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Abstract. We propose an extension of the tableau-based first order
automated theorem prover Zenon to deduction modulo. The theory of
deduction modulo is an extension of predicate calculus, which allows us
to rewrite terms as well as propositions, and which is well suited for proof
search in axiomatic theories, as it turns axioms into rewrite rules. We
also present a heuristic to perform this latter step automatically, and
assess our approach by providing some experimental results obtained on
the benchmarks provided by the TPTP library, where this heuristic is
able to prove difficult problems in set theory in particular. Finally, we
describe an additional backend for Zenon that outputs proof certificates
for Dedukti, which is a proof checker based on the λΠ-calculus modulo.

Keywords: Tableaux, Deduction Modulo, Rewriting, Automated The-
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1 Introduction

Proof search in axiomatic theories, such as Peano arithmetic and set theory,
or decidable fragments (Presburger arithmetic, arrays and pointers, axiomati-
zations of memory models, etc.) is receiving increasing attention, driven by the
applications of formal methods in industrial settings. Leaving axioms wandering
among the hypotheses is not a reasonable option, as it induces a combinatorial
explosion in the proof search space. Moreover, axioms themselves generally do
not bear any specific meaning that could be used by automated theorem provers.

A solution to address this problem is to use a cutting-edge combination of a
first order automated theorem proving method (resolution) with theory-specific
decision procedures. This approach has drawbacks, namely the need for a specific
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decision procedure for each given theory. This imposes a decidability constraint
on the theories that we can work with, as well as a lack of automatability. As
a consequence, we lose genericity over the theories. However, SMT solvers are
well-suited for industrial applications, where those problems are not a concern.

Our approach is to make use of the advances of deduction modulo [9], which
allows us to transform axioms into rewrite rules. For example, Peano arithmetic
or Zermelo set theory can be expressed without axioms. This way, we turn proof
search among the axioms into computations, avoiding unnecessary blowups, and
we shrink the size of proofs by recording only their meaningful steps. Deduction
modulo has already been experimented within first order automated theorem
provers. This is the case of iProver Modulo [7], where a resolution-based auto-
mated theorem prover has been extended to deduction modulo. This is also the
case of Super Zenon [10], which is an extension of the Zenon tableau-based auto-
mated theorem prover [4] to superdeduction [5], a variant of deduction modulo.

In this paper, we go further along this path by adapting Zenon to deduction
modulo itself, and following some of the ideas of [3]. Compared to the approach
of Super Zenon, this new tool, called Zenon Modulo, allows us to capture more
computational aspects of theories, since deduction modulo also adds the possi-
bility to rewrite over terms, while superdeduction only considers rewrite rules
over propositions. Moreover, it will also allow us to compare this extension with
that of iProver Modulo, and assess the impact of the integration of deduction
modulo into different proof search techniques (i.e. resolution and tableaux).

Another contribution introduced in this paper is a heuristic that automati-
cally transforms any set of axioms (and therefore any theory) into a set of rewrite
rules, which can be used during the proof search step of Zenon. With this heuris-
tic, we observe significant improvements over the pure axiomatic proof search of
Zenon, as can be seen in the experimental results obtained on the set of problems
provided by the TPTP library [12]. In particular, this heuristic appears to be
quite appropriate for set theory, where we are able to prove difficult problems.

It should be noted that in the short term, we also plan to work on the dual
approach, which consists in building theories modulo manually. In particular, we
aim to consider the set theory of the B method [1], in order to apply Zenon Mod-

ulo to the verification of proof obligations coming from industrial applications,
which is one of the goals of the BWare project [13].

One of the major interests of Zenon to experiment deduction modulo resides
in its certifying approach, i.e. its ability to produce proof certificates that can be
skeptically checked by other proof assistants such as Coq or Isabelle. Extending
Zenon to deduction modulo means to also provide a backend able to check proofs
in deduction modulo. To do so, we have provided Zenon with a backend that
outputs proofs for Dedukti [2], a proof checker based on the λΠ-calculus modulo.

This paper is organized as follows: in Sec. 2, we first introduce the principles
of deduction modulo; we then present, in Sec. 3, the rules of Zenon for deduction
modulo, and describe, in Sec. 4, the corresponding implementation and the ex-
perimental results obtained on the benchmarks provided by the TPTP library;
finally, in Sec. 5, we provide an overview of the Dedukti backend.



2 From Axioms to Deduction Modulo

Deduction modulo [9] focuses on the computational part of a theory, where ax-
ioms are transformed into rewrite rules, which induces a congruence over propo-
sitions, and where reasoning is performed modulo this congruence. For example,
considering the inclusion in set theory ∀X,Y (X ⊆ Y ⇔ ∀x (x ∈ X ⇒ x ∈ Y )),
the proof of A ⊆ A in sequent calculus has the following form:

Ax
. . . , x ∈ A ⊢ A ⊆ A, x ∈ A

⇒R
. . . ⊢ A ⊆ A, x ∈ A⇒ x ∈ A

∀R
. . . ⊢ A ⊆ A, ∀x (x ∈ A⇒ x ∈ A)

