Aggression, in its broadest sense, is behavior, or a disposition, that is forceful, hostile or attacking. It may occur either in retaliation or without provocation. In narrower definitions that are used in social sciences and behavioral sciences, aggression is an intention to cause harm or an act intended to increase relative social dominance. Predatory or defensive behavior between members of different species may not be considered aggression in the same sense. Aggression can take a variety of forms and can be physical or be communicated verbally or non-verbally. Aggression differs from what is commonly called assertiveness, although the terms are often used interchangeably among laypeople, e.g. an aggressive salesperson.[1]
Two broad categories of aggression are commonly defined. One is described as affective (emotional), hostile or retaliatory aggression, and the other as instrumental, goal-oriented or predatory aggression.[2] In the context of violence, data from a range of disciplines lend some support to a distinction between affective and predatory aggression.[3] However, others question the usefulness of a hostile vs instrumental distinction in humans, despite its ubiquity in research, on the basis that in real life most cases involve mixed motives and many factors.[4]
Another distinction drawn is between aggression that is enacted physically, and relational aggression. The latter can include covert bullying and social manipulation, including isolating others. It has also been understood and dealt with by distinguishing between reactive versus instrumental types.[5]
A number of other classifications and dimensions of aggression have been advanced. Some questions that have been considered are whether harm to others is intended or not; whether the aggression is verbal or physical; whether it is carried out actively or expressed passively; and whether it is aimed directly or indirectly. Related emotions (e.g. anger) and mental states (e.g. impulsivity, hostility) have also been addressed, as well as behaviors in and of themselves (aggression in the strictest sense).[6] Aggression may occur in response to non-social as well as social factors, and can have a close relationship with stress coping style.[7] Aggression may be displayed in order to intimidate.
Aggression may be defined in particular ways within some moral or political views, for example in the non-aggression principle. There are also specific definitions used in relations between countries, such as in the International Criminal Court's proposed jurisdiction to prosecute crimes of aggression.[8] Furthermore, there may be particular attitudes towards aggression, both sanctioned and unsanctioned, in competitive sports.[9] Other specific contexts may also be examined, such as workplace aggression.
The term aggression comes from the Latin aggressio, meaning attack. The Latin was itself a joining of ad- and gradi-, which meant to step or to go. The first known use dates back to 1611, in the sense of an unprovoked attack.[10] A psychological sense of 'hostile or destructive behavior' dates back to 1912, in an English translation of the writing of Sigmund Freud.[11] Alfred Adler had theorized about an 'aggressive drive' in 1908. Child raising experts began to refer to aggression rather than anger from the 1930s.[12]
Aggression is one type of behavior addressed by the scientific study of animal behavior known as ethology. Aggression may be involved in the gaining and securing of territories and other resources including food, water and mating opportunities, as well as to protect the self or offspring.[13] Direct aggression can involve bodily contact such as biting, hitting or pushing. Threat displays and intimidating thrusts may also be classed as aggression, and the majority of conflicts are settled in this way; including through display of body size, antlers, claws or teeth; stereotyped signals within a species; vocalizations including bird song; chemicals; pigments, and aggressive facial expressions.[14] The concept of agonistic behaviour may alternatively be used to refer to all of the above.
Additionally, many ethnologists believe that in the animal kingdom, aggression does have certain biological advantages. For instance, hostile behavior forces a population of animals into new territories. These animals have to adapt to these new environments which increases the genetic flexibility of the concerned species. Another advantageous situation, which arises via aggression, is evident in the mating rituals which involve the male species fighting one another in order to mate with a subsequent female. This perpetuates the selection of the healthier/more vigorous animal.[15]
The most apparent type of interspecific aggression is that observed in the interaction between a predator and its prey.
According to many researchers, predation is not aggression. Cats do not hiss or arch their backs when in pursuit of a rat, and the active areas in their hypothalamuses are more similar to those that reflect hunger than those that reflect aggression.[16] However, others refer to it as predatory aggression, and point out cases that show more similarity such as mouse-killing by rats.[17] Aggressive mimicry refers to cases where a predator has the appearance of a harmless organism or object, which then attracts the prey, which the predator then attacks.
An animal defending itself against a predator may become aggressive in order to survive and to ensure the survival of its offspring. It may engage in either "fight or flight" in response to predator attack or threat of attack, depending on how strong they gauge the predator to be relative to themselves. Different animals may also use a range of antipredator adaptations, including alarm signals.
In terms of aggression between groups, defined as a willingness to enter a fight, studies suggest that animals may take into account numerical advantage, distance from home territories, how often the groups encounter each other, competitive abilities, differences in body size, and who is intruding on who. In addition, any given individual is more likely to become aggressive the more other aggressive group members there are nearby.[18] One particular phenomenon - the formation of intense coordinated coalitions to raid neighbouring territories to kill conspecifics - has only been documented in two species in the animal kingdom: 'common' chimpanzees and humans.[19]
Aggression between conspecifics in a group occurs in a number of contexts having to do with access to resources and breeding. One of the most common is in the establishment of a dominance hierarchy. When certain types of animals are first placed in a common environment, the first thing they do is fight to assert their role in the dominance hierarchy.[20] In general, the more dominant animals will be more aggressive than their subordinates.[21][22] The majority of conspecific aggression ceases about 24 hours after the introduction of the animals being tested.[20][23] Aggression has been defined from this viewpoint as "behavior which is intended to increase the social dominance of the organism relative to the dominance position of other organisms".[24] Losing confrontations may be referred to as social defeat, and winning or losing is associated with a range of practical and psychological consequences.[25]
Conflicts of interest occur in many contexts in animal life, such as between potential mating partners, between parents and offspring, and between competitors for resources. Group-living animals may also dispute over the direction of travel or the allocation of time to joint activities. Various factors limit the escalation of aggression, including communicative displays, conventions and routines. In addition, following incidents, various forms of conflict resolution have many observed in mammal species, particularly in gregarious primates. This can mitigate or repair possible ongoing consequences, especially for the recipient of aggression who may become vulnerable to attacks, including possibly from other individuals joining in. Conciliatory acts vary by species and may simply involve more proximity and interaction between the individuals involved in an incident, or specific gestures. Conflicts over food are rarely followed by post conflict reunions, however, even though they are the most frequent type as foraging takes up a large amount of the time of wild primates.[26]
Questions that have been considered in the study of primate aggression, including in humans, is how aggression maintains the organization of a group; what costs are incurred by aggression; and why some primates avoid aggressive behavior.[27] For example, bonobo chimpanzee groups are known for low levels of aggression within a partially matriarchal society. Captive animals including primates may show abnormal levels of social aggression and self-harm related to aspects of the physical, sensory or social environment; this depends on the species and individual factors such as gender, age and background (e.g. raised wild or captive).[28]
Like many behaviors, aggression can be examined in terms of its ability to help an animal survive and reproduce, or alternatively to risk survival and reproduction. This cost-benefit analysis can be looked at in terms of evolution. There are profound differences in the extent of acceptance of a biological or evolutionary basis for human aggression, however.[29]
Aggression can involve violence that may be adaptive under certain circumstances in terms of natural selection. This is most obviously the case in terms of attacking prey to obtain food, or in anti-predatory defense. It may also be the case in competition between members of the same species or subgroup, if the average reward (e.g. status, access to resources, protection of self or kin) outweighs average costs (e.g. injury, exclusion from the group, death). There are some hypotheses of specific adaptions for violence in humans under certain circumstances, including for homicide, but it is often unclear what behaviors may have been selected for and what may have been a byproduct, as in the case of collective violence.[30][31][32][33]
Although aggressive encounters are ubiquitous in the animal kingdom, with often high stakes, most are resolved through posturing, displays and trials of strength. Game theory is used to understand how such behaviors might spread by natural selection within a population, and potentially become 'Evolutionary Stable Strategies'. An initial model of resolution of conflicts is the Hawk-Dove game; others include the Sequential assessment model and the Energetic war of attrition. These try to understand not just one-off encounters but protracted stand-offs, and mainly differ in the criteria by which an individual decides to give up rather than risk loss and harm in physical conflict (such as through estimates of Resource holding potential).[34]
There are multiple theories that seek to explain findings that males and females of the same species can have differing aggressive behaviors. In general, sexual dimorphism can be attributed to greater intraspecific competition in one sex, either between rivals for access to mates and/or to be chosen by mates. This may stem from the other gender being constrained by providing greater parental investment, in terms of factors such as gamete production, gestation, lactation, or upbringing of young. Although there is much variation in species generally the more physically aggressive sex is the male, particularly in mammals. In species where parental care by both sexes is required there tends to be less of a difference. When the female can leave the male to care for the offspring, then females may be the larger and more physically aggressive. Competitiveness despite parental investment has also been observed in some species.[35] A related factor is the rate at which males and females are able to mate again after producing offspring, and the basic principles of sexual selection are also influenced by ecological factors affecting the ways or extent to which one sex can compete for the other. The role of such factors in human evolution is controversial. The pattern of male and female aggression is argued to be consistent with evolved sexually-selected behavioral differences, while alternative or complimentary views emphasize conventional social roles stemming from physical evolved differences.[36] Aggression in women may have evolved to be, on average, less physically dangerous and more covert or indirect.[37][38] However, there are critiques for using animal behavior to explain human behavior. Especially in the application of evolutionary explanations to contemporary human behavior, including differences between the genders.[39]
Regarding sexual dimorphism, humans fall into an intermediate group with moderate sex differences in body size but relatively large testes. This is a typical pattern of primates where several males and females live together in a group and the male faces an intermediate amount of challenges from other males compared to exclusive polygyny and monogamy but frequent sperm competition.[40]
Evolutionary psychology and sociobiology have also discussed and produced theories for some specific forms of male aggression such as sociobiological theories of rape and theories regarding the Cinderella effect.
