
JSONiq Exten-
sion to XQuery 1.0

Specification
XML and JSON: A Language To Rule Them All

Jonathan Robie

Ghislain Fourny

Matthias Brantner

Daniela Florescu

Till Westmann

Markos Zaharioudakis

Specification

JSONiq Extension to XQuery 1.0 Specification
XML and JSON: A Language To Rule Them All
Edition 1.0.3

Author Jonathan Robie jonathan.robie@gmail.com
Author Ghislain Fourny ghislain.fourny@28msec.com
Author Matthias Brantner matthias.brantner@28msec.com
Author Daniela Florescu dana.florescu@oracle.com
Author Till Westmann till.westmann@28msec.com
Author Markos Zaharioudakis markos.zaharioudakis@oracle.com
Editor Jonathan Robie jonathan.robie@gmail.com
Editor Ghislain Fourny ghislain.fourny@28msec.com
The JSONiq extension to XQuery allows processing XML and JSON natively and with a single lan-
guage. This extension is based on the same data model as the core JSONiq and is based on the
same logical concepts. Because of the complexity of the XQuery grammar, the JSONiq extension to
XQuery has a less pleasant syntax that the JSONiq core.

mailto:jonathan.robie@gmail.com
mailto:ghislain.fourny@28msec.com
mailto:matthias.brantner@28msec.com
mailto:dana.florescu@oracle.com
mailto:till.westmann@28msec.com
mailto:markos.zaharioudakis@oracle.com
mailto:jonathan.robie@gmail.com
mailto:ghislain.fourny@28msec.com

iii

1. Status 1

2. Introduction 3

3. JSONiq Data Model 5
3.1. Simple Datatypes ... 5
3.2. JSON Items ... 6
3.3. Objects .. 7
3.4. Arrays .. 8
3.5. ItemTypes for JSONiq Items ... 8

4. Construction of JSON values 11
4.1. Array Constructors .. 11
4.2. Object Constructors .. 12
4.3. Strings ... 14
4.4. Numbers .. 14
4.5. Booleans .. 14
4.6. Null .. 14
4.7. Boolean and null literals ... 14

5. Navigation in JSON content 15
5.1. Object lookup ... 15
5.2. Object key listing .. 16
5.3. Array lookup .. 16
5.4. Array unboxing ... 17

6. Builtin functions and operators 19
6.1. fn:boolean (aka Effective Boolean Value) ... 19
6.2. fn:collection .. 19
6.3. fn:data (aka Atomization) .. 19
6.4. fn:string (aka string value) .. 20
6.5. fn:trace .. 20
6.6. jn:decode-from-roundtrip ... 20
6.7. jn:encode-for-roundtrip .. 21
6.8. jn:json-doc ... 24
6.9. jn:keys ... 24
6.10. jn:members .. 25
6.11. jn:null ... 25
6.12. jn:parse-json ... 25
6.13. jn:size .. 26
6.14. Changes to cast semantics ... 26
6.15. Changes to arithmetic operation semantics .. 26
6.16. Changes to value comparison semantics ... 27
6.17. Changes to general comparison semantics .. 27

7. JSON updates 29
7.1. JSON udpate primitives .. 29
7.2. Update syntax: new updating expressions ... 30

7.2.1. Deleting expressions .. 30
7.2.2. Inserting expressions ... 31
7.2.3. Renaming expressions ... 32
7.2.4. Replacing expressions ... 32
7.2.5. Appending expressions .. 33

8. Function library 35
8.1. libjn:accumulate .. 35
8.2. libjn:descendant-arrays ... 35

Specification

iv

8.3. libjn:descendant-objects .. 36
8.4. libjn:descendant-pairs ... 36
8.5. libjn:flatten .. 37
8.6. libjn:intersect .. 38
8.7. libjn:project ... 38
8.8. libjn:remove-keys .. 39
8.9. libjn:values ... 40

9. Combining XML and JSON 41

10. JSON Serialization 43
10.1. New serialization parameters .. 43
10.2. Changes to sequence normalization .. 43
10.3. The JSON output method ... 43

10.3.1. Serialization of a sequence of items .. 43
10.3.2. Serialization of individual JSON values .. 43
10.3.3. Influence of other serialization parameters upon the JSON output method 44

10.4. The JSON-XML-hybrid output method ... 45
10.5. Changes to ther other output methods ... 45

11. Error codes 47

12. Grammar Summary 49

13. Implementation in Zorba 51

A. Revision History 53

Index 63

Chapter 1.

1

Status
The JSONiq extension to XQuery allows processing XML and JSON natively and with a single lan-
guage. This extension is based on the same data model as the core JSONiq and is based on the
same logical concepts. Because of the complexity of the XQuery grammar, the JSONiq extension to
XQuery has a less pleasant syntax that the JSONiq core:

• Object lookup is done with the same syntax as dynamic function calls (because the dot is allowed in
variable names and XPath name tests).

• All keys must be quoted (because unquoted strings are considered XPath name tests)

• Escaping in strings is done the XML way, i.e., with ampersands instead of backslashes.

• Builtin atomic types are actually builtin XML Schema types and must be prefixed with xs:

• The item type syntax for structured items like object(), array(), json-item(), item() must use parenthe-
ses, as item types without parentheses are considered user-defined atomic types in XQuery.

• The sequence type syntax for the empty sequence is empty-sequence().

2

Chapter 2.

3

Introduction
JSON and XML are both widely used for data interchange on the Internet. In many applications, JSON
is replacing XML in Web Service APIs and data feeds; other applications support both formats. XML
adds significant overhead for namespaces, whitespace handling, the oddities of XML Schema, and
other things that are simply not needed in many data-oriented applications that require no more than
simple serialization of program structures. On the other hand, many applications do need these fea-
tures, and the ability to use document data together with traditional program data is important.

JSONiq is a small and simple set of extensions to XQuery that add support for JSON. For applica-
tions that need only JSON, we have defined a profile called XQ-- that removes all support for XML
constructors, path expressions, user defined functions, and some other features considered unneces-
sary for most JSON queries. Syntax diagrams for XQ-- are available at http://jsoniq.org/grammars/xq--/
ui.xhtml.

For applications that need to process XML together with JSON, we have defined a profile called XQ+
+ that adds these extensions to the full XQuery language. Syntax diagrams for XQ++ are available at
http://jsoniq.org/grammars/xq++/ui.xhtml.

JSONiq consists of the following extensions to XQuery:

• Extensions to the XQuery Data Model (XDM) to support JSON.

• Support for JSON's datatypes, with a mapping to equivalent XML Schema types.

• Navigation for JSON Objects and JSON Arrays.

• Constructors for JSON Objects, Pairs, and JSON Arrays, using the same syntax as JSON.

• Update primitives against JSON items as well as updating expressions which produce them.

• New item types, which extend sequence type matching to allow the type of JSONiq datatypes to be
specified in function parameters, return types, and other expressions that specify XQuery types.

JSONiq is designed to seamlessly integrate in XQuery's full composability paradigm. In particular,
JSON constructors can appear in any XQuery expression, and any XQuery expression can appear in
a JSON constructor.

The namespace http://jsoniq.org/functions is used for functions defined by this specifica-
tion. This namespace is exposed to the user and is bound by default to the prefix jn. For instance, the
function name jn:json-doc() is in this namespace.

The namespace http://jsoniq.org/types is used for types defined by this specification. This
namespace is exposed to the user and is bound by default to the prefix jn. For instance, the type
name js:null is in this namespace.

The namespace http://jsoniq.org/function-library is used for library functions defined
by this specification. This namespace is exposed to the user, however no prefix is predeclared for this
namespace. For convenience, this document uses the prefix libjn: for names in this namespace.
For instance, the function name libjn:accumulate is in this namespace.

The namespace http://jsoniq.org/errors is used for the names of errors defined by this speci-
fication. This namespace is exposed to the user, however no prefix is predeclared for this namespace.
For convenience, this document uses the prefix jerr: for names in this namespace. For instance, the
error name jerr:JQTY0001 is in this namespace.

The namespace http://jsoniq.org/updates is used for the names of update primitives defined
by this specification. This namespace is not exposed to the user. For convenience, this document us-

http://jsoniq.org/grammars/xq--/ui.xhtml
http://jsoniq.org/grammars/xq--/ui.xhtml
http://jsoniq.org/grammars/xq++/ui.xhtml

Chapter 2. Introduction

4

es the prefix jupd: for names in this namespace. For instance, the update primitive jupd:delete-
from-object is in this namespace.

Accessors used in JSONiq Data Model use the jdm: prefix. These functions are not exposed to the
user and are for explanatory purposes of the data model within this document only. The jdm: prefix is
not associated with a namespace.

Chapter 3.

5

JSONiq Data Model
JSONiq is based on the XQuery Data Model, adding support for JSON nulls, objects and arrays. 1

To support nulls, JSONiq adds the following atomic datatype:

• js:null, which represents a JSON null.

To support JSON objects and arrays, JSONiq adds the following new items:

• Object, which represents a JSON object. An Object contains a set of string/item pairs.

• Array, which represent a JSON array. An Array contains a sequence of items.

As well as the generic term (associated with an item type):

• JSON Item, which can be an Object or an Array.

3.1. Simple Datatypes
JSON's simple values can have any of the following datatypes, which are supported as primitives in
JSONiq.

• string

• number

• boolean (true, false)

• null

JSONiq represents a JSON string (a sequence of Unicode characters) as an xs:string. However,
JSON supports strings (after resolving escaped characters) with characters of arbitrary unicode code-
points, whereas XML 1.0 and XML 1.1 only support a subset of these. It is implementation-defined if
unicode characters outside of XML 1.0 or XML 1.1 are supported. Implementations which support XML
1.1 (which only excludes the null character) are encouraged to add support for the null character to
provide full-fledged JSON support.

JSONiq represents the JSON simple values 'true' and 'false' as xs:boolean values.

JSONiq adds one new data type: js:null, derived from xs:anyAtomicType. js:null has a sin-
gleton value space containing the value null 2. The lexical representation of an instance of js:null is
the string "null".

JSON defines number as follows:

A number can be represented as integer, real, or floating point. JSON does not sup-
port octal or hex because it is minimal. It does not have values for NaN or Infinity be-
cause it does not want to be tied to any particular internal representation.

1 In the XQ-- subset of JSONiq, we will define a simpler data model that omits much of the XQuery Data Model.
2 (Because the typed value of all js:null instances is the same, nulls are always equal to each other for the purpose of value
comparisons).

Chapter 3. JSONiq Data Model

6

JSONiq uses XQuery's lexical representation of numbers to distinguish integer, real, and floating point
numbers 3:

NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral

If a numeric literal has no "." character and no e or E character, it has the atomic type xs:integer;
if it has a "." character but no e or E character it has type xs:decimal; if it has an e or E character it
has type xs:double.

Number literals are mapped to atomic values according to the XML Schema specification.

3.2. JSON Items
A JSON Item is an item. A JSON Item has an identity 4 , and it can be serialized. Objects and Arrays
are JSON Items 5 .

