

Reference number

ECMA-123:2009

© Ecma International 2009

ECMA-404
1st Edition / October 2013

The JSON Data

Interchange Format

 COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2013

patrick
Stamp

© Ecma International 2013 i

Contents Page

1 Scope .. 1

2 Conformance ... 1

3 Normative references .. 1

4 JSON Text... 1

5 JSON Values .. 2

6 Objects.. 2

7 Arrays ... 3

8 Numbers ... 3

9 String .. 4

ii © Ecma International 2013

Introduction

JSON is a text format that facilitates structured data interchange between all programming languages. JSON
is syntax of braces, brackets, colons, and commas that is useful in many contexts, profiles, and applications.
JSON was inspired by the object literals of JavaScript aka ECMAScript as defined in the ECMAScript
Language Specification, third Edition [1]. It does not attempt to impose ECMAScript’s internal data
representations on other programming languages. Instead, it shares a small subset of ECMAScript’s textual
representations with all other programming languages.

JSON is agnostic about numbers. In any programming language, there can be a variety of number types of
various capacities and complements, fixed or floating, binary or decimal. That can make interchange between
different programming languages difficult. JSON instead offers only the representation of numbers that
humans use: a sequence of digits. All programming languages know how to make sense of digit sequences
even if they disagree on internal representations. That is enough to allow interchange.

JSON text is a sequence of Unicode code points. JSON also depends on Unicode in the hex numbers used in

the \u escapement notation.

Programming languages vary widely on whether they support objects, and if so, what characteristics and
constraints the objects offer. The models of object systems can be wildly divergent and are continuing to
evolve. JSON instead provides a simple notation for expressing collections of name/value pairs. Most
programming languages will have some feature for representing such collections, which can go by names like

record, struct, dict, map, hash, or object.

JSON also provides support for ordered lists of values. All programming languages will have some feature for

representing such lists, which can go by names like array, vector, or list. Because objects and arrays

can nest, trees and other complex data structures can be represented. By accepting JSON’s simple
convention, complex data structures can be easily interchanged between incompatible programming
languages.

JSON does not support cyclic graphs, at least not directly. JSON is not indicated for applications requiring
binary data.

It is expected that other standards will refer to this one, strictly adhering to the JSON text format, while
imposing restrictions on various encoding details. Such standards may require specific behaviours. JSON
itself specifies no behaviour.

Because it is so simple, it is not expected that the JSON grammar will ever change. This gives JSON, as a

foundational notation, tremendous stability. JSON was first presented to the world at the JSON.org website in

2001. JSON stands for JavaScript Object Notation.

This Ecma Standard was adopted by a General Assembly postal vote in October 2013.

© Ecma International 2013 iii

"COPYRIGHT NOTICE

© 2013 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it
may be prepared, copied, published, and distributed, in whole or in part, provided that the above
copyright notice and this Copyright License and Disclaimer are included on all such copies and
derivative works. The only derivative works that are permissible under this Copyright License and
Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features
that provide accessibility,

(iii) translations of this document into languages other than English and into differe nt formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g.
by copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official
version, the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma Internati onal or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

iv © Ecma International 2013

© Ecma International 2013 1

The JSON Data Interchange Format

1 Scope

JSON is a lightweight, text-based, language-independent data interchange format. It was derived from the
ECMAScript programming language, but is programming language independent. JSON defines a small set of
structuring rules for the portable representation of structured data.

2 Conformance

Conforming JSON text is a sequence of Unicode code points that strictly conforms to the JSON grammar.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 10646:2012, Information Technology – Universal Coded Character Set (UCS)

The Unicode Consortium. The Unicode Standard, Version 6.2.0, (Mountain View, CA: The Unicode
Consortium, 2012. ISBN 978-1-936213-07-8)

http://www.unicode.org/versions/Unicode6.2.0/.

4 JSON Text

A JSON text is a sequence of tokens formed from Unicode code points that conforms to the JSON value
grammar. The set of tokens includes six structural tokens, strings, numbers, and three literal name tokens.

The six structural tokens:

[U+005B left square bracket

{ U+007B left curly bracket

] U+005D right square bracket

} U+007D right curly bracket

: U+003A colon

, U+002C comma

These are three literal name tokens:

true U+0074 U+0072 U+0075 U+0065

false U+0066 U+0061 U+006c U+0073 U+0065

http://www.unicode.org/versions/Unicode6.2.0/

2 © Ecma International 2013

null U+006E U+0075 U+006C U+006C

Insignificant whitespace is allowed before or after any token. The whitespace characters are: character
tabulation (U+0009), line feed (U+000A), carriage return (U+000D), and space (U+0020). Whitespace is not
allowed within any token, except that space is allowed in strings.

5 JSON Values

A JSON value can be an object, array, number, string, true, false, or null.

array

object

value

number

false

null

string

true

Figure 1 — value

6 Objects

An object structure is represented as a pair of curly bracket tokens surrounding zero or more name/value pairs.
A name is a string. A single colon token follows each name, separating the name from the value. A single
comma token separates a value from a following name.

{ : }valuestring

object

,

Figure 2 — object

© Ecma International 2013 3

7 Arrays

An array structure is a pair of square bracket tokens surrounding zero or more values. The values are
separated by commas. The order of the values is significant.

[]value

array

,

Figure 3 — array

8 Numbers

A number is represented in base 10 with no superfluous leading zero. It may have a preceding minus sign

(U+002D). It may have a . (U+002E) prefixed fractional part. It may have an exponent of ten, prefixed by e

(U+0065) or E (U+0045) and optionally + (U+002B) or – (U+002D). The digits are the code points U+0030

through U+0039.

