AN R

o s g 3 8

f o r———

1

DOCID:

4009825

CUMPUTER OPERATING

SYSTER UULINERABILITIES

S86

an my system really be penetrated?”

This is the question so often asked

by computer system managers. The, in~

evitable answer is "Yes. Any computer

system can be penetrated by a knowledge-
able user ™ Large computer systems, in partic-
ular, by their size and complexity, leave them-
selves open to attacks by unauthorized users.
Let us examine some of the vulnerabilities of
computer systems, as well as some of the possi-
ble defensive measures.

COMMON OPERATING SYSTEM VULNERABILITIES

Operating system vulnerabilities generally
fall into_one or more of the following seven
classes:

o
L
®

s .
-

Incomplete parameter validation

Inconsistent parameter validation

Implied sharing of privileged con-
fidential data

Asynchronous validation and inade-~
quate serialization

Inadequate identification, authen-
tication or authorization

Violable limits

Exploitable logic error

Let us look in detail at each class of
flaws and see how they affect the system oper-

ation. [

Incomplete parameter validation. When-
ever a user requests any type of service, the
operating system must verify that the user is
authorized to make that request and that a
proper parameter string has been provided by
the user. This verification is done to prevent]
the user from compromising a control program
which is performing services for all users.
Flaws in some operating systems may allow a
user to "fool" a control program into:

UNCLASSIFIED l

providing him access to data which he

would not otherwise be allowed access
rights,

placing the user program into privi-
leged or executive mode, or

severely degrading the operation of
the ADP system.

The following is a good example of incom-
plete parameter validation:

User X requests
A, but File A
system honors

Using a file dump routine,
a dump of 300 records from File
contains only 200 records. The
the user request, and User X is allowed access
to not only File A, but also to whatever data
is stored beyond the address area of File A.

Security requirements should make the con- i
trol routine validate the parameters and either :
reject the user request or dump only those
records which apply to File A.

Inconsistent parameter validation. Incon-
sistent parameter validation occurs whenever
there are multiple definitions for the same
construct within the operating system. For
example, a system control program may validate
a user program's parameters but trusts another
system routine's parameters as valid without
verification. Therefore, a user who can fool
the system into believing his code is system
routine code can obtain unauthorized privi-
leges. System routines should verify all
input parameter strings, even those from an-
other system routine.

Implied sharing of privileged or con--
fidential data. In a multiprogramming envi-
ronment, the computer's facilities are shared
by many users. The operating system must have
the built-in capability to isolate each user
from all other users. Failure to provide this
segregation can result in a possible compromise
of privilgged information. In modern operating
systems two problems are generally noted in
this area.® The first is the matter of sen-
sitive residue. This involves information
left behind in memory or other storage media
after a run has terminated. An unauthorized

March 79 * CRYPTOLOG * Page 13

UNCLASSIFIED

e ——

S
DOCID: 4009 ’

825 -

UNCLAS

~ user can enter the system and obtain access to
these "leftovers." This technique is commonly
known as scavenging. The second problem in-
volves the system sharing user space for its
own storage. To save space, the operating sys-
tem frequently shares the user's buffers to
store temporary working tables. This may allow
the user unauthorized access to the system
tables, i.e., password tables, etc. This
is frequently known as the wnerased blackboard

problem.

Asynchronous validation and inadequate
serialization. System integrity is guaranteed
only if information passed between program
sequences is protected. If the operating
system allows asynchronous operations and the
operations are not performed in a timely se-
quence, the information may be modified or
compromised. An example of this would be per-
mitting the user to perform I/0 into a check-
peint or restart file so that his restarted
progranm is §iven unauthorized or supervisory
privileges.® To be secure, an operating system|
must be able to enforce timing constraints to
a controlled state.

Inadequate identification, asuthorization
or authentication. Most operating systems
maintain some type of job initiation pro-
cedures which.monitor authorized vs. unauthor-
ized access. A system flaw exists whenever
a system permits a user to bypass these secu-
rity mechanisms. A user who finds a way to
obtain executive operation mode can "walk"
through the system without being questioned
by the system monitor. Operating systems must
require proof of access rights for all user
requests. Security mechanisms must be pro-
tected from user tampering. For example, pass-
word files should be encrypted or protected
from common access and must be unusual enough
to void any guessing or permutation attempts.

Violable limits. Because of architec-
tural limitations, the operating system has
to limit the resources a user can control.
These limits or "hands off" policies are
usually described in the system documenta-
tion. Whenever an advertised limit is not
enforced, a security flaw exists. For example,
a user may be limited to operate within an
assigned partition of storage; but a flaw in
the system allows him access to another parti-
tion on an overflow condition. Because the
operating system did not enforce the “rules
of the road,” a user could accidentally or
deliberately cause a system overload, result-
ing in system degradation or crash.