The diagram below shows the XQuery 3.0 type hierarchy, adding JSON Item and all types derived
from it:

3 The result of a JSONiq query may contain values such as NaN or Infinity, which cannot be serialized as JSON. These values
have type xs:double, and are either rejected or treated in a special way during the JSON Serialization process.
ECMAScript also has has Infinity and NaN, and takes a similar approach.
4 The identity of an item is used only for updates, where it is used in the update primitives.
5 In this document, the words Object and Array refer to JSON constructs. Unlike objects in most programming languages, a
JSON object contains only data.

Objects

7

node

item

funct ion(*)xs:anyAtom icType

json-item

elem ent

at t ribute

xs:st ring

xs:decim al

st ructured-item

jn:null

array

object

Node types

JSON item types

Built -in atom ic types

Funct ion types

Abst ract types

Types defined by
XDM 3.0 and JDM

Types int roduced by JSONiq

XDM types

Top level types

3.3. Objects
An Object represents a JSON object (a collection of string/value pairs).

Objects have the following property:

• pairs. A set of pairs. Each pair consists of an atomic value of type xs:string and of an item.

[Consistency constraint: no two pairs have the same name (using fn:codepoint-equal).]

The XQuery data model uses accessors to explain the data model. Accessors are not exposed to the
user and are only used for convenience in this specification. Objects have the following accessors:

• jdm:keys($o as object()) as xs:string*.

Returns all keys in the object $o.

• jdm:value($o as object(), $s as xs:string) as item().

Chapter 3. JSONiq Data Model

8

Returns the value associated with $s in the object $o.

An Object does not have a typed value.

3.4. Arrays
An Array represents a JSON array (an ordered list of values).

Arrays have the following property:

• members. An ordered list of items.

Arrays have the following accessors:

• jdm:size($a as array()) as xs:integer

Returns the number of values in the array $a.

• jdm:value($a as array(), $i as xs:integer) as item()

Returns the value at position $i in the array $a.

An Array does not have a typed value.

3.5. ItemTypes for JSONiq Items
In XQuery, an ItemType is used to match certain items, for example in function signatures, return
types, and a variety of other expressions. JSONiq extends XQuery's ItemType as follows:

 ItemType ::= -- everything so far --
 | JSONTest
 | StructuredItemTest

 JSONTest ::=
 JSONItemTest
 | JSONObjectTest
 | JSONArrayTest

 StructuredItemTest ::= "structured-item" "(" ")"
 JSONItemTest ::= "json-item" "(" ")"
 JSONObjectTest ::= "object" "(" ")"
 JSONArrayTest ::= "array" "(" ")"

The semantics of these expressions are straightforward.

• structured-item() matches any node or JSON Item.

• json-item() matches any JSON Item (Object or Array).

• object() matches any Object.

• array() matches any Array.

Example 3.1. JSON Items in Function Signatures and instance-of expressions
The following function returns any Objects that are members of an Array (see below for more on ar-
ray navigation).

ItemTypes for JSONiq Items

9

 declare function local:objects-in-array($a as array()) as object()* {
 for $i in 1 to jn:size($a)
 let $item := $a($i)
 where $iteminstance of object()
 return $item
 };

10

Chapter 4.

11

Construction of JSON values
JSONiq Constructors create Objects, and Arrays. If an Object Constructor or an Array Constructor
contains only literal data, as a rule of thumb, the syntax is the same as the JSON serialization. Con-
structors can also contain XQuery expressions to create content as the result of a query.

Here is the syntax for object and array constructors:

 PrimaryExpr ::= -- everything so far --
 | JSONConstructor

 JSONConstructor ::=
 ArrayConstructor
 | ObjectConstructor

 ArrayConstructor ::= "[" Expr? "]"

 ObjectConstructor ::=
 "{" (PairConstructor ("," PairConstructor)*)? "}"
 | | "{|" Expr "|}"
 PairConstructor ::= ExprSingle ":" ExprSingle

XQuery expressions can occur within JSON constructors, and JSON constructors can occur within
XQuery expressions. The semantics of such expressions are discussed in Chapter 9, Combining XML
and JSON.

4.1. Array Constructors
The expression in an Array Constructor, if present, evaluates to a sequence of zero or more items.
The members of the constructed array are copies of these items, in the same order.

Example 4.1. Array Constructors
An Array Constructor:

 ["Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday"]

Arrays can nest.

 [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

Combining an Array Constructor with XQuery expressions:

Query:

Chapter 4. Construction of JSON values

12

 [10 to 15]

Result:

 [10, 11, 12, 13, 14, 15]

4.2. Object Constructors
An Object Constructor is made of Pair Constructors. Each Pair Constructor creates a single string/item
pair as follows:
• The string is the result of evaluating the left operand, atomizing it, checking that it results in a single

atomic item, and casting it to xs:string. Errors such as jerr:JNTY0004 or err:XPTY0004 may
be raised upon failure of one of these steps.

• If the right operand evaluates to a single item, the value of the pair is a copy of this result.

If the right operand evaluates to the empty sequence, the value of the pair is the atomic value null
(of type js:null).

If the right operand evaluates to a sequence of more than one item, the value of the pair is an array
containing copies of all items in this sequence, in the same order.

An object is constructed, the pairs property of which comprise all pairs generated by the pair construc-
tors. An error jerr:JNDY0003 is raised if two pairs have the same name (the comparison is made
using fn:codepoint-equal).

Example 4.2. Object Constructors
An Object Constructor with literal data:

 {
 "id" : 404,
 "name" : "Stanco Grease Pot",
 "price" : 6.49,
 "weight" : 3.8,
 "uses" : ["Grease storage","Backpacking pot"]
 }

Combining an Object Constructor with XQuery expressions:

Query:

 {
 "Sunday" : 1,
 "Monday" : 1 + 1,
 "Tuesday" : 3 * 1,
 "Wednesday" : 8 div 2,
 "Thursday" : 5,
 "Friday" : count(for $i in 1 to 6 return $i),
 "Saturday" : 10 - 3
 }

Result:

Object Constructors

13

 {
 "Sunday" : 1,
 "Monday" : 2,
 "Tuesday" : 3,
 "Wednesday" : 4,
 "Thursday" : 5,
 "Friday" : 6,
 "Saturday" : 7
 }

Note:

A JSON item cannot be a child of an XML element or attribute. If a JSON item is used in the content
expression of an XQuery constructor, the result will raise an error, as described in Chapter 9, Combin-
ing XML and JSON.

There is also a syntax for dynamic object construction, which merges all the objects returned by the
inner expression into a single object with a so-called "simple object union". A simple object union cre-
ates a new object, the pairs property of which is obtained by accumulating the pairs of all operand ob-
jects. An error jerr:JNDY0003 is raised if two pairs with the same name are encountered.

Example 4.3. Dynamically building an object
Query:

 let $object1 := { "Captain" : "Kirk" }
 let $object2 := { "First officer" : "Spock" }
 return {| $object1, $object2 |}

Result:

 {
 "Captain" : "Kirk",
 "First officer" : "Spock"
 }

Query:

 {|
 for $d at $i in ("Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday")
 return { $d : $i }
 |}

Result:

 {
 "Sunday" : 1,
 "Monday" : 2,
 "Tuesday" : 3,

Chapter 4. Construction of JSON values

14

 "Wednesday" : 4,
 "Thursday" : 5,
 "Friday" : 6,
 "Saturday" : 7
 }

4.3. Strings
Strings can be constructed using XQuery String Literals.

Example 4.4. JSON String construction

 "This is a string"

4.4. Numbers
Numbers can be constructed using XQuery Integer, Decimal and Double literals.

Example 4.5. JSON Number construction

 42
 3.14
 6.022E23

4.5. Booleans
Booleans can be constructed using the XQuery builtin functions fn:true() and fn:false().

4.6. Null
Null can be constructed using the new builtin function jn:null().

4.7. Boolean and null literals
A new option jn:jsoniq-boolean-and-null-literals is available ("yes" or "no"), that activates
or deactivates the interpretation of a standalone NameTest "true", "false" or "null" (meaning: occurring
as a PathExpr, i.e., no slashes, no axes) as boolean and null literals. By default, it is set to "yes". 1

1 If this feature is activated, a relative path expression that tests for an element named true, false, or null must use the ./
construct, as in ./true.

Chapter 5.

15

Navigation in JSON content
It is possible to navigate through JSON items using the dynamic function call syntax. The dynamic
function call syntax is extended to handle object and array selection as follows:

• An implicit iteration is performed on the left-hand-side sequence. $sequence($params) is equiva-
lent to:

 for $item in $sequence return $item($params)

• The semantics of the dynamic function call is then defined on a single item, depending on its type:
• If it is a function, the semantics is the same as defined in XQuery 3.0.

• If it is an object, the dynamic function call is treated as an object lookup if unary, as a key listing if
0-ary. An error jerr:JNTY0018 is raised if there is more than one parameter.

• If it is an array, the dynamic function call is treated as an array lookup if unary, as an array unbox-
ing if 0-ary. An error jerr:JNTY0018 is raised if there is more than one parameter.

• If it is an atomic or an XML node, the dynamic function call if unary or 0-ary always returns the
empty sequence. An error jerr:JNTY0018 is raised if there is more than one parameter.

5.1. Object lookup
If the dynamic function call is unary and the left-hand-side is an object, the semantics applied is that of
object lookup and is as follows.

The unique parameter is cast to a string $s (an error is raised according to the semantics of casting if
this fails).

If $s is in jdm:keys($o) then $o($s) returns the value of the pair with the name $s, i.e.
jdm:value($o, $s). Otherwise (i.e., it has no key matching $s), an empty sequence is returned.

Example 5.1. Object lookup
Retrieving a Pair by its name:

Query:

 let $map := { "eyes" : "blue", "hair" : "fuchsia" }
 return $map("eyes")

Result:

 blue

Using Pairs from existing Objects to create a new Object:

Query:

 let $x := { "eyes" : "blue", "hair" : "fuchsia" }
 let $y := { "eyes" : brown, "hair" : "brown" }

Chapter 5. Navigation in JSON content

16

 return { "eyes" : $x("eyes"), "hair" : $y("hair") }

Result:

 { "eyes" : "blue", "hair" : "brown" }

5.2. Object key listing
If the dynamic function call is 0-ary and the left-hand-side is an object, the semantics applied is that of
key listing and is as follows.

jdm:keys($o) is returned.

Example 5.2. Object key listing
Retrieving the keys of an object:

Query:

 let $map := { "eyes" : "blue", "hair" : "fuchsia" }
 return $map()

Result:

 eyes hair

5.3. Array lookup
If the dynamic function call is unary and the left-hand-side is an array, the semantics applied is that of
array lookup and is as follows.

The unique parameter is cast to an integer $i (an error is raised according to the semantics of casting
if this fails).

If $i is comprised between 1 and jdm:size($a), then $a($i) returns the value of the pair at posi-
tion $i, i.e., jdm:value($a, $i).

Otherwise (i.e., if $i is an invalid position), an empty sequence is returned.

Example 5.3. Array lookup
Query:

 let $wd := ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
 "Saturday"]
 return $wd(1)

Result:

 Sunday

Array unboxing

17

For the following queries, assume the variable $f is bound to the following two dimensional array.

