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Abstract 
Although debugging multi-threaded applications can seem daunting, the additional complexity of the 

testing process is simply a product of the complexity of the software, and the background and principles 

of debugging remain constant. A solid understanding of these principles allows developers to debug 

software as it is being developed, resulting in more efficient software creation and execution. This 

article explores key elements of development that minimize disruption, including designing with 

debugging in mind, utilizing code review to eliminate errors early, and extending applications via trace 

buffers. The article also prepares developers to take on increasingly complex debugging with confidence 

and experience. 

Introduction 
This article presents the general background and principles of debugging multiple threads of execution, 

a complex process that requires often specialized knowledge and tools. Developers that begin their 

projects with careful consideration of debugging will eliminate unnecessary revision and save time. 

Developers that are able to use simple tools to trace different threads and are able to monitor the 

sequence in which they access shared code resources can effectively narrow down problematic areas. 

the By the end of this article, developers will have the necessary knowledge to begin making their 

software development efficient and have the background necessary to understand and implement more 

complex debugging methods.  

Multi-threaded Debugging Techniques 
Debugging multi-threaded applications can be a challenging task. The increased complexity of multi-

threaded programs results in a large number of possible states that the program may be in at any given 

time. Determining the state of the program at the time of failure can be difficult; understanding why a 

particular state is troublesome can be even more difficult. Multi-threaded programs often fail in 

unexpected ways, and often in a nondeterministic fashion. Bugs may manifest themselves in a sporadic 

fashion, frustrating developers who are accustomed to troubleshooting issues that are consistently 

reproducible and predictable. Finally, multi-threaded applications can fail in a drastic fashion—

deadlocks cause an application or worse yet, the entire system, to hang. 

Users tend to find these types of failures to be unacceptable. This article examines general purpose 

techniques that are useful when debugging multi-threaded applications. Intel has developed a number 

of tools, including the Intel® Thread Checker, the Intel Thread Profiler, and the Intel Debugger that help 

debug and profile multithreaded applications. These tools are discussed in Chapter 11. 



General Debug Techniques 
Regardless of which library or platform that you are developing on, several general principles can be 

applied to debugging multi-threaded software applications. 

Designing with Debugging in Mind 
The first technique for eliminating bugs in multi-threaded code is to avoid introducing the bug in the first 

place. Many software defects can be prevented by using proper software development practices.1 Then 

later a problem is found in the product development lifecycle, the more expensive it is to fix. Given the 

complexity of multi-threaded programs, it is critical that multi-threaded applications are properly 

designed up front.  

How often have you, as a software developer, experienced the following situation? Someone on the 

team that you’re working on gets a great idea for a new product or feature. A quick prototype that 

illustrates the idea is implemented and a quick demo, using a trivial use-case, is presented to 

management. Management loves the idea and immediately informs sales and marketing of the new 

product or feature. Marketing then informs the customer of the feature, and in order to make a sale, 

promises the customer the feature in the next release. Meanwhile, the engineering team, whose 

original intent of presenting the idea was to get resources to properly implement the product or feature 

sometime in the future, is now faced with the task of delivering on a customer commitment 

immediately. As a result of time constraints, it is often the case that the only option is to take the 

prototype, and try to turn it into production code. 

While this example illustrates a case where marketing and management may be to blame for the lack of 

following an appropriate process, software developers are often at fault in this regard as well. For many 

developers, writing software is the most interesting part of the job. There’s a sense of instant 

gratification when you finish writing your application and press the run button. The results of all the 

effort and hard work appear instantly. In addition, modern debuggers provide a wide range of tools that 

allow developers to quickly identify and fix simple bugs. As a result, many programmers fall into the trap 

of coding now, deferring design and testing work to a later time. Taking this approach on a multi-

threaded application is a recipe for disaster for several reasons: 

 Multi-threaded applications are inherently more complicated than single-threaded applications. 

Hacking out a reliable, scalable implementation of a multi-threaded application is hard; even for 

experienced parallel programmers. The primary reason for this is the large number of corner 

cases that can occur and the wide range of possible paths of the application. Another 

consideration is the type of run-time environment the application is running on. The access 

patterns may vary wildly depending on whether or not the application is running on a single-

core or multi-core platform, and whether or not the platform supports simultaneous 

                                                           
1
 There are a number of different software development methodologies that are applicable to parallel 

programming. For example, parallel programming can be done using traditional or rapid prototyping (Extreme 
Programming) techniques. 



multithreading hardware. These different run-time scenarios need to be thoroughly thought out 

and handled to guarantee reliability in a wide range of environments and use cases. 

