
DOJ~D:
'"

3896732

SECRET

AFirst Generation Technical Viral Defense (U)
I

I
i

................... P.L. 86-36

"-:;.".

j
{

; .

i
>
1
i.;

i. ,
~, t

,. ~:.'

I

, 1lIt3 81 dele is elasslAtd 888R~'P it: its cali: at}.
I

Editor's note:1 This paper was awarded second prize in the Computer Security Cat~gory of the 1987 Computer
and Information Sciences Institute Essay Competition. .

!

Computer: viruses are a form of Trojan horses with a self-propagating property. They
cein be extr~mely infectious and virulent when used maliciously in computer syste~s. Many
defenses are available to System Security Officers (SSOs which will limit or detect viruses.
Most meth~ds are easy to implement, yet provide the SSO with a high degree of effective
viral contr.ol. These defenses include "sealing" the program (by encryption techniques),
comparind. the pre- and post-fix portions ofprograms, limiting the domains the executable
code inha8it,andcontrolling the flow and access rights of programs. Second generation
viral deferkes will use heuristics to detect viruses, audit the system looking for specific

. I

viral-indie,ators. or compare the coding style in program!? Standard personnel and
procedural techniques will not be discussed.

I

I

INTRODUCTION

Syster(l Security Officers have a wide variety of options to defend against software
sabotage. : They can institute technical. measures to prevent or detect unauthorized
alterations,. investigate the backgrounds oftheir employees, and implement procedures to

I

limit opportunities of introducing malicious code. This paper will discuss the former
measure: that of compiling a suite of technical means to limit and detect software
sabotage, primarily that sabotage via computer viruses.

Compoter viruses are a form of Trojan horse. Their mission is usually malicious and
triggered ~y some event, such as a certain system date or the disappearance of a certain
name from the payroll database. They have the additional property of being able to copy
themselves from one program to another. When introduced into a system with little or no

'. defenses, they can quickly take over the system (obtain full privileges). [5,9, 131
Emph~sis on computer viruses as opposed to the general class'of rrojan horses was

chosen fori two reasons: first, because their propagation property makes them potentially
more dan~erous relative to '~ordinary" Trojan horses; [3, 11] and second, because their
propagation property makes them potentially easier to detect than ordinary 'Trojan
horses. Technical methods which are germane to this problem will be discussed, while
generic pe'rsonnel and procedural security measures will not.

DEFINITIO~S

I

A computer virus is' a form of Trojan horse which has the (additional) property of
being abl~ to copy itself to another program, other than the program it inhabits. Both a
program "irifected" with a virus and a virus-free program are called "hosts."

~>.

," :,~,1.':'

. ",};':' .. eclassified and approved for release by NSA
n 09-06-2011 ursuantto E.O. 13526

seCRET

,;~ .

'.'; ..

CRYPTOLOGIC QUARTERLY

A viru~ has thiee components [2]: the first is the propagation component, that part
which causes the virus to' propagate to other hosts; second is the mission, which is the
ultimate goal of the virus and is usually malicious (delete all files, usurp the system, etc.);
and the third is theltrigger mechanism. The trigger directs the virus when to execute the
other two componeAts. ::.y' . .

ASSUMPTIONS

We assume tha~ the programs used to detect viruses are themselves not infected with
yiruses, and that they contain no other form of malicious logic. If this is riot assumed, it is
easy to construct scenarios where··they fail. A program which ostentatiously checks fpI­
viruses could be mJdified such that it would work except when it found apiirticular virus;
in which case the checker would ignore the infection.

I

DEFENSIVE CLASSES
1

Defensive measures will be divided into three classes. The first class att~mpts to save
an attribute of a pn~gram that is initially "pure." Then it will periodically recompute arid
compare. this attribute to check for contamination. A routine in this class cannot
determine if a prog~am is initially infected. The class is entitled "attribute monitors."