Data:

 [
 ["mercury", "venus", "earth", "mars"],
 ["monday", "tuesday", "wednesday", "thursday"]
]

Query:

 $f(1)

Result:

 ["mercury", "venus", "earth", "mars"]

Query:

 $f(2)(2)

Result:

 tuesday

5.4. Array unboxing
If the dynamic function call is 0-ary and the left-hand-side is an array, the semantics applied is that of
array unboxing and is as follows.

for $i in 1 to jdm:size($a) return $a($i) is returned.

Example 5.4. Array unboxing
Query:

 let $wd := ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
 "Saturday"]
 return $wd()

Result:

 Sunday Mondy Tuesday Wednesday Thursday Friday Saturday

For the following queries, assume the variable $f is bound to the following two dimensional array.

Data:

Chapter 5. Navigation in JSON content

18

 [
 ["mercury", "venus", "earth", "mars"],
 ["monday", "tuesday", "wednesday", "thursday"]
]

Query:

 $f()

Result:

 ["mercury", "venus", "earth", "mars"] ["monday", "tuesday", "wednesday",
 "thursday"]

Chapter 6.

19

Builtin functions and operators
JSONiq defines a couple of basic builtin functions. Two of them define the atomized value and the ef-
fective boolean value of JSON items, and the others are for JSON navigation.

6.1. fn:boolean (aka Effective Boolean Value)
In XQuery, sequences can be converted to a boolean value. The effective boolean value is defined by
invoking fn:boolean.

fn:boolean($arg as item()*) as xs:boolean

The definition of fn:boolean($arg) is changed as follows:

• If $arg is a sequence whose first item is an object or an array, fn:boolean returns true.

• If $arg is a singleton value of type js:null, fn:boolean returns false.

Example 6.1. Effective Boolean Value of JSONiq items

 Examples
 EBV(jn:null()) false
 EBV({ }) true
 EBV ({ "foo": false }) true
 EBV ({ "foo": 3, "bar":4 }) true
 EBV({ "foo": 3 }) true
 EBV ([1]) true
 EBV (([1], jn:null())) true

6.2. fn:collection
This is a standard function in XQuery. JSONiq extends the function to also allow collections that con-
tains JSON items, in an implementation-dependent order

fn:collection($uri as xs:string?) as structured-item()*

6.3. fn:data (aka Atomization)
In XQuery, sequences can be atomized. Atomization is defined by invoking fn:data.

fn:data($arg as item()*) as xs:anyAtomicType*

The error conditions of fn:data($arg) are extended as follows. An error is raised
(jerr:JNTY0004) if an item in the sequence is an object or an array.

Example 6.2. Atomization of JSONiq items

 fn:data({"foo" : 3}) jerr:JNTY0004
 fn:data([1]) jerr:JNTY0004
 fn:data({"foo" : 3, "bar" : 4 }) jerr:JNTY0004
 fn:data({ }) jerr:JNTY0004

Chapter 6. Builtin functions and operators

20

6.4. fn:string (aka string value)
In XQuery, items can have string values, which can be obtained by invoking fn:string. Objects and ar-
rays do not have a string value.

fn:string($arg as item()?) as xs:string

The error conditions of fn:string($arg) are extended as follows. An error is raised
(jerr:JNTY0024) if the item is an object or an array.

Example 6.3. Atomization of JSONiq items

 fn:string({"foo" : 3}) jerr:JNTY0024
 fn:string([1]) jerr:JNTY0024
 fn:string({"foo" : 3, "bar" : 4 }) jerr:JNTY0024
 fn:string({ }) jerr:JNTY0024

6.5. fn:trace
The default serialization method is changed to JSON-XML-hybrid.

6.6. jn:decode-from-roundtrip
This function decodes non-JSON types previously encoded with jn:encode-for-roundtrip.

jn:decode-from-roundtrip($items as json-item()*) as item()*

jn:decode-from-roundtrip($items as json-item()*, $options as object()) as
item()*

Calling the unary version of the function defaults the value of the second parameter ($options) to

 { "prefix" : "Q{http://jsoniq.org/roundtrip}" }

$options("prefix") must be atomizable and castable to a string.

Error jerr:JNTY0023 is raised if one of the above type criterion is not met.

This function maps each item of the input sequence to a new item in the output sequence, preserving
order.

For convenience, the map is defined recursively from item() to item(), even though the initial items
must be objects or arrays.

It maps an array to an array the members of which are mapped resursively.

It maps atomic values and XML nodes to themselves.

If the supplied item is an object, it first checks if it has two pairs named "[$prefix]type" and
"[$prefix]value" where [$prefix] stands for the value of $options("prefix").

If such is the case, then if the value of the first pair is "node()", it parses the value of the second pair to
an XML node that is returned by the function.

Otherwise, an atomic item is built, with the type specified by the value of the first pair (read as an
EQName, with xs: automatically recognized as the XSD namespace). If this type is not xs:QName,

jn:encode-for-roundtrip

21

xs:NOTATION or a subtype thereof, the atomic value is built from the lexical representation specified
by the value of the pair named "[$prefix]value".

If this type is xs:QName, xs:NOTATION or a subtype thereof, then the atomic value to be built is a
qualified name. The namespace and local name are built from the value (an EQName) of the pair
named "[$prefix]value", and the prefix is built from a third pair named "[$prefix]prefix" (empty if absent).

If the object does not fit the above criterion, it is mapped to an object with the same keys, and the as-
sociated values are mapped recursively.

Example 6.4. Encoding non-native JSON for roundtripping.
Query:

 jn:decode-from-roundtrip(
 {
 "nan" : {
 "Q{http://jsoniq.org/roundtrip}type" : "xs:double",
 "Q{http://jsoniq.org/roundtrip}value" : "NaN"
 },
 "inf" : {
 "Q{http://jsoniq.org/roundtrip}type" : "xs:double",
 "Q{http://jsoniq.org/roundtrip}value" : "INF"
 }
 "date" : {
 "Q{http://jsoniq.org/roundtrip}type" : "xs:date",
 "Q{http://jsoniq.org/roundtrip}value" : "1066-10-14"
 }
 "hat" : {
 "Q{http://jsoniq.org/roundtrip}type" : "Q{http://www.example.com/hat-
shop}hatSize",
 "Q{http://jsoniq.org/roundtrip}value" : "M"
 }
 }
)

Result:

 {
 "nan" : xs:double("NaN"),
 "inf" : xs:double("INF"),
 "date" : xs:date("1066-10-14"),
 "user" : hat:hatSize("M")
 }

6.7. jn:encode-for-roundtrip
This function recursively encodes non-JSON types in such a way that they can be serialized as JSON
while keeping roundtrip capability.

The following computations are made with respect to the static context of the caller, so that the
schema type definitions are available.

jn:encode-for-roundtrip($items as item()*) as json-item()*

jn:encode-for-roundtrip($items as item()*, $options as object()) as json-
item()*

Calling the unary version of the function defaults the value of the second parameter ($options) to

Chapter 6. Builtin functions and operators

22

 {
 "prefix" : "Q{http://jsoniq.org/roundtrip}"
 "serialization-parameters" :
 <serialization-parameters xmlns="http://www.w3.org/2010/xslt-xquery-
serialization">
 <omit-xml-declaration value="yes" />
 </serialization-parameters>
 }

$options("prefix") must be atomizable and castable to a string.

$options("serialization-parameters") must be a node.

Error jerr:JNTY0023 is raised if one of the above two type criteria is not met.

This function maps each item of the input sequence to a new item in the output sequence, preserving
order.

For convenience, the map is defined recursively from item() to item(), even though the signature of the
function expects JSON items in the output sequence. The map preserves JSON native atomic values
in general, however if such a value appears at the top-level in the input sequence, it is not treated as
such and is mapped to an object like any other atomic item.

It maps an object to an object with the same keys, the associated values being obtained by a recursive
call on the original values.

It maps an array to an array the members of which are obtained by a recursive call on the members of
the original array.

JSON native atomic values (of type exactly xs:double (except infinites and NaN), xs:decimal (except
integers), xs:integer, xs:string, xs:boolean or js:null) are mapped to themselves.

XML nodes are mapped to an object with two pairs:
• A pair named "[$prefix]type" (where [$prefix] is replaced with the value of the parameter $prefix) and

with the value "document-node()", "element()", "text()", "comment()" or "processing-instruction()", de-
pending on the node kind (note that if it is an attribute or namespace node, err:SENR0001 will be
raised by the step below).

• A pair named "[$prefix]value" (where [$prefix] is replaced with the value of $options("prefix"))
and whose value is a serialization of the XML node according to the XML output method and with
the serialization parameters specified by $options("serialization-parameters").

Non-native atomic values that are not qualified names (i.e., neither xs:QName nor xs:NOTATION nor
subtypes) are mapped to an object with two pairs:
• A pair named "[$prefix]type" (where [$prefix] is replaced with the value of the parameter $prefix) and

whose value is the EQName of the atomic type (The XSD namespace may be simply output with the
xs: prefix).

• A pair named "[$prefix]value" (where [$prefix] is replaced with the value of $options("prefix")
and whose value is the lexical representation of the atomic value.

Non-native atomic values that are qualified names (i.e., xs:QName or xs:NOTATION or subtypes) are
mapped to an object with two or three pairs:
• A pair named "[$prefix]type" (where [$prefix] is replaced with the value of the parameter $prefix) and

whose value is the EQName of the atomic type (The XSD namespace may be simply output with the
xs: prefix).

jn:encode-for-roundtrip

23

• A pair named "[$prefix]value" (where [$prefix] is replaced with the value of $options("prefix")
and whose value is the EQName corresponding to the qualified name (which includes namespace
and local name).

• A pair named "[$prefix]prefix" (where [$prefix] is replaced with the value of $options("prefix")
and whose value is the prefix of the qualified name (only if there is such a prefix).

Example 6.5. Mapping non-JSON values
Query:

 {
 "serialized XML" :
 jn:encode-for-roundtrip(<para>
 A pair named "[$prefix]value" (where [$prefix] is replaced with the
 value of the parameter $prefix) and whose value is a serialization
 of the XML node according to the XML output method and with the
 serialization parameters specified by $param.
 </para>)
 }

Result:

 {
 "serialized XML" : {
 "Q{http://jsoniq.org/roundtrip}type" : "node()",
 "Q{http://jsoniq.org/roundtrip}value" : "<para>
 A pair named "[$prefix]value" (where [$prefix] is replaced with the
 value of the parameter $prefix) and whose value is a serialization
 of the XML node according to the XML output method and with the
 serialization parameters specified by $param.
 </para>"
 }
 }

Query:

 jn:encode-for-roundtrip({ "nan" : xs:double("NaN"),
 "inf" : xs:double("INF"),
 "date" : xs:date("1066-10-14"),
 "user" : hat:hatSize("M"),
 "QName" : xs:QName("jn:encode-for-roundtrip"),
 "EQName" : fn:QName("http://jsoniq.org/roundtrip",
 "value")
 })

Result:

 {
 "nan" : {
 "Q{http://jsoniq.org/roundtrip}type" : "xs:double",
 "Q{http://jsoniq.org/roundtrip}value" : "NaN"
 },
 "inf" : {
 "Q{http://jsoniq.org/roundtrip}type" : "xs:double",
 "Q{http://jsoniq.org/roundtrip}value" : "INF"
 },

Chapter 6. Builtin functions and operators

24

 "date" : {
 "Q{http://jsoniq.org/roundtrip}type" : "xs:date",
 "Q{http://jsoniq.org/roundtrip}value" : "1066-10-14"
 },
 "hat" : {
 "Q{http://jsoniq.org/roundtrip}type" : "Q{http://www.example.com/hat-
shop}hatSize",
 "Q{http://jsoniq.org/roundtrip}value" : "M"
 },
 "QName" : {
 "Q{http://jsoniq.org/roundtrip}type" : "xs:QName",
 "Q{http://jsoniq.org/roundtrip}value" : "Q{http://jsoniq.org/functions}encode-
for-roundtrip",
 "Q{http://jsoniq.org/roundtrip}prefix" : "jn"
 },
 "EQName" : {
 "Q{http://jsoniq.org/roundtrip}type" : "xs:QName",
 "Q{http://jsoniq.org/roundtrip}value" : "Q{http://jsoniq.org/roundtrip}value"
 }
 }

6.8. jn:json-doc
This function returns the JSON node associated with the supplied URI. It has the same semantics as
fn:doc, except that it returns an Object or an Array.

jn:json-doc($uri as xs:string?) as json-item()?