Many researchers focus on the brain to explain aggression. Numerous circuits within both neocortical and subcortical structures play a central role in controlling aggressive behavior, depending on the species, and the exact role of pathways may vary depending on the type of trigger or intention.
In mammals, the hypothalamus and periaqueductal gray of the midbrain are critical areas, as shown in studies on cats, rats, and monkeys. These brain areas control the expression of both behavioral and autonomic components of aggression in these species, including vocalization. Electrical stimulation of the hypothalamus causes aggressive behavior[41] and the hypothalamus has receptors that help determine aggression levels based on their interactions with serotonin and vasopressin.[42] These midbrain areas have direct connections with both the brainstem nuclei controlling these functions, and with structures such as the amygdala and prefrontal cortex.
Stimulation of the amygdala results in augmented aggressive behavior in hamsters,[43][44] while lesions of an evolutionarily homologous area in the lizard greatly reduce competitive drive and aggression (Bauman et al. 2006).[45] In rhesus monkeys, neonatal lesions in the amygdala or hippocampus results in reduced expression of social dominance, related to the regulation of aggression and fear.[46] Several experiments in attack-primed Syrian Golden hamsters, for example, support the claim of circuity within the amygdala being involved in control of aggression.[47] The role of the amygdala is less clear in primates and appears to depend more on situational context, with lesions leading to increases in either social affiliatory or aggressive responses.
The broad area of the cortex known as the prefrontal cortex (PFC) has been implicated in aggression, along with many other functions. such as including inhibition of emotions. Reduced activity of the prefrontal cortex, in particular its medial and orbitofrontal portions, has been associated with violent/antisocial aggression.[48]
The role of the chemicals in the brain, particularly neurotransmitters, in aggression has also been examined. This varies depending on the pathway, the context and other factors such as gender. A deficit in serotonin has been theorized to have a primary role in causing impulsivity and aggression.Nevertheless, low levels of serotonin transmission may explain a vulnerability to impulsiveness, potential aggression, and may have an effect through interactions with other neurochemical systems. These include dopamine systems which are generally associated with attention and motivation toward rewards, and operate at various levels. Norepinephrine, also known as noradrenaline, may influence aggression responses both directly and indirectly through the hormonal system, the sympathetic nervous system or the central nervous system (including the brain). It appears to have different effects depending on the type of triggering stimulus, for example social isolation/rank versus shock/chemical agitation which appears not to have a linear relationship with aggression. Similarly, GABA, although associated with inhibitory functions at many CNS synapses, sometimes shows a positive correlation with aggression, including when potentiated by alcohol.[49][50]
The hormonal neuropeptides vasopressin and oxytocin play a key role in complex social behaviours in many mammals such as regulating attachment, social recognition, and aggression. Vasopressin has been implicated in male-typical social behaviors which includes aggression. Oxytocin may have a particular role in regulating female bonds with offspring and mates, including the use of protective aggression. Initial studies in humans suggest some similar effects.[51][52]
Hormones are chemicals that circulate in the body affecting cells and the nervous system, including the brain. Testosterone is a steroid hormone from the androgen group, which is most linked to the prenatal and postnatal development of the male gender and physique, which in turn has been linked on average to more physical aggression in many species. Testosterone is present to a lesser extent in females, who may be more sensitive to its effects. Animal studies have also indicated a link between incidents of aggression and the individual level of circulating testosterone. However, results in relation to primates, particularly humans, are less clear cut and are at best only suggestive of a positive association in some contexts.[53]
Washington State Song Sparrow
The challenge hypothesis outlines the dynamic relationship between plasma testosterone levels and aggression in mating contexts in many species. It proposes that testosterone is linked to aggression when it is beneficial for reproduction, such as in mate guarding and preventing the encroachment of intrasexual rivals. The challenge hypothesis predicts that seasonal patterns in testosterone levels in a species are a function of mating system (monogamy versus polygyny), paternal care, and male-male aggression in seasonal breeders. This pattern between testosterone and aggression was first observed in seasonally breeding birds, such as the Song Sparrow, where testosterone levels rise modestly with the onset of the breeding season to support basic reproductive functions.[54] It has subsequently expanded and been modified to predict relationships between testosterone and aggression in other species. For example, chimpanzees, which are continuous breeders, show significantly raised testosterone levels and aggressive male-male interactions when receptive and fertile females are present.[55] Currently, no research has specified a relationship between the modified challenge hypothesis and human behavior, or the human nature of concealed ovulation, although some suggest it may apply.[56]
Testosterone to Estradiol conversion
Another line of research has focused on the proximate effects of circulating testosterone on the nervous system, as mediated by local metabolism within the brain. Testosterone can be metabolized to 17b-estradiol by the enzyme aromatase, or to 5-alpha-dihydrotestosterone (DHT) by 5a-reductase.
Aromatase is highly expressed in regions involved in the regulation of aggressive behavior, such as the amygdala and hypothalamus. In studies using genetic knock-out techniques in inbred mice, male mice that lacked a functional aromatase enzyme displayed a marked reduction in aggression. Long-term treatment with estradiol partially restored aggressive behavior, suggesting that the neural conversion of circulating testosterone to estradiol and its effect on estrogen receptors influences inter-male aggression. In addition, two different estrogen receptors, ERa and ERb, have been identified as having the ability to exert different effects on aggression in mice. However, the effect of estradiol appears to vary depending on the strain of mouse, and in some strains it reduces aggression during long days (16 h of light), while during short days (8 h of light) estradiol rapidly increases aggression.[57]
Another hypothesis is that testosterone influences brain areas that control behavioral reactions. Studies in animal models indicate that aggression is affected by several interconnected cortical and subcortical structures within the so-called social behavior network. A study involving lesions and electrical-chemical stimulation in rodents and cats revealed that such a neural network consists of the medial amygdala, medial hypothalamus and periaqueductal grey (PAG), and it positively modulates reactive aggression.[58] Moreover, a study done in human subjects showed that prefrontal-amygdala connectivity is modulated by endogenous testosterone during social emotional behavior.[59]
In human studies, testosterone-aggression research has also focused on the role of the orbitofrontal cortex (OFC). This brain area is strongly associated with impulse control and self-regulation systems that integrate emotion, motivation, and cognition to guide context-appropriate behavior.[60] Patients with localized lesions to the OFC engage in heightened reactive aggression.[61] Aggressive behavior may be regulated by testosterone via reduced medial OFC engagement following social provocation.[60] When measuring participants’ salivary testosterone, higher levels can predict subsequent aggressive behavioral reactions to unfairness faced during a task. Moreover, brain scanning with fMRI shows reduced activity in the medial OFC during such reactions. Such findings may suggest that a specific brain region, the OFC, is a key factor in understanding reactive aggression.
