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Summary 

• There is a growing number of examples of power law distributions in both the 

social and biological sciences. In particular, a power law provides a reasonable 

description of the relationship between the frequency and size of the extinctions of 

biological species in the fossil record. 

• We have obtained empirical evidence that the frequency of extinction rates of 

companies – of companies ceasing to exist as independent entities - can also be 

approximated by a power law. 

• The finding is obtained both with a database of the world’s largest 100 companies 

in 1912 and their subsequent experience through to 1995, and with a database of 

some 6 million US companies of all sizes subdivided by industry and state in the 

1980s and 1990s. 

• The slope of this power law is almost identical in value to that estimated for the 

frequency of extinction rates of biological species.  

• It is not obvious that systems containing either firms or biological species have 

any similarities other than that they are complex systems made up of interacting 

agents.  

• Our findings raise the possibility that a more general mechanism of evolution and 

extinction is responsible for the extinction rates of both firms and of biological 

species. 

• Two quite distinct types of theoretical model are capable of producing results 

which are compatible with the empirical evidence on biological extinction.  An 

important distinction in the biological context is made between models in which 

extinction arises because of external environmental stress (eg: asteroid impact) 

and those in which it arises internally because of competitive interactions between 

species. 

• Economics offers no satisfactory account of why firms cease to exist, even though 

the ‘death’ rate amongst modern US firms amounts to more than 10 per cent of the 

total population each year.  

• But a distinction between external and internal causes is made more generally in 

economic theory, although the particular jargon which describes the two situations 

is 'exogenous', or outside the system, and 'endogenous', or within the system. 
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• The two types of theoretical models in the biological literature can be given 

interpretations which are entirely plausible in terms of economic theory (with 

relatively minor modifications). 

• However, we find that the ‘external shock’ model of extinction cannot both be 

given a sensible economic interpretation and at the same time generate behaviour 

which is compatible with the empirical evidence. 

• In contrast, the ‘endogenous’ model has both a plausible economic interpretation 

and can generate behaviour which is consistent with the evidence on extinctions. 

• This finding is robust with respect to a range of modifications to the model. 

• External shocks can be applied to the endogenous model, but provided the 

magnitude is not too great relative to the strength of the interactions between 

agents, the results are not affected. 

• The results therefore suggest that the extinction patterns of firms are intrinsic to 

the system, arising from the interconnections between them.  Shocks to the 

external environment may well play a role, but they are not the primary cause. 

• The endogenous model performs well and has a plausible economic interpretation.  

But it is highly simplified.  We therefore propose to investigate a number of 

extensions of the model in order to make it  more realistic. 

• In particular, the assumption that all agents are directly connected to each other is 

not realistic.  In practice, the direct connections between economic agents involve 

a degree of sparsity. 

• A scale-free network which connects agents both introduces sparsity and appears 

plausible in a model of connected firms.   

• Introducing scale-free networks into the model extends the potential range of 

applications to a wide variety of social networks which connect individuals – an 

increasing body of evidence points to the relevance of scale-free networks in 

describing connections between individuals. 

• We propose to analyse a particular example of the evolution and extinction of 

agents in a scale-free network which connects them,  namely, that of a criminal 

gang.  The overall severity of crime which emerges from the model, and the 

impact of intervention by the authorities can be examined. 

• Details of the proposed extensions are set out in Section 4. The cost is $89,350. 
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1. Introduction 
 

Economic theory contains a very large amount of material on firm behaviour, but little 

on why they might fail.  Most of  the literature available looks at why the number of 

firms in an industry might change in the face of a downturn.  The Salter [1] approach 

is still widely used, which derives a model in which failure depends on the efficiency 

of different vintages of capital. There is a widespread recognition that one reason for 

firm extinction, namely mergers, does not occur at random but in waves.  A certain 

amount of statistical time-series analysis exists on this (for example, [2]), and there is 

a large literature which discusses individual examples of merger.  But no satisfactory 

theory explaining this phenomenon exists. 

 

Corporate demographers have in recent decades carried out a substantial amount of 

empirical work on the mortality rate of firms.  The recent book by Carroll and Hannan 

[3] contains an exposition of much of this material (including the distinguished 

contributions made by the two authors), and a large number of references. 

 

This work, however, is concerned almost exclusively with the death of firms within 

individual industries, a large number of which have been considered.  In this context, 

firms are all in competition with each other to some degree.  This is reflected in the 

empirical curve fitting exercises to data which have been undertaken.  The probability 

of firm mortality is related strongly to the number of firms within the main industry in 

which the firm operates.  But the potential symbiotic influences between firms across 

industries is not really contained in this approach. 

 

An interesting perspective on the evolution and extinction of agents is provided in the 

biological literature on the frequency with which species become extinct in the fossil 

record.   Empirical analysis suggests that a power law  with an exponent of some –2 

provides a reasonable empirical description of the relationship between the frequency 

and size of species extinctions.  Several theoretical models of the evolution and 

extinction of species (‘agents’) have been constructed which are capable of generating 

a similar power law. 
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There are two main aims of this project: 

 

• to carry out empirical investigation of firm extinctions to investigate the extent 

to which the relationship between the frequency and size of firm extinctions is 

similar to that observed in the fossil record of the extinction of biological 

species 

 

• to investigate the extent to which a variety of models proposed to explain the 

extinctions of biological species can be used to give a satisfactory explanation 

of extinctions of  firms.  An important aspect of this is to consider the extent to 

which models developed in the biological context can be given sensible 

economic interpretations 

 

In addition to the specific outputs, the project therefore makes  contributions to: 

 

• theoretical and applied economics 

• complex systems theory 

 

The findings of the project are discussed in detail in six papers attached as 

Appendices (1) – (6).  The text of this report discusses the main results.  Section 2 

considers the applied analysis, and section 3 the theoretical models.  Section 4 makes 

recommendations for future work, along with provisional estimates of costs. 

 

2. Empirical findings 
 
A number of studies have examined the relationship between the frequency and size 

of biological extinctions in the fossil record, and a recent survey is given by Drossel 

in [4].  The evidence is consistent with the existence of a power law describing 

biological extinction events, with an exponent estimated to be around -2.   

 

A detailed database exists which considers the experiences of the world’s largest 100 

industrial companies in 1912 [5].  It charts their progress through to 1995, noting the 

years in which individual firms ceased to exist as independent entities. These 
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companies, by definition, were extremely large even by the standards of today.  US 

Steel, for example, employed 221,000 workers, and most of the others employed more 

than 10,000.  Yet the overall attrition rate has been rather high, with only 52 of the 

100 firms surviving in any independent form in 1995, and only 19 of them still being 

in the top 100 industrial companies. 

 

A power law of the form 

 
βα NF .=      (1) 

 

describes the data well, where F is the frequency with which the annual number of 

extinctions is observed over the 1912-1995 period, and N is the annual number of 

extinctions. 

 

A least squares1 fit of (1) to the data (for N > 0) gives estimated values  α = 18.0 and  

β = -1.76, the latter with a standard error of 0.18.  The standard error of the equation 

is 0.94.  Comparing this latter to the standard error of the data, 6.75, the equation fits 

the data well.   

 

The estimated exponent in the power law relationship is not statistically significantly 

different from –2.  In other words, the hypothesis that the power law describing the 

frequency of extinctions of biological species is the same as that describing the 

frequency of extinctions of large firms is not rejected by the data. 

 

A detailed discussion of the data, analysis and results is given in Appendix 1.  

Appendix 2 provides the evidence from a quite different data set.  This considers the 

statistical distribution which appears to characterise the demises of US firms, across 

the entire universe of such firms using a publicly available data base.  The evidence is 

consistent with the hypothesis that the data follow a power law distribution. 

 

                                                 
1 using a non-linear least squares algorithm  rather than the conventional log-log least squares fit, 
because there are no examples in the data of 5 firms becoming extinct in any single year and hence the 
dependent variable takes the value zero for this observation 
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The data we examine comes from the American Office of Advocacy.  Recorded in the 

data are the frequency of firm 'deaths' on an annual basis from 1989 through 1997 

split into nine different industrial sectors for each of the 51 states2.  This gives rise to 

459 series of 9 annual observations in 51 states, a total of 4131 observations in total.  

We describe each of these observations as a 'group'.  In other words, each group 

specifies a particular industry in a particular year in a particular state.  Individual 

experiences vary widely, but it is interesting to note that on average just over 10 per 

cent of all active US companies (i.e. companies which trade) become extinct in any 

given year.  Further, the rate of extinction is not correlated with the state of the 

business cycle.  The number of demises was virtually identical in the recession year 

1991, when real GDP fell by 0.5 per cent, and in the boom year 1997 when it grew by 

4.3 per cent.   

 

The technical details of considering how well the data fits a power law are more 

intricate than those involved in the analysis of the very large firm data set described 

above, and they are set out in Appendix 2. 

 

The evidence is consistent with the hypothesis that the data follow a power law 

distribution with exponent –2.1.  Again, this is virtually identical to that in the fossil 

record. 

 

The analysis of two completely different data sets gives the same result. Namely, that 

the hypothesis that the power law describing the frequency of extinctions of biological 

species is the same as that describing the frequency of extinctions of large firms is not 

rejected by the data. 

 

This obviously raises the possibility of the existence of a more general law of the 

frequency of extinctions in systems which evolve. 

 

                                                 
2 District of Columbia is included as a state in this data set 
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3. The theoretical models 
3.1 Overview 

 

An important distinction is made between biological models in which extinction 

arises because of environmental stress (e.g.: asteroid impact) and those in which it 

arises because of competitive interaction between species.  An identical distinction is 

made in economic theory, although the particular jargon which describes the two 

situations is 'exogenous', or outside the system, and 'endogenous', or within the 

system.  Most economic models of the business cycle, for example, assume that it 

occurs due to exogenous shocks such as the speed of technological innovation, rather 

than arising from the interactions of the agents in the economy.   

 

We consider two models from biology, each of which is a good representative of one 

of the two alternative approaches.  In terms of the extinction of firms, it seems 

plausible that a model which incorporates both exogenous and endogenous 

mechanisms of extinction will be required.  Firms are obviously endogenously 

connected to each other in terms of their commercial dealings, and there clearly have 

been some important shocks leading to extinctions which have been completely 

exogenous, such as the Russian revolution in 1917 or the nationalisation of many 

mining companies in Europe in the late 1940s.  What is not clear is the respective 

weight which needs to be given to the exogenous and endogenous mechanisms, which 

is why we select a model from each of these approaches. 

 

In each of the models, at any point in time each agent is assigned a particular level of 

fitness.  Fitness in this context is fitness for survival, and is a wider concept than, for 

example, just volume of sales or profits.  There are many examples in business history 

of very large firms with high levels of profits which have collapsed very rapidly due 

to drastic mistakes of strategy by the management.  The models evolve on a step-by-

step basis and contain rules which specify: 

 

• how the fitness levels of individual agents evolve 

• the level of fitness at which agents are deemed to become extinct 

• how agents which become extinct are replaced 
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3.2 The exogenous shock model 

 

In this model, originally proposed by Newman [6], the agents are not connected in 

any way.  Extinction arises solely because of changes in the external environment. 

This general principle of the model is certainly compatible with economic thinking, 

given that, as noted above, external shocks play an important role in conventional 

economic theory.   

 

The detailed results of our analysis of this model are contained in Appendix 3.  

Appendix 4 reports the effects of extending the model to allow for two potential types 

of connection between the agents. First, the extinction of any given agent leads to 

those agents which are directly connected to it also becoming extinct with a given 

probability, which is a parameter of the model.  Second, the extinction of any given 

agents leads to those agents which are directly connected to it each having their 

fitness levels re-drawn at random. 

 

In the basic Newman model, each agent has a stress tolerance level, which evolves at 

random.  There is a level of external stress which also evolves at random.  When the 

stress tolerance of an agent falls below the level of external stress in any period, the 

agent becomes extinct.  A rule specifies how extinct agents are replaced. 

 

The random evolution of the stress tolerance levels of agents can be reconciled with 

economic theory in a natural way.  In an economic context, this can be thought of as a 

firm updating its strategy by a process of trial and error. This process is completely 

compatible with the conventional rationalisation of the maximisation hypothesis in 

orthodox economic theory.  Agents are assumed on the one hand to maximise their 

individual utilities, yet on the other it is recognised that under conditions of 

uncertainty it is impossible for individual agents to follow maximising behaviour, 

because no one knows with certainty the outcome of a decision.  The two views are 

reconciled, and maximisation is nevertheless deemed to occur, because it is argued 

that competition dictates that the more efficient firm will survive and the inefficient 

ones perish (the classic statement of this is Alchian [7]). 
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In a biological context, when the model  is populated by a very large number of 

agents  it is able to generate a pattern of extinctions in which the relationship between 

the frequency and size of extinctions follows a power law with exponent of around –

2.  This result appears to hold across a variety of adaptations of the basic model. 

 

We consider populating the model in an economic context by small numbers of agents 

(less than 1,000), which we can think of as representing the largest firms in an 

economy.  Very large firms are of great importance not just in terms of the domestic 

economy, but also in terms of the ability of an economy to compete successfully in 

international markets.   

 

In these conditions, a power law of extinctions with an exponent of around –2 can be 

generated, but it is not a particularly good fit to the data.  In other words, the model is 

not necessarily applicable in all economic contexts. 

 

More importantly, there is a parameter in the model which determines the proportion 

of agents whose stress tolerance – whose strategies in other words – are updated in 

any given step of a solution of the model over time.  In a biological context, a time-

scale of agent evolution which is slow relative to the frequency with which changes to 

the external environment occur makes sense, and this assumption is used in the results 

reported by Newman and his colleagues. 