The second clas.s is called "virus detectors." A routine in this class 'can determine
whether a file is inltially ·infected. These routines examine the program by itself or in
relation to other prpgrams to determine whether infection has occurred. The previous
class established a' baseline and then checked to ensure that the basel ine was still
accurate. Both the first and second class detect viruses in a nondynamic way; that is, they
do not rely on the bJhaiJior of the program during execution to work, rather, they rely on

1
the appearance.

The third class ;is "execution limitations:" This class imposes a priori. controls on
executables to prever-t virus propagation.

After discussing some examples under each class, three measures tha:t will require
much innovative work and engineering will be examined. .

I
ATTRIBUTE MONITORS

I

Checksum Routine :
. I

The first routin~in this cl'ass is a checksum routine. [1; 11] The check::fliin routine
first computes a checksum on a file to be protected. This initial value is storep and access
protected1 if the sy~teril itself cannot provide sufficient control, then th(;) checksum is
protected by reducing it to hardcopy or writing the value to write-once media.
Synchronously, or 0.0 demand, the checksum for the file is recomputed and compared. ,

1. One can not simply access protect the' file being checksummed in the same manner. The checksum(s) may
be protected with the s~me constraints the system would use to protect the password file. This level of
protection cannot be applied to every users' files. Also, the checksum(s) m~t be protected from any write
access, some files may b~ written to from authorized programs, but not by others. The system may not provide
the needed granularity ~fcontrol.

!

SEERET 28

* s

;.;

r.-
i'

DOClD: 3896732

, "
A FIRST GENERATION TECHNICAL VIRAL DEFENSE SECRn

."
~'.

i.
~ ~.
/, ..: ,,
I ,.r -'.
t
i '
j

I
against the stored value. If the values differ, the SSO knows that the file has been

I '

modified. : If an authorized change to the file is made, the "initial" checksum must be
updated. ft is assumed that updates to operational systems will be infrequent and can be
closely coq.trolled.

AlthoHgh this scheme (and others below) may be too costly to implement for every
executable or file on the system, it may be used to protect a subset of especially critical
programs.~ This subset should include essential operational routines or software develop­
ment routines such as translators or compilers, as well as whatever security relevant
programs lexist, such as the login/password responder or auditor.

It is also possible to store the checksum with the file itself and at run-time recompute
and compare it. This method has the ,advantage of cat~hing an infected file before it
executes (and potentially infecting ·others) but the disadvantage of increasirtg,"the.
executionioverhead. This system may be modified by allowing the owner to specify an
option at ~nvocation time that would cause the checksum to be re,computed and compared.

, Encryptiort
I,
I

A me~hod which relies on the pairing of a decryption key with the protected file is a
routine that uses public key encryption techniques.

PubIi~ key (or asymmetric) encryption uses t~o keys to encrypUdecrypt, where K 1
I

< > K2. lOne of the keys is derivable from the other (say K2 is derivable from Ky);
however, given K2 by itself, it is extremely hard to derive K 1 (see fig. i). Kl is referred to

EASY TO DO

';. ..
,~,

l'O,
..-:-

b&)II

HARD TO DO

...... ~... _...~ ..~:.

.,., ,
.:." "

"

Fig. 1. Public and Secret Keys

I

I

as the "s~cret" key, and K2 is the "public" key; When the public key is published anyone
can use it to encrypt a message which only the holder of the secret key can decrypt (see
fig.2), all~wing secrecy, or to decrypt a message which purports to be from the holder of
the secret key (see fig.3); which, if successful, authenticate~the message as being sent
from the holder of the secret key. [7, 10)

.-'

29

&EtR!T' CRYPTOLOGIC QUARTERLY
"

.~.;'

,) ,

PLAINTEXT"

USER 1

USERN

CIPHERTEXT

Kl

~
CIPHER TEXT -~)P"'III::I::il!l!ill

CIPHERTEXT

~'.~.• ,., ,.J.-.~.:...,.