Scientists have for a long time been interested in the relationship between testosterone and aggressive behavior. In most species, males are more aggressive than females. Castration of males usually has a pacifying effect on aggressive behavior in males. In humans, males engage in crime and especially violent crime more than females. The involvement in crime usually rises in the early teens to mid teens which happen at the same time as testosterone levels rise. Research on the relationship between testosterone and aggression is difficult since the only reliable measurement of brain testosterone is by a lumbar puncture which is not done for research purposes. Studies therefore have often instead used more unreliable measurements from blood or saliva.[62]
The Handbook of Crime Correlates, a review of crime studies, states most studies support a link between adult criminality and testosterone although the relationship is modest if examined separately for each sex. However, nearly all studies of juvenile delinquency and testosterone are not significant. Most studies have also found testosterone to be associated with behaviors or personality traits linked with criminality such as antisocial behavior and alcoholism. Many studies have also been done on the relationship between more general aggressive behavior/feelings and testosterone. About half the studies have found a relationship and about half no relationship.[62]
Studies of testosterone levels of male athletes before and after a competition revealed that testosterone levels rise shortly before their matches, as if in anticipation of the competition, and are dependent on the outcome of the event: testosterone levels of winners are high relative to those of losers. No specific response of testosterone levels to competition was observed in female athletes, although a mood difference was noted.[63] In addition, some experiments have failed to find a relationship between testosterone levels and aggression in humans.[64][65][66]
The possible correlation between testosterone and aggression could explain the "roid rage" that can result from anabolic steroid use,[67][68] although an effect of abnormally high levels of steroids does not prove an effect at physiological levels.
Dehydroepiandrosterone (DHEA) is the most abundant circulating androgen hormone and can be rapidly metabolized within target tissues into potent androgens and estrogens. Gonadal steroids generally regulate aggression during the breeding season, but non-gonadal steroids may regulate aggression during the non-breeding season. Castration of various species in the non-breeding season has no effect on territorial aggression. In several avian studies, circulating DHEA has been found to be elevated in birds during the non-breeding season. These data support the idea that non-breeding birds combine adrenal and/or gonadal DHEA synthesis with neural DHEA metabolism to maintain territorial behavior when gonadal testosterone secretion is low. Similar results have been found in studies involving different strains of rats, mice, and hamsters. DHEA levels also have been studied in humans and may play a role in human aggression. Circulating DHEAS (its sulfated ester) levels rise during adrenarche (~7 years of age) while plasma testosterone levels are relatively low. This implies that aggression in pre-pubertal children with aggressive conduct disorder might be correlated with plasma DHEAS rather than plasma testosterone, suggesting an important link between DHEAS and human aggressive behavior.[57]
Glucocorticoid hormones have an important role in regulating aggressive behavior. In adult rats, acute injections of corticosterone promote aggressive behavior and acute reduction of corticosterone decreases aggression; however, a chronic reduction of corticosterone levels can produce abnormally aggressive behavior. In addition, glucocorticoids affect development of aggression and establishment of social hierarchies. Adult mice with low baseline levels of corticosterone are more likely to become dominant than are mice with high baseline corticosterone levels.[57]
Glucocorticoids are released by the hypothalamic pituitary adrenal (HPA) axis in response to stress, of which cortisol is the most prominent in humans. Results in adults suggest that reduced levels of cortisol, linked to lower fear or a reduced stress response, can be associated with more aggression. However, it may be that proactive aggression is associated with low cortisol levels while reactive aggression may be accompanied by elevated levels. Differences in assessments of cortisol may also explain a diversity of results, particularly in children.[53]
The HPA axis is related to the general fight-or-flight response or acute stress reaction, and the role of catecholamines such as epinephrine, popularly known as adrenaline.
In many animals, aggression can be linked to pheromones released between conspecifics. In mice, major urinary proteins (Mups) have been demonstrated to promote innate aggressive behavior in males.[69][70] Mups activate olfactory sensory neurons in the vomeronasal organ (VNO), a subsystem of the nose known to detect pheromones via specific sensory receptors, of mice[70] and rats.[71] Pheremones have also been identified in fruit flies, detected by neurons in the antenna, that send a message to the brain eliciting aggression; it has been noted that aggression pheremones have not been identified in humans.[72]
In general, differences in a continuous phenotype such as aggression are likely to result from the action of a large number of genes each of small effect, which interact with each other and the environment through development and life.
In a non-mammalian example of genes related to aggression, the fruitless gene in fruit flies is a critical determinant of certain sexually dimorphic behaviors, and its artificial alteration can result in a reversal of stereotypically male and female patterns of aggression in fighting. However, in what was thought to be a relatively clear case, inherent complexities have been reported in deciphering the connections between interacting genes in an environmental context and a social phenotype involving multiple behavioral and sensory interactions with another organism.[73]
In mice, candidate genes for differentiating aggression between the sexes are the Sry (sex determining region Y) gene, located on the Y chromosome and the Sts (steroid sulfatase) gene. The Sts gene encodes the steroid sulfatase enzyme, which is pivotal in the regulation of neurosteroid biosynthesis. It is expressed in both sexes, is correlated with levels of aggression among male mice, and increases dramatically in females after parturition and during lactation, corresponding to the onset of maternal aggression.[47]
In humans, there is good evidence that the basic human neural architecture underpinning the potential for flexible aggressive responses is influenced by genes as well as environment. In terms of variation between individual people, more than 100 twin and adoption studies studies have been conducted in recent decades examining the genetic basis of aggressive behavior and related constructs such as conduct disorders. According to a meta-analysis published in 2002, approximately 40% of variation between individuals is explained by differences in genes, and 60% by differences in environment (mainly non-shared environmental influences rather than those that would be shared by being raised together). However, such studies have depended on self-report or observation by others including parents, which complicates interpretation of the results. The few laborotory-based analyses have not found significant amounts of individual variation in aggression explicable by genetic variation in the human population. Furthermore, linkage and association studies that seek to identify specific genes, for example that influence neurotransmitter or hormone levels, have generally resulted in contradictory findings characterized by failed attempts at replication. One possible factor is an allele (variant) of the MAO-A gene which, in interaction with certain life events such as childhood maltreatment (which may show a main effect on its own), can influence development of brain regions such as the amygdala and as a result some types of behavioral response may be more likely. The generally unclear picture has been compared to equally difficult findings obtained in regard to other complex behavioral phenotypes.[74][75]
Humans share aspects of aggression with non-human animals, and have specific aspects and complexity related to factors such as genetics, early development, social learning and flexibility, culture and morals.
Culture is a factor that plays a role in aggression.