 

However, this assumption is much less plausible in an economic context.  Agents - 

firms - can react very quickly to external events.  The impact of their reactions may be 

highly uncertain, and there may be unintended and unforeseen consequences of 

actions which leave an agent worse off than if it had not reacted.  But the point here is 

that agents are able to react quickly.  The reactions of firms to the attack on 11 

September illustrates this point clearly.  No-one knew with any degree of certainty 

what the economic consequences would be.  The one thing which companies did 

know for certain is that the external environment had altered, and they revised their 

plans, taking what seemed to them the best actions in the circumstances. 
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Once agents are allowed to react quickly to changes in the external environment, the 

resulting relationship between the frequency and size of extinctions can no longer 

really be said to follow a power law. 

 

This result continues to hold under the various extensions to the model which we 

report in Appendix 4. 

 

In other words, the rules within the exogenous shock model of agent extinction can in 

general be given plausible economic interpretations.  However, when the realistic 

assumption is made that agents can react quickly to external events, we conclude that 

the model of agent extinction in which extinction arises solely from external shocks 

does not provide a particularly good description of reality in an economic context. 

 

3.3 The endogenous extinction model 

 

This model is based upon the model built to account for biological extinctions by Sole 

and Manrubia [8].  This model is essentially based upon the interactions of agents.  

The model contains N agents, and a matrix of couplings Jij that indicates how each 

agent affects every other agent.  A negative Jij indicates that agents i and j are in 

competition, or that agent j feeds on agent i.  A positive Jij shows either that agent i 

feeds on j, or that they are in symbiosis.   If both Jij and Jji are positive, for example, 

the two agents are in symbiosis. 

 

The interpretation of competition or symbiosis has an inherent plausibility in terms of 

companies.  Certain companies do compete directly, and the growth of one is at the 

expense of the other.  Ford and General Motors is an obvious example.  However, in 

many cases the growth of one company enables others to prosper.  If General Motors 

grows, there will be more opportunities for its suppliers, from raw materials to 

accountants and consultants.  An analogous agent-based model for the overall growth 

of market economies is described in non-technical terms in Ormerod [9]. 

 

The model specifies rules for how the J matrix is updated, how species are deemed to 

become extinct, and how these latter are replaced. 
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Again, as with the Newman model, the updating of the fitness of agents – expressed 

in this model by the Jij matrix, is random.  And, again, this is perfectly compatible 

with the economic concept of agents maximising under uncertainty, as discussed in 

section 3.2 above. 

 

Overall, it is possible to place a plausible economic interpretation in the rules of this 

model, though the rule in the original model which specifies how extinct agents are 

replaced needs to be modified in order to give it the required plausibility. 

 

With this model, even when populated by a small number of agents, a power law with 

exponent of around –2 gives a good description of the results.  This conclusion is 

robust with respect to a variety of reasonable assumptions regarding the rules of the 

model, and in particular the rule which updates the fitness of individual agents.  The 

results are discussed in detail in Appendix 5. 

 

Further, the same result also obtains when we subject the model to external, 

exogenous shocks, which can be either specific to individual agents or common 

across all agents.  Of course, the stronger  the sizes of the shocks are compared to the 

strength of the connections between agents, the more the model becomes like the 

purely external shock model described in section 3.2.  But even for fairly large 

shocks, the extinction patterns in the model remain well approximated by a power law 

with exponent of –2.  The detailed results on this are set out in Appendix 6. 

 

A way of thinking about this key result is as follows.  External shocks themselves can 

give rise to power law behaviour of a system compatible with the empirical evidence.  

But a necessary condition for this to hold is that the internal structure which connects 

agents, and across which shocks are propagated, itself generates appropriate power 

law behaviour. 

 

The results therefore suggest that the extinction patterns of firms are intrinsic to the 

system, arising from the interconnections between them.  Shocks to the external 

environment may well play a role, but they are not the primary cause. 
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4. Future work 
4.1 Towards a deeper understanding of agent-based evolution and extinction: 

extensions of the present modelling approach 

 

The conclusion of the above is that the extinction patterns amongst economic agents 

are intrinsic to the system, arising from the interconnections between them.  The 

extension of our analysis will therefore be based upon the endogenous extinction 

model. 

 

There are essentially two components to this work to extend the model: 

 

• we propose to extend the model by making it even more realistic in an 

economic context, and to see if the desired properties still hold.  A particular 

way of doing this will enable the model to be used to illuminate evolution and 

extinction more generally  in a wide variety of social networks which connect 

individuals 

• we propose to understand more about what might be termed the ‘policy 

properties’ of this kind of model 

 

As noted above, the model has a plausible and realistic interpretation.  All models are 

approximations to reality, and substantial simplifications and abstractions need to be 

made.   

 

In discussions with economists and complex systems theorists, however, the single 

point which is made most frequently about the model is that in reality firms are not on 

a completely connected network.  A degree of sparsity needs to be introduced to the 

connection matrix, to allow for the fact that the strategy of agent k does not 

necessarily have a direct impact on the fitness of agent j.  Of course, an indirect 

connection may very well exist.  The actions of agent k may impact directly agent i, 

which in turn affects agent j. 

 

We therefore propose to introduce various degrees of sparsity into the connection 

matrix, and to investigate to what extent the results are robust to this. 
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In this context, extending the model by connecting agents by a scale-free connection 

matrix can be thought of as an important special case of the more general principle of 

sparsity in the connection matrix.  The agents in a scale-free network are not 

completely connected to each other, but are connected in a particular way. 

 

Given the increasing evidence that social networks between individuals of various 

kinds3 can be approximated by a scale-free network, developing the model with a 

scale-free network of connections is important in its own right.   

 

This may enable us to extend the application of the model more generally to 

illuminate evolution and extinction in a wide variety of networks between individuals. 

 

 There is a second extension to the model which both increases the realism of its 

assumptions in an economic context, and may also make it more generally applicable 

in the context of networks of connections between individuals.  In the current version 

of the model, the number of connections for any given agent remains fixed throughout 

the lifetime of the agent.  We will allow the number of connections to grow with the 

lifetime of the agent.  The economic interpretation in this context is that the longer a 

firm survives, the greater the probability that its size increases, and therefore the more 

agents with which it becomes connected. 

 

The final extension is to investigate the impact of intent on the part of agents.  Agents 

may not, under uncertainty, necessarily understand the consequences of their actions.  

But they may be able to estimate which of the existing agents at any point in time 

have the highest levels of fitness.  New entrants in particular may therefore model 

themselves on this particular set of agents, rather than on a surviving agent chosen at 

random.  We will investigate the effect on the model of allowing agents a degree of 

intent. 

 

Some properties of the model related to potential policy considerations which  we 

propose to examine are: 

 

                                                 
3 evidence is published regarding, for example, the Internet and connections between sexual partners 
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• the influence of diversity on the overall fitness of the system 

• to investigate quite generally whether any characteristics of the system can be 

identified which signal, however imperfectly, that a large extinction is 

imminent 

 

The degree of diversity of the system can be thought of as a measure of the extent to 

which agents differ from each other.  Diversity in evolving systems may be an 

important contributory factor to the success or otherwise of the system as a whole. 

 

Each agent in the system at any point in time is characterised by two vectors – one 

which describes the impact of the agent on all other agents, and one which describes 

the impact of all other agents on itself.  Distance metrics for the system as a whole 

will be calculated, and compared to the fitness of the system. 

 

We will also reduce the level of diversity by modifying update/entrant rules and 

observing the impact on the fitness of the system.  

 

With the second area of investigation, we propose to investigate whether any 

characteristics of the system can be identified which signal, however imperfectly, that 

a large extinction is imminent.  It is possible that this may not generate any positive 

results, but it is important to examine this issue.  

 

4.2 A particular extension of the model to the evolution and extinction of 

individual agents connected on a scale-free network 

 

We propose to develop, building on the model extensions described above, a model of 

the evolution over time of the overall level of activity carried out by a network of 

individuals rather than firms.  We have in mind networks in which the influence of an 

individual agent on another is often a key influence on the behaviour of that 

individual.  A criminal gang is an obvious example, and we illustrate the proposed 

model with this in mind. 
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The main focus will be to get a better understanding of the impact of intervention in 

the system by the authorities.  With  a criminal gang, obvious examples are both the 

efficiency of and the sentencing policy of the criminal justice system, and the impact 

of prison on agents. 

 

The Volterra team has experience of innovative modelling of crime.  For example, in 

2001 we carried out a substantial study for the UK government on ‘Non-linear 

modelling of burglary and violent crime’.  We set up systems of non-linear 

differential equations to describe the evolution and spread of crime4.  Both non-linear 

differential equation systems and graph theoretic techniques (networks) are used more 

generally in understanding the spread of epidemics, in how ideas (such as cultural 

norms) or fashions diffuse through a system of connected agents.   

 

Recently,  a number of papers have examined the diffusion and control of viruses on 

scale-free networks. (e.g. Dezso and Barabasi [10]).  However, the approach has not 

been applied to crime.  Further, a number of important modifications are required in 

order to capture realistic features of such networks. 

 

The approach may require modification as it is implemented.  For example, analysis 

of scale-free networks described in section 4.1 above may inspire improvements.  But 

the outline of our thinking on the model at present is as follows. 

 

An important factor in the decision of an individual agent to become involved in 

crime is peer influence and pressure.  A small number of individuals exercise 

influence over a large number of others, but most influence only a few. We can 

therefore think of a criminal network, or gang, as being approximated by a scale-free 

network.  The network is a directed one.  In other words, the fact that agent k 

influences the behaviour of agent j does not necessarily imply that j influences k. 

 

We postulate that the number of crimes committed by the kth agent varies  positively 

in proportion to the total number of connections of the agents which influence k.  As a 

                                                 
4 The study is being published by the British Home Office in the autumn of 2002. 
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practical illustration: a small group of youths who hang around with each other but 

who have no real connections to the major criminals of their area will commit 

relatively few crimes.  But once such a connection is established, the probability that 

they will commit considerably more rises sharply.  A big-time criminal exercises 

more influence over a given agent than a small-time one. 

 

In fact, it is more useful to think not of the absolute number of crimes, but of an index 

of severity.  A gang leader may influence a relatively new recruit to commit murder, 

for example.  This would constitute just one crime, but its severity is obviously high.  

It is not necessary in the model to specify the mapping between the type of crime and 

the degree of severity – in any event, there is an inevitable degree of personal 

judgement involved in any such mapping.   

 

But the key point remains:  the position of an individual on the scale of severity of 

crimes he commits varies positively in proportion to the total number of connections 

of the agents which influence him.  Any particular position on the scale could 

correspond to a small number of serious crimes, or a much larger number of less 

serious ones. 

 

Agents in this network evolve in two ways: 

 

• agents become extinct i.e. they give up crime.  Empirically, the probability of 

this rises with age 

• the longer they have been part of the criminal network, the more influence 

agents in general have over other agents 

 

When an agent becomes extinct, it is replaced by one which has, initially, a low 

number of connections. 

 

The exogenous policy variable in the model is prison, which removes the agent from 

the network.  The impact can be introduced in several ways: 

 

• an agent is chosen at random to be sent to prison 
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• the probability of being chosen varies positively with the number of crimes 

committed 

• the probability varies inversely to the number of crimes committed (criminals 

become more skilled at covering themselves, can exercise much more 

intimidation etc.) 

 

An agent can be removed either permanently (e.g. death penalty or very long 

sentence) or temporarily.  If the removal is temporary, after a fixed period the agent 

can either decide to become extinct (give up crime) or return to the system.   

 

An important feature of the model is that when an agent returns, its influence in the 

network is increased.  This is a well known effect of prison: some are deterred by the 

experience, but others simply gain more contacts and knowledge.  An important part 

of the exercise is to examine the sensitivity of the overall crime rate to assumptions on 

how much a re-entering agent increases its influence by the experience of prison. 

 

The total amount of crime (measured on the scale of severity) which emerges from the 

system will be monitored.  The impact of different types of intervention by the 

authorities, under a range of assumptions, will be examined.  For example, it may be 

very difficult to remove agents who influence large numbers of agents, for they 

themselves may commit few crimes.  It will usually be much easier to remove less 

influential agents.  But if a proportion of these return to the system with a higher level 

of influence than before, the overall severity of crime committed may rise.  It is such 

issues which will be examined. 

 

4.3 Deliverables 

 

In the existing project, we have delivered: 

 

• a series of working papers describing aspects of the project in detail 

•  interim reports on progress 

• a final report summarising the key findings, and containing detailed 

appendices on the work carried out 
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We propose to adopt the same approach in the extensions to the project. 
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Abstract 
 

We analyse in this paper information on the evolution of the largest firms which 

existed in the opening decades of the 20th century. 

 

We show that the relationship between the frequency and size of the extinctions is 

approximated well by a power law relationship.  Further, the intervals of time 

between extinction events can also be described by such a relationship. 

 

Analysis of the most informative data set available suggests that the exponent of the 

fitted power law is very similar to that reported in the literature on the extinction of 

biological species in the fossil record. 
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1. Introduction 
 
At the turn of the nineteenth century, large corporations were being built on an 

unprecedented scale, mainly due to a massive wave of mergers and acquisitions.  

Hannah (1999) notes how this altered the judgement of Marshall, the leading 

economist of his day, on the life spans of corporations.  In the first edition of his 

Principles of Economics, published in 1890, Marshall suggested that, like trees in the 

forest, there would be large and small firms, but 'sooner or later age tells on them all'.   

 

As Hannah notes, Marshall was an acute observer of the contemporary economy in 

the UK, Germany and the US, and by the sixth edition of his book published in 1910, 

his views had changed.  Marshall then held the opinion that 'vast joint stock 

companies ... often stagnate but do not readily die'.  Much more recent work by 

business historians (e.g. Chandler (1990)) has generally been supportive of Marshall's 

latter view. By the start of the twentieth century, an entirely new phenomenon of the 

firm with global reach had been created, and these firms in general still dominate 

markets. 

