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Glossary

Analysis of variance (ANOVA): when metric data (e.g. response times) are

measured in each of several groups, traditional ANOVA decomposes the

variance among all data into two parts: the variance between group means and

the variance among data within groups. The underlying descriptive model can

be used in Bayesian data analysis.

Bayes’ rule: a simple mathematical relationship between conditional prob-

abilities that relates the posterior probability of parameter values, on the one

hand, to the probability of the data given the parameter values, and the prior

probability of the parameter values, on the other hand. The formula is named

after Thomas Bayes (1702–1761), an English minister and mathematician.

Chi-square(x2): the Pearson x2 value is a measure of the discrepancy between

the frequencies observed for nominal values and what would be expected

according to a (null) hypothesis. In NHST, the sampling distribution of the

Pearson x2 distribution is approximated by the continuous x2 distribution when

the expected frequencies are not too small.

Descriptive versus explanatory model: descriptive models summarize relations

between variables without ascribing mechanistic meaning to the functional

form or to the parameters, whereas explanatory models do make such

semantic ascriptions. Bayesian inference for descriptive models of data is

desirable regardless of whether Bayesian explanatory models account for

cognition.

p value: in NHST, the p value is the probability of obtaining the observed value

of a sample statistic (such as t, F, x2) or a more extreme value if the data were

generated from a null-hypothesis population and sampled according to the

intention of the experimenter, where the intention could be to stop at a pre-

specified sample size or after a pre-specified sampling duration, or to check

after every 10 observations and stop either when significance is achieved or at
Although Bayesian models of mind have attracted great
interest from cognitive scientists, Bayesian methods for
data analysis have not. This article reviews several advan-
tages of Bayesian data analysis over traditional null-hy-
pothesis significance testing. Bayesian methods provide
tremendous flexibility for data analytic models and yield
rich information about parameters that can be used
cumulatively across progressive experiments. Because
Bayesian statistical methods can be applied to any data,
regardless of the type of cognitive model (Bayesian or
otherwise) that motivated the data collection, Bayesian
methods for data analysis will continue to be appropriate
even if Bayesian models of mind lose their appeal.

Cognitive science should be Bayesian even if cognitive
scientists are not
An entire issue of Trends in Cognitive Sciences was
devoted to the topic of Bayesian models of cognition [1]
and there has been a surge of interest in Bayesian models
of perception, learning and reasoning [2–6]. The essential
premise of the Bayesian approach is that the rational,
normative way to adjust knowledge when new data are
observed is to apply Bayes’ rule (i.e. the mathematically
correct formula) to whatever representational structures
are available to the reasoner. The promise that spon-
taneous human behavior might be normatively Bayesian
on some to-be-discovered representation has driven a
surge in theoretical and empirical research.

Ironically, the behavior of researchers themselves has
often not been Bayesian. There are many examples of a
researcher positing a Bayesian model of how people per-
form a cognitive task, collecting new data to test the
predictions of the Bayesian model, and then using non-
Bayesianmethods to make inferences from the data. These
researchers are usually aware of Bayesian methods for
data analysis, but the mortmain of 20th century methods
compels adherence to traditional norms of behavior.

Traditional data analysis has many well-documented
problems that make it a feeble foundation for science,
especially now that Bayesian methods are readily acces-
sible [7–9]. Chief among the problems is that the basis for
declaring a result to be ‘statistically significant’ is ill
defined: the so-called p value has no unique value for
any set of data. Another problem with traditional analyses
is that they produce impoverished estimates of parameter
values, with no indication of trade-offs among parameters
and with confidence intervals that are ill defined because
they are based on p values. Traditional methods also often
impose many computational constraints and assumptions
into which data must be inappropriately squeezed.
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The death grip of traditional methods can be broken.
Bayesian methods for data analysis are now accessible to
all, thanks to advances in computer software and hard-
ware. Bayesian analysis solves the problems of traditional
methods and provides many advantages. There are no p
values in Bayesian analysis, inferences provide rich and
complete information regarding all the parameters, and
models can be readily customized for different types of
data. Bayesian methods also coherently estimate the prob-
ability that an experiment will achieve its goal (i.e. the
statistical power or replication probability).

