

Wrangling F1 Data With R
A Data Junkie’s Guide

Tony Hirst

This work is licensed under a Creative Commons Attribution 3.0 Unported License

http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Tweet This Book!
Please help Tony Hirst by spreading the word about this book on Twitter!

The suggested hashtag for this book is #f1datajunkie.

Find out what other people are saying about the book by clicking on this link to search for
this hashtag on Twitter:

https://twitter.com/search?q=#f1datajunkie

http://twitter.com
https://twitter.com/search?q=%23f1datajunkie
https://twitter.com/search?q=%23f1datajunkie

Thanks… Just because… (sic)

Acknowledgements

FORMULA 1, FORMULA ONE, F1, FIA FORMULA ONE WORLD CHAMPIONSHIP, GRAND
PRIX, F1 GRAND PRIX, FORMULA 1 GRAND PRIX and related marks are trademarks of
Formula One Licensing BV, a Formula One group company. All rights reserved.

The Ergast Developer API is an experimental web service which provides a historical record
of motor racing data for non-commercial purposes. http://ergast.com/mrd/ .

R: A Language and Environment for Statistical Computing, is produced by the R Core Team/R
Foundation for Statistical Computing, http://www.R-project.org .

RStudio™ is a trademark of RStudio, Inc. http://www.rstudio.com/ .

ggplot2: elegant graphics for data analysis, Hadley Wickham, Springer New York, 2009.
http://ggplot2.org/

knitr: A general-purpose package for dynamic report generation in R, Yihui Xie. http://yihui.name/knitr/

Leanpub: flexible ebook posting, and host of this book at http://leanpub.com/wranglingf1datawithr/

Errata

An update of the RSQLite package to version 1.0.0 (25.10/14) requires the following changes:

COMMENT OUT THE ORIGINAL SET UP

#require(RSQLite)

#ergastdb = dbConnect(drv='SQLite', dbname='./ergastdb13.sqlite')

REPLACE WITH:

require(DBI)

ergastdb =dbConnect(RSQLite::SQLite(), './ergastdb13.sqlite')

Contents

Battlemaps . 1
Identifying Track Position From Accumulated Laptimes 1
Calculating DIFF and GAP times . 4
Calculating the time between cars based on track position 7
Battles for a particular position . 16
Battles Between Particular Drivers . 19
Summary . 19

Battlemaps
Battlemaps are a custom chart style designed to illustrate the competition between a
particular driver and the cars in race positions immediately ahead or behind them at a
particular stage in a race, or the battle for a particular race position.

As well as revealing the gap to the car immediately ahead or behind in race position terms,
battlemap displays also include cars on a different race lap (either backmarkers, or race
leaders on laps ahead when considering lower placed positions) that have a track position
in between that of a target vehicle and car in the race position either immediately or behind
one position. (The aim here is to illustrate whether there are any off-lap vehicles that may
interfere with any positional battles.)

As a graphic that reveals information about track position as well as race position, we need
to have access to data that revelas this information. One way of obtaining this information
is to derive it from the laptime data published as part of the ergast database.

Identifying Track Position From Accumulated Laptimes

Give a set of laptime data for a particular race, how canwe identify track position information
from it?

The first observation we might make is that a race track is a closed circuit; the second that
the accumulated race time to date is the same for each driver, given that they all start the
race at the same time. (The race clock is not started as each driver passes the start finish line -
the race clock starts when the lights go green. To this extent, drivers lower placed on the grid
server a positional time penalty compared to cars further up grid. This effective time penalty
corresponds to the time it takes a lower placed car to physically get as far up the track as the
cars in the higher placed grid positions.)

