Geeknet &3

g A

silashdof SOUrcefOrge free(code):

The State of Software Development Today:
A Parallel View

June 2012

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View 2

What is Parallel Programming?

When students study computer programming, the normal approach is to learn to program sequentially. We
code our software such that the steps happen one after another. Only after one step is finished does the next
begin. For example, we learn various algorithms for solving problems, such as sorting, and we code the
individual steps of our sort algorithm sequentially, step by step.

For many software applications, this approach seems to work fine. But years ago, researchers discovered that,
given two computers — or three, or more — it was possible for a single program to divide up its tasks between
the computers, in the same way a team of people might divide up the labor to complete a single project.

Of course, in order for a team to function the most effectively, their labor needs to be divided in such a way
that one person doesn’t have to stop and wait for another person to finish before beginning his or her task. In
the same way, software needs to be carefully coded such that one process, or thread, can complete its task
without necessarily having to wait for another task to finish. This results in the most optimal use of the
separate computers.

Students learn to create software that models an actual entity. For example, a checking account program
would model an actual checking account. It would include features such as account balance, the ability to
deposit money, and the ability to withdraw money. Real-life entities such as the checking account are easy to
model. But other entities are much more complex. For example, a weather system model would require
knowing the individual temperature and pressure at hundreds, thousands, possibly millions of locations in the
three dimensions of the earth’s atmosphere. Determining what the weather does next requires large,
sophisticated algorithms. If these algorithms are coded in a strictly sequential manner, it could take hours or
days to complete just one step in the model — possibly even after the actual storm system has passed.

This is where parallel programming comes in. In the past, coding in parallel required computers with multiple
processors, and these were found primarily in research labs. The cost was simply too prohibitive. So while
computer science students might learn the basics of e —rEr—)
parallel programming, their education would be primarily |[[ge ostions view werp

hypothetical. Or, if they had access to a supercomputer, || e e seves] Pms e e
as soon as they graduated and found work in industry,
they would likely go back to strictly sequential
programming.

CPU Usage CPU Usage History

Physical Memory Usage History

Memory

But all that changed with the advent of multi-core

Physical Memory (MB) System

processors. Almost all desktop and most notebook o proclilin "%
Available 1402 Processes 191

computers sold today feature at least two cores; four Free o G el
Kernel Memory (MB)

cores are extremely common. Further, each core can i ’ R —
lonpage: Resource Monitor...

usually run two simultaneous threads, doubling the
effective number of cores. As such, for instance, the Task
Manager program in Microsoft Windows running on an

Geeknet T3

Processes: 191 CPU Usage: 3% Physical Memory: 82%
L

Task Manager shows eight separate CPU threads

[0 A

silashdo# Sourceforge free(code):

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View 3

Intel® i7 Quad Core processor-based machine will show what appears to be eight individual processors. The
Device Manager will similarly show eight processors. B Device Manaaet = | 5 [l |

File Action View Help
&= || HE &
A Monitors -

x¥ Network adapters
*Z Ports (COM & LPT)

Why Use Parallel Programming?

With the right tools, the computer programmer can easily [} Processors
. D Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz
write code that is split up into multiple threads running [Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz
H H H D Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz
simultaneously. And with a good understanding of parallel B kel Corel TN 7. 203008 CPU® 20061z
techniques, the programmer can divide up algorithms B Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz
. | D Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz
effectively. The resulting executable can even detect how [} Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz
. . D Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz =
many cores and threads area available at runtime. If the & Sound, video and game controllers
H _ H _ : H < Storage controllers
program runs on a single-core, single-thread machine, it B Syetoan dovices
will degrade gracefully down to a sequential algorithm. On # Universal Serial Bus controllers .

the other hand, if the same program, with no changes, runs
on a multiple-core computer with dozens or even hundreds ..o Manager shows eight separate
of cores, the program will make use of as many cores as processers, even though there’s actually only a

possible and finish the task as quickly as possible. single Quad-Core i7 processorinstalled in this
computer

n

And it doesn’t stop there. Today’s processors also feature registers that span many bytes, typically 16 or even
32 bytes. But integers and single-precision floating point numbers typically take up only four bytes. A program
running on a computer with 16-byte-wide registers can simultaneously place four integers or four single-
precision numbers in one of these single registers, and perform math simultaneously on all four numbers. The
processors include support for such calculation with individual instructions capable of doing mathematical
functions on all four numbers at once. With careful coding, loops can place four numbers into the registers at
once and do four calculations, effectively finishing a task in a quarter of the time. This is called vectorization,
and today’s processors support both parallel algorithms and vectorization. These registers, called Single
Instruction Multiple Data (SIMD) registers, have been available since the original MMX technology and
Streaming SIMD Extensions (SSE) in the early Pentium processors, and have evolved to today’s SSE4.2 and
Advanced Vector Extensions (AVE) within current processors.