 

Hannah constructed a data set of the 100 largest industrial companies in the world in 

1912.  These are firms which had survived the merger boom at the turn of the century, 

and were large even by the standards of today.  US Steel employed 221,000 workers, 

and most of the others employed more than 10,000. 

 

By 1995, only 52 of these firms survived in any independent form.  Nineteen of the 

survivors remained in the top 100 industrial companies in 1995, but 24 of them were 

smaller than they were in 1912.  Hannah argues that this evidence suggests that, on 

balance, Marshall's earlier view is more consistent with the evidence than his later 

one.  Very large firms do in fact die.  Further, only a distinct minority retained their 

position in the top 100 companies. 

 

The purpose of this paper is to examine the evidence on firm extinction for the 

existence of any particular patterns.  There is a growing literature on extinction 

patterns in the fossil record of biological species (see Drossel (2001) for a detailed 

survey). An important aspect of this is the relationship between the number of species 
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which become extinct in an given year, and the frequency with which the different 

numbers are observed.  Section 2 carries out this analysis.   

 

A further point of interest is the distribution of the timing of extinction events.  In 

particular, we examine the distribution of the gaps between extinction events in the 

firm data set.  In other words, the distribution of the successive number of years in 

which no extinction is observed.  This is examined in section 3.  Section 4 provides a 

brief conclusion. 

 

2. Frequency and size of firm extinctions 

 

The standard approach in the analysis of the extinction patterns of biological species 

(Drossel op.cit.) is to fit a relationship between the number of agents which become 

extinct in any given year, and the frequency with which these are observed..  In other 

words, no attempt is made to replicate the actual time-series observed for extinctions.  

Instead, the focus is on the properties of the underlying distribution which could give 

rise to the historical realisation which is actually observed. 

 

Figure 1 plots the frequency of annual rates of extinction, which varies substantially.  

In most years, no single giant firm became extinct, but four firms became extinct in 

the year 1919, and no fewer than six in 1968. 
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A power law of the form 

 
βα NF .=      (1) 

 

describes the data well, where F is the frequency with which the annual number of 

extinctions is observed over the 1912-1995 period, and N is the annual number of 

extinctions. 

 

A least squares5 fit of (1) to the data (for N > 0) gives estimated values of α of 18.0 

and of β of -1.76, the latter with a standard error of 0.18.  The standard error of the 

equation is 0.94.  Comparing this latter to the standard error of the data, 6.75, the 

equation fits the data well.   

 

                                                 
5 using a non-linear least squares algorithm in S-Plus rather than the conventional log-log least squares 
fit, because there are no examples in the data of 5 firms becoming extinct in any single year and hence 
the dependent variable takes the value zero for this observation 
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The actual values and those fitted by (1) are set out in Table 1.  For comparison, the 

fitted values of an exponential relationship of the form F  = α exp( β(N-1)) are also 

shown.  This alternative form is frequently used for comparison with a power law in 

the biological literature. 

 

 

Table 1. Frequency of annual extinction rates: Actual and fitted6  

 

Number of extinctions 

 

    1 2 3 4 5 6 

 

Frequency  

 

Actual    18 5 4 1 0 1 

 

Power law fit   18.0 5.3 2.6 1.6 1.1 0.8 

 

Exponential fit   17.8 6.3 2.3 0.8 0.3 0.1 

 

Just as in the description of biological extinctions (Drossel, op.cit.), the shortage of 

data points means that we cannot be too dogmatic about the precise nature of the 

functional form. However, a power law relationship in this case provides a better 

description of the data than does an exponential distribution. 

 

The evidence for biological extinctions suggests, intriguingly, that a power law with 

an exponent of -2 provides a good description of the data.  This is very close to the -

1.76 fitted with the large firm data set. 

 

An important implication of this kind of relationship between frequency and size of 

extinctions is that extinctions on any scale can happen at any time.  The probability of 

a very large extinction is very small, but it is greater than zero. 

                                                 
6 the fitted values are rounded to 1 decimal place 
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A further data set is given by Fligstein (1990).  This reports the membership of the 

100 largest firms in the US, selected on the basis of asset size, at the end of each 

decade from 1919 through 1979.  Altogether, 216 firms appear in the data set.  

Fligstein reports whether a firm was in the top 100, and does not give information on 

whether a firm ceased to exist as an independent entity.  Exact years of entry and exit 

from the top 100 are not reported, but the status of each firm at the end of each 

decade.   

 

There is one direct comparison which can, however, be made between the Fligstein 

and Hannah data sets. In the Fligstein US data, only 34 out of the top 100 in 1919 

survived in the top 100 in 1979.  Hannah's data set is the world top 100 in 1912, and 

by 1995 19 were still in the world's top 100 industrial companies.  So the 'extinction' 

rate defined as exit from the top 100 is very similar in the two data sets.  In Fligstein, 

66 of the original top 100 in 1919 dropped out by 1979, and 81 of Hannah's 1912 

firms dropped out by 1995.   The annual average 'loss rate' from the top 100 is 

therefore very similar:  1.10 in Fligstein and 0.98 in Hannah.  Of course, there is 

overlap between the data sets, with 42 of Hannah's 1912 companies being in the 1919 

Fligstein data, but it is far from being complete. 

 

Given that 'extinction' in the Fligstein data is defined as being exit from the top 100 

and that this data is aggregated over time into periods of a decade, a direct comparison 

with the results from Hannah is not possible.  However, a power law between 

frequency and size of 'extinction events' also fits the Fligstein data extremely well. 

Comparing 1919 and 1929, 31 firms exited from the US top 100, the largest number 

in any decade 1919-79.  The lowest observed number of exits was 14 in the 1939-49 

period.  Fitting a least squares regression between the number of firms exiting in any 

given decade, and the overall rank of that number7, the estimated value of the 

exponent of the power law is  

-0.397 with a standard error of 0.054.  The fitted values, rounded to the nearest whole 

number, are very similar to those of the actual data. 

 
                                                 
7 In other words, the highest number of exits (31 during 1919-29) is given rank of 1, through to the 
lowest (1939-49) which is ranked 6. 
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To emphasise again, the Fligstein data set cannot be compared directly with the 

Hannah one for a number of reasons, but power laws give good descriptions of both 

data sets. 

 

3. The distribution of the periods of years between extinction events 

 

Figure 2 plots the information in the Hannah data set relating to the number of years 

between an extinction of at least one of the top 100 industrial firms in 1912.  The most 

frequent observation  is one year, which means that in this case extinctions took place 

in successive years, as for example in 1931 and 1932 and 1968 and 1969. 
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A power law provides a reasonable fit to the data and, again, this is somewhat better 

than that given by an exponential distribution.  The estimated exponent in the power 

law least squares fit is -1.18 with a standard error of 0.22.  The overall fit, however, is 

not quite as good as that of the frequency data reported in section 2.   Table 2 shows 

the actual and fitted values. 
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Table 2. Number of years between extinction events: Actual and fitted  

 

Number of years 

    1 2 3 4 5 6 7 8 

 

Frequency  

 

Actual    13 6 3 1 1 3 2 1 

 

Power law fit   12.0 5.3 3.3 2.3 1.8 1.5 1.2 1.0 

 

Exponential fit   12.7 6.5 3.3 1.7 0.9 0.5 0.2 0.1 

 
 
4. Conclusion 
 
In this paper, we have examined patterns of extinction amongst capitalism's largest 

companies.  The main focus of the analysis is a data set constructed by Hannah (1999) 

of the top 100 industrial companies in the world in 1912, which provides information 

on the year in which individual members of this group ceased to exist as independent 

entities over the 1912-95 period.  A related data set is provided by Fligstein (1990) of 

the top 100 US companies 1919-79.  For a variety of reasons the analyses of the two 

data sets are not in general comparable in a quantitative sense, but qualitatively the 

results using the two sets are very similar. 

 

We find that power law relationships offer good descriptions of the extinction patterns 

of very large companies.  In particular, the frequency with which a given number of 

extinctions in any time period is observed depends upon the inverse of the number 

raised to a power of itself.  This is identical to the empirical relationships which have 

been used to describe the relationship between the frequency and size of extinctions of 

biological species.  In addition, the distribution of the number of years between years 

in which extinctions occur also follows a power law. 
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Power law relationships imply that events on any scale can occur at any time.  The 

probability of a large extinction happening in any particular period is much less than 

that of a small one, but such events are an intrinsic part of the survival/extinction 

patterns of very large firms. 
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Abstract 
 
Both theoretical and applied economics have a great deal to say about many aspects 
of the firm, but the literature on the extinctions, or demises, of firms  is very sparse.  
We use a publicly available data base covering some 6 million firms in the US and 
show that the underlying statistical distribution which characterises the frequency of 
firm demises - the disappearances of firms as autonomous entities - is closely 
approximated by a power law.  The exponent of the power law is, intriguingly, close 
to that reported in the literature on the extinction of biological species.  
 
 
The purpose of this paper is to provide empirical evidence on the statistical 

distribution which appears to characterise the demises of US firms, across the entire 

universe of such firms using a publicly available data base.  The evidence is consistent 

with the hypothesis that the data follow a power law distribution. The observation of 

power-law distributions (fractal behaviour) in a system's macroscopically observable 

quantities is a characteristic property of many-body systems representing the effects 

of complex interactions amongst the constituents of the system. Recent evidence that 

related aspects of economic activity are consistent with power distributions at the 

aggregate level is given, for example, by [1] on the growth of firms, [2] on the sizes of 

firms and [3] on the duration of recessions in the Western market economies. 

                                                 
8 we are grateful to the Institute for Complex Additive Systems Analysis of the New Mexico Institute 
of Mining and Technology for financial support towards this research 
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Economic theory has a great deal to say about many aspects of the firm. Empirical 

studies of firm growth and size have emphasised the importance of stochastic 

influences, from the initial work of Gibrat [4] through classic papers in the 1950s and 

1960s [for example 5,6], to more recent contributions such as [1, 2].  However, the 

literature on demises of firms is surprisingly sparse.   

 

The disappearance of a firm as an autonomous entity - its demise - can take place for a 

variety of reasons, such as merger, take over and bankruptcy. The proximate reasons 

for demises over the 1912-95 period amongst the 100 largest industrial companies in 

the world in 1912 are given in [7], and similar evidence over the 1919-79 period of 

the 100 largest companies in the US on a decade by decade basis is provided by [8].  

Very small firms constitute the overwhelming majority of incorporated businesses in 

terms of numbers, many of which are controlled by a single shareholder.  Here, the 

reasons for a firm ceasing to exist can be even more diverse.   In addition to 

bankruptcy, the owner may, for example, close a firm down simply because he or she 

has decided to focus attention on a different area of business. A small number of 

empirical studies which relate firm demises within individual industries to factors 

such as the number of firms in an industry at the time the firm enters are cited in [9], 

but no general analysis of demises appears to be available. 

 

The data we examine comes from the American Office of Advocacy.  Recorded in the 

data are the frequency of firm 'deaths' on an annual basis from 1989 through 1997 

split into nine different industrial sectors for each of the 51 states9.  This gives rise to 

459 series of 9 annual observations in 51 states, a total of 4131 observations in total.  

We describe each of these observations as a 'group'.  In other words, each group 

specifies a particular industry in a particular year in a particular state. 

 

Data is also provided on the total number of firms for each of the 4131 groups. The 

number varies enormously, with the smallest being mining in Hawaii in 1997, with 

just six firms.  The largest is service sector firms in California, with 265,710, also in 

1997.  To avoid any potential problems which might arise from the very small size of 

                                                 
9 District of Columbia is included as a state in this data set 
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some groups, we exclude from the analysis any group which has in total less than 200 

firms.  This leaves out 221 observations, just over 5 per cent of the total, leaving a 

sample of 3910 observations to be analysed. 

 

The average total number of firms across the United States over this period was 5.73 

million, of which on average 611,000 died each year.  The total number of firm 

demises varied very little from year to year, the maximum being 664,000 in 1996 and 

the minimum 577,000 in 1994.  The number of demises bears little connection with 

the overall state of the economy.  In the recession year 1991, for example, real GDP 

fell by 0.5 per cent and in the boom year 1997 it grew by 4.3 per cent.  Yet the 

number of demises was very similar in both years, being 630,000 and 648,000 

respectively.  

 

The natural focus of analysis across the different groups is not, however, the total 

number of demises in each group but demises as a proportion of the total number of 

firms in each group. This eliminates the expected linearity between number of 

demises and group size, the correlation between the proportion of firms disappearing 

and the size of the group being only -0.02.  Figure 1 plots the histogram of 'death' 

proportions. 
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Figure 1:  Histogram of firm demises as a proportion of the total number of firms in 

the group.  The group is defined by year, industry and state.  Groups with less than 

200 firms in total are omitted. 

 

At first sight, the data appears to be approximated closely by the lognormal 

distribution.  The null hypothesis of lognormality is only rejected at p = 0.0009 using 

the Kolmogorov-Smirnov test. 

 

However, this could be distinctly misleading.  Each observation on the number of 

demises relates to the total number over the course of a year in any particular group.  

In other words, it is a temporal aggregation across a year of the demises which take 

place in any given category on each working day, approximately 250 per year.   

 

The distribution we observe from the annual data is not necessarily that which gives 

rise to the data as it is actually generated on a daily basis. If day-to-day 

disappearances of firms are independent and identically distributed, we can treat each 

annual observation, Ai, as being the sum of N independent random variables.  By the 

Central Limit Theorem, sums of iid variables of finite variance will converge towards 
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the Gaussian distribution as N increases.  But the actually observed annual data is 

very definitely non-Gaussian (the null hypothesis of normality is rejected on a 

Kolmogorov-Smirnov test at p = 0.0000). 