It is important to understand that Bayesianmethods for
data analysis are distinct fromBayesianmodels ofmind. In
Bayesian data analysis, any useful descriptivemodel of the
data has parameters estimated by normative, rational
methods. The descriptive models have no necessary
relation or commitment to particular theories of the
natural mechanisms that actually generated the data.
Thus, every cognitive scientist, regardless of his or her
preferredmodel of cognition, should use Bayesianmethods
for data analysis. Even if Bayesian models of mind lose
favor, Bayesian data analysis remains appropriate.

Null hypothesis significance testing (NHST)
In NHST, after collecting data, a researcher computes the
value of a summary statistic such as t or F or x2, and then
determines the probability that so extreme a value could
have been obtained by chance alone from a population with
the end of the week, whichever is sooner.
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no effect if the experiment were repeated many times. If
the probability of obtaining the observed value is small
(e.g. p < 0.05), then the null hypothesis is rejected and the
result is deemed significant.

Friends do not let friends compute p values

The crucial problem with NHST is that the p value is
defined in terms of repeating the experiment, and what
constitutes the experiment is determined by the exper-
imenter’s intentions. The single set of data could have
arisen from many different experiments, and therefore
the single set of data has many different p values. In all
the conventional statistical tests, it is assumed that the
experimenter intentionally fixed the sample size in
advance, so that repetition of the experiment means using
the same fixed sample size. But if the experiment were
instead run for a fixed duration with subjects arriving
randomly in time, then repetition of the experiment means
repeating a run of that duration with randomly different
sample sizes, and therefore the p value is different [10]. If
data collection stops for some other reason, such as not
being able to find any more subjects of the necessary type
(e.g. with a specific brain lesion) or because a research
assistant unexpectedly quits, then it is unclear how to
compute a p value at all, because we do not know what
it means to repeat the experiment. This dependence of p on
the intended stopping rule for data collection is well known
[11,12,9], but rarely if ever acknowledged in applied text-
books on NHST.

The only situation in which standard NHST textbooks
explicitly confront the dependence of p on experimenter
intention is when multiple comparisons are made. When
there are several conditions to be compared, each compari-
son inflates the probability of spuriously declaring a differ-
ence to be non-zero. To compensate for this inflation of false
alarms, different ‘corrections’ can be made to the p-value
criterion used to declare significance. These corrections go
by the names of Bonferroni, Scheffe, Tukey, Dunnett, Hsu
or a variation called the false discovery rate (FDR) [for an
excellent review, see reference 13, Ch. 5]. Each correction
specifies a penalty for multiple comparisons that is appro-
priate to the intended set of comparisons. This penalty for
exploring the data provides incentive for researchers to
feign interest in only a few comparisons and even to
pretend that various subsets of conditions are in different
‘experiments’. Indeed, it is trivial to make any observed
difference non-significant merely by conceiving of many
other conditions with which to compare the present data
and having the intention to eventually collect the data and
make the comparisons.

Poverty of point estimates

NHST summarizes a data set with a value such as t or F ,
which in turn is based on a point estimate from the data,
such as the mean and standard deviation for each group.
The point estimate is the value for the parameter that
makes themodelmost consistent with the data in the sense
of minimizing the sum squared deviation or maximizing
the likelihood (or some other measure of consistency).

Unfortunately, the point estimate provides no infor-
mation about the range of other parameter values that
294
are reasonably consistent with the data. Some researchers
use confidence intervals for this purpose. But some NHST
analyses do not easily provide confidence intervals, such as
x2 analyses of contingency-table cell probabilities. More
fundamentally, confidence intervals are as fickle as p
values because a confidence interval is simply the range
of parameter values that would not be rejected by a sig-
nificance test (and significance tests depend on the inten-
tions of the analyst). In recognition of this fact, many
computer programs automatically adjust the confidence
intervals they produce, depending on the set of intended
comparisons selected by the analyst.

