
Full throttle:
OpenMP* 4.0

Introducing
Intel® Cluster Studio XE 2013 SP1

Issue

16
2013

FE
AT

U
R

E

Share with a friendSign up for future issues

CONTENTS

© 2013, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Core, Intel Inside, Cilk
Plus, Pentium, VTune, VPro, Xeon and Xeon Phi are trademarks of Intel Corporation in the U.S.
and/or other countries. *Other names and brands may be claimed as the property of others.

Profiling MPI Communications—Techniques for High Performance 17

By James Tullos

Focuses on Intel® Trace Analyzer and Collector (ITAC), a performance analysis tool which is part of
Intel® Cluster Studio XE SP1. ITAC provides the ability to profile and analyze MPI applications to find areas for
performance improvement.

Introducing Intel® Cluster Studio XE 2013 SP1 4

By James Tullos

Provides a quick reference to the newest features of this HPC software development tool suite. These include
the latest improvements to the Intel® MPI Library and the Intel® Trace Analyzer and Collector to help distributed
memory programs run faster and more effectively.

Pexip Speeds Videoconferencing with Intel® Parallel Studio XE 30

By Stephen Blair-Chappell

See how Pexip has been able to match, and even exceed, the performance of traditional conferencing systems—
designing a cost-effective alternative with expanded processing capabilities.

Letter from the Editor 3
Performance Hits the Streets

By James Reinders

Full throttle: OpenMP* 4.0 6
By Michael Klemm and Christian Terboven

OpenMP takes a quantum leap with new features supporting OpenMP tasks, SIMD instructions, and the effective
integration of application code, third-party libraries, and hardware to achieve a highly efficient solution.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

LETTER FROM THE EDITOR
James Reinders, Director of Parallel Programming Evangelism at Intel Corporation.

James is a coauthor of two new books from Morgan Kaufmann, Intel® Xeon Phi™ Coprocessor
High Performance Programming (2013), and Structured Parallel Programming (2012). His other
books include Intel® Threading Building Blocks: Outfitting C++ for Multicore Processor Parallelism
(O’Reilly Media, 2007, available in English, Japanese, Chinese, and Korean), and VTune™
Performance Analyzer Essentials (Intel Press, 2005).

Performance Hits the Streets
High-performance computing (HPC) is no longer the provenance of research clusters and high-speed stock
trades. HPC capabilities are now in demand by a broad range of vertical industries and global enterprises
seeking to leverage the competitive advantage of big data and the performance opportunity of real-time
everything. This issue focuses on the HPC software tool capabilities and programming models that are both
challenging and inspiring developers and software industry decision makers.

Our feature article, Full throttle: OpenMP* 4.0, explores a quantum leap in OpenMP features, supporting task-
based, heterogeneous programming models applicable beyond the scientific and research community.

Introducing Intel® Cluster Studio XE 2013 SP1 provides a brief overview of the newest features of this HPC
software development tool suite. Find out how to apply capabilities from distributed memory and MPI
programming to enhanced support for Infiniband* fabrics, while maximizing performance with the Intel® Xeon
Phi™ coprocessor.

Profiling MPI Communications—Techniques for High Performance takes a close look at optimization techniques
for MPI application performance. You’ll find techniques for finding—and correcting—HPC application bottlenecks
and imbalances.

Pexip Speeds Videoconferencing with Intel® Parallel Studio XE provides a case study on the optimization
of enterprise-class productivity tools. This innovative start-up company, founded by former Cisco and
Tandberg executives, is tapping into the performance gains made possible, in part, by Intel® software tools to
differentiate its product and support real-time data processing.

Whether you are designing the next wave of NASA exploration, creating analytics algorithms, or reshaping
business productivity tools such as videoconferencing, we hope you will find useful techniques that support
your participation in a world on performance overdrive.

James Reinders
November 2013

3The Parallel Universe

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://lotsofcores.com
http://lotsofcores.com
http://parallelbook.com/
http://threadingbuildingblocks.org/

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

4The Parallel Universe

by James Tullos, Technical Consulting Engineer, Intel

Introducing
Intel® Cluster Studio XE 2013 SP1

Intel® Cluster Studio XE 2013 SP1 contains all features found in Intel® Parallel Studio XE 2013 SP1, while also
supporting distributed memory programming and, in particular, MPI programming. This means it includes the
latest improvements to the Intel® MPI Library and the Intel® Trace Analyzer and Collector to help your distributed
memory programs run faster and more effectively. (For more information, see: http://software.intel.com/
en-us/articles/intel-parallel-studio-xe-2013-sp1-release-notes.)

The latest version of the Intel MPI Library includes enhanced support for all InfiniBand* fabrics. Specifically, we
have improved the process for automatically selecting DAPL providers, improved the scalability for OFA, added
support for TMI when using the Intel® Xeon Phi™ coprocessor, and added support for Microsoft
Network Direct*.

If you are running MPI jobs with the Intel Xeon Phi coprocessor in either native or symmetric mode, you now
have up to three DAPL providers for different situations. The first DAPL provider is used for small messages,
the second is used for large messages within a single physical node (including between different Intel Xeon
Phi coprocessors on the same node), and the third is used for large messages involving multiple physical nodes.
Use I_MPI_DAPL_PROVIDER_LIST to define a comma-separated list of DAPL providers to use.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/Wh3TS3
http://intel.ly/SCxiBK
http://intel.ly/SCxsJv
http://software.intel.com/en-us/articles/intel-parallel-studio-xe-2013-sp1-release-notes
http://software.intel.com/en-us/articles/intel-parallel-studio-xe-2013-sp1-release-notes

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

5The Parallel Universe

In addition to InfiniBand improvements, the product features improved pinning and job management capabilities.
If using the checkpoint-restart functionality, setting I_MPI_RESTART=1 will enable your application to
restart from a stored checkpoint. Improved pinning support for both traditional and non-uniform memory
access (NUMA) systems has been added. For Windows*, we have added Hydra as an experimental scalable
process manager. You can try it out by replacing mpiexec with mpiexec.hydra for launching your
application. Support for programs utilizing the offload model with the Intel Xeon Phi coprocessor is also now
available for host systems running Windows.

In the newest version of the Intel Trace Analyzer and Collector, we have made significant enhancements.
The graphical user interface (GUI) now includes a Trace Map, which always displays the full execution time, to
help easily navigate through a large set of data, even when zoomed. The Trace Map also gives a visual repre-
sentation of how many ranks are performing MPI calls at any given time. All of the timeline settings are now
available as preferences to allow customization of how traces are opened and viewed. Finally, you can instan-
taneously access context-sensitive help from anywhere in the GUI with the push of a button.

Please visit www.intel.com/go/clustertools to get more information about Intel Cluster Studio XE 2013
SP1 and all of the suite components. Release notes detailing the new features can be found at http://software.
intel.com/en-us/articles/intel-cluster-studio-xe-2013-sp1-release-notes. While visiting the site, please
sign up for the evaluation software and try out the new features to see the benefit for your applications. l

BLOG HIGHLIGHTS

More

Common Vectorization Tips
BY WENDY DOERNER »

Compiler Methodology for Inte® Manycore
Integrated (Inte® MIC) Architecture

Handling user-defined function calls inside
vector-loops

If you want to vectorize a loop that has a user-defined
function call, possibly refactor the code and make the
function-call a vector-elemental function.

