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Figure 1: Compared with the state-of-the-art in deformable image registration, our novel approach reaches plausible results even for chal-
lenging configurations undergoing large amounts of free-form deformation and notable changes in appearance.

Abstract

We present a new approach to deformable image registration suit-
able for articulated images such as hand-drawn cartoon characters
and human postures. For such type of data state-of-the-art tech-
niques typically yield undesirable results. We propose a novel ge-
ometrically motivated iterative scheme where point movements are
decoupled from shape consistency. By combining locally optimal
block matching with as-rigid-as-possible shape regularization, our
algorithm allows us to register images undergoing large free-form
deformations and appearance variations. We demonstrate its prac-
tical usability in various challenging tasks performed in the cartoon
animation production pipeline including unsupervised inbetween-
ing, example-based shape deformation, auto-painting, editing, and
motion retargeting.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement—Registration; I.3.4 [Computer Graphics]: Graphics
Utilities—Graphics editors; J.5 [Computer Applications]: Arts and
Humanities—Fine arts

Keywords: deformable image registration, as-rigid-as-possible
deformation, interactive shape manipulation

1 Introduction

In a traditional cartoon animation each animation frame is drawn by
hand so that the correspondences between them are unknown. Such
a drawback considerably limits the usage of traditional approaches
in recent computer-based animation systems, where the knowledge
of correspondences between individual key-frames plays an impor-
tant role.
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Obtaining correspondences automatically is a challenging task
since each hand-drawn image is unique and typically undergos a
large amount of free-form deformation and notable change in ap-
pearance. In this context popular computer vision techniques based
on local similarity [Lowe 2004] or global contexts [Belongie et al.
2002] fail since they rely on unique local features or stable global
configurations. Although such features are typical for real world
photographs they are rare in hand-made drawings. Moreover, the
aforementioned techniques provide only isolated point correspon-
dences and do not consider global consistency. Thus, they can eas-
ily lead to spatially inconsistent mapping.

A more powerful approach to this problem is deformable image reg-
istration [Maintz and Viergever 1998; Modersitzki 2004; Gholipour
et al. 2007] which allows the retrieval of dense correspondences
between images and simultaneously maintains spatial consistency
of the resulting mapping. It is typically formulated as a non-
linear optimization problem where a predefined energy function is
minimized through some established numerical optimization tech-
nique [Klein et al. 2007]. However, there are two key difficulties
which make the solution challenging: (1) non-convexity of the en-
ergy function and (2) sensitivity to outliers (i.e. appearance vari-
ations that do not fit the selected deformation model). To over-
come these, an initial guess close to the global minima is required.
It can be obtained through various heuristics such as the popular
multi-scale approach [Lucas and Kanade 1981] or by using a hier-
archy of deformation models [Bergen et al. 1992]. Unfortunately,
for large displacements or appearance variations, even these heuris-
tics yield erroneous results. This fundamental problem has been re-
cently addressed by techniques that attempt to minimize the energy
not through the iterative numerical optimization, but directly via
discrete labelling [Glocker et al. 2008; Shekhovtsov et al. 2008].
These are built upon recent advances in algorithms for inference
from random fields [Szeliski et al. 2008] which allow fast approx-
imate solutions to non-linear problems with effective avoidance of
local minima. Nevertheless, they still do not a guarantee global op-
timum (since the problem is NP-hard) and become computationally
intractable for large displacements due to significantly increasing
number of labels.

