UGT2B7 (UDP-Glucuronosyltransferase-2B7) is a phase II metabolism isoenzyme found to be active in the liver, kidneys, epithelial cells of the lower gastrointestinal tract and also has been reported in the brain. In humans, UDP-Glucuronosyltransferase-2B7 is encoded by the UGT2B7 gene.
The UGTs serve a major role in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. UGT2B7 has unique specificity for 3,4-catechol estrogens and estriol, suggesting that it may play an important role in regulating the level and activity of these potent estrogen metabolites.
This enzyme is located on the endoplasmic reticulum and nuclear membranes of cells. Its function is to catalyse the conjugation of a wide variety of lipophilic aglycon substrates with glucuronic acid, using uridine diphosphate glucuronic acid.
Together with UGT2B4, UGT2B7 is capable of glucosidation of hyodesoxycholic acid in the liver, but, unlike the 2B4 isoform, 2B7 is also able to glucuronidate various steroid hormones (androsterone, epitestosterone) and fatty acids. It is also able to conjugate major classes of drugs such as analgesics (morphine), carboxylic nonsteroidal anti-inflammatory drugs (ketoprofen), and anticarcinogens (all-trans retinoic acid). UGT2B7 is the major enzyme isoform for the metabolism of morphine to the main metabolites, morphine-3-glucuronide (M3G) which has no analgesic effect and morphine-6-glucuronide (M6G), which has analgesic effects less potent than morphine. As a consequence, altered UGT2B7 activity can significantly affect both the effectiveness and side-effects of morphine, as well as some related opiate drugs.