Specifying unit-stride accesses inside
elemental functions

If your SIMD-enabled function accesses memory in unit
stride, these are the two ways you can write:

 > Uniform pointer indexed by linear integer

 > Linear pointer

__declspec(vector(uniform(a),linear(i:1)))

float foo(float *a, int i){

return a[i]++;

}

__declspec(vector(linear(a:1)))

float foo1(float *a){

return (*a)++;

}

Handling memory disambiguation inside
vector loops

Consider vectorization for a simple loop:

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/go/clustertools
http://software. intel.com/en-us/articles/intel-cluster-studio-xe-2013-sp1-release-notes
http://software. intel.com/en-us/articles/intel-cluster-studio-xe-2013-sp1-release-notes
http://software.intel.com/en-us/articles/common-vectorization-tips
http://software.intel.com/en-us/user/12598
http://intel.ly/SXMKY3

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

6The Parallel Universe

Full Throttle: OpenMP* 4.0
By Michael Klemm, Senior Application Engineer, Intel
and Christian Terboven, Deputy Head of HPC Group, RWTH Aachen University

Introduction
“Multicore is here to stay.” This single sentence accurately describes the situation of application developers and
the hardware evolution they are facing. Since the introduction of the first dual-core CPUs, the number of cores
has kept increasing. The advent of the Intel® Xeon Phi™ coprocessor has pushed us into the world of manycore—
where up to 61 cores with 4 threads each impose new requirements on the parallelism of applications to
exploit the capabilities of the hardware.

It is not only the ever-increasing number of cores that requires more parallelism in an application. Over the past
years, the width of SIMD (Single Instruction Multiple Data) registers has been growing. While the early single
instruction multiple data (SIMD) instructions of Intel® MMX™ technology used 64-bit registers, our newest
family member, Intel® Advanced Vector Instructions 512 (Intel® AVX-512), runs with 512-bit registers. That’s
an awesome 16 floating-point numbers in single precision, or eight double-precision numbers that can be
computed in one go. If your application does not exploit these SIMD capabilities, you can easily lose a factor
of 16x or 8x compared to the peak performance of the CPU.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/RBA5rF

It is key for application developers to keep up with the evolution of the hardware in terms of both number of
cores and SIMD capabilities. Today’s applications must exploit multiple levels of parallelism to make use of the
compute power of today’s and tomorrow’s CPUs. Multithreading alone will not scale to the future. In addition,
applications increasingly make use of plugins and libraries that are also written with parallelism in mind.
Programmers now need to orchestrate the cooperation between their application code, third-party libraries,
and hardware to achieve an efficient solution.

One possible solution to this are task-based programming models to describe how the application can be
decomposed into concurrent tasks that can be independently executed. In contrast to traditional thread-based
programming, benefits include a much more flexible mapping of application tasks to the execution units, and a
much easier interaction between components. Each component can just create tasks, which then automatically
intermix with all other tasks of the application. Programming models such as Intel® Cilk™ Plus, Intel® Threading
Building Blocks (Intel® TBB), or C++11’s async feature are good examples.

My Name is OpenMP*
Since its introduction in 1997, the OpenMP API emerged as a de-facto standard for shared-memory parallel
programming. With a focus on technical and scientific computing, it supports C, C++, and Fortran. OpenMP
compilers can be found for all mainstream platforms. OpenMP is “open,” since anyone can implement parts or
the full specification without any licensing costs.

OpenMP consists of directives that describe how the code should be parallelized by the OpenMP compiler. It
also defines an API and environment variables to control the runtime behavior of the code. The directives are
implemented through pragmas in C/C++ or special comments in Fortran. Because of this, OpenMP code can usually
also be compiled into a sequential version by ignoring the pragmas or comments. OpenMP makes it possible to
incrementally add parallelism to existing code as well as to focus on the compute-intensive parts of the code.

The fundamentals of OpenMP are parallel regions, in which the “master thread” is joined by so-called “worker
threads.” Outside of the parallel regions, the code runs sequentially in the master thread. Worksharing constructs
provide a means to distribute work across the team of threads (Figure 1). In this example, the for loop is cut
into the equal-size chunks which are assigned to the threads of the team. If this static distribution does not fit,

1 const int N = 1000000;
2 double A[N], B[N], C[N];
3 // initialize A, B, and C
4 // ...
5
6 #pragma omp parallel for
7 for (int i = 0; i < N; i++) {
8 A[i] = B[i] + C[i];
9 }

Simple example of
a parallel region
with worksharing of
a for loop

1

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

7The Parallel Universe

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

because it creates a load imbalance, the schedule clause can change the default distribution scheme. For
instance, schedule(dynamic, c) creates chunks of size c, and idle threads grab the next available chunk.

OpenMP also provides mechanisms to describe the visibility of data to the threads (“scoping“). It is important
to tell the OpenMP compiler what data must remain in the shared memory domain and what data needs to be
private to the individual threads. OpenMP defines clauses that can be added to the directives to control the scope
of variables. The shared clause keeps a variable in the shared space, while the private clause creates a
thread-private copy of a variable. Shared scope is the default for variables that are declared outside of a parallel
region. In Figure 1, this applies to the variables A, B, C, and the constant N. Private variables can store
different values for different threads, as needed by the loop counter i, in the example. Private copies are by
default created without initializing; firstprivate can be used to assign the value of the variable outside
of the parallel region.

The latest version 4.0 of the OpenMP API specification not only includes minor bug fixes and improvements
to existing features, it now supports a good share of features introduced with Fortran 2003. OpenMP affinity
defines a common way to express thread affinity to execution units of the hardware. Version 4.0 also comes
with major feature enhancements, some of which will be discussed in more detail here. Task groups improve
tasking by providing a better way to express synchronization of a set of tasks and to handle cancellation,
which allows to stop parallel execution. SIMD pragmas extend the thread-parallel execution to data-parallel
SIMD machine instructions, while user-defined reductions let programmers specify arbitrary reduction operations.
Possibly the biggest addition to OpenMP is support for offloading computation to coprocessor devices.

Talk the Talk, Task the Task
The growing number of cores (and threads) make it harder to fully utilize the cores with traditional worksharing
constructs for parallel loops. Irregular algorithms, such as recursions and traversals of graphs, require a completely
different approach to parallelism. Task-based models blend well with the requirements of these algorithms,
since tasks can be created in a much more flexible way.

An OpenMP task may be treated as a small package that consists of a piece of code to be executed and all the
data needed for execution. An OpenMP task is created through the #pragma omp task directive to mark
a piece of code and data for concurrent execution. The OpenMP runtime system takes care of mapping the
created tasks to the threads of a parallel region. It may defer the task for later execution by adding it to a task
queue or it may execute the task immediately.

Figure 2 shows a task-parallel version of a very simple, brute-force Sudoku* solver. The idea of the algorithm is:
1. Find an empty field without a number

2. Insert a number

3. Check the Sudoku board

4. If the solution is invalid, try the next possible number

5. If the solution is valid, go to the next field and start over

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

8The Parallel Universe

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

1 void main() {

2 // setup data structures

3 // ...