Let’s start by getting hold of all of the lap time data for a particular race:

Battlemaps 2

library(DBI)

ergastdb =dbConnect(RSQLite::SQLite(), './ergastdb13.sqlite')

#There should be only a single result from this query,

so we can index its value directly.

q=paste('SELECT d.driverId,d.driverRef,d.code, l.lap,l.position,l.time,l.milliseconds

FROM drivers d JOIN lapTimes l JOIN races r

WHERE year="2012" AND round="1" AND r.raceId=l.raceId AND d.driverId=l.driver\

Id')

lapTimes=dbGetQuery(ergastdb,q)

#Note that we want the driverId as a factor rather than as a value

lapTimes$driverId=factor(lapTimes$driverId)

The laptimes are described as a time in milliseconds. At first glance it might appear to be
more convenient to work in seconds, calculated by dividing the milliseconds time by 1000.

#We want to convert the time in milliseconds to time in seconds

#One way of doing this is to take the time in milliseconds colument

lapTimes$rawtime = lapTimes$milliseconds/1000

However, in practice we see that when calculating differences between values represented in
this way as floating point numbers, we get floating point errors.

In order to find the track position of a car, we first need to identify which leader’s lap each
driver is on and then use this as the basis for deciding whether a car is on the same lap - or
a different one - compared with any car immediately ahead or behind on track. One way of
doing this is on the basis of accumulated race time. If we order the drivers by the accumulated
race time, and flag whether or not a particular driver is the leader on particular lap, we can
count the accumulated number of “lap leader” flags to give us the current lead lap count
irrespective of how many laps a given driver has completed.

Battlemaps 3

library(plyr)

#For each driver, calculate their accumulated race time at the end of each lap

lapTimes=ddply(lapTimes, .(driverId), transform,

acctime=cumsum(milliseconds))

#Order the rows by accumulated lap time

lapTimes=arrange(lapTimes,acctime)

#This ordering need not necessarily respect the ordering by lap.

#Flag the leader of a given lap - this will be the first row in new leader lap block

lapTimes$leadlap= (lapTimes$position==1)

head(lapTimes[lapTimes$position<=3,c('driverRef','leadlap')],n=5)

driverRef leadlap

1 button TRUE

2 hamilton FALSE

3 michael_schumacher FALSE

22 button TRUE

23 hamilton FALSE

A Boolean TRUE value has numeric value 1, a Boolean FALSE numeric value 0.

#Calculate a rolling count of leader lap flags.

#Recall that the cars are ordered by accumulated race time.

#The accumulated count of leader flags is the lead lap number each driver is on.

lapTimes$leadlap=cumsum(lapTimes$leadlap)

head(lapTimes[lapTimes$position<=3,c('driverRef','leadlap')],n=6)

driverRef leadlap

1 button 1

2 hamilton 1

3 michael_schumacher 1

22 button 2

23 hamilton 2

24 michael_schumacher 2

Let’s now calculate the track position for a given lead lap, where the leader in a given lap
is in both race position and track position 1, the second car through the start/finish line is

Battlemaps 4

in track position 2 (irrespective of their race position), and so on. (In your mind’s eye, you
might imagine the cars passing the finish line to complete each lap, first the race leader, then
either car in second, or a lapped back marker, and so on.) Specifically, we group by leadlap
and then accumulated race time within that lap, and assign track positions in incremental
order.

lapTimes=arrange(lapTimes,leadlap,acctime)

lapTimes=ddply(lapTimes,.(leadlap),transform,

trackpos=1:length(position))

lapTimes[lapTimes$leadlap==33,c('code','lap','position','acctime','leadlap','trackpos\

')]

code lap position acctime leadlap trackpos

616 BUT 33 1 3100735 33 1

617 HAM 33 2 3111538 33 2

618 VET 33 3 3113745 33 3

619 SEN 32 16 3115035 33 4

620 RIC 32 17 3115829 33 5

621 ALO 33 4 3125951 33 6

622 WEB 33 5 3131009 33 7

623 MAL 33 6 3133006 33 8

624 RAI 33 7 3141269 33 9

625 KOB 33 8 3147051 33 10

626 GLO 32 18 3150703 33 11

627 PER 33 9 3153818 33 12

628 ROS 33 10 3159053 33 13

629 VER 33 11 3162088 33 14

630 DIR 33 12 3172712 33 15

631 MAS 33 13 3177681 33 16

632 PET 33 14 3184974 33 17

633 PIC 32 19 3186685 33 18

634 KOV 33 15 3188375 33 19

In this example, we see Timo Glock (GLO) has only completed 32 laps compared to 33 for
the race leader and the majority of the field. On track, he is placed between Kobyashi (KOB)
and Perez (PER).

