-
How Big is a Nanometer?
Nanoscientists, such as those featured in Cellular Surgeons, work at incredibly small scales. To illustrate just how small it is, we blow a human hair up to ...
-
Definitions: 1- Nanometer
How a nanometer compare to the size of human hair?
-
How Many Meters Equal One Nanometer?
How Many Meters Equal One Nanometer?. Part of the series: Measurements And Conversions. Meters and nanometers are two units of measurement that are related in a very specific way. Find out how many meters equal one nanometer with help from a high school math tutor in this free video clip. Read more: http://www.ehow.com/video_12219393_many-meters-equal-one-nanometer.html
-
Convert Wavenumber to Nanometers (cm-1 to nm)
-
One Nanometer, the Borderline of Classical Electrodynamics, Part 1
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten wurde. In diesem Vortrag wird gezeigt, dass einige Konzepte
der klassischen Elektrotechnik in dem Maße unbrauchbar werden, in dem man sich Distanzen von einem
Nanometer nähert. Die Technik (insbesondere die Mikroelektronik und die Nanotech
-
One Nanometer, the Borderline of Classical Electrodynamics, Part 2
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten wurde. In diesem Vortrag wird gezeigt, dass einige Konzepte
der klassischen Elektrotechnik in dem Maße unbrauchbar werden, in dem man sich Distanzen von einem
Nanometer nähert. Die Technik (insbesondere die Mikroelektronik und die Nanotech
-
One Nanometer, the Borderline of Classical Electrodynamics, Part 3
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten wurde. In diesem Vortrag wird gezeigt, dass einige Konzepte
der klassischen Elektrotechnik in dem Maße unbrauchbar werden, in dem man sich Distanzen von einem
Nanometer nähert. Die Technik (insbesondere die Mikroelektronik und die Nanotech
-
u tube polycarbonate / glass thinfilm, surface-measurement -1- nanometer precision
TSL Mandelkow www.tslmandelkow.com Surface and thickness measurement solutions of polycarbonate, transparent glass measurement + carbon fibre -- Colour measu...
-
กรองน้ำขนาด 1 nanometer
-
absorbance in substances on 937.08 Nanometer (1 transistor meter, chemistry)
Issue = Chemistry. The LED from a computer mouse and its receiver (can) work on 937,08 Nanometer. With this 1 transistor electronic circuit you can measure t...
-
Nanotechnology Video 1: What is a nanometer?
What is a nanometer?
Developed and produced by Scott Miller (Undergraduate Researcher at the University of South Carolina)
-
How Small is a Nanometer? Choose your favorite!
We asked 3 Museum of Science staff to give us their favorite analogies for the size of a nanometer. Watch all three segments, and vote for your favorite in t...
-
#268 - Q&A;: Is lower nm (nanometer) better?
I was just wondering what the advantages of chips with a lower nm are? I.e, what is the advantage of a 45nm chip compared to a 65nm chip? Thanks for your hel...
-
How small is a nanometer?
How small is a nanometer? Professor Clive Roberts from the University of Nottingham explains. More at http://www.test-tube.org.uk/
-
Vortex dynamics at the sub-nanometer scale - Yonathan Anahory
Recorded from IQC's NanoMRI conference 2015.
Nanoscale superconducting quantum interference devices (SQUID) residing on the apex of a quartz tip small outline transistor (SOT), suitable for scanning probe microscopy with record size, spin sensitivity, and operating magnetic fields, are presented[1]. We have developed SOT made of lead (Pb) with an effective diameter of 46 nm and flux noise of Φn =
-
How Small Is Nano?
What is a nanometer? What things are measured in nanometers? Is a red blood cell bigger or smaller than a bacteria? This video takes you on an adventure of s...
-
How Does a Transistor Work?
Veritasium t-shirts! http://dft.ba/-vetshirt
Supported by TechNYou: http://bit.ly/19bBX5G
Subscribe to Veritasium - it's FREE! http://bit.ly/YSWpWm
How does a transistor work? Our lives depend on this device. When I mentioned to people that I was doing a video on transistors, they would say "as in a transistor radio?" Yes! That's exactly what I mean, but it goes so much deeper than that. After th
-
THIS IS A BUTTERFLY! (Scanning Electron Microscope) - Part 2 - Smarter Every Day 105
Get a free AudioBook here: http://bit.ly/AudibleSED Check out the images here: http://bit.ly/ButterflySEM Watch Part 1 here: http://bit.ly/ButterflyPart1 ⇊ C...