6.9. jn:keys
This function returns all keys of all objects in the supplied sequence, using the jdm:keys accessor, with
duplicates eliminated. The order in which the keys are returned is implementation-dependent but must
be stable within a snapshot. Non-objects in the input sequence are ignored.

jn:keys($arg as item()*) as xs:string*

Example 6.6. Getting all keys in a sequence

 let $seq := ("foo", [1, 2, 3], { "a" : 1, "b" : 2 }, { "a" : 3, "c" : 4 })
 return jn:keys($seq)

Resulting (possibly with a different ordering) in:

 ("a", "b", "c")

Retrieving all Pairs from an Object:

Query:

 let $map := { "eyes" : "blue", "hair" : "fuchsia" }
 for $key in jn:keys($map)
 return { $key : $map($key) }

Result:

jn:members

25

 { "eyes" : "blue" }
 { "hair" : "fuchsia" }

6.10. jn:members
This functions returns all values that are in all arrays of an input sequence, preserving the order. Non-
arrays in the input sequence are ignored.

 declare function jn:members($arg as item()*) as item()* {
 for $array in $arg[. instance of array()]
 for $position in 1 to jn:size($array)
 return $array($position)
 };

Example 6.7. Retrieving the members of an array
Query:

 let $planets := ("foo", { "foo" : "bar "}, ["mercury", "venus", "earth",
 "mars"], [1, 2, 3])
 return jn:members($planets)

Result:

mercury venus earth mars 1 2 3

6.11. jn:null
This function returns the JSON null.

jn:null() as js:null

6.12. jn:parse-json
This function has the same semantics as fn:parse-xml(), except that it parses the string as JSON (not
XML), and returns a sequence of objects or arrays rather than an XML document.

jn:parse-json($arg as xs:string?, $options as object()) as json-item()*

jn:parse-json($arg as xs:string?) as json-item()*

If $options("jsoniq-multiple-top-level-items") evaluates to the empty sequence, or the
second parameter is not specified, it is considered to be true.

If $options("jsoniq-multiple-top-level-items") is not of type xs:boolean, then
jerr:JNTY0020 is raised..

If $options("jsoniq-multiple-top-level-items") is true, then jn:parse-json recognizes and
parses sequences of objects and arrays, with no separation other than whitespaces.

If parsing is not successful, then jerr:JNDY0021 is raised. Parsing is considered in particular to be
non-successful if $options("jsoniq-multiple-top-level-items") is false and there is extra
content after parsing a single abject or array.

Chapter 6. Builtin functions and operators

26

Example 6.8. Parsing JSON items.

parse-json("{"foo" : "bar"} {"bar" : "foo"} [1,
 2, 3]")

Result:

{ "foo" : "bar" }
{ "bar" : "foo" }
[1, 2, 3]

6.13. jn:size
This function returns the size of the supplied array using the jdm:size accessor (or the empty se-
quence if the empty sequence is provided).

jn:size(array()?) as xs:integer?

Example 6.9. Retrieving the size of an array

 let $a := [1 to 10]
 return jn:size($a)

Result:

10

6.14. Changes to cast semantics
The semantics of casts is changed as follows.

No value of an atomic type different than js:null (or derived) can be cast to js:null. An error
err:XPTY0004 is raised instead.

A js:null can still be cast to xs:string or xs:untypedAtomic as specified in the XPath function specifica-
tion, which leads to its canonical representation "null".

6.15. Changes to arithmetic operation semantics
The semantics of arithmetic operations is changed as follows. If one of the operands is null, an type
error err:XPTY0004 is raised.

Example 6.10. Addition
Query

 null + 1

Result

Changes to value comparison semantics

27

 Error.

6.16. Changes to value comparison semantics
The semantics of value comparison is changed as follows.

Null is considered equal to itself, unequal to any other atomic items, and smaller than any other atomic
item.

Example 6.11. Value comparison
Query

 1 eq null, null eq null, 1 ne null, null lt 1

Result

 false true true true

6.17. Changes to general comparison semantics
The semantics of general comparison is changed as follows.

After atomization, if one of the operands is the null atomic item, the other item is not cast, and pair-
wise comparison is done using the modified semantics of value comparison.

Example 6.12. General comparison: equality
Query

 (null, 2) = (1, 3)

Result

 false

28

Chapter 7.

29

JSON updates
JSONiq introduces new update primitives for updating Objects and Arrays. Update primitives can be
generated with new JSONiq updating expressions.

An individual function may create an invalid JSON instance; however, an updating query must produce
a valid JSON instance once the entire query is evaluated, or an error is raised and the entire update
fails, leaving the instance in its original state.

7.1. JSON udpate primitives
The following new update primitives are introduced.

• jupd:insert-into-object($o as object(), $p as object())

Inserts all pairs of the object $p into the object $o.

• jupd:insert-into-array($a as array(), $i as xs:integer, $c as item()*)

Inserts all items in the sequence $c before position $i into the array $a.

• jupd:delete-from-object($o as object(), $s as xs:string*)

Removes the pairs the names of which appear in $s from the object $o.

• jupd:delete-from-array($a as array(), $i as xs:integer)

Removes the item at position $i from the array $a (causes all following items in the array to move
one position to the left).

• jupd:replace-in-array($a as array(), $i as xs:integer, $v as item())

Replaces the item at position $i in the array $a with the item $v (do nothing if $i is not comprised be-
tween 1 and jdm:size($a)).

• jupd:replace-in-object($o as object(), $n as xs:string, $v as item())

Replaces the value of the pair named $n in the object $o with the item $v (do nothing if there is no
such pair).

• jupd:rename-in-object($o as object(), $n as xs:string, $p as xs:string)

Renames the pair originally named $n in the object $o as $p (do nothing if there is no such pair).

Update primitives within a PUL are applied with strict snapshot semantics. For examples, the positions
are resolved against the array before the updates. Names are resolved on the object before the up-
dates.

In the middle of a program, several PULs can be produced against the same snapshot. They are then
merged with upd:mergeUpdates, which is extended as follows.

• Several deletes on the same object are replaced with a unique delete on that object, with a list of all
selectors (names) to be deleted, where duplicates have been eliminated.

• Several deletes on the same array and selector (position) are replaced with a unique delete on that
array and with that selector.

Chapter 7. JSON updates

30

• Several inserts on the same array and selector (position) are equivalent to a unique insert on that
array and selector with the content of those original inserts appended in an implementation-depen-
dent order (like XQUF).

• Several inserts on the same object are equivalent to a unique insert where the objects containing
the pairs to insert are merged. An error jerr:JNUP0005 is raised if a collision occurs.

• Several replaces on the same object or array and with the same selector raise an error
jerr:JNUP0009.

• Several renames on the same object and with the same selector raise an error jerr:JNUP0010.

• If there is a replace and a delete on the same object or array and with the same selector, the replace
is omitted in the merged PUL.

• If there is a rename and a delete on the same object or array and with the same selector, the re-
name is omitted in the merged PUL.

At the end of an updating program, the resulting PUL is applied with upd:applyUpdates, which is
extended as follows:

• First, before applying any update, each update primitive (except the jupd:insert-into-object primi-
tives, which do not have any target) locks onto its target by resolving the selector on the object or ar-
ray it updates. If the selector is resolved to the empty sequence, the update primitive is ignored in
step 2. After this operation, each of these update primitives will contain a reference to either the pair
(for an object) or the value (for an array) on or relatively to which it operates

• Then each update primitive is applied, using the target references that were resolved at step 1. The
order in which they are applied is not relevant and does not affect the final instance of the data mod-
el. After applying all updates, an error jerr:JNUP0006 is raised upon pair name collision within the
same object.

7.2. Update syntax: new updating expressions
The following syntax is introduced for updates.

7.2.1. Deleting expressions

 JSONDeleteExpr ::= "delete" "json" PrimaryExpr ("(" ExprSingle ")")+

PrimaryExpr followed by all "(" ExprSingle ")" except the last one, is evaluated according to the se-
mantics of dynamic function calls. It must return a single object $o or a single array $a. Otherwise,
jerr:JNUP0008 is raised. After this evaluation, two cases can appear for interpreting the last "(" Ex-
prSingle ")":

(for explanatory purposes, suboperands are replaced with a variable containing the result of their eval-
uation)

• delete json $o($s)

$s is atomized and cast to xs:string (jerr:JNUP0007 is raised upon failure).

Creates the update primitive jupd:delete-from-object($o, $s). An error JNUP:0016 is
raised if $o does not contain a pair with the key $s.

Inserting expressions

31

• delete json $a($i)

$i is atomized and cast to xs:integer (jerr:JNUP0007 is raised upon failure).

Creates the update primitive jupd:delete-from-array($a, $i). An error JNUP:0016 is
raised if $i is out of the range of the array $a.

Example 7.1. Deleting from an object and from an array

 delete json $o("foo")
 delete json $a(2)

Note:

If $o($s) or $a($i) resolves to an empty sequence, the produced update primitive will have no ef-
fect.

7.2.2. Inserting expressions

 JSONInsertExpr ::= "insert" "json" ExprSingle "into" ExprSingle ("at" "position"
 ExprSingle)?
 | "insert" "json" PairConstructor ("," Pair Constructor)* "into"
 ExprSingle

(for explanatory purposes, suboperands are replaced with a variable containing the result of their eval-
uation)

The second variant corresponds to the insertion of a statically known number of pairs:

insert json "foo" : "bar", "bar" : "foo" into $o

is defined as being equivalent to:

insert json { "foo" : "bar", "bar" : "foo" } into $o

Inserting expressions are available in two flavors (object insertion, array insertion):

• insert json $p into $o

$o must be an object. Otherwise, jerr:JNUP0008 is raised.

$p must be a sequence of objects. Otherwise, jerr:JNUP0019 is raised.

$o is post-processed by invoking jn:object, which results in a single object containing all pairs to
insert. In particular, jerr:JNDY0003 is raised upon a pair collision.

Makes a copy $p and creates the update primitive jupd:insert-into-object($o, $p)

• insert json $c into $a at position $i

$a must be an array. Otherwise, jerr:JNUP0008 is raised.