4 #pragma omp parallel // start parallel region

5 {

6 #pragma omp single // limit to one thread

7 {

8 #pragma omp taskgroup // group all tasks

9 {

10 solve_parallel(0, 0, sudoku);

11 }

12 }

13 } // end omp parallel

14 }

15

16 void solve_parallel(int x, int y, CSudokuBoard* sudoku, CSudokuBoard* & solution) {

17 if (x == sudoku->getFieldSize()) { // end of Sudoku line

18 y++; x = 0;

19 if(y == sudoku->getFieldSize()) // end of Sudoku field

20 return true;

21 }

22

23 if (sudoku->get(y, x) > 0) { // field already set

24 return solve_parallel(x+1, y, sudoku); // tackle next field

25 }

26

27 for (int i = 1; i <= sudoku->getFieldSize(); i++) { // try all possible numbers

28 if (!sudoku->check(x, y, i)) {

29 #pragma omp task firstprivate(i,x,y,sudoku) // create new solver task

30 {

31 CSudokuBoard* new_sudoku = new CSudokuBoard(*sudoku);

32 new_sudoku->set(y, x, i); // if number fits, set it

33 if (solve_parallel(x+1, y, new_sudoku)) { // tackle next field

34 #pragma omp critical // protect Sudoku solution

35 if (!solution) { // if new solution, save it

36 solution = new_sudoku;

37 #pragma omp cancel taskgroup // request cancellation

38 }

39 }

40 delete new_sudoku; // clean up

41 }

42 }

43 }

44 #pragma omp taskwait // await completion of child tasks

45

46 sudoku->set(y, x, 0); // no solution found, reset field

47 }

2

Sudoko* solver example with OpenMP* tasks and cancellation

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

9The Parallel Universe

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

To execute tasks, a parallel region first creates the team of threads. In our example, only one thread needs to
start with the Sudoku algorithm, as the algorithm starts task creation when fired up. The algorithm creates
tasks in step four above. Trying to solve the Sudoku board for different configurations of a number of a given
field can be parallelized: each task can try a different number and check the board for a valid solution.

The example also shows that combining C++ classes and OpenMP is easy. The variable sudoku is a pointer
to instances of the CSudokuBoard class and the firstprivate indicates that each task received a
private copy of that pointer. The tasks can then create a copy of the instance by invoking its copy constructor.

All threads of a team participate in executing deferred tasks from the task queue. If threads run into a barrier
or some other synchronization construct, they can check for available tasks and execute them. It is explicitly
allowed by OpenMP that undersupplied threads steal tasks from overloaded threads.

OpenMP offers several synchronization constructs to synchronize the execution of tasks. Barriers guarantee
that all tasks created before reaching a barrier have been executed when the barrier is left by the team.
The taskwait construct waits for the completion of all child tasks created by a parent task. Finally, the
taskgroup construct logically groups all tasks created within the construct and establishes an implicit
taskwait for all tasks of the group at the end of the construct.

Stopping Midstream
Sometimes you may want to abort a parallel computation because of an unforeseen situation (e.g., a failure
or error) that prevents execution from continuing cleanly. Another reason might be that the result has been
computed and it does not make much sense to continue execution. Examples are numerical algorithms or
search algorithms. With OpenMP 3.1, programmers could not easily implement such algorithms with OpenMP,
since it did not support stopping a parallel execution once it had been started. For some OpenMP constructs,
there have been workarounds. For instance, stopping a for worksharing construct involved an if statement
that turned the for loop into an empty loop that ran to its natural end without doing any more work. Despite
being a dirty hack, the loop continued to run, which costs precious energy and consumes time.

OpenMP 4.0 solves this problem by introducing directives to cleanly abort parallel execution. The key directive
is the cancel directive to request termination of the current OpenMP region. The requesting thread
immediately stops execution and notifies the remaining threads about the request for termination. If they
receive a notification, the threads check at so-called “cancellation points” and stop execution.

The cancel directive supports termination of parallel regions, worksharing constructs, and task groups.
Cancellation points are automatically inserted at barriers and the cancel directive. Programmers can add
additional cancellation points to the code through the cancellation point directive. When cancellation
occurs, the OpenMP runtime does not release any acquired resources such as allocated memory, locks, or open
files. It is the programmer’s responsibility to clean up before cancellation is requested, or before a thread hits a
cancellation point that triggers cancellation.

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

10The Parallel Universe

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

The Sudoku example in Figure 2 uses cancellation to stop searching for a solution of the Sudoku board. If
one of the solver tasks found a new solution, it first checks whether some other task has already found
another solution. If it is the first solution found, the task saves the solution and requests cancellation. We use
a critical region to avoid a potential race condition on the solution and to avoid two tasks asking
for cancellation at the same time.

In the example, we rely on the behavior of task cancellation. All tasks that have started execution may run to
completion and are not aborted unless they contain a cancellation point. All other tasks sent to the waiting
queue are discarded and considered completed. This explains why each task must always check for a solution
already found. We cannot know if a task might start execution ahead of time. Hence, we need a safety net to
avoid storing a duplicate solution if a task slips into execution shortly after one task has found solution and
requested cancellation.

SIMD Me
OpenMP 3.0 and earlier versions focused solely on multithreading and left other topics, such as data-parallel
SIMD instructions, to other paradigms. If a programmer wanted to exploit the SIMD features of modern
processors, she was left hoping for the compiler’s auto-vectorizer to be smart enough to insert appropriate
SIMD instructions. Otherwise, she had to use vendor-specific extensions, which are not easily portable and
were found to be problematic in combination with OpenMP’s parallelization directives.

OpenMP 4.0 aims to improve this situation. It defines new constructs, allowing for the portable description
of SIMD expressions and their combination with parallelization directives. The main building block for this is the
simd construct to vectorize loops (Figure 3). It advises the compiler to introduce appropriate SIMD instructions

1 #pragma omp declare simd aligned(a,b) notinbranch
2 float min(float a, float b) {
3 return a < b ? a : b;
4 }

5 #pragma omp declare simd aligned(x) uniform(y) notinbranch
6 float distance(float x, float y) {
7 return (x - y) * (x - y);
8 }

9 void distance_update(float *a, float *b, float *y, int vlen) {
10 float *ptr = b;
11 #pragma omp parallel for simd safelen(16) linear(ptr:1) aligned(a,b,y)
12 for (int i=0; i<vlen; i++) {
13 y[i] = min(sqrt(distance(a[i], 1.0)), ptr);
14 ptr += 1;
15 }
16 }

3

Vectorization of functions and loop with OpenMP* SIMD directives

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

11The Parallel Universe

ll

http://intel.ly/SXMKY3
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

12The Parallel Universe

into the serial code. The for simd and parallel for simd constructs combine this aspect with the
well-known loop-level thread parallelization, allowing for an efficient combination of both paradigms simultaneously.

The syntax of the new construct closely matches the existing OpenMP worksharing constructs and supports a
large set of their established clauses (such as private, reduction, collapse, etc.), albeit with slightly
revised semantics. Additionally, there are some new clauses that aid the compiler in creating efficient SIMD code.
The safelen clause defines the maximum possible vector length for a loop, for example, in the presence
of dependencies between loop iterations with a specific stride. Similarly important is linear, expressing a
linear dependence of a variable to the loop counter. The aligned clause specifies data alignment to help the
compiler choose optimal load and store instructions.

A challenge of vectorizing codes is when the loop body contains function calls, as shown in Figure 3. If there
is no SIMD version of the functions min and distance, then the compiler cannot generate SIMD instructions.
For many routines of the standard library, modern compilers already offer vectorized versions (e.g., sqrt, sin,
cos). For all other functions, the programmer has to help again. In Figure 3, the declare simd construct
instructs the compiler to generate an additional vector version by promoting scalar arguments to vectors. If
necessary, the uniform clause avoids SIMD promotion for certain arguments. The notinbranch clause
assures that the function will never be called from within a conditional branch (e.g., in the body of an if
statement), hence allowing further compiler optimizations. The inbranch clause asserts the opposite.

Reducers Everywhere
Reductions are involved whenever a team of threads cooperatively work on a problem and have to produce a
single, global result. Each thread receives a private copy of a variable to collect their local intermediate results.
Shortly before parallel execution ends, the OpenMP runtime system collects all the intermediate results from
all threads and reduces them into the global result. Before OpenMP 4.0, only predefined reductions operations,
such as addition or minimum/maximum on primitive types of the base language (e.g., int or float), have been
supported. Programmers previously had to write their own reduction code if derived data types or more complex
operations had to be used. This resulted in more or less complex code patterns that had to be maintained
by programmers.