-
The NanoTechnology Science Rap - Coma Niddy University
Subscribe here: http://goo.gl/B2RPd Watch SciTunes: http://goo.gl/fCSXF Everything you need to know about Nanotechnology condensed into an awesome song. Coma...
-
Measuring nanometer‐scale spin systems by ultrasensitive cantilever magnetometry - Martino Poggio
Recorded from IQC's NanoMRI conference 2015.
The study of nanometer-scale magnetism is a vibrant sub-field of condensed matter physics concerned principally with magnetic phenomena in low-dimensional systems - phenomena that are often no observable in macroscopic systems. Its relevance to a variety of applications including precision sensing, high-density information storage and processing, and s
-
Ten 630 nanometer photons released over 1.0 femtoseconds
The release of 10 photons fills a 1/2 wavelength piece of space. The first photon will have expanded and contracted and is 1/2 a wavelength away from where i...
-
Electron microscopy | Transmission electron microscopy
Transmission electron microscopy lecture (TEM) - This lecture explains about the Transmission electron microscope principle and how it works.
A Transmission Electron Microscope (TEM) makes use of energetic electrons to furnish morphologic, compositional and crystallographic understanding on samples. At a highest advantage magnification of 1 nanometer; TEMs are probably the most powerful microscope
-
Spin waves 1 component
Simulering av magnetiska nano-kontakter som visar hur spinnvågorna breder ut sig som ringar på vattnet. Nanokontakten är 40 nanometer i diameter och spinnvåg...
How Big is a Nanometer?
Nanoscientists, such as those featured in Cellular Surgeons, work at incredibly small scales. To illustrate just how small it is, we blow a human hair up to ......
Nanoscientists, such as those featured in Cellular Surgeons, work at incredibly small scales. To illustrate just how small it is, we blow a human hair up to ...
wn.com/How Big Is A Nanometer
Nanoscientists, such as those featured in Cellular Surgeons, work at incredibly small scales. To illustrate just how small it is, we blow a human hair up to ...
Definitions: 1- Nanometer
How a nanometer compare to the size of human hair?...
How a nanometer compare to the size of human hair?
wn.com/Definitions 1 Nanometer
How a nanometer compare to the size of human hair?
How Many Meters Equal One Nanometer?
How Many Meters Equal One Nanometer?. Part of the series: Measurements And Conversions. Meters and nanometers are two units of measurement that are related in a...
How Many Meters Equal One Nanometer?. Part of the series: Measurements And Conversions. Meters and nanometers are two units of measurement that are related in a very specific way. Find out how many meters equal one nanometer with help from a high school math tutor in this free video clip. Read more: http://www.ehow.com/video_12219393_many-meters-equal-one-nanometer.html
wn.com/How Many Meters Equal One Nanometer
How Many Meters Equal One Nanometer?. Part of the series: Measurements And Conversions. Meters and nanometers are two units of measurement that are related in a very specific way. Find out how many meters equal one nanometer with help from a high school math tutor in this free video clip. Read more: http://www.ehow.com/video_12219393_many-meters-equal-one-nanometer.html
- published: 22 May 2015
- views: 0
One Nanometer, the Borderline of Classical Electrodynamics, Part 1
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten w...
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten wurde. In diesem Vortrag wird gezeigt, dass einige Konzepte
der klassischen Elektrotechnik in dem Maße unbrauchbar werden, in dem man sich Distanzen von einem
Nanometer nähert. Die Technik (insbesondere die Mikroelektronik und die Nanotechnologie) dringt aber mittlerweile
bis in diese Größenordnungen vor. Das heißt: Viele klassische Begriffe wie zum Beispiel „Magnetische Feldstärke“
oder „elektrische Verschiebung“ sind in wachsenden Anteilen der industriellen Wirklichkeit nicht mehr anwendbar.
In dem Vortrag wird gezeigt, wie das theoretische Gerüst der Elektrotechnik so formuliert werden kann, dass es
gleichermaßen auf traditionelle wie auch auf neue Systeme anwendbar wird.
wn.com/One Nanometer, The Borderline Of Classical Electrodynamics, Part 1
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten wurde. In diesem Vortrag wird gezeigt, dass einige Konzepte
der klassischen Elektrotechnik in dem Maße unbrauchbar werden, in dem man sich Distanzen von einem
Nanometer nähert. Die Technik (insbesondere die Mikroelektronik und die Nanotechnologie) dringt aber mittlerweile
bis in diese Größenordnungen vor. Das heißt: Viele klassische Begriffe wie zum Beispiel „Magnetische Feldstärke“
oder „elektrische Verschiebung“ sind in wachsenden Anteilen der industriellen Wirklichkeit nicht mehr anwendbar.
