
Multi-threaded Debugging Using the GNU
Project Debugger

Abstract
Debugging is a fundamental step of software development and increasingly complex software requires

greater specialization from debugging tools. Software built with multiple threads of execution in

particular requires special considerations and comprehensive debugging management. The free, open

source GNU Project Debugger has the capacity to observe all threads while the program is running and

then isolate a current thread to show focused information for debugging. This article explores some of

the GDB’s features for multi-threaded software debugging and includes code examples demonstrating

setup of thread management and execution of debugging procedures.

Introduction
This article presents the basic functionalities of the GNU Project Debugger. It will introduce the specific

vocabulary and commands used by the GDB for managing multi-threaded application testing. The GDB

will run on Unix and Microsoft Windows OSs and debug programs written in Ada, C, C++, Objective-C,

Pascal, and many other languages. By the end of this article, a developer should have a number of new

techniques to try right away and a solid foundation for approaching more complicated multi-threaded

debugging projects.

The GNU Project Debugger and user manuals are available for free download from

www.gnu.org/software/gdb/, along with links to product documentation and a FAQ wiki.

Multi-threaded Debugging Using GDB
For POSIX threads, debugging is generally accomplished using the GNU Project Debugger (GDB). GDB

provides a number of capabilities for debugging threads, including:

 Automatic notification when new threads are created

 Listing of all threads in the system

 Thread-specific breakpoints

 The ability to switch between threads

 The ability to apply commands to a group of threads

Not all GDB implementations support all of the features outlined here. Please refer to your system’s

manual pages for a complete list of supported features.

http://www.gnu.org/software/gdb/

Notification on Thread Creation
When GDB detects that a new thread is created, it displays a message specifying the thread’s

identification on the current system. This identification, known as the systag, varies from platform to

platform.

Here is an example of this notification:

Starting program: /home/user/threads
[Thread debugging using libthread_db enabled]
[New Thread -151132480 (LWP 4445)]
[New Thread -151135312 (LWP 4446)]

Keep in mind that the systag is the operating system’s identification for a thread, not GDB’s. GDB assigns

each thread a unique number that identifies it for debugging purposes.

Getting a List of All Threads in the Application
GDB provides the generic info command to get a wide variety of information about the program being

debugged. It is no surprise that a subcommand of info would be info threads. This command prints a list

of threads running in the system:

(gdb) info threads
2 Thread -151135312 (LWP 4448) 0x00905f80 in vfprintf () from /lib/tls/libc.so.6
* 1 Thread -151132480 (LWP 4447) main () at threads.c:27

The info threads command displays a table that lists three properties of the threads in the system: the

thread number attached to the thread by GDB, the systag value, and the current stack frame for the

current thread. The currently active thread is denoted by GDB with the * symbol. The thread number is

used in all other commands in GDB.

Setting Thread-specific Breakpoints
GDB allows users that are debugging multi-threaded applications to choose whether or not to set a

breakpoint on all threads or on a particular thread. The much like the info command, this capability is

enabled via an extended parameter that’s specified in the break command. The general form of this

instruction is:

break linespec thread threadnum

where linespec is the standard gdb syntax for specifying a breakpoint, and threadnum is the thread

number obtained from the info threads command. If the thread threadnum arguments are omitted, the

breakpoint applies to all threads in your program. Thread-specific breakpoints can be combined with

conditional breakpoints:

(gdb) break buffer.c:33 thread 7 if level > watermark

Note that stopping on a breakpoint stops all threads in your program. Generally speaking this is a

desirable effect—it allows a developer to examine the entire state of an application, and the ability to

switch the current thread. These are good things.

Developers should keep certain behaviors in mind, however, when using breakpoints from within GDB.

The first issue is related to how system calls behave when they are interrupted by the debugger. To

illustrate this point, consider a system with two threads. The first thread is in the middle of a system call

when the second thread reaches a breakpoint. When the breakpoint is triggered, the system call may

return early. The reason—GDB uses signals to manage breakpoints. The signal may cause a system call

to return prematurely. To illustrate this point, let’s say that thread 1 was executing the system call

sleep(30). When the breakpoint in thread 2 is hit, the sleep call will return, regardless of how long the

thread has actually slept. To avoid unexpected behavior due to system calls returning prematurely, it is

advisable that you check the return values of all system calls and handle this case. In this example,

sleep() returns the number of seconds left to sleep. This call can be placed inside of a loop to guarantee

that the sleep has occurred for the amount of time specified. This is shown in Listing 1.1.

