER 2PL, OPTIMISTIC DIE-KILL AND WDL CONCURRENCY CONTROL 

METHODS FOR A SYSTEM WITH 96 PROCESSORS EACH OPERATING AT 200 MIPS AND WITH DISK ACCESS AT 15 

MILLISECONDS PER ACCESS .............................................................................................................................................. 55 
FIGURE 3.18.  A COMPARISON OF THROUGHPUTS UNDER 2PL, OPTIMISTIC DIE-KILL AND WDL CONCURRENCY CONTROL 

METHODS FOR A SYSTEM WITH 20 PROCESSORS EACH OPERATING AT 1000 MIPS AND WITH DISK ACCESS AT 15 

MILLISECONDS PER ACCESS. ............................................................................................................................................. 56 
FIGURE 3.19. A COMPARISON OF THROUGHPUTS UNDER 2PL, OPTIMISTIC DIE-KILL AND WDL CONCURRENCY CONTROL 

METHODS FOR A SYSTEM WITH 10 PROCESSORS EACH OPERATING AT 2000 MIPS AND WITH DISK ACCESS AT 15 

MILLISECONDS PER ACCESS .............................................................................................................................................. 56 
FIGURE 3.20.  A COMPARISON OF THE THROUGHPUT OF LARGE TRANSACTIONS GIVEN NO ACCESS INVARIANCE UNDER 

OPTIMISTIC KILL AND WDL CONCURRENCY CONTROL METHODS FOR A SYSTEM WITH 1248 PROCESSORS EACH OPERATING 

AT 4 MIPS AND WITH DISK ACCESS AT 15 MILLISECONDS PER ACCESS ............................................................................ 58 
FIGURE 3.21.  A COMPARISON OF THE THROUGHPUT OF LARGE TRANSACTIONS GIVEN ACCESS INVARIANCE UNDER 

OPTIMISTIC KILL-DIE AND WDL CONCURRENCY CONTROL METHODS FOR A SYSTEM WITH 96 PROCESSORS EACH 

OPERATING AT 100 MIPS AND WITH DISK ACCESS AT 15 MILLISECONDS PER ACCESS...................................................... 59 
FIGURE 3.22.  A COMPARISON OF THE THROUGHPUT OF LARGE TRANSACTIONS GIVEN ACCESS INVARIANCE UNDER 

OPTIMISTIC KILL-DIE AND WDL CONCURRENCY CONTROL METHODS FOR A SYSTEM WITH 96 PROCESSORS EACH 

OPERATING AT 200 MIPS AND WITH DISK ACCESS AT 15 MILLISECONDS PER ACCESS...................................................... 59 
FIGURE 3.23.  A COMPARISON OF THE THROUGHPUT OF LARGE TRANSACTIONS GIVEN ACCESS INVARIANCE UNDER 

OPTIMISTIC KILL-DIE AND WDL CONCURRENCY CONTROL METHODS FOR A SYSTEM WITH 20 PROCESSORS EACH 

OPERATING AT 1000 MIPS AND WITH DISK ACCESS AT 15 MILLISECONDS PER ACCESS.................................................... 60 
FIGURE 3.24.  A COMPARISON OF THE THROUGHPUT OF LARGE TRANSACTIONS GIVEN ACCESS INVARIANCE UNDER 

OPTIMISTIC KILL-DIE AND WDL CONCURRENCY CONTROL METHODS FOR A SYSTEM WITH 10 PROCESSORS EACH 

OPERATING AT 2000 MIPS AND WITH DISK ACCESS AT 15 MILLISECONDS PER ACCESS.................................................... 60 
FIGURE 3.25. THE THROUGHPUT OF SYSTEMS OF SYSTEMS OPERATING UNDER 2PL CONCURRENCY CONTROL................ 62 
FIGURE 3.26. THE THROUGHPUT OF SYSTEMS OF SYSTEMS OPERATING UNDER WDL CONCURRENCY CONTROL ............. 62 
FIGURE 3.27: THE THROUGHPUT OF SYSTEMS OF SYSTEMS OPERATING UNDER OPTIMISTIC CONCURRENCY CONTROL..... 63 
TABLE 3.1. THE TIME IN SECONDS REQUIRED TO COMPLETE A TRANSACTION BY CPU SPEED AND TRANSACTION TYPE .. 65 
FIGURE 3.28.  A COMPARISON OF IN-MEMORY AND DISK-BASED SYSTEMS WITH EACH CONFIGURATION HAVING 1248 

PROCESSORS OPERATING AT 4 MIPS PER PROCESSOR ...................................................................................................... 66 
FIGURE 3.29.  A COMPARISON OF IN-MEMORY AND DISK-BASED SYSTEMS WITH EACH CONFIGURATION HAVING 96 

PROCESSORS OPERATING AT 100 MIPS PER PROCESSOR .................................................................................................. 67 
FIGURE 3.30.  A COMPARISON OF IN-MEMORY AND DISK-BASED SYSTEMS WITH EACH CONFIGURATION HAVING 96 

PROCESSORS OPERATING AT 200 MIPS PER PROCESSOR .................................................................................................. 67 
FIGURE 3.31.  A COMPARISON OF IN-MEMORY AND DISK-BASED SYSTEMS WITH EACH CONFIGURATION HAVING 20 

PROCESSORS OPERATING AT 1000 MIPS PER PROCESSOR................................................................................................. 68 



 

                                                          

 xii

FIGURE 3.32.  A COMPARISON OF IN-MEMORY AND DISK-BASED SYSTEMS WITH EACH CONFIGURATION HAVING 10 

PROCESSORS OPERATING AT 2000 MIPS PER PROCESSOR................................................................................................. 68 
FIGURE 3.33. A COMPARISON OF IN-MEMORY SYSTEMS WITH 96 PROCESSORS OPERATING AT  100 AND 200 MIPS PER 

PROCESSOR, 20 PROCESSORS OPERATING AT 1000 MIPS PER PROCESSOR AND 10 PROCESSORS OPERATING AT 2000 MIPS 

PER PROCESSOR OPERATING UNDER 2PL CONCURRENCY CONTROL WITH THEIR EQUIVALENT DISK-BASED SYSTEMS 

OPERATING AT 0 CONTENTION AND A CONCURRENCY OF 100........................................................................................... 70 

FIGURE 3.34: THROUGHPUT OF T2 TRANSACTIONS PER CYCLE OVER 8 CYCLES .............................................................. 76 

FIGURE 3.35.  THROUGHPUT OF T3 TRANSACTIONS PER CYCLE OVER 8 CYCLES ............................................................. 76 

FIGURE 3.36.  THROUGHPUT OF THE SYSTEM WITH FIXED SIZE VARIABLE CONTENTION TRANSACTIONS PER CYCLE OVER 8 

CYCLES............................................................................................................................................................................. 77 

FIGURE 3.37: THROUGHPUT OF T4 TRANSACTIONS PER CYCLE OVER 8 CYCLES .............................................................. 77 

FIGURE 4.1.   A DIAGRAMATIC ILLUSTRATION OF THE CONTENTION-BASED SCHEDULER ................................................. 85 
FIGURE  4.2. THE CYCLICAL RELATIONSHIP BETWEEN PEAK AGGREGATE CONTENTION AND THROUGHPUT ..................... 97 
FIGURE4.3.  AN ILLUSTRATION OF A THREE WAY DEADLOCK........................................................................................... 99 
FIGURE  5.1.  A SAMPLE STATE FOR A PRE-FETCHING SYSTEM. ...................................................................................... 107 
FIGURE  5.2.  AN ILLUSTRATION OF THE BASIC PRINCIPLE BEHIND EMA........................................................................ 109 
TABLE 5.1.  AN EXAMPLE OF THE POSSIBLE EFFECTS OF CHANGES TO A TRANSACTION’S PREDICATE ............................ 117 
FIGURE 5.3: AN OVERVIEW OF THE ACTIVITY OF TRANSACTION ON ENTRY INTO AN EMA SYSTEM. .............................. 119 
FIGURE 5.4. THE COMPOSITION OF TRANSACTION MARKERS IN THE EMA SYSTEM . ...................................................... 120 
FIGURE 5.5.  EXIT OF THE OLDEST TRANSACTION........................................................................................................... 121 
FIGURE 5.6.  EXIT OF A TRANSACTION THAT IS NOT THE OLDEST TRANSACTION. ........................................................... 122 
FIGURE 5.7. THE PROCEDURE FOLLOWED BY A COMPLETING COMMITTING TRANSACTION............................................. 124 
FIGURE 5.8.  THE PROCEDURE FOLLOWED WHEN A PRE-FETCHED ITEM HASHES TO THE SAME ADDRESS AS AN EXISTING 

ITEM AND THE TIME-STAMP OF THE CURRENT DATA ITEM IS OLDER THAN THE TIME-STAMP OF THE OLDEST TRANSACTION.

....................................................................................................................................................................................... 125 
FIGURE 5.9. THE PROCEDURE FOLLOWED WHEN A PRE-FETCHED ITEM HASHES TO THE SAME ADDRESS AS AN EXISTING 

ITEM AND THE TIME-STAMP OF THE CURRENT DATA ITEM IS YOUNGER THAN THE TIME-STAMP OF THE OLDEST 

TRANSACTION................................................................................................................................................................. 126 
FIGURE  5.10.  THE PROCEDURE FOLLOWED WHEN A PRE-FETCHED ITEM HASHES TO THE SAME ADDRESS AS AN EXISTING 

ITEM, THE TIME-STAMP OF THE CURRENT DATA ITEM IS YOUNGER THAN THE TIME-STAMP OF THE OLDEST TRANSACTION, 

AND OVERFLOW ALREADY HAS MORE THAN 1 ITEM........................................................................................................ 127 
FIGURE 6.1. A COMPARISON OF TOTAL THROUGHPUTS UNDER THE CONTENTION BASED SCHEDULER AND STANDARD 2PL 

CONCURRENCY CONTROL. .............................................................................................................................................. 132 
FIGURE  6.2. A COMPARISON OF THROUGHPUT  UNDER THE CONTENTION BASED SCHEDULER AND STANDARD 2PL 

CONCURRENCY CONTROL BY TRANSACTION TYPE. ......................................................................................................... 133 
FIGURE 6.3. A COMPARISON OF TOTAL THROUGHPUTS UNDER THE CONTENTION BASED SCHEDULER AND STANDARD 2PL 

CONCURRENCY CONTROL WITH AN ALLOWANCE FOR ERROR IN THE MEASUREMENT OF CONTENTION. .......................... 137 



 

                                                          

 xiii

FIGURE  6.4. A COMPARISON OF THROUGHPUTS BY TRANSACTION TYPE WITH AN ALLOWANCE FOR ERROR IN THE 

MEASUREMENT OF CONTENTION BY THE SCHEDULER ..................................................................................................... 138 
FIGURE  6.5. A COMPARISON OF TOTAL THROUGHPUTS UNDER THE CONTENTION BASED SCHEDULER AND STANDARD 2PL 

CONCURRENCY CONTROL WITH AN ARRIVAL RATE OF 1000 TRANSACTIONS PER SECOND. ............................................. 141 
FIGURE 6.6  A COMPARISON OF THROUGHPUTS UNDER THE CONTENTION BASED SCHEDULER AND STANDARD 2PL 

CONCURRENCY CONTROL WITH AN ARRIVAL RATE OF 1000 TRANSACTIONS PER SECOND BY TRANSACTION TYPE......... 142 
FIG 6.7. TOTAL THROUGHPUT PER SECOND OVER A RANGE OF PROCESSING PERIODS ..................................................... 148 
FIG 6.8. THROUGHPUT PER SECOND OVER A RANGE OF PROCESSING PERIODS BY TRANSACTION TYPE ........................... 149 
TABLE 6.1. RATIO OF AVERAGE THROUGHPUT PER SECOND OVER A RANGE OF PROCESSING PERIODS  FOR A STANDARD 

2PL SYSTEM................................................................................................................................................................... 150 
FIGURE 6.9. TOTAL THROUGHPUT PER SECOND OVER 1 MINUTE IN THE 1248 PROCESSOR BY 4 MIPS SYSTEM.............. 153 
FIGURE 6.11. TOTAL THROUGHPUT ................................................................................................................................ 157 
FIGURE 6.12. THROUGHPUT OF T1  TRANSACTIONS ......................................................................................................... 158 
FIGURE 6.13.  THROUGHPUT OF T2  TRANSACTIONS ........................................................................................................ 159 
FIGURE 6.14. THROUGHPUT OF T3  TRANSACTIONS ......................................................................................................... 160 
FIGURE 6.15. TTHROUGHPUT OF T4 TRANSACTIONS........................................................................................................ 161 
FIGURE  7.1. A COMPARISON OF TOTAL THROUGHPUTS IN SYSTEMS CONTAINING 96 PROCESSORS EACH OPERATING AT 

100 MIPS....................................................................................................................................................................... 167 
FIGURE 7..2  A COMPARISON OF  THROUGHPUTS IN SYSTEMS CONTAINING 96 PROCESSORS EACH OPERATING AT 100 

MIPS BY TRANSACTION TYPE. ....................................................................................................................................... 168 
TABLE 7.1.  A MILLISECOND BREAKDOWN OF THE PERFORMANCE OF 2PL EMA........................................................... 170 
FIGURE 7.3. A COMPARISON OF THE THROUGHPUTS OF IN-MEMORY AND EMA (WITH NO COST) UNDER BOTH WDL AND 

OPTIMISTIC CONCURRENCY CONTROL FOR SYSTEMS WITH A CONFIGURATION CONTAINING 96 PROCESSORS OPERATING AT 

100 MIPS PER PROCESSOR. ............................................................................................................................................ 172 
FIGURE 7.4.  A  COMPARISON OF TOTAL THROUGHPUTS IN SYSTEMS CONTAINING 96 PROCESSORS EACH OPERATING AT 

200 MIPS....................................................................................................................................................................... 174 
FIGURE 7.5. A COMPARISON OF THE THROUGHPUT  IN SYSTEMS CONTAINING 96 PROCESSORS EACH OPERATING AT 200 

MIPS BY TRANSACTION TYPE. ....................................................................................................................................... 175 
FIGURE 7.6. A COMPARISON OF TOTAL THROUGHPUTS IN SYSTEMS CONTAINING 20 PROCESSORS EACH OPERATING AT 

1000 MIPS..................................................................................................................................................................... 177 
FIG .7.7. A COMPARISON OF THROUGHPUTS IN SYSTEMS CONTAINING 20 PROCESSORS EACH OPERATING AT 1000 MIPS 

BY TRANSACTION TYPE................................................................................................................................................... 178 
FIGURE 7.8. A COMPARISON OF TOTAL THROUGHPUTS IN SYSTEMS CONTAINING 10 PROCESSORS EACH OPERATING AT 

2000 MIPS..................................................................................................................................................................... 180 
FIGURE 7.9. A COMPARISON OF THE THROUGHPUTS IN SYSTEMS CONTAINING 10 PROCESSORS EACH OPERATING AT 2000 

MIPS BY TRANSACTION TYPE. ....................................................................................................................................... 181 
FIGURE 7.10.  TOTAL THROUGHPUT WITH DIVERSE COSTING REGIMES IN SYSTEMS CONTAINING 96 PROCESSORS EACH 

OPERATING AT 100 MIPS ............................................................................................................................................... 184 



 

                                                          

 xiv

FIGURE 7.11. THROUGHPUT  WITH DIVERSE COSTING REGIMES IN SYSTEMS CONTAINING 96 PROCESSORS EACH 

OPERATING AT 100 MIPS BY TRANSACTION TYPE.......................................................................................................... 185 
FIGURE 7.12.  TOTAL THROUGHPUT WITH DIVERSE COSTING REGIMES IN SYSTEMS CONTAINING 96 PROCESSORS EACH 

OPERATING AT 200 MIPS ............................................................................................................................................... 186 
FIGURE 7.13. THROUGHPUT WITH DIVERSE COSTING REGIMES IN SYSTEMS CONTAINING 96 PROCESSORS EACH OPERATING 

AT 200 MIPS BY TRANSACTION TYPE............................................................................................................................. 187 
FIGURE 7.14. TOTAL THROUGHPUT WITH DIVERSE COSTING REGIMES IN SYSTEMS CONTAINING 20 PROCESSORS EACH 

OPERATING AT 1000 MIPS ............................................................................................................................................. 188 
FIG 7.15. THROUGHPUT WITH DIVERSE COSTING REGIMES IN SYSTEMS CONTAINING 20 PROCESSORS EACH OPERATING AT 

1000 MIPS BY TRANSACTION TYPE................................................................................................................................ 189 
FIGURE 7.16. TOTAL THROUGHPUT WITH DIVERSE COSTING REGIMES IN SYSTEMS CONTAINING 10 PROCESSORS EACH 

OPERATING AT 2000 MIPS ............................................................................................................................................. 190 
FIGURE 7.17. THROUGHPUT WITH DIVERSE COSTING REGIMES IN SYSTEMS CONTAINING 10 PROCESSORS EACH OPERATING 

AT 2000 MIPS BY TRANSACTION TYPE .......................................................................................................................... 191 
FIGURE 7.18. TOTAL THROUGHPUT IN 2PL SYSTEMS WITH WITHOUT THRASHING CONTROL IN SYSTEMS CONTAINING 96 

PROCESSORS EACH OPERATING AT 100 MIPS................................................................................................................. 193 
FIGURE 7.19. THROUGHPUT  IN 2PL SYSTEMS WITH WITHOUT THRASHING CONTROL IN SYSTEMS CONTAINING 96 

PROCESSORS EACH OPERATING AT 100 MIPS BY TRANSACTION TYPE............................................................................ 194 
FIGURE 7.20. TOTAL THROUGHPUT IN 2PL SYSTEMS WITH WITHOUT THRASHING CONTROL IN SYSTEMS CONTAINING 96 

PROCESSORS EACH OPERATING AT 200 MIPS................................................................................................................. 195 
7.21. THROUGHPUT  IN 2PL SYSTEMS WITH WITHOUT THRASHING CONTROL IN SYSTEMS CONTAINING 96 PROCESSORS 

EACH OPERATING AT 200 MIPS BY TRANSACTION TYPE ................................................................................................ 196 
FIGURE 7.22. TOTAL THROUGHPUT IN 2PL SYSTEMS WITH WITHOUT THRASHING CONTROL IN SYSTEMS CONTAINING 20 

PROCESSORS EACH OPERATING AT 1000 MIPS............................................................................................................... 197 
FIGURE 7.23. THROUGHPUT IN 2PL SYSTEMS WITH WITHOUT THRASHING CONTROL IN SYSTEMS CONTAINING 20 

PROCESSORS EACH OPERATING AT 1000 MIPS BY TRANSACTION TYPE.......................................................................... 198 
FIGURE 7.24.. TOTAL THROUGHPUT IN 2PL SYSTEMS WITH WITHOUT THRASHING CONTROL IN SYSTEMS CONTAINING 10 

PROCESSORS EACH OPERATING AT 2000 MIPS............................................................................................................... 199 
FIGURE 7.25. THRASHING CONTROL IN SYSTEMS CONTAINING 10 PROCESSORS EACH OPERATING AT 2000 MIPS BY 

TRANSACTION TYPE. ....................................................................................................................................................... 200 
FIGURE A.1. A UML CLASS DIAGRAM OF OUR SIMULATION PROGRAMS........................................................................ 219 
FIGURE A..2.  IN-MEMORY 2000 MIPS........................................................................................................................... 221 
TABLE B.1.  COST BENEFIT  OF DIVERSE THRASHING ..................................................................................................... 224 
FIGURE B.1. 1248 PROCESSORS BY 4 MIPS DISK BASED SYSTEM................................................................................... 225 
FIGURE B.2. 96 PROCESSORS BY 100 MIPS DISK BASED SYSTEM................................................................................... 225 
FIGURE B.3.  96 PROCESSORS BY 200 MIPS DISK BASED SYSTEM.................................................................................. 226 
FIGURE B.4.  20 PROCESSORS BY 1000 MIPS DISK BASED SYSTEM................................................................................ 226 
FIGURE B.5. PROCESSORS BY 2000 MIPS DISK BASED SYSTEM...................................................................................... 227 

 



 1

 

Chapter 1 

 

Introduction 

 

 

 

1.1  Objective 

The main objective of this thesis is to develop and test algorithms that substantially 

increase the throughput of transactions in disk-based database management systems that 

comply with the ACID (Atomicity, Consistency, Isolation and Durability) properties. The 

focus will be on developing algorithms that can work in conjunction with (though not 

necessarily exclusively) two-phase concurrency control (2PL).   

 

While it is possible to achieve very large increases in transaction throughputs by 

converting from disk-based to in-memory databases, it is likely that disk-based DBMS’  

(Data Based Management System) will continue to be dominant in the foreseeable future. 

There are several reasons for this. Firstly, there are many organizations whose data is too 

large to fit into current or soon to be released in-memory systems.  For other 



Chapter 1.   Introduction                                                                                                                  

 

 

2

organizations, the total cost of conversion does not justify the switch to in-memory 

systems. That is, while the cost of memory is relatively cheap, the cost of converting data 

and existing applications that access that data is prohibitive for many organizations. 

Finally, in-memory systems are new and most organizations are inherently conservative. 

Thus, most organizations will wait for in-memory systems to become well established 

before they consider them.  

 

It is possible to increase the throughput levels of some databases by relaxing the 

ACID properties (Atomicity, Consistency, Isolation and Durability) by which most DBMS’ 

are constrained. Such a relaxation allows a higher level of effective concurrency than is 

possible in DBMS’ where ACID is enforced. However, such a relaxation risks 

compromising the integrity of an organization’s data and as such is only acceptable where 

the integrity of data is not critical. 

 

Except for some experimental systems, to our knowledge there are no commercial 

DBMS’ that do not implement some variation of 2 phase locking (2PL). This is despite the 

fact that alternatives to 2PL such as optimistic concurrency control have been available for 

around 20 years. Given the reluctance of DBMS vendors and users to abandon two phase 

locking (2PL), it is likely that only algorithms that improve the performance of 2PL systems 

will be commercially acceptable.     

 

1.2    Summary of Contributions 

The contributions of this thesis to improving the performance of transaction 

processing in database systems are summarized as follows: 



Chapter 1.   Introduction                                                                                                                  

 

 

3

1. The demonstration that the potential performance of concurrency control 

mechanisms in in-memory systems, rather than the performance of different 

concurrency control methods under equivalent disk-based hardware should form 

the benchmark for judging the merit of a transaction processing system. We believe 

that the demonstration of the huge gap in performance between any concurrency 

control mechanism in in-memory systems and the best performance of the most 

successful conventional concurrency control mechanism in disk-based systems 

makes this conclusion inescapable. That is, we feel that determining whether, in a 

disk-based system, one type of concurrency control mechanism can yield even 

several hundred percent improvements in performance pales into insignificance 

against the many thousand percent improvements in performance that can be 

achieved by a change from a disk-based to an in-memory system. 

 

2. The development of the contention based scheduler, which significantly improves 

the performance of disk-based 2PL systems. The basic premise behind the 

contention-based scheduler is that in database systems containing transactions 

with varying contentions, the behavior of transactions varies consistently but 

predictably according to their contention. It is thus possible for a scheduler that can 

measure transactions’ contention as they arrive, to sort these transactions into 

queues of transactions with similar contentions and then to manipulate the number 

of transactions allowed into the system by their contention class. By doing so, the 

contention-based scheduler can dramatically increase the system's throughput in 

2PL systems.    



Chapter 1.   Introduction                                                                                                                  

 

 

4

3. The development of the enhanced memory access (EMA) system, which allows the 

performance of disk –based concurrency control mechanisms to approaches that of 

in-memory systems. EMA is a variation of the access invariance and pre-fetch 

schemes outlined in [16] and [17]. However, unlike access invariance, EMA does 

not assume a constant database state or that a transaction will access the same 

set of objects in all its execution histories. Rather, by controlling the length of time 

that data resides in memory, it guarantees that having pre-fetched its data, any 

object that a transaction requires will always be in memory even if the set of data 

required at actual execution time varies from that established during pre-fetch. This 

allows a very large number of transactions to be pre-fetched and then executed 

entirely in memory thus dramatically improving system throughput. EMA improves 

the performance of disk-based systems  (using either 2PL, WDL or optimistic 

concurrency control) to near that achieved by in-memory systems. 

 

1.3 Thesis Structure 

 

No research is conducted in a vacuum and an understanding of any piece of 

research requires some understanding of the history of developments in the area being 

researched and its current state of the art. Accordingly in chapter 2 we present an 

overview and literature survey of the field of transaction processing. 

 

In chapter 3, we examine the behavior of three concurrency control mechanisms 

and their performance under various hardware configurations. The concurrency control 



Chapter 1.   Introduction                                                                                                                  

 

 

5

mechanisms examined are two-phase locking (2PL), optimistic concurrency control and 

wait depth limited (WDL). Particular attention is given to the problem of thrashing in 2PL 

systems. 

 

 The hardware configurations used for testing fall into two basic categories: disk-

based systems and in-memory (or main memory) systems. For each in-memory 

configuration, there is a disk-based configuration with an equivalent number of processors 

with the same speed per processor. The number of disks available to the disk-based 

systems using these processor configurations are based on the algorithm used in [17] and 

[51] which applies Little’s law and using total CPU processing power, the number of 

expected disk accesses and a CPU and disk utilization ratio of 75/20 as parameters. An 

assumption underlying this calculation is that the cache held sufficient data to ensure that 

0.625 of items required in a first access is in memory.  

 

These hardware configurations, database subsystems, processing and transaction 

subsystems outlined in chapter 3, also form the basis of tests presented later in the thesis. 

The main focus of this thesis is high capacity systems and we believe that the range of 

hardware configurations tested is sufficiently wide so as to represent a reasonable sample 

of high capacity configurations that are or will soon be commercially available.  

 

The results presented in chapter 3 suggest that for those organizations that can fit 

all their data in memory, the best way to improving the performance of their transaction 

processing systems lies in switching to in-memory systems rather than improving the 



Chapter 1.   Introduction                                                                                                                  

 

 

6

performance of their disk-based systems. However, many organizations cannot satisfy this 

requirement, that is, they cannot fit all their data in memory and for these organizations, 

improvement in the performance of their transaction processing systems can only come 

about by improving the performance of disk-based systems. The search for such 

improvements is the primary purpose of the remainder of our thesis. 

 

In chapter 4 we introduce the contention-based scheduler. We develop this 

scheduler because while in-memory systems are now becoming available, disk-based 

hardware using 2PL concurrency control are dominant in the market place and are likely 

to remain so for some time. This scheduler operates by measuring transactions’ 

contention as they arrived sorting these transactions into queues of transactions with a 

similar contention and then manipulates the number of transactions allowed into the 

system by the contention class.  

 

In chapter 5 we present a modified variation of access invariance that we called 

enhanced memory access, (EMA). The purpose of EMA is to allow very high levels of 

concurrency in the pre-fetching of data thus bringing the performance of disk-based 

systems close to that achieved by in-memory systems. The basis of accesses invariance 

is that conditions satisfying a predicate at pre-fetch time do not change between pre-fetch 

time and the time when actual execution takes place. This assumption only holds at 

limited concurrencies. EMA does not assume unchanged conditions between pre-fetch 

time and execution time, but rather, ensures that even where such changes occur, the 

data required to satisfy transactions’ predicates are still found in memory. This allows pre-



Chapter 1.   Introduction                                                                                                                  

 

 

7

fetching at extremely high concurrencies. Consequently throughput can be increased to 

levels near those achieved by in-memory systems. 

 

In chapter 6 we compare the performance of our contention-based scheduler 

against the performance achieved by disk-based systems that do not use our scheduler 

while in chapter 7 we compare the performance of our EMA systems against the 

performance achieved by in-memory systems. Our systems are tested both with and 

without mechanisms to control threshing. In Chapter 8 we conclude our thesis. 

 



  

8 

Chapter 2 

 

An Overview of Transaction Processing 

     

 

 

 

2.1    Introduction 

 

In commercial databases, transactions are generally small and independent of 

each other. Thus, one could expect that processing them at a concurrency level limited by 

hardware capacity would maximize the throughput of transactions. However, hardware 

capacity is not the only constraint limiting transaction processing. Because transactions 

modify data, where data integrity is crucial, as it is in most database applications, 

transactions must conform to certain generally accepted constraints known by their 

acronym as the ACID properties. With respect to concurrency, the limiting properties are 

Atomicity and Isolation.  

 

To ensure adherence to these properties, the concurrency of transactions needs to 

be managed. In modern databases, the upper limits to concurrency are set by this need to 

guarantee integrity rather than by hardware capacity.  



Chapter 2. An Overview of Transaction Processing  

 9

2.2 Two Phase Locking 

 

By far the most widely used protocols for controlling concurrency are those known 

as two-phase locks (2PL). As the name suggests, transactions under this concurrency 

management scheme are executed in two phases. In the first phase, a transaction 

attempts to acquire locks for all the objects that it requires. If it is successful, it can then 

access these objects and modify them if this is required. Upon completion, it commits its 

updates and then in the second phase, it releases its locks. If the transaction cannot 

obtain all of its required locks, it goes to “sleep” until it is “woken” up when the transaction 

upon which it is waiting completes, commits its data and releases all its locks.   

 

Since only a write changes the database, a transaction, T2, is denied a lock for an 

object, o1, only if another transaction, T1, has previously obtained a lock on O1 for a write 

or if T1, has previously obtained a lock on O1 for a read and T2 requires O1 for a write. 

 

The operation of 2PL is illustrated in table 2.1 below.  In table 2.1, in example 1, the 

set of objects required by the two objects is disjoint. Thus, each transaction can execute 

concurrently and complete normally. In example 2, when T2 tries to get a lock for object 

O1 at time 4, it finds that its request is denied and it has to wait until T1 unlocks its objects 

at time 5. Note that this is so even though T1 has finished using object O1 at time 2. 



Chapter 2. An Overview of Transaction Processing  

 10

However, under 2PL, unlocking cannot be interleaved but must be completed in one 

phase at the end of the transaction. 

 

The major impediment to 2PL’s performance is its tendency to develop long chains 

of waiting transactions. To illustrate this problem, let us assume three transactions - T1, 

T2 and T3. Let us assume that T1 arrives first and obtains all its locks. Transaction T2 

arrives next but finds that one of its required objects has been locked by T1 and it thus has 

to wait. When transaction T3 arrives, it finds that an object that it requires has been locked 

by T2 and it thus has to wait until T2 completes.      

 

transaction time object operation transaction time object operation
T1 1 O1 Readlock T1 1 O1 Writelock
T2 2 O2 Readlock T2 2 O2 Readlock
T1 2 O1 Read T1 2 O1 Write
T1 3 O3 WriteLock T1 3 O3 WriteLock
T2 3 O2 Read T2 3 O2 Read
T1 4 O3 Write T2 4 O1 WriteLock Failed - wait
T2 4 O4 Writelock T1 4 O3 Write
T1 5 O1 Unlock T1 5 O1 Unlock
T2 5 O4 Write T1 5 O3 Unlock, Wake T2

T1 6 O3 Unlock T2 6 O1 Writelock
T2 6 O2 Unlock T2 7 O1 Write
T2 7 O4 Unlock T2 8 O2 Unlock

T2 8 O1 Unlock

 

Table 2.1. Two examples of transactions operating concurrently under 2PL.      
   
 

 

This tendency to develop long and deep queues of waiting transactions makes 2PL 

extremely sensitive to data contention. Where data contention is low, 2PL works 



Chapter 2. An Overview of Transaction Processing  

 11

reasonably well. However, in high contention environments the maximum effective level of 

concurrency is severely limited.  The limits to concurrency in 2PL systems are discussed 

in [15] and [47].  Figure 2.1 below shows the theoretical limits placed on concurrency in 

2PL systems by data contention, p. These are taken from  [15].   

 

To improve the performance of 2PL various schemes have been developed. These 

fall into two broad categories – 

1. Those schemes which attempt to minimize the collision cross section of 

transactions. These algorithms can be divided into two further categories. 

Firstly, algorithms such as transaction chopping as found in [46] and 

secondly, algorithms such as field calls  [21] and escrow locking  [43] and 

[40]. The aim of transaction chopping algorithms is to allow intra-transaction 

parallelism while the aim of field calls and escrow locking is to minimize the 

time that locks are held by adding semantics to lock execution. 

 

2. Schemes which attempt to minimize the effects of long wait chains –for 

example running priority and wait depth limited (WDL) as found in [17] and 

[50]. 

 



Chapter 2. An Overview of Transaction Processing  

 12

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
number of concurrent transactions

ac
tiv

e 
tr

an
sa

ct
io

ns

Series1
Series2
Series3
Series4
Series5
Series7
Series8

p=0

p=0.001

p=0.005

 p=0.01

p=0.02
p=0.05

p=0.1

 

Figure 2.1. Theoretical upper limits on active transactions under 2PL.  
    