One might ask, “Why use parallel programming?” Perhaps a better question is, “Why not?” If you’re creating
software, why not get the most out of the processor? Why not take advantage of as much processing as is
available? Why not finish the calculations for the entire storm system before the storm even arrives? Why not
provide the scientist with maximum efficiency in calculations? Why not use those processors to calculate all
the points in a 3D game so that the game moves as smoothly as scenes in a movie?

Components of Parallel Programming

Traditional, sequential programming usually involves creating both data structures and algorithms. The
algorithms operate on the data structures, and the structures and algorithms can be combined in various ways
(for example, object-oriented programming packages up the algorithms together within a data structure).

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View 4

Programming in parallel, then, requires making your algorithms parallel-friendly, as well as your data
structures.

For example, suppose an algorithm needs to calculate a sum. If the algorithm is split up into four separate
threads, and there’s only a single variable holding the running total, the four threads might clash, resulting in
an incorrect sum. Two threads might simultaneously grab the current total; one thread adds on its current
sum, and saves it. But immediately after that, the second thread would add its sum to the first total as well,
and then save it right after the first. The end result is the wrong total. The first thread’s sum was ignored.

One solution might be to let each thread work on the total variable individually. But that somewhat defeats
the purpose of breaking the summation up into a parallel algorithm. Instead, the correct way is to make use of
what’s called a reducer, whereby each thread operates on a single sum, and then at the end the individual
sums are combined. With the help of a good threading library, the programmer doesn’t even need to write
the reduction code. Instead, the programmer can declare the total variable as a reducer variable, and write
the loop that performs the sum. The library will not only split the loop into parallel, but will also provide local
copies of the total variable for the individual threads, and then combine them together. The end result is code
that is extremely simple: one total variable, one loop. But under the hood, the loops run in parallel.

Industry Needs

Virtually every industry can benefit from an increase in computational power. Some of the most obvious are
scientific industries such as meteorology, as previously noted. But there are many more that are worth
mentioning.

For example, the motion picture industry is already making heavy use of parallelism with three-dimensional
(3D) graphics. These movies are created using 3D software tools that use parallel programming, and state
directly in their software requirements the need for advanced SIMD registers for vectorization. Without such
parallel software, the rendering of 3D movies would take much longer to complete, and filmmakers would still
be forced to create graphics that were more simplistic and less realistic.

Healthcare is another industry that already is benefiting from parallel programming. Again, 3D imagery comes
into play here, but other areas of healthcare software also benefit. Software could process large data sets
from an MRI system, for example, and find a diagnosis in @ much shorter time than otherwise would be
possible.

Industrial automation and robotics benefit as well. The enormous robots used in automotive factories are
some of the most advanced examples of robotics. These robots need to be able to make rapid calculations on
multiple data points simultaneously so they can maximize the work, and move in three-dimensional space to
move accordingly, often with unforeseen circumstances. Without parallel programming, the robots would not
be able to function as effectively.

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View 5

Perhaps the most obvious example is the gaming industry. Sophisticated 3D scenes can be brought to motion
only by using processors to their fullest potential, which includes the use of parallel programming and
especially vectorization. 3D game programming requires solving simultaneous algebraic equations, which is an
ideal use of vectorization.

The list of industries benefitted by parallel programming is virtually endless. The military industry needs to
make rapid calculations with weapons, even making modifications to calculations at the last moment. The
space industry needs software that can respond quickly as a space vehicle is launched and as it moves through
space.

Generally speaking, where computers and calculations are needed, an industry can benefit (and already is
benefiting) from parallel programming.

Difficulties in Older Methods

Although parallel programming is powerful, writing the code can be cumbersome. Trying to split off the loops
into multiple threads requires either making calls into the operating system using its own threading library or,
for maximum effectiveness, embedding assembly code directly in the higher-level code, to make use of
features such as vectorization and the spawning of the code onto multiple cores. Coding becomes even more
complex if the single program is to detect how many cores and threads are available, and try to make use of all
of them.