II~

t

I

II.
USERN

USERl

I

Fig. 2. Private Cbmmunication - Anybody Encrypts with K2; Only Holder ofK
j

Can Decrypt
I '

i
I
I

I

PLAINTEXT

PLAINTEXT

PLAINTEXT

I
Fig.3. A':lthenticated Communication - Cipher Text Decryptable by Anyone with the Public Key

SECRET 30

j
j

J
j

1
1, i

ro
DOClO: 3896732

A FIRST GENERATION TECHNICAL VIRAL DEFENSE SECAH

The ~ethod ii1Volves encrypting an executable using KI (the secret key). Then K 1 is
destroyed. K2 (the public key) is published for everyone to use to decrypt the executable
file for US¢.2 As long as no one has K 1 , it is impossible for a virus to infect the executable
(seefig.4). The virus cannot write directly to the executable without being decoded to

~" {,. ,

-1 ,.,

".,.

.. ~
-;'.....

.,~... '.

:'1'•

.. :.: .
1. 1,1".

~. .'

I

I
I

PROGRAM IS ENCRYPTED WITH THE SECRET KEY

PROGRAM IS DECRYPTED WITH THE I;'UBLIC KEY

AND PROVIDED TO THE,USER

USERl

USERN

-:>.:

": . :~ .

Fig. 4. Progra~s Encrypted with Secret and pubif';'ifeys
I, ' ,

gibberisn (see fig, 5), because the executable is encrypted and wql be decrypted to run, If
the virud decrypts the file and then attaches itself and writes the corrupt version back out,
the OS will decrypt it into meaningless bits whenever anyone attempts exe~ution3 (see

2. There ~oula'bean operating system service such that whenever'someOl~~requests an encrypted program be
executed; the operating system would first decrypt the executable with the ~atchingpublic key.
3. ObvioiJsly, the operating system must not have a Trojan horse which allows th~ decrypting of protected
executables to be bypassed. Otherwise, the virus would decrypt the. execut!lble, insert itself, and.write the
executable back to memory, flagging the OS not to decrypt it to execute.

I

31 SEOt!T

1
1
j
'I
I

I
i
I

32

CRYPTOLOGIC QUARTERLYSECRET

I,.

Fig. 5. Plain Teit Virus is Decoded into Random Bits when Program is Decrypted to Execute

I

I
I

fig.6). The virus 1cannot use K2 for encryption purposes, and it cannot derive Kl to
reencryp·t the exec~tableproperly. .

I Fig.6. Plain Text ProgramNirus Pair Fares No Better

A key-per-executable or one key for all executables are two alternative methods to ·use
(see fig.7). If key-per-executable is chosen, installation of the encrypted executable and
the list of public keys must be protected. like the checksums were protected. Otherwise, a
virus would decrypt the executable, insert itself, obtain a public/secret key-pair, encrypt
the infected versio~, then write out the new "good" public key into its spot on the public
key list. Of course 'if the other method is used, a new executable or a change. to any of the
protecte~ ones will necessitate decrypting· all ex~cutables indThen reencriPting them
with the new secret key. The new executable cannot just be encrypted and added because
K1 was destroyed. ;If the key was not destroyed, sufficient precautions must be taken to
guard an unauthorized user from obtaining it to undetectably insert viruses.

A compromise ~ethod would be to group files and have a key per n files. Files which
are almost guaranteed hot to change could have their own key. This guarantees that no
more than n files must be decryptedJreencrypted to add a file or change an existing one.·

I

Other routines in this class may focus on saving file characteristics such as length (in
bytes), samplings from known positions, or date-and-time-of-last-change. Althougn a
clever virus can "optimize" a program so that the length does not change, such an attack
would be detected t~rough the checksum protection method. : .