 

2.2.1   Intra-Transaction Parallelism 
 

 

In transaction processing, concurrency is generally treated as the number of 

independent transactions that can run concurrently. In theory, particularly where larger 

transactions are concerned, it is also theoretically possible to break down transactions into 

their components and perform these in parallel.  Implementing intra-transaction parallelism 

would increase the overall level of effective concurrency by increasing the number of 

processes that could be run at any one time without collision. Thus for example, given 10 

processors, 10 non- partitioned transactions could run concurrently with each transaction 

having the potential to conflict with nine other transactions. If each transaction were 

partitioned into five sub-processes with each sub-process running concurrently, all 10 



Chapter 2. An Overview of Transaction Processing  

 13

processors would be utilized with two transactions running. Thus, each transaction could 

conflict with only one other transaction. 

 

Intra-transaction parallelism would also increase the overall level of effective 

concurrency by reducing the time profile during which collisions would take effect. Using 

the above example, if it took 10 un-partitioned transactions 1 second to run, where a 

conflict occurred, a waiting transaction would have to wait for up to a second to obtain its 

locks. With partitioned transactions, if each process took a fifth of a second to run, a 

waiting transaction would have to wait a fifth of a second. 

However, intra-transaction parallelism is difficult to implement with flat transactions. 

The issues here include the problem of guaranteeing isolation within the sub-transactions 

as where two parallel sub-transactions within a transaction may conflict with each other 

and the increase in the complexity of the lock manager particularly the deadlock detection 

mechanism. 

 

Research into intra-transaction parallelism includes [46] which investigates 

transaction-chopping algorithms. These algorithms under certain restrictive assumptions 

guarantee the serializability of sub-transactions. Unsurprisingly, simulation results 

presented in this paper find that where data contention is high, chopping up transactions 

and running the sub transactions concurrently increases throughput significantly. 

Unfortunately, the assumptions that underlie these algorithms are too restrictive to make 

these algorithms generally applicable. 

 



Chapter 2. An Overview of Transaction Processing  

 14

Thus the current state of intra-transaction processing is that  “[intra-transaction] 

parallelism without nested transactions is so complex that few are likely to want to use it 

outside of very limited contexts. Parallel SQL systems such as Teradata and NonStop 

SQL, use parallelism either for read only queries or in very carefully controlled update 

cases” [22].        

 

2.2.2  Field Calls and Escrow Locking 
 

 

Field calls were developed by [21] as a response to the problem of hot spots. That 

is, the small proportion of data in a database that is disproportionately accessed by 

transactions and which consequently causes most of the data contention in the database. 

[43] and [40] extended this work to include escrow reads.  

 

The basic idea behind this set of protocols is that transactions are given short-term 

locks during which their anticipated changes are tested against the database. If a 

condition is met, the transaction and its transform are written to a log and the short term 

locks are released. The data in the database is not changed at this point. The next 

transaction then follows the same process. At commit time, the log is accessed and each 

transaction again obtains its locks. Its predicate is again tested and if the condition is met, 

its changes to the database are given effect. Since locks are held for only a short period, 

the collision cross section is greatly reduced. The basic operation of field calls/escrow 

locking is shown in Figures 2.2 and 2.3 below. 



Chapter 2. An Overview of Transaction Processing  

 15

In Figure 2.2 in the first phase, the intended transformation for each transaction is 

tested against the current state. In this case, assuming there is only one type of item, for 

each transaction, the transformation is a subtraction from stock (purchase). Thus 

transactions 1 to 4 reduce stock by 10, 8, 7 and 25 respectively.  Since current stock is 

positive (1000), and the sum of all these transactions is less than 1000, all transformations 

are written to the log. In Figure 2.3 in the second phase, the transformations recorded in 

the log are tested against the predicate. If they are successful, the transaction is 

committed and the state of the database is changed. Thus for example, current stock 

minus transaction 1 is greater than 0 and thus transaction 1 is committed.  The next 

transaction is then tested against the new state.   

 

While according to [22] field calls/escrow reads have been successful, there is no 

published data to confirm this. Indeed other than the works listed in this section there 

seem to be no published work on field calls/escrow reads. As well, they seem to have 

certain problems, which would seem to limit their applicability.  These include – 

 

1. Transactions cannot see the value of the data that they are accessing. 

2. Field calls and escrow calls find cannot operate where there is a requirement 

for sequence numbers to increase monotonically. 

3. It is not always possible to set a valid condition that could be tested by a 

predicate. 



Chapter 2. An Overview of Transaction Processing  

 16

 

Figure 2.2. First phase of field calls and escrow locks.  
 

 

 

Figure 2.3.  Second phase of field calls and escrow  locks.  



Chapter 2. An Overview of Transaction Processing  

 17

2.3   Optimistic Concurrency 

Optimistic concurrency 1 is so called because it assumes that conflict will not occur. 

Thus it allows all transactions to acquire and process their data objects (as against 2PL 

which because it assumes that transactions will conflict is also known as a “pessimistic” 

concurrency control system). It is only at committal time that transactions are validated. If 

a clash has occurred, the offending transaction is aborted and restarted – thus “blocking” 

under optimistic algorithms is essential blocking since no transaction has to wait for a 

transaction that is not performing useful work.  However, a transaction that is aborted has 

performed its work needlessly. 

 

From the preceding discussion it would seem to logically follow, that in high 

contention database working with infinite hardware resources, optimistic algorithms would 

perform better than 2PL systems since wasted work is of little concern. This intuitive 

conclusion was formalized analytically in [15]. This work concluded that given infinite 

resources as concurrency is increased, under essential blocking policies such as 

optimistic algorithms, the effective level of concurrency increases indefinitely at O(log (n)). 

Figure 2.4 below, taken from [15], shows the theoretical upper limit on the number of 

active transactions given different values of p (contention), varying levels of concurrency, 

optimistic concurrency control and infinite resources. 

 

                                            

1 Timestamp algorithms work along a similar principle and according to [22: pp 235] are a “degenerate form of optimistic 
concurrency”.  



Chapter 2. An Overview of Transaction Processing  

 18

As can be seen in Figure 2.4, at all levels of p, throughput increases with 

concurrency though at an ever-diminishing rate. As would be expected, for any level of 

concurrency, throughput is lower at high values of p than at lower values of p. However, a 

comparison with Figure 2.1 shows that essential blocking is less sensitive to contention – 

p, than 2PL. 

 

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100
number of concurrent transactions

ac
tiv

e 
 tr

an
sa

ct
io

ns

Series1
Series2
Series3
Series4
Series5
Series7
Series8

p= 0

p= 0.001

p= 0.005
 p= 0.01

p= 0.02
p= 0.05

p= 0.1

 

Figure 2.4. Upper bounds on expected active transactions for essential blocking policies.  
 

While optimistic concurrency control outperforms 2PL in systems with infinite 

resources, in systems with finite resources, at some resource level below infinity, the cost 

of wasted work exceeds the benefits of essential blocking.  Recent work to overcome this 

problem of wasted work includes [51]. Here a hybrid optimistic/2PL system is proposed 

that ensures that transactions that are blocked in their optimistic phase are guaranteed 

success in their next execution by a pre-claiming of locks. 



Chapter 2. An Overview of Transaction Processing  

 19

2.4   Running Priority and Wait Depth Limited 

 

Running priority/wait depth limited (WDL) are a novel set of algorithms that attempt 

to minimize the length of wait chains by aborting non-active transactions that are blocking 

other transactions. The basis of these algorithms is as follows - Given transactions T1, T2, 

if transaction T2 is blocked by transaction T1, if T1 is performing useful work and no 

transaction is being blocked by T2, then T2 waits. If however, T1 is itself waiting for 

another transaction (say T0), then it is aborted and restarted at some later stage and T2 

starts performing useful work immediately.  

 

While both WDL and optimistic methods remove the problem of wait chains as 

encountered under 2PL systems, running priority/ WDL have an advantage over optimistic 

systems in that not all conflicting transactions are restarted. Thus the amount of wasted 

work under running priority/WDL is less than under optimistic systems. However, as 

against this, running priority/WDL does not have the benefits of essential blocking. 

 

2.5   Performance Comparisons 

As indicated in the previous section, given infinite resources, essential blocking 

methods should outperform 2PL while at some more limited resource levels, 2PL should 

outperform optimistic methods. 



Chapter 2. An Overview of Transaction Processing  

 20

Simulations conducted by [2] confirm this deduction. [2] show that for low 

contention environments, all concurrency control algorithms perform reasonably well. 

However in high contention environments, the performance of different algorithms 

becomes resource dependent. With low resource availability (1 CPU and 2 disks)2, 2PL 

outperforms optimistic algorithms. As would be expected from the preceding discussion as 

the level of resource availability increases, the relative performance of optimistic 

algorithms improves and at 25 CPU’s and 50 disks, exceeds that of 2PL. 

 

[17] and [50] tested several variations of running priority and WDL against both 

optimistic and 2PL algorithms in a high contention environment. The tests in [17] were 

conducted for systems containing the following configurations – 4 processors each 

operating at 50 million instructions per second (MIPS) , 4 processors each operating at100 

MIPS, 4  processors each operating at 200 MIPS and  256 processors each operating at 4 

MIPS.  

 

In all these tests, all the other algorithms outperformed 2PL. WDL performed best in 

all tests except for those where the configuration was four processors operating at 200 

MIPS – here, the optimistic algorithms performed best (since wasted work was of relatively 

little importance). 

 

What is of interest besides the results, are the parameters used. At the time that 

[17] was written, the level of hardware performance required for optimistic methods to 

                                            

2 In this study, it was assumed that each transaction took 500 milliseconds to execute. That is the speed of the CPU was 
fixed but the number of CPU’s was varied. 



Chapter 2. An Overview of Transaction Processing  

 21

outperform 2PL was available but rare.  Today, this level of hardware capability is 

considered passé. Despite this, there are very few   “real” systems operating under 

anything other than a 2PL algorithm. 

 

2.6   Further Reading 

 

For a general overview and analysis of many of the issues discussed in the 

previous sections, [4] is considered a seminal text. [22] is a more recent general text. 

However, despite its rigorous treatment of most areas of transaction processing, [22]’s 

treatment of optimistic concurrency schemes is extremely brief and it is clear from their 

comments that the authors are not well disposed to these schemes. 

 

A more recent brief comparison of 2PL, time-stamp and optimistic control schemes 

is given in [5].                                    

                                                                                                                                                      

As indicated above, [22] is a good general text that provides a good overview of 

nearly all aspects of transaction processing including some areas not discussed here such 

as logging and recovery which is also dealt with in [7], [8], [11] and check-pointing in 

optimistic systems which is also dealt with in [38] and [49]. 

 



Chapter 2. An Overview of Transaction Processing  

 22

With regard to optimistic schemes, for historical interest, one can read early work 

on optimistic concurrency in [33], [37] and [25]. A more recent work in the area is [1].  

Locking schemes are evaluated in [47] and [48]. 

As indicated earlier, [2] compares the performance of various concurrency control 

schemes under various conditions. As well, it presents a rigorous analysis of the principles 

of building correct models for simulating transaction processing. 



  

  23 

  

Chapter 3 

 

An Analysis of the Behavior of Concurrency Control Mechanisms 

 

 

 

 

  

3.1   Introduction 

 

In this chapter we examine the behavior of three concurrency control mechanisms 

and their performance under diverse hardware configurations. The concurrency control 

mechanisms discussed are two phase locking (2PL), wait depth limited (WDL) and 

optimistic concurrency control. While these concurrency control mechanisms have been 

around for a while (though only 2PL is commercially used) and their behavior has been 

well documented we discuss these mechanisms for two reasons. Firstly because, while 

the performance of these mechanisms has been tested in the context of disk-based 

systems, the recent advent of in-memory systems makes it important to re-investigate the 

relative performance of diverse hardware/concurrency control mechanism combinations. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 24

Secondly, as a framework for some of the algorithms presented in later chapters 

aimed at improving the performance of each of these concurrency control mechanisms. 

 

The hardware configurations used in this chapter fall into two basic categories - 

disk-based systems and in-memory (or main memory) systems. In the latter, as the name 

implies, all data is held in main memory and thus transactions do not access disks. 

 

3.2 An Overview of 2PL 

 

We begin our discussion of 2PL by considering systems whose transactions are 

uniform in both size and contention. For simplicity, we also assume that for any permitted 

level of concurrency, there are always sufficient new transactions in the arrival queue to 

fully satisfy the system's capacity for processing new transactions.   

 

At time 0, the system is empty. Thus, the number of new transactions that can be 

allowed into the system is equal to the permitted concurrency level, n, of the system. With 

this entry of n transactions into the system, the system's first cycle has begun. In this 

cycle, each transaction attempts to acquire locks for all of its objects. If a transaction is 

successful in obtaining all its required locks, it proceeds to completion. We refer to these 

transactions as active transactions. If a transaction is blocked, it ceases execution at the 

point that it is blocked (goes to sleep).   



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 25

This is illustrated in Figure 3.1 below. In Figure 3.1, transaction T2 is blocked by 

transaction T1 for object O2 and goes to sleep. It does not, at this stage, attempt to obtain 

locks for objects O6 and O7 .  

 

When active transactions complete, they release their locks and exit the system. At 

this point, the start of the second cycle, new transactions are allowed into the system to 

replace the completed transactions. Completing transactions release their locks. As a 

result, transactions that are no longer blocked are woken well. Woken transactions 

resume acquiring locks from the point at which they were blocked. As in the first cycle, 

transactions that are acquiring all locks are active transactions whilst those that are 

blocked go to sleep at the point that they are blocked.  This is illustrated in Figure 3.2 

below. 

 

 

Figure 3.1.  An example of transaction activity in the first cycle 
 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 26

In Figure 3.2, transactions T1 and T3 as illustrated in Figure 3.1 complete and are 

replaced by transactions T4 and T5. Transaction T2 is woken up by the completion of 

transaction T1. All transactions attempt to acquire locks for their required objects with 

transaction T2 resuming from the point where it was blocked. In this diagram, transactions 

T4 and T2 succeed in obtaining all their locks while transaction T5 is blocked by 

transaction T2  for object O7  and goes to sleep. Subsequent cycles follow the same 

process as outlined for the second cycle. 

 

Figure 3.2.  An example of transaction activity in the second cycle. 

 
 

From the preceding it follows that apart from hardware considerations, the 

throughput of 2PL systems depends on how many transactions are successful in obtaining 

all their locks. This in turn, depends on the probability of conflict between transactions – 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 27

or, as it is commonly known, contention and the length of time that transactions are 

allowed to remain blocked before they are timed out (that is, the cyclical behavior of 

transactions).  The factors governing contention are – 

1. The size of the database – the smaller the database, the greater the likelihood of 

conflict between transactions requesting objects from this database. This extends 

to hotspots –that is, subsets of the database where objects belonging to these 

subsets are more commonly accessed than other objects. 

 

2. The number of objects required by transactions – the greater the number of objects 

required by transactions, the greater the probability of conflict between 

transactions. For systems with variable size transactions this implies a difference in 

the behavior of transactions since smaller lower contention transactions have a 

higher probability of success than higher contention transactions. The effect of 

variability in transactions’ contention and size on the behavior of 2PL systems is 

investigated in more detail in the next chapter and in [47]. 

 

3. The number of transactions in the system (concurrency) either processing or 

blocked. For any level of contention above 0, the higher the concurrency, the 

greater the probability of conflict. Thus, as concurrency increases, while the 

absolute number of successful transactions may increase, the success rate of 

transactions decreases and eventually becomes negative – that is for any 

contention level above 0, any increase in concurrency eventually leads to a 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 28

decrease in throughput. The level of concurrency at which this downturn occurs 

depends on contention. 

 

3.2.1  Other Behavioral Properties of 2PL Concurrency Control 
 

 According to [15] an implication of the cyclical behavior of transactions in 2PL 

systems is that unless some preventative action is taken, throughput will decrease in 

every cycle and will eventually reach 0. This is because in every cycle the proportion of 

transactions in the wait chain grows and the proportion of transactions woken by 

completing transactions decreases. That is, the proportion of transactions that are blocked 

by transactions that are themselves in the wait chain grows with every successive cycle – 

such transactions are not woken by the completion of active transactions. According to 

[47] this very rarely occurs unless the degree of lock contention is permanently greater 

than 0.226 in systems with fixed size transactions. In systems with variable size 

transactions where the mean lock contention is below 0.226, the random arrival of large 

transactions may temporarily lead to a lock contention greater than 0.226 thus 

destabilizing the system and leading to thrashing. 

 

It is well known that 2PL concurrency control systems are susceptible to the 

problem of deadlock, a state that occurs when two transactions block each other and 

where consequently, neither transaction can be woken.  As shown in [48], the incidence of 

deadlock is quite small and is proportional to the degree of concurrency, the fourth power 

of the number of requested locks and the inverse of the second power of the size of the 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 29

database. Since it occurs so infrequently, the cost of wasted work caused by the breaking 

of deadlocks is insignificant. 

 

As indicated above, in 2PL systems, for any contention level above 0, there are 

constraints limiting the number of transactions which can be processed in a given time 

period by either increasing concurrency or permitting the system to proceed cyclically 

without interference. Here, we propose that in 2PL systems the concurrency constraint is 

more restrictive than the cyclical constraint. That is, we propose that for any equivalent 

total processing capacity, a greater throughput is achieved by increasing the number of 

cycles that can be completed in a given time than by increasing the number of concurrent 

transactions processing in the same period of time. 

 

 

We illustrate this proposition using the equation found in [15] to predict transaction 

throughput, that is, throughput is approximated by 

 

  

n(1-p/2)(n-1)                                                        (3.1) 

Where n is the concurrency level and p is the level of contention. For simplicity we 

assume uniform transactions and that all transactions have an equal probability of being 

blocked. Thus, given two transactions T1, which is active, and T2, which is blocked, a new 

transaction arriving at the system has an equal probability of being blocked by either T1 or 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 30

T2. As vehicles for our illustration we use 3 in-memory hardware systems with the 

following configurations -   

1. A system with 20 CPUs each operating at 20 MIPS. 

2. A system with 40 CPUs each operating at 10 MIPS. 

3. A system with 60 CPUs each operating at 6.667 MIPS. 

 

It will be noted that each of the systems has the same total processing power – 400 

MIPS. We assume that each system operates at its maximum concurrency, which given 

that all systems are in-memory, is equal to its number of processors in each system. It will 

also be noted that given that in the first system each processor is twice as fast as in the 

second system and three times as fast as in the third system. Thus, the first system goes 

through two cycles in the time the second system goes through 1 cycle and 3 cycles in the 

time the third cycle goes through 1 cycle. 

 

Using the equation presented above, the predicted throughput for the first system in 

the first cycle is 17.17 that of the second system in the first cycle is 29.24, and that of the 

third system in the first cycle is 37.35. Because the first system is twice as fast as the 

second system it completes two cycles in the time the second system completes 1. Since 

in the first system 17.17 transactions completed in the first cycle, 17.17 new transactions 

enter the system and the number of released transactions that attempt to obtain their 

locks is   (20 -17.17)(17.7/20)=2.43.  That is, given that each transaction has an equal 

probability of blocking another transaction, the number of potentially released blocked 

transactions is the total number of blocked transactions, which given a concurrency of 20 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 31

is (20-17.17), times the proportion of blocked transactions blocked by completing 

transactions (17.17/20). Thus, in the first system in the second cycle, 19.6 transactions 

attempt to acquire their locks and 16.83 are successful. Consequently, 33.29 transactions 

complete in the first system over two cycles at a concurrency of 20 as against 29.24 in the 

second system over one cycle. By similar calculations, 57.3 transactions complete in the 

first system over 3 cycles as against 37.35 transactions in the third system over one cycle. 

 

Changing the contention per transaction to 0.001 yields a total predicted throughput 

in the first system of 39.62 over two cycles and 59.43 over three cycles. The 

corresponding predicted throughputs in the first cycle for the other two systems are 39.22 

and 58.26 for the second and third systems respectively. A contention per transaction of 

0.064, yields a total predicted throughput in the first system of 19.27 over two cycles and 

26.48 over three cycles. The corresponding predicted throughputs in the first cycle for the 

other two systems are 11.25 and 8.80 for the second and third systems respectively.  

Thus, theoretically our proposition holds for all levels of contention greater than 0 but 

becomes more pronounced as contention increases. 

 

  3.3  Alternative Concurrency Control Mechanisms 

 

In the previous section we examined the behavior of transactions in 2PL systems 

and saw that one of its characteristics is the formation of chains of transactions blocked by 

transactions that are themselves blocked. This characteristic reduces throughput in 2PL 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 32

systems and, given a high enough contention, may lead to thrashing in later cycles. This 

implies that methods that eliminate or reduce wait chains will increase throughput relative 

to that which can be obtained under 2PL concurrency control. In this section we briefly 

examine two well know alternatives to 2PL that attempt to increase throughput by 

eliminating or reducing wait chains. The alternative concurrency controls that we examine 

are optimistic concurrency control and wait depth limited (WDL).  

 

3.3.1  Optimistic Concurrency Control 
 

 

Conceptually, optimistic concurrency control is quite simple. Here, transactions 

acquire all their required objects and process to completion unhindered. It is only on 

completion, when the transactions modifications require committal, that the transaction is 

tested. If during its’ processing, the transaction has conflicted with a committed transaction 

it is aborted and restarted. If no such conflict has occurred, then the transaction is 

committed. 

 

There are two features of this system that improve its performance relative to 2PL. 

Firstly, because transactions that conflict with committing transactions are aborted and 

then restarted, there is no chain of transactions waiting behind locked transactions. 

Secondly is the fact that to be aborted, a transaction must not only conflict with another 

transaction, the transaction with which it conflicts must be a committed transaction. This 

property is known as essential blocking and is illustrated in Figure 3.3 below.  In Figure 

3.3, T2 conflicts with T1 and T3 conflicts with T2. Because T1 completes first it has no 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 

clash with a committed transaction and thus commits. When T2 is tested, it fails because 

it conflicts with a committed transaction. Thus, T2 is thus aborted. This allows T3, which 

under 2PL would have been blocked, to continue to committal unhindered. 

 

The benefit of essential blocking is that it does not impede the completion of 

transactions unnecessarily. Consequently, the number of successful transactions is 

unbounded and increases logarithmically with concurrency. In [15] an upper and lower 

bound is provided for the number of successful transactions at each concurrency level. 

Where p is the level of contention and n the level of concurrency, these are defined by the 

two equations. The lower bound is defined as – 

 

 

))(ln( 11np
p

p11 +−−+
 

 

while the upper bound is defined as – 

 

))(ln( 11np
p
11 +−+

 

 

 

 

An interesting consequence of equations 3.2 and 3.3, is that while they allow

throughputs at higher concurrencies than does 2PL, they imply that as for 2PL, f

equivalent total processing capacity, a greater throughput is achieved by increas

        (3.2)

    
33

 higher 

or any 

ing the 

 (3.3) 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 34

number of cycles that can be completed in a given time than by increasing the number of 

concurrent transactions processing in the same period of time. That is, using equations 

3.2 and 3.3, for any level of contention and concurrency, throughput will be the same in 

every cycle. Thus, in an in-memory system, doubling processor speeds doubles the 

number of cycles completed in a given time period and thus doubles throughput. However, 

doubling concurrency only increases throughput logarithmically. 

 

 

 

Figure 3.3.  An example of essential blocking 
 

 

There are two ways with which optimistic concurrency control can be implemented. 

These are the kill method and the die method. In the kill method, a successful transaction 

checks to see if there is any conflict with a processing transaction, and, if so, kills it. In the 

example shown in Figure 3.3, T1 would kill T2. In the die method, a completing transaction 

checks if it has conflicted with a committed transaction, and, if so, commits suicide. In the 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 35

example shown in Figure 3.3, T2 would find that it has conflicted with committed T1 and 

would commit suicide. 

 

 

3.3.1.1 Variability of Transaction Size and Contention and Performance 
 

An implicit assumption of the description presented in the previous section is that all 

optimistic systems behave uniformly. That is, all systems with the same mean contention 

p, level of concurrency n and hardware capability, will have the same throughput. 

However, both variability in transactions size and contention have a significant impact on 

system performance.   

 Contention determines the probability that a transaction will encounter conflict with 

another transaction. Thus, the lower a transaction's contention the lower the likelihood that 

it will encounter conflict and that it will either block or be blocked by another transaction.  

A transaction's size determines how much processing time a transaction requires. 

The smaller a transaction the less processing time it requires and the greater its 

probability of completing successfully. This is because where two conflicting transactions 

start at the same time, the smaller one will finish first and get the first opportunity to 

commit and kill the larger transaction. Alternatively, in a die system, the smaller 

transaction will finish first and commit, thus, when the larger transaction completes, upon 

testing it will be forced to commit suicide. 

While it is generally considered that within a system variability in transactions 

contention is proportional to their size, in databases with hotspots this is not always so. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 36

Further, even where transactions contention varies proportionally with their size, as 

indicated above, size and contention have distinct influences on performance. 

 

3.3.2  Wait Depth Limited (WDL) 
  

 

Running priority/wait depth limited (WDL) are a novel set of algorithms that attempt 

to minimize the length of wait chains by aborting non-active transactions that are blocking 

other transactions. The basis of these algorithms is as follows - Given transactions T1, T2, 

if transaction T2 is blocked by transaction T1, if T1 is performing useful work and no 

transaction is being blocked by T2, then T2 waits. If however, T1 is itself waiting for 

another transaction (say T0), then it is aborted and restarted at some later stage and T2 

starts performing useful work immediately.  

 

A more precise description of WDL (with a wait depth of 1), taken from [17] is 

shown in Figures 3.4 and 3.5 below. In these Figures, given transactions Ti and Tj,  T0
i    

T1
i     … Tn

i, represent transactions waiting on TI, while T0
j    T1

j     … Tm
j, represent transactions 

waiting on Tj.  L is a length function – that is given two transactions, the transaction 

whose L value is greater is the longer transaction. In Case a, both transactions Ti and Tj   

are active. In Case b Tj waits on Ti and in Case c, Tj waits on T0
i, which in turn, is waiting 

on Ti. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 37

 
Figure 3.4.  The three initial (temporary) cases of transaction states.  

 

 

As indicated by Figure 3.5, under WDL, longer transactions are given priority over 

shorter transactions, and, herein lays the major difference between WDL with a wait depth 

of 1 and running priority. This preference given to larger transactions reduces the 

quadratic effect that is, the tendency of longer transactions to suffer a disproportional rate 

of restarts relative to shorter transactions. As indicated in the previous section, this 

problem also occurs in optimistic systems.  

 

Thus, under WDL, larger transactions do not suffer the disadvantages that they 

face in optimistic and running priority systems. This tends to reduce the problem of wasted 

work since large transactions have in general performed more work when aborted than 

have smaller transactions. As well, when compared to optimistic systems, since not all 

blocked transactions are restarted, one would expect less wasted work under both running 

priority and WDL than under optimistic systems. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 38

 

 Figure 3.5.  WDL(1) algorithm given the states outlined in Figure 3.2 
 

 

3.3.3 Access Invariance and Wasted Work in Disk-based Systems 
 

The cost of wasted work is largely dependant on the speed at which the work can 

be done. An important factor in determining speed is the speed of the processor, however 

far more crucial in disk-based systems is the amount of disk I/O that has to be redone as a 

result of starting a transaction.  Thus for example let us assume two disk -based systems 

each with an equal number of processors with each processor operating at 200 MIPS and 

with disk access times of 15 milliseconds per access. In the first system data retrieved by 

aborted transactions is kept in cache. In the second system all objects whether required 

by new or restarted transactions require disk access. Let us further assume uniform 

transactions requiring 16 objects with each object requiring memory 20000 instructions to 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 39

process. Let us now say that on both systems 2 identical transactions have to be restarted 

after 8 objects have been acquired.   

 

In the first system, since objects previously fetched by restarting transactions only 

require memory access, the total work lost is (8 objects x 20000 instructions per 

object)/200MIPS= 0.0008 seconds. In the second system, since all objects have to be re-

accessed from disk, the total work lost is (8 objects x 20000 instructions per 

object)/200MIPS plus (8 objects x 15 milliseconds per access)= 0.0008  + 0.12= 0.1208 

seconds. Thus, despite having the same processor speed, the cost of work lost in the 

second system is 151 times that lost in the first system. 

 

The assumption that makes pre-fetching viable, is that the data pre-fetched by a 

transaction will be the same data that the transaction requires when restarted. For this 

assumption to hold, the following conditions must hold, either the data required by a 

restarted transaction has not been modified by a conflicting transaction or, where the data 

required by a restarted transaction has been modified by a conflicting transaction the 

modification has not been sufficient to invalidate the predicate of the restarted transaction. 

 

The assumption outlined above together with its conditions is outlined in [16] and 

[17]. The term coined for this assumption in these works is access invariance. These 

works maintain that for limited levels of concurrency, the conditions required for access 

concurrency hold but that as concurrency is increased, the degree of access invariance 

decreases. No measure is given correlating concurrency levels and the degree of access 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 40

invariance. Accordingly, in this chapter, we will assume arbitrarily, that access invariance 

holds for concurrency levels up to 100 and then ceases to hold. In chapter 5 we will 

examine how pre-fetching can be extended to much higher levels of concurrency. 

 

3.4  Evaluation Systems 

 

Each of the systems in this chapter is composed of the following subsystems - a 

concurrency control subsystem, a database subsystem, a hardware subsystem a 

processing subsystem and a transaction subsystem. The programs for conducting these 

simulations were constructed by the author as outlined in Appendix A. The specification of 

these subsystems is outlined in the remainder of this section. 

 

3.4.1  The Database and Transaction Subsystems 
 

There are two object stores available to transactions from which to choose their 

objects -D1, which contains 1000 objects, and D2, which contains a million objects. 

Characteristics of objects in these data stores are – 

1. In each data store each object is unique. 

2. Data stores are disjoint. 

3. Given a data store D, any two objects Oi and Oj in that data store have an 

equal probability of being required in any access. Thus for D1 which contains 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 41

1000 objects, each object in D1 has a 1/1000 chance of being required in an 

access to D1. Similarly, any object in D2, which contains a million objects, 

has a 1/1000000 chance of being required in an access to D2. 

 

 Each of our systems System contains four transaction types or classes  - T1, T2, 

T3 and T4. These transaction types require 1,2,4 and 8 objects respectively from D1 and 

3, 6, 12 and 24 objects respectively from D2. T1 transactions represent 20% of 

transactions T2 transactions represent 20% of transactions, T3 transactions represent 

35% of transactions and T4 transactions represent 25% of transactions. 

 

3.4.2  Hardware Subsystems 
 

As indicated earlier in this chapter, the basic division in the hardware subsystems 

tested in this chapter is between in-memory systems and disk -based systems. The in-

memory subsystems used in this chapter are – 

1. A subsystem containing 1248 processors each operating at 4MIPS.  

2. A subsystem containing 96 processors each operating at 100MIPS.  

3. A subsystem containing 96 processors each operating at 200MIPS 

4. A subsystem containing 20 processors each operating at 1000 MIPS.  

5. A subsystem containing 10 processors each operating at 2000 MIPS.  



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 42

The subsystems outlined in parts 3, 4 and 5 above have nearly the same total 

processing power. The total processing power of the third system is 96 processors x 

200MIPS = 19200 MIPS, that of the fourth subsystem is 20 processors x 1000 MIPS = 

20000 MIPS while that of the fifth subsystem is 10 processors x 2000 MIPS = 20000 

MIPS.  Besides measuring the performance of systems with very fast processors, given 

their similar total processing power, systems 3, 4 and 5, allows us to compare the 

performance of systems with fewer and faster processors as against those with more 

numerous but slower processors. 

 

The disk-based subsystems used in this chapter are equivalent to the first three 

systems outlined above - with the exception that in these latter systems, while some data 

resides in cache, some disk access is required. The cache holds sufficient data to ensure 

that 0.625 of items required in a first accesses are in memory. For restarted transactions 

or transactions in process, all items required remain in cache and are not flushed till the 

transaction commits. These parameters are in accord with those found in  [17] and [51].  

 

The number of disks per system is as follows- the 96 processor 200 MIPS per 

processor subsystem has 15880 disk arms as have the 20 processor 1000 MIPS per 

processor and 10 processor 2000 MIPS per processor systems. The 96 processor 100 

MIPS per processor subsystem has 7940 disk arms while the 1248 processor 4 MIPS per 

processor subsystem has 3970 disk arms. In all disk-based systems, disk accesses are 

uniformly distributed (no skew).  The determination of this number of disk arms is based 

on the algorithm used in [17] and [51] which applies Little’s law using total CPU 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 43

processing power, the number of expected disk accesses and a CPU and disk utilization 

ratio of 75/20 as parameters. 

 

3.4.3  The Concurrency Control Subsystems 
 

 

Three basic concurrency control subsystems are used in this chapter these are 

2PL, wait depth limited (WDL) and optimistic.  

The 2PL subsystem is a standard 2PL system (including a deadlock breaking 

mechanism) except that for simplification, all requests for locks are requests for a write 

and the granularity of lock acquisition and release is a single lock. 

