
Extending capabilities to better
utilize the Windows*-based cluster
RWTH Aachen University* adopts Intel® Parallel Studio to help developers
more quickly move forward with multicore applications

Company RWTH Aachen University*, one of Germany’s foremost technical universities, operates some of the
largest high performance computing (HPC) clusters in Europe. Offering both compute and consultative
resources to the greater European community of universities and research labs, Aachen’s technical
staff has become a hub for parallelism. Its Center for Computing and Communication helps ease this
transition with consulting and hands-on assistance for clients that include mechanical engineers
writing their own code and conducting detailed analysis.

Mission Aachen’s main goal is to move clients to the Windows*-based cluster. With a long history of supporting
various high-performance applications, Aachen is also a driving force in the OpenMP community.

Challenge Move clients from Linux* to Windows* to maximize the benefit of all the cluster processor cores.
The university also wants to help clients develop applications based on a proper parallelization
strategy, while addressing the many complex issues related to porting and parallelization.

Results The capabilities of Aachen and its clients were extended, facilitating better use of parallelism.

Impact Intel® Parallel Studio provided a simple approach to performing analysis and enhanced productivity.

Challenge: why Aachen University benefits from utilizing parallelism
“Everything is parallel today and for the future. Serial programming is dying out,” according to Christian Terboven, technical

engineer at Aachen’s Center for Computing and Communication. With that reality in mind, Aachen typically begins OpenMP*

parallelization with runtime analysis to identify opportunities for parallelization of compute-intensive hotspots.

A priority for Aachen’s clients is increasing performance on nodes—which increases the likelihood of creating data races and

other common parallelization errors. Having the tools to quickly identify data races, evaluate code, and look for performance

improvements is critical to helping these advanced developers for whom parallelization is secondary to solving the

problems at hand.

Results
Intel Parallel Studio provided better support for debugging, correctness, features, OpenMP 3.0, etc., while integration with

Visual Studio 2008* increased clients’ parallelism capabilities. These advancements enabled both experts and parallelism

novices to move forward with applications developed for multicore, and supported Aachen’s educational mission by

shortening the parallelism learning curve for clients.

The integration of Intel Parallel Studio into the familiar Microsoft Visual Studio development environment and the ease-

of-use of the GUI were pluses, particularly for clients who are competent professional developers, but relatively new to

bringing parallelism to their applications..

“Intel® Parallel
Studio extends
Microsoft Visual
Studio* to provide
an end-to-end
integrated
parallelism
development
environment.”
Christian Terboven
Technical Engineer Center
for Computing and
Communication
RWTH Aachen University

Success Brief
Intel® Developer Products

Intel® Parallel Studio for
Microsoft Visual Studio*

Research

How Intel Parallel Studio Assisted
Aachen used Intel Parallel Studio throughout the development life cycle, from runtime

analysis and serial tuning, to finding hotspots, debugging, and correctness checking.

With Intel Parallel Studio, the Visual Studio environment is extended to make it easier to

develop parallel applications, even by those new to parallelism, providing the foundation

for applications that can get the most performance on multicore platforms.

Intel® Parallel Composer significantly extended Visual Studio debugger capabilities,

providing new debugging views for task parallelism. The tool includes hard-to-find

debugger capabilities for OpenMP 3.0. While parallel development can easily cause data

races, the problems can be hard to find with traditional debuggers, making Intel Parallel

Composer especially important during the build process.

Intel® Parallel Inspector allowed comparison of serial and parallel performance profiles.

Thread utilization information per function helped users evaluate the scalability and

efficiency of their parallelization efforts. Easily accessible data on threading errors was

critical for finding common OpenMP programming errors, such as data races.

Intel® Parallel Amplifier provided a detailed hotspot-based display of analysis results

that led users directly to the hotspots impacting application performance. Getting data

at the source line level frequently yielded surprising results for users, indicating that this

view should be examined before initial parallelization is carried out. .

Intel® Parallel Studio brings comprehensive parallelism

to C/C++ Microsoft Visual Studio* application

development.

Parallel Studio was created in direct response to the

concerns of software industry leaders and developers.

From the way the products work together to support

the development life cycle to their unique feature sets,

Parallel Studio makes parallelism easier and more viable

than ever before.

The tools are designed so those new to parallelism can

learn as they go, and experienced parallel programmers

can work more efficiently and with more confidence.

Parallel Studio is interoperable with common parallel

programming libraries and API standards, such as Intel®

Threading Building Blocks (Intel® TBB) and OpenMP*,

and provides an immediate opportunity to realize the

benefits of multicore platforms.

Build Applications for Multicore

Intel® Parallel Composer is part of the larger Intel®

Parallel Studio and brings an unprecedented breadth of

parallelism development options for developers using

Microsoft Visual C++*. Its combination of compilers,

libraries, and an extension to the Microsoft Visual

Studio debugger supports easier, faster multithreading

of serial and parallel applications.

Easily Find Memory and Threading Errors

Intel® Parallel Inspector combines threading and

memory error checking into one powerful error checking

tool. It helps increase the reliability, security, and

accuracy of C/C++ applications from within Microsoft

Visual Studio*. Intel® Parallel Inspector uses dynamic

instrumentation that requires no special test builds or

compilers, so it’s easier to test code more often.

Optimize Performance and Scalability

Intel® Parallel Amplifier makes it simple to quickly find

multicore performance bottlenecks without needing

to know the processor architecture or assembly

code. Parallel Amplifier takes away the guesswork

and analyzes performance behavior in Windows*

applications, providing quick access to scaling

information for faster and improved decision making.

Hotspot-based display of analysis result

(OpenMP*-specific) automated data race detection

2

© 2010 Intel Corporation. All rights reserved. Intel, the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured
by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to
evaluate the performance of systems or components they are considering purchasing.

For more information on performance tests and on the performance of Intel products, visit http://www.intel.com/performance/resources/limits.htm.

1210/BLA/CMD/PDF 	 322256-001US

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize
for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel
compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors.
For a detailed description of Intel compiler options, including the instruction sets and specific microprocessors they
implicate, please refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options.” Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and
Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely will
get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.

Notice revision #20101101