Point estimates of parameters also provide no indication
of correlations between plausible parameter values. Con-
sider simple linear regression of response latency on
stimulus contrast, assuming that RT decreases as contrast
increases. Many different regression lines fall plausibly
close to the data, but lines with higher y intercepts must
have steeper (negative) slopes; hence, the intercept and
slope are (negatively) correlated. There are methods for
approximating these correlations at point estimates, but
these approximations rely on assumptions about asymp-
totic distributions for large samples.

Impotence of power computation

Statistical power in NHST is the probability of rejecting
the null hypothesis when an alternative hypothesis is true.
Because power increases with sample size, estimates of
power are often used in research planning to anticipate the
amount of data that should be collected. Closely related to
power is replication probability, which is the probability
that a result found to be significant in one experiment will
also be found to be significant in a replication of the
experiment. Replication probability can be used to assess
the reliability of a finding. To estimate power and replica-
tion probability, the point estimate from a first experiment
is used as the alternative hypothesis to contrast with the
null hypothesis. Unfortunately, a point estimate yields
little information about other alternative hypotheses that
are reasonably consistent with the initial data. The other
alternative hypotheses can span a very wide range, with
each one yielding very different estimates of power and
replication probability. Therefore, the replication prob-
ability has been determined to be ‘virtually unknowable’
[14]. Thus, NHST in combination with point estimation
leaves the scientist with unclear estimates of power and
replication probability, and hence provides a very weak
basis for assessing the reliability of an outcome.

Computational constraints

As outlined above, NHST provides a paucity of dubious
information. To obtain this, the analyst is also subject to
many computational constraints. For example, in analysis
of variance (ANOVA), computations are much easier to
conduct and interpret if all conditions have the same
number of data points (i.e. so-called balanced designs)
[Ref. 13, pp. 320–343]. Standard ANOVA also demands
homogeneity of variances across the conditions. Inmultiple
regression, computations (and interpretation of results)
can go haywire if the predictors are strongly correlated.
In x2 analyses of contingency tables, the expected values



Box 1. Example of a Bayesian model for data analysis

Consider an experiment that investigated the difficulty of learning a

new category structure after learning a previous structure [38].

Figure 1 shows a schematic of the four types of structure. All

participants learned the top structure and then each person was

trained on one of the four structures in the bottom of the diagram. In

the initially learned structure, only the two horizontal dimensions

are relevant and the vertical dimension is irrelevant. In the reversal

shift, all category assignments are reversed. In the relevant shift,

one of the initially relevant dimensions remains relevant. In the

irrelevant shift, the initially irrelevant dimension becomes relevant.

In the compound shift, a different compound of dimensions is

relevant. Different theories of learning make different predictions for

the relative difficulty of these shifts. Variations of this relevance-shift

design have been used by subsequent researchers [39,40] because it

decouples cue relevance from outcome correlation and it compares

reversal and relevance shifts without introducing novel stimulus

values.

A Bayesian model for this design is shown in Figure 2. The

essential ideas are simple: the accuracy observed for each individual

in the shift phase is assumed to reflect the underlying true accuracy

for that individual, and individual accuracy values are assumed to

come from a distribution determined by the shift difficulty. (Other

distributions for individual differences could be used if desired [e.g.

41,42].) The primary goal of the analysis is to estimate the

parameters of the group distributions. These parameters include

the mean mc for the cth condition and the certainty kc, which can be

thought of as the reciprocal of standard deviation: high certainty

implies a narrow spread for accuracy for that condition. The group

estimates mutually inform each other via the global-level distribu-

tions, which provide shrinkage of the group estimates. The prior

constants were chosen as only mildly informed.