The WDL subsystem is as described in section 3.2.2. with a depth of 1 and the 

length cost  as described in [17]. As with the 2PL system, all requests for locks are 

requests for a write and the granularity of lock acquisition and release is a single lock.  

 

As per section 3.2.3, access invariance and the pre-fetch properties consequent to 

it are assumed to hold for the disk-based systems whose processors operate at 100, 200, 

1000 and 2000 MIPS. Thus, for these disk-based systems, restarted transactions find all 

the objects that they acquired prior to restarting in cache.  Given the limited concurrency at 

which these systems are run this is a reasonable assumption. The disk-based system with 

1248 processors operating at 4 MIPS is tested both without the access invariance 

assumption. This is because this subsystem is tested to a concurrency of 1250, and at 

higher levels of concurrency access invariance is unlikely to hold. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 44

 

For testing the performance of optimistic systems we use two methods. For the in-

memory systems we use a pure kill system since this minimizes the amount of wasted 

work by killing a transaction immediately. For the disk-based systems we use a hybrid die-

kill system as outlined in [17] and [51]. In this system, transactions in their first phase die 

at the end of their processing cycle if they have conflicted with a previously committed 

transaction. By dieing after processing transactions are able to pre-fetch all their required 

objects. Transactions that have died and are restarted are killed if they conflict with a 

previously committed transaction.  

This variation allows transactions to maximize the benefits of pre-fetching while 

minimizing the cost of wasted work for transactions that have already pre-fetched all their 

data. This of course assumes that access invariance and its consequent pre-fetch 

property holds.  Again, access invariance is a reasonable assumption for the 100,200, 

1000 and 2000 MIPS per processor systems. However, once again, this assumption is 

unlikely to hold at the higher concurrencies at which the 4 MIPS system is tested. 

Consequently, this subsystem is tested with a kill system that assumes no access 

invariance. As with the previous systems, all objects are acquired for a write and the 

granularity of object acquisition is a single object. 

 
3.4.4  The Processing Subsystem 

 

The processing system used in this chapter has three stages initialization, 

processing and completion. The initialization stage, whether for new or restarted 

transactions requires 100000 instructions per transaction regardless of the transaction’s 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 45

size. This stage requires CPU processing only. Similarly, the completion phase requires 

50000 CPU instructions per committing transaction. For disk-based systems, it is assumed 

that once a committed transaction is placed in a buffer, the system is ready for the next 

transaction; thus, no disk access is required in this phase. The processing phase requires 

20000 CPU instructions per data item, which includes the overheads for concurrency 

control. For the disk-based systems, 0.375 of objects required by a transaction need disk 

access (excluding objects pre-fetched by restarting transactions). Each disk access 

requires 15 milliseconds. 

Since we are interested in systems with high throughputs, a large number of 

transactions need to be available, thus the arrival rate of transactions is 50000 

transactions per second arriving at a constant rate. All systems are tested for one second 

at each concurrency level. At each concurrency level for each system the results shown 

are an average over 40 runs. 

3.5   Performance Results 

In this section we present and analyze the results of the tests outlined in the 

previous section. We first look at the in-memory systems, then the disks based systems 

and then compare the performances of the in-memory and disk-based systems. 

3.5.1  The Performance of In-Memory Systems 
 

Figures 3.6 to 3.8 below show the results of the in memory-systems with 1248 

processors operating at 4 MIPS per processor, 96 processors operating at 100 MIPS per 

processor and 96 processors operating at 200 MIPS per processor respectively.  



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 46

The two most obvious and unsurprising features of these results are – 

1. That at concurrencies over 20, optimistic and WDL concurrency control methods 

outperform 2PL with the peak reached by optimistic and WDL methods exceeding 

the peak achieved by 2PL by around tenfold in the case of the 4MIPS by 1248 

processor system and by around fourfold for the other two systems.  

2. That extremely high levels of throughput can be achieved by the in-memory 

systems with throughput reaching close to a massive 20000 transactions per 

second in the system with 96 processors operating at 200 MIPS per processor and 

using either optimistic or WDL concurrency control. 

0

500

1000

1500

2000

2500

3000

3500

0 50 100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

concurrency

th
ro

ug
hp

ut

2pl wdl optimistic

 

 

Figure 3.6.  1248 processors each operating at 4 MIPS   
 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 47

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2pl wdl optimistic

 

Figure 3.7.   96 processors each operating at 100 MIPS 
 

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 10

concurrency

th
ro

ug
hp

ut

2pl wdl optimistic

 

Figure 3.8.  A comparison of throughputs under 2PL, optimistic kill and WDL concurrency control 
methods for a system with 96 processors each operating at 200 MIPS 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 48

The superior performance of WDL and optimistic concurrency control methods over 

2PL at higher concurrencies, particularly in systems with abundant resources, is by now 

well known. This superiority is due to their elimination of the wait queues that characterize 

2PL systems. A benefit of optimistic systems relative to WDL is essential blocking while a 

cost of optimistic systems relative to WDL is the minimization of wasted work. Given the 

negligible cost of wasted work in in-memory systems, one would expect that the essential 

blocking property of optimistic systems would lead it to outperform WDL in in-memory 

systems. As Figures 3.6 to 3.8 show, with our transaction model, this expectation is 

confirmed at concurrencies over 50.   

One aspect of the relative performance of optimistic and WDL concurrency control 

systems that is not shown in Figures 3.6 to 3.8 is their performance vis a vis the 

throughput of higher contention transactions. As indicated earlier in this chapter, in 

optimistic systems, one would expect the throughput of larger transactions to suffer since 

these transactions have a disproportionate tendency to be killed by smaller transactions. 

In WDL systems this problem is overcome by giving larger transactions priority over 

smaller transactions in clashes between non-active transactions. Thus, one would expect 

WDL to outperform optimistic systems in the throughput of larger transactions.  

Figures 3.9 to 3.11 below break down the results shown in Figures 3.6 to 3.8 

showing the performance of our systems in the throughput of the largest transaction types 

in our systems (transactions belonging to the class T4).  As Figures 3.9 to 3.11 show, the 

expectation that WDL should outperform optimistic concurrency control in the throughput 

of the largest/highest contention transactions is not fulfilled. Indeed, at concurrencies of 

around 50 and over, optimistic concurrency control outperforms WDL in the throughput of 

the largest/highest contention transactions.  



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 49

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

concurrency

th
ro

ug
hp

ut

wdl optimistic

 

Figure 3.9.  A comparison of throughputs of the largest transactions (T4) under optimistic kill and 
WDL concurrency control methods for a system with 1248 processors each operating at 4 MIPS 

 

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

wdl optimistic

 

Figure 3.10. A comparison of throughputs of the largest transactions (T4) under optimistic kill 
and WDL concurrency control methods for a system with 96 processors each operating at 100 
MIPS 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 50

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

wdl optimistic

 

Fig 3.11: A comparison of throughputs of the largest transactions (T4) under optimistic kill and 

WDL concurrency control methods for a system with 96 processors each operating at 200 MIPS 

 

3.5.1.1 The Performance of In-Memory Systems with Very Fast Processors 
 

To validate the proposals outlined in section 3.2 and 3.3.1 and to examine the 

performance of very fast in-memory systems, we present Figures 3.12 to 3.14 below. In 

these graphs the total processing power of each of the systems is about the same 

(between 19200 and 20000 MIPS). However one system reaches this total with 96 

processors each operating at 200 MIPS, another with 20 processors each operating at a 

1000 MIPS and the third with 10 processors each operating at 2000 MIPS. Figure 3.12 

compares the performance of these systems under 2PL, Figure 3.13 compares the 

performance of these systems under WDL and Figure 3.14 compares the performance of 

these systems under optimistic concurrency control. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 51

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25

concurrency

th
ro

ug
hp

ut

200 MIPS 1000 MIPS 2000 MIPS

 
Fig 3.12.   A comparison of throughput under 2PL concurrency control in systems composed of 
96 processors each operating at 200 MIPS, 20 processors each operating at 1000 MIPS and 10 
processors each operating at 2000 MIPS 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5 10 15 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

200  MIPS 1000 MIPS 2000 MIPS

 
Figure 3.13.  A comparison of throughput under WDL concurrency control  in systems composed 
of 96 processors each operating at 200 MIPS,  20 processors each operating at 1000 MIPS and 
10processors each operating at 2000 MIPS. 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 52

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

200 MIPS 1000 MIPS 2000 MIPS

 

Figure 3.14.  A comparison of throughput under optimistic concurrency control  in systems 
composed of 96 processors each operating at 200 MIPS,  20 processors each operating at 1000 
MIPS and 10 processors each operating at 2000 MIPS. 

 

Apart from the massive throughputs achievable by in-memory systems with few but 

very fast processors, these graphs show that under each of the concurrency control 

mechanisms, although the total processing power of each of the systems is the same, 

throughput is highest under the fastest system operating at 2000 MIPS per CPU at low 

concurrencies and is lowest under the slowest system operating at 200 MIPS per CPU at 

relatively high concurrencies. This tends to confirm the proposition made earlier in this 

chapter that increasing the speed of processing yields higher throughput than increasing 

concurrency. 

 

With regards to mean throughputs achieved, as before optimistic and WDL 

outperform 2PL but only at concurrencies over 10. Thus, for in-memory systems with a 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 53

small number of processors, in terms of mean throughput, there is no benefit in 

considering concurrency control mechanisms other than 2PL while for in-memory systems 

with a larger number of processors and a large number of available transactions there are 

quite significant gains in throughput to be had by implementing concurrency control 

mechanisms other than 2PL.  

 

3.5.2 The Performance of Disk-based Systems 
 

Figures 3.15 to 3.19 below show the results of the disk-based systems as 

described in section 3.4.2. These systems have equivalent CPU power to the systems 

discussed in the preceding section – that is, 1248 processors operating at 4 MIPS per 

processor, 96 processors operating at 100 MIPS per processor, 96 processors operating 

at 200 MIPS per processor, 20 processors operating at 1000 MIPS per processor and 10 

processors operating at 2000 MIPS per processor and.  As indicated in section 3.3.3, the 

access invariance assumption is only valid at lower concurrencies, thus, the first system, 

that with 1248 processors operating at 4 MIPS per processor assumes no the access 

invariance and uses the kill optimistic method. In the latter systems, as indicated earlier, 

we assume that access invariance holds and the optimistic method used is a hybrid die-kill 

system. As well, in all these systems, we show the performance of these systems for 

equivalent sized transactions with no contention. 

 

As with the in-memory systems, the performance of the optimistic and WDL 

concurrency control methods is considerably better than that of 2PL concurrency control in 

all the disk-based systems though in the case of the 4 MIPS per processor system this 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 54

superiority only becomes evident past concurrencies of 50.  An interesting observation is 

that the superiority of optimistic concurrency control over WDL exhibited in the in-memory 

systems is maintained in the disk-based systems. This seems counter-intuitive given that 

the relative cost of wasted work, optimistic concurrency control’s major liability, would 

seem to be much higher in disk-based systems. However, deeper analysis indicates that 

there are factors acting to reduce the cost of wasted work in our disk-based optimistic 

systems. In the massively parallel system, where access invariance does not hold and the 

kill method is used, a conflicting transaction is killed immediately thus reducing the amount 

of work wasted by killed transactions. In our other systems, where access invariance does 

hold and the optimistic kill-die system is used, all restarted transactions are executed in 

memory thus minimizing the cost of wasted work. In both cases, the effect is to reduce the 

relative cost of wasted work vis’ a vis’ the benefits of essential blocking.  

 

0

1000

2000

3000

4000

5000

6000

7000

0 50 100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

concurrency

th
ro

ug
hp

ut

no contention 2pl wdl without invariance optimistic kill without invariance

 
Fig 3.15. A comparison of throughputs under 2PL, optimistic kill and WDL concurrency control 
methods for a system with 1248 processors each operating at 4 MIPS and with disk access at 15 
milliseconds per access 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 55

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2pl wdl optimistic no contention

 
Figure 3.16.  A comparison of throughputs under 2PL, optimistic die-kill and WDL concurrency 
control methods for a system with 96 processors each operating at 100 MIPS and with disk 
access at 15 milliseconds per access 

  

 

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2pl wdl optimistic no contention

 
Figure 3.17.  A comparison of throughputs under 2PL, optimistic die-kill and WDL concurrency 
control methods for a system with 96 processors each operating at 200 MIPS and with disk 
access at 15 milliseconds per access 

  



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 56

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2pl wdl optimistic no contention

 
Figure 3.18.  A comparison of throughputs under 2PL, optimistic die-kill and WDL concurrency 
control methods for a system with 20 processors each operating at 1000 MIPS and with disk 
access at 15 milliseconds per access. 

 

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2pl wdl optimistic no contention

 

Figure 3.19. A comparison of throughputs under 2PL, optimistic die-kill and WDL concurrency 
control methods for a system with 10 processors each operating at 2000 MIPS and with disk 
access at 15 milliseconds per access 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 57

As indicated previously, one of the expected advantages of WDL over optimistic 

systems is that WDL redresses the disadvantage that larger transactions have relative to 

smaller transactions by giving larger locked transactions priority over smaller locked 

transactions. Figures 3.20 to 3.24 below break down the results of the preceding graphs 

and examine the relative performance of the optimistic and WDL concurrency control in 

the throughput of the largest transactions in the system - those belonging to transaction 

class T4 (Here we concentrate on the performance of the highest contention transaction 

type. A more detailed breakdown of throughputs by all transaction types is presented in 

the following chapter).    

 

As these graphs show, while the relative performance of WDL and optimistic 

concurrency control is as expected in the slow 4 MIPS per processor system, in the faster 

systems, optimistic concurrency control outperforms WDL in the throughput of the larger 

transactions. 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 58

0

10

20

30

40

50

60

70

80

90

0 100

200

300

400

500

600

700

800

900

1000

1100

1200

concurrency

th
ro

ug
hp

ut

wdl optimistic

 

Figure 3.20.  A comparison of the throughput of large transactions given no access invariance 
under optimistic kill and WDL concurrency control methods for a system with 1248 processors 
each operating at 4 MIPS and with disk access at 15 milliseconds per access 

 

The explanation for this difference in behavior lies in the fact that access invariance 

holds at the lower concurrencies at which the faster systems operate whilst it does not 

hold at the higher concurrencies of the slower system. In the slower system, given that 

access invariance does not hold, there is no advantage in a conflicting transaction 

executing to completion since the objects acquired may need to be re-fetched in any case 

and thus the kill method is used. Here, a restarted transaction needs the same execution 

time on restart as it did initially. Larger transactions are more likely to be killed than 

smaller transactions and face the same disproportionate probability of being killed on 

restart. Thus, at high concurrencies, with no access invariance, WDL outperforms the kill 

optimistic method in the throughput of larger transactions.  

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 59

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

wdl optimistic

 

Figure 3.21.  A comparison of the throughput of large transactions given access invariance under 
optimistic kill-die and WDL concurrency control methods for a system with 96 processors each 
operating at 100 MIPS and with disk access at 15 milliseconds per access 

 

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

wdl optimistic

 

Figure 3.22.  A comparison of the throughput of large transactions given access invariance under 
optimistic kill-die and WDL concurrency control methods for a system with 96 processors each 
operating at 200 MIPS and with disk access at 15 milliseconds per access.  

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 60

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

wdl optimistic

 
Figure 3.23.  A comparison of the throughput of large transactions given access invariance under 
optimistic kill-die and WDL concurrency control methods for a system with 20 processors each 
operating at 1000 MIPS and with disk access at 15 milliseconds per access.  

 

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

wdl optimistic

 
Figure 3.24.  A comparison of the throughput of large transactions given access invariance under 
optimistic kill-die and WDL concurrency control methods for a system with 10 processors each 
operating at 2000 MIPS and with disk access at 15 milliseconds per access 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 61

In the systems where access invariance holds, a transaction that dies and restarts 

only needs to re-execute in memory. This makes the use of the die/kill optimistic 

concurrency control viable at the lower concurrencies used in the faster systems. Since 

the time taken to re-execute in memory for the longer transaction is less than the time that 

shorter transactions executing for the first time require when disk access is taken into 

account, longer transactions though more likely to die initially are more likely to succeed 

on restart. This advantage in execution time on restart conferred on larger transactions 

under the die/kill concurrency control method seems to be greater than the priority 

advantage conferred on the larger transactions by WDL. 

In the previous section where the performance of the in-memory systems was 

examined, it was clear that the speed of processors was more important than the number 

of processors in determining system throughput. However, as Figures 3.25 to 3.27 below 

show, the importance of CPU speed is greatly reduced in disk-based systems. Figure 3.25 

shows the relative performance of the disk-based systems under 2PL concurrency control, 

Figure 3.26 compares their performance under WDL and Figure 3.27 compares their 

performance under optimistic concurrency control. 

 

 In Figures 3.26 and 3.27, the throughput of the systems composed of 1248 

processors each operating at 4 MIPS is shown at the peak achieved for these systems – 

that is at a concurrency of 1250. As well, as before, for the systems composed of 1248 

processors each operating at 4 MIPS access invariance does not hold while for the faster 

systems operating at lower concurrencies it does. Consequently, as before, in Figure 3.27, 

the kill optimistic method is used for massively parallel system while the die-kill method is 

used for the other systems. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 62

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

concurrency

th
ro

ug
hp

ut

1248 processors by 4 mips  96 processors by100 mips 96 processors by 200 mips
20 processors by 1000 mips 10 processors by 2000 mips

 

Figure 3.25. The throughput of systems of systems operating under 2PL concurrency control 
 

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

  1248 processors by 4 mips without invariance at a concurrency of 1250

  96 processors by100 mips

  96 processors by200 mips

20 processors by1000 mips

10 processors by2000 mips

 

Figure 3.26. The throughput of systems of systems operating under WDL concurrency control 
 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 63

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

  1248 processors by 4 mips without invariance at a concurrency of 1250

  96 processors by100 mips

  96 processors by200 mips

20 processors by1000 mips

10 processors by2000 mips

 

Figure 3.27: The throughput of systems of systems operating under optimistic concurrency 
control 

 

 

As Figure 3.25 shows, under 2PL concurrency control, the systems with processors 

operating at 100 MIPS and over have very similar throughputs. Thus, the increase of CPU 

performance does not seem to have a significant impact on throughput. Similarly, while 

the performance of the massively parallel system is lower than the other systems, the 

deficiency is not proportional to its deficiency in processing speed3. The degree of 

variability in total throughputs in different runs displayed by the in-memory systems is 

absent in the disk–based systems. This is because with disk access, even the fastest of 

our systems completes relatively few cycles in one second and thus never reaches a point 

at which thrashing occurs.  

                                            

3 The massively parallel system’s large number of processors does not affect its performance since its peak throughput 
is reached at a concurrency of 150.    



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 64

Under both WDL and optimistic concurrency control, the performance of the 

systems with processor speed over 100 MIPS is virtually the same while the massively 

parallel system operating at its peak concurrency substantially outperforms the other 

systems. This is despite the fact that besides its slower processor speeds it is also 

operating without the benefits of access invariance – that is, its restarted transactions 

have the same processing time requirements as new transactions. This indicates that 

even without the benefits of access invariance, there are increases in throughput available 

at high concurrencies under both WDL and optimistic concurrency.  

 

The explanation for the small effect that CPU speed has on system throughput lies 

in the disproportionate cost of disk access in determining the amount of time a transaction 

requires to complete. Given the CPU speeds, disk speed and cache hit rate parameters 

outlined in section 3.4.2, table 3.1 below shows the time required to complete a 

transaction assuming no clash occurs. As this table shows, despite the variation in CPU 

speed, the time required to complete a transaction is almost the same in the 100, 200, 

1000 and 2000 MIPS disk-based systems. As well, despite the fact that the CPU speed of 

the 4 MIPS system is a five hundredth of the 2000 MIPS system, the time required to 

complete an average transaction is only half that of the 2000 MIPS system. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 65

 
 

Table 3.1. The time in seconds required to complete a transaction by CPU speed and transaction 
type 

 

3.5.3 A Comparison of the Performance of In-Memory and Disk-based 
Systems 

 

Figures 3.28 to 3.32 compare the results of the disk-based and in-memory systems 

by hardware configuration. In Figure 3.28 there are two hardware configurations - each 

system has 1248 processors operating at 4 MIPS per processor, however one 

configuration is in-memory and the other is disk-based. Figure 3.29 shows the equivalent 

comparisons for systems with 96 processors operating at 100 MIPS per processor, Figure 

3.30 compares the results for the hardware configurations with 96 processors operating at 

200 MIPS per processor, Figure 3.31 compares the results for the hardware configurations 

with 20 processors operating at 1000 MIPS per processor and Figure 3.32 compares the 

results for the hardware configurations with 10 processors operating at 2000 MIPS per 

processor. 

Overall, in the massively parallel systems, as expected, the in-memory systems 

outperform the disk-based systems. However, the degree of the advantage is dependant 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 66

on the concurrency control method chosen.  Thus, as Figure 3.28 shows, the performance 

of in-memory and disk-based systems under 2PL concurrency control is comparable while 

the advantage of the in-memory systems under WDL and optimistic concurrency control 

are more pronounced being almost double their equivalent in the disk- based systems 

 

0

1000

2000

3000

4000

5000

6000

7000

0 50 100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

concurrency

th
ro

ug
hp

ut

no contention disk 2pl disk 2pl in-memory wdl disk

wdl in-memory optimistic disk optimistic in-memory

 
Figure 3.28.  A comparison of in-memory and disk-based systems with each configuration having 
1248 processors operating at 4 MIPS per processor 

 

In the systems with fast processors, the in-memory systems outperform the disk-

based systems for any concurrency control mechanism. Thus, as Figures 3.29 to 3.32 

show, for all the fast processor systems, 2PL, the worst performed concurrency control 

method in the in-memory systems substantially outperforms the best results of the best 

performing concurrency control methods used by the disk-based systems (optimistic die-

kill). In the case of the 100 MIPS per processor systems, the in-memory system using 2PL 

has a throughput more than 5 times that of the best result in the equivalent disk-based 

system operating under the die-kill optimistic control mechanism. In the 200 MIPS per 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 67

processor system the ratio is over 8:1, in the 1000 MIPS per processor the ratio is over 

24:1 and in the 2000 MIPS per processor system the ratio is over 46:1. 

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2pl disk 2pl in-memory wdl disk wdl in-memory

optimistic disk optimistic in-memory no contention disk

 
Figure 3.29.  A comparison of in-memory and disk-based systems with each configuration having 
96 processors operating at 100 MIPS per processor 

 

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2pl disk 2pl in-memory wdl disk wdl in-memory

optimistic disk optimistic in-memory no contention disk

 
Figure 3.30.  A comparison of in-memory and disk-based systems with each configuration having 
96 processors operating at 200 MIPS per processor 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 68

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2pl disk 2pl in-memory wdl disk wdl in-memory

optimistic disk optimistic in-memory no contention disk

 

Figure 3.31.  A comparison of in-memory and disk-based systems with each configuration having 
20 processors operating at 1000 MIPS per processor 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2pl disk 2pl in-memory wdl disk wdl in-memory

optimistic disk optimistic in-memory no contention disk

 

Figure 3.32.  A comparison of in-memory and disk-based systems with each configuration having 
10 processors operating at 2000 MIPS per processor 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 69

In terms of performance under comparable concurrency control mechanisms, under 

WDL concurrency control, the throughput of the 100 MIPS per processor in-memory 

system at a concurrency of 100 is over 20 times that of the equivalent disk-based system 

operating at the same concurrency.  This ratio is 1:40 for the 200 MIPS per processor 

systems,1:63  for the 1000 MIPS per processor systems and 1:70 for the 2000 MIPS per 

processor systems.4    

 

Under optimistic concurrency control, the peak throughput of the 100 MIPS per 

processor in-memory system is nearly 12 times that of the equivalent disk-based system 

while this ratio is 22:1 for the 200 MIPS per processor systems, 44:1 for the 1000 MIPS 

systems and 47:1 for the 2000 MIPS systems. 

 

This difference in the potential performance of in-memory systems and disk-based 

systems operating at limited concurrency is further highlighted by Figure 3.33, which 

compares hardware configurations operating under 2PL concurrency control. Besides 

comparing the performance of hardware systems with very fast processors under 2PL 

Figure 3.33 also shows the throughput of these fast processor disk-based systems 

operating at a concurrency of 100 with 0 contention.  As this graph shows, not only do the 

2PL in-memory systems outperform the disk-based optimistic and WDL concurrency 

control systems, they also outperform the disk-based systems that operate with 0 

contention. Here, the 2PL in-memory system with 96 processors operating at 100 MIPS 

                                            

4 In the case of the 1000 MIPS per processor in-memory systems, peak concurrency is achieved at a concurrency of 20 
while for the 2000 MIPS per processor in-memory systems, peak concurrency is achieved at a concurrency of 10 – that 
is, peak concurrency is equal to the number of processors in the respective systems. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 70

per processor has more than double the throughput of its equivalent disk-based system 

with 0 contention while the 2PL in-memory system with 200 MIPS processors has more 

than triple the throughput of its equivalent disk-based system with 0 contention. For the 

1000 MIPS systems this ratio is 12:1 while for the 2000 MIPS systems this ratio is 20:1. 

Since operation at 0 contention sets the upper limit on throughput for any hardware 

configuration at any given concurrency level, in systems with fast processors, clearly, no 

disk-based concurrency control mechanism can approach the performance of even the 

worst performing concurrency control mechanism without in some way enabling very high 

levels of concurrency.   

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

100 mips in-memory 2PL 100 mips 0 contention disk based 200 mips in-memory 2PL

200 mips 0 contention disk based 1000 mips in-memory 2PL 1000 mips 0 contention disk based

2000 mips in-memory 2PL 2000 mips 0 contention disk based

 
Figure 3.33. A comparison of in-memory systems with 96 processors operating at  100 and 200 
MIPS per processor, 20 processors operating at 1000 MIPS per processor and 10 processors 
operating at 2000 MIPS per processor operating under 2PL concurrency control with their 
equivalent disk-based systems operating at 0 contention and a concurrency of 100 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 71

3.6    Thrashing  in 2PL Concurrency Control Systems 

So far in this chapter we have shown the overall results for the throughput of 2PL 

systems under diverse hardware configurations and compared these results to those 

achieved under alternative concurrency control mechanisms. However we have not 

investigated some of the behavioral characteristics of 2PL systems outlined in section 3.2. 

In particular, we have not investigated the cyclical behavior of 2PL systems and the 

varying performance of different transaction types in systems with multiple transaction 

types. This latter aspect of 2PL behavior is investigated in more detail in the next chapter 

where the varying behavior of different transaction types is critical to the algorithms 

presented for improving the performance of disk-based 2PL systems. In this chapter we 

concentrate on the problems of thrashing and deadlock. 

 

As indicated in section 3.2.1, according to [15] in 2PL systems, unless some 

preventative action is taken, throughput will decrease in every cycle and will eventually 

reach 0.  That is, thrashing is inherent in all 2PL systems. This is because in every cycle 

the proportion of transactions in what is commonly known as a wait chain grows and the 

proportion of transactions woken by completing transactions decreases. However, 

according to [47] this occurs very infrequently in systems with fixed size transactions 

unless the degree of lock contention is greater than 0.226. In systems with variable size 

transactions, the random arrival of large transactions may temporarily lead to a lock 

contention greater than 0.226 thus destabilizing the system and leading to thrashing. 

 

A validation of the hypothesis in [15] would require a demonstration that for any 

contention level and at any concurrency, throughput decreases in every successive cycle 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 72

while a validation of the hypothesis in [47] requires a demonstration that in systems with 

fixed size transactions thrashing occurs very infrequently at lock contentions below 0.226 

though it may occur more frequently at lock contentions below 0.226 in systems with 

variable sized transactions if a random arrival of large number of larger transactions 

temporarily raises lock contention over 0.226.   

 

An initial inspection of the results presented in the previous section seems to 

indicate a conflict between these results and the hypothesis in [47]. At a concurrency of 5, 

none of the systems exhibited thrashing which is consistent with [47]. However, at a 

concurrency of 10, 6 runs, (three in the in-memory 20 by 1000 and three in the10 by 2000 

MIPS per processor systems) exhibited thrashing. At this concurrency for these two 

systems, the incidence of thrashing seems to be randomly distributed in terms of time of 

occurrence with the earliest incidence occurring after 0.064 seconds and the latest 

incidence occurring after 0.96 seconds. In the 20 by 1000 MIPS system, 11 out of 40 runs 

thrashed at a concurrency of 15 and 25 out of 40 of the runs thrashed at a concurrency of 

20. 

The variability in transaction contention/size in our systems does not account for 

this relatively high incidence of thrashing. At a concurrency of 10, even if all transactions 

in the system at the time thrashing began were the highest contention T4 transactions, 

then by the measurement used in [47], lock contention would be around 0.096 while at a 

concurrency of 20, if all transactions in the system were T4 transactions, lock contention 

would be around 0.2. In both cases this is significantly below the threshold of 0.226 

prescribed by [47].  



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 73

In fact, in the 10 by 2000 MIPS system, none of the runs in which thrashing 

occurred at a concurrency of 10 contained 10 T4 transactions at the time thrashing began. 

At this concurrency the largest number of T4 transactions in the system at the time 

thrashing occurred was 7 the lowest was 3 and the mean was around 4 – the same mean 

as for those runs in which thrashing did not occur.  Similarly, in the 20 by 1000 MIPS 

system, the mean number of T4 transactions in the system at the time of thrashing began 

was 8 as against the mean of 6.5 for runs in which no thrashing occurred. In this system at 

a concurrency of 20, in runs in which thrashing occurred the mean number of T4 

transactions was 10.2 as against a mean of 9.5 for those runs in which thrashing did not 

occur.  

 

To confirm these findings we ran the 1000 and 2000 MIPS per processor with fixed 

size/contention transactions using the medium sized T3 transactions in one set of tests 

and the large sized T4 transactions in another set of tests. We had 40 runs at each 

concurrency of 5 and 10 in each system. We had an additional 40 runs at each 

concurrency of 15 and 20 in the 1000 MIPS by 20 processors system. 

 

 In the tests using only T3 transactions, as in the tests using variable sized 

transactions, no thrashing occurred at a concurrency of 5. In each of the other tests 

thrashing occurred once in each test. This was a considerably better performance than 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 74

that achieved in the tests using variable sized transactions and substantially conformed to 

the hypothesis in [47].     

 

In the tests using only T4 transactions as in the tests using variable sized and T3 

transactions, no thrashing occurred at a concurrency of 5. However at higher 

concurrencies the number of runs at which thrashing occurred was quite high. For 

example at a concurrency of 10, 15 out of the 40 runs in the 1000 MIPS per processor 

system and 27 out of 40 runs in the 2000 MIPS per processor thrashed. 

 

While an initial reading of these results do not seem to support the hypothesis in  

[47], they also tend to conflict with the hypothesis presented by [15] that throughput 

diminishes with every cycle – these results did not display this tendency at low 

concurrencies. To investigate the performance of 2PL systems at higher concurrencies we 

ran the in-memory 1248 by 4 MIPS system in 4 sets of tests. Each set of tests ran for 8 

cycles (a cycle being the time required to process a transaction when no conflict occurred) 

with the number of transactions completed in each cycle recorded.  

 

The first set of tests used only low contention T2 transactions at concurrencies 

starting at 50 and incrementing by 50 to 1000 while the second set of tests used only 

medium contention T3 transactions at concurrencies starting at 10 and incrementing by 10 

to 200. The third set of tests used a slightly modified version of the variable sized 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 75

transaction model used elsewhere in this chapter. In this modification access to the low 

contention database D2 was used to make all transactions the same size. Thus as before, 

T1, T2, T3 and T4 transactions accessed 1,2,4 and 8 objects respectively from database 

D1 (containing 1000 objects). However in this model, T1, T2, t3 and T4 transactions 

accessed 15,14,12 and 8 objects respectively from database D2 (containing 1000000 

objects). Thus while contention of each transaction class varied, the size of all 

transactions was the same. This variation was used to make cycles easily identifiable 

since all transactions require the same processing time. The fourth set of tests used only 

high contention T4 transactions at concurrencies starting at 10 and incrementing by 10 to 

100. The results of these tests are presented in Figures 3.34 to 3.37 below.   

 

The results shown in these graphs partially confirm the hypothesis in [15] that once 

a threshold concurrency is passed, throughput drops consistently in each successive 

cycle. The threshold concurrency at which this occurs varies inversely with the contention 

of the transactions in the system. Thus, with T2 transactions this threshold occurs at a 

concurrency of around 150, for T3 transactions this threshold occurs at a concurrency of 

around 30 and with T4 transactions this threshold occurs at a concurrency of around 10.  