Exploitable logic error. With four to
five million lines of code, it is inevitable
that there will be bugs in any major operating
syste-m.4 A knowledgeable user may exploit these

SIFIED

rinfornstion or programs to which he is not
authorized. logic errors can especially be
created whenever the original design or coding
has been changed. Logic modifications compro-
mise any security measures designed into the
original system. Examples of exploitable logic
errors are frequently found in error-handling
procedures. A user may request modifications
or dumping of a file belonging to another user
Incorrect error handling may initiate the
actions without first verifying that the user
has access rights to that file. There is no
way to avoid logic errors in large operating
systems; however, these errors should be cor-
rected when discovered to avoid prolonged
compromise of sensitive information.

PENETRATION TECHNIQUES

Now that we know what some of the potential
operating system flaws are, we need to know how
a knowledgeable user, or penetrator, will ex-
ploit these flaws to obtain unauthorized access

to the system. In planning his attack, the
penetrator will have to answer the question,
"wWhat do I want—information or system de-
gradation?"S The answer to this question will
determine his method of attack. The pene-
trator's next step is to obtain all available
system documentation. Valuable information
which may point to vulnerabilities is avail-
able in the documentation. After reviewing
the manuals, the penetrator can then decide
on the techniques to be used in the penetra-
tion attempt. The penetrator's main objective
is to attack one or more of the seven major
flaw classes discussed earlier.

Probably one of the most available and
easiest system penetration methods is the use
of utility programs.3 These service routines
often execute user requests without requiring
proof of access rights. Some types of utility
routines are storage dump facilities, opera-
tions support programs and maintenance sup-
port programs.

Another widely used penetration technique
is operator "spoofing.' A penetrator can use
trickery, such as giving his program the same
hame as a system routine, to make the operator
think that his program is a privileged system
routine. He may then request a load of privi-
leged disc packs or magnetic tapes.

The penetrator can also obtain access to
privileged information by creating a Trojan
horge.® A Trojan horse is a program which,
in addition to doing what it is advertised to
do, does something else which its user doesn't
know about and wouldn't want done. A Trojan
horse is usually hidden in a utility program.
An example would be a performance monitor
which also dumps user information into a file
somewhere (account numbers, passwords, etc.).

errors to his advantage to obtain access to

System penetration can also be obtained

March 79 * CRYPTOLOG * Page 14

UNCLA

SSIFIED

e

-

1IN —-—

UNCLASSIFIED

4009825

by using any of several covert attacks.

DOCID:

Wire tapping. Also known as eavesdrop-
ping, this act involves the penetrator con-
necting some listening device to a communi-
cations line somewhere between a peripheral
device and the computer central processing
unit being penetrated. This is a passive oper-

ation.

Between lines entry. This is similar to
wire tapping except that the process is active.
The penetrator enters spurious commands onto
the communication lines which were meant only
for the legitimate users. This operation is
usually done when the intended terminal is at
an idle state.

Clandestine code. This operation involves
the entering of changes, possibly a Trojan
horse, into the coding of the computer
operating system.

Masquerading. This involves logging into
the computer system as a legitimate user whose
account number and password have been acquired
by begging, borrowing or stealing.

DEFENSIVE MEASURES (COUNTERMEASURES)

. 8o, if our system is so susceptible to
unauthorized access, how can we set up a de-
fense against these measures? The best ap-
proach is to build security into the initial
system design.3 Patches to the design at a
later time may create more flaws than they
patch. The problem with most current oper-
ating systems lies in the fact that they were
developed in the 1960s with no thought in mind
for security requirements. Even with security
in mind, we must remember that operating sys-
tem security is not a binary yes-no condition.
No large operating system currently in use
can be completely certified as secure.

Here are examples of measures which we
can take to protect our system from attack.

Data encryption. Data encryption is
becoming more widely used by both the gov-
ernment and private industry. Encryption
should be performed whenever sensitive in-
formation, such as password files, payroll
data, defense statistics, and the like, is
stored or sent over data communication lines.

Using a minicomputer as a front-end
security controller. This technique could
be used to control access to the host com-
puter from remote terminals. This would
remove the security overhead from the host
computer's operating system. The smaller
operating system in the minicomputer would
also be easier to certify as secure.

Mathematical models. Models allow sys-

tems analysts to study the complete operating
system environment and pick each area apart
for security analysis.

Xernels. Kernels are small portions of

software blocked together to perform a sin-
gle function. These small software modules

could be certified secure.

Software verification tools. Many Fools
have been or are being developed to certify
the security of computer software.

A LOOX AT FUTURE RESEARCH AREAS

Many areas in computer system security
need to be explored in the future. Some of
those areas are:

1. Development of better control struc-
tures (audit trails);

2. Expansion of kernel theory to develop
a "secure" operating system;

3. Cost analysis studies (Where do we
draw the line between cost of computer iecurity
and need? How do we measure security?)

4. Development of strong consistent man-
agement policies to govern the use of computer
facilities;

5. Development of software verification
tools to certify computer software;

6. Development of some type of virtual
machine monitor (an operating system which
isolates each user into his own mini-operating
system), which when properly designed and im-
plemented is "spoof-proof";? and

7. Development of a security specifi-
cation language which allows security require-
ments to be programmed into the operating sys-
tem by the security officer.