$i is atomized and cast to xs:integer (jerr:JNUP0007 is raised upon failure).

Makes a copy of all items in $c and creates the update primitive jupd:insert-into-array($a,
$i, $c)

Chapter 7. JSON updates

32

Example 7.2. Inserting into an array or an object

 insert json (1, 2, 3) into $a at position 3
 insert json { "foo": 3, "bar":4 } into $o

7.2.3. Renaming expressions

 JSONRenameExpr ::= "rename" "json" PrimaryExpr ("(" ExprSingle ")")+ "as"
 ExprSingle

(for explanatory purposes, suboperands are replaced with a variable containing the result of their eval-
uation)

rename json $o($s) as $n

PrimaryExpr followed by all "(" ExprSingle ")" except the last one, is evaluated according to the seman-
tics of dynamic function calls. It must return a single object $o. Otherwise, jerr:JNUP0008 is raised.
After this evaluation, the last "(" ExprSingle ")" is interpreted as follows:

$s is atomized and cast to xs:string (jerr:JNUP0007 is raised upon failure).

Creates the update primitive jupd:rename-in-object($o, $s, $n). An error JNUP:0016 is
raised if $o does not contain a pair with the key $s.

Example 7.3. Renaming an object pair

 rename json $o("foo") as "bar"

7.2.4. Replacing expressions

 JSONReplaceExpr ::= "replace" "json" "value" "of" PrimaryExpr ("(" ExprSingle
 ")")+ "with" ExprSingle

PrimaryExpr followed by all "(" ExprSingle ")" except the last one, is evaluated according to the se-
mantics of dynamic function calls. It must return a single object $o or a single array $a. Otherwise,
jerr:JNUP0008 is raised. After this evaluation, two cases can appear for interpreting the last "(" Ex-
prSingle ")":

(for explanatory purposes, suboperands are replaced with a variable containing the result of their eval-
uation)

• replace json value of $o($s) with $c

$s is atomized and cast to xs:string (jerr:JNUP0007 is raised upon failure).

$c is postprocessed in the same way as values in a pair constructor, i.e., if $c is the empty se-
quence, it is replaced with the atomic value null, and if it is a sequence of more than one item, an ar-
ray is created with all items in this sequence and in the same order. Ultimately, in all cases, $c will
be a single item.

Appending expressions

33

Makes a copy of $c and creates the update primitive jupd:replace-in-object($o, $s, $c).
An error JNUP:0016 is raised if $o does not contain a pair with the key $s.

• replace json value of $a($i) with $c

$i is atomized and cast to xs:integer (jerr:JNUP0007 is raised upon failure).

$c is postprocessed in the same way as values in a pair constructor, i.e., if $c is the empty se-
quence, it is replaced with the atomic value null, and if it is a sequence of more than one item, an ar-
ray is created with all items in this sequence and in the same order. Ultimately, in all cases, $c will
be a single item.

Makes a copy of $c and creates the update primitive jupd:replace-in-array($a, $i, $c).
An error JNUP:0016 is raised if $i is out of the range of array $a.

Example 7.4. Replace a value in an object or in an array

 replace json value of $o("foo") with 5
 replace json value of $a(3) with 25

7.2.5. Appending expressions

 JSONAppendExpr ::= "append" "json" ExprSingle "into" ExprSingle

(for explanatory purposes, suboperands are replaced with a variable containing the result of their eval-
uation)

append json $c into $a

$a must be an array. Otherwise, jerr:JNUP0008 is raised.

Creates the update primitive insert-into-array($a, $a()+1, $c)

Example 7.5. Appending values to an array

 append json (1,2) into $a

34

Chapter 8.

35

Function library
This section defines a function library on top of JSONiq. These functions are not part of the JSONiq
core, because the latter is intended to be minimal.

8.1. libjn:accumulate
This function dynamically builds an object, like jn:object, except that it does not throw an error upon
pair collision. Instead, it accumulates them into an array. Non-object items in the input sequence are
ignored.

declare function libjn:accumulate($sequence as item()*) as object()
{
 {|
 for $key in $sequence() return { $key : $sequence($key) }
 |}
};

8.2. libjn:descendant-arrays
This function returns all arrays contained within the supplied items, regardless of depth.

declare function libjn:descendant-arrays($sequence as item()*) as array()*
{
 for $item in $sequence
 return typeswitch ($item)
 case array() return (
 $item,
 libjn:descendant-arrays($item())
)
 case object() return
 libjn:descendant-arrays(libjn:values($item))
 default return ()
};

Example 8.1. Accessing all descendant arrays
Query:

libjn:descendant-arrays(({ "foo" : { "bar" : [1, 2] } }, [[{ "foo" : "bar",
 "bar" : "foo" }]], true(), 1, jn:null()))
rays(
({ "foo" : { "bar" : [1, 2] }
}, [[{ "foo" : "bar", "bar" : "foo" }]
],
true(),
1,
jn:null()
)

Result:

[1, 2]
[[{ "foo" : "bar", "bar" : "foo" }]]
[{ "foo" : "bar", "bar" : "foo" }]

Chapter 8. Function library

36

8.3. libjn:descendant-objects
This function returns all objects contained within the supplied items, regardless of depth.

declare function libjn:descendant-objects($sequence as item()*) as object()*
{
 for $item in $sequence
 return typeswitch ($item)
 case object() return (
 $item,
 libjn:descendant-objects(libjn:values($item))
)
 case array() return
 libjn:descendant-objects($item())
 default return ()
};

Example 8.2. Accessing all descendant objects
Query:

libjn:descendant-objects(({ "foo" : { "bar" : [1, 2] } }, [[{ "foo" : "bar",
 "bar" : "foo" }]], true(), 1, jn:null()))
jects(
({ "foo" : { "bar" : [1, 2] }
}, [[{ "foo" : "bar", "bar" : "foo" }]
],
true(),
1,
jn:null()
)

Result:

{ "foo" : { "bar" : [1, 2] } }
{ "bar" : [1, 2] }
{ "foo" : "bar", "bar" : "foo" }

8.4. libjn:descendant-pairs
This function returns all descendant pairs within the supplied items.

 declare function libjn:descendant-pairs($sequence as item()*)
 {
 for $item in $sequence
 return typeswitch ($item)
 case object() return
 for $key in jn:keys($item)
 let $value := $item($key)
 return (
 { $key : $value },
 libjn:descendant-pairs($value)
)
 case array() return
 libjn:descendant-pairs($item())
 default return ()
 };

libjn:flatten

37

Example 8.3. Accessing all descendant pairs
Query:

libjn:descendant-pairs(
 (
 { "foo" : { "bar" : [1, 2] } },
 [[{ "foo" : "bar", "bar" : "foo" }]],
 true(),
 1,
 jn:null()
)
)

Result:

{ "foo" : { "bar" : [1, 2] } }
{ "bar" : [1, 2] }
{ "foo" : "bar" }
{ "bar" : "foo" }

Example 8.4. Query all pairs with a given name.
Query:

libjn:descendant-pairs({
 "first" : 1,
 "second" : {
 "first" : "a",
 "second" : "b"
 }
})("first")

Result:

 1 a

8.5. libjn:flatten
This function recursively "flattens" the supplied (top-level) arrays, leaving non-arrays unchanged.

declare function libjn:flatten($sequence as item()*) as item()*
{
 for $item in $sequence
 return
 typeswitch ($item)
 case array() return libjn:flatten($item())
 default return $item
};

Example 8.5. Flattening arrays.
Query:

libjn:flatten(

Chapter 8. Function library

38

 (
 { "foo" : { "bar" : [1, 2] } },
 [1, 2, [{ "foo" : "bar", "bar" : "foo" }], 3, 4],
 true(),
 1,
 jn:null()
)
)

Result:

{ "foo" : { "bar" : [1, 2] } } 1 2 { "foo" : "bar", "bar" : "foo" } 3 4 true 1 null

8.6. libjn:intersect
This function returns an object that only contains keys shared by all input objects, and associates to
each of these keys the corresponding values in the input objects (wrapped in an array if more than
one). Non-objects are ignored.

declare function libjn:intersect($sequence as item()*) as object()
{
 {|
 let $objects := $sequence[. instance of object()]
 for $key in head($objects)()
 where every $object in tail($objects)
 satisfies exists(index-of($object(), $key))
 return { $key : $objects($key) }
 |}
};

Example 8.6. Intersecting objects.
Query:

libjn:intersect(
 (
 { "foo" : { "bar" : [1, 2] } },
 [1, 2, 3, 4],
 { "foo" : "bar", "bar" : "foo" }
 true(),
 1,
 jn:null()
)
)

Result:

{ "foo" : [{ "bar" : [1, 2] }, "bar"] }

8.7. libjn:project
This function iterates on the input sequence. It projects objects by filtering their pairs and leaves non-
objects intact.

libjn:remove-keys

39

declare function libjn:project($sequence as item()*, $keys as xs:string*) as item()*
{
 for $item in $sequence
 return typeswitch ($item)
 case $object as object() return
 {|
 for $key in $object()[. = $keys]
 return { $key : $object($key) }
 |}
 default return $item
};

Example 8.7. Projecting objects.
Query:

libjn:project(
 (
 {
 "Captain" : "Kirk",
 "First Officer" : "Spock",
 "Engineer" : "Scott"
 },
 [1, 2, 3, 4]
 {
 "Captain" : "Archer",
 "Engineer" : "Trip",
 },
 true(),
 1,
 jn:null()
),
 ("Captain", "First Officer", "XQuery Evangelist")
)

Result:

{ "Captain" : "Kirk", "First Officer" : "Spock" }
[1, 2, 3, 4] { "Captain" : "Archer" } true 1 null

8.8. libjn:remove-keys
This function iterates on the input sequence. It removes the pairs with the given keys from all objects
and leaves non-objects intact.

declare function libjn:remove-keys($sequence as item()*, $keys as xs:string*) as item()*
{
 for $item in $sequence
 return typeswitch ($item)
 case $object as object() return
 {|
 for $key in $object() [not (. = $keys)]
 return { $key : $object($key) }
 |}
 default return $item
};

Example 8.8. Projecting objects.
Query:

Chapter 8. Function library

40

libjn:remove-keys(
 (
 {
 "Captain" : "Kirk",
 "First Officer" : "Spock",
 "Engineer" : "Scott"
 },
 [1, 2, 3, 4]
 {
 "Captain" : "Archer",
 "Engineer" : "Trip",
 },
 true(),
 1,
 jn:null()
),
 ("Captain", "First Officer", "XQuery Evangelist")
)

Result:

{ "Engineer" : "Scott" } [1, 2, 3, 4] { "Engineer" : "Trip" } true 1 null

8.9. libjn:values
This function returns all values in the supplied objects. Non-objects are ignored.

 declare function libjn:values($sequence as item()*) as item()* {
 for $item in $sequence
 return $item() ! $item(.)
 };

Example 8.9. Extracting all values from objects.
Query:

libjn:values(
 (
 {
 "Captain" : "Kirk",
 "First Officer" : "Spock",
 "Engineer" : "Scott"
 },
 [1, 2, 3, 4]
 {
 "Captain" : "Archer",
 "Engineer" : "Trip",
 },
 true(),
 1,
 jn:null()
)
)

Result:

Kirk Spock Scott Archer Trip

Chapter 9.