   

Indirect evidence on the independence of the daily events whose sum makes up the 

annual observations is available from the time-dependency of the annual data.  The 

correlation between the current year's proportion of demises and the previous years is 

0.530 for the aggregate data - for the total number of demises divided by the total 

number of firms.  However, this falls to an average of 0.265 across the 9 industries 

across time, and to an average of 0.161 across the 451 separate time-series for each 

industry in each state.  In other words, the correlation over time between observations 

falls as the level of disaggregation of the data increases.  This implies that the 

assumption that the daily observations - when the data is temporally disaggregated -  

of firm demises are independent is not an unreasonable one to make.  

 

The assumption that the daily observations are identically distributed need not hold 

exactly for the Central Limit Theorem to be applicable.  Rather, the variance of any 

separate distributions which exist must have variances which are not too dissimilar, so 

that no single variance dominates over all the others [10].  Given that the proportions 

of demises is in [0,1], again this does not seem an unreasonable assumption.   

 

Only when the data is restricted to a sub-set of only 221 observations immediately 

around the mean, just over 5 per cent of the total, is normality not rejected at the 

conventional level of p = 0.05.  In other words, the actual distribution of firm 'deaths' 

which we observe with data aggregated over a year converges only very slowly to a 

Gaussian.  Each observation consists of the sum of some 250 daily events, yet despite 

this only a small fraction of the data is well described by the Gaussian distribution.  

The sum of independently, identically distributed random variables is known to 

converge only very slowly to a Gaussian when the underlying distribution follows a 

power law10 [10].  We therefore postulate that the underlying distribution follows a 

truncated power law of the form: 

 
                                                 
10 when the variance is finite.  With a power law with infinite variance, the convergence is to the more 
general class of Levy distributions, of which the Gaussian is a special case 
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In this form, the distribution is dependent on two parameters, r and m.  The rate at 

which the distribution falls is described by the parameter r, tailing off faster as r 

increases.  The maximum value the distribution can take is given by m.  We introduce 

m because allowing limitless demises per time period does not model a possible real 

life scenario. The generated data was scaled to the range of proportions observed.   

 

We experimented with a range of values for m and  r (for r > 2).   The maximum 

annual number of demises observed in any group in the data was 30,366, a daily 

average rate of some 121, though for 99 per cent of the groups the implied daily 

average is less than 50.  We examined the outcome with m chosen over the range 10 

to 500.  In each case, we drew 250 values, and summed them, and repeated the 

procedure 3,910 times, to obtain a series the same length as the number of 

observations in the actual data set examined.  The best fit to the actual data was 

obtained with m = 230 and r = 2.1.  The correlation between the (sorted) artificially-

generated data set and the actual data is 0.995, and the null hypothesis that the two 

distributions are the same is only rejected on a Kolmogorov-Smirnov test at p = 0.115.   

 

In terms of robustness of the results, the null hypothesis that the two distributions are 

the same is not rejected on a Kolmogorov-Smirnov test at the standard level of 

significance of p = 0.05 for values of m between 120 and 310.  Interestingly, the 

literature on the extinction rates of biological species reports that the frequency/size 

relationship can also be approximated by a power law with an exponent close to 2 in 

absolute value [for example, 11]. 

 

The two sorted sets of data are plotted in Figure 2.  
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Figure 2 Data generated from the truncated power law (1) with m = 230 and r 

= 2.1 plotted against the actual data, both data sets being sorted by size.  Each 

observation of the generated data is the sum of  250 observations drawn from (1). 

 

We notice small deviations from the true distribution in the lower and upper tails.  It is 

likely that the swing at the lower end is due to the small group size association still 

remaining.  

 

In summary, the underlying statistical distribution which characterises the frequency 

of firm demises -the disappearance of a firm as an autonomous entity- in the United 

States is approximated well by a power law.  The exponent of the power law is, 

intriguingly, close to that reported in the literature on the extinction of biological 

species 
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Abstract 
 

The empirical relationship between the frequency and size of extinctions of 

capitalism's largest firms is described well by a power law.  This power law is very 

similar to that which describes the extinctions of biological species. 

 

We consider a model of the evolution and extinction of agents from the biological 

literature in which extinction arises solely because of changes in the external 

environment.  The agents in the model are not connected in any way. 

 

Each agent has a stress tolerance level, which evolves at random.  There is a level of 

external stress which also evolves at random.  When the stress tolerance of an agent 

falls below the level of external stress in any period, the agent becomes extinct.  A 

rule specifies how extinct agents are replaced. 

 

We examine the properties of the model when it is populated by small numbers of 

agents.  The sensitivity of the properties are examined with respect to the rule by 

which the stress tolerance of agents is updated, and to the distribution and its 

parameters from which the external stress variable is drawn. 

 

In general, the model does not give a particularly good description of the observed 

relationship between the frequency and size of extinction of firms. A good description 

can be obtained if we assume that each agent updates its stress tolerance level very 

infrequently,  but this assumption is not plausible in an economic context.  A very 

close approximation to a power law can also be obtained when agents update 

tolerance levels by small amounts each period and the level of external stress is very 

low, but the exponent on the power law differs from that which is observed. 

 

We conclude that for small numbers of agents, a model in which extinction of 

autonomous, unconnected agents takes place solely through changes in the external 

environment does not offer a very satisfactory account of firm extinction. 
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1. Introduction 

 

The observation of power-law distributions (fractal behaviour) in a system's 

macroscopically observable quantities is a characteristic property of many-body 

systems representing the effects of complex interactions amongst the constituents of 

the system.  It is a property which emerges at the level of the system as a whole from 

the interactions of the individual agents which comprise the system.  Power law 

distributions are both self-similar and scale free, demonstrating that events may occur 

on all length and time scales. 

 

The economy is being analysed increasingly from the perspective of complex systems 

theory (for example, [1]).  Evidence is growing for the existence of power-law 

distributions in aggregate economic behaviour  (for example, [2-4]). An analysis of 

the extinction rates of the world's 100 largest industrial companies in 1912 over the 

period from 1912 to 1995 shows that a power law with an estimated exponent of close 

to -2 gives a good empirical description of the data [5].   

 
The size distribution of extinction events amongst biological species can also be 

described by a power law with an exponent of around -2 [6-8]. A number of models 

based upon the principle of self-organised criticality of a system arising from 

interactions between agents have been developed to account for this empirical power 

law relationship (for example, [9-11], with a recent survey given by [12] ). 

 
In economic theory, an important distinction is made between models in which 

changes occur because of events which are external to the system - 'exogenous' in the 

jargon of economics - and those in which changes take place because of interactions 

within the system itself - 'endogenous'. An identical distinction is made between 

biological models of extinction, in which extinction arises because of environmental 

stress (eg: asteroid impact) and those in which it arises because of competitive 

interaction between species, with examples of these being given by [11] and [9] 

respectively. 
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In terms of the extinction of firms, it seems plausible that a model which incorporates 

both exogenous and endogenous mechanisms of extinction will be required.  Firms 

are obviously endogenously connected to each other in terms of their commercial 

dealings, and there clearly have been some important shocks leading to extinctions 

which have been completely exogenous, such as the Russian revolution in 1917 or the 

nationalisation of many mining companies in Europe in the late 1940s.  What is not 

clear is the respective weight which needs to be given to the exogenous and 

endogenous mechanisms. 

 

In [13], we analyse and adapt the model set out in [9] to examine the extinction 

patterns of firms from the perspective of a model in which extinction occurs solely 

through endogenous interactions between the companies. 

 

The purpose of the present paper is to analyse the properties of the Newman model 

[11], in which agent extinction takes place purely through exogenous shocks, again in 

the context of extinctions of firms rather than of biological species. 

 

2. Description of the theoretical model 

 
2.1 The basic model  

 
The Newman model is populated by N agents, each of which is characterised by one 

number, ix , which stands for its stress tolerance.  Initially, these are chosen at random 

from a uniform distribution on [0, 1].  The second variable in the model is the level of 

external stress, η , which is chosen at each time step independently and at random 

from a distribution ( )stressp  which is either Gaussian or exponential. 

 

The model evolves in a sequence of steps.  In each step, a value for the stress η  is 

chosen, and all agents for which ix  < η  become extinct.  A step in which m  agents 

become extinct is referred to as an extinction event of size m .  Each extinct agent is 
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replaced immediately with a new one with a value of ix  chosen at random from a 

uniform distribution on [0, 1]11.   

 

In addition, in each step, a small fraction, f , of all agents obtain a new random value 

of ix .  In an economic context, this can be thought of as a firm updating its strategy 

by a process of trial and error. This process is completely compatible with the 

conventional rationalisation of the maximisation hypothesis in orthodox economic 

theory.  Agents are assumed on the one hand to maximise their individual utilities, yet 

on the other it is recognised that under conditions of uncertainty it is impossible for 

individual agents to follow maximising behaviour, because no one knows with 

certainty the outcome of a decision.  The two views are reconciled, and maximisation 

is nevertheless deemed to occur, because it is argued that competition dictates that the 

more efficient firm will survive and the inefficient ones perish (the classic statement 

of this is [14]). 

 

2.2 Extensions of the model 

 

Using an algorithm which calculates the properties of the model with an infinite 

number of agents, the frequency of extinction sizes is shown to follow a power law 

with an exponent 0.2−≅  [9, 15].  This result appears to hold across a variety of 

adaptations of the basic model.  A fuller description of these is given in [15], along 

with appropriate references, and a summary is as follows.    

 

For example, the choice of other distributions such as the Poisson, power law or 

stretched exponential for ( )stressp  makes little difference to the results.  Further, in 

the version of the model described above, there is no interaction between agents.  If 

the agents are placed on a simple one-dimensional lattice, and the extinction of any 

given agent leads in the same step to the extinction of its immediate neighbours 

regardless of their levels of stress tolerance, ix , the frequency of extinction events still 

follows a power law with exponent 0.2−≅ .   Similarly, the result holds if new agents 

                                                 
11 It can be shown analytically [15] that the results are not sensitive to the choice of this particular 
distribution 
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are assumed to inherit their ix  from surviving species rather than having them 

allocated at random from [0, 1].  A more sophisticated version of the model 

introduces different types of external stress.  Each agent has a stress tolerance level 

for each of the types of stress, and becomes extinct whenever one or more of the 

values of the external stress variables exceeds its relevant stress tolerance level.  

Again, the model reproduces the power law on the sizes of extinction events.   

 

Finally, results for a version of a model in which extinct agents are not replaced 

immediately but gradually over a period of time are discussed in [15].  This appears to 

raise some difficulties for the properties of the model when they are compared to 

those of the fossil record on biological species extinctions.  However, this is not really 

relevant in an economic context, where it is reasonable to assume that new firms 

immediately replace extinct ones.  For example, if we consider extinction patterns 

amongst the very largest firms [5, 13], whenever one of the top, say, 100 firms 

becomes extinct, by definition it is replaced in this category by the next largest.  More 

generally, the American Office of Advocacy provides evidence on firm births and 

deaths on an annual basis from 1989 to 1997, a period which spans both a recession 

and a strong economic recovery. The average total number of firms across the United 

States in this data base over this period was 5.73 million, of which on average 

623,000 "died" during the course of a year, and 705,000 were "born". 

 

 

2.3 The focus of the current paper 

 

A substantial proportion of the output of the American economy, and indeed that of 

the other Western market economies, is accounted for by a small number of very large 

firms.  The first major phase of mergers, acquisitions and expansions which led to this 

situation took place in the decades immediately around 1900.  By the time of the First 

World War, the wave of corporate restructurings had been consolidated, and firms 

capable of operating on a global scale then dominated the US economy for the first 

time (for example, [16, 17]).  
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There is, of course, a very large number of small firms whose contribution to total 

output is substantial, and the average size of business organisations in the closing 

decades of the twentieth century fell quite markedly [18].  Nevertheless, a key feature 

of the US economy is a concentration of output amongst a small number of firms. By 

way of illustration, over 80 per cent of the total war production of America in the 

Second World War was carried out by just 100 firms [19].   

 

Very large firms are of great importance in terms of the ability of an economy to 

compete successfully in international markets.  The experience of large firms in the 

American, British and German economies in the twentieth century is given in [16].  

And the phenomenal expansion of the Japanese economy in the second half of the 

twentieth century, when its per capita dollar income rose from around 25 per cent of 

that of the United States in the mid-1950s to 80 per cent by 2000, was based to a large 

extent on the external success of its giant manufacturing companies. 

 

The focus of the present paper is to analyse the properties of the Newman model when 

it is populated by small numbers of agents, which we can think of as representing the 

largest firms in an economy.  An understanding of their extinction patterns is of 

particular importance. 

 

 

3. The results 

 
3.1 Background 

 

We consider the properties of the basic model discussed in section 2.1 above for N = 

50, 100, 250 and 500. The model is solved in each case over 10,000 iterations12 a total 

of 500 separate times ; the results reported are the averages across the 500 solutions. 

 

The results for different values of N are qualitatively similar for any given set of 

parameters of the distribution from which the level of external stress is drawn.  In 

                                                 
12 This number was reached after experimentation with up to 100,000 iterations showed that the smaller 
number is sufficient to determine the properties of the model  when using small numbers of agents.   
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general, the lower  N is, the higher  the absolute value of the exponent of the power 

law, but the estimated values are all in the neighbourhood of -2.  For example, with 

the external stress variable, η,  following an exponential distribution with mean of 

0.05 and with f = 0.01, the exponent of the power law when N = 50, 100, 250 and 

500 is, respectively, -2.30, -2.04, -1.74 and -1.55.  With η drawn from a normal 

distribution with standard deviation of 0.05, the estimated values of the exponent are, 

respectively, -2.54  , -2.15, -1.74 and -1.49. 