In this paper we develop a new approach to deformable image reg-
istration which addresses the issue of local minima and is able to
reach a desired pose even from large initial displacements or no-
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Figure 2: Deformable image registration in progress – we want to register a straight stripe (filled with transparent color and embedded in a
square lattice) with its S-shaped counterpart filled with light blue color (column 0). In each iteration (columns 1–4) two steps are repeated:
points are first pushed towards locations with minimal visual difference without considering shape consistency (left) and then the shape is
regularized using a variant of as-rigid-as-possible shape matching algorithm (right). Note, how the shape gradually approaches the desired
configuration.

table changes in appearance. It is inspired by the success of recent
work in real-time simulation of deformable objects [Müller et al.
2005; Rivers and James 2007], where points are pushed directly
towards desired positions and then as-rigid-as-possible shape reg-
ularization is used to ensure consistency of the original shape. In
our case, points are not influenced by gravity or inertial forces, but
instead attracted to locations with minimal visual difference. A key
benefit of this new approach lies in the fact that the aforementioned
shifts can be arbitrary and only the shape regularization ensures
consistency. This is the fundamental difference to numerical op-
timization where incremental shifts are predicted by minimizing
locally linearized version of the energy function, which typically
leads to an inappropriate local minima. Our new technique is closer
to the approaches based on discrete optimization in the sense it can
recover from inappropriate local minima and lead to more plausi-
ble results. However, the key difference is that we do not minimize
an energy function but instead use a geometrically motivated shape
regularization scheme which preserves local rigidity and does not
require computationally demanding discrete optimization inappli-
cable to large initial displacements.

Since our work is mainly motivated by the needs of the cartoon an-
imation production pipeline, we demonstrate the practical usability
of our new algorithm in this context. We show how it can reduce
the amount of manual work in tasks such as inbetweening, painting,
retargeting, shape deformation, and reusing traditional animation.
We believe that these examples demonstrate the practical potential
of our new technique and will motivate developers of recent profes-
sional cartoon animation systems to incorporate our technique as a
versatile building block applicable to various practical scenarios.

The rest of the paper is organized as follows. First we briefly
overview related work and analyze key drawbacks which motivated
us to develop a new approach. Then we describe the proposed al-
gorithm in more detail and discuss its strengths and limitations. Fi-
nally we demonstrate its practical usability in the context of the
cartoon animation production pipeline and conclude with several
ideas for future work.

2 Related work

Obtaining correspondences between hand-drawn images is a chal-
lenging task that has captured the attention of many researches
within the last two decades. Xie [1995] used simple affine trans-
formations to match two line drawings and perform automatic in-
betweening. Madeira et al. [1996] pioneered a region-centered ap-

proach where drawings are first sub-divided into regions and then
matched using shape similarity and topological relations. This ap-
proach has been later improved by several authors who assume ad-
ditional semantic information about the image [Kort 2002], cater
specifically for black-and-white cartoons [Sýkora et al. 2005], rely
on a hierarchy of regions [Qiu et al. 2005] or employ skeleton
matching [Qiu et al. 2008]. Their common limitation is that they
are applicable only to specific easy-to-analyze drawing styles and
do not provide dense correspondences.

Bregler et al. [2002] presented a more general approach in their fa-
mous framework for cartoon motion capture. They overcome the
problem of deformable registration by sampling the space of pos-
sible deformations using as-rigid-as-possible interpolation [Alexa
et al. 2000] and then infer optimal linear combinations of these sam-
ples to fit the target pose. Although this approach works in the con-
text of motion retargeting, it is not applicable to our problem since it
does not directly provide dense correspondences between two ani-
mation frames. De Juan and Bodenheimer [2006] utilize dense cor-
respondences in their framework for re-using traditional animation.
However, they completely rely on manual initialization and refine
dense mapping using an existing algorithm [Wirtz et al. 2004] based
on numerical optimization. Recently, Xu et al. [2008] proposed a
system for animating motion from several snapshots captured in a
single image. However, since they rely on shape contexts [Belongie
et al. 2002], unstable under large free-form deformations, extensive
manual intervention is needed to identify stable features.

3 Our approach

Our novel approach to deformable image registration stems from
the successful workflow recently used for dynamic simulation of
deformable objects by Müller et al. [2005] and later extended by
Rivers and James [2007]. A core idea of this technique is to decou-
ple point movements from shape consistency so that the physical
simulation can be applied directly on points, treating them as par-
ticles without considering their mutual connectivity. To keep the
shape consistent, a geometrically motivated shape matching phase
is then used to regularize point locations.