Ax
. . . , A ⊆ A ⊢ A ⊆ A

⇒L
. . . , ∀x (x ∈ A⇒ x ∈ A) ⇒ A ⊆ A ⊢ A ⊆ A

∧L
A ⊆ A⇔ ∀x (x ∈ A⇒ x ∈ A) ⊢ A ⊆ A

∀L× 2
∀X,Y (X ⊆ Y ⇔ ∀x (x ∈ X ⇒ x ∈ Y )) ⊢ A ⊆ A

In deduction modulo, the axiom of inclusion can be seen as a computation
rule, and therefore replaced by the rewrite rule X ⊆ Y −→ ∀x (x ∈ X ⇒ x ∈ Y ).
The previous proof is then transformed as follows:

Ax
x ∈ A ⊢ x ∈ A

⇒R
⊢ x ∈ A⇒ x ∈ A

∀R, A ⊆ A −→ ∀x (x ∈ A⇒ x ∈ A)
⊢ A ⊆ A

where it can be seen that computations are interleaved with the deduction
rules. It can be noticed that the proof is much simpler than the one completed
using sequent calculus. In addition to simplicity, deduction modulo also allows
for unbounded proof size reduction [6].

There exist some other approaches, which can be considered as variants of
deduction modulo. This is the case of superdeduction [5], the formalism at the
origin of Super Zenon [10], which proposes to use axioms to enrich the deduc-
tion system with new deduction rules (called superdeduction rules). Thus, while
deduction modulo integrates some axioms of the theory as computations, su-
perdeduction integrates them as deduction rules, following Prawitz’s ideas [11].

However, in contrast with superdeduction, deduction modulo can also capture
some computational aspects that are modeled by means of equational axioms.
For instance, if we consider an equational sequent calculus with the theory of
Peano arithmetic, the proof of ∃x (x + s(0) = s(s(0))) is the following without
deduction modulo (in the proof context, we only provide the two axioms of Peano
arithmetic required to complete the proof, referring to them as P):

Ax
P, s(0) + s(0) = s(s(0) + 0) ⊢ s(0) + s(0) = s(s(0) + 0)

∀L× 2
P ⊢ s(0) + s(0) = s(s(0) + 0) Π

SubstP
P ⊢ s(0) + s(0) = s(s(0))

∃R{

∀x (x+ 0 = x)
∀x, y (x+ s(y) = s(x+ y))

⊢ ∃x (x+ s(0) = s(s(0)))



where Π is the proof expressed as follows:

Ax
P, s(0) + 0 = s(0) ⊢ s(0) + 0 = s(0)

∀L
P ⊢ s(0) + 0 = s(0)

Refl
P ⊢ s(s(0)) = s(s(0))

SubstP
P ⊢ s(s(0) + 0) = s(s(0))

In deduction modulo, the two axioms are transformed into computation rules
on terms, and therefore replaced by the two rewrite rules x + 0 −→ x and
x+ s(y) −→ s(x+ y). The corresponding proof is then the following:

Refl, s(0) + s(0) −→∗ s(s(0))
⊢ s(0) + s(0) = s(s(0))

∃R
⊢ ∃x (x+ s(0) = s(s(0)))

As previously, it can be noticed that the proof in deduction modulo is much
simpler and shorter than the one obtained using the equational sequent calculus.

3 Deduction Modulo Rules for Zenon

In this section, we provide the adaptation of the proof search rules of Zenon to de-
duction modulo. This mainly consists in extending the usual rules of Zenon [4] by
allowing them to work modulo a congruence relation over propositions induced
by a set of rewrite rules over propositions and a set of equational axioms and
rewrite rules over terms (this extension is partially inspired by the presentation
of tableaux modulo presented in [3]).

In the following, we borrow some of the notations, definitions, and proposi-
tions of [9], and we call FV the function that returns the set of free variables of
a formula. In particular, we introduce the notion of class rewrite system:

Definition 1 (Class Rewrite System). A term rewrite rule is a pair of terms
denoted by l −→ r, where FV(r) ⊆ FV(l). An equational axiom is a pair of terms
denoted by l = r. A proposition rewrite rule is a pair of propositions denoted by
l −→ r, where l is an atomic proposition and r is an arbitrary proposition, and
where FV(r) ⊆ FV(l).

A class rewrite system is a pair, denoted by RE, consisting of:

– R: a set of proposition rewrite rules;

– E: a set of term rewrite rules and equational axioms.

Given a class rewrite system RE , the relations =E and =RE are the congru-
ences generated respectively by the sets E and R∪E . We then define the notion
of RE-rewriting. In the definition below, we use the standard concepts of sub-
term and term replacement: given an occurrence ω in a proposition P , we write
P|ω for the term or proposition at ω, and P [t]ω for the proposition obtained by
replacing P|ω by t in P at ω.



Definition 2 (RE-Rewriting). Given a class rewrite system RE, the propo-
sition P RE-rewrites to P ′, denoted by P −→RE P ′, if P =E Q, Q|ω = σ(l),
and P ′ =E Q[σ(r)]ω, for some rule l −→ r ∈ R, some proposition Q, some
occurrence ω in Q, and some substitution σ.

The relation =RE is not decidable in general, but there are some cases where
this relation is decidable depending on the class rewrite system RE and the
rewrite relation −→RE , as identified by the following proposition:

Proposition 1 (Decidability of =RE). If the rewrite relation −→RE is con-
fluent and (weakly) terminating, then the relation =RE is decidable.