 

In addition to the different number of agents, we examine the sensitivity of the model 

with respect to: 

 

• the distribution, ( )stressp , from which the level of external stress, η , is chosen.  

Specifically, we examine the exponential and the normal distributions 

• different parameters of ( )stressp  for each of the two distributions 

• the proportion of agents in each period,  f , whose levels of stress tolerance - or 

strategy as we think of it in an economic context - are updated in each period. 

 

The choice of parameters of the distribution of external stress, ( )stressp , needs to be 

considered in the context of the distribution of the stress tolerance of agents. The latter 

is drawn initially from a uniform distribution on [0, 1].   The mean tolerance of agents 

evolves in general from an initial value of 0.5 to some 0.713, because agents which 

survive have a higher than average tolerance to stress.  If the parameters of the 

distribution of external stress, ( )stressp , are set too high, large extinctions will occur 

frequently simply because of the values of the external stress variable.  For example, 

with an exponential distribution with a mean of 0.25, a value of greater than 0.7 will 

be drawn approximately once every 16 steps.  Even more importantly, a value greater 

than 1 will be drawn just under 2 per cent of the time, leading to the complete 

extinction of all agents14, whereas with a mean of 0.05, the probability of this 

occurring is effectively zero.  

                                                 
13 obviously, this value will depend upon the parameters which are chosen, but this value is reasonably 
typical 
14 it is possible in the version of the model discussed in section 3.3 for a very small proportion of agents 
to obtain stress tolerance levels greater than 1 
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3.2 The basic model 

 

The arguments above indicate that it is unlikely that a power law of agent extinctions 

will be observed if the parameters of the external stress distribution are set at too high 

a level: there will be frequent large extinctions.  This is readily confirmed from 

simulations of the model.  Figure 1 plots (on a log-log scale) the frequency of 

extinctions and the size of the extinction.  These results were obtained with N = 100 

and f = 0.01, but they are typical of the properties of the model at relatively high 

values of the external stress distribution parameters.  Figure 1a shows the results with 

the exponential distribution with the mean set at 0.1, and Figure 1b shows the normal 

with the standard deviation set at 0.15.   

 

In each case, even at these values of the stress distribution parameters, the results of 

the model are not described very well by a power law.  There are relatively large 

numbers of very large extinctions including, in the case of the illustration of the 

exponential distribution, examples of the complete extinction of all 100 agents. 
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Figures 1 a and b.  Log-log plots of frequency of extinctions and extinction size.  In 

each case, N = 100 and f = 0.01.  In Figure 1a, η is drawn from an exponential 

distribution with mean = 0.1, and in Figure 1b from a normal distribution with 

standard deviation = 0.15.  In both cases, a power law does not give a particularly 

good description of the data. 

 

The results set out in Figures 1a and b are perhaps obvious.  Less obvious, but much 

more important in terms of the interpretation of the model, is the choice of f , the 

proportion of agents whose stress tolerance is updated in each period.  The system 

receives an external shock - a change in the external stress value - every single period.  

The parameter f determines the average number of periods between changes to the 

stress tolerance of the agents of the system.  So with f = 0.01, for example, 1 per cent 

of the agents update their stress tolerances each period, so on average any given agent 

will update its stress tolerance every 100 periods15.  In other words, with f = 0.01, 

                                                 
15 provided of course that it has not become extinct over the course of any relevant period 
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individual agents evolve only very slowly relative to the frequency with which 

changes in external stress take place. 

 

In a biological context, a time-scale of agent evolution which is slow relative to the 

frequency with which changes to the external environment occur may well make 

sense.  However, it is much less plausible in an economic context.  Agents - firms - 

can react very quickly to external events.  The impact of their reactions may be highly 

uncertain, and there may be unintended and unforeseen consequences of actions 

which leave an agent worse off than if it had not reacted.  But the point here is that 

agents are able to react quickly.  The reactions of firms to the attack on 11 September 

illustrates this point clearly.  No-one knew with any degree of certainty what the 

economic consequences would be.  The one thing which companies did know for 

certain is that the external environment had altered, and they revised their plans, 

taking what seemed to them the best actions in the circumstances. 

 

In this version of the Newman model, however, power law behaviour can only be 

generated at very low values of f .   This is illustrated in Figures 2a and b below, 

which show the log-log frequency/size extinction plot for the exponential and normal 

distributions of external shocks respectively, with f = 0.2.  In other words, an agent 

reacts on average only every five periods to the external shocks which take place 

every single period. 
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Figures 2 a and b.  Log-log plots of frequency of extinctions and extinction size.  In 

each case, N = 100 and f = 0.2.  In Figure 2a, the external stress variable η is drawn 

from an exponential distribution with mean = 0.05, and in Figure 2b from a normal 

distribution with standard deviation = 0.05.  In both cases, a power law does not give 

a good description of the data. 

 

3.3 An alternative rule for the evolution of stress tolerance levels 

 

The above version of the model is described in biological terms as one of 'punctuated 

equilibrium'.  In other words, agents update their individual stress tolerance levels 

relatively infrequently.  Further, when they do update, the change is potentially large, 

with the new value being drawn at random from the uniform distribution on [0, 1].   

As an example, the potential size of the changes can be seen by examining the 

distribution of the differences between two variables, each of 1 million observations, 

drawn at random from the uniform distribution on [0, 1].  The mean of the differences 

is, of course, zero.  But the inter-quartile range is between -0.29 and +0.29.  In other 

words, 50 per cent of  agents in this example experience a change in stress tolerance 
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which is greater than 0.29, a fairly large jump.  Of course, in the model the stress 

tolerance distribution of surviving agents is not uniform, but is within [0, 1]. 

 

We now consider a version in which each agent updates its stress tolerance by small 

amounts in each single period.  In other words, agents react with the same frequency 

as changes in the external environment.  The update rule in this version of the model 

is that the stress tolerance of agent i at time t, tix , , evolves as follows: ttiti xx ε+= −1,,  

, where tε  is a normally distributed random variable with mean zero and variance 2σ , 

and 2σ  is small. 

 

This version of the model is capable of somewhat better approximations than that of 

the basic model to a power law relationship between the frequency and size of 

extinctions with an exponent of around -2.  Consider, for example, the model with N 

=100 and the external stress variable, η, drawn from an exponential distribution with 

mean of 0.05.  Setting the standard deviation of ε , σ , at 0.01, 0.05 and 0.10, the 

estimated exponent on the power law relationship is -2.22, -2.84 and -2.94 

respectively. 

 

However, the power law least squares regressions tend to over-predict the number of 

medium and large extinctions generated by the model. A typical set of results is 

plotted in Figures 3a and b below. 
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Figures 3a and b. Log-log plots of frequency of extinctions and extinction size.  In 

each case, N = 100 and f = 0.01 and η is drawn from an exponential distribution 

with mean = 0.05.  The stress tolerance of all agents is updated in each period.  The 

change in the stress tolerance in the previous period is drawn from a normal 

distribution with standard deviation of 0.01 in Figure 3a and 0.10 in Figure 3b. 

 

When both the external stress variable takes on only small values and the stress 

tolerance of agents changes by only small amounts from period to period, a power law 

describes the data more accurately. For example, with η drawn from an exponential 

distribution with mean = 0.01, this variable hardly ever takes a value of greater than 

0.1.  Indeed, over 99 per cent of all the values in such a distribution fall within the 

range [0, 0.05], so the level of external stress is small. 

 

Importantly, however, the absolute value of the estimated exponent of the relationship 

in such cases tends to be considerable greater than 2.  For example, Figures 4a and b 

plot the frequency/size of extinctions relationship for a exponential distribution of 
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( )stressp  with mean 0.01 and 0.02 respectively, and for ε with a standard error of 0.01 

and 0.02 respectively.  The fit to a power law is good, but the estimated exponents are 

-4.36 and -3.63 respectively. 
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Figures 4a and b Log-log plots of frequency of extinctions and extinction size.  In 

each case, N = 100 , f = 0.01, the external stress variable, η, is drawn from an 

exponential distribution and the stress tolerance of all agents is updated in each 

period.  In Figure 4a, the mean of η is 0.01 and the standard deviation of  ε is also 

0.01.  In Figure 4b these are 0.02 and 0.02 respectively. 

 

 

4. Conclusion 

 
We consider in this paper an agent-based model of evolution in which the agents act 

autonomously and are not connected in any way. Agent extinction can only arise 

through changes in the external environment. 



  Appendix 3 

 August 2002 

Page 56 

 

 Each agent has its own stress tolerance level, which evolves over time.  The model 

contains a level of external stress, which is updated by a random process in each 

period.  If the stress tolerance of an agent falls below that of the external stress level, 

the agent becomes extinct and is immediately replaced with a new agent. 

 

A number of variants of the basic model have already been examined in the literature 

[15].  In this paper, we examine the properties of the model when it is populated by a 

small number of agents, which we can think of as representing very large firms in a 

capitalist economy.   

 

We examine the relationship between the frequency and size of extinctions which is 

generated by the model. It is often possible to obtain a relationship between the two 

which can be characterised by a power law with an exponent 0.2−≅ , consistent with 

actual empirical evidence.  However, there are important qualifications to this 

statement. 

 

The sensitivity of the model is considered with respect to the number of agents and 

both the distribution from which the external stress variable is drawn and its 

parameters.  We investigate two sets of rule by which the stress tolerance of agents is 

updated.  First, when only a fixed proportion of agents is updated each period.  

Second, when each agent is updated in each period. 

 

In the former case, a power law  gives a reasonable approximation to the relationship 

between frequency and size of extinctions generated by the model only when a very 

small proportion of agents are updated each period.  Whilst this may well make sense 

in a biological context, it is not realistic in an economic one.  Agents are able to react 

rapidly following changes in the external environment, as the events after September 

11 illustrate. 

 

The variant of the model in which the stress tolerance of all agents is updated by small 

amounts in each period gives results which in general approximate somewhat more 

closely to a power law relationship between the frequency and size of extinctions.  
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However, a power law fitted to the model data usually over-predicts the number of 

medium-sized and large extinctions.  The exception is when both the external stress 

variable and the stress tolerances of agents change by only very small amounts in each 

period, but the exponent on the estimated power law is then substantially larger in 

absolute terms than that which is observed empirically. 

 

We conclude that the Newman model of agent extinction in which extinction arises 

solely from external shocks does not provide a particularly good description of reality 

in an economic context. 
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Abstract 

 
We consider a model of the evolution and extinction of agents from the biological 

literature in which extinction arises because of changes in the external environment.  

In addition, the agents are placed on a network. 

 

We examine two versions of the model.  First, the extinction of any given agent leads 

to those agents which are directly connected to it also becoming extinct with a given 

probability, which is a parameter of the model.  Second, the extinction of any given 

agents leads to those agents which are directly connected to it each having their 

fitness levels re-drawn at random. 

 

We find that in general the model does not give rise to power law behaviour between 

the frequency and size of extinctions.  For certain ranges of the parameters, an 

exponential distribution fits this data very well.  Finally, the properties of the model 

are not particularly sensitive to the choice of topology which connects agents. 
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1. Introduction 
 

This paper builds on recent work described in [1] to determine whether the Newman 

Model of mass extinction [2] could be translated into a useful model for considering 

the extinction rates of firms.  For values of the parameters which make economic 

sense, and with a small number of agents, it was not really possible to generate a 

power law which matches the empirical evidence [3]. 

 

This paper considers whether these results still hold under extensions to the Newman 

Model where networks are introduced which connect firms.  In the basic model of the 

evolution and extinction of agents, extinction arises solely because of changes in the 

external environment.  The agents in the model are not connected in any way.   

 

In this paper we consider versions of the model in which agents are connected by a 

variety of geometries.  We consider two separate ways in which the connections 

operate.  First, whenever an agent becomes extinct, all agents to which it is directly 

connected also become extinct with a given probability chosen from [0, 1].  Second, 

these neighbours simply have each of their fitnesses re-drawn at random. 

 

 

2. Descriptions of the theoretical models 
 

2.1 The basic Newman Model 

 

The Newman model is populated by N agents, each of which is characterised by one 

number, ix , which stands for its stress tolerance.  Initially, these are chosen at random 

from a uniform distribution on [0, 1].  The second variable in the model is the level of 

external stress, η , which is chosen at each time step independently and at random 

from a distribution ( )stressp . 

 

The model evolves in a sequence of steps.  In each step, a value for the stress η  is 

chosen, and all agents for which ix  < η  become extinct.  A step in which m  agents 



  Appendix 4 

 August 2002 

Page 62 

become extinct is referred to as an extinction event of size m .  Each extinct agent is 

replaced immediately with a new one with a value of ix  chosen at random from a 

uniform distribution on [0, 1]16.   

 

In addition, in each step, a small fraction, f , of all agents obtain a new value of ix  

drawn from a uniform distribution on [0,1].  In an economic context, this can be 

thought of as a firm updating its strategy by a process of trial and error. 

 

2.2 Newman Model with Small Continuous Updates (SCU) 

 

Another version of the model (also detailed in [2]) updates the agents differently.  

Instead of drawing a random value for ix  for a fraction, f , of agents, all agents have 

their stress tolerance changed in every period by the addition of a small amount of 

random noise.  I.e. if the stress tolerance of agent i at time t is tix , , at time t + 1 it will 

be ttiti xx ε+=+ ,1,  , where tε  is the random noise.  In this paper we have kept tε  as a 

normally distributed random variable with mean zero and variance 2σ , where 2σ  is 

small.  We have labelled this version of the Newman Model as being the Newman 

Model with Small Continuous Updates (SCU). 