Calculating DIFF and GAP times

We can now calculate various gap times, such as the standard GAP to leader and the +/-
DIFF times to any car placed directly ahead or behind a particular car.

Battlemaps 5

The GAP (time to leader) is calculated as the difference between the accumulated race time
of the race leader at the end of a lap and the accumulated race time of driver when they
complete the same race lap.

The accumulated race time td,N for a driver d on lap N is given as:

td,N =

N∑
l=1

td,l

For the leader, declare d = L to give the accumulated race time for the leader at the end of
lap N as tL,N .

The GAP between a driver d after N laps and the leader at the end of lap N is given as:

GAPd,N = td,N,GAP = td,N − tL,N

Alternatively, we can calculate it as the sum of differences between consecutively placed
drivers. The DIFF between drivers in positions m and n at the end of N laps and where m is
ahead of n is given as:

DIFFn,m,N = tn,N − tm,N

The GAP between a driver in position P and the leader L=1 is then:

tP,N,GAP = DIFF2,1,N +D3,2,N + ..+DIFFP,P−1,N

and where GAPL,N = tL,N,GAP = 0.

We can write this more succinctly as:

GAPP,N = tP,N,GAP =

P∑
p=2

DIFFp,p−1,N =

P∑
p=2

(tp,N − tp−1,N)

We can implement these calculations directly as follows:

Battlemaps 6

#Order the drivers by lap and position

lapTimes=arrange(lapTimes,lap,position)

#Calculate the DIFF between each pair of consecutively placed cars at the end of each\

race lap

#Then calculate the GAP to the leader as the sum of DIFF times

lapTimes=ddply(lapTimes, .(lap), mutate,

diff=c(0,diff(acctime)),

gap=cumsum(diff))

For completeness, we might also want to capture the DIFF to the car behind, which we shall
represent as chasediff, further requiring that it is a negative quantity. That is, we have
CHASEDIFFq,r = −DIFFr,q for race positions r > q (that is, q is ahead of r).

#Order the drivers by lap and reverse position

lapTimes=arrange(lapTimes,lap, -position)

#Calculate the DIFF between each pair of consecutively reverse placed cars at the end\

of each race lap

lapTimes=ddply(lapTimes, .(lap), mutate,

chasediff=c(0,diff(acctime)))

#Print an example

head(lapTimes[lapTimes$lap==35,c('code','lap','diff','chasediff')],n=5)

code lap diff chasediff

658 PIC 35 92327 0

659 GLO 35 34462 -92327

660 KOV 35 14749 -34462

661 RIC 35 1281 -14749

662 SEN 35 25011 -1281

Typically, timing sheets do not show the GAP to the leader for cars other than those cars on
the lead lap. Instead, they provide a count of the number of laps behind the driver is.

Battlemaps 7

lapTimes$tradgap=as.character(lapTimes$gap)

lapsbehind=function(lap,leadlap,gap){

if (lap==leadlap) return(gap)

paste("LAP+",as.character(leadlap-lap),sep='')

}

lapTimes$tradgap=mapply(lapsbehind,lapTimes$lap,lapTimes$leadlap,lapTimes$gap)

#Print an example

lapTimes[lapTimes$lap==35,c('code','lap','leadlap','tradgap')]

code lap leadlap tradgap

658 PIC 35 37 LAP+2

659 GLO 35 36 LAP+1

660 KOV 35 36 LAP+1

661 RIC 35 36 LAP+1

662 SEN 35 36 LAP+1

663 MAS 35 35 80864

664 DIR 35 35 78460

665 VER 35 35 60621

666 ROS 35 35 57772

667 PER 35 35 51594

668 ALO 35 35 50737

669 KOB 35 35 47972

670 RAI 35 35 39980

671 MAL 35 35 32088

672 WEB 35 35 28514

673 VET 35 35 12514

674 HAM 35 35 10890

675 BUT 35 35 0

Here we see that the drivers up to and includingMassa (MAS) are on the lead lap, and as such
an explicit time gap to the leader is reported. For Bruno Senna (SEN) and the lower placed
drivers, they are one lap behind the leader, except for Charles Pic, who is two laps down.