I

_....../:~,...

tI
o
()
H--..,
tI

w
00
\J)

en
-J
W
r\J

~

>
"".l

~
c;i
tXJ
Z
tXJ
;:0.
>
..;I

oz
..;I
tXJ
(')

::I:
Z
(=i
>
t""
<
~
t""
o
tXJ
"".l
tXJ
Z
rJJ
tXJ

K2K1

, I,

ONE KEY PAIR FOR EACH EXECUTABLE

ONE KEY PAIR FOR ALL EXECOTABLES

Fig. 7. Key Pairs for Executables

Kl.l .' K2.1

," :, l ' ' " 'l '
1·11 .," ~I"I .. _

'·1 : . ; ,: .
,t.,". 0 . V 0 • ti

, ..,fl ",.~ .I~tf·
Kl.N K2.N·

-'u'l- -- ~__ --+ --_-''-­
,,~ ~.(~ ~II(.~_/" '-/- '-

w
w

I

:~~~~;:t-~ ~:.~ .. -+~.':~:-~--:'_'-:-~'-"-"'---'c-""""-~-~&~'7'7:--_.~:._~»"~;,,,+ ., , ...c-'~ -.

!!CREI

. ,
VIRUS DETECTORS:

I
Pre-iPost-fix Test~r

I

CRYPTOLOGIC QUARTERLY

I

The first viru,sdetect~(",relieson the virus always appending itself either to the front
or end of a progra!m. A siniple virus will likely insert itself at the beginning of a program.
This is the simple~staction that ensure~·thatthe virus will be run before the host program.
If the virus appeq.ds itself to the end of a:program, execution assurance is more difficult.
The virus must either depend on control falling through the host to the virus, or code at
the top of the hos~mustQ.e <:hanged or added to cause executiop ofthe virus .

. The benefit to the. SSO is that a -simple program can e~amine a number of files to'
determin~_jOh.~prst 0: last. n bytes are i~entical. If'sucha ch:cker de~er-mines that
several programs. have ldentIcal pre-fixes, It can assume. that a Vlrus has mfected them
all. The checker ~must be intelligent enough to discount standard headings or pre-fixes
before it starts to ~xamine the code. ' .

Pre- and postJfix checkers will evolve into something more sophisticated. Succeeding
checkers must haye even more intelligence built in. If a virus knew that only the first 20'
bytes were compared, it could create its o~n "unique" header by inserting a jump
instruction to the ;"real" viral code, followed by 15 random bytes. A "smart" checker could
detect that the first few bytes were alike in several different programs, and have the

I

ability to compar~ an ar\)itrary number of bytes, even shifting sequences between one file
and another. i

As ~iruses aie designed to be more sophisticated, checkers wit! have to rely on
statistIcal techniques to detect viruses. A very smart virus programmer might concoct a
scheme where the virus apportions itself up into 20 byte chunks, with a 10 byte chunk
being random bits (perhaps get clock value and insert). It would know enough to jump
around these ran40m pool$ and to insert "new" values each time it propagates. That way

. a checker would hot find more than 10 bytes alike out of 20. But if the' checker has
I •

sampled clean executables and knows that 15 percent of a small target subpart (some
section of code mi~us standard headers) is a reasonable amount of identical code to find in
different programs, a 50 percent figure may be enough to trigger an alarm. The virus is
then forced to hare more random bytes; but that takes up more space which further
increases the risk of detection; and one or two instructions would start showing up in some
unnatural regularity (the jump instruction). This see-saw battie will continue as
checkers and viruses become more sophisticated.

An advantagel that the simple pre- and post-fix checker shares with the checksum
routine is that it can work on object files quite handily. Humans have enough trouble
reading high-level source code, let alone machine code. A program that can examine
these types of fil~s can be a useful tool. A disadvantage of the pattern matcher (the
"smarter" pre-/po~t-fix checker) is that it can take even more CPU tiIJ1e than the
checksum~routine.. .

Run in backgrpund mode, the pattern matcher acts to detect viruses. Once a virus is
found·, it can be used to find other hosts infected by that virus by looking in the same
(relative) place for· the same bytes in the other hosts.

I

EXECUTION LIMITATIONS
I
I

Th~ next metHods discussed will be used primarily to prevent viruses from infecting
files, as opposed td the above methods which were used to detect infections (except for the
encryption method), .