Tribal or band societies existing before or outside of modern states have sometimes been depicted as peaceful 'noble savages' or alternatively as brutish 'beasts'. The Kung Bushmen were described as 'The Harmless People' in a popular work by Elizabeth Marshall Thomas in 1958,[76] while Lawrence Keeley's 1996 War Before Civilization suggested that regular warfare without modern technology was conducted by most groups throughout human history, including most Native American tribes.[77] Studies of hunter-gatherers show a range of different societies. In general, aggression, conflict and violence sometimes occur, but direct confrontation is generally avoided and conflict is socially managed by a variety of verbal and non-verbal methods. Different rates of aggression or violence, currently or in the past, within or between groups, have been linked to the structuring of societies and environmental conditions influencing factors such as resource or property acquisition, land and subsistence techniques, and population change.[78]
Analyzing aggression culturally or politically is complicated by the fact that the label 'aggressive' can itself be used as a way of asserting a judgement from a particular point of view. Whether a coercive or violent method of social control is perceived as aggression - or as legitimate versus illegitimate aggression - depends on the position of the relevant parties in relation to the social order of their culture. This in turn can relate to factors such as: norms for coordinating actions and dividing resources; what is considered self-defense or provocation; attitudes towards 'outsiders', attitudes towards specific groups such as women, the disabled or the lower status; the availability of alternative conflict resolution strategies; trade interdependence and collective security pacts; fears and impulses; and ultimate goals regarding material and social outcomes.[79]
Cross-cultural research has found differences in attitudes towards aggression in different cultures. In one questionnaire study of university students, in addition to men overall justifying some types of aggression more than women, USA respondents justified defensive physical aggression more readily than Japanese or Spanish respondents, whereas Japanese students preferred direct verbal aggression (but not indirect) more than their American and Spanish counterparts.[80] Within American culture, southern men were shown in a study on university students to be more affected and to respond more aggressively than northerners when randomly insulted after being bumped into, which was theoretically related to a traditional culture of honor in the Southern United States.[81] A similar sociological concept that may be applied in different cultures is 'face'. Other cultural themes sometimes applied to the study of aggression include individualistic versus collectivist styles, which may relate, for example, to whether disputes are responded to with open competition or by accommodating and avoiding conflicts. Other comparisons made in relation to aggression or war include democratic versus authoritarian political systems and egalitarian versus stratified societies.[79] The economic system known as capitalism has been viewed by some as reliant on the leveraging of human competitiveness and aggression in pursuit of resources and trade, which has been considered in both positive and negative terms.[82] Attitudes about the social acceptability of particular acts or targets of aggression are also important factors. This can be highly controversial, as for example in disputes between religions or nation states, for example in regard to the Arab–Israeli conflict.[83][84]
Some scholars believe that behaviors like aggression may be partially learned by watching and imitating the behavior of others. Some scholars have concluded that media may have some small effects on aggression.[85] There is also research questioning this view.[86] For instance, a recent long-term outcome study of youth found no long-term relationship between playing violent video game and youth violence or bullying.[87] One study suggested there is a smaller effect of violent video games on aggression than has been found with television violence on aggression. This effect is positively associated with type of game violence and negatively associated to time spent playing the games.[88] The author concluded that insufficient evidence exists to link video game violence with aggression. However, another study suggested links to aggressive behavior.[89] One study suggested that adults (i.e. parents) suffering from dissociative symptoms related to post-traumatic stress disorder may be more likely to expose their children to violent programs and video games; links between these issues were also related to poverty.[90]
The frequency of physical aggression in humans peaks at around 2–3 years of age. It then declines gradually on average.[91][92] These observations suggest that physical aggression is not only a learned behavior but that development provides opportunities for the learning and biological development of self-regulation. However, a small subset of children fail to acquire all the necessary self-regulatory abilities and tend to show atypical levels of physical aggression across development. These may be at risk for later violent behavior or, conversely, lack of aggression that may be considered necessary within society. Some findings suggest that early aggression does not necessarily lead to aggression later on, however, although the course through early childhood is an important predictor of outcomes in middle childhood. In addition, physical aggression that continues is likely occurring in the context of family adversity, including socioeconomic factors. Moreover, 'opposition' and 'status violations' in childhood appear to be more strongly linked to social problems in adulthood than simply aggressive antisocial behavior.[93][94] Social learning through interactions in early childhood has been seen as a building block for levels of aggression which play a crucial role in the development of peer relationships in middle childhood.[95] Overall, an interplay of biological, social and environmental factors can be considered.[96]
- What is typically expected of children?
- Young children preparing to enter kindergarten need to develop the socially important skill of being assertive. Examples of assertiveness include asking others for information, initiating conversation, or being able to respond to peer pressure.
- In contrast, some young children use aggressive behavior, such as hitting or biting, as a form of communication.
- Aggressive behavior can impede learning as a skill deficit, while assertive behavior can facilitate learning. However, with young children, aggressive behavior is developmentally appropriate and can lead to opportunities of building conflict resolution and communication skills.
- By school age, children should learn more socially appropriate forms of communicating such as expressing themselves through verbal or written language; if they have not, this behavior may signify a disability or developmental delay
- What triggers aggressive behavior in children?
Corporal punishment such as spanking increases subsequent aggression in children.[97]
The Bobo doll experiment was conducted by Albert Bandura in 1961. In this work, Bandura found that children exposed to an aggressive adult model acted more aggressively than those who were exposed to a nonaggressive adult model. This experiment suggests that anyone who comes in contact with and interacts with children can have an impact on the way they react and handle situations.[98]
- Summary points from recommendations by national associations
- American Academy of Pediatrics (2011): "The best way to prevent aggressive behavior is to give your child a stable, secure home life with firm, loving discipline and full-time supervision during the toddler and preschool years. Everyone who cares for your child should be a good role model and agree on the rules he’s expected to observe as well as the response to use if he disobeys."[99]
- National Association of School Psychologists (2008): "Proactive aggression is typically reasoned, unemotional, and focused on acquiring some goal. For example, a bully wants peer approval and victim submission, and gang members want status and control. In contrast, reactive aggression is frequently highly emotional and is often the result of biased or deficient cognitive processing on the part of the student."[100]
Gender is a factor that plays a role in both human and animal aggression. Males are historically believed to be generally more physically aggressive than females from an early age,[101][102] and men commit the vast majority of murders (Buss 2005). This is one of the most robust and reliable behavioral sex differences, and it has been found across many different age groups and cultures. However, some empirical studies have found the discrepancy in male and female aggression to be more pronounced in childhood and the gender difference in adults to be modest.[103] Still, there is evidence that males are quicker to aggression (Frey et al. 2003) and more likely than females to express their aggression physically.[104] When considering indirect forms of non-violent aggression, such as relational aggression and social rejection, some scientists argue that females can be quite aggressive although female aggression is rarely expressed physically.[105][106][107]
Studies show, that females in general have better control over their emotions in comparison to males. Also, males are more likely to retaliate when provoked to gain recognition; females are less likely to retaliate in a violent way because they are shielded by moral sense. [108] Although females are less likely to initiate physical violence, they can express aggression by using a variety of non-physical means. Exactly which method women use to express aggression is something that varies from culture to culture. On Bellona Island, a culture based on male dominance and physical violence, women tend to get into conflicts with other women more frequently than with men. When in conflict with males, instead of using physical means, they make up songs mocking the man, which spread across the island and humiliate him. If a woman wanted to kill a man, she would either convince her male relatives to kill him or hire an assassin. Although these two methods involve physical violence, both are forms of indirect aggression, since the aggressor herself avoids getting directly involved or putting herself in immediate physical danger.[109]
See also the sections on testosterone and evolutionary explanations for gender differences above.
There has been some links between those prone to violence and their alcohol use. Those who are prone to violence and use alcohol are more likely to carry out violent acts.[110] Alcohol impairs judgment, making people much less cautious than they usually are (MacDonald et al. 1996). It also disrupts the way information is processed (Bushman 1993, 1997; Bushman & Cooper 1990).
