It is typically used:
Interleaving is also used for multidimensional data structures, see Z-order (curve).
Historically, interleaving was used in ordering block storage on disk-based storage devices such as the floppy disk and the hard disk. The primary purpose of interleaving was to adjust the timing differences between when the computer was ready to transfer data, and when that data was actually arriving at the drive head to be read. Interleaving was very common prior to the 1990s, but faded from use as processing speeds increased. Modern disk storage is not interleaved.
Interleaving was used to arrange the sectors in the most efficient manner possible, so that after reading a sector, time would be permitted for processing, and then the next sector in sequence is ready to be read just as the computer is ready to do so. Matching the sector interleave to the processing speed therefore accelerates the data transfer, but an incorrect interleave can make the system perform markedly slower.
Data to be written or read is put into a special region of reusable memory referred to as a buffer. When data needed to be written, it was moved into the buffer, and then written from the buffer to the disk. When data was read, the reverse took place, transferring first into the buffer and then moved to where it was needed. Most early computers were not fast enough to read a sector, move the data from the buffer to somewhere else, and be ready to read the next sector by the time that next sector was appearing under the read head.
When sectors were arranged in direct serial order, after the first sector was read the computer may spend the time it takes for three sectors to pass by before it is ready to receive data again. However with the sectors in direct order, sector two, three, and four have already passed by. The computer doesn't need sectors 4, 5, 6, 7, 8, 9, or 1, and must wait for these to pass by, before reading sector two. This waiting for the disk to spin around to the right spot slows the data transfer rate.
To correct for the processing delays, the ideal interleave for this system would be 1:4, ordering the sectors like this: 1 8 6 4 2 9 7 5 3. It reads sector 1, processes for three sectors whereby 8 6 and 4 pass by, and just as the computer becomes ready again, sector two is arriving just as it is needed. Sometimes the interleave is expressed as a "skip factor", the number of physical sectors between consecutive logical sectors. A skip factor of 0 places the sectors sequentially—1 2 3 4 5 6 ... .
Modern disk storage does not need interleaving since the buffer space is now so much larger. Data is now more commonly stored as clusters which are groups of sectors, and the data buffer is sufficiently large to allow all sectors in a block to be read at once without any delay between sectors.
The analysis of modern iterated codes, like turbo codes and LDPC codes, typically assumes an independent distribution of errors. Systems using LDPC codes therefore typically employ additional interleaving across the symbols within a code word.
For turbo codes, an interleaver is an integral component and its proper design is crucial for good performance. The iterative decoding algorithm works best when there are not short cycles in the factor graph that represents the decoder; the interleaver is chosen to avoid short cycles.
Interleaver designs include:
In multi-carrier communication systems, additional interleaving across carriers may be employed to mitigate the effects of prohibitive noise on a single or few specific carriers (e.g., frequency-selective fading in OFDM transmission).
Error-free message: aaaabbbbccccddddeeeeffffgggg Transmission with a burst error: aaaabbbbccc____deeeeffffgggg
The codeword cddd is altered in four bits, so either it cannot be decoded at all or it might be decoded incorrectly.
With interleaving:
Error-free code words: aaaabbbbccccddddeeeeffffgggg Interleaved: abcdefgabcdefgabcdefgabcdefg Transmission with a burst error: abcdefgabcd____bcdefgabcdefg Received code words after deinterleaving: aa_abbbbccccdddde_eef_ffg_gg
In each of the codewords aaaa, eeee, ffff, gggg, only one bit is altered, so one-bit error-correcting-code will decode everything correctly.
Transmission without interleaving:
Original transmitted sentence: ThisIsAnExampleOfInterleaving Received sentence with a burst error: ThisIs______pleOfInterleaving
The term "AnExample" ends up mostly unintelligible and difficult to correct.With interleaving:
Transmitted sentence: ThisIsAnExampleOfInterleaving... Error-free transmission: TIEpfeaghsxlIrv.iAaenli.snmOten. Received sentence with a burst error: TIEpfe______Irv.iAaenli.snmOten. Received sentence after deinterleaving: T_isI_AnE_amp_eOfInterle_vin_...
No word is completely lost and the missing letters can be recovered with minimal guesswork.
Category:Error detection and correction
de:Interleaving es:Entrelazado it:InterleavingThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.