In dem Vortrag wird gezeigt, wie das theoretische Gerüst der Elektrotechnik so formuliert werden kann, dass es
gleichermaßen auf traditionelle wie auch auf neue Systeme anwendbar wird.
- published: 16 Nov 2015
- views: 13
One Nanometer, the Borderline of Classical Electrodynamics, Part 2
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten w...
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten wurde. In diesem Vortrag wird gezeigt, dass einige Konzepte
der klassischen Elektrotechnik in dem Maße unbrauchbar werden, in dem man sich Distanzen von einem
Nanometer nähert. Die Technik (insbesondere die Mikroelektronik und die Nanotechnologie) dringt aber mittlerweile
bis in diese Größenordnungen vor. Das heißt: Viele klassische Begriffe wie zum Beispiel „Magnetische Feldstärke“
oder „elektrische Verschiebung“ sind in wachsenden Anteilen der industriellen Wirklichkeit nicht mehr anwendbar.
In dem Vortrag wird gezeigt, wie das theoretische Gerüst der Elektrotechnik so formuliert werden kann, dass es
gleichermaßen auf traditionelle wie auch auf neue Systeme anwendbar wird.
wn.com/One Nanometer, The Borderline Of Classical Electrodynamics, Part 2
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten wurde. In diesem Vortrag wird gezeigt, dass einige Konzepte
der klassischen Elektrotechnik in dem Maße unbrauchbar werden, in dem man sich Distanzen von einem
Nanometer nähert. Die Technik (insbesondere die Mikroelektronik und die Nanotechnologie) dringt aber mittlerweile
bis in diese Größenordnungen vor. Das heißt: Viele klassische Begriffe wie zum Beispiel „Magnetische Feldstärke“
oder „elektrische Verschiebung“ sind in wachsenden Anteilen der industriellen Wirklichkeit nicht mehr anwendbar.
In dem Vortrag wird gezeigt, wie das theoretische Gerüst der Elektrotechnik so formuliert werden kann, dass es
gleichermaßen auf traditionelle wie auch auf neue Systeme anwendbar wird.
- published: 16 Nov 2015
- views: 15
One Nanometer, the Borderline of Classical Electrodynamics, Part 3
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten w...
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten wurde. In diesem Vortrag wird gezeigt, dass einige Konzepte
der klassischen Elektrotechnik in dem Maße unbrauchbar werden, in dem man sich Distanzen von einem
Nanometer nähert. Die Technik (insbesondere die Mikroelektronik und die Nanotechnologie) dringt aber mittlerweile
bis in diese Größenordnungen vor. Das heißt: Viele klassische Begriffe wie zum Beispiel „Magnetische Feldstärke“
oder „elektrische Verschiebung“ sind in wachsenden Anteilen der industriellen Wirklichkeit nicht mehr anwendbar.
In dem Vortrag wird gezeigt, wie das theoretische Gerüst der Elektrotechnik so formuliert werden kann, dass es
gleichermaßen auf traditionelle wie auch auf neue Systeme anwendbar wird.
wn.com/One Nanometer, The Borderline Of Classical Electrodynamics, Part 3
Diese Vorlesung ist die deutsche Version eines Vortrages, der auf Einladung der International Electrotechnical
Commission (IEC) am 15.9.2015 in Prag gehalten wurde. In diesem Vortrag wird gezeigt, dass einige Konzepte
der klassischen Elektrotechnik in dem Maße unbrauchbar werden, in dem man sich Distanzen von einem
Nanometer nähert. Die Technik (insbesondere die Mikroelektronik und die Nanotechnologie) dringt aber mittlerweile
bis in diese Größenordnungen vor. Das heißt: Viele klassische Begriffe wie zum Beispiel „Magnetische Feldstärke“
oder „elektrische Verschiebung“ sind in wachsenden Anteilen der industriellen Wirklichkeit nicht mehr anwendbar.
In dem Vortrag wird gezeigt, wie das theoretische Gerüst der Elektrotechnik so formuliert werden kann, dass es
gleichermaßen auf traditionelle wie auch auf neue Systeme anwendbar wird.
- published: 16 Nov 2015
- views: 15
u tube polycarbonate / glass thinfilm, surface-measurement -1- nanometer precision
TSL Mandelkow www.tslmandelkow.com Surface and thickness measurement solutions of polycarbonate, transparent glass measurement + carbon fibre -- Colour measu......