As with software engineering in general, certain aspects should be easily available to the programmer through
tools and libraries, so that the programmer doesn’t have to concern him- or herself with the nuts and bolts of
some lower-level tasks. For example, most high-level languages include libraries for container and collections
so that the programmer doesn’t have to recode a linked list every time one is needed.

By the same token, today’s programming tools should offer as many features to make parallel programming
happen at best automatically, or at least with minimal effort on behalf of the programmer. That’s where Intel®
Parallel Studio XE comes in.

How Intel Can Help

Intel Parallel Studio XE provides the right tools for parallel programming. Intel Parallel Studio XE runs directly
inside Microsoft® Visual Studio® 2010, which means you can continue using the tools you already know.
Parallel Studio XE includes multiple technologies such as Intel® Cilk™ Plus, and Intel® Threading Building
Blocks.

Introducing Intel® Cilk Plus

Intel® Cilk Plus is an extension to the C/C++ languages that allows for easy conversion from serial to parallel
loops and functions. It is based on the original Cilk technology created by Charles E. Leiserson, a pioneer in

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View 6

parallel computing at the Massachusetts Institute of Technology. The original Cilk technology included a
language that was based in C, and included additional keywords to support parallel programming. From there,
designers developed Cilk++, a commercial form of Cilk. Cilk Arts, the makers of Cilk+, was acquired by Intel,
and the technology was given a new name, Intel Cilk Plus.

For the programmer, Intel Cilk Plus is easy to use yet very powerful. There are only three new keywords, and
the rest of the language is the same ANSI-standard C and C++ programmers already know.

The first Intel Cilk Plus keyword is _Cilk_for. This keyword uses the same syntax as the familiar for keyword in
C and C++. By replacing a for keyword with a _Cilk_for keyword, a loop can be recoded to run in parallel. Once
executing, the runtime library will attempt to launch as many simultaneous copies of the loop as possible
based on the number of cores and threads available.

The next keyword is _Cilk_spawn. Place this keyword immediately before a function call, and the runtime will
attempt to launch the function as a separate thread, again based on the number of available cores and
threads.

The final keyword is _Cilk_sync. This keyword is used as a single statement, and it allows completed threads to
pause and wait until all threads are finished. This allows for code synchronization so that all threads can
complete before additional code is run.

Using these three keywords, a programmer can easily write parallel code without having to drop down to
assembly language, and without having to make operating systems calls. Here’s an example for-loop written in
traditional C++:

for (int i=0; i<1000; i++) {
res[i] = ar[i] * 2;

}

Now here is the same loop using Intel Cilk Plus. Notice the only change is the replacement of the for keyword
with the _Cilk_for keyword:

_Cilk_for (int 1=0; 1<1000; i++) {
res[i] = ar[i] * 2;

}

Introducing Auto-vectorization

In addition to providing Intel Cilk Plus keywords, the compiler can perform auto-vectorization to target the
advanced features of today’s processors. Using auto-vectorization, the compiler automatically analyzes the
loops in the code and chooses the ones that are good candidates for vectorization.

Geeknet T3

[0 A

silashdo# Sourceforge free(code):

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View 7

The compiler then compiles the loop to at least two different forms of assembly code, including a simple, non-
vectorized version for processors that don’t support vectorization, as well as an advanced SIMD-based version
to make use of vectorization. When running the code on processors with SIMD registers that are 16 bytes in
size, the vectorization will happen automatically, resulting in as much as a four-times increase in speed. This
feature happens automatically by the compiler, although the programmer can include special pragmas in the
code to turn off auto-vectorization, or make suggestions to assist the compiler in the vectorization of the code.
Additionally, the compiler will provide a message when a function or loop is auto-vectorized such as this:

SIMD LOOP WAS VECTORIZED

But as mentioned earlier, parallel programming requires care to certain data structures. Further, programmers
shouldn’t have to re-invent the wheel, so to speak. That’s where Intel® Threading Building Blocks helps.

Introducing Intel® Threading Building Blocks

Whereas Intel Cilk Plus consists of three new keywords added to the C and C++ languages, Intel® Threading
Building Blocks (Intel® TBB) is a complete library offering many classes and functions to assist in the coding of
parallel code. Intel TBB was created by Intel as an open source project, and does not rely on the Intel Cilk Plus
keywords. As such, Intel TBB can be used without special compilers.