Figure 1. Four types of shift trained in a learning experiment [38]. The stimuli had

three binary-valued dimensions, indicated by the cube edges, and each stimulus

had an experimenter-specified binary category label, indicated by the color of the

disk at each corner. More information is in Box 1. [Adapted with permission from

Ref. 38].
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should be approximately 5 or greater for approximated p
values to be adequate. Various analyses suffer when data
points are missing. There are numerous other compu-
tational strictures when pursuing point estimates and
NHST.

A feeble foundation for empirical science

In summary, when a researcher conducts NHST, the
analysis typically begins with many restrictive compu-
tational assumptions and the result is a point estimate
of parameters, with no clear range of other plausible
parameter values, little information about how the
parameter values trade off against each other, estimates
of power and replication probability that can be ‘virtually
unknowable’ [14] and a declaration of significance based on
a p value that depends on the experimenter’s intention for
stopping data collection and the analyst’s inquisitiveness
about other conditions.

Bayesian data analysis
In Bayesian data analysis, the researcher uses a descrip-
tive model that is easily customizable to the specific situ-
ation without the computational restrictions in
conventional NHSTmodels. Before considering any newly
collected data, the analyst specifies the current uncer-
tainty for parameter values, called a prior distribution,
that is acceptable to a skeptical scientific audience. Then
Bayesian inference yields a complete posterior distri-
bution over the conjoint parameter space, which indicates
the relative credibility of every possible combination of
parameter values. In particular, the posterior distribution
reveals complete information about correlations of cred-
ible parameter values. Bayesian analysis also facilitates
straightforward methods for computing power and repli-
cation probability. There are no p values and no correc-
tions for multiple comparisons, and there is no need to
determine whether the experimenter intended to stop
when n = 47 or ran a clandestine significance test when
n = 32.Moreover, Bayesiananalysis can implement cumu-
lative scientific progress by incorporating previous knowl-
edge into the specification of the prior uncertainty, as
deemed appropriate by peer review. This section briefly
explains each of these points, with an accompanying
example.

Model flexibility and appropriateness

In Bayesian data analysis, the descriptive model can be
easily customized to the type and design of the data. For
example, when the dependent variable is dichotomous (e.g.
correct or wrong) instead of metric (e.g. response time) and
when there are several different treatment groups, then a
model analogous to ANOVA can be built that directly
models the dichotomous data without assuming any
approximations to normality. Box 1, with its accompanying
Figures 1 and 2, provides a detailed example. TheBayesian
model also has no need to assume homogeneity of variance,
unlike NHST ANOVA.

Bayesian inference is also computationally robust.
There is no difficulty with unequal numbers of data points
in different groups of an experiment (unlike standard
methods for NHST ANOVA). There is no computational
problem when predictors in a multiple regression are
strongly correlated (unlike least-squares point estimation).
There is no need for expected values in a contingency table
to exceed 5 (unlike NHST x2 tests). Bayesian methods do
not suffer from these problems because Bayesian inference
effectively applies to one datum at a time. When each
datum is considered, the posterior distribution is updated
to reflect that datum.

Although this article highlights the use of conventional
descriptive models, Bayesian methods are also advan-
tageous for estimating parameters in other models, such
as multidimensional scaling [15], categorization [16], sig-
nal detection theory [17], process dissociation [18] and
domain-specific models such as children’s number knowl-
[(Figure_1)TD$FIG]
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[(Figure_2)TD$FIG]

Figure 2. Diagram of hierarchical model for experiment in Figure 1. The distributions are represented by iconic caricatures, which are not meant to indicate the actual shape

of the prior or posterior distributions. The model uses 12 group and global parameters, as well as 240 individual parameters. At the bottom of the diagram, the number

correctly identified by individual j for condition c is denoted zcj. This number represents the underlying accuracy ucj for that individual. The different individual accuracy

value come from a beta distribution for that condition, which has mean mc and certainty kc. These group-level estimates of mc and kc are the parameters of primary interest.