A key observation is that such a workflow can bring significant ben-
efit also to deformable image registration since it allows retrieval of
locally optimal shifts and still keeps the shape consistent. This is in
contrast to energy-based approaches where shifts are limited by the
deformation model which does not allow temporary increase of the
overall energy and so typically leads to undesirable local minima.
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Figure 3: A schematic overview of the proposed algorithm – the aim is to register a light blob (source) with its darker counterpart (target).
The light blob is embedded in a square lattice (partly visible). The algorithm iterates two main phases: push (yellow part) & regularize (green
part). In the pushing phase block matching is used to move lattice points towards locations where a sum of absolute differences over a local
neighborhood (red square) is minimal. Then in the shape regularization phase two steps are iterated: (1) optimal rigid transformation is
computed for each lattice square and then (2) lattice points are moved to the centroid of their shared instances in all connected squares.

The only necessary modification as compared to the original con-
cept is to replace physically motivated forces by an attraction to
locations with visually similar neighborhood. Based on this setup,
the resulting algorithm is as follows. Similarly to [Rivers and James
2007] we embed the input image into a regular square lattice re-
specting its articulated shape and then iterate two following steps
until a stable configuration is reached:

1. Push all points to locations with minimal visual difference
(Section 3.1).

2. Regularize the point locations to keep the shape consistent
(Section 3.2).

These steps are illustrated in Figure 3 and a practical example is
presented in Figure 2. Note how in each iteration, points are first
pushed arbitrarily towards desired locations and how the overall
shape becomes messy. Nevertheless, after regularization the shape
is consistent and better fits the target pose.

In the following sections we describe these two steps in more de-
tail, discuss implementation issues, stopping criteria, and possible
limitations.

3.1 Push

The aim of the pushing phase is to find a new location for each point
on the embedding lattice that minimizes visual difference in its lo-
cal neighborhood. Since we are not limited by shape consistency
we can utilize simple block matching which guarantees globally
optimal shift within a predefined search area (see Figure 3, yellow
part). Formally, the aim is to find a shift vector t∗ from search area
M that minimizes the sum of absolute differences over a neighbor-
hood N , i.e.:

t
∗ = arg min

t∈M

∑

p∈N

|S(p + t) − T(p)| (1)

where S denotes the source and T the target image. Note that in
spite of shift optimization, the overall algorithm is not limited to
pure translation, since S is slightly deformed in each iteration lo-
cal neighborhoods of points gradually adapt to more complicated
deformations.

The important parameters of the block matching phase are the size
of the neighborhood |N | and the size of search area |M |. In gen-
eral |N | should be large enough to contain substantial information
but also small enough to preserve locality, whereas |M | should al-
low attraction to further locations but also avoid ambiguity. The
other limiting factor is the computational overhead which can in-
crease dramatically due to the worst case complexity of the block

matching algorithm O(|N ||M |). If we consider that in each itera-
tion typically hundreds of block matching operations are executed,
the complexity can be very high even for small neighborhoods and
search areas. However, due to the fact that optimal block positions
typically remain constant during most iterations and all other shifts
have much higher sums of absolute differences, the early termina-
tion heuristic [Li and Salari 1995] can be used to gain consider-
able speed up. Based on this observation, we set the width of N
to 16 pixels and the width of M to 48 pixels (providing that images
are in PAL resolution). This setting yields good results both in ro-
bustness and computational overhead in all examples shown in this
paper.

3.2 Regularize

The second step of our algorithm is a geometrically motivated rou-
tine that iteratively regularizes the point locations so that local rigid-
ity of the shape is preserved. This is another important difference
from state-of-the-art techniques, which typically use elastic models
that do not preserve rigidity and produce undesirable deformations
when the initial displacements are large or when there is a notable
variation in appearance (see Figure 1).