TSL Mandelkow www.tslmandelkow.com Surface and thickness measurement solutions of polycarbonate, transparent glass measurement + carbon fibre -- Colour measu...
wn.com/U Tube Polycarbonate Glass Thinfilm, Surface Measurement 1 Nanometer Precision
TSL Mandelkow www.tslmandelkow.com Surface and thickness measurement solutions of polycarbonate, transparent glass measurement + carbon fibre -- Colour measu...
absorbance in substances on 937.08 Nanometer (1 transistor meter, chemistry)
Issue = Chemistry. The LED from a computer mouse and its receiver (can) work on 937,08 Nanometer. With this 1 transistor electronic circuit you can measure t......
Issue = Chemistry. The LED from a computer mouse and its receiver (can) work on 937,08 Nanometer. With this 1 transistor electronic circuit you can measure t...
wn.com/Absorbance In Substances On 937.08 Nanometer (1 Transistor Meter, Chemistry)
Issue = Chemistry. The LED from a computer mouse and its receiver (can) work on 937,08 Nanometer. With this 1 transistor electronic circuit you can measure t...
Nanotechnology Video 1: What is a nanometer?
What is a nanometer?
Developed and produced by Scott Miller (Undergraduate Researcher at the University of South Carolina)...
What is a nanometer?
Developed and produced by Scott Miller (Undergraduate Researcher at the University of South Carolina)
wn.com/Nanotechnology Video 1 What Is A Nanometer
What is a nanometer?
Developed and produced by Scott Miller (Undergraduate Researcher at the University of South Carolina)
- published: 07 Jul 2015
- views: 3
How Small is a Nanometer? Choose your favorite!
We asked 3 Museum of Science staff to give us their favorite analogies for the size of a nanometer. Watch all three segments, and vote for your favorite in t......
We asked 3 Museum of Science staff to give us their favorite analogies for the size of a nanometer. Watch all three segments, and vote for your favorite in t...
wn.com/How Small Is A Nanometer Choose Your Favorite
We asked 3 Museum of Science staff to give us their favorite analogies for the size of a nanometer. Watch all three segments, and vote for your favorite in t...
- published: 01 Dec 2006
- views: 18820
-
author: NanoNerds
#268 - Q&A;: Is lower nm (nanometer) better?
I was just wondering what the advantages of chips with a lower nm are? I.e, what is the advantage of a 45nm chip compared to a 65nm chip? Thanks for your hel......
I was just wondering what the advantages of chips with a lower nm are? I.e, what is the advantage of a 45nm chip compared to a 65nm chip? Thanks for your hel...
wn.com/268 Q A Is Lower Nm (Nanometer) Better
I was just wondering what the advantages of chips with a lower nm are? I.e, what is the advantage of a 45nm chip compared to a 65nm chip? Thanks for your hel...
- published: 24 Aug 2009
- views: 10841
-
author: 3DGAMEMAN
How small is a nanometer?
How small is a nanometer? Professor Clive Roberts from the University of Nottingham explains. More at http://www.test-tube.org.uk/...
How small is a nanometer? Professor Clive Roberts from the University of Nottingham explains. More at http://www.test-tube.org.uk/
wn.com/How Small Is A Nanometer
How small is a nanometer? Professor Clive Roberts from the University of Nottingham explains. More at http://www.test-tube.org.uk/
Vortex dynamics at the sub-nanometer scale - Yonathan Anahory
Recorded from IQC's NanoMRI conference 2015.
Nanoscale superconducting quantum interference devices (SQUID) residing on the apex of a quartz tip small outline ...
Recorded from IQC's NanoMRI conference 2015.
Nanoscale superconducting quantum interference devices (SQUID) residing on the apex of a quartz tip small outline transistor (SOT), suitable for scanning probe microscopy with record size, spin sensitivity, and operating magnetic fields, are presented[1]. We have developed SOT made of lead (Pb) with an effective diameter of 46 nm and flux noise of Φn = 50 nΦ0/Hz1/2 at 4.2 K that is operational up to unprecedented high fields of 1 T[2]. The corresponding spin sensitivity of the device is Sn = 0.38 μB/Hz1/2, which is about two orders of magnitude more sensitive than any other SQUID to date.
We use this technique to study vortex matter in superconductors. At low vortex density and low currents, we measure the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement. The outstanding magnetic sensitivity of the SOT allows probing vortex displacements as small as 10 pm[3]. This study reveals rich internal structure of the pinning potential and unexpected phenomena such as softening of the restoring force and abrupt depinning. The results shed new light on the importance of multi-scale random disorder on vortex dynamics and thermal relaxation.