OpenMP 4.0 includes support for user-defined reductions. Programmers can now define arbitrary reduction
operations on arbitrarily complex data types. Figure 4 uses the new feature to implement a parallel algorithm
to compute the bounding box of a cloud of 2D points. The bounding box is the smallest rectangle that contains
all points. It is computed in 2D by determining the left-most and right-most, as well as lowest and highest, point
of the cloud. These locations give you the lower left and upper right corner of the rectangle.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

13The Parallel Universe

For Figure 4, we rely on a simple class Point2D that stores the x and y coordinates of a 2D point, and a
class Rectangle that stores a rectangle consisting of two 2D points. The declare reduction directives
in the example declare new user-defined reduction operations. Separated by colons, the directive introduces
names for the reduction operation (minp and maxp) and defines the data types for which the reduction
operation is effective (Point2D). The last part contains a C/C++ expression or Fortran statement that describes
how to combine two local results into a new intermediate result. This expression or statement is applied
repeatedly until all intermediate results have been combined into the global result. The initializer clause
specifies how the thread-private copy of the reduction variable is initialized.

The for loop iterates all elements of a std::vector that stores all the points of the cloud. For each point,
it computes the running minimum and maximum of x and y coordinates to find the corners of the minimal
bounding box. To parallelize the code, we introduce a parallel for construct to distribute the loop across
a team of threads. Thus, each thread computes only a local bounding box that contains only the points assigned
to the thread. The missing piece is how to combine all the local bounding boxes into the global one. The
reduction clause at the parallel for construct performs this operation by applying the new reduction
operations minp and maxp. The omp_in and omp_out variables in the combiner expression refer to the
left and right operand when applying the reduction expression. In the example, these operands are passed to
the minimum/maximum operation to enlarge the bounding box.

1 #include <algorithm>
2
3 #pragma omp declare reduction(minp : Point2D : \
4 omp_out.setX(std::min(omp_in.getX(), omp_out.getX())),
5 omp_out.setY(std::min(omp_in.getY(), omp_out.getY())))
6 initializer(omp_priv = Point2D(MAX_X, MAX_Y))
7 #pragma omp declare reduction(maxp : Point2D : \
8 omp_out.setX(std::max(omp_in.getX(), omp_out.getX())),
9 omp_out.setY(std::max(omp_in.getY(), omp_out.getY())))
10 initializer(omp_priv = Point2D(MIN_X, MIN_Y))
11
12 Rectangle bounding_box(std::vector<Point2D> points) {
13 Point2D lb(MAX_X, MAX_Y);
14 Point2D ub(MIN_X, MIN_Y);
15 std::vector<Point2D>::iterator it;
16 #pragma omp parallel for reduction(minp:lb) reduction(maxp:ub)
17 for (it = points.begin(); it != points.end(); it++) {
18 Point2D &p = *it;
19 lb.setX(std::min(lb.getX(), p.getX()));
20 lb.setY(std::min(lb.getY(), p.getY()));
21 ub.setX(std::max(ub.getX(), p.getX()));
22 ub.setY(std::max(ub.getY(), p.getY()));
23 }
24 return Rectangle(lb, ub);
25 }

4

User-defined reductions to compute the bounding box of a cloud of 2D points

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

14The Parallel Universe

High Speed
Support to offload computation to attached devices, such as the Intel Xeon Phi coprocessor, is probably the most
groundbreaking feature of OpenMP 4.0. OpenMP 4.0 introduces a new device model that extends the traditional
threading model for shared memory to support offload computations. Having an OpenMP specification for
offloading provides an industry-wide solution superior in every way to the OpenACC* it supersedes. Unlike
OpenACC, OpenMP allows for the full use of a wide variety of devices instead of restricting what can be offloaded.
Unlike OpenACC, there is no restriction on the number of devices supported, though all devices used need to
be of the same architecture. OpenMP defines new constructs and directives to facilitate transfer of control
between the host and the devices, as well as to issue data transfers.

The target construct (see Figure 5) transfers control from the host thread to the coprocessor device, and
creates a device data environment to contain all the data needed to execute code on the target device. The
map clause at the target construct controls the allocation of data in the data environment, as well as the
direction of data transfers. Figure 6 shows the different transfer types supported by map. In the example, we
use map(to:x[:N]) to transfer the array x from the host to the target device. The syntax x[:N] is short
hand for x[0:N] and describes N array elements starting from index 0, that is, all array elements in x.

1 int n = 10240; float a = 2.0f; float b = 3.0f;
2 float *x = (float*) malloc(n * sizeof(float)); // init x
3 float *y = (float*) malloc(n * sizeof(float)); // init y
4
5 #pragma omp target data map(to:x[:N])
6 {
7 int num_blcks = 61;
8 int num_thrds = 4;
9 #pragma omp target map(tofrom:y[:N])
10 #pragma omp teams num_teams(num_blcks) num_threads(num_thrds)
11 #pragma omp distribute
12 for (int b = 0; b < n; b += num_blcks) {
13 #pragma omp parallel for
14 for (int i = b; i < b + num_blcks; ++i){
15 y[i] = a*x[i] + y[i];
16 }
17 }
18
19 // do something with y
20 // ...
21
22 #pragma omp target map(tofrom:y[:N])
23 #pragma omp teams distribute parallel for \
24 num_teams(num_blcks) num_threads(num_thrds)
25 for (int i = 0; i < n; ++i){
26 y[i] = b*x[i] + y[i];
27 }
28
29 free(x); free(y);

5

Offloading computation from the host to a coprocessor device

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

15The Parallel Universe

6 Transfer kinds of the map clause

Since coprocessors are using the PCI Express* bus to talk to the host system, avoiding unnecessary data
transfers is very important. The target data construct establishes a device data environment, but does
not transfer the control flow. With this construct, programmers can transfer data to the target device and keep
it there, while the control flow is sent back and forth through several target constructs. If the target
construct notices that data is already present on the device, it will then avoid the data transfer. The target
update directive can be used to issue data exchanges, if data on either the host or the devices is outdated.

Let’s dissect the example of Figure 5 and explain how the different constructs interact. The example implements
the well-known SAXPY operation y = a*x + y. Since the code executes the operation two times, the code
creates a device data environment for safe transfers of x across different invocations. The target construct
in the example will notice that x is already available on the coprocessor, and only issue a data transfer for y.
The same is true for the second target construct in the example.

The constructs mentioned so far only transfer control or data between the host and the devices. They do not
automatically parallelize the code that is transferred over. Programmers need to use standard OpenMP features
to create parallelism on the target devices. In our example, a simple parallel for construct would be sufficient
to create a team of threads to execute the SAXPY loop in parallel. However, this may be inefficient, since the
overhead of team creation and synchronization for the full coprocessor with 244 threads will be considerable.

To make the solution more efficient, the parallelization exploits the hierarchical architecture of four hyper-threads
per physical coprocessor core. OpenMP 4.0 offers new constructs to map these hierarchies to program code:

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

16The Parallel Universe

 > The team’s constructs creates a league of independent thread teams, whose master thread executes the code
of the construct.

 > The distribute construct is a new worksharing construct to distribute a loop across the master threads of a
league. The distribute construct does not have an implicit barrier at the end.

 > As usual, the existing parallel for construct distributes a loop within a thread team.