In Müller’s original algorithm, the aim was to find an optimal rigid
transformation (rotation R∗ and translation t∗) that moves points of
the original shape pi ∈ P so that the sum of squared distances to
the desired pose qi is minimized:

(R
∗
, t

∗) = arg min
R,t

∑

i

|R · pi + t − qi|
2

(2)

In 3D the computation of R∗ is non-linear, thus polar decomposi-
tion is required to solve this problem. However, as shown by Schae-
fer et al. [2006], a simple closed form solution exists in 2D. It can
be obtained when we compute centroids pc and qc of the source
and target pose and then substitute p̂i = pi − pc and q̂i = qi − qc:

R
∗ =

1

µ

∑

i

(

p̂i

p̂
⊥

i

)

(

q̂
T
i q̂

⊥T
i

)

, (3)

where

µ =

√

√

√

√

(

∑

i

q̂ip̂
T
i

)2

+

(

∑

i

q̂ip̂
⊥T
i

)2

, (4)

T denotes transposition, and the operator ⊥ denotes the perpendic-
ular vector, i.e.: (x, y)⊥ = (y,−x). Once the rotation matrix R∗ is
known, the translation vector t∗ can be computed directly:

t
∗ = pc − R

∗ · qc (5)



Our embedding lattice consists of several connected squares. In this
case local rigid transformations are computed individually for each
square and then the global smoothing step is used to ensure con-
sistency. This simple extension enables more flexible deformations
and still preserves local rigidity of the original shape (see Figure 4).

Figure 4: An example of as-rigid-as-possible image deformation –
the original image embedded in a square lattice (left) and its de-
formed counterpart (right).

A similar mechanism is also used in the context of interactive shape
deformation [Igarashi et al. 2005; Sumner et al. 2007; Botsch et al.
2007; Sorkine and Alexa 2007], however, the key difference is that
in these techniques user-specified point locations are treated as hard
constraints and the aim is to find an optimal deformation to satisfy
them. In our case we do not have hard constraints. What we want
is to smooth out point locations so that the shape becomes consis-
tent. To perform this smoothing we exploit a very simple itera-
tive approach inspired by recent work in interactive shape deforma-
tion [Wang et al. 2008]. It produces similar results to [Rivers and
James 2007] but allows smooth control over shape rigidity (see Fig-
ure 3, green part):

1. For each square on the embedding lattice, use equations (3),
(4) and (5) to obtain (R∗, t∗) and use this to transform its
points.

2. Move each point on the embedding lattice to the centroid of
its transformed instances in all connected squares.

The only difference to the original shape deformation technique is
that Wang et al. additionally simulate hard constraints by setting
very large weights to points that represent manipulation handles.
In fact their algorithm is nearly identical to [Sorkine and Alexa
2007], where instead of computing centroids a sparse linear system
is solved. This modification clarifies the aforementioned difference
between shape regularization and interactive shape deformation. In
our case no points are fixed therefore after sufficient number of iter-
ations the shape will return to the original configuration up to some
global rigid body transformation. Such behavior is depicted in Fig-
ure 5 where one point is fixed at a different location and then the
evolution of the deformation is captured during several shape reg-
ularization iterations. Initially the shape is flexible but with an in-
creasing number of iterations, global rigidity is enforced so that the
deformation gradually reduces to pure translation. This is caused by
the diffusive nature of the averaging phase which gradually propa-
gates rigidity through the whole shape.

This gradual diffusion of rigidity has several practical applications.
By changing the number of shape regularization iterations we can
smoothly vary between rigid and flexible deformation. It allows
us to implement a smooth analogy to a hierarchy of deformation
models [Bergen et al. 1992] (see Section 3.4) and also one-point
interactive shape deformation (see Section 4).