[1] A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, L. Neeman, D. Vasyukov, E. Zeldov, M. E. Huber, J. Martin and A. Yacoby, Nano Lett. 10, 1046 (2010)
[2] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, M. E. Huber, and E. Zeldov, Nature Nanotech. 8, 639 (2013).
[3] L. Embon, Y.Anahory, A. Suhov, D. Halbertal, J. Cuppens, A. Yakovenko, A. Uri, Y. Myasoedov, M.L. Rapparport, M.E. Huber, A. Gurevich and E. Zeldov, Scientific Reports 5 (2015) 7598
wn.com/Vortex Dynamics At The Sub Nanometer Scale Yonathan Anahory
Recorded from IQC's NanoMRI conference 2015.
Nanoscale superconducting quantum interference devices (SQUID) residing on the apex of a quartz tip small outline transistor (SOT), suitable for scanning probe microscopy with record size, spin sensitivity, and operating magnetic fields, are presented[1]. We have developed SOT made of lead (Pb) with an effective diameter of 46 nm and flux noise of Φn = 50 nΦ0/Hz1/2 at 4.2 K that is operational up to unprecedented high fields of 1 T[2]. The corresponding spin sensitivity of the device is Sn = 0.38 μB/Hz1/2, which is about two orders of magnitude more sensitive than any other SQUID to date.
We use this technique to study vortex matter in superconductors. At low vortex density and low currents, we measure the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement. The outstanding magnetic sensitivity of the SOT allows probing vortex displacements as small as 10 pm[3]. This study reveals rich internal structure of the pinning potential and unexpected phenomena such as softening of the restoring force and abrupt depinning. The results shed new light on the importance of multi-scale random disorder on vortex dynamics and thermal relaxation.
[1] A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, L. Neeman, D. Vasyukov, E. Zeldov, M. E. Huber, J. Martin and A. Yacoby, Nano Lett. 10, 1046 (2010)
[2] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, M. E. Huber, and E. Zeldov, Nature Nanotech. 8, 639 (2013).
[3] L. Embon, Y.Anahory, A. Suhov, D. Halbertal, J. Cuppens, A. Yakovenko, A. Uri, Y. Myasoedov, M.L. Rapparport, M.E. Huber, A. Gurevich and E. Zeldov, Scientific Reports 5 (2015) 7598
- published: 19 Aug 2015
- views: 9
How Small Is Nano?
What is a nanometer? What things are measured in nanometers? Is a red blood cell bigger or smaller than a bacteria? This video takes you on an adventure of s......
What is a nanometer? What things are measured in nanometers? Is a red blood cell bigger or smaller than a bacteria? This video takes you on an adventure of s...
wn.com/How Small Is Nano
What is a nanometer? What things are measured in nanometers? Is a red blood cell bigger or smaller than a bacteria? This video takes you on an adventure of s...
- published: 27 Sep 2010
- views: 17782
-
author: NISENet
How Does a Transistor Work?
Veritasium t-shirts! http://dft.ba/-vetshirt
Supported by TechNYou: http://bit.ly/19bBX5G
Subscribe to Veritasium - it's FREE! http://bit.ly/YSWpWm
How does a ...
Veritasium t-shirts! http://dft.ba/-vetshirt
Supported by TechNYou: http://bit.ly/19bBX5G
Subscribe to Veritasium - it's FREE! http://bit.ly/YSWpWm
How does a transistor work? Our lives depend on this device. When I mentioned to people that I was doing a video on transistors, they would say "as in a transistor radio?" Yes! That's exactly what I mean, but it goes so much deeper than that. After the transistor was invented in 1947 one of the first available consumer technologies it was applied to was radios, so they could be made portable and higher quality. Hence the line in 'Brown-eyed Girl' - "going down to the old mine with a transistor radio."
But more important to our lives today, the transistor made possible the microcomputer revolution, and hence the Internet, and also TVs, mobile phones, fancy washing machines, dishwashers, calculators, satellites, projectors etc. etc. A transistor is based on semiconductor material, usually silicon, which is 'doped' with impurities to carefully change its electrical properties. These n and p-type semiconductors are then put together in different configurations to achieve a desired electrical result. And in the case of the transistor, this is to make a tiny electrical switch. These switches are then connected together to perform computations, store information, and basically make everything electrical work intelligently.
Special thanks to PhD Comics for awesome animations: http://bit.ly/16ZXcVY
And thanks to Henry Reich and Vanessa Hill for reviews of earlier drafts of this video.