The SAXPY code creates one thread team for each of the 61 physical cores of the coprocessor. As a first level
of parallelism, it then distributes the outer loop over b across the created thread teams. The second level of
parallelism consists of a parallel for to create four threads for each hyper-thread of the physical cores. The
second invocation of SAXPY shows the syntactic sugar of the combined teams distribute parallel
for constructs to make the code shorter.

The transfer of control from the host to a device is a blocking operation. That is, the host thread waits until the
control flow on the target has finished and all data has been transferred. If both host and device need to fulfill
concurrent tasks, programmers may use existing OpenMP features. For instance, programmers can wrap a target
or target update construct in an OpenMP task to execute these constructs in another OpenMP thread.

Conclusion
With version 4.0, OpenMP makes a quantum leap forward. The newly introduced features open up a new world
of heterogeneous programming. OpenMP 4.0 provides new features that make it an interesting programming
model with a wider reach than technical and scientific computing. Intel continues its commitment to OpenMP
as a parallel programming model. Intel® Composer XE 2013 fully supports the previous OpenMP API specification
3.1 and future versions will supply a first-class, high-performance implementation of OpenMP 4.0. With SP1,
Intel Composer XE 2013 for C, C++, and Fortran supports a subset of new features of OpenMP 4.0, including
OpenMP target constructs, SIMD directives, and the OpenMP affinity feature. Future versions of Intel Composer
XE will ship with support for user-defined reductions and task dependencies, as well as support for cancellation.
The work for OpenMP version 4.1 and 5.0 has already begun by the OpenMP Architecture Review Board, and
Intel is on board to support the development of the next, even better, OpenMP. l

See the impact.
30-day trial software

Evaluate the latest Intel® Parallel Studio XE and Intel® Cluster Studio XE >

Evaluate Intel® System Studio for embedded and mobile system developers >

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
https://makebettercode.com/cbsi/cluster_parallel/
https://makebettercode.com/systemstudio/

Share with a friendSign up for future issues

by James Tullos, Technical Consulting Engineer, Intel

Profiling MPI Communications—
Techniques for High Performance

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

17The Parallel Universe

Introduction
The Message Passing Interface (MPI) provides an API for passing data between multiple instances (called ranks)
of an application. MPI enables a high level of parallelism, but good performance is not automatic. This article
presents techniques for improving MPI application performance, focusing on two aspects of optimization:

 > Bottlenecks: Portions of your program that delay execution

 > Load Imbalance: Uneven workload distribution, forcing some execution units to wait

Here, we’ll focus on Intel® Trace Analyzer and Collector (ITAC), a performance analysis tool which is part of
Intel® Cluster Studio XE. ITAC provides the ability to profile and analyze MPI applications to find areas for
performance improvement.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/RBA5rF
http://intel.ly/SCxsJv

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

18The Parallel Universe

Collecting Performance Data with ITAC
ITAC consists of two components: the Intel® Trace Collector (ITC) and the Intel® Trace Analyzer (ITA). ITC is a
library that collects data from your application for use in ITA. The ITC output, called a trace, contains routine
entry and exit data, a record of MPI parameters, and communication versus waiting time in MPI.

To use ITC with your MPI application, the simplest method is to load the library at runtime. When using the
Intel® MPI Library, just add –trace to the mpirun arguments. As your application executes, ITC will generate
the trace, which you can then analyze in ITA.

Bottlenecks in MPI
Communication bottlenecks cause your application to spend idle time waiting in communication routines,
reducing overall performance. ITAC can show when your application is waiting for an MPI call to complete,
helping to identify bottlenecks.

The example below uses a Poisson solver, which implements an MPI_Sendrecv to exchange data between
neighboring ranks and an MPI_Allreduce to aggregate that data across ranks. These communications occur at
every iteration. The example code is distributed with ITAC.

Before collecting the trace, you need to set some environment variables. Scripts are provided for this:

source /opt/intel/impi/4.1.1.036/intel64/bin/mpivars.sh
source /opt/intel/itac/8.1.3.037/intel64/bin/itacvars.sh

By default, ITC will distribute the collected data amongst multiple structured trace files (stf) for better scalability.
If your run is small, you can tell ITC to combine data into a single trace file:

export VT_LOGFILE_FORMAT=singlestf

Now you are ready to collect the trace with:

mpirun –f myhostfile –n 16 –ppn 4 –trace ./poisson.sendrecv

This will run the solver across 4 nodes, with 4 ranks per node, and generate a trace file containing all of the
MPI calls made by the application. You can use ITA to open the generated trace file and begin the analysis:

traceanalyzer ./poisson.sendrecv.single.stf

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/SCxiBK

Share with a friendSign up for future issues

1 Flat Profile

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

19The Parallel Universe

Finding Signs of a Problem

The initial view shows the Trace Map and the Function Profile Chart, set to the Flat Profile tab. The Flat Profile
initially shows two groups: Group Application and Group MPI. Since we’re focusing on optimizing MPI performance,
we’ll use Group MPI. Right-click on the Group MPI line and select Ungroup MPI. This will separate it into individual
MPI calls. Each MPI function is given a default color, which has been changed here for better visibility.

In the Flat Profile, you can see that two MPI functions are the largest time consumers: MPI_Sendrecv and
MPI_Allreduce. Each of these functions appears to take approximately the same amount of time. Click on the
Load Balance tab to get more information. Notice in Figure 2 that MPI_Sendrecv is consuming more time in
the higher numbered ranks, and MPI_Allreduce is consuming more time in the lower numbered ranks (Figure
3). This indicates a potential performance issue, as communications should be balanced across all ranks.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

2

3

MPI_Sendrecv Load Balance

MPI_Allreduce load balance

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

20The Parallel Universe

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

4 Event Timeline

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

21The Parallel Universe

Finding the Root Cause

Now that you’ve established the presence of a problem, it’s time to determine the cause. Open the Event
Timeline Chart by navigating to the Charts->Event Timeline menu. This shows a breakdown of what each
rank is doing over the execution time of the application. As it is, the default view is too cluttered to be useful.
Zoom (just click and drag) on the Event Timeline to focus on a few iterations. Notice that, when zooming, all
charts except the Trace Map will alter the data shown to only display information for the selected time range.
The Trace Map always shows the entire time, highlighting the selected range.

Because MPI_Sendrecv is a blocking call, it cannot return until the exchange is completed. Ranks 0 and 1 must
complete their exchange before ranks 1 and 2 can begin, forcing rank 2 to wait. This effect cascades through
the ranks, creating the MPI_Sendrecv imbalance. This delay leads to earlier ranks reaching MPI_Allreduce sooner
and being blocked until later ranks complete, creating the MPI_Allreduce imbalance.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

5

6

Flat Function Profile, non-blocking communications

Load Balance, non-blocking communications

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

22The Parallel Universe

Removing the Bottleneck

This bottleneck appears to be a good target for improvement. Changing the blocking communication to
non-blocking seems like an intuitive fix. You can replace the MPI_Sendrecv calls with calls to MPI_Isend and
MPI_Recv, allowing each rank to send data to its neighbors without being blocked by earlier communications.
Run the modified application and load the new trace in ITA. Open the Flat Function Profile. As you can see,
the communications in the improved code consume less total time.

If we look at the Load Balance profiles of the most time-consuming communications, we can see that these
functions are now more balanced.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

7 Event Timeline, non-blocking communications

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

23The Parallel Universe

The Event Timeline gives the best indication of improvement. The serialized communications are gone, and
communication is more parallel.