I
I

34

DOCID: 3896732
. I

A FIRST GENERATION TECHNICAL VIRAL DEFENSE 5!'Cft!T

!.
\

".: <.

.. ",., ~~ .~ -

...,.

I

Access C~ntrols
I
I

These ro.utines try to ensure that e~ecutablesare never written. too directly or, if so,
then only: by a selected group' of files. The easiest way to accomplish this, is to set the
privilege~ for executables to execute only. In Unix the privileges would look like
--x--x--x, aepending on who was given execute rights. Of course, the file may need to be
deleted ot the program modified and recompiled, all of which potentially allow infection to

. occur..Ahd if one program normally writes to an executahle, this allows any program
(with Sim:ilar priyileges) to write to the executable: There are several methods that could

I . .'

obviate the protection ofthis scheme. A user could delete. an executable and then rename
one of his;own that is infected with the name of the deleted file. If the user knows the path

'0 that thesht~msearches to' execute th~'file, he may be ableto insert a like-named- file into
.' the path ~tructuresuch that it is found before the OS gets to the "real" program.
, . Ifthe: file to be protected is a user file it may bernore appropriate to allow the user to

determine who, ifanyone, may execute or eVen write to it. This may be accomplished by
the use deuser Defined Domains [l2) or domain/type enforced systems [4].. The' idea
behind t~ese two systems is to allow oniy needed, prespecified access to files.

These systems can constrain unauthorized access but allow those actions that are
.. ' otherwis~ required,· If the user has a program whicH writes into an executable, that fact

cant:>e encoded within these schemes as permissable;while still denying other files the
right to write into that executable. The granularity of access control may. be taken all the
way 'down toa program level. That is, one could specify precisely which programs had
access to another. Most popular discretion'ary access' schemes allow the granularity to be
specifiediat the user level; one can indicate which users 'are allowed access but cannot
specify which programs of that user are allowed access and which are not. .

The use of the domaih/type enforcer can further restrict the ability to contaminate
executables by restricting those subjects which have the privilege to create executables.
SSOs may wish.to tightly control this right, granting it only to compilers or other system
routines ,which take some file and transform it to an executable object. Further, they
would ha~e to control who could access these transformers.

. , • y' This defense narrows the vulnerability of the system greatly and allows the SSO to
concentr~te his attention and efforts. With protected' executables, virus originators are
forced to :examine other levels of the system for their attacks. One way this can be.done is
toinfect ht the source code level. Then the originator has only to corrupt the executable
(to force Irecompilation) or wait until some other change is made and the program re-
compiledfor the viral propagation to be effected. '.' .

FlowMo~els

Flow: model protection can~be: used as a defense against viruses. One way of
implemei1ting flow control would be to "·tag" information with a number which represents

I

the number of processes which have "touched" it ("flow distance" [5]). Processes have a
preset threshold of "shareability." Once information has been touched so many times it
will exce;edthis threshold and be rejected. This 'Policy, at best, only limits the damage
that can ,be done through a virus which sequentially spreads: If program A is' infected,
every other program in the system can be corrupted from it and thus become infected
themselJes. This policy limits those infections which.are spread.through long chains of
contamination, .where program A infect~ program B which irifects program C and so on.:
A smart I virus- could void the flow limit (if it were known) by. building the same limit
minus one into its propagation trigger. /'

.:." -.; .. ' :";.,;...:",--:.

Labeling

ROMs

I

Future defense~ (also called second generation defenses) are those which, in general,
utilize "artificial in~elligence"programming techniques. The methods discussed include'

, .~ ,

CRYPTOLOGIC QUARTERLY$!CREi

FUTURE DEFENSES

I
4. "A mechanism by which a person at a terminal can communicate directly with the Trusted Computing
Base. This mechanisn1 can only 'be activated by the person or the Trusted Computing Base and cannot be
imitated by untrusted :software." DoD Trusted Computer System Evaluation Criteria DoD 5200.28-ST,D,
December 1985. '

Another way of limiting flow is to tag information with the names of USers who have
touched it'("flow list" [5D.Then users may indicate who they wish to share with and also
condition sharing 6n the number of names that appear in the list. If one user knows that
the person across' the hall regularly brings in freeware, he may not accept any
information that has be,en to~hed by the freeware user,. .