Music: Kevin MacLeod (incompetech.com) Decisions
wn.com/How Does A Transistor Work
Veritasium t-shirts! http://dft.ba/-vetshirt
Supported by TechNYou: http://bit.ly/19bBX5G
Subscribe to Veritasium - it's FREE! http://bit.ly/YSWpWm
How does a transistor work? Our lives depend on this device. When I mentioned to people that I was doing a video on transistors, they would say "as in a transistor radio?" Yes! That's exactly what I mean, but it goes so much deeper than that. After the transistor was invented in 1947 one of the first available consumer technologies it was applied to was radios, so they could be made portable and higher quality. Hence the line in 'Brown-eyed Girl' - "going down to the old mine with a transistor radio."
But more important to our lives today, the transistor made possible the microcomputer revolution, and hence the Internet, and also TVs, mobile phones, fancy washing machines, dishwashers, calculators, satellites, projectors etc. etc. A transistor is based on semiconductor material, usually silicon, which is 'doped' with impurities to carefully change its electrical properties. These n and p-type semiconductors are then put together in different configurations to achieve a desired electrical result. And in the case of the transistor, this is to make a tiny electrical switch. These switches are then connected together to perform computations, store information, and basically make everything electrical work intelligently.
Special thanks to PhD Comics for awesome animations: http://bit.ly/16ZXcVY
And thanks to Henry Reich and Vanessa Hill for reviews of earlier drafts of this video.
Music: Kevin MacLeod (incompetech.com) Decisions
- published: 09 Jul 2013
- views: 1345188
THIS IS A BUTTERFLY! (Scanning Electron Microscope) - Part 2 - Smarter Every Day 105
Get a free AudioBook here: http://bit.ly/AudibleSED Check out the images here: http://bit.ly/ButterflySEM Watch Part 1 here: http://bit.ly/ButterflyPart1 ⇊ C......
Get a free AudioBook here: http://bit.ly/AudibleSED Check out the images here: http://bit.ly/ButterflySEM Watch Part 1 here: http://bit.ly/ButterflyPart1 ⇊ C...
wn.com/This Is A Butterfly (Scanning Electron Microscope) Part 2 Smarter Every Day 105
Get a free AudioBook here: http://bit.ly/AudibleSED Check out the images here: http://bit.ly/ButterflySEM Watch Part 1 here: http://bit.ly/ButterflyPart1 ⇊ C...
The NanoTechnology Science Rap - Coma Niddy University
Subscribe here: http://goo.gl/B2RPd Watch SciTunes: http://goo.gl/fCSXF Everything you need to know about Nanotechnology condensed into an awesome song. Coma......
Subscribe here: http://goo.gl/B2RPd Watch SciTunes: http://goo.gl/fCSXF Everything you need to know about Nanotechnology condensed into an awesome song. Coma...
wn.com/The Nanotechnology Science Rap Coma Niddy University
Subscribe here: http://goo.gl/B2RPd Watch SciTunes: http://goo.gl/fCSXF Everything you need to know about Nanotechnology condensed into an awesome song. Coma...
- published: 21 Aug 2011
- views: 26363
-
author: Coma Niddy
Measuring nanometer‐scale spin systems by ultrasensitive cantilever magnetometry - Martino Poggio
Recorded from IQC's NanoMRI conference 2015.
The study of nanometer-scale magnetism is a vibrant sub-field of condensed matter physics concerned principally wi...
Recorded from IQC's NanoMRI conference 2015.
The study of nanometer-scale magnetism is a vibrant sub-field of condensed matter physics concerned principally with magnetic phenomena in low-dimensional systems - phenomena that are often no observable in macroscopic systems. Its relevance to a variety of applications including precision sensing, high-density information storage and processing, and sensitive scanning probe techniques make the subject of particular technological interest. Martino Poggio discusses his teams recent efforts to use ultrasensitive force sensors in measurements of spin-physics on the nanometer-scale, in particular 1) nuclear magnetic resonance (NMR) measurements of nuclear spins in nanostructures and 2) magnetization measurements of individual nanomagents.
Magnetic resonance force microscopy (MRFM) measurements of small nuclear spin ensembles reveal the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble[1]. Poggio demonstrates a method for measuring, manipulating and controlling the spin polarization of nanometer-scale spin ensembles[2]. These capabilities will be discussed in light of a recent proposal by Loss and colleagues predicting that the spin-orbit interaction (SOI) in semiconductor nanowires (NW) can be quantified through measurements of the relaxation rate of the constituent nuclear spins[3]. Specifically, their theory predicts that the nuclear T1 in a ballistic NW with Rashba and SOI has pronounced signatures, which depend on the strength of the SOI. Semiconductor NWs with strong SOI have attracted a great deal of recent interest due to the various topologically non-trivial electronic states that they are predicted to support. Given our demonstrated ability to do nanometer-scale NMR on semiconductor NWs, I will discuss ongoing measurements in this direction.