 

2.3 Newman Model on a network 

 

The basic Newman model is a model of exogenous shocks.  There is no interaction 

between the agents in the model.  This is obviously not the case for firms in an 

economy where firms may supply goods or services to each other or be competitors 

and thus events which affect one firm are likely to also affect others. 

 

We connect firms on different types of network (see 2.4) and apply two different rules 

for how the extinction of one of a firms neighbours affects it. 

 

                                                 
16 It can be shown analytically [4] that the results are not sensitive to the choice of this particular 
distribution 
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2.3.1 Grouped dependents 

 

In this version, firms are treated as if they are organised so that a firms neighbours are 

highly dependent on it, for example they could be the major suppliers or customers. 

 

When a firm becomes extinct, each of its neighbours become extinct with probability 

1ζ . 

 

2.3.2 Fight for survival 

 

This version is not so harsh on firms’ neighbours.  When a firm becomes extinct, its 

neighbours draw a new random value of ix  .  We can think of this as altering their 

own strategies following the extinction of an agent which is a close competitor or 

collaborator. 

 

2.4 Types of network 

 

There are many different types of network on which firms can be placed.  These 

networks have a number of different properties.  The most important property of 

networks is the density or average number of connections.  In this example, this is the 

number of neighbours of each firm.  Other properties include the extent to which 

connections from firms who are neighbours overlap. 

 

Anticipating the results below we will not spend much time describing different types 

of network.  Descriptions can be obtained from [5] and references therein. 

 

The main network we will be using is the small world network as described in Watts 

and Strogatz [6].  To create a small world network we start with a ring of firms where 

each firm is connected to its k nearest neighbours (k being a multiple of two).  Then 

with probability p, each connection is rewired to a random firm. 
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Small World Network with 10 Agents

k = 2, p = 0.2  
Figure 1: Example small world network with 10 agents, k = 2, p = 0.2 

 

In the example above we can see that each firm (numbered 1 to 10) started off 

connected to the firms numbered one higher and one lower.  In the rewiring process 

the connection from 2 to 3 was rewired to go from 6 to 3, and the connection from 6 

to 7 was rewired to go from 9 to 717.   

 

Watz and Strogatz give examples of real life networks which have similar properties 

to small world networks, the most famous being the collaboration graph of actors in 

feature films (the so called Kevin Bacon Graph).  Since we do not have any evidence 

for the actual graph of connections between firms, we calculate most of the results 

below using a small world network.  The results were tested for their sensitivity to 

different types of network. 

 

3 Results 
 

Due to the large number of parameters for the Newman Model, possible distributions 

for levels of stress and stress tolerances and possible networks there are a huge 

number of possible results and so it is not possible to report all of them here.  In these 
                                                 
17 The rewiring process is random, so there could be a situation where the connection from 4 to 5, say, 
was chosen to be rewired then, with probability of one over the number of firms, the new connection 
could also be form 4 to 5. 
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results we aim to limit the number of parameters by only using those which make 

economic sense. 

 

We show a subset of the total results obtained, which are representative of the results 

in general and highlight the effects or non-effects of changing the inputs. 

 

All the results presented are concerned with the frequency of extinction events of 

various sizes.  We do not include results for periods when 0 extinctions took place.  

Each reported set of results is obtained by taking the mean frequencies of extinction 

events from 100 separate runs of the model (each run having an individually 

generated network).  Each run of the model lasted for 100,000 periods.  

Experimentation with larger numbers of runs, or runs lasting for a greater number of 

periods show no significant change to the results. 

 

The number of firms in each run was fixed at 100, this being the number of firms 

studied in [3] which is the real life evidence we have for rates of firm extinctions. 

 

For the versions of the model where a proportion f  of agents have their stress 

tolerances redrawn from the underlying uniform distribution each period, f was fixed 

at 0.2.  This means that firms change their strategy on average only every 5 periods 

compared to the external stresses which occur every period.  In terms of actual firms 

this seems to be the minimum acceptable level for f .  This compares with typical 

values for f  in [7] of 10-6.  See the discussion for more on this choice. 

 

3.1 A typical result 

 

First we show a typical result for the frequency of mean extinction events for each of 

the four models described above. 

 

We use a small world network with k = 4 and p = 0.05.  The external stress 

distribution is exponential with mean = 0.05. 
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The first result we show (figure 2) is for the Newman Model on a network with 

grouped dependents (as described in 2.3.1). 

Log log plot of Grouped Dependents Model
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Figure 2: Mean results over 100 simulations of the Newman Model with Grouped 

Dependents.  Performed on a small world network with N = 100, k = 4, p = 0.05. The 

stress distribution was exponential with mean 0.05. 

 

From the Left hand side of the graph, at five point intervals there is a jump in the 

number of extinction events of that size.  This is due to the fact that when an agent 

becomes extinct, all its four neighbours also become extinct and thus five agents 

become extinct at once.  Not all extinction events are multiples of five however since 

some firms that become extinct might have neighbours which overlap and also in the 

rewiring process some connections might overlay one another. 

 

However, it is clear from the graph that the results do not follow a power law. 

 

We next look at the variations in results over the hundred runs of the model, each run 

being performed on a different draw of a small world network with the same 

parameters. 
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Figure 3: each line is drawn between the minimum and maximum results from 100 

runs of the model for each extinction size. 

 

We can see that the range of results for each extinction size is small18.  Looking at the 

observations in more detail, they are generally normally distributed about the mean. 

 

We next show the result for the grouped dependents model with small continuous 

updates with the same inputs. 

 

Log log plot of Grouped Dependents Model, Small Continuous Updates
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18 Due to the infrequency of large extinction sizes the range of results increases as the extinction size 
increases. 
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Figure 4: Mean results over 100 simulations of the Newman Model with Grouped 

Dependents and Small Continuous Updates.   

 

These results appear similar to the results for the standard Newman Model on a 

network but there are smaller numbers of large extinctions.  Again they do not follow 

a power law. 

 

We now turn our attention to the Fight for Survival model described in 2.3.2.  In this 

case we plot the results for the model with and without Small Continuous Updates on 

the same graph. 
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Figure 5: Results for the fight for survival models on a small world network. 

 

This does not have the jumps in survival at intervals of 5 due to the fact that firms 

neighbours only have their strategies redrawn rather than also becoming extinct.  

Again the results do not follow a power law19. 

 

                                                 
19 They are closer to a power law - see discussion. 
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3.2 Varying the type of network 

 

In this section we see the effect of different types of network on the results.  Firstly 

we consider four different classes of network: small world, random, k-nearest 

neighbour and torus.  These networks are described in [5]. 

 

We run each of these networks such that each firm has on average four neighbours. 

 

The following results are from the Grouped Dependents model with standard updates 

[thus the results for the small world network are the same as in Figure 2].   

 

Varying the Type of Network with 4 Connections per Firm
Grouped Dependents Model with Standard Updates
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Figure 6: Examining the effects of different types of networks on the results of the 

Grouped Dependents Model with standard updates. 

 

The results are very similar for large extinction events.  For smaller extinction events 

the results differ due to the number of connections for each firm.  In the torus network 
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and k-nearest neighbour networks, each firm has exactly four neighbours, in the small 

world network, almost all firms have four neighbours, whereas in the random 

network, the number of neighbours is a binomial distribution with mean four.  Thus 

the range of numbers of neighbours explains the results showing a much smoother 

curve for the random network.  All other networks give very similar results, with 

differences only occurring due to the amount of overlapping connections. 

 

The four different networks have very different properties apart from each having the 

same average number of connections per firm.  Thus from this and other results we 

have examined it is possible to conclude that it is essentially only the number of 

neighbours of each firm which affects the results. 

 

The other three adaptations of the Newman Model studied in this paper give similar 

results. 

 

3.3 Varying the number of neighbours per firm 

 

In this section we consider the effect of changing the number of neighbours of each 

firm.  We do this for a small world network (and the results for other networks are 

similar).  In the figure below we have used the Fights for Survival Model with small 

continuous updates. 
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Varying the Number of Neighbours of Firms
Fights for Survival Model with Small Continuous Updates
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Figure 7: Varying the number of neighbours of firms with the fights for survival 

model with small continuous updates on a small world network. 

 

We see that increasing the number of neighbours of each firm increases the frequency 

of large extinctions and makes the results look less like a power law. 

 

 

 

3.4 Using stress levels which are distributed normally 

 

As a final comparison, we consider the results of the model when using a normal 

stress distribution rather than an exponential.  Here we use the normal distribution 

with zero mean and a standard deviation of 0.05 and compare it with the exponential 

distribution with mean 0.05.  The model used is the Grouped Dependents Model with 

standard updates so the exponential results are the same as in Figure 2. 
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Comparing Normal and Exponential Stress Distributions
 Grouped Dependents Model with Standard Updates
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Figure 8: Comparison of results using a normal stress distribution with mean 0 and 

standard deviation 0.05 and an exponential stress distribution with mean 0.05 

 

We can see that the frequencies of extinction sizes are similar but that the results from 

using the normal distribution are more curved. 

 

 

4 Discussion 
 

The idea behind this paper was to see whether a power law distribution for the 

frequency of extinction size events could be obtained by placing variants of the 

Newman Model onto a network.  The results above show that it is not the case. 

 

When we look at possibilities for the results following other distributions, we find that 

the distribution fits much closer to an exponential.  The following graph shows the 

results of plotting the Grouped Dependents Model with the standard update rule along 

with a fitted exponential distribution.  The results are the same as in Figure 2 except 

that the data has been binned by combining each set of five points to smooth out the 

jumps observed in Figure 2. 
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Fitting to an Exponential Distribution
Grouped Dependents Model, standard update rule
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Figure 9: Results from the Grouped Dependents Model with standard updates with the 

line being the fit of the middle ten points to an exponential distribution. 

 

We can see that whilst the distribution is not exponential, the middle ten points fit 

much better to an exponential distribution than to a power law. 

 

The fit becomes more like an exponential distribution when we consider the Fights for 

Survival Model with Small Continuous Updates as shown below. 
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Fitting to an Exponential Distribution
Fights for Survival Model, Small Continuous Updates
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Figure 10: Results from the Fights for Survival model with Small Continuous Updates 

with the line being the fit of all the points to the exponential distribution. 

 

If we consider the limit where all firms have their stress tolerances updated by a draw 

from the uniform distribution every period, then in this case it is simple to show that 

the results for the frequency of extinction sizes will have the same distribution as the 

distribution of stress levels. 

 

By placing the firms on a network and having the extinction of a firm affect the firm’s 

neighbours means that more agents will have their stress tolerances updated each 

period than would otherwise occur in the standard Newman Model.  Thus we should 

expect (and we do observe) the distribution of the results to tend to the distribution of 

stress levels. 

 

It is therefore our prediction (yet to be tested) that if we applied a power law stress 

distribution, we would observe results which were a better fit to a power law.  

Economically, we do observe that firms frequently change their strategies in response 

to stress.  Although there are no measurable results, it does not seem an unreasonable 

idea that stress levels on firms might follow a power law as large numbers of naturally 

occurring results do.  This could well explain the power law for extinctions of firms 

observed in [3]. 
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5 Conclusions 
 

In this paper we have examined whether variations of the Newman Model of 

extinctions on networks can explain the power law behaviour observed in the 

extinction rates of firms.  The results we have obtained show that this does not seem 

to be the case. 

 

We examine the model in which agents are connected by a variety of different 

networks.  But, essentially, the results are very similar whichever network is 

specified, and it is the average number of connections per agent which matters. 
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Abstract 

 
 
We develop a theoretical agent-based model of the evolution and extinction of firms 

based on basic principles of economics which is similar to, though not identical to, 

models in the biological literature.  

 

The model contains N agents, and all pairs of agents are connected to each other.  

The model evolves in a series of steps.  The rules of the model specify a) how the 

connections are updated b) how the fitness of each agent is measured c) how an agent 

becomes extinct and d) how extinct agents are replaced.  The overall properties of the 

model emerge from the interactions between agents. 

 

 The empirical relationship between the frequency and size of extinctions of 

capitalism's largest firms is described well by a power law.  This power law is very 

similar to that which describes the extinctions of biological species. 

 

The properties of the model conform closely to the empirical evidence. 

 

The paper raises the possibility that there are general mechanisms at work which 

account for extinctions of agents.  
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1. Introduction 
 
At the turn of the nineteenth century, large corporations were being built on an 

unprecedented scale, mainly due to a massive wave of mergers and acquisitions.  

Hannah (1999) provides a data set of the 100 largest industrial companies in the world 

in 1912.  These are firms which had survived the merger boom at the turn of the 

century, and were large even by the standards of today.  US Steel employed 221,000 

workers, and most of the others employed more than 10,000. 

 

By 1995, only 52 of these firms survived in any independent form.  Nineteen of the 

survivors remained in the top 100 industrial companies in 1995, but 24 of them were 

smaller than they were in 1912.   This data set contains information on the exact years 

in which individual firms ceased to exist as independent entities.  Fligstein (1990) 

supplies a data set on the top 100 US firms 1919-79, but this evidence relates to 

periods of a decade rather than to individual years. 

 

Ormerod et.al. (2001) show that, for both these data sets, the empirical relationship 

between the frequency and size of extinctions is described well by a power law.  The 

information in the Hannah data set also shows that the intervals between extinction 

events follows power law behaviour. 

 

The purpose of this paper is to set out a theoretical model of agent extinction which is 

compatible with the empirical evidence.   Section 2 describes the model.  Section 3 

discusses the nature of the empirical evidence and how the success of the model is 

judged.  Section 4 presents the results of the model.  Section 5 gives a brief 

conclusion. 

 

2. A theoretical model of agent extinction 
 

The model contains N agents, and all pairs of agents are connected to each other. 