Intel TBB primarily includes two parts: algorithms and classes. The classes include a rich set of container
classes modeled after the C++ Standard Library, but with parallel features. For example, one such container is
called concurrent_vector, which works similarly to the C++ standard Vector class. The algorithms include, for
instance, a parallel_reduce template function that helps with the reductions described earlier in this article.
There is also a parallel_sort template function that offers parallel support for sorting.

Additionally, Intel TBB includes thread local storage classes, memory allocation and deallocation classes,
timing and synchronization, task scheduling, and even special exception classes that support the propagation
of exception outward from spawned threads to calling threads.

Dealing with Existing Software

Existing serial software can be upgraded to run in parallel using Intel® Parallel Studio XE. With a simple menu
click, a Visual Studio C++ project can be modified to make use of the Intel C/C++ Compiler, which offers full
support for parallel programming and vectorization.

Once a project is switched over to the Intel compiler, the Project Properties dialog box that programmers are
already familiar with now includes additional entries for configuring support for today’s processors. By default,
the final executable will make use of the most advanced processor features available on the computer the
executable runs on, including vectorization through the SIMD features, as well as the use of as many cores and
threads as possible. The compiler will automatically attempt to create vectorized forms of loops. And Intel
Composer XE can help the programmer find places where loops and functions can be made to run in parallel.

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View 8

Walkthrough with Intel Parallel Studio XE

Intel Parallel Studio XE is a comprehensive tool suite that provides C/C++ and Fortran developers a simplified
approach to building future-proof, high-performance parallel applications for multicore processors.

Intel® Composer XE combines optimizing compilers with powerful parallel models and libraries
including Intel TBB and Intel Cilk Plus.

Intel® VTune™ Amplifier XE helps find performance bottlenecks in both serial and parallel code.

Intel® Inspector XE is a powerful thread and memory error checker.

Intel® Parallel Advisor is a wizard-style tool that can analyze your code and look for opportunities to
parallelize your code.

Here are some sample sessions demonstrating these features.

Part of Intel Composer XE is | Options 2wl
the Intel® C++ compiler. The || Eenvironment + | Compiler Selection
compiler can be controlled Projects and Solutions Target Platform: Selected version of suite/compiler:
Source Control - -
: : Win32 v | |Intel(R) Composer XE 2011 Update 10 build 32! ¥
from the new options in the Text Editor : | ntel® Comp P : 1
project’s Property Pages e Selected Compiler: ~ INtel(R) C++ Compiler XE 12.1.4.325 [IA-32]
. Intel Inspector XE 2011
dialog box, as shown here: Intel VTune Amplifier XE 2011 Intel(R) C++ Compiler XE on IA-32, version 12.14 Package ID:
Database Tools w_ccompxe_2011.10.325
Debugging = -
Device Tools Executables: $(ICInstallDir)bin\ia32;$(CommonProgramFiles)\li |
HTML Designer
Intel Composer XE Libraries: $(ICInstallDir)compiler\lib\ia32;$ (ICInstalIDir)ipp) B
C++
General Includes: $(ICInstallDir)compiler\include;$(ICInstall Dir)com B
Compilers
Guided Auto Parallelism .) g b]
Code Coverage Default Options: /Quc9 /Qlocation,link,"$(VCInstallDir)\bin
Profile Guided Optimization
Office Tools Al
‘ OK ([Cancel ’

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View

%) matrix_vector_multiplication_c - Microsoft Visual Studio

When you compile your

File Edit View Project Build Debug Tools Test Window Help

application using the Intel B - 23 LK B9 O < Ee Chl b Relesse 3 Wini2 L8 B s S B

C++ Compiler, you can see @~ 0B BP0 E=E|= 20 AP @ FEHBE

places where the auto- N —

vectorization took place, as @ it veson mtipteaion startTime = clock it(); =
for (k = 0;k < REPEATNTIMES; k++) {

= & matrix_vector_multiplicatiof
4 [Header Files
J Resource Files
= & Source Files
& Driver.c
¢ Multiply.c

well as places it did not,
along with a reason why it
did not, as shown here:

—#else
= = s 56 #endif
Output
Show output from: Build v rE eI

Deleting intermediate files and output files for project
Compiling with Intel(R) C++ Compiler ¥E 12.1.4.325 [Ia-32]...