Poggio concludes by presenting cantilever magnetometry measurements of the magnetisation of individual nanometer-scale magnets. We are interested in studying the magnetism of low-dimensional systems and in coming to a greater understanding of their magnetic configurations. Measurements on ferromagnetic nanotubes[4], single-crystal magnetic nanoparticles, and of nanostructures hosting magnetic skyrmions will be highlighted.
[1] Herzog et al., Appl. Phys. Lett. 105, 043112 (2014)
[2] Peddibhotla et. al., Nature Phys. 9, 631 (2013)
[3] Zyuzin et al. Phys. Rev. 90, 195125 (2014)
[4] Weber et al. Nano Lett. 12, 6139 (2012); Butcher et al. Phys. Rev. Lett. 111, 067202 (2013)
wn.com/Measuring Nanometer‐Scale Spin Systems By Ultrasensitive Cantilever Magnetometry Martino Poggio
Recorded from IQC's NanoMRI conference 2015.
The study of nanometer-scale magnetism is a vibrant sub-field of condensed matter physics concerned principally with magnetic phenomena in low-dimensional systems - phenomena that are often no observable in macroscopic systems. Its relevance to a variety of applications including precision sensing, high-density information storage and processing, and sensitive scanning probe techniques make the subject of particular technological interest. Martino Poggio discusses his teams recent efforts to use ultrasensitive force sensors in measurements of spin-physics on the nanometer-scale, in particular 1) nuclear magnetic resonance (NMR) measurements of nuclear spins in nanostructures and 2) magnetization measurements of individual nanomagents.
Magnetic resonance force microscopy (MRFM) measurements of small nuclear spin ensembles reveal the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble[1]. Poggio demonstrates a method for measuring, manipulating and controlling the spin polarization of nanometer-scale spin ensembles[2]. These capabilities will be discussed in light of a recent proposal by Loss and colleagues predicting that the spin-orbit interaction (SOI) in semiconductor nanowires (NW) can be quantified through measurements of the relaxation rate of the constituent nuclear spins[3]. Specifically, their theory predicts that the nuclear T1 in a ballistic NW with Rashba and SOI has pronounced signatures, which depend on the strength of the SOI. Semiconductor NWs with strong SOI have attracted a great deal of recent interest due to the various topologically non-trivial electronic states that they are predicted to support. Given our demonstrated ability to do nanometer-scale NMR on semiconductor NWs, I will discuss ongoing measurements in this direction.
Poggio concludes by presenting cantilever magnetometry measurements of the magnetisation of individual nanometer-scale magnets. We are interested in studying the magnetism of low-dimensional systems and in coming to a greater understanding of their magnetic configurations. Measurements on ferromagnetic nanotubes[4], single-crystal magnetic nanoparticles, and of nanostructures hosting magnetic skyrmions will be highlighted.
[1] Herzog et al., Appl. Phys. Lett. 105, 043112 (2014)
[2] Peddibhotla et. al., Nature Phys. 9, 631 (2013)
[3] Zyuzin et al. Phys. Rev. 90, 195125 (2014)
[4] Weber et al. Nano Lett. 12, 6139 (2012); Butcher et al. Phys. Rev. Lett. 111, 067202 (2013)
- published: 19 Aug 2015
- views: 3
Ten 630 nanometer photons released over 1.0 femtoseconds
The release of 10 photons fills a 1/2 wavelength piece of space. The first photon will have expanded and contracted and is 1/2 a wavelength away from where i......
The release of 10 photons fills a 1/2 wavelength piece of space. The first photon will have expanded and contracted and is 1/2 a wavelength away from where i...
wn.com/Ten 630 Nanometer Photons Released Over 1.0 Femtoseconds
The release of 10 photons fills a 1/2 wavelength piece of space. The first photon will have expanded and contracted and is 1/2 a wavelength away from where i...
- published: 09 Dec 2012
- views: 33
-
author: edguy99
Electron microscopy | Transmission electron microscopy
Transmission electron microscopy lecture (TEM) - This lecture explains about the Transmission electron microscope principle and how it works.
A Transmission Ele...
Transmission electron microscopy lecture (TEM) - This lecture explains about the Transmission electron microscope principle and how it works.