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 76

0

50

100

150

200

250

0 100

200

300

400

500

600

700

800

900

1000

concurrency

th
ro

ug
hu

t

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5
cycle 6
cycle 7
cycle 8

 

  Figure 3.34: Throughput of T2 transactions per cycle over 8 cycles 
 

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

concurrency

th
ro

ug
hp

ut

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

 

  Figure 3.35.  Throughput of T3 transactions per cycle over 8 cycles 
 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 77

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

concurrency

th
ro

ug
hp

ut

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5
cycle 6
cycle 7
cycle 8

 

  Figure 3.36.  Throughput of the system with fixed size variable contention transactions per 
cycle over 8 cycles 

 

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

 

  Figure 3.37: Throughput of T4 transactions per cycle over 8 cycles 
 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 78

Interestingly, in the variable contention fixed size system while the size and mean 

number of items required from the high contention database is the same as for the system 

composed entirely of T3 transactions, the behavior of the systems is quite different. The 

former has a higher initial throughput in the first cycle but has a more precipitous fall in 

throughput in later cycles. As well, in the variable contention fixed size system, the 

threshold concurrency is around 20, 10 below the system composed entirely of T3 

transactions. 

 

While they seems to be conflict, the results presented in this section can be 

reconciled with the hypothesis in  [47] if one makes a distinction between the incidence of 

thrashing and the probability of thrashing. While our results show a fairly high incidence of 

thrashing at low concurrencies, they also show that at any point in time, the probability of 

thrashing is indeed extremely low.  

 

For example, in the tests using only T3 transactions at a concurrency of 10, of the 

349607 cycles completed, only 2 - that is 0.000286% of cycles completed exhibited 

thrashing. In the tests using the variable sized transactions, using the mean required 

processing time per transaction as the length of a cycle, of the 331765 cycles completed, 

only 6 - that is 0.001809% of cycles completed exhibited thrashing. In the tests using only 

T4 transactions at a concurrency of 10, of the 113030 cycles completed, only 41 - that is 

0. 036273% of cycles completed exhibited thrashing. 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 79

Thus, on the one hand, a very significant number of runs in the high-speed in –

memory systems exhibited thrashing within 1 second of commencing operation while on 

the other hand, the proportion of cycles in which thrashing occurred was very small. These 

two seemingly contradictory conclusions can be reconciled by the extremely high number 

of cycles completed by the very fast in-memory systems. That is, while the probability of 

thrashing is very small at low concurrencies, given a constant arrival of sufficient medium 

to high contention transactions, the system will eventually thrash even at low 

concurrencies.  In in-memory systems where a very large number of cycles can be 

completed very quickly, this thrashing will often occur within 1 second of operation. 

 

The acceptability of this small probability of thrashing depends on the nature of the 

system. If the system is such that the availability of transactions enables continuous 

processing at a concurrency of around 10 and over for a very large number of cycles, then 

even this small probability of thrashing is unacceptable since it nevertheless translates to 

a high incidence of thrashing over time - particularly in high-speed in-memory systems 

where it occurs very quickly. On the other hand, if the availability of transactions is such 

that they can be cleared before the arrival of a new packet of transactions, then the small 

probability of thrashing also translates to a low incidence of thrashing over time and is 

thus likely to be acceptable to users.  

 

 

 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 80

3.7 Summary  

In this chapter we outlined three concurrency control methods 2PL, WDL and 

optimistic and examined their performance relative to each under diverse hardware 

configurations. The salient points raised by the results presented in this chapter are- 

1. In all our tests, WDL and optimistic concurrency control outperformed 2PL by a 

wide margin on equivalent hardware at concurrencies of 20 and over. This is 

consistent with the well-known observation that in systems with abundant hardware 

capacity, 2PL performs relatively badly. 

2. The rates of throughput achievable by in-memory systems under 2PL, WDL and 

optimistic concurrency control are massive with throughputs of over 40000 

transactions per second being achieved in the fastest of our in-memory systems.  

3. While average throughput under 2PL concurrency control in the in-memory systems 

with fast processors was quite high, this performance was subject to quite large 

variations even at low concurrencies. Indeed, in some runs, throughput in even the 

fastest systems was not very much greater than that achieved by the equivalent 

disk-based systems. 

4. Throughputs under all concurrency control mechanisms in the in-memory systems 

with speeds over 100 MIPS per CPU were well above the best results achieved by 

any concurrency control method in the disk-based systems.  

 

With 2PL in-memory systems capable of addressing 3 gigabytes currently available 

and systems capable of addressing 6 gigabytes of memory due to be released soon, 



Chapter 3. An Analysis of the Behavior of Concurrency Control Mechanisms                                                            

  

 81

these results seem to indicate that for many organizations, the best way to improving the 

performance of their transaction processing systems lies in switching to in-memory 

systems rather than improving the performance of their disk-based systems. This is 

particularly so since the cost of memory is now relatively low. 

 

However, for those organizations that have very large databases that cannot fit into 

6 gigabytes, the option-of an in-memory database is not viable. For these organizations, 

the only way of increasing throughput is by improving the performance of disk-based 

concurrency control. In the following chapters we examine how the performance of disk-

based systems can be improved by effectively harnessing very high concurrencies.   

 



    

     

 

82

   

 

Chapter 4 

 

New Strategies for Improving the Performance of 

2PL Concurrency Control 

 
 

 

4.1   Introduction 

 

For those organizations that have very large databases that cannot fit into an in-

memory database, the only way of increasing throughput is by improving the performance 

of disk-based concurrency control. This is particularly pertinent for 2PL concurrency 

control, which remains virtually the only concurrency control mechanism commercially 

used. As well, while in-memory systems are now becoming available, disk-based systems 

are dominant and are likely to remain so for some time.  Because of this commercial 

importance of disk-based 2PL systems, in this chapter, we investigate how the throughput 

of such systems can be improved by manipulating contention.    



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control  

      

 

83

   

 As indicated in the previous chapter, 2PL systems are susceptible to thrashing. 

This problem is particularly pronounced at lock contentions greater than 0.226 but, as 

shown in the previous chapter, can also be a serious problem at much lower lock 

contentions if the availability of transactions is such that the system can continuously 

process for a very large number of cycles. In this chapter we also address the issue of 

managing thrashing.  

 

4.2   Improving the Performance of 2PL by Manipulating Contention   

 

Under standard 2PL concurrency control, arriving transactions are allowed into the 

system on a first come first serve basis. Only the permitted level of concurrency restricts 

entry into the system. We propose a contention-based scheduler that measures 

transactions’ contention as they arrive sorts these transactions into queues of transactions 

of similar contention and then manipulates the number of transactions allowed into the 

system by the contention class. By doing so, the contention-based scheduler can 

dramatically increase the system's throughput.  

 

The rationale behind this manipulation is that lower contention transactions have a 

lower probability of being involved in a conflict. It is thus possible to increase the effective 

level of concurrency by permitting a high proportion of low contention transactions entry 

into the system while restricting the number of high contention transactions allowed entry 

into the system.  This is because the increase in throughput gained by increasing the 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 84

number of lower contention transactions is larger than the throughput lost by reducing the 

higher contention transactions.   

 

Besides increasing the throughput of lower contention transactions, because the 

number of transactions of each type allowed into the system is determined by the 

scheduler rather than by the arrival of transactions, the system is not destabilized by the 

random arrival of a large number of larger transactions thus reducing the probability of a 

cusp catastrophe and consequent system thrashing. As such, this contention-based 

scheduler is an extension of a suggestion in [47] that limiting the number of larger 

transactions can control thrashing. 

 

4.2.1  Mechanical Principles 
 

A description of the operation of the contention-based scheduler is as follows. As 

transactions arrive, the scheduler does a pre-fetch for each transaction to establish its 

contention and then places it on its appropriate queue. Such a pre-fetch is only for the 

purposes of estimating contention and does not actually acquire or release locks. Having 

sorted transactions according to their contention, the scheduler ensures that no more than 

the prescribed number of each transaction type is allowed into the system. The schema 

for such a scheduler is shown in Figure 4.1 below. 

In Figure 4.1, at time 1, a new transaction Tn arrives. The contention-based 

scheduler determines the transaction’s contention and having determined this puts it at 

the end of its appropriate queue (time 2). At time 3, an active transaction Ti completes. 

The scheduler notes this completion and adjusts its computation of the numbers and 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 85

proportions of transactions released into the system. At time 4, it calculates which type of 

transaction is to be released into the system. It then goes to the appropriate queue and 

releases the transaction at the head of this queue into the system. 

 

 
Figure 4.1.   A diagramatic illustration of the contention-based scheduler 

  

 

 As indicated above, in order to determine each transaction’s contention the 

contention-based scheduler does a pre-fetch to measure a transaction’s contention-size. 

In order to be viable, this pre-fetch needs to be effected at a minimal cost. This can be 

accomplished by implementing the pre-fetch as a memory only operation. Here, a 

transaction does a pseudo-execution. If a required item is found in cache its contribution 

to contention is calculated. If an item is not found in cache, its contribution to contention is 

assigned a default value based on the average contention of objects found on disk.  



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 86

Where both the number and contention of objects that need to be acquired from 

disk is unknown because the choice of object is dependent on predicate satisfaction, the 

estimation of both the number and contention of the objects can be assigned a default 

value. One heuristic for determining this default could be that the where the number of 

objects required from disk is unknown, this number could be set by dividing the number of 

objects a transaction has acquired from cache by the proportional hit rate of objects found 

in cache.  

 

For example, let us assume that in a system with a cache hit-ratio of 0.625, a 

transaction that has acquired 16 objects from cache requires an unknown number of 

objects from disk. Under the suggested heuristic, the 16 objects acquired from cache 

would be divided by 0.625 thus determining the approximate number of objects required 

from disk. Since in general, all high contention items are in cache, any imprecision in 

assigning a default contention to items not found in cache is likely to be of minimal 

consequence. The robustness of the contention-based scheduler to imprecision will be 

shown in a later chapter when the results for the performance of the contention-based 

scheduler are presented.  

 

4.3   Scheduling Heuristics 

 

In section 4.1 we showed that the contention-based scheduler sorts transactions 

into queues by their contention. What we did not determine was how to measure each 

transaction’s contention in a system with variable sized/contention transactions and how 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 87

to determine the appropriate number of each transaction type to allow into the system. In 

this section, we present a set of equations to measure transactions’ contention and some 

algorithms for determining the maximum numbers of each transaction type to allow into 

the system.  

 

4.3.1  The Measurement of Contention 
 

 

In order to determine how many transactions of each type to allow into the system, 

the contention based-scheduler needs to be able to measure contention. While there are 

several equations that measure contention such as those found in [15], [47] and [48] all of 

these have deficiencies Vis a Vis our requirements. In [47] and [48] the measurement of 

contention is dependent on the level of concurrency while for our requirements we need a 

measure of contention that is independent of concurrency. As well, all the equations that 

we have seen, assume that data only comes from one data store and that all objects in 

that data store have an equal probability of being accessed. However, in typical 

applications, not all data objects are accessed with equal probability. The equations 

presented here address these problems. Our equation for measuring any transaction 

class Ta's contention is - 

 ∑
=

=
j

ik
S )A(O )p( kaT                                                 (4.1) 

Here Oi to Oj are the objects that transaction Ta requires, A(Oi) to A(Oj) are 

each object's probability of being required in any access and S is the mean size of all 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 88

transactions in the system. In a database where all objects are accessed with the same 

probability, for any object,  its A is simply 1/D where D is the size of the database. In a 

database where objects do not have the same probability of being required in an access, 

each object's A is determined historically.  Alternatively, a database can be partitioned 

into groups of objects. Here, where Dx is the group to which objects Oi belongs and k is 

the probability that in any access the object required will come from Dx, an object Oi's  A 

can be calculated by -  

A(Oi ) =k/ Dx                                                                (4.2)  

Equation 4.2 assumes that each object in a group has the same probability of being 

required in an access as any other object in that same group and that each object in a 

group has a different probability of being required in an access to any object in a different 

group. 

 

To illustrate our equations, let us assume a database where there are two data 

stores- D1 with 1000 objects. Let us further assume that the system consists of four 

transaction types  -transactions of type T1 which represent 20% of transactions and 

require 1 object from D1 and 3 objects from D2, transactions of type T2 which represent 

20% of transactions and require 2 objects from D1 and 6 objects from D2, transactions of 

type T3 which represent 35% of transactions and require 4 objects from D1 and 12 objects 

from D2 and transactions of type T4 which represent 25% of transactions and require 8 

objects from D1 and 24 objects from D2.    



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 89

Since one in four accesses is to an object in D1, k for D1 is 0.25 and thus for any 

object Oi in D1, by equation 3.2, A(Oi ) evaluates to – 

 

1/(1000/0.25)=0.00025.  

 

By similar calculations, A(Oj) for D2 is 0.00000075. The average size of 

transactions, S, is 16. Thus, the contention of transactions of type t1, p(T1) evaluates to – 

 

(16*(1*0.00025))+(16*(3*0.000000075))= 0.0040036 

 

By similar calculations p(T2) evaluates to 0.0080072, p(T3) evaluates to 0.0160144 

and p(T4) evaluates to 0.0320288.  

Thus, besides allowing for the calculation of contention by transaction class, 

equations 4.1 and 4.2 allows us to calculate contention in systems containing sets of 

objects with different access probabilities such as databases with hotspots. In our 

example D2 is the standard set of objects while D1 is the set of objects that are hotspots. 

 

Our estimation for the first cycle throughput of any transaction type, say transaction 

class Ta ,is- 

(n r(Ta ))(1- p(Ta) /2)(n-1)                                                 (4.3) 

This modifies the equation in [15 ] by adding the expression r(Ta ) and replacing 

mean contention p ,with p(Ta) . Here, r(Ta )  is the proportion of transactions that belong 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 90

to class Ta and p(Ta) is, as per equation 4.1, the contention of each transaction belonging 

to transaction class Ta. As in [15 ], n is the level of concurrency. These changes allow for 

prediction of throughput by transaction type rather than in aggregate. Thus for example, 

given the transaction model used to illustrate equations 4.1 and 4.2 and given a 

concurrency of 70, the predicted throughput of T1 transactions in the first cycle is  

 

(70 x 0.2) x (1-0.0040036/2) (70-1) =12.  

 

By similar calculations, at this concurrency, the estimated first cycle throughput of 

T2, T3 and T4 transactions is 11, 14 and 6 respectively and total throughput is thus 43.          

          

                                            

4.3.2   Scheduling by Transaction Type 
 

The algorithms presented in this section are heuristic and while they improve 

performance, they are not necessarily optimal. There are two reasons for this. Firstly, in 

systems where transactions vary in size or contention, there is a problem in determining 

the contention at which peak throughput occurs since each transaction type reaches its 

peak at a different concurrency level5.  The second reason our algorithms are heuristic is 

because while the contention-based scheduler may set the upper limits for the number of 

any transaction type allowed into the system, there is no guarantee that there will always 

be sufficient numbers of a particular transaction type to satisfy this upper limit. That is, 

                                            

5 In systems with homogeneous transaction types there is a regular relationship between aggregate contention and peak 
throughput in each cycle. 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 91

some transaction types may be cleared at a faster rate than their permitted level in the 

system.  

 

Given these limitations, we present 2 heuristic algorithms. Our first algorithm is as 

follows. Firstly we determine each transaction class ’contention as per equation 4.1 as well 

as the mean system contention. We then determine the notional system concurrency at an 

aggregate contention of 2.6 given the mean contention. That is, where m is the mean 

system contention, notional system concurrency Cn is – 

 

Cn =2.6/m                                                                        (4.4) 

 

The reason for choosing 2.6 as the aggregate contention is that it approximates the 

total contention at which throughput peaks. The derivation of this peak aggregate 

contention is dealt with in more detail in a subsequent subsection.   

 

In our next step we calculate each transaction class ’contention as if that class was 

the only transaction type in the system. For any transaction type Ta our approximation of 

transaction type Ti s’  “isolated” contention is –  

I(Ta)= p(Ta)( p(Ta)/m)                         (4.5) 

 

For each transaction type Ta , where r(Ta ) is the proportion of all transactions that 

naturally belong to Ta (as in equation 4.3) we define n(Ta) as- 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 92

n(Ta)= r(Ta )Cn                                                              (4.6)  

Next, we calculate each transaction class’ U by dividing its I as derived in equation 

4.5, by the I of the lowest contention class. For any transaction class, say Ta, we then 

define its B as- 

 B(Ta)= U(Ta)n(Ta)                                                       (4.7) 

In our final step, we determine the maximum number of each transaction type 

allowed into the system. For any transaction class Ta in a system with transaction classes 

i to j, the maximum number of transactions of a class Ta allowed into the system is – 

Q(Ta)=( ∑j
k=iB(Tk) r(Ta))/ U(Ta)                               (4.8) 

   
We use the transaction model outlined in section 4.3.1 to illustrate equations 4.1 

and 4.2 to illustrate the calculation of the maximum number of each transaction type 

allowed into the system by our first algorithm.  As shown in section 4.3.1, the contentions 

of the transaction classes in our illustration model are around 0.004, 0.008, 0.016 and 

0.032 for transaction classes T1, T2 , T3 and T4  respectively.  Given the natural 

proportion of each transaction class as outlined in section 4.3.1, m evaluates to 0.016 and 

thus, under equation 4.4 Cn =2.6/m =162.5.  

 

By equation 4.5, I(T1) = 0.004*(0.004/0.016) = 0.001 and by similar calculations we 

get  I(T2) =0.004, I(T3) = 0.016 and I(T4).  Since T1, T2 , T3 and T4  transactions 

represent 20%, 20%, 35% and 25% of transactions respectively and since by equation 4.4 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 93

Cn evaluates to 162.5, by equation 4.6, n(T1) = 162.5*0.2=32.5 and by similar calculations 

n(T2) = 32.5, n(T3) =56.875 and n(T4) =40.625. For our illustration model U(T1)=1, 

U(T2)=4, U (T3)=16 and U(T4) =64. Thus, by equation 4.7 B(T1) =1* 32.5=32.5.  

Similarly, B(T2)= 130, B(T3)= 910, B(t4)= 2600 and ∑4
k=1B(Tk) =3672.5. Finally, by 

equation 4.8, Q(T1)=( 3672.5*0.2)/1=734.5 while Q(T2)= 183.5, Q(T3)= 80.4 and 

Q(T4)= 14.34375.  

 

We now use our running transaction model, algorithm 1 and equations 4.1 to 4.8 to 

illustrate the predicted effect of our scheduler on throughput. Because each transaction 

has the same proportion of accesses to each of the two data stores, the frequency of 

access under our scheduling is unchanged from that derived in section 4.3.1 and remains 

0.00025. However, because of the disproportionate number of low contention transactions 

allowed into the system, the mean transaction size, S, is changed from the 16 derived in 

section 4.3.1 to 6 under our scheduler. This changes the contentions of each transaction 

class to 0.0015, 0.003, 0.006 and 0.012 for transactions T1, T2, T3 and T4 respectively. 

As a result, by equation 4.3, the estimated first cycle throughputs of each transaction class 

are 344, 41, 4 and 0.3 for transaction types T1, T2, T3 and T4 respectively. This is against 

the first cycle throughputs without the scheduler which, at a concurrency of 70, in section 

4.3.1 had an estimated throughput of 12, 11, 14 and 6 for transaction types T1, T2, T3 and 

T4 respectively.                                                                   



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 94

Our second algorithm is simpler and is constructed as follows. Firstly we derive I 

for each transaction class as per equation 4.5. For each transaction class, we divide the 

aggregate contention of 2.6 by that transaction class’ I. This gives a notional peak 

concurrency for each transaction class if it were the only transaction class in the system. 

Finally, we multiply each transaction class’ peak by the proportion of its natural 

representation in the system giving the maximum number of transactions of a particular 

class allowed into the system. Thus, for any transaction class Ta, the maximum number of 

Ta  transactions allowed into the system is – 

 Q(Ta)= (2.6/ I(Ta)) r(Ta)                                             (4.9) 

Thus, under our second algorithm, Q(T1)=520, Q(T2)=130, Q(T3)= 57 and 

Q(T4)=10.  

 

4.3.3  Setting Transactions priority 
 

While the algorithms presented above may increase aggregate throughput, higher 

contention transactions  "subsidize" lower contention transactions. To compensate the 

higher contention transactions for their decreased success rate, we institute a priority 

system such that a transaction with a higher contention has a higher priority than a 

transaction with a lower contention. Thus, if a T4 transaction conflicts with a T3 

transaction, it is the T4 transaction, which obtains the lock. If the conflict occurs after the 

T3 transaction has gained its lock, then the T3 transaction is rolled back to the point where 

it acquired the lock on the disputed item and the T4 transaction is given the lock. Similarly, 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 95

T3 transactions have priority over T1 and T2 transactions and T2 transactions have priority 

over T1 transactions. 

 

The effect of this prioritization is to increase the success rate of higher contention 

transactions without dramatically affecting the success rate of lower contention 

transactions. Consequently, the throughput of each transaction class under the scheduler 

should either increase or be close to the throughput of that transaction class under 

systems without the scheduler. The only difference between conventional rollback and the 

rollback suggested in this chapter is that with the contention-based scheduler a 

transaction’s priority would be determined by its contention. This requires automatic 

checkpointing by the DBMS such that a checkpoint is automatically inserted into the 

transaction by the DBMS every time a new object is acquired. As well, to avoid problems 

associated with restoring rolled back values, all a transaction’s updates are done in its 

own workspace and are not applied to the actual data until committal. Thus, a rollback by 

a transaction only involves a move back to the checkpoint and does not require restoring 

original object values6. 

 

4.3.4  The Determination of Aggregate contention 
 

As indicated in section 4.3.2, an important part of our algorithms is determining the 

aggregate contention at which throughput peaks. This is quite problematic since firstly, as 

indicated in the previous chapter, past a certain threshold, throughput per cycle falls in 
                                            

6 It should also be noted that rollback violates one of the principles of 2PL – that is, that all locking is done in one phase 
and unlocking in another. However, rollback is so widely used, that we do not consider this violation to be a serious 
problem to our algorithm. 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 96

every successive cycle and the rate at which it falls increases with concurrency. This 

results in total throughput peaking at different concurrencies/aggregate contentions 

depending on the number of cycles run.  

 

This is illustrated in Figure 4.2 below, which is a distillation of the graphs presented 

in the previous chapter and shows both actual peak contentions as well as regressions on 

the mean using the power and log regressions built into the "EXEL" spreadsheets charting 

facilities. Here, in every cycle aggregate throughput at every concurrency is calculated 

and the concurrency at which throughput is highest recorded. This concurrency is then 

divided by contention per transaction giving the aggregate peak contention. The 

contentions used are calculated in accordance with equation 4.1. Thus, the tests using 

only T2 transactions have a contention of around 0.004 per transaction, the test using only 

T3 transactions have a contention of around 0.016 per transaction and the tests using only 

T4 transactions have a contention of around 0.064 per transaction.   

 

As Figure 4.2 shows, for fixed size transactions, whatever the contention per 

transaction, there is quite a high level of consistency in the aggregate level contention at 

which peak throughput is achieved. However, this peak aggregate level of contention 

changes with every cycle. Thus the most desirable level of concurrency/aggregate 

contention depends on the nature of the system. If the system operates with transactions 

arriving in packets that can be cleared before the arrival of a new packet of transactions 

then a level of aggregate contention of around 2.6 (the peak in the first cycle) is desirable. 

If, on the other hand, the number of available transactions allows for a long period of 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 97

continuous processing then a lower level of contention is desirable. In our algorithm we 

arbitrarily opt for the peak in the first cycle.   

 It should be observed that while the algorithms used for the contention-based 

scheduler are aimed at improving the performance of systems containing transactions with 

varying contentions, the peak aggregate contention upon which the number of each 

transaction type allowed into the system is determined, is calculated with reference to 

fixed sized transactions. This is necessary since in multiple transaction class systems, in 

any cycle, there is no unique aggregate contention at which the performance of each 

transaction type is maximized.  In general, a high level of concurrency favors lower 

contention transactions while a low level of concurrency favors higher contention 

transactions. Thus, the peak contentions achieved with fixed transactions is used as a 

reasonable compromise. 

 
Figure  4.2. The cyclical relationship between peak aggregate contention and throughput 

  



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 98

4.4   Controlling Thrashing 

 

While our scheduling algorithms increase throughput over an extended period of 

time relative to that achieved under standard 2PL, because they are essentially a front 

end for a 2PL concurrency control system, they are still susceptible, to thrashing. Thus, in 

this section we investigate mechanisms to control thrashing. Before outlining our proposal, 

we first outline the causes of thrashing in a locking system.  

 

It is well known that thrashing occurs when all transactions are locked so that none 

can proceed. If deadlocks are unresolved, then the two transactions involved in the 

deadlock become the root of the thrashing problem as other transactions form a chain 

behind the two deadlocked transactions with no transaction being able to resume without 

the deadlock being broken. Traditional 2PL systems have deadlock breaking mechanisms 

to prevent such situations but they do not have mechanisms to break a circular deadlock 

involving 3 or more transactions such as illustrated in Figure 4.3.  

 

In Figure 4.3, which is constructed from actual data from one of our tests7, three 

transactions are involved in a three-way deadlock. Transaction 27153 is locked by 

transaction 27134 at data item 656. Transaction 27134 is in turn blocked by transaction 

27128 at data item 19 and transaction 27128 is in turn blocked by transaction 27153 at 

                                            

7 In-memory, 2 billion MIPS per processor at a concurrency of 10. 
 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 99

data item 794. All other transactions form a chain behind these three transactions. The 

tendency of circular deadlocks of depth 2 and over to occur increases with both contention 

and concurrency. 

data item Lock owner               Locked Transactions
889 27153 27166 27219
794 27153 27128
19 27128 27134

656 27134 27153 27171

661 27191 27216
362 27134 27154
286 27128 27189

375 27128 27191

 

 Figure4.3.  An illustration of a three way deadlock 
 

Traditional 2PL systems are generally only equipped to deal with deadlocks 

involving two transactions thus rendering themselves susceptible to circular deadlocks 

involving multiple transactions at their root. Limiting concurrency reduces the number of 

restarts required to eliminate thrashing as well as keeping the cost of processing restarts 

to memory only processing by enabling access invariance. However, this is an unsuitable 

solution for our scheduling algorithms whose effectiveness is based on a high level of 

effective concurrency. Given that a relatively high level of concurrency increases the risk 

of thrashing, finding an economical way of managing thrashing is required where a high 

level of concurrency is used.   



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 100

One possible method of controlling thrashing while allowing a high level of 

concurrency, is to keep a graph of all conflicts (as in Figure 4.3) and restart only the 

transactions that are at the root of a deadlock. In Figure 4.3 this would mean restarting 

transaction 27153 or transaction 27134 or transaction 27128.  Theoretically, this process 

can be extended to an arbitrary depth. However, the cost of navigating to trace the root of 

any potential circular deadlock incurs a cost.  Once the root of a lock chain becomes 

excessively deep it is cheaper to restart all transactions than it is find the root of the 

conflict and restart it only.   

 

An alternative thrashing control strategy is to allow the proportion of blocked 

transactions to reach a threshold and then restart all blocked transactions. The rationale 

behind this method is the finding in [47] that 2PL systems become unstable once the 

proportion of blocked transactions exceeds 0.378.  

 

However, keeping the proportion of blocked transactions below 0.378 by restarting 

the most recently blocked transaction does not ensure that thrashing will not occur. For 

example, in Figure 4.3, restarting any of the 10 blocked transactions other than 

transaction 27153 or transaction 27134 or transaction 27128 will not solve the thrashing 

problem. Thus, if one cannot identify the root of the thrashing problem, the only solution is 

to restart all blocked transactions.  

 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 101

However even this policy does not ensure that thrashing will not occur. For 

example, let us assume the situation shown in Figure 4.3. Let us further assume that all 

transactions are restarted if on restart and obtain their locks in the same sequence as they 

did originally except that transaction 27153 obtains its lock on item 656 before transaction 

27134. With this solution the root of the thrashing problem would be eliminated and if the 

system proceeded without further interference all the transactions would eventually be 

cleared.  

 

However, the policy of restarting all blocked transactions once the proportion of 

blocked transactions exceeds 0.378 would not allow our example system to clear without 

interference. Until transaction 27153 cleared, all the other transactions would return to 

their blocked state. The system perceiving that the blocked proportion exceeds 0.378 

would then restart all the blocked transactions again. Thus immediate restart is 

susceptible to a high number of restarts. This example also indicates another problem with 

restarting all blocked transactions once a threshold is passed - that transactions will be 

restarted whether or not a circular deadlock exists. That is, transactions are restarted even 

though if left alone the system would clear. 

 

Two solutions to the problems outlined above are – 

1. Increase the proportion of blocked transactions permitted before restarting 

transactions. Increasing the threshold allows systems that are not involved in a 

circular deadlocked more time to clear thus reducing unnecessary restarts. The 

cost of this method is that it allows transactions to remained blocked for an 



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 102

extended time even when thrashing is inevitable due to the existence of a circular 

deadlock.  

2. Change the sequence that transactions obtain their locks thus reducing the 

probability that the same wait chain will recur. One method of doing this is by time-

stamping each restarted transaction with the system clock plus a random number 

between 0 and the processing time required by an average transaction. A 

transaction marked for restart does not commence until the system clock equals its 

time-stamp. The cost of this method is that it delays the restart of some 

transactions thus increasing their response time. 

 

For thrashing control used in conjunction with our scheduling algorithms we also 

suggest the following modification - instead of setting a system wide threshold of blocked 

transactions, we set this proportion separately for each transaction class. That is, if a 

threshold of 0.356 is set for blocked transactions, if the proportion of blocked T4 

transactions exceeds 0.356 and all other transaction types are inside their thresholds, 

then only blocked T4 transactions are restarted. We do this since for systems using our 

contention-based scheduler, our priority system makes the wait chains of higher 

contention transactions independent of the lower contention transactions in the system. 

Thus there is no sense in restarting high contention transactions if the low contention 

transactions exceed their threshold since the restart of the low contention transactions will 

have no effect on the higher contention transactions.  



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 103

 4.5 Summary  

The primary purpose of this chapter was to introduce the contention-based 

scheduler. This scheduler operated by measuring transactions’ contention as they arrived 

sorted these transactions into queues of transactions with a similar contention and then 

manipulated the number of transactions allowed into the system by the contention class. 

For its operation, the contention based scheduler needed- 

 

1. A mechanism that could enable it to estimate transaction’s contention 

reasonably cheaply. In section 4.2.1 we developed this mechanism via a 

pseudo in-memory access of data. 

2. A method for calculating transactions’ contention that was independent of 

concurrency and that could calculate contention in situations where not all 

objects in data stores have an equal probability of being accessed. We 

presented equations that addressed this problem in section 4.3.1. 

3. A method for determining the maximum number of transactions of each type 

allowed into the system.  As indicated in section 4.3.2, any method for 

determining the maximum number of transactions of each type allowed into 

the system is necessarily heuristic rather than deterministic. Accordingly, the 

methods presented in section 4.3.2 were heuristic. 

4. A method to compensate the higher contention transactions for their subsidy 

to lower contention transactions. In section 4.3.3 we developed a priority 

system such that a transaction with a higher contention had a higher priority 

than a transaction with a lower contention in lock acquisition.   



Chapter 4.  New Strategies for Improving the Performance of 2PL Concurrency Control 

   

 104

5. While the contention-based scheduler substantially improved performance, it 

did not address the problem of thrashing to which 2PL based systems are 

susceptible. Accordingly, in section 4.4 we analyzed the causes of thrashing 

and proposed some simple mechanisms for dealing with it.   

 

 

 

 

 



  

 

105

   

    

 

 

 

Chapter 5 

 
Enhanced Memory Access 

 

 

 

5.1 Introduction 

 

In chapter 3 we demonstrated that in-memory systems substantially outperform 

disk-based systems. Thus, it seems that for those organizations that can fit their data into 

memory, the best way to improving the performance of their transaction processing 

systems lies in switching to in-memory systems rather than improving the performance of 

their disk-based systems.  

 

 



Chapter 5. Enhanced Memory Access    

 106

However, for those organizations that have very large databases that cannot fit into 

memory, the option-of an in-memory database is not viable. For these organizations, the 

only way of increasing throughput is by improving the performance of disk-based 

concurrency control.  In chapter 4 we presented the contention-based scheduler as a way 

of improving the performance of disk-based systems. This scheduler accepted the 

generally held view that there is a tradeoff between access invariance and high levels of 

concurrency. In this chapter we challenge this assumption and examine how a modified 

variation of access invariance that we call enhanced memory access, (EMA) can be used 

to allow very high levels of concurrency in the pre-fetching of data and how this pre-

fetching can yield close to in-memory performance in disk-based systems. 

 

5.2  An Overview of the Principles of EMA 

 

EMA is an extension of the concept of pre-fetching as presented in [17]. Here, all 

transactions are executed without concurrency control to pre-fetch their data into memory. 

Once transactions have been pre-fetched, their committable execution can be effected 

entirely in memory. Figure 5.1 below, illustrates the basic operation of a pre-fetching 

system. 

 

 

  



Chapter 5. Enhanced Memory Access    

 107

 

Figure  5.1.  A Sample state for a pre-fetching system. 
 