int sleep_duration = 30;

do

{

sleep_duration = sleep(sleep_duration);

} while (sleep_duration > 0);

Listing 1.1 Proper Error Handling of System Calls

The second point to keep in mind is that GDB does not single step all threads in lockstep. Therefore,

when single-stepping a line of code in one thread, you may end up executing a lot of code in other

threads prior to returning to the thread that you are debugging. If you have breakpoints in other

threads, you may suddenly jump to those code sections. On some OSs, GDB supports a scheduler locking

mode via the set scheduler-locking command. This allows a developer to specify that the current thread

is the only thread that should be allowed to run.

Switching between Threads
In GDB, the thread command may be used to switch between threads. It takes a single parameter, the

thread number returned by the info threads command. Here is an example of the thread command:

(gdb) thread 2
[Switching to thread 2 (Thread -151135312 (LWP 4549))]#0
PrintThreads (num=0xf6fddbb0) at threads.c:39
39 {
(gdb) info threads
* 2 Thread -151135312 (LWP 4549) PrintThreads (num=0xf6fddbb0) at threads.c:39
1 Thread -151132480 (LWP 4548) main () at threads.c:27
(gdb)

In this example, the thread command makes thread number 2 the active thread.

Applying a Command to a Group of Threads
The thread command supports a single subcommand apply that can be used to apply a command to one

or more threads in the application. The thread numbers can be supplied individually, or the special

keyword all may be used to apply the command to all threads in the process, as illustrated in the

following example:

(gdb) thread apply all bt

Thread 2 (Thread -151135312 (LWP 4549)):
#0 PrintThreads (num=0xf6fddbb0) at threads.c:39
#1 0x00b001d5 in start_thread () from /lib/tls/libpthread.so.0
#2 0x009912da in clone () from /lib/tls/libc.so.6

Thread 1 (Thread -151132480 (LWP 4548)):
#0 main () at threads.c:27
39 {
(gdb)

The GDB backtrace (bt) command is applied to all threads in the system. In this scenario, this command

is functionally equivalent to: thread apply 2 1 bt.

Conclusion
This article introduced debugging for multi-threaded applications via the GNU Project Debugger. Proper

software engineering principles need to be followed when writing and developing robust multi-threaded

applications, and that includes comprehensive testing. The GDB supports developers’ need to monitor,

log, and test individual threads within the program as well as overall performance. Variable execution

order is usually one of the features of multi-threaded programs that makes linear or traditional

debugging algorithms impossible, and the GDB neatly sidesteps this issue. However, isolating the

threads and debugging them individually means that overall runtime errors may not be identified

properly. For advanced debugging, consider using the Intel software tools, specifically, the Intel

Debugger, the Intel Thread Checker, and the Intel Thread Profiler. The book from which this article was

sampled also supplies more information on the subject, and serves as an excellent starting point for

developers interested in learning more about multi-core processing and software optimization.

This article is based on material found in the book Multi-Core Programming: Increasing Performance

through Software Multi-threading by Shameem Akhter and Jason Roberts. Visit the Intel Press website

to learn more about this book:

http://noggin.intel.com/intelpress/categories/books/multi-core-programming

Also see our Recommended Reading List for similar topics:

http://noggin.intel.com/rr

About the Authors

Shameem Akhter is a platform architect at Intel, focusing on single socket multi-core architecture and

performance analysis. He has also worked as a senior software engineer with the Intel Software and

Solutions Group, designing application optimizations for desktop and server platforms. Shameem holds

a patent on a threading interface for constraint programming, developed as a part of his master's thesis

in computer science.

Jason Roberts is a senior software engineer at Intel Corporation. Over the past 10 years, Jason has

worked on a number of different multi-threaded software products that span a wide range of

applications targeting desktop, handheld, and embedded DSP platforms.

http://noggin.intel.com/intelpress/categories/books/multi-core-programming
http://noggin.intel.com/rr

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as

permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee

to:

 Copyright Clearance Center

 222 Rosewood Drive, Danvers, MA 01923

 978-750-8400, fax 978-750-4744

Portions of this work are from Multi-Core Programming: Increasing Performance through Software

Multi-threading, by Shameem Akhter and Jason Roberts, published by Intel Press, Copyright 2011 Intel

Corporation. All rights reserved.