A Transmission Electron Microscope (TEM) makes use of energetic electrons to furnish morphologic, compositional and crystallographic understanding on samples. At a highest advantage magnification of 1 nanometer; TEMs are probably the most powerful microscopes. TEMs produce high-resolution, two-dimensional pictures, enabling for a wide range of academic, science and enterprise functions.
A Transmission Electron Microscope produces a excessive-decision, black and white snapshot from the interaction that takes place between prepared samples and full of life electrons within the vacuum chamber. Air wishes to be pumped out of the vacuum chamber, growing a space where electrons are in a position to move. The electrons then pass through more than one electromagnetic lenses. These solenoids are tubes with coil wrapped around them. The beam passes by way of the solenoids, down the column, makes contact with the monitor the place the electrons are transformed to gentle and kind an snapshot. The snapshot will also be manipulated by means of adjusting the voltage of the gun to speed up or scale down the velocity of electrons as good as changing the electromagnetic wavelength through the solenoids. The coils focal point snaps shots onto a screen or photographic plate. For the period of transmission, the velocity of electrons instantly correlates to electron wavelength; the faster electrons transfer, the shorter wavelength and the greater the high-quality and detail of the image. The lighter areas of the picture represent the places the place a bigger quantity of electrons was competent to go by way of the sample and the darker areas replicate the dense areas of the object. These variations furnish know-how on the structure, texture, form and size of the sample. To acquire a TEM evaluation, samples have got to have distinct houses. They ought to be sliced thin enough for electrons to pass by way of, a property often called electron transparency. Samples must be ready to withstand the vacuum chamber and probably require special education before viewing. Forms of training comprise dehydration, sputter coating of non-conductive materials, cry fixation, sectioning and marking.
For more information, log on to-
http://www.shomusbiology.com/
Get Shomu's Biology DVD set here-
http://www.shomusbiology.com/dvd-store/
Download the study materials here-
http://shomusbiology.com/bio-materials.html
wn.com/Electron Microscopy | Transmission Electron Microscopy
Transmission electron microscopy lecture (TEM) - This lecture explains about the Transmission electron microscope principle and how it works.
A Transmission Electron Microscope (TEM) makes use of energetic electrons to furnish morphologic, compositional and crystallographic understanding on samples. At a highest advantage magnification of 1 nanometer; TEMs are probably the most powerful microscopes. TEMs produce high-resolution, two-dimensional pictures, enabling for a wide range of academic, science and enterprise functions.
A Transmission Electron Microscope produces a excessive-decision, black and white snapshot from the interaction that takes place between prepared samples and full of life electrons within the vacuum chamber. Air wishes to be pumped out of the vacuum chamber, growing a space where electrons are in a position to move. The electrons then pass through more than one electromagnetic lenses. These solenoids are tubes with coil wrapped around them. The beam passes by way of the solenoids, down the column, makes contact with the monitor the place the electrons are transformed to gentle and kind an snapshot. The snapshot will also be manipulated by means of adjusting the voltage of the gun to speed up or scale down the velocity of electrons as good as changing the electromagnetic wavelength through the solenoids. The coils focal point snaps shots onto a screen or photographic plate. For the period of transmission, the velocity of electrons instantly correlates to electron wavelength; the faster electrons transfer, the shorter wavelength and the greater the high-quality and detail of the image. The lighter areas of the picture represent the places the place a bigger quantity of electrons was competent to go by way of the sample and the darker areas replicate the dense areas of the object. These variations furnish know-how on the structure, texture, form and size of the sample. To acquire a TEM evaluation, samples have got to have distinct houses. They ought to be sliced thin enough for electrons to pass by way of, a property often called electron transparency. Samples must be ready to withstand the vacuum chamber and probably require special education before viewing. Forms of training comprise dehydration, sputter coating of non-conductive materials, cry fixation, sectioning and marking.
For more information, log on to-
http://www.shomusbiology.com/
Get Shomu's Biology DVD set here-
http://www.shomusbiology.com/dvd-store/
Download the study materials here-
http://shomusbiology.com/bio-materials.html
- published: 26 Apr 2015
- views: 93
Spin waves 1 component
Simulering av magnetiska nano-kontakter som visar hur spinnvågorna breder ut sig som ringar på vattnet. Nanokontakten är 40 nanometer i diameter och spinnvåg......
Simulering av magnetiska nano-kontakter som visar hur spinnvågorna breder ut sig som ringar på vattnet. Nanokontakten är 40 nanometer i diameter och spinnvåg...
wn.com/Spin Waves 1 Component
Simulering av magnetiska nano-kontakter som visar hur spinnvågorna breder ut sig som ringar på vattnet. Nanokontakten är 40 nanometer i diameter och spinnvåg...