3.3 Stopping criteria

Although our method does not explicitly minimize predefined en-
ergy function we can still estimate plausibility of the resulting reg-
istration by computing the average sum of absolute differences over
all blocks during the block matching phase. In Figure 9 there are
several graph plots of this average (blue curve) measured during
a hundred iterations for different registration tasks. In most cases
this value decreases monotonically and after several iterations the
change is negligible. However, when a part of the shape undergoes
a large non-overlapping deformation the change can be negligible
for several iterations (see Figure 9b) and after that period the al-
gorithm suddenly approaches new configurations with much lower
value. This is caused by the fact that although a part of the image
moves towards the desired pose it still remains in an area with no
overlap where the sum of absolute differences is nearly constant. To
overcome such ambiguity we instead monitor the average distance
to the initial rest pose (red curve in Figure 9):

davg =
1

|P |

∑

i

||pi − qi|| (6)

This value informs us whether the control points on the embedding
lattice are moving or not. We stop push-regularize iterations when
davg has not changed considerably in the last 20 iterations.

Figure 5: The evolution of the shape deformation through several
shape regularization iterations – one point is fixed at different lo-
cation (left). During the first iterations the shape is flexible but
when the number of iterations increases the deformation gradually
approaches pure translation (from left to right).

3.4 Limitations

Although our approach produces good results in most practical sce-
narios, there are some limiting factors which should be taken into
account since they can lead to unexpected behavior. In this section
we discuss these in more detail and address how they can be dealt
with.

Limited resolution. Since we embed the image into a coarse lat-
tice we cannot directly obtain pixel or even sub-pixel precision.
Although a multi-scale extension is possible, increasing the num-
ber of squares makes the overall iterative process ineffective. This
is caused mainly by an increasing number of block matching in-
stances and shape regularization iterations. However, the coarse
approximation produced by our algorithm is typically close enough
to the desired pose so that classical energy-based approaches can
be utilized to refine the registration to sub-pixel precision (we use a
publicly available implementation of [Glocker et al. 2008]).

Occlusion and topology. The presence of occluders and topol-
ogy variations in 2D projections of 3D articulated objects is a long-
standing and challenging computer vision problem. It also limits
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Figure 6: Example-based shape deformation – by registering several consecutive animation phases (left) a smooth sequence of intermediate
frames can be generated. This can be utilized for a synthesis of new poses satisfying a user-given positional constraint (right): the current
position of the dragged point (red dot) is projected (blue dot) on its key-frame trajectory (red curve) to retrieve the corresponding intermediate
frame which is subsequently deformed to match the actual position of the dragged point.

the usage of our algorithm since occluded parts move together with
their occluders and topology variations impose false connectivity.
A possible solution to this problem is to reconstruct a layered rep-
resentation of the image where each layer has its own depth infor-
mation and shares common control points with other layers. Using
this structure one can perform the pushing step only between layers
having equal depth and then use the shape regularization phase to
propagate these movements to other connected layers.

Scaling and shearing. As our method exploits the as-rigid-as-
possible deformation model it is not able to handle deformations
which do not preserve local rigidity (such as scaling or 3D rotation).
This limitation can be partially reduced by exploiting an approach
analogous to the use of a hierarchy of deformation models. Initially
we can treat the image as more rigid and perform a higher number
of rigid shape matching iterations. After that the number is gradu-
ally decreased to allow more flexible deformations. However, even
using this extension, significant changes in scale and/or shearing
are still intractable. In cases when such deformations are required
we can switch to a different local deformation model allowing sim-
ilarity or even affine transformations. According to [Schaefer et al.
2006] for similarity this can be done by replacing (4) with:

µ =
∑

i

p̂ip̂
T

i (7)

and for affine transform by replacing (3) and (5) with a full affine
matrix:

A =

(

∑

i

p̂
T

i p̂i

)−1
∑

j

p̂
T

j q̂j (8)

However, since similarity and affine models do not tend to preserve
area they are not as stable as the original as-rigid-as-possible model
therefore are suitable only for final refinement when the source and
target pose are close enough, otherwise they can distort the image
considerably and lead to unacceptable results.