Pain and discomfort also increase aggression. Even the simple act of placing one's hands in hot water can cause an aggressive response. Hot temperatures have been implicated as a factor in a number of studies. One study completed in the midst of the civil rights movement found that riots were more likely on hotter days than cooler ones (Carlsmith & Anderson 1979). Students were found to be more aggressive and irritable after taking a test in a hot classroom (Anderson et al. 1996, Rule, et al. 1987). Drivers in cars without air conditioning were also found to be more likely to honk their horns (Kenrick & MacFarlane 1986), which is used as a measure of aggression and has shown links to other factors such as generic symbols of aggression or the visibility of other drivers.[111]
Frustration is another major cause of aggression. The Frustration aggression theory states that aggression increases if a person feels that he or she is being blocked from achieving a goal (Aronson et al. 2005). One study found that the closeness to the goal makes a difference. The study examined people waiting in line and concluded that the 2nd person was more aggressive than the 12th one when someone cut in line (Harris 1974). Unexpected frustration may be another factor. In a separate study to demonstrate how unexpected frustration leads to increased aggression, Kulik & Brown (1979) selected a group of students as volunteers to make calls for charity donations. One group was told that the people they would call would be generous and the collection would be very successful. The other group was given no expectations. The group that expected success was more upset when no one was pledging than the group who did not expect success (everyone actually had horrible success). This research suggests that when an expectation does not materialize (successful collections), unexpected frustration arises which increases aggression.
There is some evidence to suggest that the presence of violent objects such as a gun can trigger aggression. In a study done by Leonard Berkowitz and Anthony Le Page (1967), college students were made angry and then left in the presence of a gun or badminton racket. They were then led to believe they were delivering electric shocks to another student, as in the Milgram experiment. Those who had been in the presence of the gun administered more shocks. It is possible that a violence-related stimulus increases the likelihood of aggressive cognitions by activating the semantic network.
A new proposal links military experience to anger and aggression, developing aggressive reactions and investigating these effects on those possessing the traits of a serial killer. Castle and Hensley state, "The military provides the social context where servicemen learn aggression, violence, and murder."[112] Post-traumatic stress disorder (PTSD) is also a serious issue in the military, also believed to sometimes lead to aggression in soldiers who are suffering from what they witnessed in battle. They come back to the civilian world and may still be haunted by flashbacks and nightmares, causing severe stress. In addition, it has been claimed that in the rare minority who are claimed to be inclined toward serial killing, violent impulses may be reinforced and refined in war, possibly creating more effective murderers.[citation needed]
Some recent scholarship has questioned traditional psychological conceptualizations of aggression as universally negative.[24] Most traditional psychological definitions of aggression focus on the harm to the recipient of the aggression, implying this is the intent of the aggressor, however this may not always be the case.[113] From this alternate view, although the recipient may or may not be harmed, the intent is to increase the status of the aggressor, not necessarily to harm the recipient.[114] Such scholars contend that traditional definitions of aggression have no validity.[citation needed]
From this view, rather than concepts such as assertiveness, aggression, violence and criminal violence existing as distinct constructs, they exist instead along a continuum with moderate levels of aggression being most adaptive.[24] Such scholars do not consider this a trivial difference, noting that many aggression measures may measure outcomes lower down in the continuum, at levels which are adaptive, yet generalize their findings to non-adaptive levels of aggression, thus losing precision.[115]
- ^ Akert, R.M., Aronson, E., & Wilson, T.D. (2010). Social Psychology (7th ed.). Upper Saddle River, NJ: Prentice Hall.
- ^ Berkowitz, L. (1993). Aggression: Its causes, consequences, and control. New York, NY: McGraw-Hill.
- ^ McElliskem, Joseph E. (2004). "Affective and Predatory Violence: a Bimodal Classification System of Human Aggression and Violence". Aggression & Violent Behavior 10: 1–30. DOI:10.1016/j.avb.2003.06.002. http://forensis.org/PDF/published/2004_AffectiveandPre.pdf.
- ^ Bushman, B.J.; Anderson, C.A. (2001). "Is it time to pull the plug on the hostile versus instrumental aggression dichotomy?". Psychological Review 108 (1): 273–279. DOI:10.1037/0033-295X.108.1.273. PMID 11212630. http://www-personal.umich.edu/~bbushman/ba01.pdf.
- ^ Ellie L. Young, David A. Nelson, America B. Hottle, Brittney Warburton, and Bryan K. Young (2010) Relational Aggression Among Students Principal Leadership, October, copyright the National Association of Secondary School Principals
- ^ Ramírez, JM; Andreu, JM (2006). "Aggression, and some related psychological constructs (anger, hostility, and impulsivity); some comments from a research project". Neuroscience and biobehavioral reviews 30 (3): 276–91. DOI:10.1016/j.neubiorev.2005.04.015. PMID 16081158. http://eprints.ucm.es/8425/2/Aggression_JMR_revised-1.pdf.
- ^ Veenema, AH; Neumann, ID (2007). "Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines". Brain, behavior and evolution 70 (4): 274–85. DOI:10.1159/000105491. PMID 17914259.
- ^ Simons, Marlise (May 2010). "International Court May Define Aggression as Crime". http://www.nytimes.com/2010/05/31/world/31icc.html.
- ^ Nathaniel Snow Violence and Aggression in Sports: An In-Depth Look (Part One) (Part 2Part 3) Bleacher Report, March 23, 2010
- ^ Merriam-Webster: Aggression Retrieved 10th January 2012
- ^ Online Etymology Dictionary: Aggression Retrieved 10th January 2012
- ^ Stearns, D. C. (2003). Anger and aggression. Encyclopedia of Children and Childhood: In History and Society. Paula S. Fass (Ed.). Macmillan Reference Books
- ^ Maestripieri, D. (1992). "Functional Aspects of Maternal Aggression in Mammals". Canadian Journal of Zoology 70 (6): 1069–1077. DOI:10.1139/z92-150. http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=2821091&q=maternal+aggression&uid=789499161&setcookie=yes.
- ^ van Staaden, MJ, Searcy, WA. & Hanlon, RT. 'Signaling Aggression' in Aggression Academic Press, Stephen F. Goodwin, 2011
- ^ Psychology- The Science Of Behaviour, pg 420, Neil R Clarkson (4th Edition)
- ^ Gleitman, Henry, Alan J. Fridlund, and Daniel Reisberg. Psychology. 6th ed. New York: W W Norton and Company, 2004. 431–432.
- ^ Gendreau, PL & Archer, J. 'Subtypes of Aggression in Humans and Animals,' in Developmental Origins of Aggression, 2005, The Guilford Press.
- ^ Tanner, CJ (2006). "Numerical assessment affects aggression and competitive ability: a team-fighting strategy for the ant Formica xerophila". Proceedings. Biological sciences / the Royal Society 273 (1602): 2737–42. DOI:10.1098/rspb.2006.3626. PMC 1635503. PMID 17015327. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1635503.
- ^ Mitani, John C.; Watts, David P., Amsler, Sylvia J. (NaN undefined NaN). "Lethal intergroup aggression leads to territorial expansion in wild chimpanzees". Current Biology 20 (12): R507–R508. DOI:10.1016/j.cub.2010.04.021. PMID 20620900.
- ^ a b Adamson, D.J.; Edwards, D.H.; Issa, F.A. (1999). "Dominance Hierarchy Formation in Juvenile Crayfish Procambarus Clarkii". Journal of Experimental Biology 202 (24): 3497–3506. PMID 10574728. http://jeb.biologists.org/cgi/content/abstract/202/24/3497.
- ^ Heitor, F.; Do Mar, Oom; Vincente, L. (2006). "Social Relationships in a Herd of Sorraia Horses Part I. Correlates of Social Dominance and Contexts of Aggression". Behavioural Processes 73 (2): 170–177. DOI:10.1016/j.beproc.2006.05.004. PMID 16815645.
- ^ Cant, MA; Llop, J; Field, J (2006). "Individual variation in social aggression and the probability of inheritance: theory and a field test". American Naturalist 167 (6): 837–852. DOI:10.1086/503445. http://www.journals.uchicago.edu/press/051006_1_AN.html.
- ^ Bragin, A.V.; Osadchuk, A.V.; Osadchuk, L.V. (2006). "The Experimental Model of Establishment and Maintenance of Social Hierarchy in Laboratory Mice". Zhurnal Vysshei Nervnoi Delatelnosti Imeni I P Pavlova 56 (3): 412–419. PMID 16869278.