In Figure 5.1, transactions T1 to T10 have successfully pre-fetched and are 

engaged in committable execution. While these transactions are processing, no memory 

time is available. However, those transactions that are engaged in disk access to pre-fetch 

their data can continue in their efforts. Should any of transactions T1 to T10 be blocked, 

then memory time is made available to those transactions requiring such time for their pre-

fetching. If any of transactions T1 to T10 completes, then additional memory time is made 

available to those transactions requiring such time for their pre-fetching – unless there are 

transactions that have completed their pre-fetching, say transactions T11 to T21, that can 

take the place of the committing transactions and begin committable execution 



Chapter 5. Enhanced Memory Access    

 108

themselves. Given a sufficient number of available transactions, such a system can yield 

throughputs near those achieved by in-memory systems. 

 

The major impediment to the success of the process outlined above is that, as 

indicated in previous chapters, at high concurrencies, access invariance does not hold. 

That is, at high concurrencies, there is a high probability that the conditions satisfying 

predicates which determine what data is pre-fetched will change by the time a query is 

ready to embark on a committing execution. Thus data that has been pre-fetched no 

longer satisfies the required predicates consequently requiring disk accesses. For this 

reason, where pre-fetching is used, the number of items pre-fetched is limited. 

 

The basis of our proposal for EMA is to allow pre-fetching to the maximum limit 

physically possible rather than ensuring  that conditions satisfying a predicate at pre-fetch 

time do not change between pre-fetch time and committal execution. Further, EMA 

ensures that even where conditions do change, the data required to satisfy a predicate are 

also found in memory. While there are several policies and mechanisms that are required 

for a full implementation of EMA, the basic policy that needs to be implemented is that no 

data item can be flushed from memory unless the time-stamp of its last access exceeds 

the timestamp of the oldest transaction in the system. This basic principle is illustrated in 

Figure 5.2 below - a more detailed exposition of the required mechanisms will be provided 

in a later section.    



Chapter 5. Enhanced Memory Access    

 109

 

Figure  5.2.  An illustration of the basic principle behind EMA. 
 

In Figure 5.2,  Tk is the newest transaction entering the system - it requires objects 

Oi and Ok. Object Oi is already in memory having been pre-fetched by transaction T1. 

Thus, transaction Tk merely updates the time-stamp on object Oi and both pre-fetches 

and timestamps object Ok.  Let us assume that transaction T1 is committing. On 

committal, it changes the time-stamps and values of the objects that it has used (O1, O8 

and Oi). For example, this update changes the timestamp and value of object Oi to reflect 

that the committal by transaction T1 was the last access to it. Naturally, a committing 

transaction is the only transaction that can change the value of a data item that is 



Chapter 5. Enhanced Memory Access    

 110

available to all transactions. All other transactions can only modify copies of objects in 

their own workspace. 

 

Object Oi cannot be flushed from memory until transaction Tk completes since its 

update time-stamp is newer than transaction Tk’s time-stamp. Thus, when transaction Tk 

begins its committing execution it can access the most recent value of object Oi from 

memory - (by a committing execution we mean an execution that has the potential to 

commit rather than merely a pre-fetch execution. We do not mean the act of committal). 

 The memory requirements of such a system are quite modest relative to the 

capacity of modern hardware systems.  Equation 5.1 below can be used for approximating 

the maximum possible memory required to support EMA. 

 

E = ((F n) 3 ) G                                                           (5.1) 

 

In equation 5.1, E is memory required, F is the average number of objects 

required per transaction, n is the permitted concurrency (including pre-fetching) and 

presuming that the granularity of retrieval into memory is a page, G is the page size (in 

bytes). To illustrate our equation let us assume that a system has sufficient available 

transactions to operate at a pre-fetch concurrency of 15000 transactions and that its 

transactions are homogeneous with each transaction requiring 16 objects.  Let us further 

assume for simplicity that the objects required by each transaction are almost disjoint and 

that objects are retrieved into memory in pages of 2048 bytes. Given these assumptions, 



Chapter 5. Enhanced Memory Access    

 111

in our example F =16, n=15000 and G = 2048. Thus by equation 5.1 E for this system 

is ((16 x 15000)x 3) x 2048  =1474560000 bytes = 184320000 kb =184.3 mb. 

 

While E indicates the maximum possible memory requirements, in most situations, 

the amount of memory required is in fact far less. For example, if a system has 7500 

hotspot objects permanently in memory and 6 billion objects on disk, and if the objects in 

memory account for 0.625 of all object access requirements, then the amount of memory 

necessary to hold all the required data is approximately 71 megabytes. Memory capacities 

of this order of magnitude are now quite common in home personal computers. 

 

It will be noted that in equation 5.1 we use a constant 3. To illustrate why we use 

the constant 3, we use the state described by Figure 5.2 and call the time at which this 

state occurs time time0. At time time1, when transaction Tk is ready to commit, 15000 new 

transactions have pre-fetched data. However, none of the objects with a time-stamp 

younger than Tk’s has been flushed. Thus, at a pre-fetch concurrency of 15000, a 

memory space for approximately twice the number of objects required by 15000 

transactions is required. As well, since a pre-fetching transaction can only modify copies of 

data in its private workspace, the total space required is triple the number of objects 

required by 15000 transactions. 

 

 

 



Chapter 5. Enhanced Memory Access    

 112

5.3 Classification of Update Predicates 

 

While the basic EMA principle described above allows a large proportion of 

transaction to be processed in memory with a guarantee of integrity, the guarantee of 

integrity does not extend to all transactions. In this section we investigate and classify 

transactions by the nature of their predicates, determine any shortfalls, if any, to their 

execution by the EMA system outlined above. Where shortfalls exist, we suggest 

remedies. 

The first type of transaction we consider is the standard type of update where an 

object is nominated and if it satisfies the condition specified in the transaction’s predicate, 

then the transaction applies its update otherwise it does not. We call the predicate in such 

a transaction predicate1. All the requirements for dealing with transactions with predicates 

of type predicate1 are adequately catered for by the EMA policy as specified above. An 

example of a transaction with predicate1 using SQL syntax is – 

 

 

 update accounts set balance=balance-withdrawal 

     where account_number=12345 

         and 

           balance> withdrawal 

 



Chapter 5. Enhanced Memory Access    

 113

The second type of transaction we consider is one where a choice is offered and 

the object best meeting the required criteria is updated. We call the predicate in such a 

transaction predicate2. An example of a transaction with predicate2 is – 

 

update property  set status to ‘rented’ 

where property_id in (‘p55’, ‘p77’) 

and price = 

  (select min(price) from property 

       where property_id in (‘p55’, ‘p77’)) 

 

In this case, both items are pre-fetched. If item p55 is chosen as the candidate at 

pre-fetch time and if as a result of the execution of another committing transaction p77 

has the lower rental by the time the transaction with the above predicate executes its 

committing execution, then since the updated data is still in memory, all the requirements 

for dealing with transactions with predicates of type predicate2 are adequately catered for 

by the EMA policy as specified so far. 

 

The third type of transaction we consider is similar to predicate2 except that because 

the number of objects to be evaluated is so large, it is impractical to retrieve and retain 

them all in memory and so objects are compared two at a time with the unsuccessful one 

being discarded. We call the predicate in such a transaction predicate3.  An example of a 

transaction with predicate3  (using SQL syntax) is – 

 



Chapter 5. Enhanced Memory Access    

 114

update property  set status to ‘rented’ 

    where property_id in  

       (select min(price) from property  

           where status !=’rented’) 

 

In the example above, if the database contained the identities of all rental 

properties in New York or London, then it would be impractical to retrieve all these 

properties into memory and retain them. Rather, two properties at a time would be 

retrieved and the unsuccessful one discarded until such time as the lowest rental property 

was found. This type of query may cause problems for the EMA method as specified so 

far. If for example, another transaction rented the property selected before the above 

transaction began its potentially committing execution, then the pre-fetched property 

would no longer satisfy the predicate and the system would be forced to re-execute (Note 

that if another query does not update status but lists a new property that’s cheaper than 

the current property, then no further disk access is required).  

 

One solution to the problem faced by a transaction with a predicate of type 

predicate3, is for the system to interpret a pre-fetch as one that retrieves several 

candidates. That is, one ensures that a reasonable range of items are in memory such 

that if the preferred or several candidates are invalidated by the activity of other 

transactions, alternative candidates are still guaranteed to be in memory. 

 

The last type of transaction we deal with, occurs where there is a fork determining 

the choice of items to be retrieved, that is, where the satisfaction of a predicate 

determines which objects will be retrieved and updated. We call the predicate in such a 



Chapter 5. Enhanced Memory Access    

 115

transaction predicate4. As an example of a transaction based on a predicate4, consider a 

caterer choosing a set course for a function that will be either fish based or beef based 

with the choice being dependant on the relative price of fish and beef. The pseudo code 

for such a query could be - 

 

If (Beef price< Fish price) 

         Buy beef, carrots, broccoli, potatoes, and red wine 

           Else 

          Buy fish, lettuce, tomato, cucumber, and white wine. 

 

In this case, if the price of beef at pre-fetch time is lower than the price of fish, then 

beef, fish, carrots, broccoli, potatoes and red wine will be fetched into memory. If, before 

the transaction begins its potentially committing execution, another transaction reduces 

the price of fish below that of beef, then lettuce, tomato, cucumber and white wine may 

need to be fetched into memory.  A simple solution to this type of predicate is to pre-fetch 

all the possible options. In the above example this would mean pre-fetching both the fish 

based and meat based menus. 

 

In terms of memory requirements, the above solution would not be too costly. For 

example, let us assume  - 

1. That the average transaction size without any forks is 16 items, 

2. 25% of transactions entail forked decisions (a very generous allowance), 

3. For all forked decisions the number of items pre –fetched is double when all 

forks are executed rather than when the best candidates are pre-fetched. 



Chapter 5. Enhanced Memory Access    

 116

 Given these assumptions, 75% of transactions require 16 items and 25% require 

32 items. Thus if all forks are considered, the average size of pre-fetched transactions 

rises from 16 to 20 items. Using equation 5.1, this would increase the maximum total 

storage required from 184 megabytes to 230 megabytes. This is still well within the 

capacity of many home personal computers. Besides the extra memory requirements, this 

solution also increases the time required for pre-fetching simply because more items need 

to be pre-fetched. 

 

 An alternative to the solution posited above is to just to live with the possibility that 

some transactions may require data to be re-fetched due to invalidation. This option has 

smaller memory requirements than the preceding solution and is unlikely to significantly 

increase execution costs.  

 

For example, let us assume as above, that 25% of transactions have forked 

decisions. Thus for 75% of transactions, once their data has been pre-fetched no more 

disk access is required. For the 25% of transactions that are forked, the requirement for 

further disk access only arises if the conditions satisfying their predicate are changed. In 

our menu example, either the price of fish must fall or the price of beef must rise. Further, 

the changes must be of sufficient magnitude to change the result of the predicate’s 

evaluation. Table 5.1 below shows some of the possibilities that could occur between the 

time the fish-beef predicate is pre-fetched and the time the transaction begins its 

potentially committing execution. Note, that in table 5.1 only 2 of the possibilities shown 

change the initial pre-fetch predicate’s result – that is, only two of the changes would 

change the menu from a beef based menu to a fish based menu. 



Chapter 5. Enhanced Memory Access    

 117

 

Table 5.1.  An example of the possible effects of changes to a transaction’s predicate 
 

 

Let us be extremely generous and allow the value of a predicate to change 

between pre-fetch time and the time of actual execution in 50% of cases. Thus at most 

12.5% of transactions will require further disk access after pre-fetch (that is half of the 25% 

of transactions that require forked decisions). Let us again be extremely generous and 

allow all changes to a predicate value to be of sufficient magnitude so as to invalidate the 

original pre-fetch. According to [17] in most databases around 0.625 of accesses are to 

cache resident items. If we apply this proportion to the above example then for the 12.5 % 

of transactions whose predicate is invalidated between pre-fetch time and potentially 

committing execution time, 0.625 of the new objects that they require will be in memory as 

hot spots.  

 

Thus, after pre-fetch, the proportion of accesses that are disk accesses is – 

 

(12.5 x 0.375) or (0.125 x0.375)= 0.046875.  



Chapter 5. Enhanced Memory Access    

 118

 

That is, even under the most severe assumptions, over 95 % of data will not require 

further disk access after pre-fetch. 

 

 5.4   Mechanics of the Implementation of EMA 

In order for the EMA to be viable, it requires a mechanism that can perform the 

following functions economically  – 

 

Determine the youngest transaction in the system at the time a transaction commits, 

Determine the oldest transaction currently in the system, 

Record the time of the most recent access for any data object, 

Flush unwanted data items from memory. 

 

In this section we present one possible implementation of an EMA. Figure 5.3 

below, gives an overview of the activity of transactions on entering the system (prior to 

commencing pre-fetch activity) and how this activity determines the youngest (and in one 

special case, oldest transaction) in the system at any point in time.   

   



Chapter 5. Enhanced Memory Access    

 119

 

Figure 5.3: An overview of the activity of transaction on entry into an EMA system. 
 

 

As Figure, 5.3 shows, the system has fixed locations for the oldest, the current 

youngest and the second youngest transactions in the system. If the system is empty, the 

first transaction registers itself as the oldest transaction and copies itself to the second 

youngest transaction’s location. From then on, each transaction entering the system 

follows the same procedure. There are 5 steps involved in this procedure. These are – 

 

1. The transaction copies its details to the youngest transaction location.  

2. The transaction accesses the second youngest transaction location and registers 

its information in the older transaction’s next youngest transaction slot. 

3. The transaction copies the older transaction’s details in its own next oldest 

transaction slot. 



Chapter 5. Enhanced Memory Access    

 120

4. The transaction copies the older transaction’s information to the memory location 

indicated by its hash address. 

5. The transaction copies itself to the previous youngest location. 

 

Thus, each transaction has access to its next and preceding transaction information 

and can access this information in a decentralized way – that is, no long queues are 

formed in accessing this information since the only common resource for which a 

semaphore is required in this phase is that for the youngest transaction location and there 

are relatively few instructions required before this resource is freed. 

 

The composition of the locations identifying the youngest transaction, second 

youngest transaction and each transaction’s marker in the transaction information table is 

the same and is shown in Figure 5.4 below. The procedures performed by transactions on 

transaction markers on completion and exiting from the system are shown in Figure 5.5 

and 5.6 below. 

 

 

Figure 5.4. The composition of transaction markers in the EMA system . 
 

   



Chapter 5. Enhanced Memory Access    

 121

 
 

Figure 5.5.  Exit of the oldest transaction 
 

 

Figure 5.5 shows the procedure that occurs when the exiting transaction is the 

oldest in the system while Figure 5.6 shows the procedure that occurs when the exiting 

transaction is not the oldest in the system. As Figure 5.5 shows, on exiting the system, a 

transaction, Tj, checks the oldest transaction location. It finds that the identity shown on 

this location is the same as its own (that is, Tj is the oldest transaction). Tj copies the 

identity shown in its next youngest transaction slot into the oldest transaction location Tk 

(that is, Tk is now the oldest transaction) and then deletes itself from the transaction 

information table. 

 



Chapter 5. Enhanced Memory Access    

 122

 

Figure 5.6.  Exit of a transaction that is not the oldest transaction. 
 

 

In Figure 5.6, the exiting transaction, Tk, finds that it is not the oldest transaction 

and thus does not change the value of the oldest transaction location. It accesses the 

transaction marker shown in its older transaction slot -Tj,  and replaces the identity shown 

on Tj’s younger transaction slot from Tk  to  Tn. It then accesses its own younger 

transaction  - Tn and replaces the identity shown on Tn’s older transaction slot from Tk to 

Tj . Tk then deletes itself from the transaction information table. Following the procedures 

illustrated by Figures 5.3 to 5.6, it is quite economical to identify both the oldest and 

youngest transactions at any given moment. 

 



Chapter 5. Enhanced Memory Access    

 123

5.4.1 The Management of Data 
 

Under our proposed system, the management of data has the following features – 

1. A fixed number of memory locations are allocated for the storage of data 

to data with each location having an overflow. 

 

2. Each data item is time-stamped every time it is accessed for a pre-fetch, 

data access or committal with the newest access time-stamp overwriting 

the previous time-stamp. While a data value may be flushed by a non-

committing transaction, only a committing transaction can change the 

value of shared data in memory. In addition, when a transaction 

completes, it changes a shared data item’s time-stamp to that of the 

youngest transaction in the system. 

 

3. If a new item is pre-fetched from disk and hashes to a memory location 

that contains no data, then the item along with its time-stamp is written to 

the memory location. If a new item is pre-fetched from disk and hashes to 

the same address as an existing item, if the time-stamp of the current 

data item is older than the time-stamp of the oldest transaction, the 

current data item is flushed and is replaced by the newer data item. If the 

time-stamp of the existing data item is younger than the oldest 

transaction, the new data item is put into an overflow for items hashing to 

that address. If on hashing to a location the overflow already has more 

than 1 item, than each of the items in the overflow is tested to see 

whether they should be flushed.  



Chapter 5. Enhanced Memory Access    

 124

Figures 5.7 to 5.10 below, illustrate this operation. Figure 5.7 illustrates the 

procedure followed by a completing committing transaction while Figures 5.8 to 5.10 

illustrate the importation of data from disk to memory and the flushing of data from 

memory. The implementation of EMA outlined in this section meets all the necessary 

requirements in that it allows for the quick recording and easy maintenance of the 

identities and time-stamps of the newest and oldest transactions in the system.  

 

 
Figure 5.7. The procedure followed by a completing committing transaction. 



Chapter 5. Enhanced Memory Access    

 125

 

Figure 5.8.  The procedure followed when a pre-fetched item hashes to the same address as an 
existing item and the time-stamp of the current data item is older than the time-stamp of the 
oldest transaction. 

 

 

Given easy access to these values, the management of data in memory becomes 

relatively simple. We do not suggest that the implementation of EMA outlined in this 

section is the only possible implementation or even the best possible implementation. 

However, it does illustrate that an economical implementation is possible and that 

consequently, an implementation of EMA is viable. 

 



Chapter 5. Enhanced Memory Access    

 126

 

Figure 5.9. The procedure followed when a pre-fetched item hashes to the same address as an 
existing item and the time-stamp of the current data item is younger than the time-stamp of the 
oldest transaction. 

 

 

 It should be noted that this implementation handles situations where pre-fetched 

data is required by an executing transaction and situations where pre-fetched items are 

not used because they fail to meet predicates on execution. In both cases, these items will 

eventually be flushed when an item is hashed to their location leading to a check of their 

time-stamp.  



Chapter 5. Enhanced Memory Access    

 127

 

Figure  5.10.  The procedure followed when a pre-fetched item hashes to the same address as an 
existing item, the time-stamp of the current data item is younger than the time-stamp of the oldest 
transaction, and overflow already has more than 1 item. 

 

 
 

5.7 Summary   

The purpose of this chapter was to introduce and test the concept of enhanced 

memory access. The basis of our proposal for EMA was to allow pre-fetching to the 

maximum limit physically possible ensuring that when even where the conditions required 

to satisfy transactions’ predicates changed between pre-fetch time and real execution 



Chapter 5. Enhanced Memory Access    

 128

time, the data required to satisfy transactions’ predicates would be found in memory. This 

required that no data item could be flushed from memory unless the time-stamp of its last 

access exceeded the timestamp of the oldest transaction in the system. To ensure that 

required data would not be flushed from memory and that un-required data would be 

flushed from memory, EMA required a mechanism that could perform the following 

functions economically  – 

1. Determine the youngest transaction in the system at the time a transaction 

commits, 

2. Determine the oldest transaction currently in the system, 

3. Record the time of the most recent access for any data object, 

4. Flush unwanted data items from memory. 

 

We also investigated and classified transactions by the nature of their predicates 

and outlined policies that would allow EMA to economically deal with transactions that are 

based on predicate types predicate3 or predicate3.   

 

We presented an implementation of EMA that implemented all the requirements 

outlined above.   

 

 

 



  

 

129

   

 

 

Chapter 6 

 
 

Validation of the Contention-Based 
Scheduler 

 

 

6.1 Introduction 

 

In this chapter we test the performance of our contention-based scheduling 

algorithms. In general, the evaluation systems in this chapter are almost identical to the 

systems used in chapter 3 except that we use the contention based algorithms to 

determine the number of transactions allowed into the system. That is, the hardware, 

transaction, database and processing subsystems are the same as outlined in section 4 of 

chapter 3.  



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 130

Besides being the same as that used in chapter 3, the transaction subsystem used 

in this chapter is the same as that used to illustrate the examples in chapter 4. Thus, as in 

section 4.3.2 in chapter 4, under the first of our scheduling algorithms, algorithm 1, as 

quantified by equations 4.1 to 4.8, the maximum number of each transaction type allowed 

into the system is 734, 184, 80 and 14 for transaction types T1, T2, T3 and T4 

respectively. Similarly, as in section 4.3.2 in chapter 4, under the second of our scheduling 

algorithms, algorithm 2, as quantified by equation 9, the maximum number of each 

transaction type allowed into the system is 520, 130, 57 and 10 for transaction types T1, 

T2, T3 and T4 respectively. 

 

In section 6.2 we compare the performance of our scheduling algorithms against 

standard 2PL when the arrival rate of transactions is very high – 20000 transactions per 

second. Thus the scheduler’s performance is not limited by the availability of transactions. 

As well, in this section we assume that the schedulers can measure the size and 

contention of transactions with perfect accuracy prior to allowing transactions into the 

system. In section 6.3 we modify the conditions used in section 6.2 by introducing a 

margin of error in the schedulers’ measurement of the size and contention of transactions.  

In section 6.4 we modify the conditions used in section 6.2 by restricting the arrival rate of 

transactions to 1000 transactions per second. In the tests presented in sections 6.2 to 6.4 

all systems are run for 1 second. In section 6.5, we compare the performance of 

contention- based schedulers against standard 2PL when the tests are conducted over an 

extended time period. In section 6.6 we introduce thrashing control strategies to our 

scheduler and standard 2PL systems. Because the aim of our scheduling algorithms is to 

improve the performance of disk-based locking systems, most of this chapter is devoted to 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 131

comparing the performance of our scheduling algorithm against standard 2PL. In section 

6.7 we compare the performance of systems using our scheduling algorithms to the 

performance of systems using WDL and optimistic concurrency control. 

 

6.2 Performance Results for the Contention-Based Scheduler 

  
The results presented in this section, compare the results of locking systems using 

our scheduling algorithms against the best results achieved by standard 2PL systems 

using the same transaction model described in chapters 3 and 4 with transactions arriving 

at a rate of 20000 transactions per second. Thus the scheduler’s performance is not 

limited by the availability of transactions. As well, in this section we assume that the 

schedulers can measure the size and contention of transactions with perfect accuracy 

prior to allowing transactions into the system. Figure 6.1 shows total throughput while 

Figure 6.2 breaks up total throughput by transaction class. The peak results for the 

standard 2PL locking method is achieved at a concurrency of 100 in the case of the 1248 

processors by 4 MIPS per processor system and at a concurrency of 70 in the other 

systems.   

As Figure 6.1 shows, given a very high arrival rate of transactions and perfect 

measurement of transactions’ contention the improvement in total throughput achieved by 

our scheduling algorithms over standard 2PL is very large under all hardware 

configurations. In the massively parallel system, throughput achieved under scheduling 

algorithm 1 is around 8 times the total throughput achieved by the corresponding standard 

2PL system and under algorithm 2, total throughput is over 9 times the total throughput 

achieved by the standard 2PL system. In the 96 by 100 MIPS system, throughput 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 132

achieved under scheduling algorithm 1 is around 11.5 times the total throughput achieved 

by the corresponding standard 2PL system and around 11 times the total throughput 

achieved by the corresponding standard 2PL system in the case of scheduling algorithm 

2. Under all the other hardware configurations, total throughput under either of our 

algorithms is around 15 times the total throughput achieved by the standard 2PL system 

with a slightly better performance being achieved under algorithm 1. 

0

1000

2000

3000

4000

5000

6000

4 MIPS by 1248
processors

100 MIPS by 96
processors

200 mips by 96
processors

1000 MIPS by 20
processors

2000 MIPS by 10
processors

hardware configuration

th
ro

ug
hp

ut

2PL Algorithm 1 Algorithm 2

 

Figure 6.1. A comparison of total throughputs under the contention based scheduler and 
standard 2PL concurrency control. 

 

Figure 6.2 shows that as expected, this improvement is most pronounced in the 

throughput of the lower contention T1 and T2 transactions though the improvement is 

quite substantial for the medium contention T3 transactions.   



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 133

0
500

1000
1500
2000
2500
3000
3500
4000
4500

4 
M

IP
S 

by
 1

24
8 

pr
oc

es
so

rs

10
0 

M
IP

S 
by

 9
6 

pr
oc

es
so

rs

20
0 

m
ip

s 
by

 9
6 

pr
oc

es
so

rs

10
00

 M
IP

S 
by

 2
0 

pr
oc

es
so

rs

20
00

 M
IP

S 
by

 1
0 

pr
oc

es
so

rs

hardware configuration

th
ro

ug
hp

ut

0
100
200
300
400
500
600
700
800
900

4 
M

IP
S 

by
 1

24
8 

pr
oc

es
so

rs

10
0 

M
IP

S 
by

 9
6 

pr
oc

es
so

rs

20
0 

m
ip

s 
by

 9
6 

pr
oc

es
so

rs

10
00

 M
IP

S 
by

 2
0 

pr
oc

es
so

rs

20
00

 M
IP

S 
by

 1
0 

pr
oc

es
so

rs

hardware configuration
th

ro
ug

hp
ut

 

(a)  T1       (b)  T2 

0

50

100

150

200

250

300

4 
M

IP
S 

by
 1

24
8 

pr
oc

es
so

rs

10
0 

M
IP

S 
by

 9
6 

pr
oc

es
so

rs

20
0 

m
ip

s 
by

 9
6 

pr
oc

es
so

rs

10
00

 M
IP

S 
by

 2
0

pr
oc

es
so

rs

20
00

 M
IP

S 
by

 1
0

pr
oc

es
so

rs

hardware configuration

th
ro

ug
hp

ut

0

10

20

30

40

50

60

70

4 
M

IP
S 

by
 1

24
8 

pr
oc

es
so

rs

10
0 

M
IP

S 
by

 9
6 

pr
oc

es
so

rs

20
0 

m
ip

s 
by

 9
6 

pr
oc

es
so

rs

10
00

 M
IP

S 
by

 2
0 

pr
oc

es
so

rs

20
00

 M
IP

S 
by

 1
0 

pr
oc

es
so

rs

hardware configuration

th
ro

ug
hp

ut

 

(c) T3      (d) T4 

Figure  6.2. A comparison of throughput  under the contention based scheduler and standard 2PL 
concurrency control by transaction type. 

 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 134

In the massively parallel system, throughput of T1 transactions under either 

scheduling algorithm is around 20 times that achieved by the corresponding standard 2PL 

system while the corresponding improvement in the throughput of T1 transactions in the 

96 by 100 MIPS system is around thirty fold. Under all the other hardware configurations, 

throughput of T1 transactions under either algorithm is around 50 times that achieved by 

the corresponding standard 2PL system.  The throughput of T2 transactions, under either 

of our algorithms under all hardware configurations is around 10 times that achieved by 

the 2PL system under the equivalent hardware configuration while for T3 transactions, 

throughput under either of our algorithms under all hardware configurations is around 2.5 

times that achieved by the 2PL system under the equivalent hardware configuration. 

 

The only transaction type where standard 2PL outperforms our algorithms is the 

highest contention T4 transactions and here, apart for the system composed of 1248 

processors operating at 4 MIPS, the superiority of the standard 2PL system is marginal 

particularly relative to algorithm 1. Thus, under the system composed of 1248 processors 

operating at 4 MIPS the standard 2PL system has a throughput of T4 transactions that is 

1.4 times that achieved under algorithm 1 and 1.7 that achieved under algorithm2. Under 

the other hardware configurations, the standard 2PL system has a throughput of T4 

transactions that is 1.03 times that achieved under algorithm 1 and 1.2 that achieved 

under algorithm 2. 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 135

The reason for the relatively poor performance of our scheduler in the throughput of 

t4 transactions in the system composed of 1248 processors operating at 4 MIPS is 

because of the slow processor speeds in this system. As indicated earlier, the scheduler 

measures contention by accessing memory resident objects and allocating a default 

contention to items not found in memory. The time required for this memory access in a 

system composed of slow processors significantly increases the total processing time of 

large transactions whereas in systems composed of fast processors, the time required for 

this memory access is relatively insignificant even for larger transactions.   

 

6.3   Allowing For Errors in the Measurement of Contention 

 

As indicated in chapter 4, our scheduling algorithms measure contention by reading 

memory resident data and giving default contention vales to disk resident data. In the 

previous section it was assumed that the assigning of default values had no effect on the 

measurement of contention. In general this level of precision is highly unlikely. However, 

while the assigning of default values to disk resident data is not absolutely precise, given 

the small contribution of such objects to contention it is unlikely to cause significant error.  

 

A more significant source of error is our scheduling algorithms high level of 

concurrency and the consequent abandonment of access invariance. Thus, it is possible 

that the satisfaction of a transaction’s predicate may change between the time that its 

contention is measured and the time that it is executed. Consequently, it is possible that a 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 136

transaction may gain or lose high contention objects between the time that it is measured 

and the time that it is executed. 

 

 In the tests presented in this section, 20% of T1 transactions are placed on the T2 

transaction queue. 10% of T2 transactions are placed on the T1 queue and 10% of T2 

transactions are placed on the T3 queue. 10% of T3 transactions are placed on the T2 

queue and 10% of T3 transactions are placed on the T4 queue. 20% of T4 transactions 

are placed on the T3 transaction queue.  When a transaction completes, its actual 

contention is re-measured and the appropriate number of transactions of each type in the 

system is re-calculated. That is, if a T4 transaction is initially measured as a T3 

transaction, on completion its actual contention is re-calculated and the number of T4 

transactions in the system is reduced by 1 thus allowing an additional T4 transaction into 

the system.   

 

This simulates errors that could arise due to either assigning imprecise default 

values or due to changes in a transaction’s contention between the time contention is 

measured and the time the transaction is actually executed. While the selection of 20% as 

the margin of error for testing is arbitrary, we believe that this margin is as high as could 

reasonably be expected to occur. In the results presented below, Figure 6.3 compares 

total throughputs while Figure 6.4 breaks up total throughput by transaction class. 

 

 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 137

 

 

 

 

 

 

0

1000

2000

3000

4000

5000

6000

4 MIPS by
1248

processors

100 MIPS by
96 processors

200 mips by 96
processors

1000 MIPS by
20 processors

2000 MIPS by
10 processors

hardware configuration

th
ro

ug
hp

ut

Algorithm 1 no error Algorithm 2 no error
Algorithm 1 with error Algorithm 2 with error

 

Figure 6.3. A comparison of total throughputs under the contention based scheduler and 
standard 2PL concurrency control with an allowance for error in the measurement of contention. 

 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 138

0
500

1000
1500
2000
2500
3000
3500
4000
4500

4 
M

IP
S 

by
 1

24
8

pr
oc

es
so

rs

10
0 

M
IP

S 
by

 9
6

pr
oc

es
so

rs

20
0 

m
ip

s 
by

 9
6

pr
oc

es
so

rs

10
00

 M
IP

S 
by

 2
0

pr
oc

es
so

rs

20
00

 M
IP

S 
by

 1
0

pr
oc

es
so

rs
hardware configuration

th
ro

ug
hp

ut

0
100
200
300
400
500
600
700
800
900

4 
M

IP
S 

by
 1

24
8

pr
oc

es
so

rs

10
0 

M
IP

S 
by

 9
6

pr
oc

es
so

rs

20
0 

m
ip

s 
by

 9
6

pr
oc

es
so

rs

10
00

 M
IP

S 
by

 2
0

pr
oc

es
so

rs

20
00

 M
IP

S 
by

 1
0

pr
oc

es
so

rs

hardware configuration

th
ro

ug
hp

ut

 

(a)  T1       (b)  T2 

 

0

50

100

150

200

250

300

4 
M

IP
S 

by
 1

24
8

pr
oc

es
so

rs

10
0 

M
IP

S 
by

 9
6

pr
oc

es
so

rs

20
0 

m
ip

s 
by

 9
6

pr
oc

es
so

rs

10
00

 M
IP

S 
by

 2
0

pr
oc

es
so

rs

20
00

 M
IP

S 
by

 1
0

pr
oc

es
so

rs

hardware configuration

th
ro

ug
hp

ut

0

10

20

30

40

50

60

70

4 
M

IP
S 

by
 1

24
8

pr
oc

es
so

rs

10
0 

M
IP

S 
by

 9
6

pr
oc

es
so

rs

20
0 

m
ip

s 
by

 9
6

pr
oc

es
so

rs

10
00

 M
IP

S 
by

 2
0

pr
oc

es
so

rs

20
00

 M
IP

S 
by

 1
0

pr
oc

es
so

rs

hardware configuration

th
ro

ug
hp

ut

 

(c)  T3      (d)  T4 

Figure  6.4. A comparison of throughputs by transaction type with an allowance for error in the 
measurement of contention by the scheduler     

                                                                                                                           

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 139

The results presented in Figures 6.3 and 6.4 indicate that the performance of our 

scheduling and rollback algorithms is very robust even when one allows a significant 

margin of error in the classification of transactions’ contention.  Thus, under all the tested 

hardware configurations, total throughput under both algorithms when error in 

measurement occurs is very similar to total throughput under equivalent hardware 

configuration and algorithm when no error in measurement occurs.  The breakdown of 

total throughput by transaction type in Figure 6.4 indicates that this robustness extends to 

all transaction types in all the hardware configurations tested. Overall, then, the 

observations about the relative performance of our scheduling algorithms and standard 

2PL made in the previous section hold even when a significant margin of error occurs in 

the measurement of contention. 