Given a class rewrite system RE , the proof search rules of Zenon adapted
to deduction modulo are summarized in Figs. 1 and 2 (for the sake of simplifi-
cation, the unfolding and extension rules are omitted), where the “ |” symbol is
used to separate the formulas of two distinct nodes to be created, ǫ is Hilbert’s
operator (ǫ(x).P (x) means some x that satisfies P (x), if it exists, and is consid-
ered as a term), capital letters are used for metavariables, and Rr, Rs, Rt, and
Rts are respectively reflexive, symmetric, transitive, and transitive-symmetric
relations (the corresponding rules also apply to equality). As hinted by the use
of Hilbert’s operator, the δ-rules are handled by means of ǫ-terms rather than
using Skolemization. What we call here metavariables are often named free vari-
ables in the tableau-related literature. However, metavariables are not used as
variables as they are never substituted, and do not even help to generate a global
constraint closing all the branches of the tableau at once; metavariables are in-
stead used as clues (through unification attempts) for the “real” instantiation
rules γ∀inst

/γ¬∃inst
. The proof search rules are applied with the usual tableau

method: starting from the negation of the goal, apply the rules in a top-down
fashion to build a tree. When all branches are closed (i.e. end with a closure
rule), the tree is closed, and this closed tree is a proof of the goal. This algo-
rithm is applied in strict depth-first order: we close the current branch before
starting working on another branch. Moreover, we work in a non-destructive
way: working on a branch will never change the formulas of another branch.

Compared to [9] and [3], it should be noticed that there is no explicit rule of
extended narrowing in the proposed deduction modulo rules for Zenon, since the
relation =RE is actually disseminated in all the initial rules of Zenon. However,
the extended narrowing rule is not only a rule that allows us to apply rewrite
rules, but also a rule that may suggest instantiations for metavariables. The
technique used by Zenon to find those instantiations must therefore be extended
as well. Initially, Zenon tries to close a branch by looking for two formulas P
and ¬P that can be unified by a substitution σ (over metavariables), and this
substitution σ is then used in the γ∀inst

/γ¬∃inst
rules corresponding to the unified

metavariables. In deduction modulo, this method must be extended as follows:
we look for two formulas P and Q s.t. P =RE P

′, Q =RE ¬Q′, and there exists
a substitution σ s.t. σ(P ′) =E σ(Q

′). To be complete, we must also extend this
metavariable instantiation search to any propositional narrowing (even if we are



Closure and Cut Rules

P ¬Q
⊙ if P =RE Q

⊙
cut if P =RE Q

P | ¬Q

P ⊙⊥ if P =RE ⊥
⊙

¬P ⊙¬⊤ if P =RE ⊤
⊙

¬P ⊙r if P =RE Rr(t,t)
⊙

P ¬Q
⊙s if P =RE Rs(a,b)

and Q=RE Rs(b,a)
⊙

Analytic Rules

S α∧ if S=RE P∧Q

P,Q

¬S
β¬∧ if S=RE P∧Q

¬P | ¬Q

S
β∨ if S=RE P∨Q

P | Q
¬S α¬∨ if S=RE P∨Q

¬P,¬Q

S
β⇒ if S=RE P⇒Q

¬P | Q
¬S α¬⇒ if S=RE P⇒Q

P,¬Q

S
β⇔ if S=RE P⇔Q

¬P,¬Q | P,Q
¬S

β¬⇔ if S=RE P⇔Q
¬P,Q | P,¬Q

¬S α¬¬ if S=RE ¬P

P

S
δ∃ if S=RE ∃x P (x)

P (ǫ(x).P (x))
¬S

δ¬∀ if S=RE ∀x P (x)
¬P (ǫ(x).¬P (x))

γ-Rules

S γ∀M if S=RE ∀x P (x)

P (X)
¬S γ¬∃M if S=RE ∃x P (x)

¬P (X)

S γ∀inst if S=RE ∀x P (x)

P (t)
¬S γ¬∃inst if S=RE ∃x P (x)

¬P (t)

Fig. 1. Deduction Modulo Rules for Zenon (Part 1)

not trying to close a branch): we look for a formula P and a substitution σ s.t.
P =RE P

′, and there exist P ′
|ω and a rule l −→ r of R∪ E s.t. σ(P ′

|ω) =E σ(l).

4 Implementation and Experimental Results

In this section, we present our implementation of the extension of Zenon to de-
duction modulo, as well as a heuristic to transform an axiomatic theory into a
theory modulo automatically. We also discuss the results obtained on the bench-
marks provided by the TPTP library, and we detail a problem that is difficult
according to the TPTP ranking, and whose proof is found by our extension.