Calculating the time between cars based on track
position

To calculate the time difference to the car ahead on track (car_ahead) and the car behind
(car_behind) on track, we can simply calculate the differences between accumulated laptimes

Battlemaps 8

for appropriately ordered rows.

#Arrange the drivers in terms of increasing accumulated race time

lapTimes = arrange(lapTimes, acctime)

#For each car, calculate the DIFF time to the car immediately ahead on track

lapTimes$car_ahead=c(0,diff(lapTimes$acctime))

#Identify the code of the driver immediately ahead on track

lapTimes$code_ahead=c(NA,head(lapTimes$code,n=-1))

#Identify the race position of the driver immediately ahead on track

lapTimes$position_ahead=c(NA,head(lapTimes$position,n=-1))

#Now arrange the drivers in terms of decreasing accumulated race time

lapTimes = arrange(lapTimes, -acctime)

#For each car, calculate the DIFF time to the car immediately behind on track

lapTimes$car_behind=c(0,diff(lapTimes$acctime))

#Identify the code of the driver immediately behind on track

lapTimes$code_behind=c(NA,head(lapTimes$code,n=-1))

#Identify the race position of the driver immediately behind on track

lapTimes$position_behind=c(NA,head(lapTimes$position,n=-1))

#put the lapTimes dataframe back to increasing acculamated race time order.

lapTimes = arrange(lapTimes, acctime)

Notice how the diff() function finds the difference between column values on consecutive
rows working down the column. To find the gap to the car ahead, we sort on increasing
accumulated race time and then apply the diff() function. To find the gap to the car behind,
we reverse the order, sorting on decreasing accumulated lap time, before applying the diff()
function.

Having calculated the time to car ahead - or the car behind - on track, we can use a simple
scatter plot to show the time in milliseconds to the car ahead, for each lap .

library(ggplot2)

g=ggplot(lapTimes[lapTimes['code']=='HAM',])

g+geom_point(aes(x=lap,y=car_ahead))

Battlemaps 9

For a selected driver, chart the time to the car ahead

If instead we use a text plot, we can identify which driver in particular was in the car ahead
or behind on track.

g=g+geom_text(aes(x=lap,y=car_ahead,label=code_ahead),angle=45,size=2)

g+geom_text(aes(x=lap,y=car_behind,label=code_behind),angle=45,size=2)

Battlemaps 10

For a selected driver, identify which driver is ahead or behind on track, and by how much time, on each
lap

Here we see that Hamilton draws away from Michael Schumacher at a constant rate over
the first 10 laps of the race, dropping behind Jenson Button over that same period, then keeps
pace with him between laps 10 and 15.

Note that the driver codes specified refer to the driver immediately ahead or behind on the
track, irrespective of whether they are on the same lap. The chart would perhaps me more
informative if we could indentify whether the car immediately ahead or behind is actually
on the same racing lap as our selected driver.

One way to approach this is to generate new columns that identify the driver immediately
ahead or behind each car in terms of race position, rather than track position. This new
information will allow us to test whether the car ahead or behind on track is in a battle for
position with the selected driver.