 Multi-threaded bugs may not surface when running under the debugger. Multi-threading bugs 

are very sensitive to the timing of events in an application. Running the application under the 

debugger changes the timing, and as a result, may mask problems. When your application fails 

in a test or worse, the customer environment, but runs reliably under the debugger, it is almost 

certainly a timing issue in the code.  

While following a software process can feel like a nuisance at times, taking the wrong approach and not 

following any process at all is a perilous path when writing all but the most trivial applications. This holds 

true for parallel programs.  

While designing your multi-threaded applications, you should keep these points in mind. 

 Design the application so that it can run sequentially. An application should always have a valid 

means of sequential execution. The application should be validated in this run mode first. This 

allows developers to eliminate bugs in the code that are not related to threading. If a problem is 

still present in this mode of execution, then the task of debugging reduces to single-threaded 

debugging. 

 In many circumstances, it is very easy to generate a sequential version of an application. For 

example, an OpenMP application compiled with one of the Intel compilers can use the 

openmpstubs option to tell the compiler to generate sequential OpenMP code. 

 Use established parallel programming patterns. The best defense against defects is to use 

parallel patterns that are known to be safe. Established patterns solve many of the common 

parallel programming problems in a robust manner. Reinventing the wheel is not necessary in 

many cases. 

 Include built-in debug support in the application. When trying to root cause an application fault, 

it is often useful for programmers to be able to examine the state of the system at any arbitrary 

point in time. Consider adding functions that display the state of a thread—or all active threads. 

Trace buffers, described in the next section, may be used to record the sequence of accesses to 

a shared resource. Many modern debuggers support the capability of calling a function while 

stopped at a breakpoint. 

This mechanism allows developers to extend the capabilities of the debugger to suit their particular 

application’s needs. 

Code Reviews 
Many software processes suggest frequent code reviews as a means of improving software quality. The 

complexity of parallel programming makes this task challenging. While not a replacement for using well 



established parallel programming design patterns, code reviews may, in many cases, help catch bugs in 

the early stages of development. 

One technique for these types of code reviews is to have individual reviewers examine the code from 

the perspective of one of the threads in the system. During the review, each reviewer steps through the 

sequence of events as the actual thread would. Have objects that represent the shared resources of the 

system available and have the individual reviewers (threads) take and release these resources. This 

technique will help you visualize the interaction between different threads in your system and hopefully 

help you find bugs before they manifest themselves in code. 

As a developer, when you get the urge to immediately jump into coding and disregard any preplanning 

or preparation, you should consider the following scenarios and ask yourself which situation you’d 

rather be in. Would you rather spend a few weeks of work up front to validate and verify the design and 

architecture of your application, or would you rather deal with having to redesign your product when 

you find it doesn’t scale? Would you rather hold code reviews during development or deal with the 

stress of trying to solve mysterious, unpredictable showstopper bugs a week before your scheduled ship 

date? Good software engineering practices are the key to writing reliable software applications. Nothing 

is new, mysterious, or magical about writing multi-threaded applications. The complexity of this class of 

applications means that developers must be conscious of these fundamental software engineering 

principles and be diligent in following them. 

Extending your Application—Using Trace Buffers 
Chapter 7 identified two categories of bugs found in multi-threaded applications: synchronization bugs 

and performance bugs. Synchronization bugs include race conditions and deadlocks that cause 

unexpected and incorrect behavior. Performance bugs arise from unnecessary thread overhead due to 

thread creation or context switch overhead, and memory access patterns that are suboptimal for a given 

processor’s memory hierarchy. The application returns the correct results, but often takes too long to be 

usable. This article focuses on debugging synchronization bugs that cause applications to fail. 

In order to find the cause of these types of bugs, two pieces of information are needed: 

1. Which threads are accessing the shared resource at the time of the failure. 

2. When the access to the shared resource took place. 

In many cases, finding and fixing synchronization bugs involves code inspection. A log or trace of the 

different threads in the application and the pattern in which they accessed the shared resources of the 

code helps narrow down the problematic code sections. One simple data structure that collects this 

information is the trace buffer. 