Flow model pro~ection isjusta way of limitiIlg or conditioning the accesses allowed to
executables. Systems that allow users to set the privileges to their executables provide

, I '

mechanisms for limiting ,viruses (as noted above), since viruses, can only exploit the
privileges that they naturally obtain (excepting any security flows ,that can be 'actively
exploited). If the v;irus is allowed to change accesses while still under program control,
this will not affect: them very much, If the OS requires a trusted path~ coimection to
change privileges, 1the system..;is<,,ffiore secure. Regrettably, flow model protection is a
prime example of a: security/functionality trade off. The more secure the system in terms
of this model, the less sharing (functionality) is possible, Conversely, the more sharing
allowed, the less security is added by flow controls..

Installation on ~ read-only device will allow SSOs to use the physical qualities of the
medium to prevent ;writing to executables. Of course, this method incurs problems ifthe
executables must be modified. It must then be possible to write another executable which. , '.

will be, executed instead of the old version. But if this is possible/then it may also be
possible for someone to create a contamin,ated version of the executable and write it out to
be executed instead. of the "correct" .version. The goal of keeping development systems

, 1 '

separate from ope~~ti.onal ones is much the same here: ROMs are 'generally "safel'."
Naturally, the oflgInal source code and the compIler must be protected from
contamination as wku as the transition to executable code and the underiying microcode.

1

Labeling certaln executables at the lowest level -1 [1] on a system which has
mandatory security will also prevent those executables from being infected frorrr viruses

'.' at higher levels. This works because mandatory security prevents any subject from
writing to an object which has a lower classification level than the'subject. Thus if the'

, executable has a le~el which i_s less than ~veryone else's, nobody can' write to it. But this
, method requires th~t each executable be downgraded to be protected; as well as requi~ing
the data that thes~ executables use be at the same lowest -1 level. This is a counter:'
intuitive method of using levels to protect information. Also, all' of the executables
downgraded to that! level must be virus-free, as they could potentially'write to each other~

$i!CREI 36

DOCID: '3896732

A FIRST GENERATION TECHNICAL VIRAL DEFENSE 51!CkEI

i
aprogr~m which examines other programs and determines whether malicious software is
imbedded within it, a very smart audit program which looks for viral activity in the
system ~ctivity, and a program which examines other programs and looks for changes in
the coding style which would indicate a change of authorship.

Virus Filter'
I

Wepelieve that the task of writing a computer program which would examine other
,progra~s and determine whether or not the examinee is infected with a virus is

"impossiple. However, it is possible to detect certain types ,of viruses in certain
environments as well as locate sections ofcode which look "suspicious." The program that
does thi!? must know'a lot about what viruses look like and also be cognizant of the system' "
environment withinwhich it is opel'ating.

To ~rite this progmm, instructions and usage must be researched. Viruses have,
certain properties which many (if not most) other progmms d~ not For example, many

: ,viruses will need to call system routines to find the names of~xec\ltableftlesto infect,
,whereas many user programs already know which programs that they will access. The

,~implem~ntation of these properties should show up in the instructions of the virus.
Moreov~r, the clustering (appearance in close ,proximity) of these instructions; as in a

.. virus wliichappends or inserts itself in toto, would be a significant fingerprint: A normal
.us,er program may have many of the same instructions ~hat a virus does.but is more likely.
to have them spread throughout. . .

This program would attempt to locate viral-like code, assign' some value as to the
. perceived likelihood of it being a virus, and then pass that information (and the section[sl

of suspiJious code) back to, a user for any final decision or action,
I .