Figure 4 — number

Numeric values that cannot be represented as sequences of digits (such as Infinity and NaN) are not

permitted.

4 © Ecma International 2013

9 String

A string is a sequence of Unicode code points wrapped with quotation marks (U+0022). All characters may be
placed within the quotation marks except for the characters that must be escaped: quotation mark (U+0022),
reverse solidus (U+005C), and the control characters U+0000 to U+001F. There are two-character escape
sequence representations of some characters.

\" represents the quotation mark character (U+0022).

\\ represents the reverse solidus character (U+005C).

\/ represents the solidus character (U+002F).

\b represents the backspace character (U+0008).

\f represents the form feed character (U+000C).

\n represents the line feed character (U+000A).

\r represents the carriage return character (U+000D).

\t represents the character tabulation character (U+0009).

So, for example, a string containing only a single reverse solidus character may be represented as "\\".

Any code point may be represented as a hexadecimal number. The meaning of such a number is determined
by ISO/IEC 10646. If the code point is in the Basic Multilingual Plane (U+0000 through U+FFFF), then it may

be represented as a six-character sequence: a reverse solidus, followed by the lowercase letter u, followed by

four hexadecimal digits that encode the code point. Hexadecimal digits can be digits (U+0030 through

U+0039) or the hexadecimal letters A through F in uppercase (U+0041 through U+0046) or lowercase

(U+0061 through U+0066). So, for example, a string containing only a single reverse solidus character may be

represented as "\u005C".

The following four cases all produce the same result:

"\u002F"

"\u002f"

"\/"

"/"

To escape a code point that is not in the Basic Multilingual Plane, the character is represented as a twelve-
character sequence, encoding the UTF-16 surrogate pair. So for example, a string containing only the G clef

character (U+1D11E) may be represented as "\uD834\uDD1E".

© Ecma International 2013 5

string

"
Any code point except " or \

or control character

\ "

\

quotation mark

reverse solidus

/
solidus

b
backspace

form feed

line feed

carriage return

character tabulation

4 hexadecimal digits

f

n

r

t

u

"

Figure 5 — string

6 © Ecma International 2013

© Ecma International 2013 7

Bibliography

[1] ECMA-262 (ISO/IEC 16262), ECMAScript® Language Specification, 3
rd

 edition (December 1999)

© Ecma International 2013

	OLE_LINK6
	OLE_LINK7
	DDHeadingPage1
	DDOrganization
	LibEnteteISO
	LIBTypeTitreISO
	DDTITLE4
	DDTITLE3
	DDTITLE2
	DDTITLE1
	DDDocLanguage
	DDWorkDocDate
	DDDocStage
	DDOrganization3
	DDOrganization1
	DDBASEYEAR
	DDAmno
	DDDocSubType
	DDDocType
	DDWorkDocNo
	DDpubYear
	DDRefNoPart
	DDRefGen
	DDRefNum
	DDSCSecr
	DDSecr
	DDSCTitle
	DDTCTitle
	DDWGNum
	DDSCNum
	DDTCNum
	LIBLANG
	libH2NAME
	libH1NAME
	LibDesc
	LibDescD
	LibDescE
	LibDescF
	NATSubVer
	CENSubVer
	ISOSubVer
	LIBVerMSDN
	LIBStageCode
	LibRpl
	LibICS
	LIBFIL
	LIBEnFileName
	LIBFrFileName
	LIBDeFileName
	LIBNatFileName
	LIBFileOld
	LIBTypeTitre
	LIBTypeTitreCEN
	LIBTypeTitreNAT
	LibFileEnTete
	LibEntete
	LibEnteteCEN
	LibEnteteNAT
	LIBASynchro
	LIBASynchroVF
	LIBASynchroVE
	LIBASynchroVD
	LIBPATENT
	DDEditionNo
	OLE_LINK5
	Ecma Standard 2nd page with registered logo 2013.pdf
	OLE_LINK6
	OLE_LINK7
	DDHeadingPage1
	DDOrganization
	LibEnteteISO
	LIBTypeTitreISO
	DDTITLE4
	DDTITLE3
	DDTITLE2
	DDTITLE1
	DDDocLanguage
	DDWorkDocDate
	DDDocStage
	DDOrganization3
	DDOrganization1
	DDBASEYEAR
	DDAmno
	DDDocSubType
	DDDocType
	DDWorkDocNo
	DDpubYear
	DDRefNoPart
	DDRefGen
	DDRefNum
	DDSCSecr
	DDSecr
	DDSCTitle
	DDTCTitle
	DDWGNum
	DDSCNum
	DDTCNum
	LIBLANG
	libH2NAME
	libH1NAME
	LibDesc
	LibDescD
	LibDescE
	LibDescF
	NATSubVer
	CENSubVer
	ISOSubVer
	LIBVerMSDN
	LIBStageCode
	LibRpl
	LibICS
	LIBFIL
	LIBEnFileName
	LIBFrFileName
	LIBDeFileName
	LIBNatFileName
	LIBFileOld
	LIBTypeTitre
	LIBTypeTitreCEN
	LIBTypeTitreNAT
	LibFileEnTete
	LibEntete
	LibEnteteCEN
	LibEnteteNAT
	LIBASynchro
	LIBASynchroVF
	LIBASynchroVE
	LIBASynchroVD
	LIBPATENT
	DDEditionNo
	OLE_LINK5