Click View->Compare to compare the new trace to the original. You can synchronize navigation keys and/
or mouse zoom, as well as match time scaling between the two traces. You can see the improvements here,
showing that the solver is now spending more time doing actual computation (the blue regions), rather than
waiting in communications.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

8 Comparison of traces

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

24The Parallel Universe

Finding Load Imbalance
Load balancing is the art of distributing work across your application. Next, we’ll look at distributing load across
heterogeneous MPI ranks.

The following example uses the miniFE* benchmark from Sandia Labs. It simulates the operations of a finite
element solver, and is available at http://www.nersc.gov/systems/trinity-nersc-8-rfp/nersc-8-trinity-
benchmarks/minife/. MiniFE uses strong scaling, dividing the load among ranks. This example incorporates
Intel® Xeon Phi™ coprocessors to show load balancing across heterogeneous nodes. The job uses 4 host nodes,
each with 16 MPI ranks, and 4 coprocessor nodes, with varying rank counts, and a matrix size of 256x512x512.

For this example, results are grouped by node rather than rank. To do this, click the Process Aggregation button
in the toolbar, select All_Nodes in the Process Aggregation dialog, and click OK.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://www.nersc.gov/systems/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minife/
http://www.nersc.gov/systems/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minife/

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

25The Parallel Universe

Imbalance in the Function Profile

For the first run, miniFE has an initial distribution of 16 ranks per host and 32 ranks per coprocessor. Open the
trace in ITA and select the Load Balance Profile. Notice that the MPI communications are fairly well balanced,
but the workload is higher on the coprocessor ranks.

ITAC consists of two components: the Intel® Trace
Collector (ITC) and the Intel® Trace Analyzer (ITA).
ITC is a library that collects data from your application
for use in ITA. The ITC output, called a trace, contains
routine entry and exit data, a record of MPI parameters,
and communication versus waiting time in MPI.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

9

10

Load Balance Profile, 16 host, 32 coprocessor ranks per node

Load Balance Profile, 16 host, 32 coprocessor ranks per node

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

26The Parallel Universe

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

11 Load Balance Profile, 16 host, 18 coprocessor ranks per node

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

27The Parallel Universe

The Event Timeline also shows the imbalance. Each of the coprocessor nodes spends more time in application
code than the corresponding host nodes.

Simply adjusting the number of ranks per coprocessor will not give perfect balance across all MPI ranks. Other
factors, such as number of threads and total rank distribution influence the load balance and should also be
adjusted. However, since this is a heterogeneous system, adjusting the number of coprocessor ranks can
improve performance. A new distribution of 16 host ranks and 18 coprocessor ranks significantly improves
the balance on this system, leading to improved application performance.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

12 Event Timeline, 16 hosts, 18 coprocessors per node

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

28The Parallel Universe

Applying to Large Applications
We’ve seen how to use Intel Trace Analyzer and Collector to find two common problems in simple applications.
In large applications, problems are often less obvious. However, the techniques provided here still apply.

Trace File Size

As your applications grow, it is easy to imagine the corresponding trace files increasing proportionally. To help
alleviate this potential problem, ITC provides several techniques to manage the trace file size. You can trace
only desired ranks, filter results for specific functions, or use the API to directly control trace collection. For more
information about filtering in ITC, visit http://software.intel.com/en-us/articles/intel-trace-collector-
filtering.

Summary
Now that you have the techniques to find bottlenecks and imbalance in MPI applications, you can use them
to improve your own MPI applications. Visit http://www.intel.com/go/itac for more information about the
Intel Trace Analyzer and Collector. l

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/articles/intel-trace-collector-filtering
http://software.intel.com/en-us/articles/intel-trace-collector-filtering
http://www.intel.com/go/itac

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

29The Parallel Universe

System Configuration
Both examples in this article were run on the same cluster.

Head node:

Intel® Server Board S5520UR

Intel® Xeon® Processor X5670

4GB Memory

500GB HDD

Compute nodes 0-3:

Intel® Workstation Board W2600CR2

Beta SNB-EP (Sandy Bridge) processors, 3.1 GHz

32GB Memory

1TB HDD

1 B1/C0 Intel® Xeon Phi™ Coprocessor 5120A each

Compute node 4:

Intel® Server Board S2600GZ

Intel® Xeon® Processor E5-2680

32GB Memory

128GB SSD

1 B1 Intel® Xeon Phi™ Coprocessor 5120A

CentOS* 6.3

Warewulf* 3.4 beta distribution system

Mellanox Technologies MT25418

Intel® Composer XE for Linux* 2013 Update 5

Intel® MPI Library for Linux* 4.1 Update 1

Intel® Trace Analyzer and Collector for Linux* Version 8.1 Update 1 (collection)

Intel® Trace Analyzer and Collector for Windows* Version 8.1 Update 3 (analysis)

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

by Stephen Blair-Chappell, Technical Consulting Engineer, Intel

Pexip Speeds Videoconferencing
with Intel® Parallel Studio XE

Over the last 18 months, Pexip’s software engineers have been optimizing Pexip Infinity*—their videoconferencing
software—using Intel® Parallel Studio XE. This article is based on interviews with Pexip’s lead optimization
engineer, Lars Petter Endresen.

As organizations rely more heavily on global teams, videoconferencing allows teams to meet together without
the corresponding expenses and lost productivity of traveling. It is important for a good user experience that
any video content must be of reasonably high definition, and displayed without any significant delay. Both
the quantity of data, and the real-time nature of videoconferencing, means that any host system must have
copious amounts of processing power.

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

30The Parallel Universe

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://intel.ly/Wh3TS3
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

1 A Pexip Infinity* Videoconferencing session

Picture source: pexip.com

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

31The Parallel Universe

Traditionally, digital signalling processors (DSPs) were the obvious choice when designing video conferencing
servers. The downside to such solutions is that DSP-based designs can come with an expensive price tag, with
some servers costing as much as $180k.

Here, we’ll look at how Pexip, a videoconferencing start-up company founded 18 months ago by former Cisco
and Tandberg executives, has replaced DSP designs with a software-only solution that can run on off-the-
shelf Intel®-based servers. By using Intel Parallel Studio XE, along with the processing power of the
Intel® CoreTM architecture, Pexip has been able to match, and even exceed, the performance of
traditional conferencing systems. Figure 1 shows a videoconferencing session being run from a laptop
using Pexip’s flagship product Pexip Infinity.

Analyze and Optimize
Pexip’s development cycle consisted of a repeated sequence of analysis and incremental development:

 > Analyze the code for hotspots using Intel® VTuneTM Amplifier XE

 > Examine the code in the hotspots and look for ways of improving the algorithms

 > Build the code with the Intel® compiler

 > Compare the optimized version with the original

All the development work was carried out on a PC with a 2nd generation Intel® Core™ microprocessor (code-
named Sandy Bridge).

In addition to this work, Pexip also extracted code snippets from the most performance-sensitive parts of the
code and analyzed them with the Intel® Architecture Code Analyzer (Figure 2) to see how the code would
perform on 3rd and 4th generation Intel Core microprocessors.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://www.pexip.com
http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/TzUDVJ

Share with a friendSign up for future issues

2 An Intel® VTuneTM advanced hotspot analysis

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

32The Parallel Universe

Profiling with Intel VTune Amplifier XE
An advanced hotspot analysis was carried out using Intel VTune Amplifier. Each of the hotspots was then
examined for optimization opportunities.

Figure 2 shows the results of the analysis of Pexip Infinity. The hotspots are displayed in the first column,
with the most significant hotspots being at the top of the list. The second column shows the number of clock
ticks there were for each hotspot. The third column shows how many retired instructions were used. Retired
instructions are instructions that made it all the way through the CPU pipeline.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

3 The five top hotspots

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

33The Parallel Universe

The Main Hotspots
The analysis showed that there were five hotspots in the code (Figure 3).

