Polymer chemistry or macromolecular chemistry is a multidisciplinary science that deals with the chemical synthesis and chemical properties of polymers or macromolecules. According to IUPAC recommendations, macromolecules refer to the individual molecular chains and are the domain of chemistry. Polymers describe the bulk properties of polymer materials and belong to the field of polymer physics as a subfield of physics.
Polymer chemistry is that branch of one, which deals with the study of synthesis and properties of macromolecules.
Polymers are formed by polymerization of monomers. A polymer is chemically described by its degree of polymerisation, molar mass distribution, tacticity, copolymer distribution, the degree of branching, by its end-groups, crosslinks, crystallinity and thermal properties such as its glass transition temperature and melting temperature. Polymers in solution have special characteristics with respect to solubility, viscosity and gelation.
The work of Henri Braconnot in 1777 and the work of Christian Schönbein in 1846 led to the discovery of nitrocellulose, which, when treated with camphor produced celluloid. Dissolved in ether or acetone, it is collodion, used as a wound dressing since the U.S. Civil War. Cellulose acetate was first prepared in 1865. In 1834, Friedrich Ludersdorf and Nathaniel Hayward independently discovered that adding sulfur to raw natural rubber (polyisoprene) helped prevent the material from becoming sticky. In 1844 Charles Goodyear received a U.S. patent for vulcanizing rubber with sulfur and heat. Thomas Hancock had received a patent for the same process in the UK the year before.
Hermann Staudinger (23 March 1881 – 8 September 1965) was a German chemist who demonstrated the existence of macromolecules, which he characterized as polymers. For this work he received the 1953 Nobel Prize in Chemistry. He is also known for his discovery of ketenes and of the Staudinger reaction.
Hermann Staudinger was born in 1881 in Worms, Germany. After receiving his Ph.D. from the University of Halle in 1903, Staudinger took a position at the University of Strasbourg.
It was here that he discovered the ketenes, a family of molecules characterized by the general form depicted in Figure 1. Ketenes would prove a synthetically important intermediate for the production of yet-to-be-discovered antibiotics such as penicillin and amoxicillin.
In 1907, Staudinger began an assistant professorship at the Technical University of Karlsruhe. Here, he successfully isolated a number of useful organic compounds (including a synthetic coffee flavoring) as more completely reviewed by Rolf Mülhaupt.
In 1912, Staudinger took on a new position at the Swiss Federal Institute of Technology in Zurich, Switzerland. One of his earliest discoveries came in 1919, when he and colleague Meyer reported that azides react with triphenylphosphine to form phosphazide (Figure 2). This reaction – commonly referred to as the Staudinger reaction – produces a high phosphazide yield.
Fritz Klatte (28 March 1880, Diepholz – 11 February 1934) was a German chemist and the discoverer of polyvinyl acetate, with German patent (GP 281687 1912) for its preparation from acetylene gas.
Polyvinyl chloride (PVC) was discovered by French physicist Henri Victor Regnault, and German physicist Eugen Baumann. Klatte designed the production process, although never successfully commercialised it. Klatte is sometimes incorrectly attributed to be the discoverer or inventor of PVC.
For further biographical information (including photo), see (in German): Erfinder(Inventor): Fritz Klatte, 1913 - PVC.