 

6.4    Restricted Number of Transactions 

 

While the results thus far have shown that the performance improvement 

achievable under our scheduling algorithms under diverse hardware configurations is 

substantial and robust, it could be argued that it is dependent on the availability of a very 

large number of transactions and that given a more restricted number of transactions its 

benefits would be limited. That is, with a restricted number of transactions and the 

consequent relatively low availability of low contention transactions whose performance 

fares best under our scheduling algorithms, one may reasonably expect that the relative 

advantage of our scheduling algorithms would diminish.   



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 140

To determine the extent to which our scheduler maintains its advantage over 

standard 2PL concurrency control when the number of available transactions is restricted, 

we re-test the systems presented in section 6.2 but reduce the arrival rate of transactions 

from 20000 transactions per second to 1000 transactions per second. Given that the tests 

are run over 1 second, and given the relative proportion of each transaction type arriving 

at the system, approximately 200 T1, 200 T2, 350 T3 and 250 T4 transactions are 

available for processing. The results of these tests are shown in Figures 6.5 and 6.6 

below.  

 

As in previous sections, the first graph shows total throughput while Figure 6.6 

breaks up total throughput by transaction class. As in section 6.2, the peak results for the 

standard 2PL locking method is achieved at a concurrency of 100 in the 1248 processors 

by 4 MIPS per processor system and at a concurrency of 70 in the other systems.   

 

As these graphs show, even with a restricted number of transactions, the 

performance gains obtained by using our scheduling algorithms are quite large with total 

throughput under either of our algorithms being on average over double that achieved 

under standard 2PL. As expected, even with the reduced availability of lower contention 

transactions, these transactions still fare best under our algorithm.   



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 141

0

100

200

300

400

500

600

700

800

4 MIPS 100 MIPS 200 mips 1000 MIPS 2000 MIPS

hardware configuration

th
ro

ug
hp

ut

2PL Algorithm 1 Algorithm 2

 

Figure  6.5. A comparison of total throughputs under the contention based scheduler and 
standard 2PL concurrency control with an arrival rate of 1000 transactions per second. 

 

The throughput of the medium and high contention transactions under our 

algorithm are very similar to that achieved at the higher arrival rate. This is reasonable 

given that higher contention transactions have priority over lower contention transactions 

and therefore their performance is unaffected by the reduction in the number of lower 

contention transactions. 

 

As in the results presented in section 6.2, the only transaction type where standard 

2PL outperforms our algorithms is the highest contention T4 transactions and again, apart 

for the system composed of 1248 processors each operating at 4 MIPS, the superiority of 

the standard 2PL system is marginal particularly relative to algorithm 1.   



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 142

0

50

100

150

200

250

4 MIPS 100
MIPS

200
mips

1000
MIPS

2000
MIPS

hardware configuration

th
ro

ug
hp

ut

0

50

100

150

200

250

4 MIPS 100
MIPS

200
mips

1000
MIPS

2000
MIPS

hardware configuration

th
ro

ug
hp

ut
 

(a)  T1       (b)  T2 

0

50

100

150

200

250

300

4 MIPS 100
MIPS

200
mips

1000
MIPS

2000
MIPS

hardware configuration

th
ro

ug
hp

ut

0

10

20

30

40

50

60

70

4 MIPS 100
MIPS

200
mips

1000
MIPS

2000
MIPS

hardware configuration

th
ro

ug
hp

ut

 

(c)  T3      (d)  T4 
Figure 6.6  A comparison of throughputs under the contention based scheduler and standard 2PL 
concurrency control with an arrival rate of 1000 transactions per second by transaction type. 

 

 
 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 143

As before, the reason for the relatively poor performance of our scheduler in the 

throughput of T4 transactions in the system composed of 1248 processors operating at 4 

MIPS is because the slow processor speeds in this system increases the relative cost of 

evaluating transactions’ contention. 

 

6.5  The Performance of the Scheduler Over Extended Time 

Periods  

In the preceding sections, we have presented results of tests run over 1 second. There 

are two reasons why one may expect the relative results to change over an extended 

period. 

1. The major cost of the contention-based scheduler is the memory-based calculation 

of transactions’ contention. This is particularly costly for systems with slow 

processors. However, as time progresses, if there is surplus capacity in the system 

such that some surplus resources can be devoted to calculating transactions’ 

contention, the relative cost of the calculation of contention would decrease and 

one would expect an improvement in the relative performance of transactions 

under the scheduler relative to that achieved under standard 2PL concurrency 

control. This is particularly true for larger transactions for which the calculation of 

contention is particularly costly.  

 

For example in the 1248 by 4 MIPS system under algorithm 1, a maximum of 

1012 transactions are allowed to be active. Thus, if at a moment in time, all active 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 144

transactions are undergoing a memory operation, 236 processors can be 

evaluating the contention of non-active transactions. If at a moment in time, all 

active transactions are undergoing a disk operation, 1248 processors can be 

evaluating the contention of non-active transactions. Thus when a transaction 

completes, a new transaction can replace it without having to wait for its contention 

to be calculated. 

2. As indicated in chapter 3, once a threshold of concurrency is passed, throughput 

per cycle starts to diminish with every successive cycle. As shown in chapter 3, for 

the transaction model used in that chapter which is the same as the transaction 

model used in this chapter, that threshold is a concurrency of 20. Thus, as one 

extends the time period over which tests are conducted, one would expect that the 

concurrency at which total throughput peaks would decrease in the standard 2PL 

systems. In the case of the scheduler, under algorithm 1, 80 T3 and 14 T4 

transactions are allowed into the system while under algorithm 2, 57 T3 and 10 T4 

transactions are allowed into the system.  

 

The results in the previous chapter indicated that for fixed sized T3 

transactions the threshold concurrency is around 30 and for T4 transactions the 

concurrency threshold is around 7 transactions. As well, the concurrency threshold 

is reduced in systems with variable sized transactions. Thus, since under both 

algorithm1 and 2, the number of T3 and T4 transactions is above the threshold, one 

would expect that over an extended processing period, the performance of the 

scheduler would deteriorate. 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 145

 

To compare the relative performance of standard 2PL and our scheduling 

algorithms over time, we run the 1248 by 4 MIPS system for 3 seconds, 6 seconds, 20 

seconds and 1 minute. The results are averaged on a per second basis. We then 

compare the results to those achieved with a 1 second processing time. Thus for 

example, the results of the tests for 20 seconds are divided by 20 giving the average 

results per second. The transaction model used is the same as that used in the preceding 

section with the transaction arrival rate restricted to 1000 transactions per second. 

 

 We only extend the processing time of the 1248 by 4 MIPS system and restrict the 

arrival rate of transactions since an extension of the allowed processing time and the 

number of available transactions to the other systems requires more resources than are 

available to us. Nevertheless, we feel that this model adequately illustrates the points that 

need to be made. The results of extending this period of operation on throughput are 

shown in Figures 6.7 and 6.8 below. As in other tests presented in this chapter, Figure 6.7 

shows total throughput while Figures 6.8 breaks down total throughput by transaction 

type.  

 

As in previous tests, the peak results for the standard 2PL model are shown – that 

is, the concurrency at which the best results are achieved are shown. As indicated earlier, 

for this model with processing time set to 1 second, this is achieved at a concurrency of 

100. However, with processing time extended to 3 seconds, peak results over the 3 

seconds are achieved at a concurrency of 50. With processing time extended to 6 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 146

seconds, peak results over the 6 seconds are achieved at a concurrency of 40, with 

processing time extended to 20 seconds, peak results over the 20 seconds are achieved 

at a concurrency of 30 and with processing time extended to 1 minute, peak results over 

the minute are achieved at a concurrency of 20.  For comparison, we also show the 

average result per second when concurrency is maintained at 100 as the length of the 

time allowed for processing is extended.  

 

As these graphs show, under standard 2PL, while throughput over 1 second is 

maximized at a concurrency of 100, as the period of processing is extended, the 

concurrency at which throughput is optimized over the entire processing period 

decreases. Alongside this decreasing optimal concurrency there is also a decrease in 

average throughput per second as the processing period is extended. This pattern 

conforms to expectations since as indicated earlier, once 2PL systems exceed a threshold 

concurrency their throughput tends to decrease in every successive cycle. Interestingly, 

this rate of decrease tends to be higher the lower the contention/smaller the size of the 

transaction.  

 

This is clearly shown by table 6.1. Here the average throughput of every 

transaction type over each processing period is expressed as a ratio of the throughput 

achieved when the processing period is 1 second.  Thus, over 1 minute, the peak 

throughput of T1 transactions per second is about 25% that achieved when the processing 

time is only 1 second and over a minute, the peak throughput of T4 transactions per 

second is about 25% that achieved when the processing time is only 1 second. 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 147

This tendency for the rate of throughput of higher contention transactions to fall at a 

slower rate than that of lower contention transactions seems to be contrary to 

expectations since as indicated in the previous chapter, in systems with fixed sized 

transactions, in successive cycles, the throughput of higher contention transactions seem 

to decrease at a faster rate than does that of lower contention transactions. The 

explanation for this seemingly contrary phenomenon is that over time, in systems with 

variable size/contention transactions, larger transactions exhibit a consistent tendency to 

increase their representation in the system.  Thus, in this system, on arrival, 20% of 

transactions are T1, 20% are T2, 35% are T3 and 25% are T4. However, at the end of 1 

minute of processing, of the transactions executing in the system at a concurrency of 20, 

on average, 8.75% of transactions are T1, 16.75% are T2, 37% are T3 and 37.5% are T4. 

Similarly, at the end of 20 seconds of processing at a concurrency of 30, on average, 

8.3% of executing transactions are T1, 11% are T2, 33.16% are T3 and 47.5% are T4, 

while at the end of 6 seconds of processing at a concurrency of 40, on average, 6.3% of 

executing transactions are T1, 11% are T2, 32.5% are T3 and 50.25% are T4 and at the 

end of 3 seconds of processing at a concurrency of 50, on average, 6% of executing 

transactions are T1, 10% are T2, 37.4% are T3 and 46.6% are T4. 

 

In the short term, this tendency for larger transactions to usurp resources increases 

their throughput as a proportion of total throughput thus explaining the relatively slow rate 

of decline in their throughput. In the longer term, (beyond the minute tested here), this 

usurpation would tend to lead to thrashing by taking the system’s contention beyond the 

cusp catastrophe threshold (which using our measure of contention is around 0.5). 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 148

As is the case with standard 2PL, under our algorithms, average throughput per 

second starts to decrease as the processing period is extended past 6 seconds. However, 

despite this decreasing average throughput per second, the performance of our algorithms 

relative to standard 2PL improves – that is, the rate of decline of throughput under our 

algorithms is less than the rate of decline under 2PL.  Under our algorithms, as under 

standard 2PL, the decrease is most precipitous with the lower contention transactions. 

However, this is not due to usurpation of resources since our scheduling algorithms 

maintain a constant number of transactions of each type in the system. Here, the 

decrease is due to the increasing length of the wait chain. It should be noted that since our 

algorithms give larger transactions priority in lock acquisition, larger transactions cannot 

be locked behind shorter transactions. Thus, as the processing time is extended and the 

length of the wait chain grows, shorter/lower contention transactions are at a greater 

disadvantage. 

0

100

200

300

400

500

600

1 second 3 seconds  6 seconds 20 seconds 1 minute

processing time

th
ro

ug
hp

ut

2PL peak concurrency 2PL concurrency 100 Algorithm 1 Algorithm 2

 
Fig 6.7. Total throughput per second over a range of processing periods 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 149

0

50

100

150

200

250

1 s
ec

on
d

3 s
ec

on
ds

 

 6 
se

co
nd

s 

20
 se

co
nd

s

1 m
inu

te

processing time

th
ro

ug
hp

ut

0

50

100

150

200

250

1 s
ec

on
d

3 s
ec

on
ds

 

 6 
se

co
nd

s 

20
 se

co
nd

s

1 m
inu

te

processing time

th
ro

ug
hp

ut
 

(a)  T1       (b)  T2 

 

0

20

40

60

80

100

120

140

160

1 s
ec

on
d

3 s
ec

on
ds

 

 6 
se

co
nd

s 

20
 se

co
nd

s

1 m
inu

te

processing time

th
ro

ug
hp

ut

0

5

10

15

20

25

30

35

1 s
ec

on
d

3 s
ec

on
ds

 

 6 
se

co
nd

s 

20
 se

co
nd

s

1 m
inu

te

processing time

th
ro

ug
hp

ut

 

(c)  T3      (d)  T4 

Fig 6.8. Throughput per second over a range of processing periods by transaction type 

  

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 150

 

Table 6.1. Ratio of average throughput per second over a range of processing periods  for a 
standard 2PL system 

 

Under our algorithms, initially, the average throughput per second of the 

largest/highest contention T4 transactions increases as the processing time is increased. 

However, eventually, as the processing time is further increased the average throughput 

per second of these transactions decreases. The initial increase occurs because, as 

indicated earlier, excess resources are used to calculate contention thus decreasing the 

relative cost of such calculations over time. It is only once the processing period is 

extended past 6 seconds that the average throughput per second of these transactions 

begins to decrease. As well, while under the transaction model used in this section the 

throughput of T4 transactions is initially higher under standard 2PL than it is under our 

algorithms, at a processing period of 6 seconds and over, the throughput of T4 

transactions under our algorithm 1 exceeds the throughput of these transactions under 

standard 2PL.  The reasons why our algorithms outperform standard 2PL in the 

throughput of higher contention transactions over an extended period are twofold – 

1. Our algorithms give higher transactions priority in lock acquisition while standard 

2PL does not. 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 151

2. As the processing time is extended, optimal concurrency in standard 2PL is 

reduced. Thus for example, in the model used in this section, peak concurrency 

with 1 minute of processing is 20.  As indicated above, at this concurrency, given 

larger transactions tendency to usurp resources, on average, 37.5% or 7.5 

transactions are the highest contention T4 transactions while under our scheduling 

algorithms there are 14 T4 transactions in the system under algorithm 1 and 10 T4 

transactions in the system under algorithm 2. Thus over a lengthened processing 

period, our algorithms actually allow a larger number of high contention 

transactions into the system than does standard 2PL with its reduced concurrency.  

 

6.6 Controlling Thrashing 

 

As indicated in chapter 4, while our scheduling algorithms increase throughput over 

an extended period of time relative to that achieved under standard 2PL, because they are 

essentially a front end for a 2PL concurrency control system, they are still susceptible, to 

thrashing. In chapter 4 we outlined several strategies to combat thrashing.  We now apply 

the two most successful disk-based thrashing control strategies – a 0.356 threshold with 

and without staggered restarts, to our scheduling algorithms (a detailed analysis of the 

results which determined our choice of strategies is given in Appendix A).  That is, 

transactions are restarted if the proportion of blocked transactions exceeds 0.356. For the 

tests using staggered restarts, we firstly time-stamping each blocked transaction with the 

system clock plus a random number between 0 and the processing time required by an 

average transaction. A transaction marked for restart does not commence until the system 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 152

clock equals its time-stamp. For the tests that do no used staggered restarts, all blocked 

transactions are restarted immediately once the 0.356 threshold is passed. As suggested 

in chapter 4, we modify these algorithms for use with our scheduling algorithms by setting 

a separate threshold of 0.356 for each transaction type rather than setting a system wide 

threshold.  

 

One would expect that using both our scheduling algorithm and thrashing control, 

as the processing time is extended and the initial cost of calculating contention is 

amortized, the relative throughput of large, high contention transactions would improve. To 

test this, we run the 4 MIPS by 1248 processor system for 1 minute with transactions 

arriving at a rate of 1000 per second. The results for 1 minute are then averaged on a per 

second basis. As in section 6.5, this restriction of the platform used is because an 

extension of the allowed processing time and the number of available transactions to the 

other systems requires more resources than are available to us. Nevertheless, we feel that 

this model adequately illustrates the points that need to be made. 

 

Figures 6.9 and 6.10 below show the results of our tests. Figure 6.9 shows total 

throughput while Figures 6.10 breaks down total throughput by transaction type. The 

results shown by these graphs indicate that under our scheduling algorithm, as under 

standard 2PL, the use of thrashing control increases performance significantly under each 

hardware configuration.    

 

 

  



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 153

 

0

50

100

150

200

250

300

standard 2PL standard 2PL standard 2PL scheduler scheduler scheduler

no threshold
control strategy

0.378
threshold

0.378
threshold

no threshold
control strategy

0.378
threshold

0.378
threshold

immediate
restart

staggered
restart

immediate
restart

staggered
restart

system and thrashing control strategy

th
ro

ug
hp

ut
 no threshold control strategy standard 2PL
immediate restart 0.378 threshold standard 2PL
staggered restart 0.378 threshold standard 2PL
  no threshold control strategy scheduler
immediate restart 0.378 threshold scheduler
staggered restart 0.378 threshold scheduler

 

Figure 6.9. Total throughput per second over 1 minute in the 1248 processor by 4 MIPS system 
 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 154

0

10

20

30

40

50

60

70

80

system and thrashing control strategy

th
ro

ug
hp

ut

0

10

20

30

40

50

60

70

80

system and thrashing control strategy

th
ro

ug
hp

ut
 

(a)  T1       (b)  T2 

  

0

20

40

60

80

100

120

140

system and thrashing control strategy

th
ro

ug
hp

ut

0

5

10

15

20

25

30

system and thrashing control strategy

th
ro

ug
hp

ut

 

 (c)  T3      (d)  T4 

Figure 6.10. Throughput per second over 1 minute in the 1248 processor by 4 MIPS 
system by transaction type 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 155

As expected, the results in Figures 6.9 and 6.10 indicate that the advantage of 

those systems using thrashing control over those not using thrashing controlled is 

maintained when the processing time is extended for 1 minute. Also, as expected, in those 

systems using both our scheduling algorithm and thrashing control, there is an 

improvement in the throughput of the highest contention T4 transactions relative to those 

systems not using thrashing control. Thus, the throughput of T4 transactions under our 

scheduling algorithm with thrashing control exceeds the throughput of this transaction type 

in systems using our scheduling algorithm but not using thrashing control. 

 

However, the most significant improvement in the throughput of the highest 

contention transactions comes from the standard 2PL systems using thrashing control. As 

Figure 6.10 shows, the throughput of T4 transactions is significantly higher in the standard 

2PL system with thrashing control than it is under any other system. The reason for this is, 

that as explained in section 6.5, in 2PL systems, larger transactions because of their 

longer processing time and tendency to be blocked tend to usurp resources. This 

increased incidence of blocked high contention transactions makes a policy that releases 

blocked transactions particularly successful with respect to these high contention 

transactions. 

 

Overall, then, our scheduling algorithm with thrashing control has a significantly 

better performance than any of the other systems tested in this chapter. This extends to all 

transaction types except the highest contention transactions where the best results are 

obtained by the standard 2PL systems with thrashing control.   

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 156

6.7   Very High Concurrencies 

 

In chapter 3, the best disk based performance was achieved by the massively 

parallel system using WDL and optimistic concurrency control operating at very high 

concurrencies. In the massively parallel system, the advantages of very high 

concurrencies seem to outweigh the cost of the loss of access invariance in the 

performance of WDL and optimistic concurrency control. These results suggest that that 

the option of using WDL or optimistic concurrency control and operating at very high 

concurrencies would also be suitable for systems with the capacity to achieve high 

concurrencies via interleaving -even though it means sacrificing the benefits of access 

invariance.  

 

In this section investigate this possibility by using optimistic and WDL concurrency 

control and extending the concurrency of the disk-based systems described in chapter 3 

to the maximum concurrency possible under these systems. These maximums are 7500 

for the 96 processors at 100 MIPS per processor system and 15000 for the 96 processors 

at 200 MIPS per processor, 20 processors at 1000 MIPS per processor and 10 processors 

at 2000 MIPS per processor systems. At these very high concurrencies, no access 

invariance is assumed.  These results are juxtaposed against the results presented for 

these systems in chapter 3 at concurrencies of 100 where access invariance is assumed 

to hold. As well, we compare these results to the results achieved in these systems using 

our scheduler with thrashing control. These results of the tests described in the previous 

section are shown in Figures 6.11 to 6.16 below. Figures 6.11 and 6.12 show total 

throughput for all the hardware configurations tested in this section. Figures 6.13 to 6.16 

break down the results shown in Figure 6.11 by transaction class.    



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 157

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1500 3500 5500 7500

concurrency

th
ro

ug
hp

ut

0

2000

4000

6000

8000

10000

12000

14000

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

 

               (a) 100 MIPS per processor                      (b)  200 MIPS per processor 

 

0

2000

4000

6000

8000

10000

12000

14000

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

 

      (a) 1000 MIPS by 20 processors                         (b)  2000 MIPS by 10 processors 

Figure 6.11. Total throughput   

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 158

0

500

1000

1500

2000

2500

0 1500 3500 5500 7500

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

 

   (a) 100 MIPS by 96 processors                         (b)  200 MIPS by 96 processors 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

 

(c) 1000 MIPS by 20 processors                         (d)  2000 MIPS by 10 processors        

Figure 6.12. Throughput of T1  transactions 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 159

0

500

1000

1500

2000

2500

0 1500 3500 5500 7500

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

3500

4000

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut
 

(a) 100 MIPS by 96 processors                         (b)  200 MIPS by 96 processors 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

3500

4000

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

 

(c) 1000 MIPS by 20 processors                         (d)  2000 MIPS by 10 processors       

Figure 6.13.  Throughput of T2  transactions  



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 

160

   

0

500

1000

1500

2000

2500

3000

3500

0 1500 3500 5500 7500

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut
 

(a) 100 MIPS by 96 processors                         (b)  200 MIPS by 96 processors 
 

0

1000

2000

3000

4000

5000

6000

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

 

(c) 1000 MIPS by 20 processors                         (d)  2000 MIPS by 10 processors        

Figure 6.14. Throughput of T3  transactions 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 161

0

50

100

150

200

250

300

350

400

0 1500 3500 5500 7500

concurrency

th
ro

ug
hp

ut

0

50

100

150

200

250

300

350

400

450

500

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut
 

(a) 100 MIPS by 96 processors                         (b)  200 MIPS by 96 processors 
 

0

100

200

300

400

500

600

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

0

100

200

300

400

500

600

0 1500 3500 5500 7500 15000

concurrency

th
ro

ug
hp

ut

 

 (c) 1000 MIPS by 20 processors                         (d)  2000 MIPS by 10 processors        

Figure 6.15. Tthroughput of T4 transactions 

 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 162

The pattern for all these systems is very similar. Under WDL without access 

invariance, throughput peaks at a concurrency of around 1500 while under optimistic 

concurrency control without invariance, total throughput peaks at the maximum 

concurrency physically possible for the configuration in question. Peak throughputs 

without access invariance and the consequent cost of disk access for restarted 

transactions are much greater than total throughput for WDL and optimistic concurrency 

control at lower concurrencies with access invariance and with the consequent memory 

only execution of restarted transactions. 

 

6.8 Summary  

 

Tests presented in this chapter showed that the contention-based scheduler 

substantially outperformed standard 2PL concurrency control in a wide variety of disk-

based hardware configurations and under a wide variety of conditions. The improvement 

though most pronounced in the throughput of low contention transactions extended to all 

transaction types over an extended processing period. 

 

While the contention-based scheduler substantially improved performance, it did 

not address the problem of thrashing to which 2PL based systems are susceptible. 

Accordingly, in section 6.6 we presented results of tests where thrashing was prevented 

by restarting transactions once the proportion of blocked transactions exceeded 0.356. 

The results showed that these thrashing control policies besides successfully preventing 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 163

thrashing also increased throughput when used either by the standard 2PL system or by 

our scheduler. 

 

The success of our contention-based scheduler was due to its ability to effectively 

harness higher levels of concurrency than is possible under standard 2PL. In section 6.7 

we compared its performance against other concurrency control mechanisms operating at 

very high concurrencies. The results presented in this section suggest that where the 

hardware capacity permits, implementing kill optimistic concurrency control and extending 

the concurrency of the system’s operation to the physically maximum limit achieve the 

best results. That is, in hardware systems with abundant resources, the tradeoff between 

high concurrency and access invariance favors the use of optimistic systems at high 

concurrencies. However, given users obvious preference for 2PL systems, our 2PL based 

scheduling algorithm performs quite creditably and yields a higher throughput than WDL. 

 



Chapter 6. Validation   of the Contention-Based Scheduler                                                                  

 

164

   

 

 

 

Chapter 7 

 
 

Validation of EMA 

 

 

 

 

7.1   Introduction 

 

In this chapter we test the performance of our EMA systems. Our primary 

comparisons are between disk-based EMA systems and in-memory systems running on 

hardware configurations of equivalent power in terms the number of processors and their 

speeds.  

Three broad series of tests are presented in this chapter. The first, in section 7.2, 

compares the performance of 2PL, WDL and optimistic concurrency control under EMA 

 



Chapter 7.  Validation of EMA 

 
165

 

and in-memory to each other for equivalent hardware configurations under the assumption 

of 0 additional costs involved in administering EMA. In the second series of tests, in 

section 7.3, for each hardware configuration, under each concurrency control mechanism, 

EMA is run under three different costing regimes.  In the first two series of tests (sections 

7.2 and 7.3), where 2PL is used, it is used with thrashing control implemented. In the last 

series of tests (section 7.4), we compare the performance of 2PL concurrency control in 

in-memory and disk-based EMA systems with and without thrashing control. The thrashing 

control mechanism used is the immediate re-start of all blocked transactions once the 

proportion of blocked transactions exceeds 0.378 as discussed in chapter 5 (For further 

analysis of thrashing see Appendix B). 

 

The hardware, transaction, database and processing subsystems used in this 

chapter are the same as outlined in section 4 of chapter 3 and as used in chapter 6. The 

difference between the systems used in this chapter and those used in previous chapters 

is that we use the EMA mechanism to pre-fetch data and that the massively parallel 

system is omitted. The reason for this omission is that the benefit of EMA lies in the 

disparity between the speeds of disk and memory. Under EMA, each transaction is 

executed twice, once to pre-fetch its data and once to actually commit its actions. With fast 

processors, the vast majority of a transaction’s processing time involves waiting while data 

is accessed from disk and thus the cost of a double execution is negligible. However, in 

the massively parallel system with its slow processor speeds, the differential between 

memory speed and disk access speed is relatively small and the memory cost of double 

execution is relatively high and thus an implementation of EMA is unprofitable. 



Chapter 7.  Validation of EMA 

 
166

 

When optimistic concurrency control is used with EMA we only use optimistic kill 

concurrency control. We do not use either the die or die-kill optimistic method because the 

rationale behind their use is that virtual execution allows unsuccessful transactions to pre-

fetch their data. Since under EMA data is pre-fetched prior to a transaction’s actual 

execution, further virtual execution merely results in extra wasted work.   

 

7.2 The Performance Under EMA with 0 Costs   

   In this section we compare the performance of 2PL, WDL and optimistic 

concurrency control under EMA and in-memory to each other for equivalent hardware 

configurations under the assumption of 0 additional costs involved in administering EMA.  

As well as comparing the performance of in-memory and EMA systems against 

each other, this series of tests also compares EMA and in-memory systems to the peak 

performance of the disk-based optimistic kill method without EMA or access invariance 

operating at the maximum physical concurrency allowed by the hardware. Optimistic kill 

operating at the maximum physical concurrency allowed by the hardware is used as a 

reference, because as shown in the previous chapter, it yields a significantly better 

performance than any other concurrency control mechanism in the disk-based systems we 

have presented till now.   

 

For each hardware configuration, there is a graph showing the total throughputs 

achieved and a graph that breaks up total throughput by transaction type. Thus, Figure 7.1 

below compares total throughputs in systems containing 96 processors each operating at 



Chapter 7.  Validation of EMA 

 
167

 

100 MIPS while Figure 7.2 breaks this result up by transaction type. 

 

 The results shown by Figure 7.1 indicate that to a concurrency of around 50, the 

systems operating under EMA and in-memory have a comparable total throughput. The 

total throughput of the optimistic kill concurrency control at a concurrency of 7500 is 

similar to that of the EMA and in-memory systems at a concurrency of 50. Past a 

concurrency of 50, the in-memory optimistic and WDL systems show superior 

performance with the superiority increasing with concurrency while the best-performed 

EMA systems are those using WDL and optimistic concurrency control. 

  

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

in-memory 2PL with thrashing strategy 2 PL EMA no cost with thrashing strategy

in-memory WDL WDL EMA no cost

in-memory optimistic optimistic EMA no cost

Optimistic kill no invariance   concurrency 7500

 

Figure  7.1. A comparison of total throughputs in systems containing 96 processors each 
operating at 100 MIPS. 

 



Chapter 7.  Validation of EMA 

 
168

 

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut
 

T1   transactions                                                                    T2  transactions   

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

 

T3  transactions                                                                   T4  transactions   

Figure 7..2  A comparison of  throughputs in systems containing 96 processors each operating at 
100 MIPS by transaction type. 

 

          



Chapter 7.  Validation of EMA 

 
169

 

   In general, the patterns observed for total throughput under EMA and in-memory 

systems hold in the breakdown of total throughput by transaction type as shown in Figure 

7.2. However, while overall the breakdowns conform to the total result, there are several 

interesting patterns that are worthy of comment. 

 

The first of these is that the throughput of EMA relative to in-memory is best for the 

smallest/ lowest contention transactions and is worst for the largest/highest contention 

transactions. Thus, as Figure 7.2 shows, in the 96 by 100 MIPS systems, up to a 

concurrency of 80, concurrency control mechanisms under EMA have a similar throughput 

of the lowest contention T1 transactions to the in-memory systems using the same 

concurrency control mechanism. Even past a concurrency of 80, the advantage of in-

memory systems over EMA systems in the throughput of T1 transactions is quite small.  

However, the advantage of the in-memory system increases progressively with transaction 

size/contention.  

 

The reason for this pattern of behavior is that given the same arrival time, under 

EMA, smaller/lower contention transactions complete their pre-fetching phase and begin 

and complete their real execution phase before larger transactions complete their pre-

fetch phase. Thus, in the initial stages of operation, small transactions only compete for 

locks with other small transactions. Since smaller transactions have low contentions, the 

number of conflicts is low and consequently the success of completing transactions is high 

leading to a high throughput of low-contention transactions. As higher contention 



Chapter 7.  Validation of EMA 

 
170

 

transactions complete their pre-fetching phase and begin actual execution, contention 

increases with a consequent increase in lock conflicts and a reduction in the success rate 

of completing transactions. This is more clearly illustrated by table 7.1 which gives a 

millisecond breakdown of the performance of the 2PL EMA system with a thrashing 

strategy and no added costs at a concurrency of 100. 

 

time  total T 1 T2 T3 T4
0.20 2302 873 658 714 57
0.40 3488 1087 871 1146 384
0.60 4694 1332 1100 1563 699
0.80 5985 1576 1362 1998 1049
1.00 7373 1841 1650 2498 1384

throughput

 

Table 7.1.  A millisecond breakdown of the performance of 2PL EMA 
 

As table 7.1 shows, nearly 1/2 the throughput of T1 and T2 transactions and nearly 

1/3 of the throughput of T3 transactions over 1 second occurs in the first 20 milliseconds 

while only 1/24th of the throughput of T4 transactions over 1 second occurs in the first 20 

milliseconds. 

 

While the margin of performance between in-memory systems and those using 

EMA increases with the size/contention of the transaction types in the system, so too does 

the margin of performance between those systems using EMA and the optimistic kill 



Chapter 7.  Validation of EMA 

 
171

 

system operating at a concurrency of 7500. This is most noticeable in the throughput of 

the highest contention T4 transactions where the EMA systems have a peak throughput 

that is between around 350% and 450% greater than the optimistic kill system operating at 

a concurrency of 7500. As indicated in previous chapters, in optimistic systems, small 

transactions tend to finish before larger ones and thus, there is a disproportionate 

tendency for small transactions to kill larger ones. The probability of a larger transaction 

being killed increases with concurrency. This, together with the fact that under optimistic 

kill without invariance a restarted transaction has the same disk access requirements as it 

had prior to restart, accounts for the vastly superior performance of EMA systems over 

standard optimistic kill systems in the throughput of the highest contention transactions. 