Insufficient overlap. A key feature of our technique is the abil-
ity of the block matching phase to overcome configurations which
correspond to local minima in energy-based techniques. However,
to avoid matching ambiguity, the size of searching windows has
to be limited. Because of this reason, our method requires par-
tial overlap and consistent scale & orientation between source and
target images. For images that do not satisfy these requirements
we recommend that the initial rigid-body transformation be esti-
mated by hand or that some automatic rigid-body registration tech-
nique should be used. When the insufficient overlap is caused by
large free-form deformation (as in Figure 9h), the algorithm may
get stuck in some inappropriate pose. In this case, the user can

provide additional hints by dragging a problematic part towards a
desired position or use bidirectional registration, i.e. to alternate
pushing and regularization steps on both source and target image.
As compared to single image deformation where the target image is
static, this approach provides better flexibility and so can overcome
challenging configurations.

4 Results and Applications

We implemented our algorithm and tested it on various hand-drawn
cartoon characters and human postures undergoing both small and
large free-form deformations and changes in appearance. Selected
results are presented in Figures 1 and 9. All examples are in PAL
resolution. The width of squares on the embedding lattice is the
same as the width of neighborhood N in equation (1), i.e. 16 pixels
(blue squares in Figure 9) and the width of the search area M is 48
pixels (red squares). The number of inner iterations in the shape
regularization phase is linearly decreased from 256 to 32 during the
first 50 push-regularize steps.

To have an unified overview of the algorithm convergence we mea-
sured the average sum of absolute differences (blue curve) and the
average distance to the starting pose (red curve) during the first 100
iterations for all examples in Figure 9. The actual number of itera-
tions needed to reach stable configuration varies with the complex-
ity of deformation. In simple cases it does not exceed 30, however,
for large deformations such as human postures in Figures 9f and 9g
it increases to 80. A typical processing speed is 20 iterations per
second on a 3 GHz machine while the most demanding part is the
block matching phase. However, it can be easily parallelized and
thus much better processing speeds could be reached on some par-
allel architectures.

As stated in Section 3.4 the accuracy of our algorithm depends
mainly on the resolution of the embedding lattice. Such precision
is typically sufficient for applications where exact dense correspon-
dences are not required such as auto-painting or motion capture.
However, for inbetweening and example-based shape deformation,
where smooth transitions are required, subsequent refinement is
necessary to obtain sub-pixel accurate dense mapping. When a lo-
cal appearance does not change considerably it is possible to take
the result of our method as an initial guess for an energy-based ap-
proach (we use [Glocker et al. 2008]) and obtain refined sub-pixel
accurate mapping. In Figure 9 we show both the registrations pro-
duced by our algorithm and also the corresponding refined results.

In the rest of this section we discuss several applications. Since
our work is mainly motivated by the needs of the professional car-
toon animation production pipeline we focus on this field. How-
ever, we believe that our algorithm is versatile enough to be applied
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Figure 7: Auto-painting by unsupervised scribble transfer – color scribbles can be transferred from already painted to yet unpainted anima-
tion frames using our deformable image registration algorithm. The LazyBrush [Sýkora et al. 2009] algorithm is then utilized to compute the
final painting.

in other contexts such as pedestrian registration, deformable object
snapping or improving interactive shape deformation by providing
dynamic feedback that looks like physical simulation.

Unsupervised inbetweening. The knowledge of dense correspon-
dences between several consecutive frames allows us to create
smooth intermediate transitions. One possibility for achieving this
is to linearly interpolate positions of corresponding pixels. How-
ever, this is applicable only for small motions since the local rigid-
ity is not preserved. A better solution is to divide the transition to
coarse and fine level. The coarse level consists of the same square
lattice as used for registration and the fine level is represented
by two dense displacement maps (source-target and target-source)
computed by the energy-based method [Glocker et al. 2008]. To
generate the intermediate frame we first linearly interpolate the
coarse lattices of the source and target frame and perform several
shape regularization iterations to enforce rigidity. On the pixel level
we scale transformed source-target and target-source displacements
and resample source and target images accordingly. Finally we
blend co-located pixels to obtain C0 continuity.