41

Combining XML and JSON
JSONiq is designed to allow XML and JSON to be used in the same query.

The syntax of JSONiq allows JSON constructors to contain XML values, and allows JSON construc-
tors to occur in XML constructors. JSON does not support XML nodes or types, and XML does not
support Objects or Arrays, but JSONiq allows Objects and Arrays to contain XML nodes, and defines
rules for using JSONiq nodes in XML content expressions.

Example 9.1. XML in JSON
Both XML nodes and atomic values may occur in the values of Objects.

 {
 "element" : <mercury>Hg</mercury>,
 "atomic value" : xs:date("1896-01-24")
 "several dates" : [xs:date("1066-10-14"), xs:date("1935-01-11"),
 xs:date("1989-11-09")]
 }

XML nodes and atomic values may also appear in Arrays.

[xs:date("1066-10-14"), <mercury>Hg</mercury>, "ice cream"]

JSONiq does not allow XML nodes to contain Objects and Arrays. If an XQuery element content se-
quence, the value of the enclosed expression of an attribute, or the value of the content expression of
a computed constructor contains an Object or Array, an error jerr:JNTY0011 is raised.

Example 9.2. Objects in XML Constructors
Objects can be indirectly used in the content expression of any XQuery constructor.

Query:

 let $object := { "x" : 10, "y" : 12 }
 let $x := $object("x")
 return <x>{ $x }</x>

An Array can also be used in the content expression.1:

 <svg><polygon stroke="blue" points="(jnlib:flatten([[10,10], [20,10], [20,20],
 [10,20]])}" /></svg>

Here is the result of the above query:

<svg><polygon stroke="blue" points="10 10 20 10 20 20 10 20" /></svg>

1 The data in this example is taken from an example on Stefan Goessner's JSONT site (http://goessner.net/articles/jsont/).

http://goessner.net/articles/jsont/

42

Chapter 10.

43

JSON Serialization
JSONiq defines two new output methods: "JSON" and "JSON-XML-hybrid". The JSON output method
outputs guaranteed JSON (application/json) with the small exception that it may also output a se-
quence of objects and arrays (as seems to be standard practice, for example, in REST APIs). The
JSON-XML-hybrid method allows serializing mixed sequences of JSON items and XML nodes for con-
venience. The JSON-XML-hybrid method is the default output method.

10.1. New serialization parameters
One new serialization parameter is introduced:

• jsoniq-multiple-top-level-items (one of: "yes", "no"):

Specifies if multiple items are allowed. Default is "yes".

10.2. Changes to sequence normalization
The XQuery and XSLT serialization specification performs sequence normalization before serializing
an XDM instance. The result is a sequence of exactly one document node.

JSONiq extends sequence normalization as follows:

The final step of building a document node with all items as its children is only done for adjacent XML
nodes. JSON objects and arrays in the input sequence are left untouched.

This means that the final result of sequence normalization will be a sequence of objects, arrays and
document nodes.

10.3. The JSON output method

10.3.1. Serialization of a sequence of items
If the normalized sequence does not consist exclusively of JSON arrays and objects, an error
jerr:JNSE0014 is raised.

If jsoniq-multiple-top-level-items is set to "no" and the sequence to be serialized does not consist of a
single object or array, an error jerr:JNSE0012 is raised.

If jsoniq-multiple-top-level-items is set to "yes", then the JSON items in the sequence are serialized
one by one as specified below, in the same order and without any separating character (except white-
spaces, depending on the indent parameter).

10.3.2. Serialization of individual JSON values
This section specifies how JSON items as well as JSON atomic values are serialized.

• Object

An object is serialized as an opening curly brace {, followed by the comma-separated serializations
of all its pairs, followed by a closing curly brace.

A pair is serialized as the serialization of its name, followed by a colon, followed by the serialization
of its value.

Chapter 10. JSON Serialization

44

• Array

An array is serialized as an opening square brace, followed by the comma-separated serializations
of all its member values, followed by a closing square brace.

• xs:string

An atomic value of type xs:string is serialized between double quotes and with the escaping speci-
fied in http://www.ietf.org/rfc/rfc4627.txt.

• xs:double, xs:float (except Nan, positive/negative infinity), xs:decimal or subtype

An atomic value of a numeric type (xs:double, xs:float, xs:decimal or subtype) is serialized
as its lexical representation, i.e., is cast to xs:string, not surrounded by quotes. This corresponds
to the JSON number notation, but with a few exceptions which must be fixed before serializing:

• The leading + sign must be removed if present.

• A zero must be added in front of and/or after the dot if no digit is present in front of and/or after the
dot.

• Unnecessary zeros in front of the number (except if the only digit in front of the dot is 0) must be
removed.

• Values of type xs:decimal that have a lexical representation without dot must be suffixed with
".0" (so that it parses back as a decimal).

• Values of type xs:double that have a lexical representation without E must be suffixed with
"E0" (so that it parses back as a double).

• xs:boolean or subtype

An atomic value matching the type xs:boolean is serialized as true or false, not surrounded by
quotes.

• js:null or subtype

The atomic value null matching the type js:null is serialized as null, not surrounded by quotes.

• All other atomic values are output as if they were of value xs:string (i.e., as a JSON string).

• An error jerr:JNSE0014 is raised if an XML node or a function is encountered.

10.3.3. Influence of other serialization parameters upon the JSON
output method

10.3.3.1. JSON output method: the indent parameter
Like for the XML output method, the indent parameter controls if the serializer is allowed to add extra
whitespaces to make the output easier to read. If the indent parameter has the value "yes", the serial-
izer may output additional whitespaces characters outside of JSON literals. If the indent parameter has
the value "no", the serializer may not output any whitespaces outside of JSON literals.

If the indent parameter is set to yes, the algorithm for adding whitespaces is allowed to add them at
the following places, and only at these places:

• Between an object-opening curly brace and the first key.

The JSON-XML-hybrid output method

45

• On either side of a key-value-separating colon.

• Before and after pair-separating commas in an object.

• Between the value of the last pair of an object and the object-closing curly brace.

• Between an array-opening square bracket and the first member.

• Before and after value-separating commas in an array.

• Between the last member of an array and the array-closing square bracket.

• Between two objects or arrays if multiple JSON items are serialized.

In particular, no whitespaces may be added inside JSON literals (strings, numbers, booleans, nulls).

If the indent parameter is set to no, no whitespace may be output to any of the places mentioned
above.

10.3.3.2. JSON output method: the byte-order-mark parameter
The byte-order-mark parameter is applicable to the JSON output method and has the same semantics
as for the XML output method.

10.3.3.3. JSON output method: the use-character-maps parameter
The use-character-maps parameter is applicable to the JSON output method and has the same se-
mantics as for the XML output method.

Like for the XML output method, the result of serialization using the JSON output method is not guar-
anteed to be well-formed JSON if character maps have been specified.

10.4. The JSON-XML-hybrid output method
This method serializes a sequence of items to a stream of objects, arrays, XML nodes and text as fol-
lows:

• An object or array is serialized according to the JSON output method (the value of jsoniq-multi-
ple-top-level-items is irrelevant), with the exception that no error is raised if an XML node is found as
a value in an object or a member of an array. Instead, the XML node is serialized to a JSON string
as described below for document nodes.

• A document node is serialized according to the xml output method and the corresponding serializa-
tion parameters (except that the parameters setting declaration and doctypes are ignored, and no
doctype or XML declaration is output).

• The item serialization outputs are not separated by any spaces in the final output (except if the in-
dent parameter is set, in which case the serializer is free to insert whitespaces).

10.5. Changes to ther other output methods
The other outputs methods (XML, HTML, XHTML, Text) are changed as follows: if the normalized se-
quence does not consist of exactly one document node, then jerr:JNSE0022 is raised.

46

Chapter 11.

47

Error codes
The JSONiq error codes are summarized here.

jerr:JNDY0003

It is a dynamic error if two pairs in an object constructor or in a simple object union have the same
name.

jerr:JNTY0004

Arrays and objects cannot be atomized. It is a type error to call fn:data on a sequence containing an
array or an object.

jerr:JNUP0005

It is a dynamic error if a pending update list contains two JSON insert update primitives on the same
object and pair name.

jerr:JNUP0006

It is a dynamic error if upd:applyUpdates causes an object to contain two pairs with the same name.

jerr:JNUP0007

It is a type error if, in an updating expression, an array selector cannot be cast to xs:integer or if an ob-
ject selector cannot be cast to xs:string.

jerr:JNUP0008

It is a dynamic error if the target of a JSON delete or JSON replace expression is not an array or an
object. It is a dynamic error if the target of a renaming expression is not an object. It is a dynamic er-
ror if the target of an appending expression is not an array. It is a dynamic error if the target of a po-
sition-inserting expression is not an array. It is a dynamic error if the target of a non-position-inserting
expression is not an object.

jerr:JNUP0009

It is a dynamic error if a pending update list contains two JSON replacing update primitives on the
same object or array, and with the same selector.

jerr:JNUP0010

It is a dynamic error if a pending update list contains two JSON renaming update primitives on the
same object and with the same selector.

jerr:JNTY0011

It is a type error if the content sequence in a node constructor or in an XQUF insert or replace update
expression contains an object or an array.

jerr:JNSE0012

It is a dynamic error to serialize something else than a unique JSON item with the JSON output
method if the jsoniq-multiple-top-level-items is set to no.

jerr:JNSE0014

It is a dynamic error to serialize a function, a node or a standalone atomic item with the JSON output
method.

Chapter 11. Error codes

48

jerr:JNSE0015

It is a dynamic error to serialize a top-level item which is not a JSON item if the jsoniq-multiple-top-lev-
el-items serialization parameter is not set to "array".

jerr:JNUP0016

It is a dynamic error if it is attempted to create a replace, delete or rename update primitive with a se-
lector that cannot be resolved against the target array or object.

jerr:JNTY0018

It is a type error if there is not exactly one supplied parameter for an object or array selector.

jerr:JNUP0019

It is a dynamic error if the content expression, in an object insert expression, does not evaluate to a
sequence of objects.

jerr:JNTY0020

It is a dynamic error if, when calling jn:parse-json, the option "jsoniq-multiple-top-level-items" is not a
boolean.

jerr:JNDY0021

It is a dynamic error if parsing a string to one or several objects or arrays is not successful, or if it re-
sults in more than one item and "jsoniq-multiple-top-level-items" is false.

jerr:JNSE0022

It is a dynamic error if an object or array is encountered upon serializing as XML, XHTML, HTML or
Text.

jerr:JNTY0023

It is a dynamic error if, when calling jn:encode-for-roundtrip or jn:decode-from-roundtrip, the value of
the option "prefix" is not atomizable and castable to a string, or if the value of the option "serializa-
tion-parameters" is not an element node.

jerr:JNTY0024

Arrays and objects do not have a string value. It is a type error to call fn:string on an array or an object.

Chapter 12.