Relational Rules

P (t1, . . . , tn) ¬Q(s1, . . . , sn)
pred if P (t1,...,tn)=RE S(t1,...,tn)

and Q(s1,...,sn)=RE S(s1,...,sn)
t1 6= s1 | . . . | tn 6= sn

f(t1, . . . , tn) 6= g(s1, . . . , sn)
fun if f(t1,...,tn)=E h(t1,...,tn)

and g(s1,...,sn)=E h(s1,...,sn)
t1 6= s1 | . . . | tn 6= sn

P (s, t) ¬Q(u, v)
sym if P (s,t)=RE Rs(s,t)

and Q(u,v)=RE Rs(u,v)
t 6= u | s 6= v

¬P (s, t)
¬refl if P (s,t)=RE Rr(s,t)

s 6= t

P (s, t) ¬Q(u, v)
trans if P (s,t)=RE Rt(s,t)

and Q(u,v)=RE Rt(u,v)
u 6= s,¬Rt(u, s) | t 6= v,¬Rt(t, v)

P (s, t) ¬Q(u, v)
transsym if P (s,t)=RE Rts(s,t)

and Q(u,v)=RE Rts(u,v)
v 6= s,¬Rts(v, s) | t 6= u,¬Rts(t, u)

P (s, t) ¬Q(u, v)
transeq
if P (s,t)=RE (s=t)

and Q(u,v)=RE Rt(u,v)

u 6= s,¬Rt(u, s) | ¬Rt(u, s),¬Rt(t, v) | t 6= v,¬Rt(t, v)

P (s, t) ¬Q(u, v)
transeqsym
if P (s,t)=RE (s=t)

and Q(u,v)=RE Rts(u,v)

v 6= s,¬Rts(v, s) | ¬Rts(v, s),¬Rts(t, u) | t 6= u,¬Rts(t, u)

Fig. 2. Deduction Modulo Rules for Zenon (Part 2)

4.1 Implementation

The extension of Zenon to deduction modulo described in Sec. 3 has been imple-
mented in a tool called Zenon Modulo4. In this implementation, the class rewrite
system RE is assumed to be a pure rewrite system, i.e. there are only rewrite
rules and no equational axiom in E . In addition, the rewrite relation −→RE

is assumed to be confluent and (weakly) terminating, and the relation =RE is
therefore decidable (see Prop. 1 in Sec. 3). Thus, given two propositions P and
Q, it is sufficient to compare their normal forms (w.r.t. −→RE) to decide whether
P =RE Q. A solution to deal with the relation =RE is then to normalize all the
formulas of the proof search tree. However, this solution is not efficient in general,
as it may perform many useless rewritings. To alleviate this problem, we use an
alternate (but equivalent) solution, which consists in performing rewriting only
if the formula is a literal. In this case, the terms of the formula are normalized,

4 Available on demand (sending a mail to the authors).



and one step of proposition rewriting is then applied; if the obtained formula is
still a literal, the process is reiterated.

To generate the rewrite system R ∪ E , we have implemented two options.
With the first one, the user builds a theory modulo (with axioms and rewrite
rules) and provides this theory to Zenon Modulo through an extension of the
TPTP input syntax [12], which is one of the input formats used by Zenon,
to natively support rewrite rules. With the second option, the user provides a
purely axiomatic theory and Zenon Modulo transforms it into a theory modulo
automatically. This transformation relies on a heuristic described in Subsec. 4.2.

Zenon Modulo is still in an early stage of development and some features have
not been implemented yet. In particular, this is the case of the narrowing for
terms and propositions. As a consequence, this leads to incompleteness cases,
some of which arise in the benchmarks presented in this paper.

4.2 A Heuristic to Build Theories Modulo

To obtain a theory modulo from an axiomatic theory automatically, we propose
a heuristic that generates rewrite rules from axioms based on the shape of the
latter. In general, this heuristic does not preserve cut-free completeness. Here are
the shapes of axioms that can be handled by our heuristic, as well as the rewrite
rules that are generated from them (in the following P is an atomic formula that
is not an equation, ϕ an arbitrary formula, and s and t two terms):

– Axiom of the form ∀x̄ (P ⇔ ϕ): the proposition rewrite rule P −→ ϕ is
generated if FV(ϕ) ⊆ FV(P ), otherwise if ϕ is a literal and FV(P ) ⊂ FV(ϕ)
then we apply the heuristic to the formula ∀x̄ (ϕ⇔ P );

– Axiom of the form ∀x̄ (¬P ⇔ ϕ): the proposition rewrite rule P −→ ¬ϕ is
generated if FV(ϕ) ⊆ FV(P ), otherwise if ϕ is a literal and FV(P ) ⊂ FV(ϕ)
then we apply the heuristic to the formula ∀x̄ (ϕ⇔ ¬P );

– Axiom of the form ∀x̄ s = t: the term rewrite rule s −→ t is generated if
FV(t) ⊆ FV(s), otherwise the term rewrite rule t −→ s if FV(s) ⊂ FV(t).
In addition, all the axioms expressing the commutativity of a given symbol
are excluded from this rule of our heuristic.

In this heuristic, it should be noticed that we exclude the axioms where P
is an equation in order to benefit from the equational reasoning of Zenon. To
illustrate this heuristic, an example is provided in Subsec. 4.4, where it is shown
how a part of the theory is transformed into rewrite rules automatically.

4.3 Experimental Results

We propose a test of our approach on a benchmark drawn from the TPTP
library [12] (v.5.5.0), which is a large library of standard benchmark exam-
ples for automated theorem proving systems. On this benchmark, we compare
Zenon with two different heuristics of Zenon Modulo. The first heuristic consists
in only selecting the axioms that can be transformed into proposition rewrite



TPTP

Category

Zenon Zenon Modulo

(Prop. Rewriting)

Zenon Modulo

(Term & Prop.