Example-based shape deformation. User-driven shape deforma-
tion based on intuitive positional constraints has recently become
popular particularly due to the work of Igarashi et al. [Igarashi et al.
2005]. Although many researchers attempt to improve this tech-
nique [Schaefer et al. 2006; Weng et al. 2006; Wang et al. 2008]
they still offer only single image deformation. Thanks to our de-
formable image registration algorithm, we can easily extend this
technique to multiple images (see Figure 6). By registering sev-
eral animation phases we obtain smooth transitions as we do for
inbetweening, however, a key difference here is that we allow the
user to drag a specific point and move it to a different location. We
project this new location on its inbetweening trajectory and gen-
erate a closest transition frame that is subsequently deformed to
match the user-specified position. This enables interactive shape
deformation which respects the original animation but is more flex-
ible than simple inbetweening. Moreover, the ease of manipulation
is improved considerably since in contrast to classical approaches
we do not need to place other positional constraints to fix the global
pose. Instead we apply a lower number of shape regularization iter-
ations as described in Section 3.2 to suppress the diffusion of rigid-
ity so that parts of the shape having long geodesic distances from
the selected point remain untouched.

Auto-painting and editing. The process of adding colors to hand-
drawn images is one of the most challenging tasks in the classi-
cal cartoon animation pipeline. In the last decade researchers have
developed various auto-painting approaches allowing significant re-
duction of manual effort [Madeira et al. 1996; Chang and Lee 1997;
Seah and Feng 2000; Sýkora et al. 2005; Qiu et al. 2008]. As these

techniques exploit similarity of regions they require drawing styles
that can be easily converted to a set of homogenous regions. Re-
cently, Sykora et al. [2009] introduced a more general approach
based on color scribbles that is applicable to a broad class of dif-
ferent drawing styles. By registering painted and yet unpainted
frames, we can transfer scribbles between animation frames and
considerably speed up the process (see Figure 7). Besides painting,
similar workflow can be utilized to perform various editing opera-
tions, e.g. retouching, insertion, and deletion.

Motion capture and retargeting. In this application pioneered
by [Bregler et al. 2002] the aim is to transfer specific motion cap-
tured in a sequence of images to a novel animation having a differ-
ent visual appearance. In our case this can be done by superimpos-
ing a skeleton on a reference pose and then using deformable im-
age registration to find corresponding positions of joints and bones
in subsequent animation frames (see Figure 8). Moreover, the su-
perimposed skeleton can be utilized to form a set of rigid clusters
and perform skeletal-like deformation via rigid square matching as
in [Wang et al. 2008].

5 Conclusions and Future work

We presented a new approach to deformable image registration
based on an approach analogous to the dynamic simulation of de-
formable objects. In contrast to previous techniques it handles large
free-form deformations and notable changes in appearance. Al-
though the algorithm prevails in challenging situations it is surpris-
ingly easy to implement. We believe that, due to its simplicity and
robustness, it will find numerous applications in tasks where the
knowledge of correspondences between images plays an important
role. As an example of such usage we presented several use cases
in the context of the cartoon animation production pipeline.

As future work we plan to extend our approach to handle occlusions
and also to develop efficient multi-resolution schemes to avoid de-
pendance on energy-based techniques for applications where a pixel
or sub-pixel precision is required.
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skeleton transfer

Figure 8: Motion capture by skeleton transfer – the image of the rest pose was manually annotated by a skeleton (left). Its corresponding
positions on several new postures were obtained without user intervention using our deformable image registration algorithm (right).
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Figure 9: Selected examples of deformable image registration produced by our algorithm – each example contains (from left to right):
size of the square on the embedding lattice equal to the local neighborhood N (blue square), size of the local searching area M (red
square), source & target image, their initial overlap, resulting overlap after registration using our approach, overlap refined by energy-based
approach [Glocker et al. 2008], and the graph of the average sum of absolute differences (blue curve) and the average distance to starting
pose (red curve) for first 100 iterations. The last registration result (h) presents a failure example when our algorithm gets stuck in an
undesirable pose due to very large free-form deformation.