All the hotspots are in code that implements the H.264 Advanced Video Coding (AVC) video compression
standard.

To reduce the amount of data being streamed, the images are broken down into small macroblocks. Various
compression and prediction algorithms are then applied to a sequence of macroblocks with only the differences
between the macroblocks being placed in the compressed stream.

When the image stream is later decompressed, there is a tendency for the outline of the macroblocks to be visible
on the reconstructed image. To overcome this flaw, the H.264 standard includes a loop filter that is used to
remove artifacts in a process known as deblocking. This is implemented in the hotspot function LoopFilter.

Deblocking can be one of the costliest parts of image decoding, although in this particular test case the
hotspot only consumed 8 percent of the runtime; it is not unusual for over 30 percent of the total CPU time be
taken up with this task.

While we’ll focus next on the LoopFilter bottleneck, our discussion is equally relevant for the other hotspots.

Optimizing for the Latest Generation Intel Core Architecture
Two optimization features of the Intel® compiler—compiler vectorization and Idiom recognition—play an important
role in boosting the performance of the deblocking filter.

Hotspot Percentage of Time

EncodeSlice 16.1

MotionSearch 9.9

FastDCT 9.3

LoopFilter 8.3

Frame 7.5

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/SXMKY3

Share with a friendSign up for future issues

4 Different ways of introducing vectorization

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

34The Parallel Universe

Vectorization
In 1997, Intel introduced a multimedia extension, MMX™ technology, providing a new class of instructions
capable of doing multiple calculations in one instruction. These new SIMD (Single Instruction Multiple Data)
instructions acted on extra-wide 64-bit registers holding several data items or vectors. Intel® MMX was followed
by the Streaming SIMD Extensions (SSE), which was introduced on the Intel® Pentium® III processor in 1999.
Since then, there have been 11 major revisions. Each revision has brought new capabilities and additional
instructions. In three of these revisions, the width of the SIMD register has doubled, significantly increasing the
amount of data parallelism that can be achieved.

Creating Vectorized Code
The Intel compiler provides a number of different ways that vectorization can be introduced into code (Figure
4). The simplest way to include vectorization is to use one of the optimization libraries, such as the Intel® Math
Kernel Library (Intel® MKL) or the Intel® Integrated Performance Primitives Library (Intel® IPP).

The most difficult way to add vectorization is by hand-crafting your code to include assembler or vector intrinsics.
This has the advantage that you can finely control the smallest detail of your algorithm, but it requires a deep
working knowledge of the instruction set architecture. One of the problems in writing such low-level code is
that for each new generation of the CPU architecture the code has to be rewritten.

Where possible, Pexip’s developers have avoided hard-coded implementations by writing their code in fairly
generic C and C++, and then relying on the Intel compiler to automatically complete the work of vectorization.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/RBA5rF

 C[:][:] = 12; for (i = 0; i < 10; i++)

 for (j = 0; j < 10; j++)

 C[i][j] = 12;

if (5 == a[:])

 results[:] = “Matched”;

else

 results[:] = “Not Matched”;

for (int i = 0; i < array_size; i++)

{

 if (5 == a[i])

 results[i] = “Matched”;

 else

 results[i] = “Not Matched”;

}

 func (A[:]); for (i = 0; i < 10; i++)

 func (A[i]);

5
Array Notation

(a) Set all the elements of the two-dimensional array C to 12.

(c) For each element of array A, print “Matched” if the value is 5. Otherwise print “Not Matched”.

(b) Pass all elements one by one into function “func()”.

Equivalent Scalar C and C++ Code

Share with a friendSign up for future issues

Examples using array notation

Source: https://www.cilkplus.org/tutorial-array-notation

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

35The Parallel Universe

While code can be implicitly vectorized using automatic-vectorization, explicit vectorization is growing in
popularity. Explicit vectorization allows programmers to place vectorization pragmas and constructs such as
array notation in their code, without resorting to the use of instruction-aware programming.

Figure 5 shows an example using array notation. A detailed explanation of this and other examples can be
found at: https://www.cilkplus.org/tutorial-array-notation.

Example Vectorization: The Deblocking Filter
When the LoopFilter code deblocks an image, a weighting algorithm is used to decide whether to apply
a normal or a strong filter to each edge of each macroblock. The file in Figure 6, strong.c contains an
example of the strong filter.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
https://www.cilkplus.org/tutorial-array-notation
http://software.intel.com/en-us/articles/optimization-notice
https://www.cilkplus.org/tutorial-array-notation

1: //strong.c

2: #include <stdint.h>

3: #define abs(x) (((x)<0)?-(x):(x))

4: #define max(x,y) ((x)>(y)?(x):(y))

5: #define min(x,y) ((x)<(y)?(x):(y))

6: #define norm(x,y) ((uint8_t)abs(x-y))

7: #define sat(x) max(min((int16_t)x,255),0)

8:

9: void strong(uint8_t *restrict m,

10: uint8_t Alpha,

11: uint8_t Beta,

12: uint8_t Gamma)

13: {

14: for(int i=0;i<16;i++)

15: {

16: uint8_t L3=m[0*16+i];

17: uint8_t L2=m[1*16+i];

18: uint8_t L1=m[2*16+i];

19: uint8_t L0=m[3*16+i];

20: uint8_t R0=m[4*16+i];

21: uint8_t R1=m[5*16+i];

22: uint8_t R2=m[6*16+i];

23: uint8_t R3=m[7*16+i];

24: if ((uint8_t)((norm(R0,L0)<Alpha)

25: &(norm(R0,R1)<Beta)

26: &(norm(L0,L1)<Beta)))

27: {

28: m[3*16+i]=sat((2*L1+L0+R1+2)>>2);

29: m[4*16+i]=sat((2*R1+R0+L1+2)>>2);

30: if (norm(R0,L0)<Gamma)

31: {

32: if(norm(L0,L2)<Beta)

33: {

34: m[1*16+i]=sat((2*(L3+L2)+L2+L1+L0+R0+4)>>3);

35: m[2*16+i]=sat((L2+L1+L0+R0+2)>>2);

36: m[3*16+i]=sat((R1+2*(L1+L0+R0)+L2+4)>>3);

37: }

38: if(norm(R0,R2)<Beta)

39: {

40: m[4*16+i]=sat((L1+2*(R1+L0+R0)+R2+4)>>3);

41: m[5*16+i]=sat((R2+R0+L0+R1+2)>>2);

42: m[6*16+i]=sat((2*(R3+R2)+R2+R1+L0+R0+4)>>3);

43: }

44: }

45: }

46: }

47: }

6

Code for the strong filter

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

36The Parallel Universe

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

37The Parallel Universe

If you compile the code using the /Qvec-report flag, the Intel compiler will report that the main for loop at line
14 has been vectorized:

icl /QxAVX /O2 /Qstd=c99 /Qvec-report2 strong.c
Intel(R) C++ Intel(R) 64 Compiler XE for applications running on
Intel(R) 64 . . .

strong.c
c:\strong.c(14): (col. 3) remark: LOOP WAS VECTORIZED.

What is remarkable about this compilation, is the fact that the compiler has vectorized code containing three
levels of if-tests, as well as dealing with mixed 8-bit unsigned and 16-bit signed data types.