Battlemaps 11

lapTimes = arrange(lapTimes, lap,position)

lapTimes = ddply(lapTimes,.(lap),transform,

code_raceahead=c(NA,head(code,n=-1)))

lapTimes = arrange(lapTimes, -lap,-position)

lapTimes = ddply(lapTimes,.(lap),transform,

code_racebehind=c(NA,head(code,n=-1)))

lapTimes = arrange(lapTimes, acctime)

The test is one simply of equality: is the driver one place ahead on track the driver in one place
ahead in terms of race position? This answer to this test allows us to visually distinguish
between whether there is a battle for position going on with the car directly ahead on track:

battlesketch1=function(driverCode){

g=ggplot(lapTimes[lapTimes['code']==driverCode,])

g=g+geom_text(aes(x=lap,

y=car_ahead,

label=code_ahead,

#Test whether we are in a direct battle with the car ahead

col=factor(code_ahead==code_raceahead)),

angle=45,size=2)

g+guides(col=guide_legend(title="Position battle"))

}

battlesketch1('HAM')

Battlemaps 12

A useful side effect here is that if code_raceahead is undefined (because the selected driver
is in the lead at the start of a particular lap), the code_ahead==code_raceahead test is also
undefined, no colour is set, and the text label color defaults to grey.

It would be useful to further refine the chart so that it additionally shows the driver
immediately ahead (or behind) in terms of race position if the car ahead on track is not
the car immediately ahead in terms of position.

We can achieve this by adding another layer:

Battlemaps 13

battlemap_ahead=function(driverCode){

g=ggplot(lapTimes[lapTimes['code']==driverCode,])

#Plot the offlap cars that aren't directly being raced

g=g+geom_text(data=lapTimes[(lapTimes['code']==driverCode)

& (lapTimes['code_ahead']!=lapTimes['code_raceahead']),\

],

aes(x=lap,

y=car_ahead,

label=code_ahead,

col=factor(position_ahead<position)),

angle=45,size=2)

#Plot the cars being raced directly

g=g+geom_text(aes(x=lap,

y=diff,

label=code_raceahead),

angle=45,size=2)

g=g+scale_color_discrete(labels=c("Behind","Ahead"))

g+guides(col=guide_legend(title="Intervening car"))

}

battlemap_ahead('GLO')

Battlemaps 14

A first attempt at a battle map, showing cars in positions immediately ahead/behing on track, as well as
in race position terms

In this case, cars on the same lap are coloured black, and cars in a track position that is out
of race position is coloured either aqua (if it is in a race position ahead of the selected car)
or orange if it is on at least one lap behind. From the chart, we notice how Timo Glock falls
behind the car he is racing time and time again (the waves of activity that go up and to the
right). The only car he gains on over is series of laps is that of Charles Pic, from about lap 39
onwards. Every so often cars at least one lap ahead (coloured aqua), are in the space ahead
between Timo Glock and the car in the race position ahead of him.

Let’s now try to put the pieces together in a full battle map showing the state of the race
immediately ahead of a particular driver, as well as immediately behind them, throughout
the course of a race. We’ll also add in a guide that identifies the DRS (drag reduction system)
range of one second (1000ms).

We can generalise the battle map charter so that it can plot the battles with the cars ahead
or behind. In the following example, we plot just the battle ahead.

Battlemaps 15

dirattr=function(attr,dir='ahead') paste(attr,dir,sep='')

#We shall find it convenenient later on to split out the initial data selection

battlemap_df_driverCode=function(driverCode){

lapTimes[lapTimes['code']==driverCode,]

}

battlemap_core_chart=function(df,g,dir='ahead'){

car_X=dirattr('car_',dir)

code_X=dirattr('code_',dir)

factor_X=paste('factor(position_',dir,'<position)',sep='')

code_race_X=dirattr('code_race',dir)

if (dir=='ahead') diff_X='diff' else diff_X='chasediff'

if (dir=="ahead") drs=1000 else drs=-1000

g=g+geom_hline(aes_string(yintercept=drs),linetype=5,col='grey')

#Plot the offlap cars that aren't directly being raced

g=g+geom_text(data=df[df[dirattr('code_',dir)]!=df[dirattr('code_race',dir)],],

aes_string(x='lap',

y=car_X,

label=code_X,

col=factor_X),

angle=45,size=2)

#Plot the cars being raced directly

g=g+geom_text(data=df,

aes_string(x='lap',

y=diff_X,

label=code_race_X),

angle=45,size=2)

g=g+scale_color_discrete(labels=c("Behind","Ahead"))

g+guides(col=guide_legend(title="Intervening car"))

}

battle_WEB=battlemap_df_driverCode("WEB")

battlemap_core_chart(battle_WEB,g,'ahead')

Battlemaps 16

A first attempt at a complete battlemap.