49

Grammar Summary

 PrimaryExpr ::= -- everything so far --
 | ObjectConstructor
 | ArrayConstructor

 ObjectConstructor ::= "{" (PairConstructor ("," PairConstructor)*)? "}"

 PairConstructor ::= ExprSingle ":" ExprSingle

 ArrayConstructor ::= "[" Expr? "]"

 ExprSingle ::= -- everything so far --
 | JSONDeleteExpr
 | JSONInsertExpr
 | JSONRenameExpr
 | JSONReplaceExpr
 | JSONAppendExpr

 JSONDeleteExpr ::= "delete" "json" PrimaryExpr ("(" ExprSingle ")")+

 JSONInsertExpr ::= "insert" "json" ExprSingle "into" ExprSingle
 ("at" "position" ExprSingle)?
 | "insert" "json" PairConstructor ("," Pair Constructor)*
 "into" ExprSingle

 JSONRenameExpr ::= "rename" "json" PrimaryExpr ("(" ExprSingle ")")+
 "as" ExprSingle

 JSONReplaceExpr ::= "replace" "json" "value" "of"
 PrimaryExpr ("(" ExprSingle ")")+
 "with" ExprSingle

 JSONAppendExpr ::= "append" "json" ExprSingle "into" ExprSingle

 ItemType ::= -- everything so far --
 | JSONTest
 | StructuredItemTest

 JSONTest ::=
 JSONItemTest
 | JSONObjectTest
 | JSONArrayTest

 StructuredItemTest ::= "structured-item" "(" ")"
 JSONItemTest ::= "json-item" "(" ")"
 JSONObjectTest ::= "object" "(" ")"
 JSONArrayTest ::= "array" "(" ")"

50

Chapter 13.

51

Implementation in Zorba
The present specification was implemented in the Zorba XQuery engine, with the following differences:

• Zorba supports a specific simple object union syntax (for building objects with a dynamic number of
pairs): {| Expr? |} corresponds to jn:object(Expr?) in this specification.

• Zorba supports a specific accumulation syntax (for building objects with a dynamic number of pairs
without throwing errors upon pair collision): {[Expr?]} corresponds to jn:accumulate(Expr?) in this
specification.

• The empty objects syntax {} is not supported, because it collides with empty blocks in Zorba Script-
ing. However, {| |} can be used instead (see above).

• Zorba supports collections and indices containing JSON items as part of its data definition frame-
work.

• Zorba ships some of the library functions in the jn: module (jn:members, jn:flatten). The others will
follow in the next release.

52

53

Appendix A. Revision History
Revision 1.0.3 Tue Aug 13 2013 Ghislain Fourny g@28.io

Added more examples for library functions.
Completed signature of keys() and size() with return types.
Simplified code in libjn:remove-keys() and libjn:project().
Moved all fixes for JSON vs. JDM lexical representation mismatch to the serialization layer.

Revision 1.0.2 Thu Aug 8 2013 Ghislain Fourny g@28.io
Fixed the signatures of jn:keys() and jn:members() to accept parameters of type item()*. They were
forgotten in the last update. Updated the description accordingly and updating examples with more
general sequences.
Fixed some typos.
Fixed semantics of libjn:project() to make it consistent with the other functions.
Added libjn:remove-keys() which does the contrary of libjn:project(), i.e., removes the given keys
from all input objects.

Revision 1.0.1 Mon Jul 22 2013 Ghislain Fourny g@28.io
Reintroduced the parameter cast in object lookup (to a string) or array lookup (to an integer) follow-
ing feedback. The general semantics of object/array lookup with unary dynamic function calls (im-
plicit iteration on mixed sequences, empty sequence in case of mismatch) is mostly untouched, but
was significantly reformulated.
Introduced object key listing and array unboxing with 0-ary dynamic function call syntax: $o()
(=jn:keys($o)) $a() (=jn:members($a)). It works on mixed sequences in the same way as object
and array lookup.
Removed the function jn:is-null() because it is redundant with the "eq" and "instance of" operators
which support null.
Removed the function jn:object() and introduced the equivalent {| |} syntax (like in the JSONiq
core).
Relaxed the functions libjn:descendant-objects, libjn:descendant-pairs, libjn:values, libjn:flatten,
libjn:project to accept any sequence of items. The behavior on mixed sequences is consistent with
object and array lookup. Also introduced new function libjn:descendant-arrays and relaxed jn:size
to accept the empty sequence..
Fixed roundtrippability of decimals and doubles in jn:encode-for-roundtrip (decimals without dot
were roundtripped to integers, etc).
Fixed corner cases in JSON number serialization (trailing zeros, absence of digits, leading +, which
are allowed in the JDM but not in the JSON syntax).

Revision
0.4.45

Mon May 27 2013 Ghislain Fourny g@28.io

Relaxed object and array selection to work on any mixed sequences. In case of mismatch (i.e., (i)
integer on object or atomic, or (ii) string on array or atomic), an empty sequence is now returned.
No more cast is done.

Revision
0.4.44

Thu May 8 2013 Ghislain Fourny g@28.io

mailto:g@28.io
mailto:g@28.io
mailto:g@28.io
mailto:g@28.io
mailto:g@28.io

Appendix A. Revision History

54

Correcting various typos, errors and formatting errors, mostly in the examples (no change in se-
mantics).

Revision
0.4.43

Thu Apr 4 2013 Ghislain Fourny
ghislain.fourny@28msec.com

The product was renamed to "JSONiq Extension to XQuery".
The semantics of arithmetics was modified to raise an error in case of a null operand.
The semantics of value comparison was modified to be compatible with null operands (null eq null,
and null lt any other atomic item).

Revision
0.4.42

Thu Sep 27 2012 Ghislain Fourny
ghislain.fourny@28msec.com

The hybrid output method now serializes XML nodes that are found inside objects or arrays to
JSON strings.

Revision
0.4.41

Tue Sep 25 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Extended fn:string to raise an error for JSON items. Added JNTY0024.
Made definition of roundtripping functions more precise (for the case where there is a top-level
item which is a JSON native value).

Revision
0.4.40

Mon Sep 24 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Renamed JNTY0020 and added JNTY0023.
Changed default of encode-for-roundtrip to omit XML declaration.
Corrected signature of roundtripping functions to allow for full recursion.

Revision
0.4.39

Fri Sep 14 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Qualified names are now treated specially in jn:encode-for-roundtrip and jn:decode-from-roundtrip.

Revision
0.4.38

Thu Sep 13 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Further specified error handling for key (atomization error, cast error) in pair constructor.
Fixed appending expression syntax to be in sync with insert syntax.
Object and array selectors are now atomized and cast to xs:string and xs:integer respectively.
The alternate object insertion syntax supports several pairs.

Revision
0.4.37

Tue Sep 11 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Fixed error code of jerr:JNSE0022.
Moved libjn:members to jn:members (builtin).

mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com

55

Corrected example query for jn:encode-for-roundtrip and excluded NaN/infinite from native JSON
mapping.

Revision
0.4.36

Mon Sep 10 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Changed error code to err:XPTY0004 if a key in a pair constructor cannot be atomized and cast to
a string.
Further specified error-handling for jn:parse-json. Changed default to accepting multiple items.
Simplified semantics for null in comparison/arithmetics. Introduced jn:is-null().
Introduced a lightweight syntax for inserting a single pair into an object (optional curly braces).
Default output method is now JSON-XML-hybrid (also for fn:trace).
Made changes to sequence normalization orthogonal to the output method used. Introduced error
codes.

Revision
0.4.35

Fri Sep 07 2012 Ghislain Fourny
ghislain.fourny@28msec.com

The json insert syntax was simplified and relaxed.

Revision
0.4.34

Thu Sep 06 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Relaxed condition that an expression computing a value (in a pair constructor, an insert expression
or a replace expression) must return a single item. If no item, null is used instead, if more than one
item, an array is built to wrap the items. Errors jerr:JNTY0002 and jerr:JNUP0017 disappear.
jn:parse-json-sequence was merged with jn:parse-json (using an object to transmit parameters).
jn:encode-for-roundtrip and jn:decode-from-roundtrip also now use an object to transmit parame-
ters.
A semantics is now specified for arithmetic operations involving null (null is returned). The seman-
tics of value and general comparison involving nulls was updated.

Revision
0.4.33

Tue Sep 04 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Corrected typos. Capitalized JSON and XML in hybrid output method.
Introduced jn:parse-json-sequence to support roundtripping sequences.

Revision
0.4.32

Mon Sep 03 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Split the serialization roundtripping facility into a much simpler specification of the JSON out-
put method and two functions in the builtin module. Only one serialization parameter (specifying
whether multiple items are allowed is left).
jerr:JNSE0013 disappears.

Revision
0.4.31

Fri Aug 31 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Sequences beginning with an object or array now have an effective boolean value, which is true.

mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com

Appendix A. Revision History

56

jsoniq-boolean-and-null-literals is set to "yes" by default.

Revision
0.4.30

Thu Aug 30 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Significantly rewrote the serialization section to take feedback received into account: (i) some seri-
alization parameters were renamed (ii) If jsoniq-roundtrip-extensions is set to no, then non-JSON
atomic values are automatically serialized to the JSON literal that makes the most sense (iii) the
json-xml-hybrid output method was introduced, mostly meant as a default output method for an en-
gine for convenience.

Revision
0.4.29

Tue Aug 28 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Added function jn:null.
Specified semantics for casting to/from jn:null.
Specified semantics for value and general comparisons involving JSON nulls.

Revision
0.4.28

Wed Aug 15 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Added namespace for library functions.

Revision
0.4.27

Mon Aug 13 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Renamed libjn:accumulator-object-union as libjn:accumulate. Corrected some typos in library func-
tion code. Completed paragraph on implementation.

Revision
0.4.26

Fri Aug 10 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Corrected and moved a dynamic object construction example to lib:object().

Revision
0.4.25

Wed Aug 8 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Added a chapter about the implementation in Zorba.

Revision
0.4.24

Tue Aug 7 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Fixed array update grammar rules.

Revision
0.4.23

Thu Jul 31 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Changed JNDY0018 to JNTY0018.
Added more details on JSONiq string support.

mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com

57

Revision
0.4.22

Thu Jul 24 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Objects and arrays are no longer matching any function types.
Updated type hierarchy picture.

Revision 0-21 Thu Jul 24 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Corrected typos (jn:null, object constructor grammar in grammar section, residual {| |}s).
Added update features in the introductive list.

Revision 0-20 Thu Jun 21 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Added an error code checking for single item for insert/replace expressions.
Corrected typos.
Changed JNTY0007 to JNUP0007 and JNTY0008 to JNUP0008.

Revision 0-19 Thu Jun 11 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Added error code if the selector cannot be resolved when creating an update primitive.
Updated JSONiq value serialization examples to the right double lexical value of infinity.

Revision 0-18 Thu May 24 2012 Ghislain Fourny
ghislain.fourny@28msec.com

Pairs are no longer exposed as items. There are now just singleton objects (but the word pair is
still used in this spec for a string/value pair);
Update primitives are decoupled from a new update syntax;
Object and array selectors return values;
Dynamic invocation on sequence of functions/arrays/objects;
Minimalistic builtin functions. Still, some functions defined for convenience (relational algebra pro-
jection, intersection, ...);
Atomization and EBV raise errors or objects and arrays;
There are only one serialization method: json with three new serialization parameters;
Boolean and null literals can be activated with an option;
Multiple items can be serialized according to serialization parameter settings.