 

As indicated above, till a threshold concurrency is reached, with the threshold 

depending on the contention/size of the transaction class under consideration, the 

throughput of in-memory systems and systems operating under EMA is quite close.  It is 

only once the threshold concurrency is passed that the performance of the in-memory 

systems becomes increasingly superior for WDL and optimistic concurrency controls. The 

reason for this is that an upper ceiling of performance is imposed by hardware limitations. 

That is, under EMA, given the need to process each transaction twice (once for pre-fetch 

and once for committal) and given the number of processors available, the overall upper 

limit of throughput for WDL and optimistic concurrency control under EMA for this 

configuration is approached at a concurrency of 50. Till this concurrency, the cost of pre-

fetching is low since of the 100 available processors, at any one time only 50 can be 

involved in the “real” execution of transactions thus allowing the other processors to pre-



Chapter 7.  Validation of EMA 

 
172

 

fetch transactions.  

 

EMA with optimistic concurrency control approaches the performance ceiling earlier 

than and has a lower peak throughput than its equivalent under WDL concurrency control. 

This is despite the fact that in our in-memory systems, optimistic concurrency has a higher 

throughput than WDL. This is more clearly illustrated by Figure 7.3 below distills Figure 7.1 

and only shows the total throughputs of WDL and optimistic concurrency control. 

 

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

in-memory optimistic  optimistic EMA no cost
in-memory WDL  WDL EMA no cost

 

Figure 7.3. A comparison of the throughputs of in-memory and EMA (with no cost) under both 
WDL and optimistic concurrency control for systems with a configuration containing 96 
processors operating at 100 MIPS per processor. 

 

 



Chapter 7.  Validation of EMA 

 
173

 

 

The reason for this phenomenon is that that under optimistic concurrency control, 

once a processor is busy processing a transaction that has already been pre-fetched, it 

cannot execute any pre-fetches. However, under WDL, a processor that is processing a 

blocked transaction can execute pre-fetches while it is waiting for its transaction to be 

unblocked. This causes EMA under optimistic concurrency control to reach its throughput 

ceiling at a lower concurrency and a lower throughput than would be the case under WDL 

concurrency control. 

 

The gap between total throughput in in-memory and EMA does not occur under 

2PL concurrency control. Thus, as Figure 7.1 shows, total throughputs using 2PL 

concurrency control with either EMA or in-memory is very similar for all concurrencies. 

This is because the upper limit on throughput imposed by 2PL concurrency control is 

reached before the limit imposed by the hardware. That is, despite the fact that the 2PL 

systems use thrashing control, their performance is still impaired by 2PL’s propensity for 

creating queues of waiting transactions. This propensity increases with contention and 

concurrency and in the configurations configuration containing 96 processors operating at 

100 MIPS per processor with the transaction model as outlined, causes both the EMA and 

in-memory systems to reach their peak at around the same concurrency. 

 

 

The performances of the systems containing 96 processors each operating at 200 

MIPS are shown in Figures 7.4 and 7.5 below. The relationships between the in-memory 



Chapter 7.  Validation of EMA 

 
174

 

and EMA systems in this configuration are virtually identical to those exhibited in the 

systems containing 96 processors each operating at 100 MIPS except that a higher 

throughput is achieved at every concurrency because of the higher processor speeds.  

  

 

 

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

in-memory 2PL with thrashing strategy
2 PL EMA no cost with thrashing strategy
in-memory WDL
WDL EMA no cost
in-memory optimistic
optimistic EMA no cost
Optimistic kill no invariance   concurrency 15000

 

Figure 7.4.  A  comparison of total throughputs in systems containing 96 processors each 
operating at 200 MIPS 

 



Chapter 7.  Validation of EMA 

 
175

 

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency
th

ro
ug

hp
ut

 

T1 transactions                                                               T2  transactions 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

 

T3 transactions                                                             T4 transactions 

Figure 7.5. A comparison of the throughput  in systems containing 96 processors each operating 
at 200 MIPS by transaction type. 

 



Chapter 7.  Validation of EMA 

 
176

 

However, the gap in performance between the EMA systems the optimistic kill 

system operating at a concurrency of 15000 is extended – particularly for the larger T3 

and T4 transactions. Thus, in the throughput of the largest T4 transactions in the previous 

configuration with processors operating at 100 MIPS each, the gap between the optimistic 

kill operating at high concurrencies and the EMA systems was between 350% and 450% 

while under this configuration, with processors operating at 200 MIPS each, the gap 

between optimistic kill operating at high concurrencies and the EMA systems is between 

650% and 900%. This is because throughput under EMA can expand almost linearly with 

processor speeds. However, throughput under standard optimistic kill can only expand 

logarithmically with concurrency with increased processor speeds achieving little beyond 

enabling a higher level of concurrency. 

 

The performances of the systems with the configurations containing 20 processors 

each operating at 1000 MIPS are shown in Figures 7.6 and 7.7 below. As under the 

previous hardware configurations the EMA systems using WDL or optimistic concurrency 

control reach a hardware-imposed ceiling on throughput. Here, the ceiling is reached after 

a concurrency of around 10. Because of the low concurrencies involved, the in-memory 

2PL system does not reach the ceiling imposed by 2PL’s propensity to create wait 

queues. However, as with the WDL and optimistic systems, because of the small number 

of processors available, the 2PL EMA system also approaches the hardware imposed 

throughput ceiling at a concurrency of around 10.  

 

As in the previous configurations it is noteworthy that for every transaction type, 



Chapter 7.  Validation of EMA 

 
177

 

WDL using EMA outperforms optimistic concurrency used in conjunction with EMA. As 

well, under this hardware configuration, 2PL used in conjunction with EMA also 

outperforms optimistic concurrency used in conjunction with EMA. As previously explained 

the main reason between the performance of WDL using EMA (and in this configuration 

2PL using EMA) and optimistic concurrency using EMA, is that in optimistic concurrency 

there is no opportunity for interleaving pre-fetching while a transaction is being executed 

while under WDL and 2PL, processors with blocked transactions can spend their time 

usefully by pre-fetching transactions. 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

in-memory 2PL with thrashing strategy
2 PL EMA no cost with thrashing strategy
in-memory WDL
WDL EMA no cost
in-memory optimistic
optimistic EMA no cost
Optimistic kill no invariance   concurrency 15000

 

 

Figure 7.6. A comparison of total throughputs in systems containing 20 processors each 
operating at 1000 MIPS 

 



Chapter 7.  Validation of EMA 

 
178

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut
 

T1 transactions                                                                    T2  transactions in   

 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

 

T3  transactions                                                               T4   transactions  

Fig .7.7. A comparison of throughputs in systems containing 20 processors each operating at 
1000 MIPS by transaction type 

 

 



Chapter 7.  Validation of EMA 

 
179

 

 

Once again, the gap in performance between the EMA systems and the optimistic 

kill system operating at a concurrency of 15000 is extended with the increase in processor 

speeds. In this configuration the gap is now significant for all transaction types although it 

is still greatest for the larger T3 and T4 transactions. 

 

Thus, the gap in the throughput of the largest T4 transactions has expanded from 

between 350% and 450% under the configuration with processors operating at 100 MIPS 

each, to between 650% and 900% under the configuration with processors operating at 

200 MIPS each to between 825% and 1000% under the configuration with processors 

operating at 1000 MIPS each. As previously explained, this increasing gap occurs 

because throughput under EMA can expand almost linearly with processor speeds. 

However, throughput under standard optimistic kill can only expand logarithmically with 

concurrency with increased processor speeds achieving little beyond enabling a higher 

level of concurrency. 

 

The performances of the systems containing 10 processors each operating at 2000 

MIPS are shown in Figures 7.8 and 7.9 below.   

 

 



Chapter 7.  Validation of EMA 

 
180

 

 

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5 10

concurrency

th
ro

ug
hp

ut

in-memory 2PL with thrashing strategy
2 PL EMA no cost with thrashing strategy
in-memory WDL
WDL EMA no cost
in-memory optimistic
optimistic EMA no cost
Optimistic kill no invariance   concurrency 15000
2PL EMA  with 20 processors

 

Figure 7.8. A comparison of total throughputs in systems containing 10 processors each 
operating at 2000 MIPS 



Chapter 7.  Validation of EMA 

 
181

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10

concurrency

th
ro

ug
hp

ut
 

T1  transactions                                                                    T2  transactions   

  

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10

concurrency

th
ro

ug
hp

ut

0

2000

4000

6000

8000

10000

12000

0 5 10

concurrency

th
ro

ug
hp

ut

 
T3 transactions                                                                  T4  transactions  

Figure 7.9. A comparison of the throughputs in systems containing 10 processors each operating 
at 2000 MIPS by transaction type. 

 

 



Chapter 7.  Validation of EMA 

 
182

 

The patterns exhibited are almost identical to those under the previous hardware 

configuration except that because of the lower number of processors, the hardware ceiling 

is reached at a lower concurrency and because of the faster processors throughputs are 

higher. As an indication of the scalability of EMA, 2PL EMA is also run with 10 extra 

processors and 15880 extra disks (giving a total of 20 processors at 2000 MIPS each and 

31760 disks. As shown by Figures 7.8 and 7.9, the extra processors and disks bring the 

performance of 2PL EMA with 20 processors each operating at 2000 MIPS, close to that 

of the in-memory systems with 10 processors each operating at 2000 MIPS. 

 

7.3   Adding Costs to EMA   

 

The results presented in the preceding section assumed that there is no extra cost 

involved in administering EMA. In this section, for each hardware configuration, under 

each concurrency control mechanism, EMA is run for under three different costing 

regimes.  

 

The first, as in the tests outlined above, assumes a 0 additional cost in 

implementing EMA.  

 

The second costing regime assumes that once its data is pre-fetched, a transaction 

requires no further disk access. However, it is also assumed that 25% of transactions 

require forked decisions and that each fork is of equal length. Thus, 25% of transactions 



Chapter 7.  Validation of EMA 

 
183

 

require two pre-fetches even though only one of these pre-fetches is used in actual 

execution. As well, each transaction is penalized 5000 instructions per data item as an 

overhead cost involved in maintaining EMA. In the results presented below this costing 

scheme is called costing 1.  

 

Under the third costing scheme 10% of pre-fetched transactions have to re-access 

their data from disk once a transaction begins its real execution. In the results presented 

below this costing scheme is called costing 2.  As in costing 1, in costing 2 each 

transaction is penalized 5000 instructions per data item as an overhead cost involved in 

maintaining EMA.  The added costs allowed by costing regimes 1 and 2 are extreme as 

shown by the analysis of section 5.3. Thus, this series of tests provide a good indication of 

the robustness of EMA.   

 

 The results of this series of tests of EMA are shown in Figures 7.10 to 7.17 below. 

As in the previous section, there are 2 graphs for each hardware configuration – one 

showing total throughput and the other breaking down total throughput by transaction 

type.  In the graphs shown in this section, the number of items shown on each graph is 

quite large and consequently the legend is quite large and will not fit on the graphs 

breaking down throughput by transaction type. The first series of 2 graphs show the 

results for the disk-based configurations containing 96 processors operating at 100 MIPS 

per processor.   

 

 

 



Chapter 7.  Validation of EMA 

 
184

 

 

The results shown in Figures 7.10 and 7.11 indicate that for the hardware 

configuration containing 96 processors each operating at 100 MIPS, the addition of 

significant costs to EMA only affects its performance marginally.  In fact, the type of 

concurrency control used  seem to affect performance for each transaction type more than 

the costs applied to EMA. 

 

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2PL EMA no cost with thrashing strategy 2PL EMA costing 1 with thrashing strategy
2PL EMA costing 2 with thrashing strategy WDL EMA no cost with thrashing strategy
WDL EMA costing 1 with thrashing strategy WDL EMA costing 2 with thrashing strategy
optimistic EMA no cost with thrashing strategy optimistic EMA costing 1 with thrashing strategy
optimistic EMA costing 2 with thrashing strategy

 
Figure 7.10.  Total throughput with diverse costing regimes in systems containing 96 processors 
each operating at 100 MIPS 



Chapter 7.  Validation of EMA 

 
185

 

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut
 

          T1 transactions                                                          T2  transactions   

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

 

          T3  transactions                                                             T4  transactions   

Figure 7.11. Throughput  with diverse costing regimes in systems containing 96 processors each 
operating at 100 MIPS by transaction type. 

 



Chapter 7.  Validation of EMA 

 
186

 

The pattern shown in  Figures 7.10 and 7.11  is repeated for each hardware 

configuration as shown by the following graphs. In all hardware configurations, costing 

regime 2 seems to be particularly robust. This can be explained by the fact that the 

repeated disk access by some transactions at execution time is partially offset by the 

increased ability of the system to process pre-fetches while waiting for the executing 

transactions to re-access their data from disk.  

 

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

2PL EMA no cost with thrashing strategy 2PL EMA costing 1 with thrashing strategy
2PL EMA costing 2 with thrashing strategy WDL EMA no cost with thrashing strategy
WDL EMA costing 1 with thrashing strategy WDL EMA costing 2 with thrashing strategy
optimistic EMA no cost with thrashing strategy optimistic EMA costing 1 with thrashing strategy
optimistic EMA costing 2 with thrashing strategy

 
Figure 7.12.  Total throughput with diverse costing regimes in systems containing 96 processors 
each operating at 200 MIPS  

 



Chapter 7.  Validation of EMA 

 
187

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

 
  T1  transactions                                                                   T2  transactions   

 

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

3500

4000

4500
0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

 

  T3  transactions                                                                   T4 transactions   

Figure 7.13. Throughput with diverse costing regimes in systems containing 96 processors each 
operating at 200 MIPS by transaction type 

 



Chapter 7.  Validation of EMA 

 
188

 

 

 

 

 

 

0

5000

10000

15000

20000

25000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

2PL EMA no cost with thrashing strategy 2PL EMA costing 1 with thrashing strategy
2PL EMA costing 2 with thrashing strategy WDL EMA no cost with thrashing strategy
WDL EMA costing 1 with thrashing strategy WDL EMA costing 2 with thrashing strategy
optimistic EMA no cost with thrashing strategy optimistic EMA costing 1 with thrashing strategy
optimistic EMA costing 2 with thrashing strategy

 

Figure 7.14. Total throughput with diverse costing regimes in systems containing 20 processors 
each operating at 1000 MIPS  

 

 

 



Chapter 7.  Validation of EMA 

 
189

 

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut
 

T1  transactions                                                                   T2 transactions   

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

 

  T3  transactions                                                                   T4 transactions   

Fig 7.15. Throughput with diverse costing regimes in systems containing 20 processors each 
operating at 1000 MIPS by transaction type 

 



Chapter 7.  Validation of EMA 

 
190

 

 

 

 

0

5000

10000

15000

20000

25000

30000

0 5 10

concurrency

th
ro

ug
hp

ut

2PL EMA no cost with thrashing strategy 2PL EMA costing 1 with thrashing strategy
2PL EMA costing 2 with thrashing strategy WDL EMA no cost with thrashing strategy
WDL EMA costing 1 with thrashing strategy WDL EMA costing 2 with thrashing strategy
optimistic EMA no cost with thrashing strategy optimistic EMA costing 1 with thrashing strategy
optimistic EMA costing 2 with thrashing strategy

 

Figure 7.16. Total throughput with diverse costing regimes in systems containing 10 processors 
each operating at 2000 MIPS 

 

 



Chapter 7.  Validation of EMA 

 
191

 

0

1000

2000

3000

4000

5000

6000

7000

0 5 10

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

0 5 10

concurrency

th
ro

ug
hp

ut
 

T1  transactions                                                                   T2 transactions   

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

0 5 10

concurrency

th
ro

ug
hp

ut

 

  T3  transactions                                                                   T4 transactions   

 Figure 7.17. Throughput with diverse costing regimes in systems containing 10 processors each 
operating at 2000 MIPS by transaction type 

 
 



Chapter 7.  Validation of EMA 

 
192

 

Overall, since under all  tested hardware configurations the addition of significant 

costs to EMA only affects its performance marginally,  one can conclude that this series of 

tests indicates that the performance of EMA is robust to significant implementation costs. 

 

 

7.4    2PL EMA Systems With and Without Thrashing Control 

 

As indicated in chapters 3 and 4, 2PL systems are particularly prone to thrashing. 

This problem increases with contention and concurrency, but, as shown in chapter 3, even 

in systems with low concurrencies a very low probability of thrashing at any point in time 

can still translate to an unacceptable incidence of thrashing given a sufficient number of 

transactions and processing cycles. In this section we compare the performance of in-

memory and EMA 2PL systems with and without thrashing control. The thrashing control 

mechanism used is the immediate re-start of all blocked transactions once the proportion 

of blocked transactions exceeds 0.378 since this seems to be the most successful method 

in high-speed systems. For a comparison of the performance of the various thrashing 

control strategies see Appendix B. 

 

The results of this series of tests are shown in Figures 7.18 to 7.25 below. As in the 

previous sections, there are 2 graphs for each hardware configuration – one showing total 

throughput and the other breaking down total throughput by transaction type. The first 

series of 2 graphs show the results for the disk-based configurations containing 96 

processors operating at 100 MIPS per processor. The second series of 2 graphs show the 



Chapter 7.  Validation of EMA 

 
193

 

results for the disk-based configurations containing 96 processors operating at 200 MIPS 

per processor. The third series of 2 graphs show the results for the disk-based 

configurations containing 20 processors operating at 1000 MIPS per processor while the 

last series of 2 graphs show the results for the disk-based configurations containing 10 

processors operating at 2000 MIPS per processor. 

 

Past a concurrency of around 20, the results for the configurations containing 96 

processors operating at 100 MIPS per processor and 96 processors operating at 200 

MIPS per processor show a dramatic superiority in the performance of the 2PL systems 

using thrashing control as against those not using thrashing control with the peak 

throughput of the systems using thrashing control being around double that of the systems 

not using thrashing control. This pattern is consistent for all transaction types.  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

in-memory no thrashing strategy in-memory with thrashing strategy
EMA no cost no thrashing stratagey EMA no cost with thrashing strategy

 
Figure 7.18. Total throughput in 2PL systems with without thrashing control in systems 
containing 96 processors each operating at 100 MIPS 



Chapter 7.  Validation of EMA 

 
194

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut
 

  T1  transactions                                                                   T2 transactions   

 

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

 

  T3  transactions                                                                   T4 transactions   

Figure 7.19. Throughput  in 2PL systems with without thrashing control in systems containing 96 
processors each operating at 100 MIPS by transaction type 

 



Chapter 7.  Validation of EMA 

 
195

 

The restart of transactions has two effects on performance, firstly it limits the length 

of wait for queues thus increasing throughput and secondly it eliminates thrashing thus 

increasing the average of throughputs achieved. In the case of the configurations 

containing 96 processors operating at 100 MIPS per processor and 96 processors 

operating at 200 MIPS per processor, the latter reason dominates.  

 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90 100

concurrency

th
ro

ug
hp

ut

in-memory no thrashing strategy
in-memory with thrashing strategy
EMA no cost no thrashing stratagey
EMA no cost with thrashing strategy

 

Figure 7.20. Total throughput in 2PL systems with without thrashing control in systems 
containing 96 processors each operating at 200 MIPS 

 



Chapter 7.  Validation of EMA 

 
196

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut
 

  T1  transactions                                                                   T2 transactions   

 

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 10
0

concurrency

th
ro

ug
hp

ut

 

T3  transactions                                                                   T4 transactions   

 7.21. Throughput  in 2PL systems with without thrashing control in systems containing 96 
processors each operating at 200 MIPS by transaction type 

 



Chapter 7.  Validation of EMA 

 
197

 

For example, in the configuration containing 96 processors operating at 200 MIPS 

per processor under EMA at a concurrency of 20, total throughput without thrashing 

control implemented is 6238. This is an average over 40 runs. Of these 40 runs, 26 

complete without thrashing and the average throughput for these runs is 7522. The 

remaining14 runs thrash and the average throughput for these is 3597. The average 

throughput for this configuration under EMA at a concurrency of 20 with thrashing control 

implemented is 7907 – that is just over 400 more than the runs without thrashing control 

implemented where thrashing did not occur. Thus at this concurrency the effect of 

thrashing control in eliminating thrashing is an increase in throughput of around 3500 

transactions while the effect of thrashing control in shortening wait queues is an increase 

in throughput of around 400 transactions. 

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

in-memory no thrashing strategy in-memory with thrashing strategy
EMA no cost no thrashing stratagey EMA no cost with thrashing strategy

 
Figure 7.22. Total throughput in 2PL systems with without thrashing control in systems 
containing 20 processors each operating at 1000 MIPS. 



Chapter 7.  Validation of EMA 

 
198

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20

concurrency
th

ro
ug

hp
ut

 

  T1  transactions                                                                   T2 transactions   

 

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20

concurrency

th
ro

ug
hp

ut

 

T3  transactions                                                                   T4 transactions   

Figure 7.23. Throughput in 2PL systems with without thrashing control in systems containing 20 
processors each operating at 1000 MIPS by transaction type. 

 



Chapter 7.  Validation of EMA 

 
199

 

The advantage of thrashing control diminishes with the reduction of concurrency. 

Thus in the configurations composed of 20 processors operating at 1000 MIPS, the 

advantage of thrashing control only becomes marked in the in-memory system past a 

concurrency of 15.  Similarly, while the advantage of thrashing control for EMA is clear, 

the performance of EMA is affected more by the ceiling imposed by the hardware than it is 

by the implementation of thrashing control. In the configurations composed of 10 

processors operating at 2000 MIPS, because of the very low concurrencies involved, the 

effect of thrashing control on throughput is very small and differences in performance are 

dominated by hardware considerations. 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10

concurrency

th
ro

ug
hp

ut

in-memory no thrashing strategy in-memory with thrashing strategy
EMA no cost no thrashing stratagey EMA no cost with thrashing strategy

 

Figure 7.24.. Total throughput in 2PL systems with without thrashing control in systems 
containing 10 processors each operating at 2000 MIPS 

 



Chapter 7.  Validation of EMA 

 
200

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10

concurrency

th
ro

ug
hp

ut

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10

concurrency

th
ro

ug
hp

ut
 

  T1  transactions                                                                   T2 transactions   

 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10

concurrency

th
ro

ug
hp

ut

0

2000

4000

6000

8000

10000

12000

0 5 10

concurrency

th
ro

ug
hp

ut

 

  T3  transactions                                                                   T4 transactions   

Figure 7.25. Thrashing control in systems containing 10 processors each operating at 2000 MIPS 
by transaction type. 

 



Chapter 7.  Validation of EMA 

 
201

 

7.5 Summary   

 

The result of the tests presented in this chapter indicate that when used in 

conjunction with all concurrency control mechanisms, EMA can increase the throughput of 

disk-based systems to levels quite close to those achieved by in-memory system using an 

equivalent concurrency control mechanisms. This performance is far better than can be 

achieved with any disk-based concurrency control mechanism that does not use EMA. 

 

Further, results presented in section 7.3 showed that the performance of EMA was 

very robust to the imposition of additional costs associated with its implementation.  

Indeed, the addition of cost penalties far in excess of what one could reasonably expect in 

commercial applications reduced the performance of EMA by a very small margin. 

Besides preventing thrashing, the use of thrashing control, improved the performance of 

2PL systems. In the systems with the fastest hardware at low concurrency, the 

performance of the 2PL systems was comparable to that achieved with WDL and 

optimistic concurrency control. At higher concurrencies, with thrashing control, the 

performance of 2PL was respectable when compared to WDL. However without thrashing 

control, the throughput of 2PL actually declined once the peak concurrency threshold was 

passed. 

 

  

 



.  Conclusion 
Chapter 8 
 202

 

Chapter 8 

 

Conclusion 

 

 

 

 

8.1   Contributions and Achievements 

    

In recent years, there have been several important developments in the general 

computing industry. These developments have also impinged on both the actual and 

potential performance requirements and capacity of transaction processing systems. The 

start of an expected explosion in e-commerce has already led to applications such as on-

line share trading, which require much higher throughputs than have been available in the 

past. The development of cheap memory has made systems with memory capacities that 

in the past were considered huge, quite commonplace. The combination of these two 

factors has led to the recent development of in-memory database systems. The aim of this 

thesis has been to examine the potential performance of in-memory systems under 



Chapter 8.  Conclusion 

 203

various hardware configurations and concurrency control schemes relative to equivalent 

disk-based systems and to determine whether there was any way of bringing the 

performance of disk-based systems closer to that of in-memory systems. We summarize 

the major points and contributions of this thesis as follows. 

 

• Disk-Based Versus In-Memory Systems   

  

In this thesis we tested a number of concurrency control mechanisms operating in a 

variety of hardware configurations.  The most interesting results of these tests were the 

extraordinary rates of throughput achievable by in-memory systems.  Under 2PL, WDL 

and optimistic concurrency control, massive  throughputs of over 40000 transactions per 

second were achieved in some of our in-memory systems.  Throughputs under all 

concurrency control mechanisms in the in-memory systems with speeds over 100 MIPS 

per CPU were well above the best results achieved by any concurrency control method in 

the disk-based systems.    

 

The results of these tests indicate that the potential performance of concurrency control 

mechanisms in in-memory systems, rather than the performance of different concurrency 

control methods under equivalent disk-based hardware should form the benchmark for 

judging the merit of a transaction processing system. We believe that the gap in 

performance between any concurrency control mechanism in in-memory systems and the 

best performance of the most successful conventional concurrency control mechanism in 

disk-based systems makes this conclusion inescapable.   



Chapter 8.  Conclusion 

 204

• Contention-Based Scheduler 

The results  outlined above suggest that for those organizations that could fit all 

their data in memory, the best way of improving the performance of their transaction 

processing systems is to switch to in-memory systems rather than improve the 

performance of their disk-based systems. However, many organizations cannot fit all their 

data in memory and for these organizations, improvement in the performance of their 

transaction processing systems can only come about by improving the performance of 

disk-based systems.  

 

The first mechanism we developed to improve the performance of disk-based 2PL 

systems was the contention-based scheduler. This scheduler operated by measuring 

transactions’ contention as they arrived sorting these transactions into queues of 

transactions with a similar contention. It then manipulated the number of transactions 

allowed into the system by the contention class. We outlined the mechanisms required by 

this scheduler for its operation. These mechanisms included –  

 

1. A mechanism that could enable the scheduler to estimate transaction’s 

contention reasonably cheaply.  

2. A method for calculating transactions’ contention that was independent of 

concurrency and that could calculate contention in situations where not all 

objects in data stores have an equal probability of being accessed 

3. A method for determining the maximum number of transactions of each type 

allowed into the system.   



Chapter 8.  Conclusion 

 205

4. A means of compensating higher contention transactions for their subsidy to 

lower contention transactions.  

 

Tests showed that the contention-based scheduler substantially outperformed 

standard 2PL concurrency control in a wide variety of disk-based hardware configurations. 

The improvement though most pronounced in the throughput of low contention 

transactions extended to all transaction types over an extended processing period.    

 

• EMA 

 

The second mechanism we developed to improve the performance of disk-based 

systems was the enhanced memory access (EMA) system. Indeed, we believe that our 

proposal for EMA, which improves the performance of disk-based systems to near that 

achieved by in-memory systems is probably the major contribution of our thesis. 

The purpose of EMA was to allow very high levels of concurrency in the pre-

fetching of data thus bringing the performance of disk-based systems close to that 

achieved by in-memory systems. The basis of our proposal for EMA was to ensure that 

even if conditions for satisfying a predicate changed between pre-fetch time and the time 

when actual execution took place, the data required to satisfy transactions’ predicates 

were nevertheless still be found in memory. This pre-fetching could be used as a front end 

for 2PL, WDL or optimistic concurrency control. 

 

The main policy that had to be effected to implement EMA was that no data item 

could be flushed from memory unless the time-stamp of its last access exceeded the 

timestamp of the oldest transaction in the system. Besides this policy, consideration was 



Chapter 8.  Conclusion 

 206

also given as to what sort of data needed to be pre-fetched in order to ensure that no 

matter how a predicate’s value changed, all required data was in memory. We presented 

an implementation that addressed all the requirements of EMA. 

In this implementation,  a new transaction entering the system is time-stamped on 

arrival and begins an immediate virtual execution to pre-fetch all its required objects. If an 

object that it requires is already in memory having been previously acquired by another 

transaction, the new transaction updates that object’s timestamp. If an object is not found 

in memory, it is retrieved from disk and time-stamped. An object’s timestamp is also 

changed by a transaction that has used it. Naturally, a committing transaction is the only 

transaction that can change the value of a data item that is available to all transactions. All 

other transactions can only modify copies of objects in their own workspace. An object 

cannot be flushed from memory until its timestamp is older than that of the oldest 

transaction in the system. This ensures that a current version of all the objects that a 

transaction requires are in memory by the time it begins its actual execution with modest 

memory requirements elative to the capacity of modern hardware systems.   

 

Tests showed that the implementation of EMA allowed the performance of disk-

based systems to approach that achieved by in-memory systems. Further, the tests 

showed that the performance of EMA was very robust to the imposition of additional costs 

associated with its implementation.   

 

• Thrashing 

 

 We showed that in systems using 2PL concurrency control, thrashing could be a 

serious problem even at low lock contentions if the availability of transactions is such that 



Chapter 8.  Conclusion 

 207

the system can continuously process for a very large number of cycles. In in-memory 

systems, this large number of cycles could occur in a very short period of real time.  To 

control this thrashing we suggested several devices. Testing showed that the most 

successful thrashing control policy was to simply restart all blocked transactions once the 

proportion of locked transactions exceeded 0.378.  This policy was most successful in in-

memory and EMA systems. A variation of this policy, which restarted blocked transactions 

by transaction class, was successfully used with the contention-based scheduler.  

 

8.2   Future Research 

 

While the EMA system outlined in this thesis improves the throughput of disk- 

based systems quite dramatically, the proposal presented in this thesis is open to further 

research. One of the issues that need to be determined more precisely than has been 

done in this thesis is the actual nature of predicates that are used in commercial 

applications. For example, for our tests we arbitrarily set a fixed number of transactions 

that had forked decisions – the actual proportions of such transactions that are common in 

commercial applications needs to be established. 

 

Another approximation used in this thesis was the costs of overheads for EMA. In 

our tests we arbitrarily set the overhead costs to 5000 instructions per object processed. 

Further research is required for a more precise assessment of actual costs. 

 



Chapter 8.  Conclusion 

 208

Another question that remains open with regards to EMA is whether the 

implementation suggested in this thesis is the best one. For example in the 

implementation outlined in this thesis, the management of data and transactions was 

decentralized – that is, each transaction had a set of required activities which included the 

maintenance of transaction information and the flushing of data. An alternative 

implementation could have a dedicated processor to control the management of data and 

transaction information. For example, a garbage collector could do data flushing 

periodically.   