Rewriting)

FOF

6,659 problems
1,586 1,626

(2.5%)

+114 (7.2%)

-74 (4.7%)
1,616

(1.9%)

+170 (10.7%)

-140 (8.8%)

SET

462 problems
149 219

(47%)

+78 (52.3%)

-8 (5.4%)
222

(49%)

+86 (57.7%)

-13 (8.7%)

Table 1. Experimental Results over the TPTP Library

rules (equational axioms that can be transformed into term rewrite rules are
ignored), while the second one is a greedy heuristic that transforms every ax-
iom that matches one of the patterns described above, producing both term
and propositional rewrite rules. The results of this experiment (run on an In-

tel Xeon X5650 2.67GHz computer, with a memory limit of 1GB and a timeout
of 300s) are summarized in Tab. 1, where we have considered the first order prob-
lems of the whole library (FOF category) and the problems of set theory (SET
category). This table has three columns: the first one provides the number of
problems proved by Zenon for each category, while the two other columns show
the results of Zenon Modulo with each of the heuristics described above. For
Zenon Modulo, there are three numbers per category and heuristic: the left-hand
side number is the number of problems proved by Zenon Modulo, while the two
right-hand side numbers represent, from top to bottom, the number of problems
proved by Zenon Modulo but not by Zenon, and the number of problems proved
by Zenon but not by Zenon Modulo.

From the results of Tab. 1, we observe that Zenon Modulo always proves
more problems than Zenon whatever the considered category and the selected
heuristic. If the gain seems to be low for the whole FOF category (less than 3%)
in spite of a significant proportion of problems proved by Zenon Modulo but not
by Zenon (about 7% and 11% depending on the heuristic), this is essentially due
to incompleteness cases of Zenon Modulo, where narrowing is actually required
and for which Zenon succeeds in finding a proof (about 5% and 9% of the cases
depending the heuristic). Once narrowing will have been implemented, we can
reasonably hope to drastically reduce the number of these cases, and obtain a
quite higher gain (probably up to about 11% in the best case scenario).

However, even without narrowing, the gain of Zenon Modulo becomes quite
significant for the SET category (about 50% for both heuristics). This very
promising result in the SET category tends to show that set theory is a good
candidate for automated reasoning with deduction modulo, even when using an
automated heuristic. Moreover, as said in the introduction, we plan to apply
Zenon Modulo in the context of the B method [1], in particular to verify proof



obligations coming from industrial applications. This is one of the tasks of the
BWare project [13]. As the modeling technique used by the B method relies on
a customized set theory, which will have a hand-tailored expression as a rewrite
system, we can therefore be quite confident in the effectiveness of our tool in the
verification of these proof obligations.

The results of the two instances of Zenon Modulo are close, but the heuristic
based on term and proposition rewriting proves more problems that are not
proved by Zenon (about 11% for FOF and 58% for SET), and once narrowing
will be implemented, this heuristic should therefore be preferred.

It should be also noticed that among the 86 problems of the SET category
proved by Zenon Modulo (with the heuristic based on term and proposition
rewriting) but not by Zenon, there are 29 difficult problems according to the
TPTP ranking, namely 29 with a ranking greater than 0.75, 9 with a ranking
greater than 0.8, and 1 with a ranking greater than 0.9.

4.4 A Nontrivial Example from the TPTP Library

To show the effectiveness of Zenon Modulo, let us describe the proof found for the
problem SET815+4, which has the highest ranking (0.91) among those solved,
and which deals with the theory of ordinal numbers. The conjecture states that
any ordinal number is equal to the union of the elements of its successor. The
axioms used to complete this proof are the following:

∀A,B (A ⊆ B ⇔ ∀X (X ∈ A⇒ X ∈ B)) (subset)
∀A,B (A =set B ⇔ A ⊆ B ∧B ⊆ A) (eqset)

∀X,A,B (X ∈ A ∪B ⇔ X ∈ A ∨X ∈ B) (union)
∀X,A (X ∈ {A} ⇔ X = A) (singleton)
∀X,A (X ∈

⋃

A⇔ ∃Y (Y ∈ A ∧X ∈ Y )) (sum)
∀A (A ∈ On ⇔ set(A) ∧ ∀X (X ∈ A⇒ X ⊆ A) ∧ (ordinal)

strict_wo(mem_pred, A))
∀X,A (X ∈ A+ 1 ⇔ X ∈ A ∪ {A}) (successor)

where set is a predicate that requires the argument to be a set, and where On
is the “set” of ordinal numbers, mem_pred the membership relation over ordinal
numbers (this relation is related to ∈ by means of an axiom not shown here as
it is not required to complete the proof), and strict_wo a formula encoding the
strict well-order relation.