The group-level parameters come from global-level distributions, whereby data from one group can influence estimates for other groups. Shrinkage for the group means is

estimated by the global certainty kmc and shrinkage for the group certainties is estimated by the global standard deviation sg. The top-level prior distributions are vague and

only mildly informed. The top-level g distributions could be replaced by uniform or folded-t distributions [43].
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edge [19], amongmany others. Parameters in conventional
models have a generic descriptive interpretation, such as a
slope parameter in multiple linear regression indicating
how much the predicted value increases when the predic-
tor value increases. Parameters in other models have more
domain-specific interpretation, such as a position
parameter in multidimensional scaling indicating relative
location on latent dimensions in psychological space.

Richly informative inferences

Bayesian analysis delivers a posterior distribution that
indicates the relative credibility of every combination of
parameter values. This posterior distribution can be
examined in any way deemed meaningful by the analyst.
In particular, any number of comparisons across group
parameters can be made without penalty because the
posterior distribution does not change when it is examined
from different perspectives. Box 2, with Figures 3 and 4,
provides an example.
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The posterior distribution inherently provides credible
intervals for the parameter estimates (without reference to
sampling distributions, unlike confidence intervals in
NHST). For example, in contingency table analysis, cred-
ible intervals for cell probabilities are inherent in the
analysis, unlike x2 tests. The posterior distribution inher-
ently shows covariation among parameters, which can be
very important for interpreting descriptive models in
applications such as multiple regression.

Coherent power analysis and replication probability

In traditional power analysis, the researcher considers a
single alternative value for the parameter and determines
the probability that the null hypothesis would be rejected.
This type of analysis does not take into account uncertainty
for the alternative value. The replication probability,
which is related to power, is the probability that rejection
of the null hypothesis would be achieved (or not) if data
collection were conducted a second time. Because point



Box 2. The posterior distribution and multiple comparisons

The full posterior distribution for the model in Figure 2 is a joint

distribution over the 252-dimensional parameter space. Full details

of how to set up and execute a Bayesian analysis are provided in

[20]. The group-level parameters are shown in Figure 3. Each point

is a representative value sampled from the posterior distribution.

Note that credible parameter values can be correlated; for example,

within group 2 there is a positive correlation (r = 0.29) between m2

and k2.

In the actual data, the median accuracy is 0.531 for condition 4 and

0.906 for condition 1, a difference of 0.375. But in the posterior

distribution, the median m is 0.598 for condition 4 and 0.886 for

condition 1, a difference of only 0.288. This compression of the

estimates relative to the data is one manifestation of shrinkage,

which reflects the prior knowledge that all the groups come from the

same global population.

The prior distribution at the top level of the model was only mildly

informed by previous knowledge of human performance in this type

of experiment. The posterior distribution changes negligibly if the

prior information is changed within any reasonable range, because

the data set is moderately large and the hierarchical structure of the

model means that low-level parameters can be mutually con-

strained via higher-level estimates.

The posterior distribution can be examined from arbitrarily many

perspectives to extract useful comparative information. For example,

to assess the magnitude of difference between the means of the

reversal and relevant conditions, the difference mRev � mRel is

computed at every representative point and the distribution of those

differences is inspected, as shown in the upper-left histogram of

Figure 4. It is evident that the modal difference is 0.097 and the entire

posterior distribution falls far above zero. Therefore, it is highly

credible that reversal shift is easier than relevant shift. A crucial idea is

that the posterior distribution does not change when additional

comparisons are made and there is no need for corrections for

multiple comparisons. The prior structure already provided shrink-

age, as informed by the data, which mitigates false alarms.

We can also examine differences in precision across groups. The

first histogram in the third row of Figure 4 indicates that the

precision for the reversal group is credibly higher than that for the

relevant group. This difference in within-group variability would not

be revealed by traditional ANOVA because it presumes equal

variances for all groups.