These connections can be thought of as representing the way in which the net impacts 

of the overall strategies of firms impact on each other.  Both the strength and the signs 

of the connections vary.   
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In formal terms, the connections are embodied in a matrix of couplings, Jij, which 

indicates how each agent i affects every other agent j, with Jij ∈ [-1, 1]. It is important 

to emphasise that the Jij are not simply the cross-price elasticities which might be 

estimated between products in, say, a Nearly Ideal Demand System.  They represent 

the net effect of a firm i's overall strategy on firm j, and not just the impact of relative 

price.  Competition between agents, for example, is the broad concept noted by 

Vickers (1994) in the New Palgrave Dictionary of Economics, where it is defined as 'a 

rivalry between individuals (or groups or nations), which arises whenever two or more 

parties strive for something that all cannot obtain.'  Price may certainly be an element 

in defining the value of the connection from agent i to agent j, but so is, for example, 

advertising, R and D and effort levels. 

 

The overall fitness of an agent is measured by the sum of its connections to all other 

agents20.  More exactly, it is the sum of influences on each agent of all other agents.   

Fitness in this context is fitness for survival, and is a wider concept than, for example, 

just volume of sales or profits.  There are many examples in business history of very 

large firms with high levels of profits which have collapsed very rapidly due to drastic 

mistakes of strategy by the management21. 

 

Three combinations of pair-wise connections are possible in terms of the signs of the 

Jij : i) Jij, Jji > 0;  ii) Jij > 0, Jji < 0, or vice versa; and iii) Jij, Jji < 0    

 

Case (i) represents a situation in which firms benefit from each other's presence in a 

market. The situation could arise through co-operation or tacit collusion.  More 

generally, the signs will be the same when two firms carry out activities which are 

complimentary to each other. 

 

                                                 
20 these include the connection of the product/firm to itself, as it were, the Jii.  A firm may possess 
qualities which lead to positive or negative effects on its own fitness.  For example, a firm may attempt 
to occupy a niche for which, in any given period,  the demand is very weak, and is therefore 
handicapped in its attempts to survive.  The properties of the model are in any event not affected in any 
significant way if the Jii are set equal to zero. 
21 Marconi in the UK is a recent example.  Marconi is the old GEC company which existed for many 
years, and is far from being a flash-in-the-pan dot.com firm.  Yet its stock market value fell from £35 
billion to under £1 billion during the course of a single year because of appalling strategic errors by its 
management 
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Case (ii) arises when two products are in competition, and the overall strategy of one 

is such that it gains fitness at the expense of its rival.  Case (iii) is a more intense 

example of the competitive case (ii).  In this instance, the degree of competition is 

such that the firms carry out actions which reduce both their fitness levels.  An 

example is when two firms become engaged in a price war which ultimately reduces 

both their profit levels.  

 

The connections between agents evolve over time.  In other words, firms alter their 

strategies.  We can think of each firm as attempting to maximise its overall fitness 

level. In the model, the firm proceeds by a process of trial-and-error in altering its 

strategy for any given product.  The model is solved over a sequence of iterated steps, 

and at each step, for each agent one of its connections is chosen at random, and a new 

value is assigned to it. 

This process is completely compatible with the conventional rationalisation of the 

maximisation hypothesis in orthodox economic theory.  Agents are assumed on the 

one hand to maximise their individual utilities, yet on the other it is recognised that 

under conditions of uncertainty it is impossible for individual agents to follow 

maximising behaviour, because no one knows with certainty the outcome of a 

decision.  The two views are reconciled, and maximisation is nevertheless deemed to 

occur, because it is argued that competition dictates that the more efficient firm will 

survive and the inefficient ones perish (the classic statement of this is Alchian 

(1950)).  

 

An agent is deemed to become unable to survive if its overall fitness falls below zero. 

At any step in the solution of the model, more than one agent can become extinct.  If 

m agents become extinct in any given step, an extinction of size m is defined to have 

taken place.  

 

Agents which become extinct are replaced by new agents.  In a version of this model 

developed to account for the patterns of extinction of biological species, Sole and 

Manrubia (1996) postulate that the new entrants copy very closely surviving species. 

At each step in the solution of the model when an extinction has taken place, a 

surviving agent is chosen at random as the template for the new entrants.  The 
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connections of each new agent are the same as those of the template agent, except for 

a small random change in the value of each connection. 

 

In this particular economic context, this replacement rule is not completely 

unreasonable.  Firms sometimes do become very large by copying closely firms which 

are already very large.  For example, firms occasionally acquire companies which are 

bigger than themselves.  However, more usually, firms which grow sufficiently to 

enter the group of the world's largest companies often have distinctive qualities of 

their own.  New sectors of the economy become important, such as financial services 

or computing.   

 

The replacement rule we use reflects this factor.  The connections of a new entrant are 

in the first instance chosen at random from the interval [-1, 1].  However, we 

distinguish the net impact of surviving agents on the new entrant, the Jji, from the 

impact of the new entrant on the survivors, the Jij.  In the former case, a firm which 

has grown sufficiently to enter the set of the world's largest companies can be 

assumed to have at the time of entry a fitness level which is greater than zero.  If the 

Jji were simply chosen at random, the mean fitness of new entrants would be zero. We 

therefore add to each of these elements the mean fitness level of the surviving firms at 

the time of entry, divided by the total number of agents. In other words, the average 

fitness level of a new entrant will be equal to the average fitness level of surviving 

agents. 

 

In the case of the impact of the new entrant on surviving agents, the Jij, we simply 

assume that the overall impact has a mean value of zero. 

 

In terms of a formal statement of the model, we have: 

 

The model contains N agents and a matrix of couplings, Jij, which indicates how each 

agent i affects every other agent j, with Jij ∈ [-1, 1].  The model is solved over a 

sequence of iterated steps, and at each iteration the following occurs:  
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i) for each agent i, one of its Jij is replaced with a new value chosen at random from a 

uniform distribution on [-1, 1].   

 

ii) the overall fitness of any given agent is measured by fi = ∑j Jji, and any agent for 

which fi < 0 is deemed to be extinct.  If m agent become extinct, an extinction of size 

m is deemed to have taken place. 

 

iii) an extinct agent is replaced by a new entrant into the system.  The connections of a 

new entrant are chosen at random from [-1, 1].  The mean fitness level of the 

surviving agents (divided by the number of agents) at the time of entry is then added 

to the interactions of other agents with the new entrant, the Jji.  The interactions of the 

new entrant with other agents, the Jij, are simply chosen at random from [-1, 1]. 



  Appendix 5 

 August 2002 

Page 84 

3. Empirical evidence on the extinction patterns of the world's 

largest companies in 1912 
 

The standard approach in the analysis of the extinction patterns of biological species 

(see Drossel (2001) for a detailed survey) is to fit a relationship between the number 

of firms which become extinct in any given year, and the frequency with which these 

are observed..  In other words, no attempt is made to replicate the actual time-series 

observed for extinctions.  Instead, the focus is on the properties of the underlying 

distribution which could give rise to the historical realisation which is actually 

observed. 

 

Figure 1 plots the frequency of annual rates of extinction from the Hannah data set.  

This relates to the experiences of the world's top 100 industrial countries in 1912 over 

the 1912-95 period.  In most years, no single giant firm became extinct, but four firms 

became extinct in the year 1919, and no fewer than six in 1968. 
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A power law of the form 

 
βα NF .=      (1) 

 

describes the data well, where F is the frequency with which the annual 

number of extinctions is observed over the 1912-1995 period, and N is the 

annual number of extinctions. 

 

A least squares22 fit of (1) to the data (for N > 0) gives estimated values of α 

of 18.0 and of β of -1.76, the latter with a standard error of 0.18.  The standard 

error of the equation is 0.94.  Comparing this latter to the standard error of the 

data, 6.75, the equation fits the data well.    

 

The evidence from the Fligstein data set, using the largest 100 companies in 

the US in 1919 over the 1919-79 period, also suggests very clearly that the 

frequency/size extinction relationship can be described well be a power law.  

But, mainly because the information is aggregated into periods of a decade, 

this data set is not nearly as informative in this context as the one provided by 

Hannah 

 

A more detailed discussion of the empirical evidence is given in Ormerod 

et.al. (op.cit.).  

 

The evidence for biological extinctions suggests, intriguingly, that a power 

law with an exponent of -2 provides a good description of the data.  This is 

very close to the -1.76 fitted with the Hannah data set. 

 

We also examined the Hannah data set  regarding the number of years between 

an extinction of at least one of the top 100 industrial firms in 1912.  The most 

frequent observation  is one year, which means that in this case extinctions 

took place in successive years. A power law provides a reasonable fit to the 
                                                 
22 using a non-linear least squares algorithm in S-Plus rather than the conventional log-log least squares 
fit, because there are no examples in the data of 5 firms becoming extinct in any single year and hence 
the dependent variable takes the value zero for this observation 
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data and, again, this is somewhat better than that given by an exponential 

distribution.  The estimated exponent in the power law least squares fit is -1.18 

with a standard error of 0.22.  The overall fit, however, is not quite as good as 

that of the frequency data.  Again, more details are given in Ormerod et.al. 

(op.cit.). 

 

4. Properties of the theoretical model 
 

The initial task in analysing the model is choosing the number of agents with 

which to populate the model.  In the data set provided by Hannah, by 1995 no 

fewer than 48 of the world's top 100 industrial companies in 1912 had 

disappeared in any independent form.  Ideally, the dates at which they ceased 

to be members of the top 100 would be available, and extinction could be 

defined as exit from the top 100.  We could then set N = 100, and note the 

extinctions of the original set of agents.  However, this information is not 

available, and an alternative approach is needed. 

 

We populate the model with 500 agents, which we assume are all very large 

companies, although size is not an explicit factor in the model.  It does not 

seem unreasonable to assume that the very largest 100 companies derive their 

fitness levels from their dealings and interactions with a population of these 

100 plus 400 other very large companies..  Of course, they will all be involved 

with many firms of many different sizes.  But a local company, say, with the 

contract to clean the headquarter offices of a major oil company is unlikely to 

have any discernible effect on the ability of that firm to survive. 

 

With just one or two exceptions, the surviving companies from the 1912 top 

100  still operated as substantial companies in 1995, so again it is not 

unreasonable to assume that even when they dropped out of the top 100 they 

continued to interact with the survivors plus the other large firms which 

populate our model.  Extinction is therefore defined as dropping out of the set 

of 500 very large companies.  This is not strictly compatible with the empirical 

data set, but it is a good approximation to it. 
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Because of the stochastic nature of the model, repeated solutions are required 

in order to establish its properties.  We report results obtained from 500 

separate solutions.  Each time, the first 10,000 iterations are discarded in order 

to eliminate any transient behaviour arising from the choice of the initial Jij
23.   

 

In each solution, 100 of the initial 500 agents are chosen at random and 

designated as the largest 100 firms in the total population.  It is their extinction 

patterns which are monitored, and the solution is halted whenever 50 of them 

become extinct.  We therefore have evidence from 500 separate solutions of 

the model of the extinction patterns of 50 out of the 100 companies. 

 

Figure 2 plots the relationship between the frequency with which extinctions 

of different sizes are observed, and the size of the extinction. The slope of the 

least-squares fit is -1.83 with a standard error of 0.17. The slope is very similar 

to that which is estimated from the actual data on large firm extinctions. 

                                                 
23 Experiments both with this model and variants of it suggest that in fact, empirically, a far smaller 
number need to be eliminated in order to achieve this end 



  Appendix 5 

 August 2002 

Page 88 

Frequency and Size of Extinctions
500 solutions of the theoretical model

Figure 2
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Figure 2: plot showing the power law relationship between extinction size and 

frequency.  The frequency data show the number of times over the 500 solutions of the 

model in which the particular number of agents become extinct in any given period 

 
We also analysed the number of periods between extinctions of at least one of the 

designated top 100 firms.  Again, this was carried out using the output of 500 

solutions of the model as described above for the frequency data. The solutions of the 

model generate a large number of data points, with for example 9022 occasions when 

extinctions were observed in successive periods.  There is a long, sparse tail in the 

model-generated data, with a single observation of a gap of 26 periods being recorded. 

 

The exponent of the power law of the actual data is -1.18 ± 0.22.   The power law 

fitted to the model-generated data gives an estimated exponent of -1.78 ± 0.04, which 

is significantly different from the actual data at the conventional level of p = 0.05.  In 

the case of the model-generated data an exponential distribution fits as well as a 

power law, but the estimated exponent in this regression is again significantly 

different from that estimated with the actual data at p = 0.05.  With the model-
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generated data, the power law tends to over-predict the number of large gaps between 

extinction events, and the exponential distribution under-predicts them.  But both 

describe the bulk of the data well. 

 
So, in terms of the waiting times between extinction events, a power law relationship 

provided a good description of both the actual and the model-generated data, although 

the exact quantitative nature of the differs somewhat. 

 

5. Conclusion 
 
We develop in this paper a theoretical model of agent evolution and extinction based 

upon straightforward principles of economics.  The model is similar though not 

identical to models of extinction in the biological literature.   

 

We consider evidence from a data set containing information on the world's 100 

largest industrial companies in 1912.  We also consider a data set of the top 100 US 

firms over the 1919 - 1979 period.   

 

The relationship between the frequency and size of the extinctions on an annual basis 

is approximated well by a power law relationship.  The exponent of the fitted power 

law is very similar to that reported in the literature on the extinction of biological 

species in the fossil record.   Further, the gaps between extinction events can also be 

described well be a power law. 

 

The relationship between the frequency and size of extinctions generated by the 

model is very similar to that which is observed in the actual data.  The model-

generated data on gaps between extinction events is also approximated by a power 

law, though the slope of the relationship is somewhat greater than that of the actual 

data.  The paper raises the possibility that there are general mechanisms at work 

which account for the extinctions of agents.  
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Abstract  
 
We examine a model of agent extinction which attributes extinction events to the 
interconnectedness of species within an ecosystem. Both biological extinctions and the 
extinctions of companies in an economy follow a power law pattern which is 
replicated by the model. This paper considers whether applying external influences 
(shocks) on the system alters the extinction frequency distribution. It is found that 
under this extension to the model, its properties remain essentially unchanged. 
 