Bibliography  

 

209

   

Bibliography 
 

 

1. Adya, A., Gruber, R., Liskov, B. and Maheshwari, U.,“ Efficient Optimistic 

Concurrency Control Using Loosely Synchronised Clocks”,  Proceedings of the 1995 ACM  

SIGMOD International Conference on Management of Data, Vol.  24 No. 2, San Jose 

California, May 1995, pp 23-34 

 

2. Agrawal, R., Carey, M.J., and Livney, M, “Concurrency Control Performance 

Modelling: Alternatives and Implications”, ACM Transactions on Database Systems, 

Vol.12, No.4, December 1987, pp 609 - 654 

 

3. Bell, D.A.,  “Difficult Data Placement Problems”, The Computer Journal, Vol 27, No. 

4, 1984, pp 315-320 

 

4. Bernstein, P.A., Hadzilacos, P. and Goodman, N., Concurrency Recovery and 

Control in Database Systems, Addison-Wesley, Reading MA, 1987 

 

5. Bhargava, B., "Concurrency Control in Database Systems"”, IEEE Transactions on 

Knowledge and Data Engineering, Vol. 11 No. 1, January/February, 1999, pp 3-16 

 

  



Bibliography 

 210

6.        Bohannon, P., McIlroy, P., and Rastogi, R., “Main-Memory Index Structures with 

Fixed-Size Partial Keys”, Proceedings of the ACM SIGMOD International Conference on 

Management of Data, Vol. 30, No 2, Santa Barbara, California, May 21 - 24, 2001, pp 

163-174 

 

7. Borr, A., “ Transaction Monitoring in Encompass [TM]: Reliable Distributed 

Transaction Processing”, Proceedings of the 7th International Conference on Very Large 

Data Bases, Cannes, France, September 1981, pp 155 -165 

 

8. Borr, A., “Robustness to Crash in a Distributed Database: A Non Shared-Memory 

Multi-Processor Approach”, Proceedings of the 10th International Conference on Very 

Large Data Bases, Singapore, August 1984, pp 445 -453 

 

9.       Carey, M.J., Krishnamurthi, S. and Livny, M., “Load Control for Locking: The ‘half 

and half’ Approach”, The 9th ACM Symposium on the Principles of Database Systems, 

Nashville Tenessee, April, 1990, pp 72-84 

 

10.    Chakrabarti, K., and Mehrotra, S., “Efficient Concurrency Control in 

Multidimensional Access Methods”, Proceedings of ACM SIGMOD International 

Conference on Management of Data, Vol. 28, No. 2, Philadephia, Pennsylvania, June, 

1999, pp25-36 

  

11. Daniels, D.S., Spector, A.Z. and Thompson, D.S.,  “Distributed Logging for 

Transaction Processing”, ACM SIGMOD Record, Vol. 16, No. 3, December, 1987, pp 82 -

95 



Bibliography 

 211

 

12. Griffeoen, j, Anderson, T, Breitbart, Y. and Vingralek, R., “DERBY: A Memory 

Management System for Distributed Main Memory Databases”, retrieved March 5 2000 

<http://www.dcs.uky.edu/~griff/papers/derby-ride96/html.html> 

 

13. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M. and Wood, D.A., 

“Implementation Techniques for Main Memory Database Systems”,  ACM SIGMOD 

Record, Vol. 14 No.2, 1984, pp 1-8, 

 

14. DeWitt, D., and Gray, J. “ Parallel Database Systems: The Future of High 

Performance Database Systems”, Communications of the ACM, Vol. 35, No. 6, June 

1992, pp 85-98 

 
15. Franaszek, P., and Robinson, J.T., “Limitations of Concurrency in Transaction 

Processing”, ACM TODS, Vol. 10, No.1, March 1985, pp 1 - 28 

 

16. Franaszek,P., Robinson,J.T.and Thomasian,A., “Access Invariance and Its Use in 

High-Contention Environments”, Proceedings of the 6th International Data Engineering 

Conference, Los Angeles, Feb 1990, pp 47 - 55 

 

17. Franaszek,P., Robinson,J.T.and Thomasian,A.,“Concurrency Control for High 

Contention Environments”, ACM TODS, Vol.17, No.2, June 1992, pp 304 - 345 

 

18. Franklin, M.J., Carey, M.J., and Livny, M., “Transactional Client-Server Cache 

Consistency: Alternatives and Performance”, ACM TODS, Vol.22, No., September 

1997,pp 315-363 



Bibliography 

 212

 

19. Garcia-Molina, H. and K. Salem, K. , “Main Memory Database Systems”, IEEE 

Transactions on Knowledge and Data Engineering, Vol.4, No.6, December 1992, pp 509-

516 

 

20. Gawlick, D.,  “Processing Hot Spots in High Performance Systems”, IEEE 

Database Engineering, 1985, pp 249 -251 

 

21. Gawlick, D., and Kinkade, D., “ Varieties  of Concurrency control  in  IMS/VS 

FastPath”,  IEEE  Database Engineering, Vol. 8, No. 2, 1985, pp  3-10 

 

 22. Gray, J., and Reuter, A. Transaction Processing: Concepts and Techniques, 

Morgan-Kaufmann, San Mateo, California, 1993. 

 
 

23. Gruenwald, L., Chen,Y.W., and Huang, J., “Effects of Update Techniques on Main 

Memory Database System Performance”,  IEEE Transactions on Knowledge and Data 

Engineering, Vol. 10, No. 5, September/October 1998  

 

24. Takahiro , Kaname , Masahiko and Shojiro,  “Database Migration: A New 

Architecture for Transaction Processing in Broadband Networks”, IEEE Transactions on 

Knowledge and Data Engineering, Vol. 10, No. 5, September/October 1998, pp 839-854 

 
25. Harder, T.  “Observations on Optimistic Concurrency Control  Schemes”, 

Information Systems, Vol.9, No. 2, 1984, pp 111-120 

 



Bibliography 

 213

26. Haritsa,J.R., and  Seshadri, S., “Real -Time Concurrency Control”,  SIGMOD 

Record, Vol.25 No. 1, March 1996, pp  13 - 17 

 

27. Hasse, C., and  Welkum, G., “ A Performance Evaluation of Multi-Level Transaction 

Management”,  Proceedings of the 17th International Conference on Very Large Data 

Bases, Barcelona, September  1991, pp  55 -66 

 

28. Heiss, H., and Wagner, R., “ Adaptive Load Control in Transaction Processing 

Systems”, Proceedings of the 17th  International Conference on Very Large Data 

Bases, Barcelona, September 1991, pp 47 - 54 

 

29. Joshi, A.M., “ Adaptive Locking Strategies in a Multi-node Data Sharing 

Environment”, Proceedings of the 17th International Conference on Very Large Data 

Bases, Barcelona, September 1991, pp 181 -191 

 

30. Kaspi, S., “Optimizing Transaction Throughput in Databases Via an Intelligent 

Scheduler”, Proceedings of the 1997 IEEE International Conference on Intelligent 

Processing Systems, Beijing, October, 1997, pp.1337 – 1341 

 

31. Kaspi, S., “The Use of Contention-Based Scheduling For Improving The 

Throughput of Locking Systems”, forthcoming in, Proceedings of ADBIS 2001, Vilnius, 

Lithuania, September 2001 

 



Bibliography 

 214

32. Kornacker, M., Mohan, C. and Hellerstein, J.M.,  “Concurrency and recovery in 

generalized search trees”, Proceedings of the 1997 ACM SIGMOD International 

Conference on Management of Data, Vol. 26, No 2, Tucson Arizona, June 1997, pp 62-72 

 

33. Kung, H.T. and Robinson, J.T.,  “On Optimistic Methods for Concurrency Control”, 

ACM Transactions on Database Systems, Vol.2, No.4, June 1981, pp 213 - 226 

  

34. Leung, C.H.C., “Parallel Paradigms for Query Evaluation and Processing”, 

Proceedings of the Australasian Workshop on Parallel and Real-Time Systems PART’94, 

Melbourne, 1994, pp 1 -10 

 

35. Leung, C.H.C., and Ghogomu, H.T., “ A  High-Performance Database 

Architechture”, Proceedings of the 7th ACM International Conference on Supercomputing, 

Tokyo, 1993, pp 377-386 

 

36. Leung, C.H.C. and S. Kaspi, “A Flexible Paradigm for Semantic Integration in 

Cooperative Heterogeneous Databases” Proceedings of FGCS '94, ICOT, Tokyo, 

December 1994 

 

37. Menasce, D.A., Nakanishi, T.,  “Optimistic Versus Pessimistic Concurrency Control 

Mechanisms in Database Management Systems”, Information Systems, Vol. 7 No. 1, 

1982, pp 13 - 27 

 



Bibliography 

 215

38. Molesky, L.D. and Ramairtham, K., “ Recovery Protocols for Shared Memory 

Database Systems”, Proceedings of the 1995 ACM  SIGMOD International Conference on 

Management of Data, Vol.  24 No. 2, San Jose California, May 1995, pp 11-22 

 

39. Ng,W.T. and  Peter M. Chen, P.M.,” Integrating Reliable Memory in Databases”, 

Proceedings of 23rd International Conference on Very Large Data Bases, , Athens, 

Greece, August 25-29, 1997, pp 76-85  

 

40. O’neil, P. “ The Escrow Transactional Mechanism”, ACM Transactions on Database 

Systems, Vol. 11, No. 4, December, 1986, pp 405-430 

 

41. PolyHydera, “Product Overview, PolyHydera Real Time Embedded Database”  

retrieved  February 16 2001, <http:// www.polyhedra.com/ product.htm > 

 

42.  Ram, P., Do, L. and Drew, P, “Distributed Transactions in Practice”, Sigmod 

Record, Vol. 28, No. 3, September 1999, pp 49-55 

 
43.  Reuter,A., “Concurrency on High-Traffic Data Elements”, Proceedings of the 1st 

ACM PODS, Los Angeles, California,  March 1982, pp 83 – 92 

 

44. Ryu, I.K., and Thomasian, A., “Analysis of performance with Dynamic Locking”, 

Journal of the ACM, Vol. 37, No.3, September 1990, pp 491 - 523 

 

45. Shasha, D., “Efficient and Correct Execution of Parallel Programs that Share 

Memory”, ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, 

April 1988, pp 282-312 



Bibliography 

 216

 

46. Shasha,  D.,  Llirbat, F.,  Simon, E. and Valduriez, P.,  “Transaction Chopping: 

Algorithms and Performance Studies”, ACM Transactions on Database Systems,  Vol. 20, 

No. 3, September, 1995, pp 325-363 

 

47. Thomasian, A., “Performance Limits of Two Phase Locking “, 7th IEEE  International 

Conference on Data Engineering,  Kobe, Japan, 1991, pp 426-435. 

 

48. Thomasian, A., and Ryu, K.,  “Performance Analysis of Two-phase Locking”, IEEE 

Transactions on Software Engineering, Vol. 17 No. 5, May 1991, pp 386-402 

 

49. Thomasian, A.,    “Checkpointing for Optimistic Concurrency Control Methods”, 

IEEE Transactions on Software Engineering, Vol. 17 No. 5, May 1995, pp 386-402 

 

50. Thomasian, A.,    “ A performance Comparison of Locking Methods with Limited 

Wait Depth”, IEEE Transactions on Knowledge and Data Engineering, Vol. 9 No. 3, 

May/June 1997, pp 421-434 

 

51. Thomasian, A., “Distributed Optimistic Concurrency Control Methods For High-

Performance Transaction Processing”, IEEE Transactions on Knowledge and Data 

Engineering, Vol. 10 No. 1, May, 1998, pp 173-187 

 

52. TimesTen Performance Software, “A Performance Brief, 2001”, retrieved April 26 

2001 <http://www.timesten.com/library/index.html#whitepapers> 

 



Bibliography 

 217

53. TimesTen Performance Software, “TimesTen White Paper, 2001”, retrieved April 26 

2001 <http://www.timesten.com/library/index.html# whitepapers> 

 

54. Ulusoy, , O., and Buchmann, A., “ Exploiting Main-Memory DBMS Features to 

Improve Real-Time Concurrency Control Protocols”,   SIGMOD Record, Vol.25 No. 1, 

March 1996, pp  13 - 17 

  

55. Valduriez, P., “Parallel Database Systems: Open Problems and New Issues”, 

Distributed and Parallel Databases, Vol. 1, No. 2, April 1993,     pp 137-165 

 

 

56.    WEB PROFORUM TUTORIALS, “Commercial In-Memory Databases: A New 

Alternative”, retrieved April 26 2001 <http:// www. iec. org/tutorials/in_ 

memory/topic04.html > 

 
57. Zaharioudakis, M. and Carey, M.J., “Highly concurrent cache consistency for 

indices in client-server database systems”, Proceedings of the 1997 ACM SIGMOD 

International Conference on Management of Data, Vol. 26    No. 2, Tucson, Arizona, June 

1997,pp50-61



 

 218

 

 

Appendix A 

 

Simulation Implementation 

  

All the evaluations and analyses in this thesis were based on data supplied by the  

running of simulation programs constructed entirely by the author.  

 

The hardware used was an IBM-compatible machine with 256Mb of RAM operating 

at  400 MHz initially and  850 MHz after an upgrade. The operating systems used were 

Windows NT4 and Windows 2000. All the programs were written using Borland C++ 

(Versions 4 and 5) with output going out to Microsoft Exel files. Figure A.1 shows a UML 

class diagram of the  classes used in our programs and the associations between them.  It 

should be noted that the same basic structure is used for all our programs regardless of 

the concurrency control used. Thus the classes Lock and Locktable exist even where 

optimistic concurrency is used. Thus under 2PL the Locktable class uses lock, unlock and 

wakeup methods whereas if optimistic concurrency is used, then the Locktable class calls 



Appendix A: Simulation Implementation  

 219

the lock, kill and die methods. The lock method under optimistic concurrency is non-

blocking and is merely used to indicate over which   objects a conflict occurred and which 

transactions to kill (or which should die).  

   

 

Figure A.1. A UML class diagram of our simulation programs 
 

Parameters which are variable include the length of the simulation, the number of 

times a particular simulation was run, the number of processors, the speed of the 



Appendix A: Simulation Implementation  

 220

processors, disk access speed, the arrival rate of transactions, the mix of transactions 

arriving at the system and their composition, the number and size of each database.  

 

Thus the programs could be used to test for a very large number of system 

configurations. Of the very large number of configurations possible, only a relatively small 

number were tested and of these,  an even smaller number was  actually used in the 

thesis. The reasons for these restrictions are as follow – 

1. To have conducted all the tests possible with these programs would have 

taken several lifetimes and thus a limitation had to be set because of time 

constraints.  

2. Even with a relatively few configurations the thesis is quite sizeable. To 

have reported all of the systems actually tested would have made the 

thesis mammoth without making any additional significant points while 

risking being excessively repetitive. 

The reasons particular subsystems or parameters were finally chosen, if not 

explicitly detailed in the body of my thesis, is largely because they had been used in tests 

reported in reputable journals and proceedings. For example, the main transaction and 

database subsystems used in this thesis are essentially the same as used in [17] where it 

was thought appropriate for representing a high contention environment. This Database 

subsystem and many of the transaction parameters (number of instructions for 

initialization, access, committal) was also used in [51].   

 

As indicated above, the results of each run were written directly to an EXEL file by 

the program itself. A screen print of part of one such file is shown in Figure A..2 below.     

 



Appendix A: Simulation Implementation  

 

 

Figure A..2.  in-memory 2000 MIPS. 
 

For comparing different systems, the mean results for each sys

was copied to a separate EXEL file and the results were then charted 

features. 

c

i

r

c

b

After the program is 

omplete,  the EXEL file 

s opened and the  mean 

esult for each 

oncurrency is calculated 

y using EXEL’s inbuilt 
221

tem to be compared 

using EXEl’s inbuilt 



Appendix B:  Thrashing  Control Strategies 

                                                          

 222

 

 

Appendix B 

 

Thrashing Control Strategies 

 

 

To determine the relative costs and benefits of each of the thrashing control 

strategies outlined in chapter 4, we test each of these strategies on the 96 by 200 MIPS 

per processor in-memory system at a concurrency of 100. The reason for the choice of 

this hardware configuration is that it completes a very large number of cycles at a 

reasonably high concurrency thus giving us a large number instances where thrashing 

may occur and enabling us to have a large sample of the relative costs and benefits of 

each strategy.  Two thresholds are tested – 0.378 and 0.756  - the latter is arbitrarily 

chosen by doubling the 0.378 threshold. We also implement a mechanism to test for a 

circular deadlock to a depth of 3. If a deadlock is not detected at this level, then the 

thrashing control mechanism reverts to a simple proportion of transactions blocked 



Appendix B:  Thrashing  Control Strategies 

                                                          

 223

strategy. The implementation of a limited depth check is used to indicate whether such a 

mechanism significantly reduces the number of restarted transactions. The result of this 

series of tests is shown in table B.1 below.  

 

All the systems tested are successful in preventing thrashing.  However, apart from 

their prevention of thrashing, they display a variety of behaviors. As indicated by table B.1, 

the implementation of a partial depth check does not seem to affect either the number of 

restarts or throughput. Since as indicated in chapter 4, implementing a very deep search 

would be excessively costly and a shallow search does not yield meaningful results, this 

strategy does not seem viable. The results also indicate that staggering restarts by time 

stamping transactions tends to reduce the number of restarts. However, this strategy also 

tends to lower throughput. Similarly, increasing the allowed proportion of blocked 

transactions reduces the number of restarts but also tends to lower throughput. 

 

Because the cost of restarts is higher in disk- based systems than it is in in-memory 

systems, we also test each of the above strategies (but discarding any depth checking) in 

our disk-based systems. Here, despite the disparity in system configurations, the relative 

results are consistent. Figures B.1 to A.5 show the results for each of our disk-based 

systems at a concurrency of 100. As the results show, for all hardware configurations, all 

of the thrashing control strategies yield better results on equivalent hardware than no 

thrashing control. In all systems the lower threshold yields a better result than the higher 

threshold indicating that the cost of allowing blocked transactions to reside in memory for 



Appendix B:  Thrashing  Control Strategies 

                                                          

 224

an extended period exceeds the cost of unnecessarily restarting transactions that would 

clear if the system were allowed to continue without interference. 

 

 

Table B.1.  Cost benefit  of diverse thrashing   
 

 

However, unlike the in-memory system, in the disk-based systems a staggered 

restart of transactions (by using the time stamp mechanism outlined above) actually 

increases throughput with each of the thresholds used. This is because as indicated 

above, a staggered re-start changes the sequence in which locks are acquired thus 

reducing the probability that the same wait chain will recur and thus reducing the 

probability that transactions will have to be continually restarted. In disk-based systems, 

the benefit of this reduction in the number of restarts exceeds the cost of temporarily 

keeping transactions inactive.  

 



Appendix B:  Thrashing  Control Strategies 

                                                          

 225

0

50

100

150

200

250

300

350

no thrashing
control

 0.378
threshold
immediate

restart

0.378
threshold
staggered

restart

 0.756
threshold
immediate

restart

0.756
threshold
staggered

restart

thrashing strategy

th
ro

ug
hp

ut

 

Figure B.1. 1248 processors by 4 MIPS disk based system   

          

0
50

100
150
200
250
300
350
400
450

no thrashing
control

 0.378
threshold
immediate

restart

0.378
threshold
staggered

restart

 0.756
threshold
immediate

restart

0.756
threshold
staggered

restart

thrashing strategy

th
ro

ug
hp

ut

 

Figure B.2. 96 processors by 100 MIPS disk based system 



Appendix B:  Thrashing  Control Strategies 

                                                          

 226

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
500.00

no thrashing
control

 0.378
threshold
immediate

restart

0.378
threshold
staggered

restart

 0.756
threshold
immediate

restart

0.756
threshold
staggered

restart

thrashing strategy

th
ro

ug
hp

ut

 

                       Figure B.3.  96 processors by 200 MIPS disk based system          

  

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
500.00

no thrashing
control

 0.378
threshold
immediate

restart

0.378
threshold
staggered

restart

 0.756
threshold
immediate

restart

0.756
threshold
staggered

restart

thrashing strategy

th
ro

ug
hp

ut

 

Figure B.4.  20 processors by 1000 MIPS disk based system 
 



Appendix B:  Thrashing  Control Strategies 

                                                          

 227

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
500.00

no thrashing
control

 0.378
threshold
immediate

restart

0.378
threshold
staggered

restart

 0.756
threshold
immediate

restart

0.756
threshold
staggered

restart

thrashing strategy

th
ro

ug
hp

ut

 

  Figure B.5. processors by 2000 MIPS disk based system   
 

 

These results indicate that the two most successful disk-based 

thrashing control strategies are a 0.356 threshold with staggered restarts 

and a 0.356 threshold without staggered restarts.    

    

 

 


	1.1 	Objective
	1.2    Summary of Contributions
	Thesis Structure
	2.1    Introduction
	2.2 Two Phase Locking
	
	
	Figure 2.1. Theoretical upper limits on active transactions under 2PL.


	2.2.1   Intra-Transaction Parallelism
	2.2.2  Field Calls and Escrow Locking
	
	Figure 2.2. First phase of field calls and escrow locks.
	Figure 2.3.  Second phase of field calls and escrow  locks.



	2.3   Optimistic Concurrency
	
	
	Figure 2.4. Upper bounds on expected active transactions for essential blocking policies.



	2.4   Running Priority and Wait Depth Limited
	2.5   Performance Comparisons
	2.6   Further Reading
	3.1   Introduction
	An Overview of 2PL
	
	
	Figure 3.1.  An example of transaction activity in the first cycle
	Figure 3.2.  An example of transaction activity in the second cycle.


	3.2.1  Other Behavioral Properties of 2PL Concurrency Control

	3.3  Alternative Concurrency Control Mechanisms
	3.3.1  Optimistic Concurrency Control
	
	Figure 3.3.  An example of essential blocking


	3.3.1.1 Variability of Transaction Size and Contention and Performance
	3.3.2  Wait Depth Limited (WDL)
	
	Figure 3.4.  The three initial (temporary) cases of transaction states.
	Figure 3.5.  WDL(1) algorithm given the states outlined in Figure 3.2


	3.3.3 Access Invariance and Wasted Work in Disk-based Systems

	3.4  Evaluation Systems
	3.4.1  The Database and Transaction Subsystems
	3.4.2  Hardware Subsystems
	3.4.3  The Concurrency Control Subsystems
	3.4.4  The Processing Subsystem

	3.5   Performance Results
	3.5.1  The Performance of In-Memory Systems
	
	Figure 3.6.  1248 processors each operating at 4 MIPS
	Figure 3.7.   96 processors each operating at 100 MIPS
	Figure 3.8.  A comparison of throughputs under 2PL, optimistic kill and WDL concurrency control methods for a system with 96 processors each operating at 200 MIPS
	Figure 3.9.  A comparison of throughputs of the largest transactions (T4) under optimistic kill and WDL concurrency control methods for a system with 1248 processors each operating at 4 MIPS
	Figure 3.10. A comparison of throughputs of the largest transactions (T4) under optimistic kill and WDL concurrency control methods for a system with 96 processors each operating at 100 MIPS


	3.5.1.1 The Performance of In-Memory Systems with Very Fast Processors
	
	Fig 3.12.   A comparison of throughput under 2PL concurrency control in systems composed of 96 processors each operating at 200 MIPS, 20 processors each operating at 1000 MIPS and 10 processors each operating at 2000 MIPS
	Figure 3.13.  A comparison of throughput under WDL concurrency control  in systems composed of 96 processors each operating at 200 MIPS,  20 processors each operating at 1000 MIPS and 10processors each operating at 2000 MIPS.
	Figure 3.14.  A comparison of throughput under optimistic concurrency control  in systems composed of 96 processors each operating at 200 MIPS,  20 processors each operating at 1000 MIPS and 10 processors each operating at 2000 MIPS.


	3.5.2 The Performance of Disk-based Systems
	
	Fig 3.15. A comparison of throughputs under 2PL, optimistic kill and WDL concurrency control methods for a system with 1248 processors each operating at 4 MIPS and with disk access at 15 milliseconds per access
	Figure 3.16.  A comparison of throughputs under 2PL, optimistic die-kill and WDL concurrency control methods for a system with 96 processors each operating at 100 MIPS and with disk access at 15 milliseconds per access
	Figure 3.17.  A comparison of throughputs under 2PL, optimistic die-kill and WDL concurrency control methods for a system with 96 processors each operating at 200 MIPS and with disk access at 15 milliseconds per access
	Figure 3.18.  A comparison of throughputs under 2PL, optimistic die-kill and WDL concurrency control methods for a system with 20 processors each operating at 1000 MIPS and with disk access at 15 milliseconds per access.
	Figure 3.19. A comparison of throughputs under 2PL, optimistic die-kill and WDL concurrency control methods for a system with 10 processors each operating at 2000 MIPS and with disk access at 15 milliseconds per access
	Figure 3.20.  A comparison of the throughput of large transactions given no access invariance under optimistic kill and WDL concurrency control methods for a system with 1248 processors each operating at 4 MIPS and with disk access at 15 milliseconds per
	Figure 3.21.  A comparison of the throughput of large transactions given access invariance under optimistic kill-die and WDL concurrency control methods for a system with 96 processors each operating at 100 MIPS and with disk access at 15 milliseconds pe
	Figure 3.22.  A comparison of the throughput of large transactions given access invariance under optimistic kill-die and WDL concurrency control methods for a system with 96 processors each operating at 200 MIPS and with disk access at 15 milliseconds pe
	Figure 3.23.  A comparison of the throughput of large transactions given access invariance under optimistic kill-die and WDL concurrency control methods for a system with 20 processors each operating at 1000 MIPS and with disk access at 15 milliseconds p
	Figure 3.24.  A comparison of the throughput of large transactions given access invariance under optimistic kill-die and WDL concurrency control methods for a system with 10 processors each operating at 2000 MIPS and with disk access at 15 milliseconds p
	Figure 3.25. The throughput of systems of systems operating under 2PL concurrency control
	Figure 3.26. The throughput of systems of systems operating under WDL concurrency control
	Figure 3.27: The throughput of systems of systems operating under optimistic concurrency control


	3.5.3 A Comparison of the Performance of In-Memory and Disk-based Systems
	
	Figure 3.28.  A comparison of in-memory and disk-based systems with each configuration having 1248 processors operating at 4 MIPS per processor
	Figure 3.29.  A comparison of in-memory and disk-based systems with each configuration having 96 processors operating at 100 MIPS per processor
	Figure 3.30.  A comparison of in-memory and disk-based systems with each configuration having 96 processors operating at 200 MIPS per processor
	Figure 3.31.  A comparison of in-memory and disk-based systems with each configuration having 20 processors operating at 1000 MIPS per processor
	Figure 3.32.  A comparison of in-memory and disk-based systems with each configuration having 10 processors operating at 2000 MIPS per processor
	Figure 3.33. A comparison of in-memory systems with 96 processors operating at  100 and 200 MIPS per processor, 20 processors operating at 1000 MIPS per processor and 10 processors operating at 2000 MIPS per processor operating under 2PL concurrency cont



	3.6    Thrashing  in 2PL Concurrency Control Systems
	
	
	Figure 3.34: Throughput of T2 transactions per cycle over 8 cycles
	Figure 3.35.  Throughput of T3 transactions per cycle over 8 cycles
	Figure 3.36.  Throughput of the system with fixed size variable contention transactions per cycle over 8 cycles
	Figure 3.37: Throughput of T4 transactions per cycle over 8 cycles



	3.7 Summary
	4.1   Introduction
	4.2   Improving the Performance of 2PL by Manipulating Contention
	4.2.1  Mechanical Principles
	
	Figure 4.1.   A diagramatic illustration of the contention-based scheduler



	4.3   Scheduling Heuristics
	4.3.1  The Measurement of Contention
	4.3.2   Scheduling by Transaction Type
	4.3.3  Setting Transactions priority
	4.3.4  The Determination of Aggregate contention
	
	Figure  4.2. The cyclical relationship between peak aggregate contention and throughput



	4.4   Controlling Thrashing
	
	
	Figure4.3.  An illustration of a three way deadlock



	4.5 Summary
	5.1 Introduction
	5.2  An Overview of the Principles of EMA
	
	
	Figure  5.1.  A Sample state for a pre-fetching system.
	Figure  5.2.  An illustration of the basic principle behind EMA.



	5.3 Classification of Update Predicates
	5.4   Mechanics of the Implementation of EMA
	
	
	Figure 5.3: An overview of the activity of transaction on entry into an EMA system.
	Figure 5.4. The composition of transaction markers in the EMA system .
	Figure 5.5.  Exit of the oldest transaction
	Figure 5.6.  Exit of a transaction that is not the oldest transaction.


	5.4.1 The Management of Data
	
	Figure 5.7. The procedure followed by a completing committing transaction.
	Figure 5.8.  The procedure followed when a pre-fetched item hashes to the same address as an existing item and the time-stamp of the current data item is older than the time-stamp of the oldest transaction.
	Figure 5.9. The procedure followed when a pre-fetched item hashes to the same address as an existing item and the time-stamp of the current data item is younger than the time-stamp of the oldest transaction.
	Figure  5.10.  The procedure followed when a pre-fetched item hashes to the same address as an existing item, the time-stamp of the current data item is younger than the time-stamp of the oldest transaction, and overflow already has more than 1 item.



	5.7 Summary
	Introduction
	6.2 Performance Results for the Contention-Based Scheduler
	
	
	Figure 6.1. A comparison of total throughputs under the contention based scheduler and standard 2PL concurrency control.
	Figure  6.2. A comparison of throughput  under the contention based scheduler and standard 2PL concurrency control by transaction type.



	6.3   Allowing For Errors in the Measurement of Contention
	
	
	Figure 6.3. A comparison of total throughputs under the contention based scheduler and standard 2PL concurrency control with an allowance for error in the measurement of contention.
	Figure  6.4. A comparison of throughputs by transaction type with an allowance for error in the measurement of contention by the scheduler



	6.4    Restricted Number of Transactions
	
	
	Figure  6.5. A comparison of total throughputs under the contention based scheduler and standard 2PL concurrency control with an arrival rate of 1000 transactions per second.
	Figure 6.6  A comparison of throughputs under the contention based scheduler and standard 2PL concurrency control with an arrival rate of 1000 transactions per second by transaction type.



	6.5  The Performance of the Scheduler Over Extended Time Periods
	
	
	Fig 6.7. Total throughput per second over a range of processing periods
	Fig 6.8. Throughput per second over a range of processing periods by transaction type



	Controlling Thrashing
	
	
	Figure 6.9. Total throughput per second over 1 minute in the 1248 processor by 4 MIPS system



	6.7   Very High Concurrencies
	
	
	Figure 6.11. Total throughput
	Figure 6.12. Throughput of T1  transactions
	Figure 6.13.  Throughput of T2  transactions
	Figure 6.14. Throughput of T3  transactions
	Figure 6.15. Tthroughput of T4 transactions



	6.8 Summary
	7.1   Introduction
	The Performance Under EMA with 0 Costs
	
	
	Figure  7.1. A comparison of total throughputs in systems containing 96 processors each operating at 100 MIPS.
	Figure 7..2  A comparison of  throughputs in systems containing 96 processors each operating at 100 MIPS by transaction type.
	Figure 7.3. A comparison of the throughputs of in-memory and EMA (with no cost) under both WDL and optimistic concurrency control for systems with a configuration containing 96 processors operating at 100 MIPS per processor.
	Figure 7.4.  A  comparison of total throughputs in systems containing 96 processors each operating at 200 MIPS
	Figure 7.5. A comparison of the throughput  in systems containing 96 processors each operating at 200 MIPS by transaction type.
	Figure 7.6. A comparison of total throughputs in systems containing 20 processors each operating at 1000 MIPS
	Fig .7.7. A comparison of throughputs in systems containing 20 processors each operating at 1000 MIPS by transaction type
	Figure 7.8. A comparison of total throughputs in systems containing 10 processors each operating at 2000 MIPS
	Figure 7.9. A comparison of the throughputs in systems containing 10 processors each operating at 2000 MIPS by transaction type.



	7.3   Adding Costs to EMA
	
	
	Figure 7.10.  Total throughput with diverse costing regimes in systems containing 96 processors each operating at 100 MIPS
	Figure 7.11. Throughput  with diverse costing regimes in systems containing 96 processors each operating at 100 MIPS by transaction type.
	Figure 7.12.  Total throughput with diverse costing regimes in systems containing 96 processors each operating at 200 MIPS
	Figure 7.13. Throughput with diverse costing regimes in systems containing 96 processors each operating at 200 MIPS by transaction type
	Figure 7.14. Total throughput with diverse costing regimes in systems containing 20 processors each operating at 1000 MIPS
	Fig 7.15. Throughput with diverse costing regimes in systems containing 20 processors each operating at 1000 MIPS by transaction type
	Figure 7.16. Total throughput with diverse costing regimes in systems containing 10 processors each operating at 2000 MIPS
	Figure 7.17. Throughput with diverse costing regimes in systems containing 10 processors each operating at 2000 MIPS by transaction type



	7.4    2PL EMA Systems With and Without Thrashing Control
	
	
	Figure 7.18. Total throughput in 2PL systems with without thrashing control in systems containing 96 processors each operating at 100 MIPS
	Figure 7.19. Throughput  in 2PL systems with without thrashing control in systems containing 96 processors each operating at 100 MIPS by transaction type
	Figure 7.20. Total throughput in 2PL systems with without thrashing control in systems containing 96 processors each operating at 200 MIPS
	7.21. Throughput  in 2PL systems with without thrashing control in systems containing 96 processors each operating at 200 MIPS by transaction type
	Figure 7.22. Total throughput in 2PL systems with without thrashing control in systems containing 20 processors each operating at 1000 MIPS.
	Figure 7.23. Throughput in 2PL systems with without thrashing control in systems containing 20 processors each operating at 1000 MIPS by transaction type.
	Figure 7.24.. Total throughput in 2PL systems with without thrashing control in systems containing 10 processors each operating at 2000 MIPS
	Figure 7.25. Thrashing control in systems containing 10 processors each operating at 2000 MIPS by transaction type.



	7.5 Summary
	8.1   Contributions and Achievements
	Future Research
	Bibliography
	
	
	Figure A.1. A UML class diagram of our simulation programs
	Figure A..2.  in-memory 2000 MIPS.
	Table B.1.  Cost benefit  of diverse thrashing
	Figure B.1. 1248 processors by 4 MIPS disk based system
	Figure B.2. 96 processors by 100 MIPS disk based system
	Figure B.3.  96 processors by 200 MIPS disk based system
	Figure B.4.  20 processors by 1000 MIPS disk based system
	Figure B.5. processors by 2000 MIPS disk based system



	front.pdf
	Abstract
	Declaration
	Samuel Kaspi

	A List of External Publications
	Acknowledgements
	First Page.pdf
	Transaction Models and Algorithms for Improved Transaction Throughput
	Samuel  Kaspi
	This thesis is presented in fulfillment of