And then we can add in any threats that are coming up from behind:

g=battlemap_core_chart(battle_WEB,ggplot(),dir='behind')

Here we see how Mark Webber kept pace with Alonso, albeit around about a second behind,
at the start of the race, at the same time as he drew away from Massa. In the last thrid of the
race, he was closely battling with Hamilton whilst drawing away from Alonso.

Battles for a particular position

Aswell as charting the battles in the vicinity of a particular driver, we can also chart the battle
in the context of a particular race position. We can reuse the chart elements and simply need
to redefine the filtered dataset we are charting.

For example, if we filter the dataset to just get the data for the car in third position at the end
of each lap, we can then generate a battle map of this data.

Battlemaps 17

battlemap_df_position=function(position){

lapTimes[lapTimes['position']==position,]

}

battleForThird=battlemap_df_position(3)

g=battlemap_core_chart(battleForThird,ggplot(),dir='behind')+xlab(NULL)+theme_bw()

g=battlemap_core_chart(battleForThird,g,'ahead')+guides(col=FALSE)

g

A position battle chart showing the fight for third in the course of a single race

In this case we see how in the opening laps of the race, the battle for third was coming from
behind, with Vettel chellenged for position from fourth, as the second placed driver (Lewis
Hamilton) pulled away. In the middle third of the race, the car in third kept pace with 2nd
placed Hamilton but pulled away from fourth placed Alonso. And in the last third of the
race, the car in third is battling hard with Vettel ahead and defending hard against Webber
behind.

Battlemaps 18

One thing this chart does not show is which driver was in third position on each lap. We
might naturally think to add a layer on to the chart that displays the driver in the position
we are charting around along the x-axis (that is, at y=0) but this typically leads to a very
cluttered chart.

Instead, we can seek to separate out this information, as the following chart shows.

The following is a work in progress - the vertical sizing/alignment is still broken

allblank=theme(panel.border = element_blank(),panel.grid.major = element_blank(), pa\

nel.grid.minor = element_blank(), axis.line = element_blank(),axis.ticks = element_bl\

ank(), axis.text = element_blank())

g2=ggplot(battleForThird)+geom_text(aes(x=lap,y=0,label=code),angle=45,size=2)+ylim(-\

1,1)+theme_bw()+xlab(NULL)+ylab(NULL)+allblank

library(grid)

grid.newpage()

grid.draw(rbind(ggplotGrob(g), ggplotGrob(g2), size = "last"))

Battlemaps 19

#library(gridExtra)

#grid.arrange(g2,g,heights=c(0.1, 0.9), nrow=2)

Battles Between Particular Drivers

Another sort of battle we might wish to depict is a battle between two particular drivers. I
need to think how to best represent the data to do this…

Summary

In this chapter, we processed the laptime data in order to identify track position as well as
race position. We also generated various time deltas, such as the standard GAP and DIFF
values, but also the DIFF to the car in the race position behind, as well as the time to the cars
ahead and behind on track. The laptime information for each driver on a particular lap was

Battlemaps 20

also annotated with the driver code of the drivers immediately ahead and behind, again in
terms of both track and racing position. To try to capture some sense of the battles a particular
driver was engaged in on track, we started to develop the idea of a battle map that shows
how close a selected driver is to the cars immediately ahead and behind on each lap in the
sense of both race position and track position.

	Acknowledgements
	Errata
	Table of Contents

	Battlemaps
	Identifying Track Position From Accumulated Laptimes
	Calculating DIFF and GAP times
	Calculating the time between cars based on track position
	Battles for a particular position
	Battles Between Particular Drivers
	Summary