According the rules of the heuristic described in Subsec. 4.2, all these axioms
can be turned into proposition rewrite rules (we use the first rule of the heuristic,
and each axiom is oriented from left to right). Once this theory modulo has been
built, we can then try to prove the conjecture, which is expressed as follows:

∀A (A ∈ On ⇒
⋃

(A+ 1) =set A)

5 It means that at least 70% of the tested automated theorem provers fail in proving
the considered problems.



¬(∀A (A ∈ On ⇒
⋃
(A+ 1) =set A))

l1
¬(

⋃
(τ1 + 1) ⊂ τ1 ∧ τ1 ⊂

⋃
(τ1 + 1)), ∀X (X ∈ τ1 ⇒ X ⊂ τ1)

l2
¬(∀X (X ∈

⋃
(τ1 + 1) ⇒ X ∈ τ1))

l3
Π1

¬(∀X (X ∈ τ1 ⇒ X ∈
⋃
(τ1 + 1)))

l4
Π2

Π1

τ3 ∈ τ1 ∨ τ3 ∈ {τ1}, ¬(τ2 ∈ τ1), τ2 ∈ τ3
l5τ3 ∈ τ1

l6τ3 ∈ τ1 ⇒ τ3 ⊂ τ1
l7

¬(τ3 ∈ τ1)
⊙

⊙

∀X (X ∈ τ3 ⇒ X ∈ τ1)
l8τ2 ∈ τ3 ⇒ τ2 ∈ τ1
l9

¬(τ2 ∈ τ3)
⊙

⊙

τ2 ∈ τ1 ⊙
⊙

τ3 = τ1
l10

τ2 6= τ2
⊙r⊙

τ3 6= τ1
⊙

⊙

Π2

¬(∃Y (Y ∈ (τ1 + 1) ∧ τ4 ∈ Y )), τ4 ∈ τ1
l11

¬(τ1 ∈ (τ1 + 1) ∧ τ4 ∈ τ1)
l12

τ1 6= τ1
⊙r⊙

¬(τ4 ∈ τ1)
⊙

⊙

where :
τ1 = ǫ(A).¬(A ∈ On ⇒

⋃
(A+ 1) = A)

τ2 = ǫ(X).¬(X ∈
⋃
(τ1 + 1) ⇒ X ∈ τ1)

τ3 = ǫ(Y ).(Y ∈ (τ1 + 1) ∧ τ2 ∈ Y )
τ4 = ǫ(X).¬(X ∈ τ1 ⇒ X ∈

⋃
(τ1 + 1))

l1 = δ¬∀, α¬⇒, ordinal, eqset
l2 = β¬∧, subset
l3 = δ¬∀, α¬⇒, sum, δ∃, α∧, successor, union
l4 = δ¬∀, α¬⇒, sum
l5 = β∨, singleton
l6 = γ∀inst

l7 = β⇒, subset
l8 = γ∀inst
l9 = β⇒
l10 = pred
l11 = γ¬∃inst

l12 = β¬∧, successor, union, α¬∨,

singleton

Fig. 3. Proof of Problem SET815+4

When applied to this specification, Zenon Modulo produces the (rather short)
proof of Fig. 3. The proof is presented using the rules of Sec. 3, even though these
rules are more used for proof search rather than for proof presentation (for that
purpose, Zenon actually uses an intermediate format, which is described in detail
in [4]). Moreover, to make the presentation more compact, one proof step may
consist of several rules. Notice the clever instantiation rule l6, which cannot be
done before the δ∃ of l3.

5 Proof Verification with Dedukti

In this section, we describe the Dedukti backend that has been implemented for
Zenon Modulo, and which relies in particular on a proof transformation from
classical to constructive logic.



5.1 Dedukti as a Backend for Deduction Modulo

Skeptically checking proof traces produced by an automated theorem prover im-
poses that the traces contain all the information needed by the proof checker
to assert the validity of proofs. A naive way to check proofs performed by
Zenon Modulo would be to record rewriting as a special rule, but this method
would be very expensive in space, because an arbitrary number of rewrite rules
can occur between any consecutive nodes of the proof. To circumvent this prob-
lem, the proof checker or the formalization of the proof must not distinguish
propositions or terms belonging to the same equivalence class modulo rewriting.
The only information needed is the set of rewrite rules, which cannot be bigger
than the problem statement itself. Dedukti fits this specific constraint in a simple
way: if the set of rewrite rules is translated into Dedukti rewrite rules specified
in the header of the proof, any proposition or term used in the proof can be
replaced by an equivalent proposition or term modulo rewriting.

Dedukti [2] is a type checker for the λΠ-calculus modulo, which is an exten-
sion of the λ-calculus with dependent types and rewrite rules. In order to check
proofs of a given logical system, we have to define an embedding of this system
into the λΠ-calculus modulo. A logical system is embedded into the λΠ-calculus
modulo using declarations of constants and declarations of rewrite rules. As an
example, let us consider the implicative fragment of natural deduction and a
predicate P . To encode this example, we provide the context of Fig. 4, where
the syntax of λΠ-calculus modulo is used. In this context, we can check the
trivial proof of Imp P P by verifying that the term Intro P P (λt : (Proof P ). t)
has type Proof (Imp P P ). This technique, which consists in defining rules as
constants in the λΠ-calculus modulo, is called deep embedding.