- ^ a b c Ferguson, C.J.; Beaver, K.M. (2009). "Natural Born Killers: The Genetic Origins of Extreme Violence". Aggression and Violent Behavior 14 (5): 286–294. DOI:10.1016/j.avb.2009.03.005. http://www.tamiu.edu/~cferguson/NBK.pdf.
- ^ Hsu, Y; Earley, RL, Wolf, LL (2006 Feb). "Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes". Biological reviews of the Cambridge Philosophical Society 81 (1): 33–74. DOI:10.1017/S146479310500686X. PMID 16460581.
- ^ Aureli, F., Cords, M, & Van Schaik, CP. (2002) Conflict resolution following aggression in gregarious animals: a predictive framework ANIMAL BEHAVIOUR, 2002, 64, 325–343 doi:10.1006/anbe.2002.3071
- ^ Silverberg, James; J. Patrick Gray (1992) Aggression and Peacefulness in Humans and Other Primates ISBN 0-19-507119-0
- ^ Honess, PE; Marin, CM (2006). "Enrichment and aggression in primates". Neuroscience and biobehavioral reviews 30 (3): 413–36. DOI:10.1016/j.neubiorev.2005.05.002. PMID 16055188.
- ^ Somit, A (1990). "Humans, chimps, and bonobos: The biological bases of aggression, war, and peacemaking". Journal of Conflict Resolution 34 (3): 553–582. DOI:10.1177/0022002790034003008. JSTOR 174228.
- ^ Buss, D.M. (2005). The murderer next door: Why the mind Is designed to kill. New York: Penguin Press.
- ^ McCall, Grant S.; Shields, Nancy (NaN undefined NaN). "Examining the evidence from small-scale societies and early prehistory and implications for modern theories of aggression and violence". Aggression and Violent Behavior 13 (1): 1–9. DOI:10.1016/j.avb.2007.04.001.
- ^ Buss, D. M., & Duntley, J. D. The evolution of aggression. (2006). In M. Schaller, J. A. Simpson, & D. T. Kenrick (Eds.), Evolution and Social Psychology (pp. 263-286). New York: Psychology Press.
- ^ Durrant, Russil (NaN undefined NaN). "Collective violence: An evolutionary perspective". Aggression and Violent Behavior 16 (5): 428–436. DOI:10.1016/j.avb.2011.04.014.
- ^ Briffa, M. (2010) Territoriality and Aggression. Nature Education Knowledge 1(8):19
- ^ Clutton-Brock, T. H.; Hodge, S. J., Spong, G., Russell, A. F., Jordan, N. R., Bennett, N. C., Sharpe, L. L., Manser, M. B. (21 December 2006). "Intrasexual competition and sexual selection in cooperative mammals". Nature 444 (7122): 1065–1068. DOI:10.1038/nature05386. PMID 17183322.
- ^ Archer, John (NaN undefined NaN). "Does sexual selection explain human sex differences in aggression? Plus Open Peer Commentary". Behavioral and Brain Sciences 32 (3–4): 249–66; discussion 266–311. DOI:10.1017/S0140525X09990951. PMID 19691899. http://www.u.arizona.edu/~ajf/pdf/Archer%202009.pdf.
- ^ Campbell, Anne (1999). "Staying Alive: Evolution, culture, and women's intrasexual aggression". Behavioral and Brain Sciences 22 (2): 203–252. PMID 11301523.
- ^ The Handbook of Evolutionary Psychology, edited by David M. Buss, John Wiley & Sons, Inc., 2005. Chapter 21 by Anne Campbell.
- ^ Zuk, M. "Sexual Selections: What We Can and Can't Learn about Sex from Animals." University of California Press, 2002
- ^ The Oxford Handbook of Evolutionary Psychology, Edited by Robin Dunbar and Louise Barret, Oxford University Press, 2007, Chapter 30 Ecological and socio-cultural impacts on mating and marriage systems by Bobbi S. Low
- ^ Hermans, J.; Kruk, M.R.; Lohman, A.H.; Meelis, W.; Mos, J.; Mostert, P.G.; Van Der, Poel (1983). "Discriminant Analysis of the Localization of Aggression-Inducing Electrode Placements in the Hypothalamus of Male Rats". Brain Research 260 (1): 61–79. DOI:10.1016/0006-8993(83)90764-3. PMID 6681724.
- ^ Delville, Yvon; Ferris, Craig F.; Fuler, Ray W.; Koppel, Gary; Richard, RW; Jr, H. Melloni; Perry, Kenneth W. (1997). "Vasopressin/Serotonin Interactions in the Anterior Hypothalamus Control Aggressive Behavior in Golden Hamsters". The Journal of Neuroscience 17 (11): 4331–4340. PMID 9151749. http://www.jneurosci.org/cgi/content/abstract/17/11/4331.
- ^ Decoster, M.; Herbert, M.; Meyerhoff, J.L.; Potegal, M. (1996). "Brief, High-Frequency Stimulation of the Corticomedial Amygdala Induces a Delayed and Prolonged Increase of Aggressiveness in Male Syrian Golden Hamsters". Behavioral Neuroscience 110 (2): 401–412. DOI:10.1037/0735-7044.110.2.401. PMID 8731066.
- ^ Ferris, C.F.; Herbert, M.; Meyerhoff, J.; Potegal, M.; Skaredoff, L. (1996). "Attack Priming in Female Syrian Golden Hamsters is Associated with a C-Fos-Coupled Process Within the Corticomedial Amygdala". Neuroscience 75 (3): 869–880. DOI:10.1016/0306-4522(96)00236-9. PMID 8951880.
- ^ Crews, D; Greenberg, N; Scott, M (1984). "Role of the Amygdala in the Reproductive and Aggressive Behavior of the Lizard, Anolis Carolinensis". Physiology & Behavior 32 (1): 147–151. DOI:10.1016/0031-9384(84)90088-X. PMID 6538977.
- ^ Amaral, D.G.; Bauman, M.D.; Lavenex, P.; Mason, W.A.; Toscano, J.E. (2006). "The Expression of Social Dominance Following Neonatal Lesions of the Amygdala or Hippocampus in Rhesus Monkeys (Macaca Mulatta)". Behavioral Neuroscience 120 (4): 749–760. DOI:10.1037/0735-7044.120.4.749. PMID 16893283.
- ^ a b Potegal, M; Ferris, CF; Herbert, M; Meyerhoff, J; Skaredoff, L (1996). "Attack Priming In Female Syrian Golden Hamsters is Associated with a c-fos-coupled Process within the Corticomedial Amygdala". Neuroscience 75 (3): 869–880. DOI:10.1016/0306-4522(96)00236-9. PMID 8951880.
- ^ Paus, T. 'Mapping Brain Development' in Developmental_origins_of_aggression.html?id=XmSfJEl2v4sC&redir_esc=y Developmental Origins of Aggression, 2005, The Guilford Press.
- ^ Caramaschi, D; De Boer, SF; De Vries, H; Koolhaas, JM (2008). "Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry". Behavioural Brain Research 189 (2): 263–72. DOI:10.1016/j.bbr.2008.01.003. PMID 18281105.
- ^ Pihl, RO & Benkelfat, C. 'Neuromodulators in the Development and Expression of Inhibition and Aggression' in Developmental_origins_of_aggression.html?id=XmSfJEl2v4sC&redir_esc=y Developmental Origins of Aggression, 2005, The Guilford Press.
- ^ Heinrichs, M; Domes, G (2008). "Neuropeptides and social behaviour: effects of oxytocin and vasopressin in humans". Progress in brain research. Progress in Brain Research 170: 337–50. DOI:10.1016/S0079-6123(08)00428-7. ISBN 978-0-444-53201-5. PMID 18655894.
- ^ Campbell, A (2008 Jan). "Attachment, aggression and affiliation: the role of oxytocin in female social behavior". Biological Psychology 77 (1): 1–10. DOI:10.1016/j.biopsycho.2007.09.001. PMID 17931766.
- ^ a b Van Goozen, S. 'Hormones and the Developmental Origins of Aggression' Chapter 14 in Developmental Origins of Aggression, 2005, The Guilford Press.