I

Au.ditor:

SECRET37
I'
I

I

I

The audit routine would determine when a program(s) was suspicious by examining
their behavior. It may sample the global system state toestablish-whether viruses had
infected Iprograms. Certain viruses may beeasilydetectedtht'~ughtheir behavior "from a
single *ogram, where the effects of oth~rs may not be' seen except through an

". aggregation. The auditor would also be comparing and analyzing behavior through time,
since vi~uses may construct their triggers to mask:their pr?pagation properties. L2]
•. Ana.uditor which uses templates of user activity and then compa-res current actions
~gainst~his template has already been proposed. [6, 81 An authorized us~r may spend
most of .his time doing "real" work or computiri'g, where, a masquerader may sperid an
ino~dina:te amount of time browsing through direcWries or checking statuses. An

. implementation of this type of auditor could simply so.u.nd an aler.t ~h¢n ti:J,ecoIp.pared
di.fferen~e was-gr~at enough, or it could provide more .Information to the~S(:}~to~mere

closely tedict exactly what type ofattack is (or has) occurred. .

Author Checker
I

I

The last second, generation viral defense is a program which examines code and then
tries to ,answer questions such as "how many authors does this program have?" and
;~where does one author's code end and another's begin?"--: Certain techniques exist to
answer these questions for noncomputer-like documents. Such techniques would look at

,such items as the length of sentences or paragraphs, the tense and inflection, the use and,
type of certain grammatical characteristics or ploys, not to mention simple ha,ndwriting
analysis: A program could be constructed to examine source code with similar'intentions.

~ .

I

. J

1

SECRET . <:;RYPTOLOGIC QUARTERLY.

I
I •

Perhaps ~t~would examine indentation, the use of comments, loop construction, or even
characteristics of variable names.

As ~ystem routi~es transform the source code in preparation for machine execution,
such analysis wouldibecome'IIlOre difficult, although not impossible. Once the source code
is verified to be uninfected, tHe object code (source code run through the compiler) needs to
be tested. Here, certain of the above characteristics cannot be used. The c·ompiler would
strip out comments,' for instance, but the basic structure of the program would. remain. If
a program is optimized, that would increase the amount of personal characteristics
filtered out (or ma~ked), decreasing the confidence level of finding and identifying
differences. '

CONCLUSIONS

Certain measutes may be undert~ken to provide SSOs with some assurance that
programs or executables cannot undetectably be infected with computer viruses. These
measures rely upori: the changes that must occur for infection to take place.. Once the
protection of the routines and the data that they require (the list of checksums or the list
of public keys) is assured, these toutinesprovide a high degree of assurance that viral

. I, .

activity will be prevented or detected. Other, more sophisticated mechanisms are poss;ble
but require furthe~ research before implementation..

SECkEl 38

r
DOCrD: 3896732

REFERENCES

A FIRST GENERATION TECHNICAL VIRAL DEFENSE SEERef

'". --

, '

.' t -;~.:, . ".

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

______---l~·~The Susceptibility of Multics to Viral Attacks," Cryptologic
Quarterly, Fall 1985..

I

~~_~~_~~~~~_-=-_..,.....__..,.....~ -=-~I\"ComputerVirus
O~ganiza~ion: A Definitive Taxonollly and Anatoqly of Comput~r Viruses,"
CrjJptologu: Quarterly, Fall 1986.\ '

I ~..

I 1·~Why Use 'a: Virus Inst~ad~f a Trojan H<>rse?" Informal
"TechfiicalNote,198T ':" " .. ': ,-- ".., .. ---- ","~

I ' '. '. .

Boebert, Earl and Richard Kain. "A Pr~~ticalAlt~rl1ative to Hier~chicallntegrity
Policies," Proceedings of the 8th.National·NaSfNC$C Computer 'Security
Conference, 1985.