[(Figure_3)TD$FIG]

Figure 3. Credible posterior values for the group-level means mc and certainties kc for

each shift condition in Figure 1. Conditions: 1 = reversal, 2 = relevant, 3 = irrelevant,

4 = compound. The points are representative values from the continuous posterior

distribution. The program for generating the posterior distribution in Figures 3 and 4

was written in the R language [44] using the BRugs interface (BRugs user manual (the

R interface to BUGS), http://mathstat.helsinki.fi/openbugs/data/Docu/BRugs%20

Manual.html) to the OpenBUGS version [45] of BUGS [46].
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estimation in NHST yields no posterior distribution over
credible parameter values, the replication probability is
‘virtually unknowable’ [14].

By contrast, Bayesian analysis provides coherent
methods for computing the power and replication prob-
ability. Bayesian power analysis uses the posterior distri-
bution to sample many different plausible parameter
values, and for each parameter value generates plausible
data that simulate a repetition of the experiment. The
simulated data can then be assayed regarding any
research goal, such as excluding a null value or attaining
a desired degree of accuracy for the parameter estimate.
Box 3 and Figure 5 provide an example and some details
[see Ref. 20, for an extended tutorial]. The Bayesian
framework for computing power and replication prob-
ability is the best we can do, because the posterior distri-
bution over the parameter values is our best
representation of the world based on the information we
currently have. The Bayesian framework naturally incorp-
orates our uncertainty into the estimates of power and
replication probability. Other research goals involving the
highest density interval (HDI; defined and exemplified in
Figure 4) can be used to define power [21–26], as can goals
involving model comparison [22,27].
Appropriateness of the prior distribution

Bayesian analysis begins with a prior distribution over the
parameter values. The prior distribution is a model of
uncertainty and expresses the relative credibility of the
parameter values in the absence of new data. Bayesian
analysis is themathematically normativeway to reallocate
credibility across the parameter values when new data are
considered. The resulting posterior distribution is always a
compromise between the prior credibility of the parameter
values and the likelihood of the parameter values for the
data. In most applications, however, the prior distribution
is vague and only mildly informed, and therefore has little
influence on the posterior distribution (Figures 3 and 4).

Prior distributions are not covertly manipulated to
predetermine a desired posterior. Instead, prior distri-
butions are explicitly specified and must be acceptable
to the audience of the analysis. For scientific publications,
the audience consists of skeptical peer reviewers, editors
and scientific colleagues. Moreover, the robustness of con-
clusions gleaned from a posterior distribution can be
checked by running the Bayesian analysis with other
plausible prior distributions that might better accord with
different audience members.

Prior distributions should not be thought of as an innoc-
uous nuisance. On the contrary, consensually informed
prior distributions permit cumulative scientific knowledge
to rationally affect conclusions drawn from new obser-
vations. As a simple example of the importance of prior
distributions, consider a situation in which painstaking
survey work has previously established that in the general
population only 1% of subjects abuse a certain dangerous
drug. Suppose that a person is randomly selected from this
population for a drug test and the test yields a positive
result. Suppose that the test has a 99% hit rate and a 5%
false alarm rate. If we ignore the prior knowledge, we
297
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[(Figure_4)TD$FIG]

Figure 4. Posterior distributions of selected comparisons of the parameter values. The highest density interval is denoted 95% HDI, such that all values within the interval

have higher credibility than values outside the interval, which spans 95% of the distribution. Various contrasts among m and k values are shown, including complex

comparisons as motivated by different theories. For example, if difficulty in learning the shift is based only on the number of exemplars with a change in category, then

reversal should be more difficult than the other three shifts, which should be equally easy. The difference between the average for non-reversal and reversal shifts is shown

in the middle column of the second row, from which it is evident that the difference is credibly in the opposite direction. If there is no influence of the first phase on the

second, then the relevant and irrelevant structures, which have only one relevant dimension, should be easier to learn than the reversal and compound structures, which

have two relevant dimensions. The corresponding contrast is shown in the right-hand column of the second row, which indicates that zero is among the credible

differences.
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would conclude that there is at least a 95% chance that the
tested person abuses the drug. But if we take into account
the strong prior knowledge, then we conclude that there is
only a 17% chance that the person abuses the drug.