- ^ Wingfield, John C., Ball, Gregory F., Dufty Jr, Alfred M., Hegner, Robert E., Ramenofsky, Marilyn (1987). "Testosterone and Aggression in Birds". American Scientist 5 (6): 602–608.
- ^ Muller, Martin N; Wrangham, Richard W (NaN undefined NaN). "Dominance, aggression and testosterone in wild chimpanzees: a test of the 'challenge hypothesis'". Animal Behaviour 67 (1): 113–123. DOI:10.1016/j.anbehav.2003.03.013.
- ^ Archer, J. (2006). "Testosterone and human aggression: An evaluation of the challenge hypothesis". Neuroscience & Biobehavioral Reviews 30 (3): 319–201. DOI:10.1016/j.neubiorev.2004.12.007. edit
- ^ a b c Soma, KK; Scotti, MA; Newman, AE; Charlier, TD; Demas, GE (2008). "Novel mechanisms for neuroendocrine regulation of aggression". Frontiers in neuroendocrinology 29 (4): 476–89. DOI:10.1016/j.yfrne.2007.12.003. PMID 18280561.
- ^ Siegel, A., Bhatt, S., Bhatt, R., Zalcman, S. S., A; Bhatt, S; Bhatt, R; Zalcman, SS (2007). "The Neurobiological Bases for Development of Pharmacological Treatments of Aggressive Disorders". Current Neuropharmacology 5 (2): 135–147. DOI:10.2174/157015907780866929. PMC 2435345. PMID 18615178. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2435345.
- ^ Volman, I., Toni, I., Verhagen, L., Roclofs, K. (2011). "Endogenous testosterone modulates prefrontal-amygdala connectivity during social emotional behavior". Cerebral Cortex Advance Access 10: 1–9. http://cercor.oxfordjournals.org/content/early/2011/02/21/cercor.bhr001.full.pdf.
- ^ a b Mehta, P. H., Beer, J. (2009). "Neural mechanisms of the testosterone-aggression relation: the role of orbitofrontal cortex. Journal of Cognitive Neuroscience". J Cogn Neurosci 22 (10): 2357–2368. DOI:10.1162/jocn.2009.21389. PMID 19925198.
- ^ Siever L. J., LJ (2008). "Neurobiology of aggression and violence". Am J Psychiatry 165 (4): 429–442. DOI:10.1176/appi.ajp.2008.07111774. PMID 18346997.
- ^ a b Handbook of Crime Correlates; Lee Ellis, Kevin M. Beaver, John Wright; 2009; Academic Press
- ^ Mazur, A; Booth, A (1998). "Testosterone and dominance in men". The Behavioral and brain sciences 21 (3): 353–63; discussion 363–97. PMID 10097017.
- ^ Albert, D.J.; Walsh, M.L.; Jonik, R.H. (1993). "Aggression in Humans: What is Its Biological Foundation?". Neuroscience and Biobehavioral Reviews 17 (4): 405–425. DOI:10.1016/S0149-7634(05)80117-4. PMID 8309650.
- ^ Coccaro, EF; Beresford, B; Minar, P; Kaskow, J; Geracioti, T (2007). "CSF testosterone: relationship to aggression, impulsivity, and venturesomeness in adult males with personality disorder". Journal of Psychiatric Research 41 (6): 488–92. DOI:10.1016/j.jpsychires.2006.04.009. PMID 16765987.
- ^ Chandler, D.W.; Constantino, J.N.; Earls, F.J.; Grosz, D.; Nandi, R.; Saenger, P. (1993). "Testosterone and Aggression in Children". Journal of the American Academy of Child and Adolescent Psychology 32 (6): 1217–1222. DOI:10.1097/00004583-199311000-00015. PMID 8282667.
- ^ Pibiri, F; Nelson, M; Carboni, G; Pinna, G (2006). "Neurosteroids regulate mouse aggression induced by anabolic androgenic steroids". NeuroReport 17 (14): 1537–41. DOI:10.1097/01.wnr.0000234752.03808.b2. PMID 16957604.
- ^ Choi, P.Y.L.; Cowan, D.; Parrott, A.C. (2004). "High-Dose Anabolic Steroids in Strength Athletes: Effects Upon Hostility and Aggression". Human Psychopharmacology: Clinical and Experimental 5 (4): 3497–356. DOI:10.1002/hup.470050407. http://www3.interscience.wiley.com/cgi-bin/abstract/109710653/ABSTRACT.
- ^ "Aggression protein found in mice". BBC News. 5 December 2007. http://news.bbc.co.uk/2/hi/science/nature/7129176.stm. Retrieved 26 September 2009.
- ^ a b Chamero P, Marton TF, Logan DW et al. (December 2007). "Identification of protein pheromones that promote aggressive behaviour". Nature 450 (7171): 899–902. DOI:10.1038/nature05997. PMID 18064011.
- ^ Krieger J, Schmitt A, Löbel D et al. (February 1999). "Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds". J. Biol. Chem. 274 (8): 4655–62. DOI:10.1074/jbc.274.8.4655. PMID 9988702. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=9988702.
- ^ Caltech Scientists Discover Aggression-Promoting Pheromone in Flies Caltech press release, 2009
- ^ Siwicki, Kathleen K; Kravitz, Edward A (NaN undefined NaN). "fruitless, doublesex and the genetics of social behavior in Drosophila melanogaster". Current Opinion in Neurobiology 19 (2): 200–206. DOI:10.1016/j.conb.2009.04.001. PMC 2716404. PMID 19541474. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2716404.
- ^ Perusse, D. & Gendreau, P. 'Genetics and the Development of Aggression' in Developmental Origins of Aggression, 2005, The Guilford Press.
- ^ Derringer, Jaime; Krueger, Robert F., Irons, Daniel E., Iacono, William G. (NaN undefined NaN). "Harsh Discipline, Childhood Sexual Assault, and MAOA Genotype: An Investigation of Main and Interactive Effects on Diverse Clinical Externalizing Outcomes". Behavior Genetics 40 (5): 639–648. DOI:10.1007/s10519-010-9358-9. PMC 2912157. PMID 20364435. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2912157.
- ^ Thomas, E.M. (1958). The harmless people. New York: Vintage Books.
- ^ Keeley, L.H. (1996). War Before Civilization: The myth of the peaceful savage. New York: Oxford University Press.
- ^ Lomas, W. (2009) Conflict, Violence, and Conflict Resolution in Hunting and Gathering Societies Totem: The University of Western Ontario Journal of Anthropology, Volume 17, Issue 1, Article 13
- ^ a b Bond, MH. (2004) 'Aggression and culture', in Encyclopedia of applied psychology, Volume 1.
- ^ Andreu, Takehiro; Manuel, J.; Fujihara, Takehiro; Kohyama, Takaya; Ramirez, J. Martin (1998). "Justification of Interpersonal Aggression in Japanese, American, and Spanish Students". Aggressive Behavior 25 (3): 185–195. DOI:10.1002/(SICI)1098-2337(1999)25:3<185::AID-AB3>3.0.CO;2-K. http://www3.interscience.wiley.com/cgi-bin/abstract/61001892/ABSTRACT?CRETRY=1&SRETRY=0.
- ^ Bowdle, Brian F.; Cohen, Dov; Nisbett, Richerd E.; Schwarz, Norbert (1996). "Insult, Aggression, and the Southern Culture of Honor: an "Experimental". Journal of Personality and Social Psychology 70 (5): 945–960. DOI:10.1037/0022-3514.70.5.945. PMID 8656339. http://www.som.yale.edu/faculty/keith.chen/negot.%20papers/CohenNisbettEtAll2_SouthCultureHonor96.pdf.
- ^ Nolan, P. (2007) Capitalism and freedom: the contradictory character of globalisation From page 2. Anthem Studies in Development and Globalization, Anthem Press
- ^ SHERER, M (1 March 2004). "Aggression and violence among Jewish and Arab Youth in Israel". International Journal of Intercultural Relations 28 (2): 93–109. DOI:10.1016/j.ijintrel.2004.03.004.