I
I

.Cohen, Fred. "Computer Viruses," Proceedings, of the 7th National.NBS/NOSe;
CQmputer Security Conference, 1984. '

I

DJnning, Dorothy. "An Intrusion-DetectionMOdel," Proceedings of the 19.86.IEEE
Symposium on Security an;dPriuacy, 7-9 April 1986.

Dime, Whitfield and Marti,n E. Hellman. "New Directions in Cryptology~"IEEE·
T1iansactions on Information Theory, Vol.IT-22, No.6, November 1976.

Halme, LawrenceR, and John Van Horne. ~"A~tbm~ted Analysis of CQm}>uter
S~stem Audit Trails for Security Purposes/' Proceedings of the 9th National
NBS/NCSC Computer Security Conference, 1986.
I' // .

K~rger, Paul and Roger Schell. "Multics Security Evaiuation: Vulnerability
Analysis," ESD-TR-74,1~3 Vol. II, June 1974. .

I

.Rivest, R.L., A. Shamir~ andL. Adleman.....A M~tho«i for Obtaining Digital
Signatures and Public KeyCryptOsystems," CACM, Vol. 21, No.2, Februal-y 1978.

'---_-----~·ComputerVirus Infections," Cryptoiogic Quarterly, Fall 1985,

Srpith, Terry·A. "User Definable Domains as a Mechanism for Implementing the
Least Privilege Principle," Proceedings of the 9th NatioOOl' NBBINCSC Computer
Security Conference, 1986.

I

Thompson,:Ken. "Reflections on Trusting Trust," CACM, Vol. 27, No.8, August
1984. .

P.L. 86-36

• I 39 SECRE'f'

. ,

The effective,ness of these defenses will vary depending on the· security of the system
they inhabit. A:n All system should be able to adequately protect a list of keys, for
instance, where ~ D2 sy:;;tem may not: There are twoquestions. to answer when examining
viral defenses and system security: one, is a specific vi'Faraefense necessary in an Al (or
above some level) system? and two, would a defense do any good ina D (or below some
level) system? ,

The ansWer tp both is yes.. Ther~ is already [ll a paper which details a vulnerability in
a B2 level system. It is obvious that without spec~fic mechanisms which can be used to
defeat viruses, a system built to an Al level of'security is still vulnerable to viruses. This

, . I '"

vulnerability is probably not the' risk of disclosure but that of -integrity or denial' of
service.. That is, a system built to Al 'with no additional security, functionality is
susceptible to ceftain classes ofcomputer viruses. However, it is true that an Al syste'm

. provides the assurance tha1 when viral defenses are added they are much less likely to be
subverted. I

A D level system may still benefit from the addition of viral defenses. There are three
ways that defens~smay be used. First, it may be announced that they are being installed.
Although this wpuld allow a cognizant viral designer to create ','defense-r·esistant"
viruses,any imported viruses stand a good chance of being caught. Second, defenses may
be added surrep~itiously, Whereas this incurs the limitations of depending on secre9
instead o[strength for security, it is ar-guably better than announcing its emplacement.
The third me,thod requires t9-eSSO to logout all users from the system, perform' a
shutdown, boot t~e OS from a physically protected medium, and then perform the check
for viruses. Ofcourse, this last is only applicable to those defenses which'attempt to ferret
out viru'ses from the appearance of the host ptogram and could' not work fot those which
rely on the progr~msbehavior to detect viruses. ' . . ,

An SSO'inayfind eit'her of th~ first two methods adequate in a benign'imvironment,
but m-ustimptement the last if warrallted. It may also be reasonable to use method one or
two duringt1:J.e m9nth but at the end ofthemontheffect the more secure sweep.

"I

1

SEERE-f I

I

I,
I
1

I·

I
!

'1

.CRYPTOLOGIC QUARTERLY

Appendix

!~ Viral Defenses and System Security (U)

'j

~
:j

il
'!!

....·,1
.'~
i

'.l

1. See DoD TCSEC OoD 5200.28·STD.
2. Ibid. I

I
I
I

~ECREI j
I
1

I
I

40