However, the λΠ-calculus modulo allows us to define rewrite rules that
avoid the definitions of the previous encoding and therefore get shorter proofs.
For example, we can replace the Intro and Elim constants by the rewrite rule
Proof (Imp A B) −→ (Proof A → Proof B), where A and B are variables of
type Prop. The previous term then reduces to λt : (Proof P ).t, which has the
same type. This technique, which consists in reusing the language features (here,
the λΠ-calculus modulo) is called shallow embedding. In particular, the compu-

Prop : Type

P : Prop

Imp : Prop → Prop → Prop

Proof : Prop → Type

Intro : ΠA : Prop.ΠB : Prop.(Proof A→ Proof B) → Proof (Imp A B))

Elim : ΠA : Prop.ΠB : Prop.(Proof (Imp A B)) → (Proof A) → Proof B)

Fig. 4. Encoding of Natural Deduction in λΠ-Calculus Modulo



tations (β-reduction) of the initial system are preserved. Notice how deduction
modulo allows us to smoothly go from deep to shallow embedding.

The definition of an output to deduction modulo first consists in providing
the declaration of the language (terms, predicates, connectives, etc.), and the
shallow embedding of the natural deduction rules that is close to λΠ-calculus.
We then proceed to the definition of the rewrite rules for propositions and terms,
according to the input set of rewrite rules. Once this encoding has been defined,
proofs can be checked in this context. As an example, we can extend the pre-
vious encoding with a predicate Q and two axioms Imp Q (Imp P P ) and
Imp (Imp P P ) Q. The heuristic of Sec. 4 will replace these two axioms by a
single rewrite rule (these two axioms represent an equivalence), and we just have
to declare the rewrite rule Q −→ Imp P P , modulo which Q admits the same
proof as before, i.e. λt : (Proof P ).t.

5.2 From Classical to Constructive Proofs

Zenon’s logic is classical and expressed in a formalism very close to sequent
calculus [14]. As a consequence, using Dedukti as a backend requires two steps:
the first one is to translate classical proofs of Zenon into proofs of constructive
sequent calculus with equality, which we discuss here, and the second one is a
standard translation from sequent calculus to natural deduction.

The translation from classical to constructive logic relies on an optimized
double-negation translation [15], presented in Tab. 2, where other connectives
(¬ and ⊤) are defined as usual through ⇒ and ⊥. With these definitions, it is
possible to show that a formula A has a classical proof if and only if ϕ(A) has a
constructive proof. The purpose of defining the three functions of Tab. 2 is that
the algorithm introduces a minimal number of double negations. In particular,
we improve over both Kuroda’s and Gödel’s translations [15] by combining their
principles: double negation only after universal quantifiers and double negation
only in front of disjunctive and existentially quantified propositions, respectively.
At top level, we push double negations as far as possible inside the formula, as
Gödel, in front of the first encountered disjunction/existential quantifier (the
role of ϕ); at this point, we stop introducing double negations until, as Kuroda,
we meet a universal quantifier, in which case we start again the process (the role
of ψ). We refine our translation with the polarity of formulas (i.e. the side of the
sequent on which the formula appears): if a formula appears on the left-hand
side of a sequent, we do not put a double-negation in front of it (the role of χ).

Furthermore, the algorithm analyses the structure of the classical proof in
order to remove more double negations. For instance, a disjunction can be
proved constructively even in a classical calculus. As a consequence, the state-
ment of many proofs remains unchanged. This is the case of the TPTP problem
SET815+4, discussed in Sec. 4, whose proof certificate (expressed in λΠ-calculus
modulo), is given in Figs. 5 and 6 of Appx. A. This algorithm of proof trans-
formation has been implemented for Zenon Modulo to produce Dedukti proof
certificates. In particular, Zenon Modulo succeeds in producing a proof certifi-
cate for the previous problem SET815+4, which is correctly checked by Dedukti.



ϕ χ ψ

A ∧B ϕ(A) ∧ ϕ(B) χ(A) ∧ χ(B) ψ(A) ∧ ψ(B)

A ∨B ¬¬(ψ(A) ∨ ψ(B)) χ(A) ∨ χ(B) ψ(A) ∨ ψ(B)

A⇒ B χ(A) ⇒ ϕ(B) ψ(A) ⇒ χ(B) χ(A) ⇒ ψ(B)

∀x A ∀x ϕ(A) ∀x χ(A) ∀x ϕ(A)

∃x A ¬¬∃x ψ(A) ∃x χ(A) ∃x ψ(A)

⊥ ⊥ ⊥ ⊥

Atomic P ¬¬P P P

Table 2. Translation from Classical to Constructive Logic

6 Conclusion

We have proposed an extension of the tableau-based first order automated the-
orem prover Zenon to deduction modulo. This extension essentially consists in
considering a part of a given theory as rewrite rules (over terms and proposi-
tions), and integrating these rewrite rules into the proof search rules of Zenon. We
have also presented an implementation of this extension, called Zenon Modulo,
as well as a heuristic to turn axioms of theories into rewrite rules automatically.
This new tool significantly improves the proof search of Zenon, as shown by the
experimental results obtained on the benchmarks provided by the TPTP library.
In particular, this is the case of the SET category, where Zenon Modulo is able
to prove difficult problems according to the TPTP ranking. Finally, we have
also described an additional backend for Zenon that outputs proof certificates
for Dedukti, which is a proof checker based on the λΠ-calculus modulo.