A trace buffer is simply a mechanism for logging events that the developer is interested in monitoring. It 

uses an atomic counter that keeps track of the current empty slot in the array of event records. The type 



of information that each event can store is largely up to the developer. A sample implementation of a 

trace buffer, using the Win32 threading APIs, is shown in Listing 1.1.2  

1  // Circular 1K Trace buffer 

2  #define TRACE_BUFFER_SIZE 1024 

3 

4  typedef struct traceBufferElement 

5 { 

6   DWORD threadId; 

7   time_t timestamp; 

8   const char *msg; 

9  } traceBufferElement; 

10 

11  static LONG m_TraceBufferIdx = -1; 

12  static traceBufferElement traceBuffer[TRACE_BUFFER_SIZE]; 

13 

14  void InitializeTraceBuffer() 

15  { 

16   m_TraceBufferIdx = -1; 

17 

18   /* initialize all entries to {0, 0, NULL} */ 

19   memset(traceBuffer, 0, 

20   TRACE_BUFFER_SIZE*sizeof(traceBufferElement)); 

21  } 

22 

23  void AddEntryToTraceBuffer(const char *msg) 

24  { 

25   LONG idx = 0; 

26 

27   // Get the index into the trace buffer that this 
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 In the interest of making the code more readable, Listing 1.1 uses the time() system call to record system time. 

Due to the coarse granularity of this timer, most applications should use a high performance counter instead to 
keep track of the time in which events occurred. 



28   // thread should use 

29   idx = InterlockedIncrement(&m_TraceBufferIdx) % 

30   TRACE_BUFFER_SIZE; 

31 

32   // Enter the data into the Trace Buffer 

33   traceBuffer[idx].threadId = GetCurrentThreadId(); 

34   traceBuffer[idx].timestamp = time(NULL); 

35   traceBuffer[idx].msg = msg; 

36  } 

37 

38  void PrintTraceBuffer() 

39  { 

40   int i; 

41   printf("Thread ID Timestamp Msg\n"); 

42   printf("----------|----------|----------------------“ 

43   "-----------------\n"); 

44 

45   // sort by timestamp before printing 

46   SortTraceBufferByTimestamp(); 

47   for (i = 0; i < TRACE_BUFFER_SIZE; i++) 

48   { 

49    if (traceBuffer[i].timestamp == 0) 

50    { 

51     break; 

52    } 

53    printf("0x%8.8x|0x%8.8x| %s\n", 

54    traceBuffer[i].threadId, 

55    traceBuffer[i].timestamp, 

56    traceBuffer[i].msg); 

57   } 

58  } 



Listing 1.1  Sample Implementation of a Trace Buffer 

 

Listing 1.1 creates a trace buffer that can store 1,024 events. It stores these events in a circular buffer. 

As you’ll see shortly, once the circular buffer is full, your atomic index will wrap around and replace the 

oldest event. This simplifies your implementation as it doesn’t require dynamically resizing the trace 

buffer or storing the data to disk. In some instances, these operations may be desirable, but in general, a 

circular buffer should suffice. 

Lines 1–13 define the data structures used in this implementation. The event descriptor 

traceBufferElement is defined in lines 4–9. It contains three fields: a field to store the thread ID, a 

timestamp value that indicates when the event occurred, and a generic message string that is associated 

with the event. This structure could include a number of additional parameters, including the name of 

the thread.  

The trace buffer in Listing 1.1 defines three operations. The first method, InitializeTraceBuffer(), 
initializes the resources used by the trace buffer. The initialization of the atomic counter occurs on line 

16. The atomic counter is initialized to –1. The initial value of this counter is –1 because adding a new 

entry in the trace buffer requires us to first increment (line 29) the atomic counter. The first entry 

should be stored in slot 0. Once the trace buffer is initialized, threads may call AddEntryToTraceBuffer() 
to update the trace buffers with events as they occur. PrintTraceBuffer() dumps a listing of all the 

events that the trace buffer has logged to the screen. This function is very useful when combined with a 

debugger that allows users to execute code at a breakpoint. Both Microsoft Visual Studio and GDB 

support this capability. With a single command, the developer can see a log of all the recent events 

being monitored, without having to parse a data structure using the command line or a watch window. 

Note that the implementation of the trace buffer in Listing 1.1 logs events as they are passed into the 

buffer. This doesn’t necessarily guarantee that the trace buffer will log events exactly as they occur in 

time. To illustrate this point, consider the two threads shown in Listing 1.2. 

unsigned __stdcall Thread1(void *) 

{ 

 // ... thread initialization 

 // write global data 

 m_global = do_work(); 

 AddEntryToTraceBuffer(msg); 

 // ... finish thread 

} 



unsigned __stdcall Thread2(void *) 

{ 

 // ... thread initialization 

 // read global data 

 Thread_local_data = m_global; 

 AddEntryToTraceBuffer(msg); 

 // ... finish thread 

} 

Listing 1.2  Two Threads Logging Events to a Trace Buffer 

By now it should be clear what the problem is. A race condition exists between the two threads and the 

access to the trace buffer. Thread1 may write to the global data value and then start logging that write 

event in the trace buffer. Meanwhile, Thread2 may read that same global value after the write, but log 

this read event before the write event. Thus, the data in the buffer may not be an accurate reflection of 

the actual sequence of events as they occurred in the system. 

