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Abstract 
Debugging is a fundamental step of software development and increasingly complex software requires 

greater specialization from debugging tools. Software built with multiple threads of execution in 

particular requires special considerations and comprehensive debugging management. The free, open 

source GNU Project Debugger has the capacity to observe all threads while the program is running and 

then isolate a current thread to show focused information for debugging. This article explores some of 

the GDB’s features for multi-threaded software debugging and includes code examples demonstrating 

setup of thread management and execution of debugging procedures. 

Introduction 
This article presents the basic functionalities of the GNU Project Debugger. It will introduce the specific 

vocabulary and commands used by the GDB for managing multi-threaded application testing. The GDB 

will run on Unix and Microsoft Windows OSs and debug programs written in Ada, C, C++, Objective-C, 

Pascal, and many other languages. By the end of this article, a developer should have a number of new 

techniques to try right away and a solid foundation for approaching more complicated multi-threaded 

debugging projects. 

The GNU Project Debugger and user manuals are available for free download from 

www.gnu.org/software/gdb/, along with links to product documentation and a FAQ wiki. 

Multi-threaded Debugging Using GDB 
For POSIX threads, debugging is generally accomplished using the GNU Project Debugger (GDB). GDB 

provides a number of capabilities for debugging threads, including: 

 Automatic notification when new threads are created 

 Listing of all threads in the system 

 Thread-specific breakpoints 

 The ability to switch between threads 

 The ability to apply commands to a group of threads 

Not all GDB implementations support all of the features outlined here. Please refer to your system’s 

manual pages for a complete list of supported features. 

http://www.gnu.org/software/gdb/


Notification on Thread Creation 
When GDB detects that a new thread is created, it displays a message specifying the thread’s 

identification on the current system. This identification, known as the systag, varies from platform to 

platform. 

Here is an example of this notification: 

Starting program: /home/user/threads 
[Thread debugging using libthread_db enabled] 
[New Thread -151132480 (LWP 4445)] 
[New Thread -151135312 (LWP 4446)] 

Keep in mind that the systag is the operating system’s identification for a thread, not GDB’s. GDB assigns 

each thread a unique number that identifies it for debugging purposes. 

 

Getting a List of All Threads in the Application 
GDB provides the generic info command to get a wide variety of information about the program being 

debugged. It is no surprise that a subcommand of info would be info threads. This command prints a list 

of threads running in the system: 

(gdb) info threads 
2 Thread -151135312 (LWP 4448) 0x00905f80 in vfprintf () from /lib/tls/libc.so.6 
* 1 Thread -151132480 (LWP 4447) main () at threads.c:27 
 

The info threads command displays a table that lists three properties of the threads in the system: the 

thread number attached to the thread by GDB, the systag value, and the current stack frame for the 

current thread. The currently active thread is denoted by GDB with the * symbol. The thread number is 

used in all other commands in GDB.  

 

Setting Thread-specific Breakpoints 
GDB allows users that are debugging multi-threaded applications to choose whether or not to set a 

breakpoint on all threads or on a particular thread. The much like the info command, this capability is 

enabled via an extended parameter that’s specified in the break command. The general form of this 

instruction is: 

break linespec thread threadnum 

where linespec is the standard gdb syntax for specifying a breakpoint, and threadnum is the thread 

number obtained from the info threads command. If the thread threadnum arguments are omitted, the 



breakpoint applies to all threads in your program. Thread-specific breakpoints can be combined with 

conditional breakpoints:  

(gdb) break buffer.c:33 thread 7 if level > watermark 

Note that stopping on a breakpoint stops all threads in your program. Generally speaking this is a 

desirable effect—it allows a developer to examine the entire state of an application, and the ability to 

switch the current thread. These are good things. 

Developers should keep certain behaviors in mind, however, when using breakpoints from within GDB. 