As future work, we first aim to complete our implementation to deal with
narrowing when trying to find instantiations for metavariables. This will allow
us to ensure completeness for our extension of Zenon, even though narrowing
may paradoxically widen the proof search space in some cases (e.g., in set the-
ory, a metavariable representing a set can be “narrowed” using the major part
of rewrite rules defining the set operators). To deal with these cases, we will
probably implement a switch that will allow us to activate/deactivate the use
of narrowing. It might be also desirable to extend our proof search method to
polarized deduction modulo [8], which is a refinement of deduction modulo to
deal with theories formed with axioms using implications. This extension would
allow us to consider more theories, where a significant part of the axioms are
expressed neither by equivalences, nor by equations, but only by implications.
Finally, in the framework of the BWare project [13], we plan to apply this tool
in the context of the B method [1], with in particular the verification of proof
obligations coming from industrial applications. To achieve this task, we have
to build a theory modulo for the modeling method of B, which is actually a
typed set theory, and we should be able to reuse some ideas of [10], where a B

set theory is proposed using superdeduction. Given the very promising results



of our tool in the SET category of the TPTP library, we are quite confident in
the effectiveness of our tool in the verification of B proof obligations.
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A Proof Certificate for Problem SET815+4 in

λΠ-Calculus Modulo

Declarations:

Term,Prop : Type
Proof : Prop → Type

∧,∨,⇒: Prop → Prop → Prop

∀, ∃ : (Term → Prop) → Prop

On,mem_pred : Term
+1, { },

⋃
: Term → Term

∪ : Term → Term → Term

set : Term → Prop

=,=set,∈,⊂, strict_wo : Term → Term → Prop

Rewrite Rules:

[A,B : Prop]Proof (A ∧B) −→ ΠP : Prop.
(Proof A→ Proof B → Proof P ) → Proof P

[A,B : Prop]Proof (A ∨B) −→ ΠP : Prop.(Proof A→ Proof P ) →
(Proof B → Proof P ) → Proof P

[A,B : Prop]Proof (A⇒ B) −→ Proof A→ Proof B

[A : Term → Prop]Proof (∀ A) −→ Πx : Term.Proof (A x)
[A : Term → Prop]Proof (∃ A) −→ ΠP : Prop.

(Πx : Term.Proof (A x) → Proof P ) → Proof P

[x, y : Term]Proof (x = y) −→ ΠP : (Term → Prop).Proof ((P x) ⇒ (P y))
[A,B : Term]A ⊂ B −→ ∀ (λX : Term.X ∈ A⇒ X ∈ B)
[A,B : Term]A =set B −→ A ⊂ B ∧B ⊂ A

[A,B,X : Term]X ∈ A ∪B −→ X ∈ A ∨X ∈ B

[A,X : Term]X ∈ {A} −→ X = A

[A,X : Term]X ∈
⋃
(A) −→ ∃(λY : Term.Y ∈ A ∧X ∈ Y )

[A : Term]A ∈ On −→ set(A) ∧ strict_wo(mem_pred, A)∧
∀ (λX : Term.X ∈ A⇒ X ⊂ A)

[A,X : Term]X ∈ (A+ 1) −→ X ∈ A ∪ {A}

where [·] is the typing context of a rewrite rule.

Fig. 5. Context of the Proof of Problem SET815+4 in λΠ-Calculus Modulo



Proof (λ-term):

λA : Term.λH0 : Proof (A ∈ On).H0 (
⋃
(A+ 1) =set A)

(λH1 : Proof (set(A)).
λH2 : Proof (strict_wo(mem_pred, A)∧
(∀ (λX : Term.X ∈ A⇒ X ⊂ A))).H2 (

⋃
(A+ 1) =set A)

(λH3 : Proof (strict_wo(mem_pred, A)).
λH4 : Proof ∀ (λX : Term.(X ∈ A⇒ X ⊂ A)).λP0 : Prop.
λH6 : (Proof (

⋃
(A+ 1) ⊂ A) → Proof (A ⊂

⋃
(A+ 1)) → Proof P0).H6

(λB : Term.λH7 : Proof (B ∈
⋃
(A+ 1)).H7 (B ∈ A)

(λD : Term.λH8 : Proof (D ∈ (A+ 1) ∧B ∈ D).H8 (B ∈ A)
(λH9 : Proof (D ∈ (A+ 1)).λH10 : Proof (B ∈ D).H9 (B ∈ A)
(λH11 : Proof (D ∈ A).((((H4 D) H11) B) H10))
(λH12 : Proof (D = A).
(λP1 : (Term → Prop).λH13 : Proof (P1 B).H13) (λX : Term.X ∈ A)
(H12 (λX : Term.B ∈ X) H10)))))

(λC : Term.λH14 : Proof (C ∈ A).λP2 : Prop.
λH15 : (ΠY : Term.Proof (Y ∈ (A+ 1) ∧ C ∈ Y ) → Proof P2).H15 A
(λP3 : Prop.λH16 : (Proof (A ∈ A) → Proof (C ∈ A) → Proof P3).H16
(λP4 : Prop.λH17 : (Proof (A ∈ A) → Proof P4).
λH18 : (Proof (A = A) → Proof P4).H18
(λP5 : (Term → Prop).λH19 : Proof (P5 A).H19)) H14))))

Fig. 6. Proof of Problem SET815+4 in λΠ-Calculus Modulo