Revision 0-17 Thu Dec 22 2011 Jonathan Robie
jonathan.robie@gmail.com

Eliminated Array Pairs.
Renamed "member accessors" => "member selectors"
Changed semantics of the empty member selector, which now returns all Objects at the top level
or below.
Changed signature of json:delete() to always require the Array or Object as a parameter. Pairs no
longer point to the Array or Object that contain them.
Changed namespaces used in the document. Functions and errors have separate namespaces.
Functions used to implement operators and JDM accessors are abstract, and have a prefix that is
not bound to a namespace.
Removed isnull() function - compare to null insteadl

mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:ghislain.fourny@28msec.com
mailto:jonathan.robie@gmail.com

Appendix A. Revision History

58

Removed whitespace requirement for ":" in PairConstructor, require the operands of a PairCon-
structor to be AdditiveExprs.
Specified that object lookup uses the codepoint collation.

Revision 0-16 Tue Oct 11 2011 Jonathan Robie
jonathan.robie@gmail.com

Eliminated typed-value() and string-value() accessors for Pair.
Redefined atomization to use unboxing; defined type value and string value in terms of unboxing.
Changed signatures of many functions to make them more precise.
Fixed "tuesday" query - result is now "day": "Monday".
Introduced "structured items" base class for nodes and JSON Items.
Added StructuredItemTest.
Removed string arguments from JSONPairTest, JSONObjectPairTest, JSONArrayPairTest.
Specified update primitives.
Made signatures of update primitives more precise.
Stated that NaN and Infinity are instances of xs:double.
Clarified order of results for () on Arrays.
Changed "unordered" to implementation-defined order.
Minor editorial changes.

Revision 0-15 Thu Sep 22 2011 Jonathan Robie
jonathan.robie@gmail.com

Pairs now have typed-values again. No other JSONiq Item does.
Unboxing pairs is now part of atomization.
In the XQ-- subset of JSONiq, atomizing a Pair is defined as unboxing it. The remaining steps of
atomization are irrelevant, because XML values do not occur.
Unboxing pairs is also done for the value expression of Array Constructors and Object Construc-
tors. These do not atomize.
The content expressions of element constructors unbox Pairs and flatten arrays. (In other content
expressions, atomization is done, so explicit unboxing is not needed.)
Removed dangling references to context items in two function descriptions.
Changed erroneous KindTest to ItemType in several sentences.
Added a footnote clarifying that the identity of JSON Item is used only in PULs.
Changed name of json() to json-doc()
Changed signature of json-doc(), parse-json() to return json-item()?
Put public functions in the json namespace.
Stated that string serialization uses JSON escape conventions.
Stated that serialization of XML as string content uses serialization parameters and standard seri-
alization.

Revision 0-14 Mon Sep 19 2011 Jonathan Robie
jonathan.robie@gmail.com

JSONiq Items no longer have typed values.
Atomization is now defined only for Pairs, which are now unboxed before atomization, then treated
as any other value.
In content sequences, Pairs are unboxed, Arrays are flattened, and Objects still raise errors.
Extra-grammatical constraint added: whitespace must occur before and after a ":".
Explicitly stated that a standalone Pair raises an error when serializing.
If a Pair occurs in the value expression of a Pair Constructor, it is unboxed.
Defined the flatten() function to flatten arrays recursively.

mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com

59

Defined serialization for json:null.

Revision 0-13 Fri Sep 2 2011 Jonathan Robie
jonathan.robie@gmail.com

Refers to XQ++ and XQ-- grammars on the JSONiq site.
Tutorial is now a separate document.
Data Model appendix is now part of the main text.
Member accessors are defined independently of dynamic function invocation.
Arrays have a typed value again.
Added type hierarchy diagram.
JSON Item tests are ItemTests, no longer KindTests.
Renamed node types and item tests for consistency, changing terminology in the text to match.
Added item tests for all JSON Item types.
Added isnull() function.
Moved updates out of an appendix and into the main text.

Revision 0-12 Mon Aug 22 2011 Jonathan Robie
jonathan.robie@gmail.com

Neither Object nor Array have typed values now.
Coined the term "member accessors".
New section calls out semantics of Pair.
Filled in type signatures of functions, added size().
Added Group By queries to Sample Queries.
Moved Satellites query to Sample Queries.
General reorganization, editorial changes.

Revision 0-11 Fri Aug 12 2011 Jonathan Robie
jonathan.robie@gmail.com

Added updating functions, revised update example to use them.

Revision 0-10 Wed Aug 10 2011 Jonathan Robie
jonathan.robie@gmail.com

New representation of objects, arrays, pairs in the data model. No longer nodes or function items.
Changed representation of nulls.
Navigation primitives now return pairs, not values.

Revision 0-09 Tue Aug 9 2011 Jonathan Robie
jonathan.robie@gmail.com

Significantly changed data model. Pairs now serve as the container for values, in both Arrays and
Objects. PULs will now need to be defined for pairs, objects, or arrays, not at the level of a single
value.
Changed to new path syntax.

Revision 0-07 Fri Jul 15 2011 Jonathan Robie
jonathan.robie@gmail.com

Removed special case positional filters for arrays.

mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com

Appendix A. Revision History

60

Removed special case conversion of sequences to arrays in object values.
Removed extraneous constraint for objects in insert before / after.

Revision 0-06 Thu Jul 14 2011 Jonathan Robie
jonathan.robie@gmail.com

Added status section to emphasize that we are in very early stages.
Changed positioning in the introduction.
Added an update example.
Added an appendix listing changes needed for the XQuery Update Facility.
Added navigation primitives; defined navigation functions in terms of these primitives.

Revision 0-05 Wed Jul 06 2011 Jonathan Robie
jonathan.robie@gmail.com

Serialization now uses JSONiq values, with a type and a serialized string, for things that JSON can
not represent directly.
Changed the verb used in an example.

Revision 0-04 Tue Jul 05 2011 Jonathan Robie
jonathan.robie@gmail.com

Revised author list.
Added explicit JDM representation of nulls.
Changed definition of 'value()' - it now returns the empty sequence rather than a type error for
nodes that have no value, and the set of nodes for which it is defined has changed.
Added return type to times-ten() function, showed function call.
Removed superfluous space from svg example.
Changed definition of serialization.
Fixed stock holdings example.
Items are now copied into arrays or objects, rather than using references to nodes in existing hier-
archies.

Revision 0-03 Mon Jun 27 2011 Jonathan Robie
jonathan.robie@gmail.com

Removed references to XQ--, XQ++, which are not yet well specified.
Finished simple value nodes for XQuery atomic values.
Reworked typed value of nodes, added examples and further explanation to "Combining XML and
JSON".
General reorganization and rewriting of introduction.
Added "JSON views in middleware" example.
Added "JSON Arrays to HTML Tables" example.
Added "Transforming to SVG" example.
Added KindTests, with an example.
Added section on combining XML, JSON.
Added extended example to show ramifications of atomization.
Added superficial, hand-wavy section on serialization. Needs discussion / fleshing out.
Reorganized section on navigating JSON objects and arrays.

mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com

61

Revision 0-02 Fri Jun 24 2011 Jonathan Robie
jonathan.robie@gmail.com

Clarified datatypes used for numeric types.
Fixed typo in JSONPair grammar.
Added text and an example to clarify use of child axis for JSON Pair Nodes.
Added value() for pair nodes.
Added json() function, similar to XQuery's doc() function.
Added parse-json() function, similar to XQuery's parse-xml() function.
Started a section on combining XML and JSON. Not done yet.
Defined atomization for simple value nodes.

Revision 0-01 Thu Jun 23 2011 Jonathan Robie
jonathan.robie@gmail.com

Specified filter expressions for Array nodes.
Added XDM mapping, in an appendix.
Clarified typed-value, string-value for arrays and objects.
NameTest no longer matches Pair Nodes. The differences between JSON names and XML names
caused problems because (1) the characters allowed in a NameTest and a JSON string differ,
and (2) an unprefixed name in a Nametest is in the default namespace, all JSON strings are in no
namespace.
Array constructors now allow empty arrays; Object constructors now allow empty objects.
Made JSONPair available as a primary expression.
Added Stellarium example to introduction.
Incorporated navigation functions based on this week's feedback.

Revision 0-00 Fri Jun 17 2011 Jonathan Robie
jonathan.robie@gmail.com

Imported spec into publican.

mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com
mailto:jonathan.robie@gmail.com

62

63

Index

64

	Specification
	Table of Contents
	Chapter 1. Status
	Chapter 2. Introduction
	Chapter 3. JSONiq Data Model
	3.1. Simple Datatypes
	3.2. JSON Items
	3.3. Objects
	3.4. Arrays
	3.5. ItemTypes for JSONiq Items

	Chapter 4. Construction of JSON values
	4.1. Array Constructors
	4.2. Object Constructors
	4.3. Strings
	4.4. Numbers
	4.5. Booleans
	4.6. Null
	4.7. Boolean and null literals

	Chapter 5. Navigation in JSON content
	5.1. Object lookup
	5.2. Object key listing
	5.3. Array lookup
	5.4. Array unboxing

	Chapter 6. Builtin functions and operators
	6.1. fn:boolean (aka Effective Boolean Value)
	6.2. fn:collection
	6.3. fn:data (aka Atomization)
	6.4. fn:string (aka string value)
	6.5. fn:trace
	6.6. jn:decode-from-roundtrip
	6.7. jn:encode-for-roundtrip
	6.8. jn:json-doc
	6.9. jn:keys
	6.10. jn:members
	6.11. jn:null
	6.12. jn:parse-json
	6.13. jn:size
	6.14. Changes to cast semantics
	6.15. Changes to arithmetic operation semantics
	6.16. Changes to value comparison semantics
	6.17. Changes to general comparison semantics

	Chapter 7. JSON updates
	7.1. JSON udpate primitives
	7.2. Update syntax: new updating expressions
	7.2.1. Deleting expressions
	7.2.2. Inserting expressions
	7.2.3. Renaming expressions
	7.2.4. Replacing expressions
	7.2.5. Appending expressions

	Chapter 8. Function library
	8.1. libjn:accumulate
	8.2. libjn:descendant-arrays
	8.3. libjn:descendant-objects
	8.4. libjn:descendant-pairs
	8.5. libjn:flatten
	8.6. libjn:intersect
	8.7. libjn:project
	8.8. libjn:remove-keys
	8.9. libjn:values

	Chapter 9. Combining XML and JSON
	Chapter 10. JSON Serialization
	10.1. New serialization parameters
	10.2. Changes to sequence normalization
	10.3. The JSON output method
	10.3.1. Serialization of a sequence of items
	10.3.2. Serialization of individual JSON values
	10.3.3. Influence of other serialization parameters upon the JSON output method
	10.3.3.1. JSON output method: the indent parameter
	10.3.3.2. JSON output method: the byte-order-mark parameter
	10.3.3.3. JSON output method: the use-character-maps parameter

	10.4. The JSON-XML-hybrid output method
	10.5. Changes to ther other output methods

	Chapter 11. Error codes
	Chapter 12. Grammar Summary
	Chapter 13. Implementation in Zorba
	Appendix A. Revision History
	Index