One potential solution to this problem is to protect the operation that you want to log and the 

subsequent trace buffer access with a synchronization object. A thread, when logging the event, could 

request exclusive access to the trace buffer. Once the thread has completed logging the event, it would 

then unlock the trace buffer, allowing other threads to access the buffer. This is shown in Listing 1.3. 

// This is NOT RECOMMENDED 

unsigned __stdcall Thread1(void *) 

{ 

 // ... thread initialization 

 // write global data 

 LockTraceBuffer(); 

 m_global = do_work(); 

 AddEntryToTraceBuffer(msg); 

 UnlockTraceBuffer(); 

 // ... finish thread 

} 

unsigned __stdcall Thread2(void *) 

{ 

 // ... thread initialization 



 // read global data 

 LockTraceBuffer(); 

 Thread_local_data = m_global; 

 AddEntryToTraceBuffer(msg); 

 UnlockTraceBuffer(); 

 // ... finish thread 

} 

Listing 1.3  Incorrectly Synchronizing Access to the Trace Buffer 

There are a number of drawbacks to this technique. Using a synchronization primitive to protect access 

to a trace buffer may actually mask bugs in the code, defeating the purpose of using the trace buffer for 

debug. Assume that the bug the developer is tracking down is related to a missing lock around the read 

or write access in the thread. By locking access to the trace buffer, the developer is protecting a critical 

section of code that may be incorrectly unprotected. Generally speaking, when tracking down a race 

condition, the programmer should avoid synchronizing access to the trace buffer. If you synchronize 

access and your application works, it’s a clue that there may be a problem in the synchronization 

mechanism between those threads.  

The preferred method to overcoming this limitation is to log a message before and after the event 

occurs. This is demonstrated in Listing 1.4. 

unsigned __stdcall Thread1(void *) 

{ 

 // ... thread initialization 

 // write global data 

 AddEntryToTraceBuffer(before_msg); 

 m_global = do_work(); 

 AddEntryToTraceBuffer(after_msg); 

 // ... finish thread 

} 

unsigned __stdcall Thread2(void *) 

{ 

 // ... thread initialization 

 // read global data 

 AddEntryToTraceBuffer(before_msg2); 



 Thread_local_data = m_global; 

 AddEntryToTraceBuffer(after_msg2); 

 // ... finish thread 

} 

Listing 1.4  Preferred Method of Logging Messages with a Trace buffer 

By logging a before and after message, a programmer can determine whether or not the events 

occurred as expected. If the before and after messages between the two threads occur in sequence, 

then the developer can safely assume that the event was ordered. If the before and after messages are 

interleaved, then the order of events is indeterminate; the events may have happened in either order.  

A trace buffer can be used to gather useful data about the sequence of operations occurring in a multi-

threaded application. For other more difficult problems, more advanced threading debug tools may be 

required. These tools are discussed in Chapter 11. 

Conclusion 
This article introduced foundational knowledge and skills for the complex topic of multi-threaded 

debugging. To maximize efficiency and minimize error, developers need to begin their software 

development with the concept of debugging in mind. Code review can catch bugs early in development 

and save an enormous amount of time and effort. A trace buffer can be utilized to log useful event data 

about the sequence of operations occurring in a multi-threaded application. Though knowledge of these 

general techniques is valuable, more complex debugging problems must sometimes be addressed with 

more advanced tools. For more advanced debugging, consider employing Intel software tools, 

specifically, the Intel Debugger, the Intel Thread Checker, and the Intel Thread Profiler. To learn more 

about multi-core processing and software optimization, consult the book from which this article was 

sampled.  

 

This article is based on material found in the book Multi-Core Programming: Increasing Performance 

through Software Multi-threading by Shameem Akhter and Jason Roberts. Visit the Intel Press website 

to learn more about this book: 

http://noggin.intel.com/intelpress/categories/books/multi-core-programming  

Also see our Recommended Reading List for similar topics: 

http://noggin.intel.com/rr 

http://noggin.intel.com/intelpress/categories/books/multi-core-programming
http://noggin.intel.com/rr
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