- ^ Amjad, N.; Wood, A.M. (2009). "Identifying and changing the normative beliefs about aggression which lead young Muslim adults to join extremist anti-Semitic groups in Pakistan". Aggressive Behavior 35 (6): 514–519. DOI:10.1002/ab.20325. PMID 19790255. http://personalpages.manchester.ac.uk/staff/alex.wood/amjadwood.pdf.
- ^ Akert, M. Robin, Aronson, E., and Wilson, D.T. "Social Psychology", 5th Edition. Pearson Education, Inc. 2005
- ^ Freedman, J. (2002). Media violence and its effect on aggression: Assessing the scientific evidence. Toronto: University of Toronto Press.
- ^ Christopher J. Ferguson, (2010) "Video Games and Youth Violence: A Prospective Analysis in Adolescents", Journal of Youth and Adolescence
- ^ Sherry, J. (2001). "The effects of violent video games on aggression". Human Communication Research 27: 409–431. http://www.icagames.comm.msu.edu/vgma.pdf.
- ^ Anderson, C.A.; Dill, K.E. (2000). "Video Games and Aggressive Thoughts, Feelings, and Behavior in the Laboratory and in Life". Journal of Personality and Social Psychology 78 (4): 772–790. DOI:10.1037/0022-3514.78.4.772. PMID 10794380. http://www.apa.org/journals/features/psp784772.pdf.
- ^ Schechter DS, Gross A, Willheim E, McCaw J, Turner JB, Myers MM, Zeanah CH, Gleason MM (2009). Is maternal PTSD associated with greater exposure of very young children to violent media? Journal of Traumatic Stress. 22(6), 658-662.
- ^ Tremblay, R.E. (2000). "The development of aggressive behaviour during childhood: What have we learned in the past century". International Journal of Behavioral Development 24 (2): 129–141. DOI:10.1080/016502500383232.
- ^ Bongers, I.L.; Koot, H.M.; der Ende, J.; Verhulst, F.C. (2004). "Developmental trajectories of externalizing behaviors in childhood and adolescence". Child Development 75 (5): 1523–1537. DOI:10.1111/j.1467-8624.2004.00755.x. PMID 15369529.
- ^ NICHD Early Child Care Research Network (2004). "Trajectories of physical aggression from toddlerhood to middle childhood: predictors, correlates, and outcomes". Monographs of the Society for Research in Child Development 69 (4): vii, 1–129. DOI:10.1111/j.0037-976X.2004.00312.x. PMID 15667346.
- ^ Bongers, I. L.; Koot, H. M., van der Ende, J., Verhulst, F. C. (30 November 2007). "Predicting young adult social functioning from developmental trajectories of externalizing behaviour". Psychological Medicine 38 (7). DOI:10.1017/S0033291707002309. http://web.up.ac.za/sitefiles/File/2561/OUB804/Aggressionoutcomesdevelopmental.pdf.
- ^ Schellenberg, R. (2000). "Aggressive personality: When does it develop and why?". Virginia Counselors Journal 26: 67–76. http://digitalcommons.liberty.edu/cgi/viewcontent.cgi?article=1178&context=educ_fac_pubs.
- ^ Tremblay, Richard E., Hartup, Willard W. and Archer, John (eds.) (2005). Developmental Origins of Aggression. New York: The Guilford Press. ISBN 1-59385-110-3. http://books.google.com/?id=XmSfJEl2v4sC.
- ^ Taylor CA, Manganello JA, Lee SJ, Rice JC (May 2010). "Mothers' spanking of 3-year-old children and subsequent risk of children's aggressive behavior". Pediatrics 125 (5): e1057–65. DOI:10.1542/peds.2009-2678. PMID 20385647.
- ^ Bandura, A.; Ross, D.; Ross, S.A. (1961). "Transmission of aggression through imitation of aggressive models". The Journal of Abnormal and Social Psychology 63 (3): 575–582. DOI:10.1037/h0045925.
- ^ American Academy of Pediatrics (2011) Ages & Stages: Aggressive Behavior HealthChildren.org, retrieved January 2012
- ^ National Association of School Psychologists (2008) Angry and Aggressive Students
- ^ Coie, J.D. & Dodge, K.A. (1997). Aggression and antisocial behavior. In W. Damon & N. Eisenberg (Eds). Handbook of Child Psychology, Vol. 3: Social, emotional and personality development
- ^ Maccoby. E.E. & Jacklin. C.N. (1974). The psychology of sex differences, Stanford: Stanford University Press.
- ^ Eagly & Steffen (1986) Psychological Bulletin. “Gender and Aggressive Behavior: A Meta-analytic Review of the Social Psychological Literature” Volume 100, No 3. pp 323-325[1]
- ^ Bjorkqvist, Kaj; Lagerspetz, Kirsti M.; Osterman, Karin (1994). "Sex Differences in Covert Aggression". Aggressive Behavior 202: 27–33. http://www.vasa.abo.fi/svf/up/articles/sexdiff_in_covert.pdf.
- ^ Archer, J. (2004). "Sex differences in aggression in real-world settings: A meta-analytic review". Review of General Psychology 8 (4): 291–322. DOI:10.1037/1089-2680.8.4.291.
- ^ Card, N.A.; Stucky, B.D.; Sawalani, G.M.; Little, T.D. (2008). "Direct and indirect aggression during childhood and adolescence: A meta-analytic review of gender differences, intercorrelations, and relations to maladjustment". Child Development 79 (5): 1185–1229. DOI:10.1111/j.1467-8624.2008.01184.x. PMID 18826521.
- ^ Hines, Denise A.; Saudino, Kimberly J. (2003). "Gender Differences in Psychological, Physical, and Sexual Aggression Among College Students Using the Revised Conflict Tactics Scales". Violence and Victims 18 (2): 197–217. DOI:10.1891/vivi.2003.18.2.197. PMID 12816404.
- ^ [2] Yahoo Canada. 9 Apr. 2012.
- ^ Björkqvist, Kaj (1994). "Sex differences in physical, verbal, and indirect aggression: A review of recent research". Sex Roles 30 (3–4): 177. DOI:10.1007/BF01420988.
- ^ Navis, C; Brown, SL; Heim, D (2008). "Predictors of injurious assault committed during or after drinking alcohol: a case-control study of young offenders". Aggressive behavior 34 (2): 167–74. DOI:10.1002/ab.20231. PMID 17922526.
- ^ Turner, C.W.; Layton, J.J.; Simons, L.S. (1975). "Naturalistic studies of aggressive behavior: aggressive stimuli, victim visibility and horn honking". Journal of Personality and Social Psychology 31 (6): 1098–1107. DOI:10.1037/h0076960. PMID 1142063.
- ^ Castle, T.; Hensley, C. (2002). "Serial Killers with Military Experience: Applying Learning Theory to Serial Murder". International Journal of Offender Therapy and Comparative Criminology 46 (4): 453–65. DOI:10.1177/0306624X02464007. PMID 12150084.
- ^ Smith, P. (2007). "Why has aggression been thought of as maladaptive?". Aggression and Adaptation: the Bright Side to Bad Behavior: 65–83. http://psycnet.apa.org/?&fa=main.doiLanding&uid=2007-07567-003.
- ^ Hawley, P.; Vaughn, B. (2003). "Aggression and adaptive function: The bright side to bad behavior". Merrill-Palmer Quarterly 49 (3): 239–242. DOI:10.1353/mpq.2003.0012. http://people.ku.edu/~phawley/Publications/MPQHawleyVaughn2003.pdf.
- ^ Ferguson, C.J. (2010). "Blazing Angels or Resident Evil? Can violent video games be a force for good?". Review of General Psychology 14 (2): 68–81. DOI:10.1037/a0018941. http://www.tamiu.edu/~cferguson/Blazing%20Angels.pdf.