I hope 1 have been able to provide some
insight into just how vulnerable modern com-
puter operating systems are. Department of
Defense studies have shown a need for protect-
ing data relating to the nation's defense be-
cause of the many opportunities for fraud and
embezzlement. We must also realize that
software security is only one aspect of the
total security environment. We must also
consider administrative, personnel, physical,
communications, emanations and hardware secu-
rity. As modern technological advances are
made, with their applications for computers, we
will have a continuing requirement for opera-
ting system security.

No matter what misuses take place, we must
realize that people are still going to use that
magnificent adding machine, the computer. It
has been proven that there are people with

March 79 * CRYPTOLOG * Page 15

UNCLASSIFIED

DOCID:

UNCLASSIFIED

4009825

skills to crack safes, yet people still use
safes. The same correlation can be made to
computer usage. Our job as system managers is
to attempt to protect against accidental or
deliberate destruction, modification, or dis-
closure. < Security policy (administrative,
personnel, physical, communications, emanations,
hardware and software) and practices must be
sufficient to make up for the computer’s in-
ability to protect itself,

1. Webb, D.A. and Frickel, W.G., "Handbook
for Analyzing the Security of Operating
Systems," Lawrence Livermore Laboratories,

2. Abbott, R.P. et al., "Security and Enhance-
ments of Computer Operating Systems," Na-
tional Bureau of Standards, Rept. MBSIR
76-1041, April 1976.

3. Hoffman, L.J., Modern Methods for Computer
Security and Privacy, Prentice-Hall Inc.,
 New Jersey, 1977.

Chin, J.S., "Analysis of Operating System
Security,' Lawrence Livermore Laboratories,
December 2, 1975.

5. Linde, R.R., "Operating System Security,”
Proceedings of Watiomal Computer Confer-

1976, ence, 1975, 1975, pp. 361—368, 1))
nized need, ra::?rch and discussion, drafting

"DATA STAHDARDS WITHOUT TEARS”

A COMMENT BY| 13!
uch of what says in "pata
Standards Without Tears"' has merit.

The Data Dictionary concépt can play a

role in the standardization process, but

not in the 'magical” way he outlines.
You can only have standards with sweat — with-
out tears, perhaps, but certainly not without
considera I am afraid that we have
to indict?ff:fffff:J for not really giving due
credit to the standardization process that the
NDSC has long been pursuing, and also for pre~
senting a few half-truths here and there along
with the nuggets of wisdom. :

sy "No one agrees that data standards
should be enforced on his project at the ex-
pense of operational necessity."

Right. The NDSC has not tried to shut off
anyone's job because of failure to observe
standards. On paper we have the authority:
both NSA Regulation 80-9 and USSID 414, "Stand-
ardization of Data Elements and Related, Fesa-
tures for SIGINT Activities," Arnex B ("Imple~
mentation of Standard:Data Elements ana
Related Features in NSA/CSS Computer Projects")
give us the authority to make life very unhappy
for sponsors whose jobs ignore or conflict with
published standards. .In theory we can point
to the concept of enforcement of data standands,
even to the short-run disadvantage of a com-
puter‘project,\ In actual practice, we sacri-
fice the long-term benefits to the Agency that
would follow from a rigorous enforcement of
the standards we already have.

M ...we view standards as something
which not only can be but must be imposed in
an inflexible, hard—handgd:manner."

The Center never "imposes" standards in ,
this way but issues them only after a long and
rigorous process. This begins with a recog-

e e - - - i - -

*CRYPTOLOG, February 1979

of a "proposal)\) etc., and continues with
coordination through the Senior Data Represent-
atives (SDR) of the DDO elements. There are
draftings and redraftings to meet objections,
suggestions, etc., and final approval comes,

in many cases, only after a painfully long
process. This is far from an "inflexible,
hard-handed manner.” A proposed standard
always has wide circulation throughout the
Agency.

M "It goes without saying that [stand-
ards] cannot be achieved without some degree
of magic. On the practical Jevel the magic
machine already exists- for rendering coarse
materials into fine standard gold..."

I guess a good name for this philosophy of
standardization might be the "Rumplestiltskin
Syndrome" - after the legendary gnome who was
able to weave straw into gold to further his
nefarious designs. Let us not accuse our good
friends from the DED/D team of such plotting.
Everyone would like to have the magic machine
dispense usable and workable standards without
going through the long and often painful pro-
cess outlined above.

This philosophy is, I'm afraid, a naive one
when viewed in the harsh light of the standard-
ization process. I think I see what
is saying here, however., He is pointing out:

~ the DED/D will expose people to the

already-published standard data elements

in the dictionary part of the system;

— the DED/D will show people, in the

dictionary portion, what the current

usage of data fields is along a wide

spectrum of different Agency appli-

cations. Exposure to this usage will
gradually lead us towards the necessary
_ standardization. (The author of the
- essay does not explicitly state this,

but this is my understanding of his

concept.)

,J-[::::::::::]goes on to separate the data fea-

tures we deal with into two "domains'" — Data
Blements and Data Fields. I agree that this

March 79 * CRYPTOLOG * Page 16

P.L. 86-36

UNCLASSIFIED