The first issue is related to how system calls behave when they are interrupted by the debugger. To 

illustrate this point, consider a system with two threads. The first thread is in the middle of a system call 

when the second thread reaches a breakpoint. When the breakpoint is triggered, the system call may 

return early. The reason—GDB uses signals to manage breakpoints. The signal may cause a system call 

to return prematurely. To illustrate this point, let’s say that thread 1 was executing the system call 

sleep(30). When the breakpoint in thread 2 is hit, the sleep call will return, regardless of how long the 

thread has actually slept. To avoid unexpected behavior due to system calls returning prematurely, it is 

advisable that you check the return values of all system calls and handle this case. In this example, 

sleep() returns the number of seconds left to sleep. This call can be placed inside of a loop to guarantee 

that the sleep has occurred for the amount of time specified. This is shown in Listing 1.1. 

int sleep_duration = 30; 

do 

{ 

sleep_duration = sleep(sleep_duration); 

} while (sleep_duration > 0); 

Listing 1.1 Proper Error Handling of System Calls 

 

The second point to keep in mind is that GDB does not single step all threads in lockstep. Therefore, 

when single-stepping a line of code in one thread, you may end up executing a lot of code in other 

threads prior to returning to the thread that you are debugging. If you have breakpoints in other 

threads, you may suddenly jump to those code sections. On some OSs, GDB supports a scheduler locking 

mode via the set scheduler-locking command. This allows a developer to specify that the current thread 

is the only thread that should be allowed to run. 

 

  



Switching between Threads 
In GDB, the thread command may be used to switch between threads. It takes a single parameter, the 

thread number returned by the info threads command. Here is an example of the thread command: 

(gdb) thread 2 
[Switching to thread 2 (Thread -151135312 (LWP 4549))]#0 
PrintThreads (num=0xf6fddbb0) at threads.c:39 
39  { 
(gdb) info threads 
* 2 Thread -151135312 (LWP 4549) PrintThreads (num=0xf6fddbb0) at threads.c:39 
1 Thread -151132480 (LWP 4548) main () at threads.c:27 
(gdb) 
 

In this example, the thread command makes thread number 2 the active thread. 

 

Applying a Command to a Group of Threads 
The thread command supports a single subcommand apply that can be used to apply a command to one 

or more threads in the application. The thread numbers can be supplied individually, or the special 

keyword all may be used to apply the command to all threads in the process, as illustrated in the 

following example: 

(gdb) thread apply all bt 
 
Thread 2 (Thread -151135312 (LWP 4549)): 
#0 PrintThreads (num=0xf6fddbb0) at threads.c:39 
#1 0x00b001d5 in start_thread () from /lib/tls/libpthread.so.0 
#2 0x009912da in clone () from /lib/tls/libc.so.6 
 
Thread 1 (Thread -151132480 (LWP 4548)): 
#0 main () at threads.c:27 
39  { 
(gdb) 
 

The GDB backtrace (bt) command is applied to all threads in the system. In this scenario, this command 

is functionally equivalent to: thread apply 2 1 bt. 

 



Conclusion 
This article introduced debugging for multi-threaded applications via the GNU Project Debugger. Proper 

software engineering principles need to be followed when writing and developing robust multi-threaded 

applications, and that includes comprehensive testing. The GDB supports developers’ need to monitor, 

log, and test individual threads within the program as well as overall performance. Variable execution 

order is usually one of the features of multi-threaded programs that makes linear or traditional 

debugging algorithms impossible, and the GDB neatly sidesteps this issue. However, isolating the 

threads and debugging them individually means that overall runtime errors may not be identified 

properly. For advanced debugging, consider using the Intel software tools, specifically, the Intel 

Debugger, the Intel Thread Checker, and the Intel Thread Profiler. The book from which this article was 

sampled also supplies more information on the subject, and serves as an excellent starting point for 

developers interested in learning more about multi-core processing and software optimization. 

 

 

This article is based on material found in the book Multi-Core Programming: Increasing Performance 

through Software Multi-threading by Shameem Akhter and Jason Roberts. Visit the Intel Press website 

to learn more about this book: 

http://noggin.intel.com/intelpress/categories/books/multi-core-programming  

Also see our Recommended Reading List for similar topics: 

http://noggin.intel.com/rr 
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