Multiply. ¢

Driver.c

Linking... (Intel C++ Enviromment)
C:\Jennifer\Samples\vec_samples\Driver. c(155): (col. 3) remark:
C:\Jermi fer\Sanples\vec_sanples\Driver. ¢ (155): (col. 3) remark:
C:\Jennifer\Sanples\vec_samples\Driver.c(145): (col. 2) remark:
C:\Jennifer\Samples\vec_samples\Driver. c(164): (col. 2) remark:
C:\Jermi fer\Sanples\vec_sanples\Driver. ¢ (55): (col. 3) remark:
C:\Jennifer\Sanples\vec_samples\Driver.c(54): (col. 2) remark:
C:\Jennifer\Sanples\vec_sanples\Driver. c(69): (col. 2) remark:

xilink: executing ’link’
Embedding manifest... (Microsoft VC++ Environment)
3 + Tes -

Tam wee coved o 3 Tormi for Camnl on w

<

— Rebuild A11 started: Froject: matrix_vector_multiplication c, Configuration: Release
’matrix_vector_multiplication_c’,

(Intel C++ Environment)

icl: remark #10346: optimization reporting is disabled given current set of compilation o)

loop was not vectorized:
loop was not vectorized:
loop was not vectorized:

er comnleciPelescal

J#ifdef NOFUNCCALL

i, ;

n

matvec(sizel,size2,a,b,x);

in32 g

seens inefficient.

LOOP WAS VECTORIZED. _\
loop was not vectorized: not inner Toop.
loop was not vectorized: not inmer loop.
LOOP WAS VECTORIZED.

vectorization possible but
not inner loop.

vectorization possible but seems inefficient.

Roi1dAl an hatm”
[

Chs INS

Ln 155

Col 11

Ready

Intel VTune Amplifier XE ‘f‘c“' ik Docurep Apl g SE Project ok Inte L
File Help

can be used to run an TE| & B R b
r019w r022hs r023hs r024hs

analysis on your code and
determine hotspots, poor
concurrency, and locks and
waits, as shown here:

i Hotspots - View hotspots colored by CPU usage /v’ (2]

@ Analysis Target| | * Analysis Type | [B Collection Log

3

CPU Timew

Dldle .Poor Dok .Ideal .Over
||

Function
- Call Stack

JBOtomIUp) | " Top-down Tr »

Module

dliStopPlugin 7.550s RenderSystem_Direct3D9.DLL |
|[ll & FireObject::checkColli 6.389s [SystemProceduralFire.DLL |
FireObject::ProcessFirg 4.592s [N SystemProceduralFire.DLL Ll
i BaseThreadInitThunk | 2.5665 (/NI kernel32.dll i
Ogre::FileStreamData§ 2.5625\:| OgreMain.dll
TaskManagerTBB:Par| 2.533s [N Smoke.exe
AlScene:GetPOI 1.710s DN SystemALDLL l
l # TaskManaqerTBB:Wa | 1.682s [l Smoke.exe I
Selected 1 row(s): 7.550s <
« » [« T)
Qe T e e e T | Ruler Area -
i Lvatl ! 2 21 2. L L [¥] © Giobal Mark
\ wWinMainCRTStartu... [] ¥~ Frame
g [Thread (0x1a28) [T Thread
|l & [Thread (0x8e4) .| @B Rumning =
Il [thread (0x29c8) Ty~ ik CPUTme |

&2 User Task!
CPU Usage
dluk CPU Time
Frames over Ti...

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View 10

Intel Inspector XE can do a | C:\ixe - Intel Inspector XE 2011
File Help

full analysis of your codeto | g cvn b o

|dent|fy th read|ng and r011mi3 | New Inspector XE Result x
. #® Configure Analysis Type Intel Inspector X€ 2011
memory errors: P—

= Memory Error Analysis || Locate Deadlocks and Data Races m
& Detect Leaks

Locate Deadlocks and Data Races
A Detect Memory Prot Press F1 for more detais.
A Locate Memory Prol

= Threading Error Analysi

A Detect Deadlocks
Terminate on deadlock
A Detect Deadlocks ar u

A NSNS, Stack frame depth: |16 | v

[Custom Analysis Types S Normal

Duplicate elimination
© Details
Detect lock hierarchy and deadlocks:
Terminate on deadlock:
Detect potential privacy infringements:
Stack frame depth:
Detect data races:
Memory access byte granularity:
Detect data races on stack accesses:
Duplicate elimination:
Defer memory check:
Save stack on first access:
Save stack on alocation: Show Command Line