 
1. Introduction 
 
Analysis of the fossil record has shown that the sizes of extinction events follow a 

statistical distribution Φ which is compatible with a power law fit: 
βα −≈Φ SS)(  

where S is the size (in terms of species or families) of an extinction event and α and 

β are constants [1]. Several models have been created to try to simulate this power 

law behaviour [2]. These follow one of two different approaches; by either proposing 

that the observed pattern of extinctions arises from the internal mechanisms of the 

system (endogenous causes) or from purely external factors (exogenous causes). 

 

Parallels can be drawn between the behaviour of species interacting in an ecosystem 

and that of companies interacting in an economy [3]; the symbiotic and competitive 

relationships which evolve can be seen as analogous. Analysis of extinction rates of 

the world's 100 largest companies24 over the period 1912 to 1995 has suggested that 

company extinctions also exhibit a similar power law distribution [3]. The question 

arises, then, of whether biological extinction models can provide an insight into the 

causes of firm extinctions, and if so, which approach should be taken.  

 

Here we have followed the model of Solé and Manrubia [4], which is outlined in 

detail in section 2. Like many models attempting to simulate endogenous 

mechanisms, the model exhibits the property of self-organised criticality [5], with the 

implication that extinctions occur, without the need for external stimuli, on any scale 

as the result of systematic microscopic changes. Some smaller extinction events may 

"avalanche" into cataclysms because they involve the extinctions of certain keystone 

                                                 
24 As measured in 1912 
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agents upon which many others are dependent. A discussion of the application of the 

Solé-Manrubia model to the empirical company extinction data is given in [6]. This 

paper continues by applying external shocks to the agents in the Solé-Manrubia 

model. 

 

We have also examined the Newman model [7,8], which obtains an appropriate 

extinction power law distribution solely by considering external stresses on the 

population, without explicit links between agents.  

 

The real world is evidently more complicated than the case where either endogenous 

or exogenous factors are the sole causes of extinction events, and it is highly likely 

that real-life agents in either ecosystems or economies are prey to a mixture of both. 

External factors could easily exacerbate the avalanching of an extinction event.  

 

2. Description of the model 
 

The model consists of a population of N agents which are considered to influence 

each other via a matrix of uniformly distributed interconnections Jij ∈ [-1, 1] , where 

Jij is the effect of  agent i upon agent j. This matrix encapsulates the  relationships 

between different agents as symbiotic (Jij, Jji > 0), mutually competitive (Jij, Jji < 0) or 

predatory (Jij < 0,  Jji > 0). 

 

The model can be summarised as follows. 

 

1. Jij is initialised  

  

2. Each agent has one of its Jij updated, i.e. assigned with a new value in the 

interval [-1, 1]  

3. The fitness Fi(t) of each agent is calculated, where ∑
=

=
N

j
jii tJtF

1
)()(  

4. If Fi(t) < 0 then the agent is deemed extinct and its interconnections are 

obsolete, i.e.  Jij = 0 and Jji = 0 ∀ j. 

 



  Appendix 6 

 August 2002 

Page 94 

{ 0=

wuX −= maxmin XXX <<

otherwise 
)(XP

5. Extinct agents are then replaced. A random "parent" k is chosen from the 

surviving agents. Each replacement agent i is assigned new connections such 

that  

Jij = Jkj + εij  and Jji = Jjk + εji  , where εij is a small random number drawn from 

a uniform distribution [-εmax , εmax]. 

 

6. Steps 2 to 5 are repeated for n iterations.  

 

In order to simulate the effect of external shocks on the system a random variable X(t) 

is subtracted from the fitness of each agent such that 

)()()(
1

tXtJtF
N

j
jii −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

 

 

For the purposes of comparison, X(t) is drawn from one of two distributions, either: 

1. A truncated power law distribution25 P(X):   

 

 

 

 

 

This seems reasonable as the frequency of many natural and sociological 

cataclysmic phenomena (e.g. earthquakes, wars) appear to approximate to 

power law distributions [9]. 

2. A normal distribution characterised by a mean µ and standard deviation σ.  If 

µ  ~ σ, agents will of course experience an appreciable number of  beneficial 

shocks as well as harmful shocks.  
 

We examine the effect of the model of  

• the shock in each period being common to all agents 

• each agent receiving its own specific shock in each period 
                                                 

25 If Xmin and Xmax  are specified then u can be calculated from the condition that ∫ =
max

min

1)(
X

X

dXXP   
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3. Model results  
 

3.1  Without shocks 

 

The results presented here are for N = 100 agents and are averaged over 50 

simulations each. Each simulation comprises of n=50,000 iterations of the model, of 

which the first n′ =10,000 are discarded in order to eliminate behaviour arising from 

particular initial conditions.  

 

Without external shocks, the model 

exhibits the desired power law relationship 

between extinction size S and frequency Φ 

(S ) ≈α S -β   (fig 1). 

 

A measure of the total fitness of the system 

F is given as: 

2
1 1

)(

)(

Nnn

tF
F

N

i

n

nt
i

′−
=

∑ ∑
= +′=   

i.e. the mean agent fitness as a proportion 

of its maximum possible value. The average values of β and F  over 50 simulations 

of the model are β = 2.43  and F = 0.118. The average sum of the square of the 

residuals of the line of best fit to the power law G = 11.1  

 

We now examine the model results with shocks.  

 

3.2 With common shocks drawn from a power law distribution 

 

Fig 2 shows the log extinction size vs. log frequency  plots for typical simulations 

using various power law parameters, while Table 1 shows the results averaged over 

50 simulations for β , F and G. 
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Figure 1  Log extinction size vs. log 
frequency of extinction size for a typical 
simulation. 
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Table 1 

Power law parameters Results 

Xmin Xmax w β F  G 

0.01 10.0 1.5 2.08 0.143 17.4 

0.01 10.0 2.0 2.33 0.121 10.2 

0.01 10.0 2.5 2.42 0.117 10.2 

0.1 10.0 1.5 1.96 0.158 23.2 

0.1 10.0 2.0 2.15 0.139 15.0 

0.1 10.0 2.5 2.30 0.124 10.4 

1.0 10.0 1.5 n/a26 n/a n/a 

1.0 10.0 2.0 n/a3 n/a n/a 

1.0 10.0 2.5 2.0427 0.151 23.8 

  

The extinction size vs. frequency relationship departs from a power law the more 

probable the larger shocks (i.e. the lower the magnitude of w or the higher Xmin). In 

these  

 

                                                 
26 Total extinction occurs on every simulation. 
27 Total extinction occurs the majority of simulations. 
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8 g Fig 2 Log extinction size vs. log 
frequency of extinction size for typical 
simulations 
(a) Xmin= 0.01, Xmax=10.0, w=1.5   
(b) Xmin= 0.01, Xmax=10.0, w=2.0   
(c) Xmin= 0.01, Xmax=10.0, w=2.5   
(d) Xmin= 0.1,   Xmax=10.0, w=1.5   
(e) Xmin= 0.1,   Xmax=10.0, w=2.0   
(f) Xmin= 0.1,   Xmax=10.0, w=2.5 
(g) Xmin=1.0,   Xmax=10.0, w=2.5 
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cases, the power law overpredicts the number of small extinctions which should be 

taking place. 

 

The average fitness is increased with shock magnitude and large shock frequency. 

Applying shocks is equivalent to raising the fitness threshold for extinction. Only the 

very fittest will survive; therefore the parents of replacements will on average be 

fitter, thereby imparting a greater average fitness to the population.   

 

Fig 3(a) shows the relationship (correlation coefficient ≈ 0.4) between extinction size 

and shock size for a typical simulation28. The positive correlation infers that larger 

shocks do indeed play a role in causing or exacerbating extinctions; however, the 

largest shocks are not necessarily coincident with the largest extinctions, many of 

which coincide with shocks of the smallest size. Smaller shocks are more numerous 

and so statistically more likely to coincide with a large extinction resulting from 

purely endogenous causes.  

 

Fig 3(b) introduces a lag to the extinction size to see whether shocks cause extinction 

avalanches. The correlation coefficient between X(t) and extinction size at iteration t + 

                                                 
28 Xmin = 0.1, X max = 10, w = 2.5 

Figure 3 (a) Plot showing relationship between extinction event size and shock size for a typical 
simulation using power  law shocks  (b) For the same simulation, plot showing extinction size vs. 
the shock size from the previous iteration   
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1 is much smaller (≈ 0.16); however the large shocks are coincident with subsequent 

extinctions of moderate size.  

 

3.3 With common shocks drawn from a normal distribution: 

 

Fig 4 shows the log extinction size vs. log frequency  plots for typical simulations 

using various power law parameters, while Table 2 shows the results averaged over 

50 simulations for β , F and G. 

Table 2 

 

 

 

 

 

 

 

 

 

                                                 
29 Total extinction occurs the majority of simulations. 

Normal disbn 

parameters 
Results 

µ σ β F  G 

0 0.5 2.45 0.120 11.3 

0 1.0 2.42 0.128 13.9 

0 2.0 2.34 0.147 19.0 

1 0.5 2.36 0.121 13.1 

1 1.0 2.37 0.129 15.8 

1 2.0 2.26 0.147 23.3 

2 0.5 2.26 0.121 18.0 

2 1.0 2.29 0.129 18.3 

2 2.0 2.1729 0.147 26.8 
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It appears that the larger σ  is, the greater the deviation from the power law. 

Increasing µ also causes deviation, but increasing the likelihood of large shocks (i.e. 

increasing σ)  is more influential. Again, F  is increased by raising the likelihood of 

large extinctions, for the same reason argued above. 
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Figure 4 Log extinction size vs. log frequency of extinction size for typical simulations 
(a) µ = 0, σ  = 0.5 (b) µ = 0, σ  = 1 
(c) µ = 0, σ  = 2  (d) µ = 1, σ  = 0.5 
(e) µ = 1, σ  = 1  (f) µ = 1, σ  = 2 
(g) µ = 2, σ  = 0.5 (h) µ = 2, σ  = 1 
(i) µ = 2, σ  = 2 
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 3.4  Individual agent shocks drawn from a power law 

 

Clearly, not every agent might react identically to an external shock. Here, X(t) is 

replaced by Xi(t), i.e. each agent receives an individual shock (drawn from a power 

law distribution). 

 

Table 3 

Power law parameters Results 

Xmin Xmax w β F  G 

0.01 10.0 1.5 2.52 0.127 14.0 

0.01 10.0 2.0 2.42 0.118 11.6 

0.01 10.0 2.5 2.42 0.117 11.8 

0.1 10.0 1.5 2.65 0.137 15.0 

0.1 10.0 2.0 2.54 0.125 11.8 

0.1 10.0 2.5 2.46 0.119 11.3 

1.0 10.0 1.5 2.47 0.141 18.8 

1.0 10.0 2.0 2.45 0.138 18.4 

1.0 10.0 2.5 2.45 0.133 17.9 

 

The relevant plots are not included in order to save space. In general, the power law 

underpredicts the number of small extinctions (in this respect applying individual 

shocks differs from applying a general shock). F increases, but to a much less 

marked extent, as fewer weak potential parents are wiped out. 

 

3.5 Individual agent shocks drawn from a normal distribution 

 

As above, each agent receives an individual shock, this time drawn from a normal 

distribution. 
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Again, the power law underpredicts the number of small extinctions. F follows a 

similar, but less pronounced, pattern to the case when general shocks are applied. The 

goodness of fit to the power law is not greatly altered. 

 

4. Conclusions 

 

A model of endogenous agent extinction has been presented and modified so that 

agents experience in addition external shocks.  We examine shocks drawn from power 

law and Gaussian distributions.  Further, we examine a version  of the model in which 

a shock is common to all agents in any given period, and a version in which each 

agent receives its own specific shock in each period. 

 

In general, the basic properties of the model are not affected.  The relationship 

between the frequency and size of extinctions which exists in the model without 

shocks is very similar to that of the model including shocks. 

 

We show that the power law relationship between extinctions size and frequency 

normally shown by the model degenerates (but not sufficiently to negate the power 

Normal disbn 

parameters 
Results 

µ σ β F  G 

0 0.5 2.42 0.117 11.3 

0 1.0 2.51 0.121 10.7 

0 2.0 2.66 0.131 10.8 

1 0.5 2.42 0.117 10.4 

1 1.0 2.43 0.122 12.0 

1 2.0 2.57 0.132 12.7 

2 0.5 2.29 0.120 16.7 

2 1.0 2.34 0.122 14.8 

2 2.0 2.50 0.132 13.6 
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law characteristics) when the expected value of shocks increases, or the likelihood of 

large shocks increases. 

 

Adding external shocks to the model in the manner described here is equivalent to 

raising the threshold fitness for survival. The average fitness of the system increases 

after larger shocks have been applied. This is due to the fitness of parents increasing 

on average as large shocks wipe out weaker potential parents. This effect is not as 

marked when individual shocks are applied, as only a selection of weaker parents will 

be made extinct. 

 

There is a moderate correlation between shock size and extinction size. Larger shocks 

do not necessarily lead to the largest extinctions because they may strike at a time 

when the system is particularly robust. There is little correlation between shock size 

and extinction size in the subsequent iteration. This is because the agents tipped over 

the extinction threshold by shocks may or may not be heavily influential on the others, 

i.e. they may or may not be keystone agents. Extinctions of moderate size appear to be 

common in the iterations following large shocks; although there will be many 

replacement agents with high fitness, some keystones may have been wiped out.  
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