Some Bayesian analysts attempt to avoid mildly
informed or consensually informed prior distributions
and opt instead to use so-called objective prior distri-
butions that satisfy certain mathematical properties
[e.g., 28]. Unfortunately, there is no unique definition of
objectivity. Perhaps more seriously, in applications that
involve model comparison, the posterior credibility of the
models can depend dramatically on the choice of objective
prior distribution for each model [e.g., 29]. These model-
comparison situations demand prior distributions for the
models that are equivalently informed by prior knowledge.
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In summary, incorporation of prior knowledge into
Bayesian analysis is crucial (recall the drug test example)
and consensual (as in peer review). Moreover, this can be
cumulative. As more research is conducted in a domain,
consensual prior knowledge can become stronger, reflect-
ing genuine progress in science.

Models of cognition and models of data
The posterior distribution of a Bayesian analysis only tells
us which parameter values are relatively more or less
credible within the realm of models that the analyst cares
to consider. Bayesian analysis does not tell us what models
to consider in the first place. For typical data analysis,
descriptive models are established by convention: most
empirical researchers are familiar with cases of the gener-



Box 3. Retrospective power and replication probability

Although the posterior distributions in Figures 3 and 4 show

credibly non-zero differences between the conditions, we can ask

what was the probability of achieving that result. To conduct this

retrospective power analysis, we proceed as indicated in Figure 5.

Because our best current description of the world is the actual

posterior distribution, we use it to generate simulated data sets,

each of which is subjected to a Bayesian analysis like that for the

original data.

In 200 simulated experiments, using the same number of subjects

per group as in the original experiment, for 100% the 95% HDI for

mRev � mRel fell above zero, for 88% the HDI for mRel � mIrr fell above

zero, for 46% the HDI for mIrr � mCmp fell above zero, and for 20% the

HDI for kRev � kRel fell above zero. Thus, depending on the goal, the

experiment might have been over- or underpowered. Because our

primary interest is in the mc parameters, follow-up experiments

should reallocate subjects from the relevant condition to the

compound condition. Unlike traditional ANOVA [13, pp. 320–343],

Bayesian computations are not challenged by so-called unbalanced

designs that have unequal subjects per condition.

We might also be interested in the probability of reaching the

research goal if we were to replicate the experiment (i.e. run the

experiment a second time). In 200 simulated experiments using the

actual posterior distribution as the generator for simulated data, and

using the actual posterior distribution as the prior distribution for

the Bayesian analysis (for detailed methods see [20]), for 100% the

95% HDI for mRev � mRel fell above zero, for 99% the HDI for

mRel � mIrr- fell above zero, for 85% the HDI for mIrr � mCmp fell above

zero and for 96% the HDI for kRev � kRel fell above zero. Thus, the

replication probability is computed naturally in a Bayesian frame-

work. In NHST, the replication probability is difficult to compute and

interpret [14] because there is no posterior distribution to use as a

data simulator.
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alized linear model [30,31] such as linear regression, logis-
tic regression and ANOVA. Given this space of models, the
rational approach to infer what parameter values are most
credible is Bayesian. Therefore, cognitive scientists should
use Bayesian methods for analysis of their empirical data.
Advanced introductions can be found in [32–36] and an
accessible introduction including power analyses can be
found in [20]. Bayesian methods for data analysis are
[(Figure_5)TD$FIG]
Figure 5. Bayesian power analysis. The upper panel shows an actual analysis in

which the real world generates one sample of data and Bayesian analysis uses a

prior distribution acceptable to a skeptical audience, thereby generating the actual

posterior distribution. The lower panel shows a retrospective power analysis. The

parameter values of the actual posterior distribution are used to generate multiple

simulated data sets, each of which is subjected to Bayesian analysis. When

computing the replication probability, the prior distribution is replaced by the

actual posterior distribution because the replication builds on the previous

experiment (process not shown) [20].
available now and will be the preferred method for the
21st century [37], regardless of whether or not cognitive
scientists invent sustainable Bayesian models of mind.
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