If you build the code with the option –S to generate an assembler listing, you will see that the code is vectorized
by the existence of packed instructions such as vpaddw, vpsraw, and vmovups:

icl /QxAVX /O2 /Qstd=c99 -S strong.c

 vpaddw xmm15, xmm15, xmm6 ;34.21
 vpsraw xmm12, xmm12, 3 ;34.21
 vpaddw xmm15, xmm15, xmm2 ;34.21
 vpsraw xmm15, xmm15, 3 ;34.21
 vpackuswb xmm12, xmm12, xmm15 ;34.21
 vpblendvb xmm4, xmm4, xmm12, xmm14 ;34.11
 vmovups XMMWORD PTR [16+rcx], xmm4 ;34.11

Often, you can guess which instructions are packed by the existence of the letter “p” in the instruction name.
Packed instructions are instructions that perform across the full set of vectors held in the registers. Full details
of what each instruction does can be found in the Intel® Architecture Instruction Set Extensions Programming
Reference book.

Idiom Recognition
The Intel compiler automatically recognizes various computational patterns or idioms, and generates performance-
efficient code. Idiom recognition has been supported since the early days of the compiler, and is implemented
in different compiler phases. With each new version of the compiler, new idioms continue to be added.

An example of one such idiom is the pattern to calculate the sum of absolute differences (SAD), which is
implemented in the vectorization phase of the Intel compiler. Figure 7 shows three pieces of source code.
The first, 7(a), is a simple C code snippet, where the absolute difference of each element of a and b are added
together and stored in the variable sad.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

// SAD calculation in C

#define abs(a) (((a)<0)?-(a):(a))
uint8_t a[16],b[16];
int sad=0;

for(int i=0;i<16;i++)
 sad+=abs(a[i]-b[i]);

// SAD calculation using array notation

#define abs(a) (((a)<0)?-(a):(a))
uint8_t a[16],b[16];
int sad=0;

sad = __sec_reduce_add(abs(a[:]-b[:]));

;; the compiler has recognised the
;; sad idiom and used the psadbw
;; instruction

movdqa xmm0, XMMWORD PTR []
pxor xmm3, xmm3

psadbw xmm0, XMMWORD PTR []

paddd xmm3, xmm0
movdqa xmm1, xmm3
psrldq xmm1, 8
paddd xmm3, xmm1
movdqa xmm2, xmm3
psrldq xmm2, 4
paddd xmm3, xmm2
movd eax, xmm3

The Intel® compiler
recognizes the
SAD idiom

7a

7b

7c

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

38The Parallel Universe

The second, 7(b), is the same SAD algorithm implemented using array notation. The reduction operator
__sec_reduce_add is applied to each element of the arrays a and b, having first calculated the absolute
difference.

Figure 7(c) shows the assembler generated by the Intel compiler from Figure 7(a). Because the compiler is
able to recognize the SAD idiom, it uses the instruction psadbw – which calculates the packed sum of absolute
differences on unsigned byte integers. When the array notation code is compiled, the compiler generates
assembler code almost identical to the 7(c).

You can generate this assembler for yourself using the –S option:

Windows: icl -S /QxAVX sad.c
Linux: icc –S –xAVX sad.c

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice

Share with a friendSign up for future issues

8 A sample output from the Intel® Architecture Code Analyzer

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

39The Parallel Universe

Intel Architecture Code Analyzer
The Intel Architecture Code Analyzer helps you conduct quick analyses for various ISA extensions before
processors with these instructions are actually available. The Analyzer can be used to compare the
relative performance of code snippets on different microarchitectures, but it does not provide absolute
performance numbers.

The Analyzer performs a static analysis of code that lies between special markers inserted into the
source by the programmer. Figure 8 shows a sample output from the Analyzer. For more details, refer to
whatif.intel.com.

Figure 9 shows the results of analyzing the strong filter code on 2nd, 3rd, and 4th generation Intel Core
microarchitectures. The same cycle count is expected for Sandy Bridge and Ivy Bridge, as both share many of
the same architectural features. The biggest difference is that Ivy Bridge uses a 22nm manufacturing process,
whereas Sandy Bridge uses 32nm.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/whatif

Share with a friendSign up for future issues

9

10

Cycle throughput of the strong filter on different generations of Intel® CoreTM microarchitecture

The speedup of the different hotspots

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

40The Parallel Universe

Microarchitecture
Generation

Codename Compiler Options Analyzer Options Block Throughput

2nd gen Intel® Core™ Sandy Bridge /QxAVX -64 –arch SNB 83.50

3rd gen Intel® Core™ Ivy Bridge /QxAVX -64 –arch IVB 83.50

4th gen Intel® Core™ Haswell /QxCORE-AVX2 -64 –arch HSW 55.60

Hotspot
Number of Cycles x 109

Speedup
No Vectorization (/no-vec) With Vectorization (/QxAVX)

FastDct 69.66 3.64 19.14

MotionSearch 33.16 6.16 5.38

LoopFilter 14.62 3.54 4.13

EncodeMacroblock 12.62 1.64 7.70

EncodeSlice 12.30 6.78 1.81

Interpolate 6.30 1.28 4.92

By using the Intel Architecture Code Analyzer—and before having access to real hardware—Pexip was able to
confirm that the code would benefit from the 4th generation Intel Core microarchitecture.

Results
As a result of using the vectorization and idiom recognition features of the Intel compiler, all the main hotspots
in the code performed better as seen in Figure 10.

Because Pexip chose to write their performance-sensitive codes in C, rather than assembler, they were able to
migrate their application to the latest Intel Core architecture without having to recode everything.

At the start of the optimization process, the conferencing software was able to encode 1080p video with 7
frames per second (FPS). On completion of the work, it could comfortably handle 100 FPS: a speedup of more
than 14x. l

Learn More
Pexip is based in Oslo, Norway, with offices in the U.S. and United Kingdom. To learn more about Pexip, visit:
www.pexip.com.

Download the Intel® Architecture Code Analyzer at: whatif.intel.com.

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://www.pexip.com
http://software.intel.com/en-us/whatif

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

41The Parallel Universe

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

For more information regarding performance and optimization choices in Intel® software products,
visit http://software.intel.com/en-us/articles/optimization-notice.

The Parallel Universe 41

Share with a friendSign up for future issues

BLOG HIGHLIGHTS

More

Transactional Memory Support: The speculative_spin_mutex
BY CHRISTOPHER HUS »

Intel recently released the 4th Generation Intel® Core™
processors, which have Intel® Transactional Synchro-
nization Extensions (Intel® TSX) enabled. Intel TSX
can improve the performance of applications that use
lock-based synchronization to protect data structure
updates. This feature allows multiple non-conflicting
lock-protected changes to data to occur in parallel.

I’ve found over the years one of the best ways to
improve parallel performance is to get rid of coarse-
grained locks, replacing them with multiple, fine-
grained locks to protect the structure being modified.
While this technique can yield better performance, it is
difficult to get right, and increases the number of locks
that must be acquired to perform an operation. There
may also be subtle performance problems if multiple

locks occupy the same cache line; though the changes
themselves may not overlap, locking adjacent mutexes
in the same cache line will result in false sharing.

Transactional memory addresses the problem a different
way, by allowing multiple threads to access or update
the protected data, and guaranteeing the updates
appear atomically to all other threads. This gives some
of the benefits of fine-grained locking without having to
make changes to the code beyond replacing the locks.

The two interfaces for Intel TSX are Hardware Lock Elision
(HLE) and Restricted Transactional Memory (RTM).

ll

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel+Universe+Magazine+Issue+15&utm_content=PUM_Footer_na&utm_campaign=Intel+DPD+TEC+Campaign
http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/blogs/2013/07/11/avoiding-potential-problems-memory-limits-on-the-intelr-xeon-phitm-coprocessor
http://software.intel.com/en-us/user/334353
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell

© 2013, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Core, Intel Inside, Cilk Plus, Pentium,
VTune, VPro, Xeon and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