After ru nning its ana|y5|s, ¥ C:\ixe - Intel Inspector XE 2011
. File Help
Intel Inspector XE provides |z oo b sa
results such as this: 0Lim3 | 101263 x
?® Locate Deadlocks and Data Races Intel Inspector X 2011
& Target| ° Analysis Type| F: Collection Log| | ¢ Summary
Problems 2 || Filters Sortv @
1a @ Problem Sources Modules St.§ Severity
P1 A Cross-thread s... crtexe.c; video.h; winvideo.h find_and_fix_thread... N. Error 2 item(s)
P2 @ Data race tachyon_find_and_fix_threading_errors.... find_and_fix_thread... N. Warning 1 item(s)
Pz @ Data race winvideo.h find_and_fix_thread... N. Problem
Cross-thread stack access 1 item(s)
Data race 2 item(s)
Source
crtexe.c 1 item(s)
tachyon_find_and_fix_threading_errors... 1 item(s)
task_scheduler_init.h 1 item(s)
= ——— 1 item(s)
Code Locati [Code Locations| @
L ons) UEEie winvideo.h 2 item(s)
ID Description a Source Function Module State Module
X2 Stack cross ac. video.h:114 get_color find_and_fix_threading_error... New find_and_fix_threading_errors.exe 3 ftem(s)
®X3 Stack crossac... [winvideo.h: ... thread_video find_and_fix_threading_error ... New - ; - .
X1 Stack owned crtexe.c:589 _tmainCRTStar ... find_and_fix_threading_error... New Ale))
New 3 item(s)
Suppressed
Not suppressed 3 item(s)
Investigated
Not investigated 3 item(s)

Geeknet T3

silashdo# Sourceforge free(code):

e 4

http://goparallel.sourceforge.net/

The State of Software Development Today: A Parallel View 11

Intel Parallel Advisor fckden oo, X
. . Analysis is done. View data and sources in the
InC| udes an e nt|re Survey windows. To mark each parallel site and

. task, insert annotations with the code editor.
workflow to guide you

1.5 T: t i
along the path Of Wh:rrevjmyou.?;g[econsider adding
. . I ?

converting a serial T

time, and functions that call them.

[wae J[®)

2. Annotate Sources

Add Advisor annotations to propose
parallel tasks and their enclosing parallel
sites.

e)[5]

(W H 3. Check Suitability
; Analyze the annotated parallel sites and
tasks to check their predicted
erformance implications.

e (]

4. Check Correctness
Predict data sharing problems for the
annotated tasks and, fix the reported
data sharing problems.

e (]

5. Add Parallel Framework

After you fix problems and re-check your
sources, replace Advisor annotations
with parallel framework code.

Euntain | [o A
Current Project: ParallelStudiol

application into a parallel
application, as shown here:

m

Conclusion

Parallel programming has evolved substantially over the years. Programmers are still learning new ways to
program in parallel after spending much time coding in serial. Programming for multiple-core processors can
be difficult, between writing parallel code, maintaining data structures in parallel, and attempting to vectorize
the software. Intel Parallel Studio XE is just the right tool for the job, providing parallel extensions to C++ in the
form of Intel Cilk Plus, a solid library called Intel Threading Building Blocks, and a powerful suite of tools: Intel
Composer XE, Intel VTune Amplifier, Intel Inspector XE, and Intel Parallel Advisor.

To learn more about Intel Parallel Studio XE, click here.

Jeff Cogswell is a Geeknet contributing editor, and is the author of several tech books including C++ All-In-One Desk Reference For
Dummies, C++ Cookbook, and Designing Highly Useable Software. A software engineer for over 20 years, Jeff has written extensively
on many different development topics. An expert in C++ and JavaScript, he has experience starting from low-level C development on
Linux, up through modern web development in JavaScript and jQuery, PHP, and ASP.NET MVC.

Geeknet T3

silashdo# Sourceforge free(code):

[0 A

http://goparallel.sourceforge.net/
http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

	11842-The State of Software Development Today-A Parallel View- Cover Page
	11842-The State of Software Development Today- A Parallel View Research Report-Inside Pages 6.26.12

